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ABSTRACT 

Unmanned Aircraft Systems (UASs) are critical for future combat effectiveness.  

Military planners from all branches of the Department of Defense now recognize the 

value that real time intelligence and surveillance from UASs provides the battlefield 

commander. The Operations Analysis Division of the Marine Corps Combat 

Development Command is currently conducting an Overarching Unmanned Aircraft 

Systems study to determine future force requirements.  Current analysis is conducted 

through the use of the Assignment Scheduling Capability for Unmanned Air Vehicles 

(ASC-U) and several specially designed heuristics.  The Unmanned Aircraft System 

Scheduling Tool (UAS-ST) combines these capabilities into one model and addresses 

several issues associated with ASC-U.  UAS-ST allows the user to control all aspects of 

the UAS, define a scenario, and then generates a flight schedule over a known time 

horizon based on those inputs.  All missions are assigned a user defined value and the 

total schedule value is reported.  The user can then quickly change a parameter of the 

UAS, re-solve the model, and see the impact their proposed change has on the overall 

value of the schedule attained.  Therefore, UAS-ST is a tool for analyzing the value of 

future changes in UAS structure. 
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THESIS DISCLAIMER 

The reader is cautioned that computer programs developed in this research may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered validated.  Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

Unmanned Aircraft Systems (UASs) procurement is vital to the United States 

Marine Corps' (USMC) combat effectiveness in the near future.  UASs are used for 

collecting intelligence, surveillance, and targeting information.  They accomplish these 

missions at a much lower overall risk than conventional, manned aircraft.  Military 

planners from all branches of the Department of Defense (DoD) recognize the value that 

real time intelligence and surveillance from UASs provides the battlefield commander.  

In an ongoing operation, mission requests from units in theater typically far exceed the 

capacity of available UAS assets.  Demand for UAS missions is increasing as the 

capability of these platforms expands.  Individual branches of DoD are scrambling to 

acquire the UASs needed to support the requirements of currently deployed units in 

combat operations.  As a result, interoperability and compatibility is a major concern with 

today’s current family of UASs.   

Due to operational requirements in Iraq and Afghanistan, DoD is focusing 

procurement strategy away from force transformation and future generation weapons to 

more immediate concerns.  Acquisition of UASs needed to meet operational requirements 

is the agency’s highest priority.  As a result, large procurement budgets exist to fill the 

supply shortage and meet future operational requirements.  Currently DoD is evaluating a 

large number of alternative UAS programs.  This selection process requires an objective 

analysis of each alternative.  The model in this thesis allows the USMC to accomplish 

their analysis by clearly depicting the impact of changes in system capabilities on a daily 

flight schedule.  Application of the model is not limited to UASs.  The model is capable 

of analyzing any asset which must be scheduled in response to user demands.  Therefore, 

this model has future application in a multitude of other programs.    

The current model in use for the Marine Corps Combat Development Command 

(MCCDC) Overarching Unmanned Aircraft Systems (OUAS) study is the Assignment 

Scheduling Capability for UAVs (ASC-U) model.  The design agency for ASC-U is the 

U.S. Army Training and Doctrine Command Analysis Center (TRAC).  ASC-U is 
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designed to support the development of an effective UAS force structure.  It is a 

spreadsheet-based decision support tool primarily for allocation and scheduling of assets.  

ASC-U addresses complexities in military operations and scheduling of multiple moving 

platforms.  ASC-U accepts user parameters that define a scenario then seeks to provide a 

feasible schedule for available UASs.  ASC-U is the first model that enables analysts to 

address this scheduling problem effectively.  ASC-U combines both optimization and 

simulation to produce a tool with unique capabilities. 

This thesis develops an integer linear programming model, UAS-ST, for 

scheduling UASs.  UAS-ST allows the user to define all elements, both operational and 

performance, of the UAS via an Excel spreadsheet.  A schedule generator written in 

visual basic for this application then takes these elements and generates a user-defined 

number of individual schedules.  This schedule generation is done for every UAV (UAV) 

that is included in the scenario.  Once the predefined number of schedules is generated, 

UAS-ST creates data files for a General Algebraic Modeling System (GAMS) model.  

GAMS, through the use of CPLEX, finds a near optimal combination of individual 

schedules to produce a complete schedule for a user designated time period.   

 The initial test scenario replicates a generic scenario given in the OUAS study.   

This replication provides the simplest and most direct comparison of results with ASC-U.  

The scenario time period is twenty four hours divided into ninety six intervals of fifteen 

minutes each.  This scenario does not refer to a specific country, but is designed solely to 

provide the framework for determining the value of changes in UAS structure on a given 

set of mission requests.  UAS force structure for the initial scenario represents a small but 

realistic composition of systems.  Tier I is comprised of three separate units with four 

UAVs and one Ground Control Station (GCS) per unit.  Tier II is comprised of three 

separate units with one UAV and one GCS per unit.  Tier III is comprised of a single unit 

with two UAVs and two GCSs. 

UAS-ST is significantly different from ASC-U.  ASC-U utilizes an Excel 

spreadsheet and pulls the data into an Access database.  UAS-ST applies an Excel 

spreadsheet, which then uses Visual Basic to transfer the data to GAMS.  GAMS then 

applies the CPLEX solver to quickly optimize the schedule for all mission requests.  
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Features that require supplemental heuristics in ASC-U are incorporated directly into 

UAS-ST, eliminating the need for further processing.  This produces a much quicker and 

efficient analysis of alternatives.  CPLEX is highly efficient in preprocessing feasible 

solutions and reduces the run time to a matter of minutes.  Overall, UAS-ST provides an 

efficient update to the model presented in ASC-U. 

UASs are critical to our nation’s and the USMC's future military combat 

effectiveness.  All branches of DoD recognize the need to develop an integrated network 

of UASs.  To answer this need, the Marine Corps is developing the concept of the UAS 

Family of Systems (FoS).  The FoS calls for a three tier structure of UASs with 

overlapping capabilities.  Currently, the MCCDC Operation Analysis Division is 

conducting an OUAS study.  This thesis is a direct contribution to that study, and UAS-

ST, provides a planning tool for development of future UAS structure.  UAS-ST allows 

the user to control all aspects of the UAS, define a scenario, and then generates a flight 

schedule over a known time horizon based on those inputs.  All missions are assigned a 

user-defined value and the total schedule value is reported.  The user can then quickly 

change an operational or performance parameter of the UAS, re-solve the model, and see 

the impact on the overall value of the schedule.  UAS-ST is a tool for analyzing the value 

of future changes in UAS structure. 
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I. INTRODUCTION  

A. PURPOSE AND OVERVIEW 

Unmanned Aircraft System (UAS) procurement is vital to the United States 

Marine Corp's (USMC) combat effectiveness in the near future.  UASs are used for 

collection of intelligence, surveillance, and targeting information.  They accomplish these 

missions at a much lower risk than conventional, manned aircraft.  Military planners from 

all branches of the Department of Defense (DoD) recognize the value that real time 

intelligence and surveillance from UASs provides the battlefield commander.  In an 

ongoing operation, mission requests from units in theater typically far exceed the 

capacity of available UAS assets.  Future demand for UAS missions will increase as the 

capability of these versatile platforms expands.  Individual branches of DoD are 

scrambling to acquire the UASs needed to support the requirements of currently deployed 

units in combat operations. [IHT, 2008]  As a result, interoperability and compatibility is 

a major concern with today’s current family of UASs.   

