

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

OPTIMIZING UNMANNED AIRCRAFT SYSTEM
SCHEDULING

by

John L. Pearson

June 2008

 Thesis Advisor: W. Matthew Carlyle
 Second Reader: Sergio Posadas

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Optimizing Unmanned Aircraft System Scheduling
6. AUTHOR(S) John L. Pearson

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Unmanned Aircraft Systems (UASs) are critical for future combat effectiveness. Military planners from all
branches of the Department of Defense now recognize the value that real time intelligence and surveillance from
UASs provides the battlefield commander. The Operations Analysis Division of the Marine Corps Combat
Development Command is currently conducting an Overarching Unmanned Aircraft Systems study to determine
future force requirements. Current analysis is conducted through the use of the Assignment Scheduling Capability for
Unmanned Air Vehicles (ASC-U) and several specially designed heuristics. The Unmanned Aircraft System
Scheduling Tool (UAS-ST) combines these capabilities into one model and addresses several issues associated with
ASC-U. UAS-ST allows the user to control all aspects of the UAS, define a scenario, and then generates a flight
schedule over a known time horizon based on those inputs. All missions are assigned a user defined value and the
total schedule value is reported. The user can then quickly change a parameter of the UAS, re-solve the model, and
see the impact their proposed change has on the overall value of the schedule attained. Therefore, UAS-ST is a tool
for analyzing the value of future changes in UAS structure.

15. NUMBER OF
PAGES

95

14. SUBJECT TERMS Unmanned Aircraft, Optimization, Linear Program, UAS

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

OPTIMIZING UNMANNED AIRCRAFT SYSTEM SCHEDULING

John L. Pearson
Captain, United States Marine Corps

B.S., The Citadel, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2008

Author: John L. Pearson

Approved by: W. Matthew Carlyle
Thesis Advisor

Sergio Posadas
Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Unmanned Aircraft Systems (UASs) are critical for future combat effectiveness.

Military planners from all branches of the Department of Defense now recognize the

value that real time intelligence and surveillance from UASs provides the battlefield

commander. The Operations Analysis Division of the Marine Corps Combat

Development Command is currently conducting an Overarching Unmanned Aircraft

Systems study to determine future force requirements. Current analysis is conducted

through the use of the Assignment Scheduling Capability for Unmanned Air Vehicles

(ASC-U) and several specially designed heuristics. The Unmanned Aircraft System

Scheduling Tool (UAS-ST) combines these capabilities into one model and addresses

several issues associated with ASC-U. UAS-ST allows the user to control all aspects of

the UAS, define a scenario, and then generates a flight schedule over a known time

horizon based on those inputs. All missions are assigned a user defined value and the

total schedule value is reported. The user can then quickly change a parameter of the

UAS, re-solve the model, and see the impact their proposed change has on the overall

value of the schedule attained. Therefore, UAS-ST is a tool for analyzing the value of

future changes in UAS structure.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PURPOSE AND OVERVIEW .. 1
B. BACKGROUND... 2

1. Problem Statement... 2
2. The Marine Corps Three Tier UAS Family of Systems 3
3. Current UAS Structure ... 5
4. Current UAS Missions Types.. 6

C. SCOPE AND LIMITATIONS... 7
D. THESIS ORGANIZATION... 7

II. ASSIGNMENT SCHEDULING CAPABILITY FOR UAS.. 9
A. INTRODUCTION .. 9
B. BASICS OF ASC-U .. 9

1. Model Description .. 9
2. ASC-U Implementation ... 10
3. Model Capabilities and Limitations ... 10

C. LITERATURE REVIEW .. 12

III. OPTIMIZATION MODEL FOR THE SCHEDULING OF UNMANNED
AIRCRAFT SYSTEMS .. 15
A. INTRODUCTION .. 15
B. AN INTEGER PROGRAM TO OPTIMIZE UAS SCHEDULING.............. 15

1. Indices.. 15
2. Given Data [units] .. 16
3. Decision Variables .. 17
4. Formulation .. 18
5. Discussion.. 19
6. Route Enumeration and Data Development.. 19

IV. COMPUTATIONAL RESULTS ... 23
A. INITIAL TEST SCENARIO ... 23
B. UAS-ST INITIAL RESULTS AND ANALYSIS ... 25
C. COMPARING UAS-ST TO ASC-U.. 29

V. CONCLUSIONS AND NEW OPPORTUNITIES ... 33
A. SUMMARY... 33
B. OPERATIONAL INTRODUCTION.. 33
C. FUTURE DEVELOPMENT.. 34

LIST OF REFERENCES.. 35

APPENDIX A TEST SCENARIO ... 37

APPENDIX B VBA CODE... 41

APPENDIX C GAMS CODE ... 65

INITIAL DISTRIBUTION LIST... 75

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. UAS Tier Structure ..3
Figure 2. Projected Future FoS Tiers Structure...5
Figure 3. Plot of OUAS Scenario Taken from OUAS ..24
Figure 4. Example of Payload Worksheet...27
Figure 5. OUAS Study Future Tier Performance Parameters ...27
Figure 6. Sample of User Interface (Dashboard) ..28
Figure 7. Partial Display of Optimal UAS-ST Schedule...29

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. General Description of Mission Types ..6
Table 2. Number of UAS Assets Available in Generic Scenario23
Table 3. Input Worksheet for Mission Requests..25
Table 4. Assigned Mission Values by Tier ..26

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Unmanned Aircraft Systems (UASs) procurement is vital to the United States

Marine Corps' (USMC) combat effectiveness in the near future. UASs are used for

collecting intelligence, surveillance, and targeting information. They accomplish these

missions at a much lower overall risk than conventional, manned aircraft. Military

planners from all branches of the Department of Defense (DoD) recognize the value that

real time intelligence and surveillance from UASs provides the battlefield commander.

In an ongoing operation, mission requests from units in theater typically far exceed the

capacity of available UAS assets. Demand for UAS missions is increasing as the

capability of these platforms expands. Individual branches of DoD are scrambling to

acquire the UASs needed to support the requirements of currently deployed units in

combat operations. As a result, interoperability and compatibility is a major concern with

today’s current family of UASs.

Due to operational requirements in Iraq and Afghanistan, DoD is focusing

procurement strategy away from force transformation and future generation weapons to

more immediate concerns. Acquisition of UASs needed to meet operational requirements

is the agency’s highest priority. As a result, large procurement budgets exist to fill the

supply shortage and meet future operational requirements. Currently DoD is evaluating a

large number of alternative UAS programs. This selection process requires an objective

analysis of each alternative. The model in this thesis allows the USMC to accomplish

their analysis by clearly depicting the impact of changes in system capabilities on a daily

flight schedule. Application of the model is not limited to UASs. The model is capable

of analyzing any asset which must be scheduled in response to user demands. Therefore,

this model has future application in a multitude of other programs.

The current model in use for the Marine Corps Combat Development Command

(MCCDC) Overarching Unmanned Aircraft Systems (OUAS) study is the Assignment

Scheduling Capability for UAVs (ASC-U) model. The design agency for ASC-U is the

U.S. Army Training and Doctrine Command Analysis Center (TRAC). ASC-U is

 xvi

designed to support the development of an effective UAS force structure. It is a

spreadsheet-based decision support tool primarily for allocation and scheduling of assets.

ASC-U addresses complexities in military operations and scheduling of multiple moving

platforms. ASC-U accepts user parameters that define a scenario then seeks to provide a

feasible schedule for available UASs. ASC-U is the first model that enables analysts to

address this scheduling problem effectively. ASC-U combines both optimization and

simulation to produce a tool with unique capabilities.

This thesis develops an integer linear programming model, UAS-ST, for

scheduling UASs. UAS-ST allows the user to define all elements, both operational and

performance, of the UAS via an Excel spreadsheet. A schedule generator written in

visual basic for this application then takes these elements and generates a user-defined

number of individual schedules. This schedule generation is done for every UAV (UAV)

that is included in the scenario. Once the predefined number of schedules is generated,

UAS-ST creates data files for a General Algebraic Modeling System (GAMS) model.

GAMS, through the use of CPLEX, finds a near optimal combination of individual

schedules to produce a complete schedule for a user designated time period.

 The initial test scenario replicates a generic scenario given in the OUAS study.

This replication provides the simplest and most direct comparison of results with ASC-U.

The scenario time period is twenty four hours divided into ninety six intervals of fifteen

minutes each. This scenario does not refer to a specific country, but is designed solely to

provide the framework for determining the value of changes in UAS structure on a given

set of mission requests. UAS force structure for the initial scenario represents a small but

realistic composition of systems. Tier I is comprised of three separate units with four

UAVs and one Ground Control Station (GCS) per unit. Tier II is comprised of three

separate units with one UAV and one GCS per unit. Tier III is comprised of a single unit

with two UAVs and two GCSs.

UAS-ST is significantly different from ASC-U. ASC-U utilizes an Excel

spreadsheet and pulls the data into an Access database. UAS-ST applies an Excel

spreadsheet, which then uses Visual Basic to transfer the data to GAMS. GAMS then

applies the CPLEX solver to quickly optimize the schedule for all mission requests.

 xvii

Features that require supplemental heuristics in ASC-U are incorporated directly into

UAS-ST, eliminating the need for further processing. This produces a much quicker and

efficient analysis of alternatives. CPLEX is highly efficient in preprocessing feasible

solutions and reduces the run time to a matter of minutes. Overall, UAS-ST provides an

efficient update to the model presented in ASC-U.

UASs are critical to our nation’s and the USMC's future military combat

effectiveness. All branches of DoD recognize the need to develop an integrated network

of UASs. To answer this need, the Marine Corps is developing the concept of the UAS

Family of Systems (FoS). The FoS calls for a three tier structure of UASs with

overlapping capabilities. Currently, the MCCDC Operation Analysis Division is

conducting an OUAS study. This thesis is a direct contribution to that study, and UAS-

ST, provides a planning tool for development of future UAS structure. UAS-ST allows

the user to control all aspects of the UAS, define a scenario, and then generates a flight

schedule over a known time horizon based on those inputs. All missions are assigned a

user-defined value and the total schedule value is reported. The user can then quickly

change an operational or performance parameter of the UAS, re-solve the model, and see

the impact on the overall value of the schedule. UAS-ST is a tool for analyzing the value

of future changes in UAS structure.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PURPOSE AND OVERVIEW

Unmanned Aircraft System (UAS) procurement is vital to the United States

Marine Corp's (USMC) combat effectiveness in the near future. UASs are used for

collection of intelligence, surveillance, and targeting information. They accomplish these

missions at a much lower risk than conventional, manned aircraft. Military planners from

all branches of the Department of Defense (DoD) recognize the value that real time

intelligence and surveillance from UASs provides the battlefield commander. In an

ongoing operation, mission requests from units in theater typically far exceed the

capacity of available UAS assets. Future demand for UAS missions will increase as the

capability of these versatile platforms expands. Individual branches of DoD are

scrambling to acquire the UASs needed to support the requirements of currently deployed

units in combat operations. [IHT, 2008] As a result, interoperability and compatibility is

a major concern with today’s current family of UASs.

To address these issues in future systems, the USMC is developing the UAS

Family of Systems (FoS). Each system consists of an Unmanned Air Vehicle (UAV),

Ground Control Station (GCS), Launch and Recovery Station (LRS) and a combination

of various sensors and payload components. The components of the FoS have several

complementary capabilities which overlap in certain mission areas. The intent is to

create a mix of several UASs able to support various units of different sizes and levels of

operation.

To assess the effectiveness of a combination of UASs, quantitative models must

be applied to provide a reasonably accurate measurement of capability and some

guidance for efficient employment. To this end, this thesis develops a UAS planning and

decision support tool that takes as input a planning horizon, a fleet of UAVs and their

individual operating limits, a list of available payloads and a list of mission requests. The

model then provides as output an operational schedule for each individual vehicle

indicating the missions to be accomplished in a specified time horizon and the payloads

 2

required. This schedule provides analysts the ability to quickly determine the impact of

changes in any system parameter on the overall value of missions accomplished.

B. BACKGROUND

1. Problem Statement

Due to operational requirements in Iraq and Afghanistan, DoD is focusing

procurement strategy away from force transformation and future generation weapons to

more immediate concerns. Acquisition of the UASs needed to meet operational

requirements is the agency’s highest priority. [IHT, 2008] As a result, large procurement

budgets exist to fill the supply shortage and meet future operational requirements.

Currently DoD is evaluating a large number of alternative UAS programs. The selection

process requires an objective analysis of each alternative. This thesis develops a model

to help the USMC with this analysis. The model in this thesis allows the USMC to

accomplish their analysis by clearly depicting the impact of changes in system

capabilities on a daily flight schedule. Application of the model is not limited to UASs.

The model is capable of analyzing any asset which must be scheduled in response to user

demands. Therefore, this model has future application in a multitude of other programs.

 In recent comments, Defense Secretary Robert Gates, addresses wasteful or

inefficient UAS procurement programs in a speech given at the Air Force’s Air

University at Maxwell Air Force Base:

Because people were stuck in old ways of doing business, it's been like
pulling teeth. While we've doubled this capability in recent months, it is
still not good enough. [IHT, 2008]

The fact that the Defense Secretary is unusually blunt in his criticism of current program

development, should serve as proof of the pressure to field future UASs.

 3

2. The Marine Corps Three Tier UAS Family of Systems

Figure 1. UAS Tier Structure

The FoS divides the various UASs into three separate tiers. The tier assignments

provide each level of the Marine Air Ground Task Force (MAGTF) an organic,

interoperable, integrated and tailored capability that raises the situational awareness of

the combat unit commander through a common communication network. The current

operational conditions in Operation Enduring Freedom and Operation Iraqi Freedom

demonstrate the importance of UAS operations and the need for commanders at all levels

to maintain control of their respective battle space. Therefore, tiers are defined by the

area of interest and operational level of the supporting unit, such as a company, battalion,

or regiment. There is some operational overlap in tier capabilities; this is intentional and

should be considered beneficial to mission accomplishment.