To address these issues in future systems, the USMC is developing the UAS 

Family of Systems (FoS).  Each system consists of an Unmanned Air Vehicle (UAV), 

Ground Control Station (GCS), Launch and Recovery Station (LRS) and a combination 

of various sensors and payload components.  The components of the FoS have several 

complementary capabilities which overlap in certain mission areas.  The intent is to 

create a mix of several UASs able to support various units of different sizes and levels of 

operation.   

To assess the effectiveness of a combination of UASs, quantitative models must 

be applied to provide a reasonably accurate measurement of capability and some 

guidance for efficient employment.  To this end, this thesis develops a UAS planning and 

decision support tool that takes as input a planning horizon, a fleet of UAVs and their 

individual operating limits, a list of available payloads and a list of mission requests.  The 

model then provides as output an operational schedule for each individual vehicle 

indicating the missions to be accomplished in a specified time horizon and the payloads 
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required.  This schedule provides analysts the ability to quickly determine the impact of 

changes in any system parameter on the overall value of missions accomplished. 

B. BACKGROUND 

1. Problem Statement 

Due to operational requirements in Iraq and Afghanistan, DoD is focusing 

procurement strategy away from force transformation and future generation weapons to 

more immediate concerns.  Acquisition of the UASs needed to meet operational 

requirements is the agency’s highest priority. [IHT, 2008]  As a result, large procurement 

budgets exist to fill the supply shortage and meet future operational requirements.  

Currently DoD is evaluating a large number of alternative UAS programs.  The selection 

process requires an objective analysis of each alternative.  This thesis develops a model 

to help the USMC with this analysis.  The model in this thesis allows the USMC to 

accomplish their analysis by clearly depicting the impact of changes in system 

capabilities on a daily flight schedule.  Application of the model is not limited to UASs.  

The model is capable of analyzing any asset which must be scheduled in response to user 

demands.  Therefore, this model has future application in a multitude of other programs.    

 In recent comments, Defense Secretary Robert Gates, addresses wasteful or 

inefficient UAS procurement programs in a speech given at the Air Force’s Air 

University at Maxwell Air Force Base: 

Because people were stuck in old ways of doing business, it's been like 
pulling teeth.    While we've doubled this capability in recent months, it is 
still not good enough. [IHT, 2008] 

The fact that the Defense Secretary is unusually blunt in his criticism of current program 

development, should serve as proof of the pressure to field future UASs. 
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2. The Marine Corps Three Tier UAS Family of Systems 

 

Figure 1.   UAS Tier Structure  

The FoS divides the various UASs into three separate tiers. The tier assignments 

provide each level of the Marine Air Ground Task Force (MAGTF) an organic, 

interoperable, integrated and tailored capability that raises the situational awareness of 

the combat unit commander through a common communication network.  The current 

operational conditions in Operation Enduring Freedom and Operation Iraqi Freedom 

demonstrate the importance of UAS operations and the need for commanders at all levels 

to maintain control of their respective battle space.  Therefore, tiers are defined by the 

area of interest and operational level of the supporting unit, such as a company, battalion, 

or regiment.  There is some operational overlap in tier capabilities; this is intentional and 

should be considered beneficial to mission accomplishment. 
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The three tiers are described in [MCCDC, 2005] as follows: 

 Tier I – Short Range UAS 

• Operationally Supports Battalion, Company, and Platoon 

• Performs Reconnaissance and Surveillance Missions 

• Current System: Dragon Eye, Future: Raven-B 

• Endurance of 1.5 hours, Combat Radius of 5 miles 

• Speed: Less than 20 knots 

• Capacity for Single Payload  

 

 Tier II – Division or Regimental UAS 

• Operationally Supports Division, Marine Expeditionary Unit 
(MEU), Regiment and Battalion 

• Air vehicle: Persistent, low cost, durable, low observable, easily 
transported, shipboard compatible, target acquisition capable, 
heavy fuel engine 

• Current: Scan Eagle Contract 

• Endurance of 15 hrs, Combat Radius of 50 miles 

• Speed: 60 knots 

• Capacity for Two Payloads 

 

 Tier III – UAS 

• Operationally supports Marine Expeditionary Force, Marine 
Expeditionary Brigade, MEU, Division and Regiment 

• Reconnaissance Surveillance and Target Acquisition, Electro-
Optical /Infrared Imagery (EO/IR) 

• Current System: Pioneer, Future Concept - Vertical Takeoff UAV 

• Air vehicle (Proposed; expeditionary, sea based, Vertical Takeoff, 
large sensor payload, multi-mission capable, weaponization) 

• Sensor payload (Proposed: EO/IR/laser designation, 
communication relay, Signals Intelligence, Electronic Warfare) 

• Endurance of 8 hours, Combat Radius of 300 miles 

• Speed: 200 knots 

• Capacity for three payloads 
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Figure 2.   Projected Future FoS Tiers Structure 

3. Current UAS Structure  

There are several specialized terms associated with a UAS that this thesis uses 

repeatedly.  To avoid any confusion, the following definitions apply: 

• UAV (Unmanned Aerial Vehicle):  A UAV is an unpiloted aircraft.  UAVs 

can be remote controlled or fly an automated route based on pre-programmed 

information. 

• UAS (Unmanned Aircraft System): UAS is the current term introduced by 

DoD and accepted by the Federal Aviation Administration to replace the term 

UAV. A UAS consists of not only the unmanned aircraft, but also the data 

link system, the launch and recovery station, and all maintenance and support 

equipment. 

• GCS (Ground Control Station):  A GCS is a land or sea-based system that 

allows an operator to control an unmanned aircraft.  A GCS may control both 

"active" and "passive" missions.  An active mission requires the operator to 

monitor the UAV, while a passive mission requires no interaction from the 

operator. 
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• LRS (Launch and Recovery Site):  Used to control an unmanned aircraft 

during the initial and terminal phases of flight. The LRS can also function 

as a GCS when not recovering UAVs. 

• Payload:  Future system requirements call for a system of “payloads,” 

each of which provides a custom capability. These payloads will be 

uniform in size and connectivity to allow for rapid configuration of 

mission specific profiles.   

• Mission Package:  Consists of the combination of payloads loaded on an 

individual UAV which determines the mission capability of the UAV.  

Required payload capacity is a key element of the current study.   

4. Current UAS Missions Types 

Following is a table of terms associated with current UAS missions.  These 

missions represent general categories and are derived from the Overarching Unmanned 

Aircraft System (OUAS) study [OUAS, 2007].   