 4

The three tiers are described in [MCCDC, 2005] as follows:

 Tier I – Short Range UAS

• Operationally Supports Battalion, Company, and Platoon

• Performs Reconnaissance and Surveillance Missions

• Current System: Dragon Eye, Future: Raven-B

• Endurance of 1.5 hours, Combat Radius of 5 miles

• Speed: Less than 20 knots

• Capacity for Single Payload

 Tier II – Division or Regimental UAS

• Operationally Supports Division, Marine Expeditionary Unit
(MEU), Regiment and Battalion

• Air vehicle: Persistent, low cost, durable, low observable, easily
transported, shipboard compatible, target acquisition capable,
heavy fuel engine

• Current: Scan Eagle Contract

• Endurance of 15 hrs, Combat Radius of 50 miles

• Speed: 60 knots

• Capacity for Two Payloads

 Tier III – UAS

• Operationally supports Marine Expeditionary Force, Marine
Expeditionary Brigade, MEU, Division and Regiment

• Reconnaissance Surveillance and Target Acquisition, Electro-
Optical /Infrared Imagery (EO/IR)

• Current System: Pioneer, Future Concept - Vertical Takeoff UAV

• Air vehicle (Proposed; expeditionary, sea based, Vertical Takeoff,
large sensor payload, multi-mission capable, weaponization)

• Sensor payload (Proposed: EO/IR/laser designation,
communication relay, Signals Intelligence, Electronic Warfare)

• Endurance of 8 hours, Combat Radius of 300 miles

• Speed: 200 knots

• Capacity for three payloads

 5

Figure 2. Projected Future FoS Tiers Structure

3. Current UAS Structure

There are several specialized terms associated with a UAS that this thesis uses

repeatedly. To avoid any confusion, the following definitions apply:

• UAV (Unmanned Aerial Vehicle): A UAV is an unpiloted aircraft. UAVs

can be remote controlled or fly an automated route based on pre-programmed

information.

• UAS (Unmanned Aircraft System): UAS is the current term introduced by

DoD and accepted by the Federal Aviation Administration to replace the term

UAV. A UAS consists of not only the unmanned aircraft, but also the data

link system, the launch and recovery station, and all maintenance and support

equipment.

• GCS (Ground Control Station): A GCS is a land or sea-based system that

allows an operator to control an unmanned aircraft. A GCS may control both

"active" and "passive" missions. An active mission requires the operator to

monitor the UAV, while a passive mission requires no interaction from the

operator.

 6

• LRS (Launch and Recovery Site): Used to control an unmanned aircraft

during the initial and terminal phases of flight. The LRS can also function

as a GCS when not recovering UAVs.

• Payload: Future system requirements call for a system of “payloads,”

each of which provides a custom capability. These payloads will be

uniform in size and connectivity to allow for rapid configuration of

mission specific profiles.

• Mission Package: Consists of the combination of payloads loaded on an

individual UAV which determines the mission capability of the UAV.

Required payload capacity is a key element of the current study.

4. Current UAS Missions Types

Following is a table of terms associated with current UAS missions. These

missions represent general categories and are derived from the Overarching Unmanned

Aircraft System (OUAS) study [OUAS, 2007].

Missions Abbreviation Description
Reconnaissance, Surveillance, Target

Acquisition (RSTA) (EO/IR) RSTA-EO/IR ISR asset for routine day and night time
operations

Reconnaissance, Surveillance, Target
Acquisition (Synthetic aperture radar) RSTA-SAR ISR asset for dense vegetation and poor

weather conditions

Signals Intelligence SIGINT Sensor(s) designed for passive collection of
signals

Air Vehicle Communications Link Relay AV_CLR Relays information and instructions through
one UAV to another

Communications Relay
 CR Relays voice and data between ground points

Strike STK Weapons enabled kinetic destruction of a time
sensitive target

Electronic Warfare
 EW Active denial of radio frequency

Table 1. General Description of Mission Types

 7

C. SCOPE AND LIMITATIONS

The intent of this thesis is to provide a model for use as an analytical tool in

determining the future force structure for UASs. The model allows the user to quickly

change both operational and performance parameters for each UAS tier. Once

parameters are set, the model quickly generates a near-optimal schedule. This rapid

schedule generation allows an analyst to see the impact of changing UAS capabilities on

a given daily schedule.

D. THESIS ORGANIZATION

Chapter II provides a discussion of the Assignment Scheduling Capability for

UAVs (ASC-U) the current UAS evaluation tool in use by the Operation Analysis

Division (OAD), MCCDC. Chapter III describes the optimization model and the stack

based enumeration heuristic used to solve it. Chapter IV provides a detailed analysis of

the ASC-U results and compares it to the current model. Chapter V is devoted to

conclusions and recommendations for future research.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. ASSIGNMENT SCHEDULING CAPABILITY FOR UAS

A. INTRODUCTION

The current model in use for the OUAS study is the ASC-U model. The agency

responsible for the design of ASC-U is the U.S. Army Training and Doctrine Command

Analysis Center (TRAC). ASC-U is designed to support the development of an effective

UAS force structure. This chapter describes the basic structure of the ASC-U model. It

begins with a description of the inputs accepted by the model then describes its

implementation in the study. The chapter then discusses limitations of ASC-U which are

addressed by this thesis. The majority of the information given here is summarized from

the OUAS report [OUAS, 2007]. This chapter also includes a review of current

literature.

B. BASICS OF ASC-U

1. Model Description

ASC-U supports the development of an effective UAS force structure. It is a

spreadsheet-based decision support tool used primarily for allocation and scheduling.

ASC-U addresses the complexities in military operations and scheduling of multiple

moving platforms. ASC-U accepts user parameters that define a scenario and then seeks

to provide a feasible schedule for available UASs. As stated in the ASC-U Analyst

Manual:

ASC-U provides a solution to the following problem: Given a scenario
that specifies the number of each type of UAV, initial UAV locations, and
UAV performance characteristics, determine the number of missions that
can successfully be completed and the schedule for each UAV. The
solution must consider GCS locations and capacities, remote viewing
terminal requirements, and communication platform footprint and
capacities. [Ahner, 2006]

 10

 ASC-U is the first model that enables analysts to address this scheduling problem

effectively. It combines both optimization and simulation to produce a tool with unique

capabilities.

2. ASC-U Implementation

The ASC-U model works by allowing the user to design a scenario which consists

of a set of mission requests. A mission request consists of a specific, required UAS

capability at a specific geographic location, for a set amount of time. The location of the

mission remains fixed once it is assigned. The allocation tool uses the UAS capability

data and mission data it is given to create a feasible schedule which will accomplish as

many mission requests as possible. ASC-U is deterministic. For a given input, it will

always produce the same schedule with the same measures of performance. Specifically,

ASC-U uses a deterministic algorithm to optimize over a given finite time horizon to

obtain near-optimal UAS mission area assignments.

ASC-U allows the user to define several different input parameters. Mission

requirements are the most important parameter. Mission requirements consist of a

coordinate location, payload requirement, length of mission and mission priority.

Mission priority functions as a selection criterion. A user may establish mission

precedence by assigning a higher value to a specific mission type. UAS parameters that

may be entered by the user are payload details, GCS attributes, and UAV attributes. GCS

attributes consist of coordinate location, control limits, and unit assignment. UAV

attributes include speed, operating time, combat radius, launch site, and total time

available.

3. Model Capabilities and Limitations

ASC-U is the first attempt to create a specific tool that involves all aspects of the

UAS family of systems. As part of its support program, TRAC-Monterey publishes an

ASC-U user’s manual. For its use in the OUAS study, some settings are different than

the manual’s recommended settings. Different settings are required due to the small size

of the original test scenario chosen. ASC-U is designed to model several thousands of

 11

missions over a long time period. The scenarios used in the OUAS study are much

shorter in duration and involve only a few hundred missions.

The mission requirements are the most important input data because they have the

most direct effect on the schedule generated. ASC-U attempts to complete as many

mission hours as possible. The objective function has a significant drawback. It leads to

preferential assignment of missions that are close to the launch and recovery site because

they allow for more follow-on missions to be accomplished. The model schedules as

many close-in missions as possible and foregoes farther outlying missions. Therefore,

mission priority, a specific input, allows the user to set a precedence level. However, in

some instances the user is forced to artificially inflate the value of a mission to ensure it

is scheduled.

All inputs are usually entered in Excel spreadsheets, and then read into Access.

ASC-U can take input from either Excel or Access. The Excel inputs are placed in an

Access data base as the model begins its run. The output is also stored in an Access data

base. Several tables are produced in the output. The most important table for the OUAS

study is mission coverage. Mission coverage is broken down into requesting unit,

mission type and UAV type. In ASC-U every possible payload combination is

enumerated as a mission package. Mission packages are then assigned to UAVs.

Mission package usage is recorded; therefore individual payload usage is not available.

The objective of the first OUAS study is to provide as many hours of UAS

support as possible. For ASC-U, the two key factors are the optimization interval and the

time horizon for scheduling the UAV. The optimization interval controls how often

ASC-U runs its routine to assign missions. The time horizon controls how far forward in

time ASC-U will look to assign the UAV to a mission. The optimization interval is

crucial because if the interval is set too long then the UAS will remain idle instead of

performing another mission. If the interval is set too low the model has difficulties and

exhibits odd behavior. An interval of 12 minutes is best for the scenarios used in the

OUAS study [OUAS, 2007]. Time horizon is critical because ASC-U will only schedule

a UAV once during the given time period. Therefore, if the horizon is set too long, ASC-

U can see a high value mission at the end of the period and keep a UAV idle the entire

 12

period waiting for that mission. A UAV can complete another mission and still complete

its priority mission. On the other hand, if the time horizon is set too low then ASC-U

misses high priority missions because it cannot see far enough out. The final horizon for

the OUAS study is 6 hours for Tier II and 4 hours for Tier III.

Because of these shortcomings, several workarounds and new heuristics are used

to enable ASC-U to find schedules that exhibit required behaviors. The SUPER

MISSION ability allows a UAV to fulfill multiple missions if they are within its operating

range. Three optional heuristics are also used in the OUAS study. They are implemented

in this order:

EARLY RETURN (Go Home vs. Stay) - When a UAV completes an assigned

mission, a value of TRUE allows the UAV to return to base if it can do so and still make

it back on station in time for its next mission. A value of FALSE forces the UAV to fly

until its operating limit is met. For the OUAS study, this is set to FALSE.

SECONDARY AREAS (Go Get More Value From Another Mission) - If a UAV is

scheduled for more than one mission in the same location with a time gap in between

them, a value of TRUE allows the UAV to perform another mission in between as long as

it is available at the start of its previously scheduled mission. A value of FALSE will

force it to remain on station until the start of its next mission. For the OUAS study, this

was set to TRUE.

APPENDED AREAS (Done, Is There Another Mission?) - If a UAV has

completed its assigned missions, a value of TRUE allows it to use its remaining time to

find another mission. A value of FALSE will not allow additional missions. For the

OUAS study, this was set to TRUE.

C. LITERATURE REVIEW

Many recent studies attempt to shape some aspect of the future design of UAS

force structure. An unintended consequence is that most of these studies focus only on

some specific technical portion of the overall problem. The Deputy Commandant,

Aviation and the Deputy Commandant Combat Development and Integration are

 13

sponsoring the OUAS study. Their intent is to analyze the future USMC UAS force

structure to determine how to best meet the needs of the MAGTF. The initial phase of

OUAS is being conducted by OAD MCCDC. The model given in this thesis is intended

for use in the follow on analysis of OUAS. Therefore, the initial report by OAD is

critical to this thesis, as it largely determined the requirements for the model.

Tutton [2003] deals with the optimal placement of a unit’s sensing assets. He

presents a methodology for finding the most beneficial mix and allocation strategy for an

individual unit’s sensors for a given threat scenario. Doll [2004] takes the model

developed by Tutton [2003] and translates it into a programming language for easier

simulation. She refines many of the constraints in the original model to make for a much

more realistic simulation. Finally, Zacherl [2006] deals specifically with reactive aircraft

scheduling. The thesis develops a model which reviews a current air tasking order and

then rapidly reassigns aircraft to new targets as they become available.

Finally a large number of commercial information sources address current topics

in UAS development and model optimization. When possible, these sources are used for

the sake of currency or accuracy.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. OPTIMIZATION MODEL FOR THE SCHEDULING OF
UNMANNED AIRCRAFT SYSTEMS

A. INTRODUCTION

This chapter develops the mathematical programming model, Unmanned Aircraft

System Scheduling Tool (UAS-ST). UAS-ST applies an optimization based approach to

analyze the best mix of future UAS mission capabilities. The main goal of this thesis is

to provide a model, which will be applied to the current OUAS study.

The model allows the user to define all elements of the UAS via Excel

spreadsheet. The schedule generator then takes these elements and generates a user

defined number of individual schedules for every UAV included in the scenario. This

schedule generation is done via Excel and Visual Basic. Once the predefined number of

schedules is generated, the data is read into a General Algebraic Modeling System

(GAMS) program to find a near optimal combination of individual schedules.

B. AN INTEGER PROGRAM TO OPTIMIZE UAS SCHEDULING

The following integer linear program (ILP), UAS-ST, attempts to find the

consolidated UAS schedule with the highest overall total value. First the model is

presented, then the detailed input required to optimize the objective function is discussed.

Once this is complete, instances of UAS-ST are generated to demonstrate its function.

1. Indices

v V∈ Tier levels [3]

h H∈ Mission types [2] (H= {passive, active})

g G∈ Ground Control Station (GCS) [~10]

l L∈ Launch and Recovery Site (LRS) [~6]

m M∈ Missions [~150] (alias m’)

 16

p P∈ Payload module types [~10]

t T∈ Time periods [96]

s S∈ UAV employment schedules

' mm P∈ Mission prerequisites: mission m cannot be covered in any time

period t unless at least one mission m’ in Pm is also covered in time

period t

(), 'm m E∈ Pairwise exclusive missions: mission m cannot be covered in any

time period that mission m’ is covered. E M M⊆ × .