 

Missions Abbreviation Description 
Reconnaissance, Surveillance, Target 

Acquisition (RSTA) (EO/IR) RSTA-EO/IR ISR asset for routine day and night time 
operations 

Reconnaissance, Surveillance, Target 
Acquisition (Synthetic aperture radar) RSTA-SAR ISR asset for dense vegetation and poor 

weather conditions 

Signals Intelligence SIGINT Sensor(s) designed for passive collection of 
signals 

Air Vehicle Communications Link Relay AV_CLR Relays information and instructions through 
one UAV to another 

Communications Relay 
 CR Relays voice and data between ground points 

Strike STK Weapons enabled kinetic destruction of a time 
sensitive target 

Electronic Warfare 
 EW Active denial of radio frequency 

Table 1.   General Description of Mission Types 



 7

C. SCOPE AND LIMITATIONS 

The intent of this thesis is to provide a model for use as an analytical tool in 

determining the future force structure for UASs.  The model allows the user to quickly 

change both operational and performance parameters for each UAS tier.  Once 

parameters are set, the model quickly generates a near-optimal schedule.  This rapid 

schedule generation allows an analyst to see the impact of changing UAS capabilities on 

a given daily schedule. 

D. THESIS ORGANIZATION 

Chapter II provides a discussion of the Assignment Scheduling Capability for 

UAVs (ASC-U) the current UAS evaluation tool in use by the Operation Analysis 

Division (OAD), MCCDC.  Chapter III describes the optimization model and the stack 

based enumeration heuristic used to solve it.  Chapter IV provides a detailed analysis of 

the ASC-U results and compares it to the current model. Chapter V is devoted to 

conclusions and recommendations for future research.   
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II. ASSIGNMENT SCHEDULING CAPABILITY FOR UAS  

A. INTRODUCTION 

The current model in use for the OUAS study is the ASC-U model.  The agency 

responsible for the design of ASC-U is the U.S. Army Training and Doctrine Command 

Analysis Center (TRAC).  ASC-U is designed to support the development of an effective 

UAS force structure.  This chapter describes the basic structure of the ASC-U model.  It 

begins with a description of the inputs accepted by the model then describes its 

implementation in the study.  The chapter then discusses limitations of ASC-U which are 

addressed by this thesis.  The majority of the information given here is summarized from 

the OUAS report [OUAS, 2007].  This chapter also includes a review of current 

literature. 

B. BASICS OF ASC-U 

1. Model Description 

ASC-U supports the development of an effective UAS force structure.  It is a 

spreadsheet-based decision support tool used primarily for allocation and scheduling.  

ASC-U addresses the complexities in military operations and scheduling of multiple 

moving platforms.  ASC-U accepts user parameters that define a scenario and then seeks 

to provide a feasible schedule for available UASs.  As stated in the ASC-U Analyst 

Manual: 

ASC-U provides a solution to the following problem: Given a scenario 
that specifies the number of each type of UAV, initial UAV locations, and 
UAV performance characteristics, determine the number of missions that 
can successfully be completed and the schedule for each UAV.  The 
solution must consider GCS locations and capacities, remote viewing 
terminal requirements, and communication platform footprint and 
capacities. [Ahner, 2006] 
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 ASC-U is the first model that enables analysts to address this scheduling problem 

effectively.  It combines both optimization and simulation to produce a tool with unique 

capabilities. 

2. ASC-U Implementation 

The ASC-U model works by allowing the user to design a scenario which consists 

of a set of mission requests.  A mission request consists of a specific, required UAS 

capability at a specific geographic location, for a set amount of time.  The location of the 

mission remains fixed once it is assigned.  The allocation tool uses the UAS capability 

data and mission data it is given to create a feasible schedule which will accomplish as 

many mission requests as possible.  ASC-U is deterministic. For a given input, it will 

always produce the same schedule with the same measures of performance.  Specifically, 

ASC-U uses a deterministic algorithm to optimize over a given finite time horizon to 

obtain near-optimal UAS mission area assignments.   

ASC-U allows the user to define several different input parameters.  Mission 

requirements are the most important parameter.  Mission requirements consist of a 

coordinate location, payload requirement, length of mission and mission priority.  

Mission priority functions as a selection criterion.  A user may establish mission 

precedence by assigning a higher value to a specific mission type.  UAS parameters that 

may be entered by the user are payload details, GCS attributes, and UAV attributes.  GCS 

attributes consist of coordinate location, control limits, and unit assignment.  UAV 

attributes include speed, operating time, combat radius, launch site, and total time 

available.   

3. Model Capabilities and Limitations 

ASC-U is the first attempt to create a specific tool that involves all aspects of the 

UAS family of systems.  As part of its support program, TRAC-Monterey publishes an 

ASC-U user’s manual.  For its use in the OUAS study, some settings are different than 

the manual’s recommended settings.  Different settings are required due to the small size 

of the original test scenario chosen.  ASC-U is designed to model several thousands of 
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missions over a long time period.  The scenarios used in the OUAS study are much 

shorter in duration and involve only a few hundred missions. 

The mission requirements are the most important input data because they have the 

most direct effect on the schedule generated.  ASC-U attempts to complete as many 

mission hours as possible.  The objective function has a significant drawback.  It leads to 

preferential assignment of missions that are close to the launch and recovery site because 

they allow for more follow-on missions to be accomplished.  The model schedules as 

many close-in missions as possible and foregoes farther outlying missions.  Therefore, 

mission priority, a specific input, allows the user to set a precedence level.  However, in 

some instances the user is forced to artificially inflate the value of a mission to ensure it 

is scheduled. 

All inputs are usually entered in Excel spreadsheets, and then read into Access.  

ASC-U can take input from either Excel or Access.  The Excel inputs are placed in an 

Access data base as the model begins its run.  The output is also stored in an Access data 

base.  Several tables are produced in the output.  The most important table for the OUAS 

study is mission coverage.  Mission coverage is broken down into requesting unit, 

mission type and UAV type.  In ASC-U every possible payload combination is 

enumerated as a mission package.  Mission packages are then assigned to UAVs.  

Mission package usage is recorded; therefore individual payload usage is not available. 

The objective of the first OUAS study is to provide as many hours of UAS 

support as possible.  For ASC-U, the two key factors are the optimization interval and the 

time horizon for scheduling the UAV.  The optimization interval controls how often 

ASC-U runs its routine to assign missions.  The time horizon controls how far forward in 

time ASC-U will look to assign the UAV to a mission.  The optimization interval is 

crucial because if the interval is set too long then the UAS will remain idle instead of 

performing another mission.  If the interval is set too low the model has difficulties and 

exhibits odd behavior. An interval of 12 minutes is best for the scenarios used in the 

OUAS study [OUAS, 2007].  Time horizon is critical because ASC-U will only schedule 

a UAV once during the given time period.  Therefore, if the horizon is set too long, ASC-

U can see a high value mission at the end of the period and keep a UAV idle the entire 
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period waiting for that mission.  A UAV can complete another mission and still complete 

its priority mission.  On the other hand, if the time horizon is set too low then ASC-U 

misses high priority missions because it cannot see far enough out.  The final horizon for 

the OUAS study is 6 hours for Tier II and 4 hours for Tier III. 

Because of these shortcomings, several workarounds and new heuristics are used 

to enable ASC-U to find schedules that exhibit required behaviors.  The SUPER 

MISSION ability allows a UAV to fulfill multiple missions if they are within its operating 

range.  Three optional heuristics are also used in the OUAS study.  They are implemented 

in this order: 

EARLY RETURN (Go Home vs. Stay) - When a UAV completes an assigned 

mission, a value of TRUE allows the UAV to return to base if it can do so and still make 

it back on station in time for its next mission.  A value of FALSE forces the UAV to fly 

until its operating limit is met.  For the OUAS study, this is set to FALSE. 