(), ,s m t A∈ schedule s covers mission m in time period t

(), ,s v t B∈ schedule s uses UAV in tier level v in time period t

(), ,s l t K∈ schedule s uses LRS l in time period t

(), ,s c t Q∈ schedule s carries payload of class c in time period t

(),s l SL∈ schedule s uses LRS l

(),m g MG∈ mission m can be covered by GCS g

(),m h MH∈ mission m is of mission type h

(),g v GV∈ GCS g can support a UAS in tier v

2. Given Data [units]

mval Value per time period of mission m (=total value of m divided by

length of m)

rm Number of time periods of required coverage for mission m

num_uavsv,t Number of UAVs in tier level v available in time period t

num_payc,t Number of payloads of class c available in time period t

 17

,_ h
g tgcs cap Capacity (in UAVs) of GCS g in time period t for missions of

 type h

lrs_capl,t Capacity (in UAVs) of LRS l in time period t

lengthm Maximum number of periods mission m can be covered

, ,l s tk =1 if schedule s uses LRS l in time period t

3. Decision Variables

sX =1 if schedule s flown by some UAS [binary]

, ,m v tY =1 if mission m covered by a tier v UAS in period t

, , ,m v g tW =1 if mission m supported by GCS g for a tier v UAS in time

period t [binary]

mD Total dwell time on mission m [time periods]

, ,c v lLOAD Payloads of class c for tier v sited at LRS l [cardinality]

 18

4. Formulation

()
()

()
()

()
()
()

()

, ,
: , ,

,

, ,
: , ,

, ,

, , ,

, , , ,
, : ,

,
,

: , ,

max (R0)

s.t. _ , , (R1)

, , , (R2)

_ , (R2)

_ , , (R3)

m m
m

s l v t
s s v t B

s l SL

s c v l
s s v t B

s c t Q

c v l c v
l

h
m v g t g t

m v m g MG
m h MH
g v GV

s
s s l t K

val D

X num uavs l v t

X LOAD c v l t a

LOAD num pay c v b

W gcs cap g t h

X

∈
∈

∈
∈

∈
∈
∈

∈

≤ ∀

≤ ∀

≤ ∀

≤ ∀

≤

∑

∑

∑

∑

∑

∑

()
()

()
()

()

,

, ,
: , ,

, ,

, ,
,

, , ', ',
' , '

, , , , ,
: ,

,

, , ', ,

_ , (R4)

, , (R5)

(R6)

: , , (R7)

: , , (R7)

1 , ' , (R8)

m

l t

m v t s
s s m t A

s v t B

m m v t
v t

m v t m v t m
m P v

m v t m v g t m
g m g MG

g v GV

m v t m v t
v v

m

lrs cap l t

Y X m v t

D Y m

Y Y m P v t a

Y W m P v t b

Y Y m m E t

D

∈
∈

∈

∈
∈

∀

≤ ∀

≤ ∀

≤ ∀ ≠ ∅ ∀ ∀

≤ ∀ = ∅ ∀ ∀

+ ≤ ∀ ∈ ∀

≥

∑

∑

∑

∑

∑ ∑

{ }
{ }
{ }

, ,

, , ,

9(R)
0 10(R)

0,1 (R11)

0,1 , , (R12)

0,1 , , , (R13)

m

m m

s

m v t

m v g t

r m
D length m

X s

Y m v t

W m v g t

∀
≤ ≤ ∀

∈ ∀

∈ ∀

∈ ∀

 19

5. Discussion

The objective function (R0) calculates the value of all mission time periods

covered. Constraints (R1) limit the number of active UAVs in each tier, in each time

period, based at each LRS, by the number of UAVS available. Constraints (R2a) limit the

number of a specific payload class an tier flown from an LRS in each period to the

number of payloads of that class and tier assigned to that LRS, and constraints (R2b)

limit the total number of payloads of each class and each tier assigned over all LRSs by

the total number available in that class. Constraints (R3) limit the number of missions,

by type supported by a GCS in each time period. Constraints (R4) limit the total number

of UAVs launching or recovering at a LRS by the capacity of the LRS in a given time

period. Constraints (R5) controls whether or not a mission is accomplished in any time

period. Constraints (R6) limit the total time spent on a mission to the number of time

periods covered. Constraints (R7a) address prerequisite missions such as AV_CLR

required for long range Tier III missions, and (R7b) address line-of-sight issues from

each GCS for missions that do not have other prerequisites. Constraints (R8) prevent

scheduling of mutually exclusive missions by UAS of any tier. Constraints (R9) force

“required” missions to be covered for the number of time periods required. Constraints

(R10) limit the total dwell time on a mission to between zero and the total amount of time

requested for the mission. Constraints (R11-R13) restrict schedule assignment, mission

coverage, and GCS assignment to be binary decisions.

6. Route Enumeration and Data Development

UAS-ST requires a significant amount of data processing to produce an optimal

schedule; most of this effort is performed by a stack-based enumeration routine that

generates all feasible schedules for each tier and LRS in the given scenario. The schedule

generator, or simply generator, requires two primary data structures for computation of

feasible schedules: a stack, PATH(), containing a current feasible list of missions to be

accomplished, and an array, ON_STACK(), that indicates whether each mission is

currently on the stack of missions. Various data tables are pre-computed to aid in

 20

determining feasibility, such as flight times between airfields and missions, and between

pairs of missions, payload requirements by mission, etc.

For each tier, v, and LRS, l, such that there is at least one UAS of tier v located at

l, the generator starts with an empty mission list PATH(), (representing the trivial action

of launching, and then immediately recovering, a UAS of tier v from l), and builds

feasible mission lists exhaustively by adding one mission at a time to the end of the

current mission list represented in PATH(). A mission is only added to the end of

PATH() if it is within range of a GCS capable of controlling the appropriate tier, if the

first period of the mission that can be accomplished (based on the current mission list)

allows the UAS to return back to its LRS before running out of operational time

available, and if the required list of payloads to accomplish all the missions in PATH()

can fit on one UAS of tier v. If a mission does not meet these requirements, it is

discarded and the next mission from the overall mission list is considered. Other rules for

calculating feasible extensions to a current feasible PATH() can be incorporated easily,

but these three capture the primary constraints on feasibility. For example, we also check

to see if a mission is already on the stack PATH(), and discard those to prevent missions

being revisited. However, if the capability to revisit missions in the same schedule is

required, this test can be removed. Of course, more feasible schedules will be generated

if this is done.

Once a mission is added to PATH(), all missions are considered again for the next

empty slot at the end of PATH(). In this manner the generator provides a depth-first

exploration of all feasible mission lists. If all missions have been ruled out for a slot, the

stack is “popped,” the previous slot is then considered again, and the next mission in the

list takes the current mission’s place; this replacement is repeated until a feasible mission

for that slot is found. If no more feasible missions are found for that slot, we “pop” the

stack again. When the first slot is finished, we have enumerated all missions from l using

tier v assets.

Every feasible set of missions in PATH() is recorded by incrementing the number

of feasible paths found, s, and then adding the appropriate elements to the sets

 21

(), ,s m t A∈ , (), ,s v t B∈ , (), ,s c t Q∈ , and (),s l SL∈ to define schedule s. See

Appendix B for the details of the algorithm.

We set an upper bound on the total number of schedules that can be generated, so

as not to create unsolvable ILPs. We also provide a limit on the number of missions

enumerated per schedule, and the generator implicitly calculates a limit on the number of

schedules to generate for each tier-LRS pair, to allow for the generation of a nonempty

list for each such pair regardless of the order in which schedules are generated for those

pairs. So, for example, we might set a limit of 120,000 total schedules, and four missions

per schedule. The generator calculates how many tier-LRS pairs are feasible, and if, say,

there are six such pairs in the scenario, then the generator will generate no more than

20,000 schedules for each pair considered, calculated cumulatively. (Specifically, in this

example if the first pair does not generate all 20,000 of its allotted schedules, then the

generator can generate up to 40,000 total schedules for the first two pairs combined.)

When these enumeration limits are reached for a tier-LRS pair, the stack is cleared out

and the generator moves to the next tier-LRS pair.

This procedure can generate tens- or hundreds-of-thousands of feasible schedules.

Each such schedule is associated with a decision variable, Xs, in the ILP. The limits on

enumeration therefore restrict the schedules available, and, consequently, the resulting

ILP will be a restriction of the model that considers every feasible schedule. The more

schedules that are generated (through increasing the limit on missions per schedule, or the

total schedules generated, etc.) the better the final schedule found by the integer program.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. COMPUTATIONAL RESULTS

The OUAS study generic unclassified scenario is replicated with the intent to test

the results provided by UAS-ST [OUAS, 2007]. All computations are performed on a

Pentium 4 desktop computer at the Naval Postgraduate School with the use of the GAMS

solver CPLEX [2008].

A. INITIAL TEST SCENARIO

The initial test scenario replicates a generic scenario given in the OUAS study

[OUAS, 2007]. This replication provides the simplest and most direct comparison of

results with ASC-U. The scenario time period is twenty four hours divided into ninety

six intervals of fifteen minutes each. This scenario does not refer to a specific country,

but is designed solely to provide the framework for determining the value of changes in

UAS structure on a given set of mission requests. UAS force structure for the initial

scenario represents a small but realistic composition of systems. Tier I is comprised of

three separate units with four UAVs and one Ground Control Station (GCS) per unit.

Tier II is comprised of three separate units with one UAV and one GCS per unit. Tier III

is comprised of a single unit with two UAVs and two GCSs.

Table 2 provides a summary of the given UAS force structure for the generic scenario.

Number of: Tier I Tier II Tier III

Systems 12 3 2
UAVs per system 3 3 4
GCSs per system 1 1 2
UAVs controlled by GCS 1 2 2

Table 2. Number of UAS Assets Available in Generic Scenario

The initial test scenario consists of placing units from different UAS Tiers at

specific ranges to test the scheduling constraints of the model. The tier III squadron is

centered at an airfield in support of a regiment. The squadron consists of two UAVs and

 24

two GCSs at this location. These are the only tier III assets available for our test

scenario. The mission areas for the tier III UAS are obtained by plotting points in the

cardinal directions at or beyond one hundred and fifty nautical miles, (beyond tier II

range).

The three tier II units are deployed in a triangular pattern around the tier III

location in direct support of individual battalions. The tier II units are separated from

each other by a distance of at least 20 nautical miles. As before, specific mission areas

are chosen for each tier II unit.

Tier I units are collocated in the same manner as tier II, but are in direct support at

the company level. Each tier I unit consists of four UAVs and a single GCS. Mission

areas are selected with a special emphasis on their range. Once the areas are designated,

they are used repetitively to generate multiple missions. The use of repetitive mission

areas makes it much simpler to detect mission assignments beyond the range of a specific

tier. Tier I and II missions are within range of tier III assets.

Figure 3. Plot of OUAS Scenario Taken from OUAS

Mission

Mission
Mission

Mission

Mission

Mission
Mission

Mission

Mission

Mission
Mission

Mission

Mission

Mission
Mission

Mission

 25

B. UAS-ST INITIAL RESULTS AND ANALYSIS

Data for the initial scenario is entered via a mission request worksheet in Excel.

The user enters mission requests for UAS coverage in the following manner:

 Total Time Value
 Location Mission Start End Time Start Finish Periods Per Time

Mission ID Lat Long Class TimeTimeRequestedPeriodPeriod Requested Period
m1 N323934W1144850AV_CLR 0:00 8:00 8:00 1 32 32 5
m2 N322947W1144606 ISR 0:30 2:30 2:00 3 10 8 10
m3 N322825W1144547 ISR 1:00 4:00 3:00 5 16 12 10
m4 N322648W1144730 ISR 1:30 2:30 1:00 7 10 4 10
m5 N322549W1144914 ISR 2:00 4:00 2:00 9 16 8 10
m6 N324012W1142426 ISR 2:30 5:30 3:00 11 22 12 10
m7 N324021W1142011 ISR 3:00 4:00 1:00 13 16 4 10
m8 N324055W1142318 ISR 3:30 5:30 2:00 15 22 8 10
m9 N323922W1142442 ISR 4:00 7:00 3:00 17 28 12 10

m10 N323848W1142056 ISR 4:30 5:30 1:00 19 22 4 10

Table 3. Input Worksheet for Mission Requests

Waypoints for the mission areas are placed at specific ranges to test the

scheduling constraints of the model. These waypoints are then used to generate a table of

one hundred and fifty mission requests. The requests are broken down by mission areas.

Mission requests one through forty focus on the tier I mission areas. Requests forty one

through one hundred and three focuses on tier II and the remaining requests are tier III

mission areas. See Appendix A for the complete scenario worksheet used in analysis of

UAS-ST. The model constraints allow a higher tier vehicle to perform a lower tier

mission if that is the highest value mission available at the time and the vehicle is within

range. However, the longer range of each subsequent tier’s mission area make it

infeasible to schedule a lower tier UAS. The sequential mission numbers enable the user

to quickly identify any infeasible mission assignments.

Mission classes are defined according to the mission categories given in the

OUAS study. Values for the individual missions are chosen arbitrarily. Selection of the

assigned mission values is critical because they have the ability to skew the results by

inflating the value of a specific category. In the scenario, active missions are given

greater priority than passive. Of the active subset, missions which are unique to a

 26

specific tier are given the highest priority. Missions which are redundant to all tiers are

given the lowest priority. Table 4 outlines the missions which each tier can perform and

their associated value in the scenario.

 Tier I Tier II Tier III
ISR 10 15 20
AV_CLR 5 10 5
CR 10 5
LSR_P 30
SIGINT 30
EW 40
STK 60
LSR_D 40

Table 4. Assigned Mission Values by Tier

The requested mission time is defined through the start and end times, which are

entered by the user. UAS-ST then converts that time into the appropriate number of

fifteen minute time periods. Once a UAS is assigned in a given time period it may not be

reassigned until the next time period. Times are started at the beginning of the first time

period and continue to the end of the final period.

Another element which greatly affects the optimal value achieved is the number

of mission payloads available. See Figure 4 for a sample of the payload worksheet. By

manipulating the number of payloads of a given type available to a UAS tier, it is

possible to test the scheduling constraints and see very quickly if payload availability was

a limiting factor. This is highly beneficial in determining future requirements for UAS

structure.