SECONDARY AREAS (Go Get More Value From Another Mission) - If a UAV is 

scheduled for more than one mission in the same location with a time gap in between 

them, a value of TRUE allows the UAV to perform another mission in between as long as 

it is available at the start of its previously scheduled mission.  A value of FALSE will 

force it to remain on station until the start of its next mission.  For the OUAS study, this 

was set to TRUE. 

APPENDED AREAS (Done, Is There Another Mission?) - If a UAV has 

completed its assigned missions, a value of TRUE allows it to use its remaining time to 

find another mission.  A value of FALSE will not allow additional missions.  For the 

OUAS study, this was set to TRUE.  

C. LITERATURE REVIEW 

Many recent studies attempt to shape some aspect of the future design of UAS 

force structure.  An unintended consequence is that most of these studies focus only on 

some specific technical portion of the overall problem.  The Deputy Commandant, 

Aviation and the Deputy Commandant Combat Development and Integration are 
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sponsoring the OUAS study.  Their intent is to analyze the future USMC UAS force 

structure to determine how to best meet the needs of the MAGTF.  The initial phase of 

OUAS is being conducted by OAD MCCDC.  The model given in this thesis is intended 

for use in the follow on analysis of OUAS.  Therefore, the initial report by OAD is 

critical to this thesis, as it largely determined the requirements for the model. 

Tutton [2003] deals with the optimal placement of a unit’s sensing assets.  He 

presents a methodology for finding the most beneficial mix and allocation strategy for an 

individual unit’s sensors for a given threat scenario.  Doll [2004] takes the model 

developed by Tutton [2003] and translates it into a programming language for easier 

simulation.  She refines many of the constraints in the original model to make for a much 

more realistic simulation.  Finally, Zacherl [2006] deals specifically with reactive aircraft 

scheduling.  The thesis develops a model which reviews a current air tasking order and 

then rapidly reassigns aircraft to new targets as they become available.   

Finally a large number of commercial information sources address current topics 

in UAS development and model optimization.  When possible, these sources are used for 

the sake of currency or accuracy.   
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III. OPTIMIZATION MODEL FOR THE SCHEDULING OF 
UNMANNED AIRCRAFT SYSTEMS 

A. INTRODUCTION 

This chapter develops the mathematical programming model, Unmanned Aircraft 

System Scheduling Tool (UAS-ST).  UAS-ST applies an optimization based approach to 

analyze the best mix of future UAS mission capabilities.  The main goal of this thesis is 

to provide a model, which will be applied to the current OUAS study.   

The model allows the user to define all elements of the UAS via Excel 

spreadsheet.  The schedule generator then takes these elements and generates a user 

defined number of individual schedules for every UAV included in the scenario.  This 

schedule generation is done via Excel and Visual Basic.  Once the predefined number of 

schedules is generated, the data is read into a General Algebraic Modeling System 

(GAMS) program to find a near optimal combination of individual schedules.    

B. AN INTEGER PROGRAM TO OPTIMIZE UAS SCHEDULING 

The following integer linear program (ILP), UAS-ST, attempts to find the 

consolidated UAS schedule with the highest overall total value.  First the model is 

presented, then the detailed input required to optimize the objective function is discussed.  

Once this is complete, instances of UAS-ST are generated to demonstrate its function. 

1. Indices 

v V∈   Tier levels [3] 

h H∈   Mission types [2] (H= {passive, active}) 

g G∈   Ground Control Station (GCS) [~10] 

l L∈   Launch and Recovery Site (LRS) [~6] 

m M∈  Missions [~150] (alias m’) 
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p P∈   Payload module types [~10] 

t T∈   Time periods [96] 

s S∈   UAV employment schedules 

' mm P∈  Mission prerequisites: mission m cannot be covered in any time 

period t unless at least one mission m’ in Pm is also covered in time 

period t 

( ), 'm m E∈  Pairwise exclusive missions: mission m cannot be covered in any 

time period that mission m’ is covered.  E M M⊆ × . 

( ), ,s m t A∈  schedule s covers mission m in time period t 

( ), ,s v t B∈  schedule s uses UAV in tier level v in time period t 

( ), ,s l t K∈  schedule s uses LRS l in time period t 

( ), ,s c t Q∈  schedule s carries payload of class c in time period t 

( ),s l SL∈  schedule s uses LRS l 

( ),m g MG∈  mission m can be covered by GCS g 

( ),m h MH∈  mission m is of mission type h 

( ),g v GV∈  GCS g can support a UAS in tier v 

2. Given Data [units] 

mval  Value per time period of mission m (=total value of m divided by 

length of m) 

rm  Number of time periods of required coverage for mission m 

num_uavsv,t Number of UAVs in tier level v available in time period t 

num_payc,t Number of payloads of class c available in time period t 
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,_ h
g tgcs cap  Capacity (in UAVs) of GCS g in time period t for missions of 

 type h 

lrs_capl,t Capacity (in UAVs) of LRS l in time period t 

lengthm  Maximum number of periods mission m can be covered 

, ,l s tk   =1 if schedule s uses LRS l in time period t 

3. Decision Variables 

sX   =1 if schedule s flown by some UAS [binary] 

, ,m v tY   =1 if mission m covered by a tier v UAS in period t 

, , ,m v g tW  =1 if mission m supported by GCS g for a tier v UAS in time 

period t [binary] 

mD   Total dwell time on mission m [time periods] 

, ,c v lLOAD  Payloads of class c for tier v sited at LRS l [cardinality] 
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4. Formulation 
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5. Discussion 

The objective function (R0) calculates the value of all mission time periods 

covered.  Constraints (R1) limit the number of active UAVs in each tier, in each time 

period, based at each LRS, by the number of UAVS available. Constraints (R2a) limit the 

number of a specific payload class an tier flown from an LRS in each period to the 

number of payloads of that class and tier assigned to that LRS, and constraints (R2b) 

limit the total number of payloads of each class and each tier assigned over all LRSs by 

the total number available in that class.  Constraints (R3) limit the number of missions, 

by type supported by a GCS in each time period.  Constraints (R4) limit the total number 

of UAVs launching or recovering at a LRS by the capacity of the LRS in a given time 

period.  Constraints (R5) controls whether or not a mission is accomplished in any time 

period.  Constraints (R6) limit the total time spent on a mission to the number of time 

periods covered.  Constraints (R7a) address prerequisite missions such as AV_CLR 

required for long range Tier III missions, and (R7b) address line-of-sight issues from 

each GCS for missions that do not have other prerequisites.  Constraints (R8) prevent 

scheduling of mutually exclusive missions by UAS of any tier.  Constraints (R9) force 

“required” missions to be covered for the number of time periods required.  Constraints 

(R10) limit the total dwell time on a mission to between zero and the total amount of time 

requested for the mission.  Constraints (R11-R13) restrict schedule assignment, mission 

coverage, and GCS assignment to be binary decisions.   

6. Route Enumeration and Data Development 

UAS-ST requires a significant amount of data processing to produce an optimal 

schedule; most of this effort is performed by a stack-based enumeration routine that 

generates all feasible schedules for each tier and LRS in the given scenario.  The schedule 

generator, or simply generator, requires two primary data structures for computation of 

feasible schedules: a stack, PATH(), containing a current feasible list of missions to be 

accomplished, and an array, ON_STACK(), that indicates whether each mission is 

currently on the stack of missions. Various data tables are pre-computed to aid in 
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determining feasibility, such as flight times between airfields and missions, and between 

pairs of missions, payload requirements by mission, etc. 

For each tier, v, and LRS, l, such that there is at least one UAS of tier v located at 

l, the generator starts with an empty mission list PATH(), (representing the trivial action 

of launching, and then immediately recovering, a UAS of tier v from l), and builds 

feasible mission lists exhaustively by adding one mission at a time to the end of the 

current mission list represented in PATH().  A mission is only added to the end of 

PATH() if it is within range of a GCS capable of controlling the appropriate tier, if the 

first period of the mission that can be accomplished (based on the current mission list) 

allows the UAS to return back to its LRS before running out of operational time 

available, and if the required list of payloads to accomplish all the missions in PATH() 

can fit on one UAS of tier v.  If a mission does not meet these requirements, it is 

discarded and the next mission from the overall mission list is considered.  Other rules for 

calculating feasible extensions to a current feasible PATH() can be incorporated easily, 

but these three capture the primary constraints on feasibility.  For example, we also check 

to see if a mission is already on the stack PATH(), and discard those to prevent missions 

being revisited.  However, if the capability to revisit missions in the same schedule is 

required, this test can be removed.  Of course, more feasible schedules will be generated 

if this is done. 

Once a mission is added to PATH(), all missions are considered again for the next 

empty slot at the end of PATH().  In this manner the generator provides a depth-first 

exploration of all feasible mission lists.  If all missions have been ruled out for a slot, the 

stack is “popped,” the previous slot is then considered again, and the next mission in the 

list takes the current mission’s place; this replacement is repeated until a feasible mission 

for that slot is found.  If no more feasible missions are found for that slot, we “pop” the 

stack again.  When the first slot is finished, we have enumerated all missions from l using 

tier v assets. 

Every feasible set of missions in PATH() is recorded by incrementing the number 

of feasible paths found, s, and then adding the appropriate elements to the sets 
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( ), ,s m t A∈ , ( ), ,s v t B∈ , ( ), ,s c t Q∈ , and ( ),s l SL∈ to define schedule s.  See 

Appendix B for the details of the algorithm.  

We set an upper bound on the total number of schedules that can be generated, so 

as not to create unsolvable ILPs.  We also provide a limit on the number of missions 

enumerated per schedule, and the generator implicitly calculates a limit on the number of 

schedules to generate for each tier-LRS pair, to allow for the generation of a nonempty 

list for each such pair regardless of the order in which schedules are generated for those 

pairs.  So, for example, we might set a limit of 120,000 total schedules, and four missions 

per schedule.  The generator calculates how many tier-LRS pairs are feasible, and if, say, 

there are six such pairs in the scenario, then the generator will generate no more than 

20,000 schedules for each pair considered, calculated cumulatively.  (Specifically, in this 

example if the first pair does not generate all 20,000 of its allotted schedules, then the 

generator can generate up to 40,000 total schedules for the first two pairs combined.)  

When these enumeration limits are reached for a tier-LRS pair, the stack is cleared out 

and the generator moves to the next tier-LRS pair. 

This procedure can generate tens- or hundreds-of-thousands of feasible schedules.  

Each such schedule is associated with a decision variable, Xs, in the ILP.  The limits on 

enumeration therefore restrict the schedules available, and, consequently, the resulting 

ILP will be a restriction of the model that considers every feasible schedule.  The more 

schedules that are generated (through increasing the limit on missions per schedule, or the 

total schedules generated, etc.) the better the final schedule found by the integer program. 
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IV.  COMPUTATIONAL RESULTS 

The OUAS study generic unclassified scenario is replicated with the intent to test 

the results provided by UAS-ST [OUAS, 2007].  All computations are performed on a 

Pentium 4 desktop computer at the Naval Postgraduate School with the use of the GAMS 

solver CPLEX [2008].   

A.  INITIAL TEST SCENARIO 

The initial test scenario replicates a generic scenario given in the OUAS study 

[OUAS, 2007].   This replication provides the simplest and most direct comparison of 

results with ASC-U.  The scenario time period is twenty four hours divided into ninety 

six intervals of fifteen minutes each.  This scenario does not refer to a specific country, 

but is designed solely to provide the framework for determining the value of changes in 

UAS structure on a given set of mission requests.  UAS force structure for the initial 

scenario represents a small but realistic composition of systems.  Tier I is comprised of 

three separate units with four UAVs and one Ground Control Station (GCS) per unit.  

Tier II is comprised of three separate units with one UAV and one GCS per unit.  Tier III 

is comprised of a single unit with two UAVs and two GCSs. 

Table 2 provides a summary of the given UAS force structure for the generic scenario.  

 
Number of: Tier I Tier II Tier III 

Systems 12 3 2 
UAVs per system 3 3 4 
GCSs per system 1 1 2 
UAVs controlled by GCS 1 2 2 

 

Table 2.   Number of UAS Assets Available in Generic Scenario 

 

The initial test scenario consists of placing units from different UAS Tiers at 

specific ranges to test the scheduling constraints of the model.  The tier III squadron is 

centered at an airfield in support of a regiment.  The squadron consists of two UAVs and 
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two GCSs at this location.  These are the only tier III assets available for our test 

scenario.  The mission areas for the tier III UAS are obtained by plotting points in the 

cardinal directions at or beyond one hundred and fifty nautical miles, (beyond tier II 

range). 

The three tier II units are deployed in a triangular pattern around the tier III 

location in direct support of individual battalions.  The tier II units are separated from 

each other by a distance of at least 20 nautical miles.  As before, specific mission areas 

are chosen for each tier II unit.   

Tier I units are collocated in the same manner as tier II, but are in direct support at 

the company level.  Each tier I unit consists of four UAVs and a single GCS.  Mission 

areas are selected with a special emphasis on their range.  Once the areas are designated, 

they are used repetitively to generate multiple missions.  The use of repetitive mission 

areas makes it much simpler to detect mission assignments beyond the range of a specific 

tier.  Tier I and II missions are within range of tier III assets.    

 

 
Figure 3.   Plot of OUAS Scenario Taken from OUAS 
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B. UAS-ST INITIAL RESULTS AND ANALYSIS 

Data for the initial scenario is entered via a mission request worksheet in Excel.  