 27

Payload Mission Quantity UAS
ID Payload Type Class Available Tier
p1 EO/IR ISR 9 T1
p2 EO/IR-targeting ISR_T 3 T2
p3 EO/IR-targeting ISR_T 2 T3
p4 SAR w/MTI ISR_SAR 1 T3
p5 SIGINT SIGINT 1 T2
p6 SIGINT SIGINT 1 T3
p7 Mine Detection ISR_MD 1 T3
p8 Pointer LSR_P 1 T2
p9 Pointer LSR_P 1 T3

p10 Rangefinder LSR_RF 1 T3
p11 Designator LSR_D 1 T3
p12 AV_CLR AV_CLR 9 T1
p13 AV_CLR AV_CLR 3 T2
p14 AV_CLR AV_CLR 1 T3
p15 CR CR 1 T2
p16 CR CR 1 T3
p17 Strike STK 2 T3
p18 EW EW 2 T3

Figure 4. Example of Payload Worksheet

System capabilities and limitations are drawn directly from the OUAS study. The

study seeks to define UAS tier requirements. Therefore, those assumptions are critical to

any analysis that is conducted. The tier parameters as given in Figure 5 are used in all

testing. Operational time limit and maintenance time are not known at this time. Those

columns are for future expansion when the data becomes available.

Figure 5. OUAS Study Future Tier Performance Parameters

Once all data for the scenario is entered via Excel spreadsheet, UAS-ST is run

from the graphical interface given in Figure 6. The interface, known as the dashboard,

 Max Cruise Operational Payload Operational Maintenance
UAS Tier Endurance (hrs) Speed(knots) Radius(nm) Capacity Time Limit(hrs) Time

T1 1.5 17 5 1
T2 15 60 50 2
T3 8 200 300 3

* All Values Taken from Table ES-2 of Overarching UAS Study 21Nov2007

 28

allows the user to specify several key parameters. First the user specifies the start time,

the time periods in horizon, and the number of periods per hour. For the mission

generation portion, a user specifies the maximum number of schedules that UAS-ST can

generate and the maximum number of missions per schedule that a single UAV can

perform. These two parameters greatly affect the outcome of the model.

As the number of maximum missions per schedule increases, the number of

possible schedules rapidly increases as well. Setting the number of maximum schedules

too low prevents a full enumeration of all possible schedules and is a constraint on the

model. Setting the number of maximum schedules too high allows a full enumeration of

all possible schedules and results in a longer processing time. See Figure 6 for an

example. All tested combinations satisfy the requirement for a quick total solution time.

Once all parameters are set, selecting the BUILD function initiates VBA to build the

designated number of flight schedules. After the build is complete, selecting SOLVE

initiates GAMS to read in the data, apply the selected solver, and generate a near optimal

solution. When GAMS reaches a solution, selection of RESULTS displays the solution in

the format seen in Figure 7.

 UAS Planner v 1.01 2-Jun-08
 Start Time 0:00
 Time Periods in Horizon 96
 First Planning Period 1
 Last Planning Period 96
 Periods per hour 4
 Max Schedules 75000

 Max Missions per Schedule 3 Routes: 67324

CPLEXSolver CPLEX Status:
XAOPTCR 0.05

HeuristicRESLIM 3600

Figure 6. Sample of User Interface (Dashboard)

 29

 Total Total Value Total
 Start End Time Periods Time Periods Per Time Value

Mission Time Time Requested Assigned Period Achieved 23340
m1 0:00 8:00 32 0 10 0
m2 0:30 2:30 8 0 5 0
m3 1:00 4:00 12 0 5 0
m4 1:30 2:30 4 0 5 0
m5 2:00 4:00 8 0 5 0
m6 2:30 5:30 12 6 5 30
m7 3:00 4:00 4 1 5 5
m8 3:30 5:30 8 4 5 20
m9 4:00 7:00 12 7 5 35
m10 4:30 5:30 4 0 5 0
m11 5:00 7:00 8 5 5 25
m12 5:30 8:30 12 9 5 45
m13 6:00 7:00 4 0 5 0
m14 6:30 8:30 8 0 5 0
m15 7:00 10:00 12 6 5 30
m16 7:30 8:30 4 0 5 0
m17 8:00 16:00 32 0 10 0
m18 8:30 11:30 12 0 5 0
m19 9:00 10:00 4 0 5 0
m20 9:30 11:30 8 0 5 0
m21 10:00 13:00 12 12 5 60

Figure 7. Partial Display of Optimal UAS-ST Schedule

Figure 7 demonstrates the format in which the solution given by UAS-ST is

displayed. All missions are sorted sequentially by their assigned mission number. The

total value achieved for each mission is given in the right column. The total value

obtained by the entire schedule is given in the top right corner. This format enables the

easiest comparison between runs because it quickly lets the user see which missions are

scheduled and for what portion of the requested time. If certain missions are not being

scheduled, the trend is easy to detect.

C. COMPARING UAS-ST TO ASC-U

ASC-U is the model originally used in the OUAS study. It is highly useful in the

analysis of UAS future requirements with several strong attributes. However, there are

some areas which require modification to meet the needs of the OUAS study. The intent

of this thesis is to develop a user friendly model that addresses those shortcomings and

meets the requirements of OAD.

 30

For ease-of-use the individual elements of the UAS are separated into different

worksheets. A separate spreadsheet for the UAS tier- specific performance requirements

is also included. This spreadsheet allows the user to verify the basic parameters of all

UAS tiers in one chart. The user can easily modify a parameter and re-run the model to

analyze the effect. The model applies these values to the system constraints when

optimizing the schedule.

UAS-ST takes a different approach from ASC-U when addressing the

optimization of payloads. In ASC-U all possible combination of payloads are

enumerated and then designated as mission packages. UAS-ST treats the payloads as

individual units, which allows for tracking of specific payload utilization. OAD indicated

this was necessary for determining future requirements. The payload data is further

separated by creating a mission class worksheet and a payload worksheet. The mission

class worksheet defines all current missions for the UAS. It allows the user to designate

a mission as either active or passive and which tier is capable of covering that mission.

The payload worksheet allows the user to designate the quantity available.

A major difference between the two models is in the handling of the mission data.

In UAS-ST all information is consolidated, both input and output, in the same worksheet.

The user builds the missions page in the same manner as a flight schedule and assigns a

specific number to an individual mission. UAS-ST sorts all output based on mission

number, which makes for easy tracking of a specific mission. ASC-U uses either the

mission number or the coordinates of the mission location to sort output. This makes

analysis of results extremely time consuming and requires additional sorting. ASC-U

requires the use of a heuristic, SUPER MISSIONS, to designate a mission as mandatory

by assigning it extra value. UAS-ST addresses this in the mission input page by allowing

the user to designate any portion of a mission request as required. Setting this

requirement serves as an additional constraint on the optimization model.

ASC-U utilizes an Excel spreadsheet and pulls the data into an Access database.

UAS-ST applies an Excel spreadsheet, which uses Visual Basic to transfer the data to

GAMS. GAMS then applies the CPLEX solver to quickly optimize the schedule for the

mission requests it is given. The required features addressed by the supplemental

 31

heuristics in ASC-U are incorporated directly into UAS-ST to eliminate the need for

further processing. This allows for a much quicker and efficient analysis of alternatives.

CPLEX is highly efficient in preprocessing the feasible solutions and reduces the run

time to a matter of minutes. Overall, UAS-ST provides an efficient update to ASC-U.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

V. CONCLUSIONS AND NEW OPPORTUNITIES

A. SUMMARY

This thesis develops a scheduling tool, UAS-ST as a replacement for ASC-U.

UAS-ST addresses several areas which require additional processing in ASC-U. UAS-

ST allows a user to generate a daily flight based on a given set of operational and

performance parameters. The true strength of UAS-ST is that a user can change a single

parameter or some combination of parameters and quickly rerun the model to see the

effect on a flight schedule. UASs are critical to our nation’s future combat effectiveness.

As a result, all branches of DoD recognize the need to develop an integrated network of

UASs. MCCDC OAD is currently conducting an OUAS study with the goal of defining

future UAS requirements. This thesis is a direct contribution to that study, and the model

developed herein, provides a planning tool for the development of future UAS structure.

B. OPERATIONAL INTRODUCTION

UAS-ST is currently intended for use in the second phase of the OUAS study. It

will replace ASC-U and provide another tool for quantitative analysis. UAS-ST provides

new capabilities which ASC-U was unable to perform. With the use of the CPLEX

solver in GAMS, UAS-ST is able to quickly analyze tens of thousands of schedules for

individual UAVs and then choose a near-optimal subset to provide a complete schedule.

The user is able to modify all aspects of the UAS structure through a simple spreadsheet

interface. Output is provided in the same format, which makes understanding the results

and error tracking much simpler. ASC-U requires the use of several heuristics to meet

the needs of OUAS. UAS-ST directly addresses these issues without the need for

additional heuristics. UAS-ST provides a rapid analysis tool and should be implemented

immediately in the ongoing OUAS study.

 34

C. FUTURE DEVELOPMENT

UAS development is expanding rapidly with several new technologies becoming

available. Therefore, modeling requirements are expected to change rapidly as well. A

possible issue with UAS-ST is the requirement for the GAMS CPLEX solver to produce

a quick solution. Due to portability issues, the future development of a non-proprietary

heuristic is a valuable topic for future analysis. To improve on UAS-ST, the heuristic

needs to modify the enumeration routine used in the model. Rather than a total

enumeration of all possible schedules, a new heuristic should initially select higher value

routes and not consider low value routes beneath a designated limit. One possible

method is a greedy heuristic which selects the highest value subset of individual

schedules and eliminate all others from consideration. By initially eliminating low value

routes, the overall processing time is greatly reduced. In the long term, analysts in theater

may run UAS-ST on their laptops as they plan for actual UAS employment. The ultimate

goal is to find a near-optimal solution without the need for specialty software

applications.

 35

LIST OF REFERENCES

Ahner, Major Daryl (2006). "ASC-U Users/Analyst Manual" TRAC-Monterey.

Doll, T., (2004) "Optimal Sensor Allocation for a Discrete Event Combat Simulation."
MS Thesis in Operations Research, Naval Postgraduate School.

General Algebraic Modeling System (GAMS) 2008. http://www.gams.com (Accessed
June 9, 2008).

General Algebraic Modeling System (GAMS) 2008 CPLEX Solver Guide.
http://www.gams.com/solvers/cplex.pdf (Accessed June 9, 2008).

International Herald Tribune (August 15, 2007). "United States: Procurement
 Focuses on Iraq War Needs."
http://www.iht.com/articles/2007/08/15/news/15oxan-usmilitary.php. (Accessed
June 10, 2008).

Operation Analysis Division, Marine Corps Combat Development Command, Quantico,
VA (2007). "Overarching Unmanned Aircraft Systems Study Report."

Tutton, S. (2003). "Optimizing the Allocation of Sensor Assets for the Unit of Action."
MS Thesis in Operations Research, Naval Postgraduate School

Zacherl, B. (2006). "Weapon-Target Pairing; Revising an Air Tasking Order in Real
Time" MS Thesis in Operations Research, Naval Postgraduate School.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

APPENDIX A TEST SCENARIO

Tier I Mission Areas (m1-m40)

Tier II Mission Areas (m41-m103)

Tier III Mission Areas (m104-150)

 Time Value
 Location Mission Start Finish Periods Per Time

Mission ID Lat Long Class Period Period Requested Period
m1 N323934 W1144850 AV_CLR 1 32 32 5
m2 N322947 W1144606 ISR 3 10 8 10
m3 N322825 W1144547 ISR 5 16 12 10
m4 N322648 W1144730 ISR 7 10 4 10
m5 N322549 W1144914 ISR 9 16 8 10
m6 N324012 W1142426 ISR 11 22 12 10
m7 N324021 W1142011 ISR 13 16 4 10
m8 N324055 W1142318 ISR 15 22 8 10
m9 N323922 W1142442 ISR 17 28 12 10
m10 N323848 W1142056 ISR 19 22 4 10
m11 N325910 W1142608 ISR 21 28 8 10
m12 N325733 W1142738 ISR 23 34 12 10
m13 N325757 W1142944 ISR 25 28 4 10
m14 N325927 W1142938 ISR 27 34 8 10
m15 N330047 W1142630 ISR 29 40 12 10
m16 N323934 W1144850 ISR 31 34 4 10
m17 N322947 W1144606 AV_CLR 33 64 32 5
m18 N322825 W1144547 ISR 35 46 12 10
m19 N322648 W1144730 ISR 37 40 4 10
m20 N322549 W1144914 ISR 39 46 8 10
m21 N324012 W1142426 ISR 41 52 12 10
m22 N324021 W1142011 ISR 43 46 4 10
m23 N324055 W1142318 ISR 45 52 8 10
m24 N323922 W1142442 ISR 47 58 12 10
m25 N323848 W1142056 ISR 49 52 4 10
m26 N325910 W1142608 ISR 51 58 8 10
m27 N325733 W1142738 ISR 53 64 12 10
m28 N325757 W1142944 ISR 55 58 4 10
m29 N325927 W1142938 ISR 57 64 8 10
m30 N330047 W1142630 ISR 59 70 12 10
m31 N323934 W1144850 ISR 61 64 4 10
m32 N324012 W1142426 ISR 63 70 8 10
m33 N325910 W1142608 AV_CLR 65 96 32 5
m34 N322947 W1144606 ISR 67 70 4 10