The user enters mission requests for UAS coverage in the following manner: 

 
            Total     Time Value 
  Location Mission Start End Time  Start Finish Periods Per Time

Mission ID Lat Long Class TimeTimeRequestedPeriodPeriod Requested Period 
m1 N323934W1144850AV_CLR 0:00 8:00 8:00 1 32 32 5 
m2 N322947W1144606 ISR 0:30 2:30 2:00 3 10 8 10 
m3 N322825W1144547 ISR 1:00 4:00 3:00 5 16 12 10 
m4 N322648W1144730 ISR 1:30 2:30 1:00 7 10 4 10 
m5 N322549W1144914 ISR 2:00 4:00 2:00 9 16 8 10 
m6 N324012W1142426 ISR 2:30 5:30 3:00 11 22 12 10 
m7 N324021W1142011 ISR 3:00 4:00 1:00 13 16 4 10 
m8 N324055W1142318 ISR 3:30 5:30 2:00 15 22 8 10 
m9 N323922W1142442 ISR 4:00 7:00 3:00 17 28 12 10 

m10 N323848W1142056 ISR 4:30 5:30 1:00 19 22 4 10 

Table 3.   Input Worksheet for Mission Requests 

Waypoints for the mission areas are placed at specific ranges to test the 

scheduling constraints of the model.  These waypoints are then used to generate a table of 

one hundred and fifty mission requests.  The requests are broken down by mission areas.  

Mission requests one through forty focus on the tier I mission areas.  Requests forty one 

through one hundred and three focuses on tier II and the remaining requests are tier III 

mission areas.  See Appendix A for the complete scenario worksheet used in analysis of 

UAS-ST.  The model constraints allow a higher tier vehicle to perform a lower tier 

mission if that is the highest value mission available at the time and the vehicle is within 

range.  However, the longer range of each subsequent tier’s mission area make it 

infeasible to schedule a lower tier UAS.  The sequential mission numbers enable the user 

to quickly identify any infeasible mission assignments. 

Mission classes are defined according to the mission categories given in the 

OUAS study.  Values for the individual missions are chosen arbitrarily.  Selection of the 

assigned mission values is critical because they have the ability to skew the results by 

inflating the value of a specific category.  In the scenario, active missions are given 

greater priority than passive.  Of the active subset, missions which are unique to a 
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specific tier are given the highest priority.  Missions which are redundant to all tiers are 

given the lowest priority.  Table 4 outlines the missions which each tier can perform and 

their associated value in the scenario.   

  
 Tier I Tier II Tier III 
ISR 10 15 20 
AV_CLR 5 10 5 
CR   10 5 
LSR_P   30   
SIGINT     30 
EW     40 
STK     60 
LSR_D     40 

Table 4.   Assigned Mission Values by Tier 

 

The requested mission time is defined through the start and end times, which are 

entered by the user.  UAS-ST then converts that time into the appropriate number of 

fifteen minute time periods.  Once a UAS is assigned in a given time period it may not be 

reassigned until the next time period.  Times are started at the beginning of the first time 

period and continue to the end of the final period. 

Another element which greatly affects the optimal value achieved is the number 

of mission payloads available.  See Figure 4 for a sample of the payload worksheet.  By 

manipulating the number of payloads of a given type available to a UAS tier, it is 

possible to test the scheduling constraints and see very quickly if payload availability was 

a limiting factor.  This is highly beneficial in determining future requirements for UAS 

structure.   
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Payload   Mission Quantity UAS 
ID Payload Type Class Available Tier 
p1 EO/IR ISR 9 T1 
p2 EO/IR-targeting ISR_T 3 T2 
p3 EO/IR-targeting ISR_T 2 T3 
p4 SAR w/MTI ISR_SAR 1 T3 
p5 SIGINT SIGINT 1 T2 
p6 SIGINT SIGINT 1 T3 
p7 Mine Detection ISR_MD 1 T3 
p8 Pointer LSR_P 1 T2 
p9 Pointer LSR_P 1 T3 

p10 Rangefinder LSR_RF 1 T3 
p11 Designator LSR_D 1 T3 
p12 AV_CLR AV_CLR 9 T1 
p13 AV_CLR AV_CLR 3 T2 
p14 AV_CLR AV_CLR 1 T3 
p15 CR CR 1 T2 
p16 CR CR 1 T3 
p17 Strike STK 2 T3 
p18 EW EW 2 T3 

Figure 4.   Example of Payload Worksheet 

System capabilities and limitations are drawn directly from the OUAS study.  The 

study seeks to define UAS tier requirements.  Therefore, those assumptions are critical to 

any analysis that is conducted.  The tier parameters as given in Figure 5 are used in all 

testing.  Operational time limit and maintenance time are not known at this time.  Those 

columns are for future expansion when the data becomes available. 

 

Figure 5.   OUAS Study Future Tier Performance Parameters 

Once all data for the scenario is entered via Excel spreadsheet, UAS-ST is run 

from the graphical interface given in Figure 6.  The interface, known as the dashboard, 

  Max Cruise Operational Payload Operational Maintenance
UAS Tier Endurance (hrs) Speed(knots) Radius(nm) Capacity Time Limit(hrs) Time 

T1 1.5 17 5 1     
T2 15 60 50 2     
T3 8 200 300 3     

       
       

* All Values Taken from Table ES-2 of Overarching UAS Study 21Nov2007  
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allows the user to specify several key parameters.  First the user specifies the start time, 

the time periods in horizon, and the number of periods per hour.  For the mission 

generation portion, a user specifies the maximum number of schedules that UAS-ST can 

generate and the maximum number of missions per schedule that a single UAV can 

perform.  These two parameters greatly affect the outcome of the model.   

As the number of maximum missions per schedule increases, the number of 

possible schedules rapidly increases as well.  Setting the number of maximum schedules 

too low prevents a full enumeration of all possible schedules and is a constraint on the 

model.  Setting the number of maximum schedules too high allows a full enumeration of 

all possible schedules and results in a longer processing time.   See Figure 6 for an 

example.  All tested combinations satisfy the requirement for a quick total solution time. 

Once all parameters are set, selecting the BUILD function initiates VBA to build the 

designated number of flight schedules.  After the build is complete, selecting SOLVE 

initiates GAMS to read in the data, apply the selected solver, and generate a near optimal 

solution.  When GAMS reaches a solution, selection of RESULTS displays the solution in 

the format seen in Figure 7. 

 

               
 UAS Planner v 1.01 2-Jun-08   
 Start Time 0:00   
 Time Periods in Horizon 96   
 First Planning Period 1   
 Last Planning Period 96   
 Periods per hour 4   
 Max Schedules 75000 

 

  
 Max Missions per Schedule 3 Routes: 67324   

CPLEXSolver CPLEX Status:     
XAOPTCR 0.05      

HeuristicRESLIM 3600      
               

Figure 6.   Sample of User Interface (Dashboard) 
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      Total Total Value Total  
  Start End Time Periods Time Periods Per Time Value  

Mission Time Time Requested Assigned Period Achieved 23340
m1 0:00 8:00 32 0 10 0 
m2 0:30 2:30 8 0 5 0 
m3 1:00 4:00 12 0 5 0 
m4 1:30 2:30 4 0 5 0 
m5 2:00 4:00 8 0 5 0 
m6 2:30 5:30 12 6 5 30 
m7 3:00 4:00 4 1 5 5 
m8 3:30 5:30 8 4 5 20 
m9 4:00 7:00 12 7 5 35 
m10 4:30 5:30 4 0 5 0 
m11 5:00 7:00 8 5 5 25 
m12 5:30 8:30 12 9 5 45 
m13 6:00 7:00 4 0 5 0 
m14 6:30 8:30 8 0 5 0 
m15 7:00 10:00 12 6 5 30 
m16 7:30 8:30 4 0 5 0 
m17 8:00 16:00 32 0 10 0 
m18 8:30 11:30 12 0 5 0 
m19 9:00 10:00 4 0 5 0 
m20 9:30 11:30 8 0 5 0 
m21 10:00 13:00 12 12 5 60 

Figure 7.   Partial Display of Optimal UAS-ST Schedule 

Figure 7 demonstrates the format in which the solution given by UAS-ST is 

displayed.  All missions are sorted sequentially by their assigned mission number.  The 

total value achieved for each mission is given in the right column.  The total value 

obtained by the entire schedule is given in the top right corner.  This format enables the 

easiest comparison between runs because it quickly lets the user see which missions are 

scheduled and for what portion of the requested time.  If certain missions are not being 

scheduled, the trend is easy to detect.  