 38

m35 N324021 W1142011 ISR 69 76 8 10
m36 N325733 W1142738 ISR 71 82 12 10
m37 N322825 W1144547 ISR 73 76 4 10
m38 N324055 W1142318 ISR 75 82 8 10
m39 N325757 W1142944 ISR 77 88 12 10
m40 N322648 W1144730 ISR 79 82 4 10
m41 N321813 W1145516 ISR 1 4 4 15
m42 N321817 W1143321 ISR 3 18 16 15
m43 N322752 W1150128 ISR 5 36 32 15
m44 N322413 W1140639 AV_CLR 1 48 48 10
m45 N324657 W1135856 CR 1 48 48 10
m46 N325149 W1142341 LSR_P 1 8 8 30
m47 N330310 W1144304 ISR 7 10 4 15
m48 N331121 W1141606 ISR 9 24 16 15
m49 N331641 W1144635 ISR 11 42 32 15
m50 N321813 W1145516 AV_CLR 9 56 48 10
m51 N321817 W1143321 CR 9 56 48 10
m52 N322752 W1150128 LSR_P 17 24 8 30
m53 N322413 W1140639 ISR 13 16 4 15
m54 N324657 W1135856 ISR 15 30 16 15
m55 N325149 W1142341 ISR 17 48 32 15
m56 N330310 W1144304 AV_CLR 17 64 48 10
m57 N331121 W1141606 CR 17 64 48 10
m58 N331641 W1144635 LSR_P 25 32 8 30
m59 N321813 W1145516 ISR 19 22 4 15
m60 N321817 W1143321 ISR 21 36 16 15
m61 N322752 W1150128 ISR 23 54 32 15
m62 N322413 W1140639 AV_CLR 25 72 48 10
m63 N324657 W1135856 CR 25 72 48 10
m64 N325149 W1142341 LSR_P 41 48 8 30
m65 N330310 W1144304 ISR 25 28 4 15
m66 N331121 W1141606 ISR 27 42 16 15
m67 N331641 W1144635 ISR 29 60 32 15
m68 N321813 W1145516 AV_CLR 33 80 48 10
m69 N321817 W1143321 CR 33 80 48 10
m70 N322752 W1150128 LSR_P 57 64 8 30
m71 N322413 W1140639 ISR 31 34 4 15
m72 N324657 W1135856 ISR 33 48 16 15
m73 N325149 W1142341 ISR 35 66 32 15
m74 N330310 W1144304 AV_CLR 41 88 48 10
m75 N331121 W1141606 CR 41 88 48 10
m76 N331641 W1144635 LSR_P 73 80 8 30
m77 N321813 W1145516 ISR 37 40 4 15
m78 N321817 W1143321 ISR 39 54 16 15
m79 N322752 W1150128 ISR 41 72 32 15
m80 N322413 W1140639 AV_CLR 49 96 48 10
m81 N324657 W1135856 CR 49 96 48 10

 39

m82 N325149 W1142341 LSR_P 81 88 8 30
m83 N330310 W1144304 ISR 43 46 4 15
m84 N331121 W1141606 ISR 45 60 16 15
m85 N331641 W1144635 ISR 47 78 32 15
m86 N321813 W1145516 AV_CLR 57 96 40 10
m87 N321817 W1143321 CR 57 96 40 10
m88 N322752 W1150128 LSR_P 89 96 8 30
m89 N322413 W1140639 ISR 49 52 4 15
m90 N324657 W1135856 ISR 51 66 16 15
m91 N325149 W1142341 ISR 53 84 32 15
m92 N330310 W1144304 ISR 55 58 4 15
m93 N331121 W1141606 ISR 57 72 16 15
m94 N331641 W1144635 ISR 59 82 24 15
m95 N321813 W1145516 ISR 61 64 4 15
m96 N321817 W1143321 ISR 63 66 4 15
m97 N322752 W1150128 ISR 65 80 16 15
m98 N322413 W1140639 ISR 67 96 30 15
m99 N324657 W1135856 ISR 69 72 4 15

m100 N325149 W1142341 ISR 71 86 16 15
m101 N330310 W1144304 ISR 73 96 24 15
m102 N331121 W1141606 ISR 75 78 4 15
m103 N331641 W1144635 ISR 77 92 16 15
m104 N312538 W1145510 ISR 1 96 96 20
m105 N334259 W1155906 ISR 1 48 48 20
m106 N333540 W1115204 ISR 49 96 48 20
m107 N312538 W1145510 ISR 1 32 32 20
m108 N334259 W1155906 ISR 33 64 32 20
m109 N333540 W1115204 ISR 65 96 32 20
m110 N312538 W1145510 CR 1 96 96 5
m111 N334259 W1155906 CR 1 96 96 5
m112 N333540 W1115204 CR 1 96 96 5
m113 N312538 W1145510 CR 1 96 96 5
m114 N334259 W1155906 SIGINT 1 96 96 30
m115 N333540 W1115204 SIGINT 1 96 96 30
m116 N312538 W1145510 SIGINT 1 96 96 30
m117 N334259 W1155906 SIGINT 1 96 96 30
m118 N333540 W1115204 EW 1 8 8 40
m119 N312538 W1145510 EW 9 16 8 40
m120 N334259 W1155906 EW 25 32 8 40
m121 N333540 W1115204 EW 33 40 8 40
m122 N312538 W1145510 EW 49 56 8 40
m123 N334259 W1155906 EW 57 64 8 40
m124 N333540 W1115204 EW 73 80 8 40
m125 N312538 W1145510 EW 81 88 8 40
m126 N334259 W1155906 STK 1 16 16 60
m127 N333540 W1115204 STK 17 32 16 60
m128 N312538 W1145510 STK 33 48 16 60

 40

m129 N334259 W1155906 STK 49 64 16 60
m130 N333540 W1115204 STK 65 80 16 60
m131 N312538 W1145510 STK 81 96 16 60
m132 N334259 W1155906 STK 25 40 16 60
m133 N333540 W1115204 STK 73 88 16 60
m134 N312538 W1145510 LSR_D 1 8 8 40
m135 N334259 W1155906 LSR_D 25 32 8 40
m136 N333540 W1115204 LSR_D 49 56 8 40
m137 N312538 W1145510 LSR_D 73 80 8 40
m138 N334259 W1155906 AV_CLR 1 24 24 5
m139 N333540 W1115204 AV_CLR 25 48 24 5
m140 N312538 W1145510 AV_CLR 49 72 24 5
m141 N334259 W1155906 AV_CLR 73 96 24 5
m142 N333540 W1115204 AV_CLR 1 24 24 5
m143 N312538 W1145510 AV_CLR 25 48 24 5
m144 N334259 W1155906 AV_CLR 49 72 24 5
m145 N333540 W1115204 AV_CLR 73 96 24 5
m146 N312538 W1145510 AV_CLR 1 24 24 5
m147 N334259 W1155906 AV_CLR 25 48 24 5
m148 N333540 W1115204 AV_CLR 49 72 24 5
m149 N312538 W1145510 AV_CLR 73 96 24 5
m150 N334259 W1155906 AV_CLR 1 24 24 5

 41

APPENDIX B VBA CODE

Sub SolveUAS()

 Dim bSolveResult As Boolean

 bSolveResult = SolveProblem(True)

End Sub

Sub BuildData()

 Dim uasDataFN As Integer

 Dim uasSetsFN As Integer

 Dim uasDynSetsFN As Integer

 Dim logFN As Integer

 Dim rTiers As Range

 Dim rGCSs As Range

 Dim rLRSs As Range

 Dim rUAVs As Range

 Dim rMissions As Range

 Dim rPayloads As Range

 Dim rSchedules As Range

 Dim rClasses As Range

 Dim lNumTiers As Long, lNumGCSs As Long, lNumLRSs As Long, lNumUAVs As
Long

 Dim lNumMissions As Long, lNumPayloads As Long, lNumClasses As Long

 Dim lNumSchedules As Long

 Dim lNumLRSSchedules As Long

 Dim bNextRoute As Boolean

 Dim rValues As Range

 Dim lNumValues As Long

 Dim rDependencies As Range

 Dim lPlanPeriods As Long

 Dim lFirstPeriod As Long

 Dim lLastPeriod As Long

 Dim lPeriodsPerHour As Long

 Dim lCount As Long

 Dim currCell As Range

 Dim iRow As Integer, iCol As Integer

 Dim lMission As Long, lMission2 As Long, lUAV As Long

 42

 Dim lPeriod As Long, lPeriod1 As Long, lPeriod2 As Long

 Dim lTier As Long, lPayload As Long, lGCS As Long, lLRS As Long

 Dim lClass As Long

 Dim tierNames As StringDictionaryClass

 Dim uavNames As StringDictionaryClass

 Dim gcsNames As StringDictionaryClass

 Dim lrsNames As StringDictionaryClass

 Dim missionNames As StringDictionaryClass

 Dim payloadNames As StringDictionaryClass

 Dim classNames As StringDictionaryClass

 Dim periodNames As StringDictionaryClass

 Dim tValues As TupleDictionaryClass

 uasDataFN = FreeFile()

 Open ThisWorkbook.path & "\uasData.gms" For Output As uasDataFN

 uasSetsFN = FreeFile()

 Open ThisWorkbook.path & "\uasSets.gms" For Output As uasSetsFN

 logFN = FreeFile()

 Open ThisWorkbook.path & "\uasXL.log" For Output As logFN

' {STATIC, GROUNDED} SETS

' v Tier levels

' h mission types {active, passive}

' g Ground control stations

' l Launch and recovery sites

' m Missions {missions that ships can be
assigned}

' t Time periods

' p Payload module types

' s UAV employment schedules

' ;

 Print #logFN, "Starting output"

 Print #uasSetsFN, " OPTIONS"

 Print #uasSetsFN, " MIP = " & wsDashboard.Range("SOLVER")

 Print #uasSetsFN, " OPTCR = " & wsDashboard.Range("OPTCR")

 Print #uasSetsFN, " RESLIM = " & wsDashboard.Range("RESLIM")

 Print #uasSetsFN, " ;"

 43

 Print #uasSetsFN, " SETS"

 Set rTiers = wsTiers.Range("A4", wsTiers.Range("A4").End(xlDown))

 Call GAMSWriteSetDef(rTiers, "v", uasSetsFN, "Tier levels")

 Set rUAVs = wsUAV.Range("A4", wsUAV.Range("A4").End(xlDown))

 Print #uasSetsFN, " h /"

 Print #uasSetsFN, " h_active"

 Print #uasSetsFN, " h_passive"

 Print #uasSetsFN, " /"

 Set rGCSs = wsGCS.Range("A4", wsGCS.Range("A4").End(xlDown))

 Call GAMSWriteSetDef(rGCSs, "g", uasSetsFN, "Ground control stations")

 Set rLRSs = wsLRS.Range("A4", wsLRS.Range("A4").End(xlDown))

 Call GAMSWriteSetDef(rLRSs, "l", uasSetsFN, "Launch and recovery
sites")

 Set rMissions = wsMissions.Range("A4",
wsMissions.Range("A4").End(xlDown))

 Call GAMSWriteSetDef(rMissions, "m", uasSetsFN, "Missions")

 Set rPayloads = wsPayloads.Range("A4",
wsPayloads.Range("A4").End(xlDown))

' Call GAMSWriteSetDef(rPayloads, "p", uasSetsFN, "Payloads")

 Set rClasses = wsMClasses.Range("A4",
wsMClasses.Range("A4").End(xlDown))

 Call GAMSWriteSetDef(rClasses, "c", uasSetsFN, "Payload Classes")

 lPeriodsPerHour = CLng(wsDashboard.Range("PERIODS_PER_HOUR"))

 lPlanPeriods = CLng(wsDashboard.Range("HORIZON"))

 lFirstPeriod = CLng(wsDashboard.Range("FIRST_PERIOD"))

 lLastPeriod = CLng(wsDashboard.Range("LAST_PERIOD"))

 If lLastPeriod > lPlanPeriods Then

 MsgBox "Last Period comes after maximum planning horizon:
truncating."

 lLastPeriod = lPlanPeriods

 End If

 If lFirstPeriod > lLastPeriod Then

 MsgBox "Empty planning horizon: first Period occurs after last
Period. Aborting."

 GoTo subExit

 End If

 Print #logFN, "Periods " & lPlanPeriods & " First: " & lFirstPeriod &
" Last: " & lLastPeriod

 Print #uasSetsFN, " t Time Periods /t_" & Format(lFirstPeriod) &
"*t_" & Format(lLastPeriod) & "/"

 44

 Set tierNames = New StringDictionaryClass

 If DefineGroundedSet(rTiers, tierNames) = False Then

 Print #logFN, "Duplicate element in grounded set (tiers). User chose
to cancel: no further output."

 GoTo subExit

 End If

 lNumTiers = tierNames.Count

 For lCount = 1 To lNumTiers

 Print #logFN, Format(lCount) & " : " & tierNames.Item(lCount)

 Next lCount

 Set uavNames = New StringDictionaryClass

 If DefineGroundedSet(rUAVs, uavNames) = False Then

 Print #logFN, "Duplicate element in grounded set (uavs). User chose
to cancel: no further output."

 GoTo subExit

 End If

 lNumUAVs = uavNames.Count

 For lCount = 1 To lNumUAVs

 Print #logFN, Format(lCount) & " : " & uavNames.Item(lCount)

 Next lCount

 Set missionNames = New StringDictionaryClass

 If DefineGroundedSet(rMissions, missionNames) = False Then

 Print #logFN, "Duplicate element in grounded set (missions). User
chose to cancel: no further output."

 GoTo subExit

 End If

 lNumMissions = missionNames.Count

 For lCount = 1 To lNumMissions

 Print #logFN, Format(lCount) & " : " & missionNames.Item(lCount)

 Next lCount

 Set payloadNames = New StringDictionaryClass

 If DefineGroundedSet(rPayloads, payloadNames) = False Then

 Print #logFN, "Duplicate element in grounded set (payloads). User
chose to cancel: no further output."

 45

 GoTo subExit

 End If

 lNumPayloads = payloadNames.Count

 For lCount = 1 To lNumPayloads

 Print #logFN, Format(lCount) & " : " & payloadNames.Item(lCount)

 Next lCount

 Set classNames = New StringDictionaryClass

 If DefineGroundedSet(rClasses, classNames) = False Then

 Print #logFN, "Duplicate element in grounded set (classes). User
chose to cancel: no further output."

 GoTo subExit

 End If

 lNumClasses = classNames.Count

 For lCount = 1 To lNumPayloads

 Print #logFN, Format(lCount) & " : " & payloadNames.Item(lCount)

 Next lCount

 Set gcsNames = New StringDictionaryClass

 If DefineGroundedSet(rGCSs, gcsNames) = False Then

 Print #logFN, "Duplicate element in grounded set (GCS). User chose to
cancel: no further output."

 GoTo subExit

 End If

 lNumGCSs = gcsNames.Count

 For lCount = 1 To lNumGCSs

 Print #logFN, Format(lCount) & " : " & gcsNames.Item(lCount)

 Next lCount

 Set lrsNames = New StringDictionaryClass

 If DefineGroundedSet(rLRSs, lrsNames) = False Then

 Print #logFN, "Duplicate element in grounded set (LRS). User chose to
cancel: no further output."

 GoTo subExit

 End If

 lNumLRSs = lrsNames.Count

 46

 For lCount = 1 To lNumLRSs

 Print #logFN, Format(lCount) & " : " & lrsNames.Item(lCount)

 Next lCount

 Set periodNames = New StringDictionaryClass

 periodNames.Size = 3 * lPlanPeriods

 For lCount = 1 To lPlanPeriods

 periodNames.Add "t" & Format(lCount)

 Next lCount

 For lCount = lFirstPeriod To lLastPeriod

 Print #logFN, Format(lCount) & " : " & periodNames.Item(lCount)

 Next lCount

' {GIVEN} PARAMETERS

' num_uavs(l,v,t) number of uavs available at lrs l in tier v in period
t

' num_mods(p,t) number of payload modules available of ID p in period
t

' gcs_cap(g,t,h) max num UAVs on gcs g in period t on mission type h

' lrs_cap(l,t) max num UAVs at LRS l in period t

' length(m) maximum periods of coverage of mission m

' val(m) value of mission m

' k(l,s,t) indicator if lrs l used by schedule s in period t

' ;

 Print #uasDataFN, " PARAMETERS"

' num_uavs(l,v,t) number of uavs available at lrs l in tier v in
period t

 Print #uasDataFN, " num_uavs(l,v,t) /"

 ReDim lNumUAVinPeriod(1 To lrsNames.Count, 1 To tierNames.Count,
lFirstPeriod To lLastPeriod) As Long

 For lPeriod = lFirstPeriod To lLastPeriod

 For lLRS = 1 To lrsNames.Count

 For lTier = 1 To tierNames.Count

 lNumUAVinPeriod(lLRS, lTier, lPeriod) = 0

 Next lTier

 Next lLRS

 For iRow = 1 To rUAVs.Rows.Count

 If rUAVs(iRow, COL_UAV_FIRST_AVAIL) <= lPeriod And rUAVs(iRow,
COL_UAV_LAST_AVAIL) >= lPeriod Then

 47

 lLRS = lrsNames.Lookup(rUAVs(iRow, COL_UAV_LRS))

 lTier = tierNames.Lookup(rUAVs(iRow, COL_UAV_TIER))

 If lLRS = 0 Then

 MsgBox "Error: invalid LRS name in UAV list"

 wsUAV.Activate

 rUAVs(iRow, COL_UAV_LRS).Select

 GoTo subExit

 ElseIf lTier = 0 Then

 MsgBox "Error: invalid tier name in UAV list"

 wsUAV.Activate

 rUAVs(iRow, COL_UAV_TIER).Select

 GoTo subExit

 Else

 lNumUAVinPeriod(lLRS, lTier, lPeriod) = lNumUAVinPeriod(lLRS,
lTier, lPeriod) + 1

 End If

 End If

 Next iRow

 Next lPeriod

 For lLRS = 1 To lrsNames.Count

 For lTier = 1 To lNumTiers

 For lPeriod = lFirstPeriod To lLastPeriod

 If lNumUAVinPeriod(lLRS, lTier, lPeriod) >= 1 Then

 Print #uasDataFN, " l_" & lrsNames.Item(lLRS) & ".v_" &
tierNames.Item(lTier) & ".t_" & lPeriod & " " & _

 lNumUAVinPeriod(lLRS, lTier, lPeriod)

 End If

 Next lPeriod

 Next lTier

 Next lLRS

 Print #uasDataFN, " /"

 ReDim numMods(classNames.Count, tierNames.Count) As Long

 For lPayload = 1 To rPayloads.Rows.Count

 iRow = classNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_CLASS))

 iCol = tierNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_TIER))

 numMods(iRow, iCol) = numMods(iRow, iCol) + rPayloads(lPayload,
COL_PAYLOAD_QUANTITY)

 Next lPayload

 48

' num_mods(c,v) number of payload modules available of class c for
tier v

 Print #uasDataFN, " num_mods(c,v) /"

 For lClass = 1 To classNames.Count

 For lTier = 1 To tierNames.Count

 Print #uasDataFN, "c_" & classNames.Item(lClass) & ".v_" &
tierNames.Item(lTier) & " " & numMods(lClass, lTier)

 Next lTier

 Next lClass

 Print #uasDataFN, " /"

' gcs_cap(g,t,h) max num UAVs on gcs g in period t on mission type h

 Print #uasDataFN, " gcs_cap(g,t,h) /"

 For lGCS = 1 To lNumGCSs

 For lPeriod = lFirstPeriod To lLastPeriod

 Print #uasDataFN, " g_" & gcsNames.Item(lGCS) & ".t_" & lPeriod
& ".h_active " & rGCSs(lGCS, COL_GCS_ACTIVE)

 Print #uasDataFN, " g_" & gcsNames.Item(lGCS) & ".t_" & lPeriod
& ".h_passive " & rGCSs(lGCS, COL_GCS_PASSIVE)

 Next lPeriod

 Next lGCS

 Print #uasDataFN, " /"

' lrs_cap(l,t) max num UAVs at LRS l in period t

 Print #uasDataFN, " lrs_cap(l,t) /"

 For lLRS = 1 To lNumLRSs

 For lPeriod = lFirstPeriod To lLastPeriod

 Print #uasDataFN, " l_" & lrsNames.Item(lLRS) & ".t_" & lPeriod
& " " & rLRSs(lLRS, COL_LRS_ACTIVE)

 Next lPeriod

 Next lLRS

 Print #uasDataFN, " /"

' length(m) maximum periods of coverage of mission m

 Print #uasDataFN, " length(m) /"

 For lMission = 1 To lNumMissions

 Print #uasDataFN, " m_" & missionNames.Item(lMission) & " " &
rMissions(lMission, COL_MISSION_PERIODS)

 Next lMission

 Print #uasDataFN, " /"

 49

' val(m) value of mission m

 Print #uasDataFN, " val(m) /"

 For lMission = 1 To lNumMissions

 Print #uasDataFN, " m_" & missionNames.Item(lMission) & " " &
rMissions(lMission, COL_MISSION_VALUE)

 Next lMission

 Print #uasDataFN, " /"

' Calculate distances between GCS-Mission pairs, LRS-mission pairs, and
mission-mission pairs

 ReDim dDistGM(lNumGCSs, lNumMissions) As Double

 ReDim dDistLM(lNumLRSs, lNumMissions) As Double

 ReDim dDistMM(lNumMissions, lNumMissions) As Double

 Dim i As Long, j As Long

 For lGCS = 1 To rGCSs.Rows.Count

 i = gcsNames.Lookup(rGCSs(lGCS, COL_GCS_NAME))

 For lMission = 1 To rMissions.Rows.Count

 j = missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME))

 dDistGM(i, j) = SphericalDistance(rGCSs(lGCS, COL_GCS_LAT),
rGCSs(lGCS, COL_GCS_LON), _

 rMissions(lMission,
COL_MISSION_LAT), rMissions(lMission, COL_MISSION_LON))

 Next lMission

 Next lGCS

 For lLRS = 1 To rLRSs.Rows.Count

 i = lrsNames.Lookup(rLRSs(lLRS, COL_LRS_NAME))

 For lMission = 1 To rMissions.Rows.Count

 j = missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME))

 dDistLM(i, j) = SphericalDistance(rLRSs(lLRS, COL_LRS_LAT),
rLRSs(lLRS, COL_LRS_LON), _

 rMissions(lMission,
COL_MISSION_LAT), rMissions(lMission, COL_MISSION_LON))

 Next lMission

 Next lLRS

 For lMission = 1 To rMissions.Rows.Count

 i = missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME))

 For lMission2 = 1 To rMissions.Rows.Count

 50

 j = missionNames.Lookup(rMissions(lMission2, COL_MISSION_NAME))

 dDistMM(i, j) = SphericalDistance(rMissions(lMission,
COL_MISSION_LAT), rMissions(lMission, COL_MISSION_LON), _

 rMissions(lMission2,
COL_MISSION_LAT), rMissions(lMission2, COL_MISSION_LON))

 Next lMission2

 Next lMission

'Find GCSs within range of each mission. If none, require one of the
AV_CLR missions

 Dim pFN As Integer, hpFN As Integer

 Dim numPreq As Long

 numPreq = 0

 pFN = FreeFile()

 Open "p.gms" For Output As pFN

 hpFN = FreeFile()

 Open "hp.gms" For Output As hpFN

 Print #pFN, " SET P(m,mp) /"

 Print #hpFN, " SET HP(m) /"

 For lMission = 1 To missionNames.Count

 For lGCS = 1 To gcsNames.Count

 If dDistGM(lGCS, lMission) <= rGCSs(lGCS, COL_GCS_LOS) Then GoTo
nextMissionGCS

 Next lGCS

 numPreq = numPreq + 1

 Print #hpFN, " m_" & missionNames.Item(lMission)

 For lMission2 = 1 To rMissions.Rows.Count

 If rMissions(lMission2, COL_MISSION_CLASS) =
wsGCS.Range("LINK").Value Then

 Print #pFN, " m_" & missionNames.Item(lMission) & ".m_" &
rMissions(lMission2, COL_MISSION_NAME)

 End If

 Next lMission2

nextMissionGCS:

 Next lMission

 If numPreq = 0 Then

 Print #pFN, " m_" & missionNames.Item(1) & ".m_" &
missionNames.Item(1)

 Print #hpFN, " m_" & missionNames.Item(1)

 End If

 Print #pFN, " /"

 Print #pFN, " ;"

 51

 Close pFN

 Print #hpFN, " /"

 Print #hpFN, " ;"

 Close hpFN

 Dim mgFN As Integer

 mgFN = FreeFile()

 Open "mg.gms" For Output As mgFN

 Print #mgFN, " SET mg(m,g) /"

 For lMission = 1 To missionNames.Count

 For iRow = 1 To rGCSs.Rows.Count

 lGCS = gcsNames.Lookup(rGCSs(iRow, COL_GCS_NAME))

 If dDistGM(lGCS, lMission) <= rGCSs(iRow, COL_GCS_LOS) Then

 Print #mgFN, " m_" & missionNames.Item(lMission) & ".g_" &
gcsNames.Item(lGCS)

 End If

 Next iRow

 Next lMission

 Print #mgFN, " /;"

 Close mgFN

 Dim mhFN As Integer

 mhFN = FreeFile()

 Open "mh.gms" For Output As mgFN

 ReDim bClassActive(classNames.Count) As Boolean

 For iRow = 1 To rClasses.Rows.Count

 lClass = classNames.Lookup(rClasses(iRow, COL_MCLASS_NAME))

 If CLng(rClasses(iRow, COL_MCLASS_ACTIVE)) = 1 Then

 bClassActive(lClass) = True

 Else

 bClassActive(lClass) = False

 End If

 Next iRow

 Print #mhFN, " SET mh(m,h) /"

 For iRow = 1 To rMissions.Rows.Count

 lClass = classNames.Lookup(rMissions(iRow, COL_MISSION_CLASS))

 If bClassActive(lClass) Then

 52

 Print #mhFN, " m_" & rMissions(iRow, COL_MISSION_NAME) &
".h_active"

 Else

 Print #mhFN, " m_" & rMissions(iRow, COL_MISSION_NAME) &
".h_passive"

 End If

 Next iRow

 Print #mhFN, " /;"

 Close mhFN

 Dim gvFN As Integer

 gvFN = FreeFile()

 Open "gv.gms" For Output As mgFN

 Print #gvFN, " SET GV(g,v) /"

 For iRow = 1 To rGCSs.Rows.Count

 lGCS = gcsNames.Lookup(rGCSs(iRow, COL_GCS_NAME))

 lTier = tierNames.Lookup(rGCSs(iRow, COL_GCS_TIER))

 Print #gvFN, " g_" & gcsNames.Item(lGCS) & ".v_" &
tierNames.Item(lTier)

 Next iRow

 Print #gvFN, " /;"

 Close gvFN

 Print #uasDataFN, " r(m) /"

 For iRow = 1 To rMissions.Rows.Count

 lMission = missionNames.Lookup(rMissions(iRow, COL_MISSION_NAME))

 If Trim(CStr(rMissions(iRow, COL_MISSION_REQUIRED))) <> "" Then

 If CLng(rMissions(iRow, COL_MISSION_REQUIRED)) >
CLng(rMissions(iRow, COL_MISSION_PERIODS)) Then

 If MsgBox("Required coverage exceeds total mission time",
vbOKCancel) = vbCancel Then

 wsMissions.Activate

 rMissions(iRow, COL_MISSION_REQUIRED).Select

 Exit Sub

 Else

 Print #uasDataFN, " m_" & missionNames.Item(lMission) & " "
& CLng(rMissions(iRow, COL_MISSION_PERIODS))

 End If

 Else

 Print #uasDataFN, " m_" & missionNames.Item(lMission) & " " &
CLng(rMissions(iRow, COL_MISSION_REQUIRED))

 End If

 53

 Else

 Print #uasDataFN, " m_" & missionNames.Item(lMission) & " 0"

 End If

 Next iRow

 Print #uasDataFN, " /"

' Count number of UAVs in each tier at each LRS

 ReDim tierAtLRS(tierNames.Count, lrsNames.Count) As Long

 For lLRS = 1 To lrsNames.Count

 For lTier = 1 To tierNames.Count

 tierAtLRS(lTier, lLRS) = 0

 Next lTier

 Next lLRS

 For lUAV = 1 To rUAVs.Rows.Count

 i = tierNames.Lookup(rUAVs(lUAV, COL_UAV_TIER))

 j = lrsNames.Lookup(rUAVs(lUAV, COL_UAV_LRS))

 tierAtLRS(i, j) = tierAtLRS(i, j) + 1

 Next lUAV

' a(m,s,t) indicator if mission m covered by schedule s in
period t

' b(v,s,t) indicator if UAV in Tier v required by schedule s in
period t

' f(g,s,t,h) indicator if gcs g used by schedule s in period t for
mission type h