C. COMPARING UAS-ST TO ASC-U 

ASC-U is the model originally used in the OUAS study.  It is highly useful in the 

analysis of UAS future requirements with several strong attributes.  However, there are 

some areas which require modification to meet the needs of the OUAS study.  The intent 

of this thesis is to develop a user friendly model that addresses those shortcomings and 

meets the requirements of OAD.  
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For ease-of-use the individual elements of the UAS are separated into different 

worksheets.  A separate spreadsheet for the UAS tier- specific performance requirements 

is also included.  This spreadsheet allows the user to verify the basic parameters of all 

UAS tiers in one chart.  The user can easily modify a parameter and re-run the model to 

analyze the effect.  The model applies these values to the system constraints when 

optimizing the schedule.   

UAS-ST takes a different approach from ASC-U when addressing the 

optimization of payloads.  In ASC-U all possible combination of payloads are 

enumerated and then designated as mission packages.  UAS-ST treats the payloads as 

individual units, which allows for tracking of specific payload utilization.  OAD indicated 

this was necessary for determining future requirements.  The payload data is further 

separated by creating a mission class worksheet and a payload worksheet.  The mission 

class worksheet defines all current missions for the UAS.  It allows the user to designate 

a mission as either active or passive and which tier is capable of covering that mission.  

The payload worksheet allows the user to designate the quantity available. 

A major difference between the two models is in the handling of the mission data.  

In UAS-ST all information is consolidated, both input and output, in the same worksheet.  

The user builds the missions page in the same manner as a flight schedule and assigns a 

specific number to an individual mission.  UAS-ST sorts all output based on mission 

number, which makes for easy tracking of a specific mission.  ASC-U uses either the 

mission number or the coordinates of the mission location to sort output.  This makes 

analysis of results extremely time consuming and requires additional sorting.  ASC-U 

requires the use of a heuristic, SUPER MISSIONS, to designate a mission as mandatory 

by assigning it extra value.  UAS-ST addresses this in the mission input page by allowing 

the user to designate any portion of a mission request as required.  Setting this 

requirement serves as an additional constraint on the optimization model.   

ASC-U utilizes an Excel spreadsheet and pulls the data into an Access database.  

UAS-ST applies an Excel spreadsheet, which uses Visual Basic to transfer the data to 

GAMS.  GAMS then applies the CPLEX solver to quickly optimize the schedule for the 

mission requests it is given.  The required features addressed by the supplemental 
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heuristics in ASC-U are incorporated directly into UAS-ST to eliminate the need for 

further processing.  This allows for a much quicker and efficient analysis of alternatives.  

CPLEX is highly efficient in preprocessing the feasible solutions and reduces the run 

time to a matter of minutes.  Overall, UAS-ST provides an efficient update to ASC-U. 
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V. CONCLUSIONS AND NEW OPPORTUNITIES 

A. SUMMARY 

This thesis develops a scheduling tool, UAS-ST as a replacement for ASC-U.  

UAS-ST addresses several areas which require additional processing in ASC-U.  UAS-

ST allows a user to generate a daily flight based on a given set of operational and 

performance parameters.  The true strength of UAS-ST is that a user can change a single 

parameter or some combination of parameters and quickly rerun the model to see the 

effect on a flight schedule. UASs are critical to our nation’s future combat effectiveness.  

As a result, all branches of DoD recognize the need to develop an integrated network of 

UASs.  MCCDC OAD is currently conducting an OUAS study with the goal of defining 

future UAS requirements.  This thesis is a direct contribution to that study, and the model 

developed herein, provides a planning tool for the development of future UAS structure.   

B. OPERATIONAL INTRODUCTION 

UAS-ST is currently intended for use in the second phase of the OUAS study.  It 

will replace ASC-U and provide another tool for quantitative analysis.  UAS-ST provides 

new capabilities which ASC-U was unable to perform.  With the use of the CPLEX 

solver in GAMS, UAS-ST is able to quickly analyze tens of thousands of schedules for 

individual UAVs and then choose a near-optimal subset to provide a complete schedule.  

The user is able to modify all aspects of the UAS structure through a simple spreadsheet 

interface.  Output is provided in the same format, which makes understanding the results 

and error tracking much simpler.  ASC-U requires the use of several heuristics to meet 

the needs of OUAS.  UAS-ST directly addresses these issues without the need for 

additional heuristics.  UAS-ST provides a rapid analysis tool and should be implemented 

immediately in the ongoing OUAS study.  
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C. FUTURE DEVELOPMENT 

UAS development is expanding rapidly with several new technologies becoming 

available.  Therefore, modeling requirements are expected to change rapidly as well.  A 

possible issue with UAS-ST is the requirement for the GAMS CPLEX solver to produce 

a quick solution.  Due to portability issues, the future development of a non-proprietary 

heuristic is a valuable topic for future analysis.  To improve on UAS-ST, the heuristic 

needs to modify the enumeration routine used in the model.  Rather than a total 

enumeration of all possible schedules, a new heuristic should initially select higher value 

routes and not consider low value routes beneath a designated limit.  One possible 

method is a greedy heuristic which selects the highest value subset of individual 

schedules and eliminate all others from consideration.  By initially eliminating low value 

routes, the overall processing time is greatly reduced.  In the long term, analysts in theater 

may run UAS-ST on their laptops as they plan for actual UAS employment.  The ultimate 

goal is to find a near-optimal solution without the need for specialty software 

applications.  
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APPENDIX A TEST SCENARIO 

Tier I    Mission Areas (m1-m40) 

Tier II   Mission Areas (m41-m103) 

Tier III Mission Areas (m104-150) 

 