' k(l,s,t) indicator if lrs l used by schedule s in period t

' q(p,s,t) indicator if payload p used by schedule s in period t

 Dim lMaxRoutes As Long

 lMaxRoutes = CLng(wsDashboard.Range("MAX_ROUTES"))

 Dim lMaxMissions As Long

 lMaxMissions = CLng(wsDashboard.Range("MAX_MISSIONS")) + 1

 ReDim a(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long

 ReDim b(lMaxRoutes) As Long

 ReDim f_act(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long

 ReDim f_pas(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long

 ReDim k(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long

 54

 ReDim q(lMaxRoutes, classNames.Count) As Long

 ReDim stack(lMaxMissions + 1) As Long

 ReDim onStack(lNumMissions) As Long

 ReDim dwell(lMaxMissions + 1) As Long

 For lMission = 1 To lNumMissions

 onStack(lMission) = 0

 Next lMission

 Dim top As Long

 top = 0

 lNumSchedules = 0

 lNumLRSSchedules = 0

 bNextRoute = True

 lLRS = 1

 Dim s As Long, t As Long

 Dim lNextMission As Long, lCurrMission As Long

 ReDim lNextStack(lMaxMissions + 1) As Long

 Dim dRemTime As Double

 Dim lRemPeriods As Long

 Dim dTransitTime As Double

 Dim lTransitPeriods As Long

 Dim lcurrNumClasses As Long

 Dim dTierSpeed As Double

 Dim lThisLaunchPeriod As Long

 Dim lThisRecoverPeriod As Long

 Dim lMaxClasses As Long

 ReDim lTransitPeriod(lMaxMissions + 1) As Long

 ReDim lIdlePeriod(lMaxMissions + 1) As Long

 ReDim lMissionPeriod(lMaxMissions + 1) As Long

 ReDim lStartPeriod(lNumMissions) As Long

 ReDim lFinishPeriod(lNumMissions) As Long

 For lMission = 1 To rMissions.Rows.Count

 lStartPeriod(missionNames.Lookup(rMissions(lMission,
COL_MISSION_NAME))) = CLng(rMissions(lMission, COL_MISSION_START_PERIOD))

 lFinishPeriod(missionNames.Lookup(rMissions(lMission,
COL_MISSION_NAME))) = CLng(rMissions(lMission, COL_MISSION_FINISH_PERIOD))

 Next lMission

 55

 ReDim dMissionValue(missionNames.Count) As Double

 For lMission = 1 To rMissions.Rows.Count

 dMissionValue(missionNames.Lookup(rMissions(lMission,
COL_MISSION_NAME))) = CDbl(rMissions(lMission, COL_MISSION_VALUE))

 Next lMission

 ReDim lHasClass(lNumClasses) As Long

 For lClass = 1 To lNumClasses

 lHasClass(lClass) = 0

 Next lClass

 lcurrNumClasses = 0

 ReDim reqClass(lNumMissions)

 For lMission = 1 To rMissions.Rows.Count

 reqClass(missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME)))
= _

 classNames.Lookup(rMissions(lMission, COL_MISSION_CLASS))

 Next lMission

 ReDim lClassTierAvail(classNames.Count, tierNames.Count) As Long

 For lClass = 1 To classNames.Count

 For lTier = 1 To tierNames.Count

 lClassTierAvail(lClass, lTier) = 0

 Next lTier

 Next lClass

 For lPayload = 1 To rPayloads.Rows.Count

 lClass = classNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_CLASS))

 lTier = tierNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_TIER))

 lClassTierAvail(lClass, lTier) = CLng(rPayloads(lPayload,
COL_PAYLOAD_QUANTITY))

 Next lPayload

 Dim aFN As Integer, bFN As Integer, fFN As Integer, kFN As Integer, qFN
As Integer

 aFN = FreeFile()

 Open ThisWorkbook.path & "\a.gms" For Output As aFN

 bFN = FreeFile()

 Open ThisWorkbook.path & "\b.gms" For Output As bFN

 kFN = FreeFile()

 Open ThisWorkbook.path & "\k.gms" For Output As kFN

 qFN = FreeFile()

 Open ThisWorkbook.path & "\q.gms" For Output As qFN

 s = 0

 Print #aFN, " SET A(s,m,t) /"

 56

 Print #bFN, " SET B(s,v,t) /"

 Print #qFN, " SET Q(s,c,t) /"

 Dim tierLRScombos As Long

 tierLRScombos = 0

 For lTier = 1 To tierNames.Count

 For lLRS = 1 To lrsNames.Count

 If tierAtLRS(lTier, lLRS) Then

 tierLRScombos = tierLRScombos + 1

 End If

 Next lLRS

 Next lTier

 Dim currCombo As Long

 currCombo = 1

 For lLRS = 1 To rLRSs.Rows.Count

 Print #logFN, "LRS " & rLRSs(lLRS, COL_LRS_NAME) & ":" &
lrsNames.Lookup(rLRSs(lLRS, COL_LRS_NAME))

 For lTier = 1 To rTiers.Rows.Count

 Print #logFN, " tier " & rTiers(lTier, COL_TIER_NAME) & ":" &
tierNames.Lookup(rTiers(lTier, COL_TIER_NAME))

 If tierAtLRS(tierNames.Lookup(rTiers(lTier, COL_TIER_NAME)),
lrsNames.Lookup(rLRSs(lLRS, COL_LRS_NAME))) > 0 Then

 dTierSpeed = rTiers(lTier, COL_TIER_SPEED)

 dRemTime = rTiers(lTier, COL_TIER_ENDURANCE) '* rTiers(lTier,
COL_TIER_SPEED)

 lRemPeriods = Ceiling(dRemTime * lPeriodsPerHour)

 lMaxClasses = rTiers(lTier, COL_TIER_CAPACITY)

 Print #logFN, " tierAtLRS? yes lMaxClasses=" & lMaxClasses

 For lClass = 1 To lNumClasses

 lHasClass(lClass) = 0

 Next lClass

 lcurrNumClasses = 0

 top = 1

 stack(top) = EVENT_LR 'L/R event at lLRS

 lNextStack(top) = 1

 Do

 lCurrMission = stack(top)

 lNextMission = lNextStack(top)

 'Find next mission to put on the stack

 57

 Do While lNextMission <= lNumMissions

 If onStack(lNextMission) > 0 Then

 'Print #logFN, " onstack"

 GoTo skipMission

 End If

 If dDistLM(lLRS, lNextMission) > rTiers(lTier,
COL_TIER_RADIUS) Then

 'Print #logFN, "Out of range"

 GoTo skipMission

 End If

 If lClassTierAvail(reqClass(lNextMission), lTier) = 0 Then

 'Print #logFN, "No Payloads available for this Tier"

 GoTo skipMission

 End If

 If lCurrMission = EVENT_LR Then

 dTransitTime = dDistLM(lLRS, lNextMission) / dTierSpeed

 Else

 dTransitTime = dDistMM(lCurrMission, lNextMission) /
dTierSpeed

 End If

 lTransitPeriods = Ceiling(dTransitTime * lPeriodsPerHour)

 If lCurrMission <= 0 Then

 If lFinishPeriod(lNextMission) <=
lStartPeriod(lCurrMission) + lTransitPeriods Then

 'Print #logFN, " time warp"

 GoTo skipMission

 End If

 ElseIf dMissionValue(lNextMission) <=
dMissionValue(lCurrMission) Then

 If lFinishPeriod(lNextMission) <=
lFinishPeriod(lCurrMission) + lTransitPeriods Then

 'Print #logFN, " time warp"

 GoTo skipMission

 End If

 Else

 If lStartPeriod(lNextMission) <= lStartPeriod(lCurrMission)
+ lTransitPeriods Then

 'Print #logFN, " time-value warp"

 GoTo skipMission

 End If

 End If

 58

 If lTransitPeriods + Ceiling(lPeriodsPerHour * (dDistLM(lLRS,
lNextMission) / rTiers(lTier, COL_TIER_SPEED))) > lRemPeriods Then

 'Print #logFN, " out of time"

 GoTo skipMission

 End If

 If (lcurrNumClasses = lMaxClasses And
lHasClass(reqClass(lNextMission)) = 0) Then

 'Print #logFN, " no payload space left"

 GoTo skipMission

 End If

 GoTo foundMission

skipMission:

 lNextMission = lNextMission + 1

 Loop

foundMission:

 If lNextMission > lNumMissions Or top >= lMaxMissions Then 'out
of missions: pop stack

 If lCurrMission > 0 Then

 lHasClass(reqClass(lCurrMission)) =
lHasClass(reqClass(lCurrMission)) - 1

 If lHasClass(reqClass(lCurrMission)) = 0 Then

 lcurrNumClasses = lcurrNumClasses - 1

 End If

 onStack(lCurrMission) = 0

 End If

 top = top - 1

 GoTo nextMission

 End If

 If lCurrMission = EVENT_LR Then

 lTransitPeriod(top) = lTransitPeriods

 lThisLaunchPeriod = lStartPeriod(lNextMission) -
lTransitPeriods - 1

 If lThisLaunchPeriod < 1 Then

 lThisLaunchPeriod = 1

 End If

 lRemPeriods = Ceiling(dRemTime * lPeriodsPerHour) +
lThisLaunchPeriod - 1

 lTransitPeriod(top) = lThisLaunchPeriod + lTransitPeriods

 lIdlePeriod(top) = lThisLaunchPeriod - 1

 Else

 lMissionPeriod(top) = lFinishPeriod(lCurrMission)

 59

 If dMissionValue(lCurrMission) < dMissionValue(lNextMission)
And _

 lStartPeriod(lNextMission) - lTransitPeriods - 1 <
lFinishPeriod(lCurrMission) Then

 lMissionPeriod(top) = lStartPeriod(lNextMission) -
lTransitPeriods - 1

 End If

 lTransitPeriod(top) = lMissionPeriod(top) + lTransitPeriods

 lIdlePeriod(top) = lStartPeriod(lNextMission) - 1

 End If

 lNextStack(top) = lNextMission + 1

 top = top + 1

 stack(top) = lNextMission

 onStack(lNextMission) = top

 lMissionPeriod(top) = lFinishPeriod(lNextMission)

 lTransitPeriod(top) = lFinishPeriod(top) +
Ceiling((dDistLM(lLRS, lNextMission) / rTiers(lTier, COL_TIER_SPEED)) *
lPeriodsPerHour)

 lNextStack(top) = 1

 If lHasClass(reqClass(lNextMission)) = 0 Then

 lcurrNumClasses = lcurrNumClasses + 1

 End If

 lHasClass(reqClass(lNextMission)) =
lHasClass(reqClass(lNextMission)) + 1

 'New feasible schedule: now copy stack info into appropriate
arrays

 s = s + 1

 t = 1

 'calculate start period of mission sequence: find start time of
first mission

 ' in stack(2), figure out latest departure period to arrive at
first mission (if

 ' earlier than period 1, then l/r in period 1, transit, and do
as much of mission

 ' as possible

 Print #logFN, "dTransitTime " & dTransitTime & "
lTransitPeriods " & lTransitPeriods

 Print #logFN, "s:" & CStr(s) & " ";

 For iRow = 1 To top

 Print #logFN, stack(iRow) & ",";

 Next iRow

 Print #logFN, "0"

 60

 Print #logFN, "m:" & CStr(s) & " ";

 For iRow = 1 To top

 Print #logFN, lMissionPeriod(iRow) & ",";

 Next iRow

 Print #logFN, "0"

 Print #logFN, "t:" & CStr(s) & " ";

 For iRow = 1 To top

 Print #logFN, lTransitPeriod(iRow) & ",";

 Next iRow

 Print #logFN, "0"

 Print #logFN, "i:" & CStr(s) & " ";

 For iRow = 1 To top

 Print #logFN, lIdlePeriod(iRow) & ",";

 Next iRow

 Print #logFN, "0"

 Do While t < lThisLaunchPeriod And t <= lLastPeriod

 a(s, t) = EVENT_IDLE

 t = t + 1

 Loop

 a(s, t) = EVENT_LR

 f_act(s, t) = 1

 k(s, t) = lLRS

 t = t + 1

 Do While t <= lTransitPeriod(1) And t <= lLastPeriod

 a(s, t) = EVENT_TRANSIT

 f_pas(s, t) = 1

 t = t + 1

 Loop

 For iRow = 2 To top

 lCurrMission = stack(iRow)

 If iRow < top Then

 lNextMission = stack(iRow + 1)

 Else

 lNextMission = EVENT_LR 'L/R event

 End If

 ' XXX Need upper bounds: time horizon, flight time, etc...

 Do While t <= lMissionPeriod(iRow) And t <= lLastPeriod

 'fill in arrays

 61

 a(s, t) = lCurrMission

 f_act(s, t) = 1

 t = t + 1

 Loop

 Do While t <= lTransitPeriod(iRow) And t <= lLastPeriod

 a(s, t) = EVENT_TRANSIT

 f_pas(s, t) = 1

 t = t + 1

 Loop

 Do While t <= lIdlePeriod(iRow) And t <= lLastPeriod

 a(s, t) = EVENT_IDLE

 f_pas(s, t) = 1

 t = t + 1

 Loop

 Next iRow

 If t <= lLastPeriod Then

 a(s, t) = EVENT_LR

 lThisRecoverPeriod = t

 f_act(s, t) = 1

 k(s, t) = lLRS

 b(s) = lTier

 End If

 For iRow = 1 To lLastPeriod

 Print #logFN, ":" & a(s, iRow);

 Next iRow

 Print #logFN, ""

 For iRow = 2 To top

 For lPeriod = 1 To lLastPeriod

 If a(s, lPeriod) = stack(iRow) Then

 Print #aFN, " s_" & CStr(s) & ".m_" &
missionNames.Item(stack(iRow)) & ".t_" & CStr(lPeriod)

 End If

 Next lPeriod

 Next iRow

 For lPeriod = 1 To lLastPeriod

 If lPeriod >= lThisLaunchPeriod And lPeriod <=
lThisRecoverPeriod Then

 Print #bFN, " s_" & CStr(s) & ".v_" &
Trim(rTiers(lTier, COL_TIER_NAME)) & ".t_" & CStr(lPeriod)

 62

 End If

 Next lPeriod

 Print #kFN, " k('s_" & CStr(s) & "','l_" & Trim(rLRSs(lLRS,
COL_LRS_NAME)) & "','t_" & CStr(lThisLaunchPeriod) & "')=1;"

 Print #kFN, " k('s_" & CStr(s) & "','l_" & Trim(rLRSs(lLRS,
COL_LRS_NAME)) & "','t_" & CStr(lThisRecoverPeriod) & "')=1;"

 For lClass = 1 To classNames.Count

 If lHasClass(lClass) > 0 Then

 q(s, lClass) = 1

 For lPeriod = 1 To lLastPeriod

 If lPeriod >= lThisLaunchPeriod And lPeriod <=
lThisRecoverPeriod Then

 Print #qFN, " s_" & CStr(s) & ".c_" &
classNames.Item(lClass) & ".t_" & CStr(lPeriod)

 End If

 Next lPeriod

 End If

 Next lClass

 If s >= lMaxRoutes Then GoTo doneMissions

 If s Mod 1000 = 0 Then wsDashboard.Range("ROUTESCELL") = s

 If s >= (currCombo - 1) * lMaxRoutes / (tierLRScombos) Then
GoTo nextTier

nextMission:

 Loop While top > 0

 End If

nextTier:

 currCombo = currCombo + 1

 Next lTier

 Next lLRS

doneMissions:

 wsDashboard.Range("ROUTESCELL") = s

 Print #uasSetsFN, " s /s_1*s_" & CStr(s) & " /"

 Print #uasSetsFN, " ;"

 Print #uasDataFN, " ;"

 Print #aFN, " /"

 Print #aFN, " ;"

 Print #bFN, " /"

 Print #bFN, " ;"

 Print #qFN, " /"

 Print #qFN, " ;"

 63

subExit:

 Print #logFN, "Ending output"

 Close uasSetsFN

 Close uasDataFN

 Close aFN

 Close bFN

 Close kFN

 Close qFN

 Close logFN

End Sub

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX C GAMS CODE

$TITLE UAS Planner 08.06.02

$ontext

MCCDC/OAD UAS Mission Planner

Assigns a fleet of UAVs to a list of missions with various

requirements and time windows over a fixed time horizon of many

time periods.

Solved using explicit column generation, one column per UAS schedule.

$offtext

$inlinecom { }

 FILE UASP_log/UASP.log/ ;

 PUT UASP_log ;

 PUT 'UASP - MCCDC/OAD UAS Planner 08.06.02' // ;

 PUTCLOSE UASP_log ;

 FILE UASP_sta/UASP.sta/ ;

 PUT UASP_sta ;

 PUT 'ERROR - Did not solve' // ;

 PUTCLOSE UASP_sta ;

 FILE VALUE_CSV/VALUE.csv/ ;

 PUT VALUE_CSV ;

 PUT ' ' / ; { scratch legacy file contents }

 PUTCLOSE VALUE_CSV ;

 FILE MISSIONS_CSV/MISSIONS.csv/ ;

 PUT MISSIONS_CSV ;

 PUT ' ' / ; { scratch legacy file contents }

 PUTCLOSE MISSIONS_CSV ;

 66

 FILE SCHEDULES_CSV/SCHEDULES.csv/ ;

 PUT SCHEDULES_CSV ;

 PUT ' ' / ; { scratch legacy file contents }

 PUTCLOSE SCHEDULES_CSV

 FILE DUALS_CSV/DUALS.csv/ ;

 PUT DUALS_CSV ;

 PUT ' ' / ; { scratch legacy file contents }

 PUTCLOSE DUALS_CSV

 PUT UASP_log ;

 UASP_log.ap=1 ; { re-open log file, appending to prior contents }

 OPTIONS

 optcr = 0.1

 limrow = 0

 limcol = 0

 SEED = 1234

 ITERLIM = 10000000

 LP = CPLEX

 RMIP = CPLEX

 MIP = CPLEX

 ;

$ONTEXT

 {STATIC, GROUNDED} SETS

 v Tier levels

 h mission types {active, passive}

 g Ground control stations

 l Launch and recovery sites

 m Missions {missions that ships can be assigned}

 c Payload classes

 67

 t Time periods

 s UAV emplyment schedules

 ;

$OFFTEXT

$INCLUDE uasSets.gms

 alias(m,mp);

$ONTEXT

 {GIVEN} PARAMETERS

 num_uavs(l,v,t) number of uavs available in tier v in period t

 num_mods(c,t) number of payload modules available of class c in period t

 gcs_cap(g,t,h) max num UAVs on gcs g in period t on mission type h

 lrs_cap(l,t) max num UAVs at LRS l in period t

 length(m) maximum periods of coverage of mission m

 val(m) value of mission m

 r(m) required periods of coverage for mission m

 k(s,l,t) indicator if lrs l used by schedule s in period t

 ;

$OFFTEXT

$OFFLISTING

$INCLUDE uasData.gms

 PARAMETER

 k(s,l,t)

 ;

$INCLUDE k.gms

$ONTEXT

 {DYNAMIC} SETS

 A(s,m,t) schedule s covers mission m in period t

 B(s,v,t) schedule s uses tier v UAV in period t

 Q(s,c,t) schedule s requires payload class c in period t

 68

 P(m,mp) mission prerequisite fixed mission m requires at least one
 mission mp in same period

 E(m,mp) exclusive missions m and mp cannot be accomplished in same
 period

 ;

 {Notional data: will be replaced with INCLUDE statements and accompanying
data files}

$OFFTEXT

 alias(m,mp);

 alias(v,vp);

 alias(t,tp);

$INCLUDE a.gms

$INCLUDE b.gms

$INCLUDE q.gms

$INCLUDE hp.gms

$INCLUDE p.gms

$INCLUDE mg.gms

$INCLUDE mh.gms

$INCLUDE gv.gms

$ONLISTING

SET sl(s,l);

LOOP((s,l)$(SUM(t,k(s,l,t))>eps),

 sl(s,l) = yes;

);

 SCALARS errors,warnings ;

 errors=0 ;

 warnings=0;

{Loops for data checking go here}

 IF(errors>0,

 PUT / 'inconsistencies found in active and value data: ',errors:10:0 / ;

 69

 PUT '(should I have shut you down here?' / ;

);

 VARIABLE

 OBJECTIVE

 ;

 BINARY VARIABLES

 X(s) Schedule s flown by some UAV

 Y(m,v,t) Mission m covered in period t

 W(m,v,g,t) Mission m handled by GCS g in period t

 ;

 INTEGER VARIABLES

 D(m) Total number of dwell periods on mission m

 MODS(c,v,l)

 ;

 EQUATIONS

 eqnObj {R0} Objective function measures total value of mission
 accomplishment

 UAVLimit(l,v,t) {R1} limit on UAVs flying by tier and period

 ModuleLimit(c,v,l,t) {R2} limit on payload modules flying by payload and
period

 TotalMods(c,v) {R2.5}

 GCSLimit(g,t,h) {R3} limit on GCS use by gcs period and type

 LRSLimit(l,t) {R4} limit on LRS use by LRS and period

 CoverageLimit(m,v,t) {R5} mission and period coverage control

 DwellLimit(m) {R6} limit on total dwell time by mission

 Prerequisite(m,v,t) {R7} prerequisite controls by period

 Mission_Control(m,v,t)

* Exclusive(m,mp,t) {R8} mutually exclusive missions by period

 RequiredDwell(m) {R9} required missions must be completely covered

 ;

 70

 eqnObj.. {R0}

 OBJECTIVE =e= sum(m, val(m)*D(m))

 ;

 UAVLimit(l,v,t).. {R1}

 SUM(s$(B(s,v,t) and sl(s,l)), X(s)) =l= num_uavs(l,v,t)

 ;

 ModuleLimit(c,v,l,t).. {R2}

 SUM(s$(sl(s,l) and B(s,v,t) and Q(s,c,t)), X(s)) =l= MODS(c,v,l)

 ;

 TotalMods(c,v)..

 SUM(l, MODS(c,v,l)) =l= num_mods(c,v)

 ;

 GCSLimit(g,t,h).. {R3}

 SUM((m,v)$(MG(m,g) and MH(m,h) and GV(g,v)), W(m,v,g,t)) =l=
gcs_cap(g,t,h)

 ;

 LRSLimit(l,t).. {R4}

 SUM(s$(k(s,l,t)>eps), X(s)) =l= lrs_cap(l,t)

 ;

 CoverageLimit(m,v,t).. {R5}

 Y(m,v,t) =l= SUM(s$(A(s,m,t) and B(s,v,t)), X(s))

 ;

 DwellLimit(m).. {R6}

 D(m) =l= SUM((v,t), Y(m,v,t))

 ;

 Prerequisite(m,v,t)$HP(m).. {R7}

 Y(m,v,t) =l= SUM((mp,vp)$P(m,mp),Y(mp,vp,t))

 ;

 Mission_Control(m,v,t)$(not HP(m))..

 Y(m,v,t) =l= SUM(g$(MG(m,g) and GV(g,v)), W(m,v,g,t))

 ;

* Exclusive(m,mp,t)$E(m,mp).. {R8}

 71

* Y(m,t) + Y(mp,t) =l= 1

* ;

 RequiredDwell(m)$(r(m)>eps).. {R9}

 D(m) =g= r(m)

 ;

 LOOP(m,

 D.up(m) = length(m); {R10}

);

 MODEL UAS_PLANNER /

 eqnObj

 UAVLimit

 ModuleLimit

 TotalMods

 GCSLimit

 LRSLimit

 CoverageLimit

 DwellLimit

 Prerequisite

* Exclusive

 Mission_Control

 RequiredDwell

 /

 ;

 IF(errors=0,

 PUT 'solve UAS_PLANNER' / ;

* UAS_PLANNER.reslim=60. ;

* UAS_PLANNER.optcr=0.05 ;

 PUT ' reslim=',UAS_PLANNER.reslim:5:0,' seconds,
optcr=',UAS_PLANNER.optcr:5:2 ;

 PUT ' optfile=',UAS_PLANNER.optfile:2:0 / ;

 72

 SOLVE UAS_PLANNER USING MIP MAXIMIZING OBJECTIVE;

 PUT 'PLANNER solver and model status
',UAS_PLANNER.solvestat:4:0,UAS_PLANNER.modelstat:4:0 / ;

 IF(UAS_PLANNER.modelstat<>1 and UAS_PLANNER.modelstat<>8,

 errors=1 ;

 ELSE

 PUT / 'Objective: ',OBJECTIVE.l:10:4 /;

 PUT / 'Module Deployment' / ;

 LOOP((c,v,l)$(MODS.L(c,v,l)>eps),

 PUT ' ',c.tl:10,' ',v.tl:8,' ',l.tl:10,': ',MODS.L(c,v,l):4:0 / ;

);

 PUT / 'UAV flight schedules..' // ;

 LOOP(s$(X.l(s)>eps),

 PUT ' ',s.tl:10,' ' ;

 LOOP(v$SUM(t$B(s,v,t),1),

 PUT ' ',v.tl:8 ;

);

 PUT ' ',X.l(s):4:1 / ;

 LOOP(m$(SUM(t$A(s,m,t),1)>0),

 PUT ' ',m.tl:10 ;

 LOOP(t$A(s,m,t),

 PUT ' ',t.tl:5 ;

);

 PUT / ;

);

);

 PUT / 'GCS Usage' / ;

 LOOP(g$(SUM((m,v,t)$(MG(m,g) and GV(g,v)),W.l(m,v,g,t))>eps),

 PUT ' ',g.tl:8 / ;

 LOOP((m,v)$(MG(m,g) and GV(g,v) and (SUM(t,W.l(m,v,g,t))>eps)),

 PUT ' ',m.tl:8,' ',(SUM(t,W.l(m,v,g,t))) ;

 LOOP(t$(W.l(m,v,g,t)>eps),

 73

 PUT ' ',t.tl:8 ;

);

 PUT / ;

);

);

 PUT / 'MISSION COVERAGE' / ;

 PUT ' Mission Dwell Time' / ;

 LOOP(m$(D.l(m)>0),

 PUT ' ',m.tl:8,' ',D.l(m):5:1 / ;

 LOOP(t$(SUM(v,Y.l(m,v,t))>eps),

 PUT ' ',t.tl:4,' ',(SUM(v,Y.l(m,v,t))):4:1 / ;

);

);

 PUTCLOSE UASP_LOG;

 PUT MISSIONS_CSV ;

 PUT ',,,Total,Total,Value,Total' /;

 PUT ',Start,End,Time Periods,Time Periods,Per Time,Value' /;

 PUT
'Mission,Time,Time,Requested,Assigned,Period,Achieved,',OBJECTIVE.L /;

 LOOP(m,

 PUT m.tl,',,,,',D.l(m),',',val(m),',',(D.l(m)*val(m)) /;

);

 PUTCLOSE MISSIONS_CSV;

 {Rest of report writer goes here}

);

);

 IF(errors>0,

 PUT ' <*** errors aborting this run:',errors:10:0 / ;

);

 IF(warnings>0,

 74

 PUT / ' <+++ warnings generated by this run: ',warnings:10:0 / ;

 PUT ' please find out what these indicate' / ;

);

 PUTCLOSE UASP_log ;

 IF(errors=0,

 {Build CSV Output Files}

 PUT UASP_STA;

 PUT 'Optimal solution found. Successful completion.' /;

 PUTCLOSE UASP_STA;

);

 75

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Operation Analysis Division C19
Quantico, VA

4. Marine Corps Representative
Naval Post Graduate School
Monterey, CA

5. Director, Training and Education, MCCDC, Code C46
Quantico, VA

6. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, VA

7. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

8. Director, Studies and Analysis Division, MCCDC, Code C45
 Quantico, VA