            Time Value 
  Location Mission Start Finish Periods Per Time

Mission ID Lat Long Class Period Period Requested Period 
m1 N323934 W1144850 AV_CLR 1 32 32 5 
m2 N322947 W1144606 ISR 3 10 8 10 
m3 N322825 W1144547 ISR 5 16 12 10 
m4 N322648 W1144730 ISR 7 10 4 10 
m5 N322549 W1144914 ISR 9 16 8 10 
m6 N324012 W1142426 ISR 11 22 12 10 
m7 N324021 W1142011 ISR 13 16 4 10 
m8 N324055 W1142318 ISR 15 22 8 10 
m9 N323922 W1142442 ISR 17 28 12 10 
m10 N323848 W1142056 ISR 19 22 4 10 
m11 N325910 W1142608 ISR 21 28 8 10 
m12 N325733 W1142738 ISR 23 34 12 10 
m13 N325757 W1142944 ISR 25 28 4 10 
m14 N325927 W1142938 ISR 27 34 8 10 
m15 N330047 W1142630 ISR 29 40 12 10 
m16 N323934 W1144850 ISR 31 34 4 10 
m17 N322947 W1144606 AV_CLR 33 64 32 5 
m18 N322825 W1144547 ISR 35 46 12 10 
m19 N322648 W1144730 ISR 37 40 4 10 
m20 N322549 W1144914 ISR 39 46 8 10 
m21 N324012 W1142426 ISR 41 52 12 10 
m22 N324021 W1142011 ISR 43 46 4 10 
m23 N324055 W1142318 ISR 45 52 8 10 
m24 N323922 W1142442 ISR 47 58 12 10 
m25 N323848 W1142056 ISR 49 52 4 10 
m26 N325910 W1142608 ISR 51 58 8 10 
m27 N325733 W1142738 ISR 53 64 12 10 
m28 N325757 W1142944 ISR 55 58 4 10 
m29 N325927 W1142938 ISR 57 64 8 10 
m30 N330047 W1142630 ISR 59 70 12 10 
m31 N323934 W1144850 ISR 61 64 4 10 
m32 N324012 W1142426 ISR 63 70 8 10 
m33 N325910 W1142608 AV_CLR 65 96 32 5 
m34 N322947 W1144606 ISR 67 70 4 10 
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m35 N324021 W1142011 ISR 69 76 8 10 
m36 N325733 W1142738 ISR 71 82 12 10 
m37 N322825 W1144547 ISR 73 76 4 10 
m38 N324055 W1142318 ISR 75 82 8 10 
m39 N325757 W1142944 ISR 77 88 12 10 
m40 N322648 W1144730 ISR 79 82 4 10 
m41 N321813 W1145516 ISR 1 4 4 15 
m42 N321817 W1143321 ISR 3 18 16 15 
m43 N322752 W1150128 ISR 5 36 32 15 
m44 N322413 W1140639 AV_CLR 1 48 48 10 
m45 N324657 W1135856 CR 1 48 48 10 
m46 N325149 W1142341 LSR_P 1 8 8 30 
m47 N330310 W1144304 ISR 7 10 4 15 
m48 N331121 W1141606 ISR 9 24 16 15 
m49 N331641 W1144635 ISR 11 42 32 15 
m50 N321813 W1145516 AV_CLR 9 56 48 10 
m51 N321817 W1143321 CR 9 56 48 10 
m52 N322752 W1150128 LSR_P 17 24 8 30 
m53 N322413 W1140639 ISR 13 16 4 15 
m54 N324657 W1135856 ISR 15 30 16 15 
m55 N325149 W1142341 ISR 17 48 32 15 
m56 N330310 W1144304 AV_CLR 17 64 48 10 
m57 N331121 W1141606 CR 17 64 48 10 
m58 N331641 W1144635 LSR_P 25 32 8 30 
m59 N321813 W1145516 ISR 19 22 4 15 
m60 N321817 W1143321 ISR 21 36 16 15 
m61 N322752 W1150128 ISR 23 54 32 15 
m62 N322413 W1140639 AV_CLR 25 72 48 10 
m63 N324657 W1135856 CR 25 72 48 10 
m64 N325149 W1142341 LSR_P 41 48 8 30 
m65 N330310 W1144304 ISR 25 28 4 15 
m66 N331121 W1141606 ISR 27 42 16 15 
m67 N331641 W1144635 ISR 29 60 32 15 
m68 N321813 W1145516 AV_CLR 33 80 48 10 
m69 N321817 W1143321 CR 33 80 48 10 
m70 N322752 W1150128 LSR_P 57 64 8 30 
m71 N322413 W1140639 ISR 31 34 4 15 
m72 N324657 W1135856 ISR 33 48 16 15 
m73 N325149 W1142341 ISR 35 66 32 15 
m74 N330310 W1144304 AV_CLR 41 88 48 10 
m75 N331121 W1141606 CR 41 88 48 10 
m76 N331641 W1144635 LSR_P 73 80 8 30 
m77 N321813 W1145516 ISR 37 40 4 15 
m78 N321817 W1143321 ISR 39 54 16 15 
m79 N322752 W1150128 ISR 41 72 32 15 
m80 N322413 W1140639 AV_CLR 49 96 48 10 
m81 N324657 W1135856 CR 49 96 48 10 
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m82 N325149 W1142341 LSR_P 81 88 8 30 
m83 N330310 W1144304 ISR 43 46 4 15 
m84 N331121 W1141606 ISR 45 60 16 15 
m85 N331641 W1144635 ISR 47 78 32 15 
m86 N321813 W1145516 AV_CLR 57 96 40 10 
m87 N321817 W1143321 CR 57 96 40 10 
m88 N322752 W1150128 LSR_P 89 96 8 30 
m89 N322413 W1140639 ISR 49 52 4 15 
m90 N324657 W1135856 ISR 51 66 16 15 
m91 N325149 W1142341 ISR 53 84 32 15 
m92 N330310 W1144304 ISR 55 58 4 15 
m93 N331121 W1141606 ISR 57 72 16 15 
m94 N331641 W1144635 ISR 59 82 24 15 
m95 N321813 W1145516 ISR 61 64 4 15 
m96 N321817 W1143321 ISR 63 66 4 15 
m97 N322752 W1150128 ISR 65 80 16 15 
m98 N322413 W1140639 ISR 67 96 30 15 
m99 N324657 W1135856 ISR 69 72 4 15 

m100 N325149 W1142341 ISR 71 86 16 15 
m101 N330310 W1144304 ISR 73 96 24 15 
m102 N331121 W1141606 ISR 75 78 4 15 
m103 N331641 W1144635 ISR 77 92 16 15 
m104 N312538 W1145510 ISR 1 96 96 20 
m105 N334259 W1155906 ISR 1 48 48 20 
m106 N333540 W1115204 ISR 49 96 48 20 
m107 N312538 W1145510 ISR 1 32 32 20 
m108 N334259 W1155906 ISR 33 64 32 20 
m109 N333540 W1115204 ISR 65 96 32 20 
m110 N312538 W1145510 CR 1 96 96 5 
m111 N334259 W1155906 CR 1 96 96 5 
m112 N333540 W1115204 CR 1 96 96 5 
m113 N312538 W1145510 CR 1 96 96 5 
m114 N334259 W1155906 SIGINT 1 96 96 30 
m115 N333540 W1115204 SIGINT 1 96 96 30 
m116 N312538 W1145510 SIGINT 1 96 96 30 
m117 N334259 W1155906 SIGINT 1 96 96 30 
m118 N333540 W1115204 EW 1 8 8 40 
m119 N312538 W1145510 EW 9 16 8 40 
m120 N334259 W1155906 EW 25 32 8 40 
m121 N333540 W1115204 EW 33 40 8 40 
m122 N312538 W1145510 EW 49 56 8 40 
m123 N334259 W1155906 EW 57 64 8 40 
m124 N333540 W1115204 EW 73 80 8 40 
m125 N312538 W1145510 EW 81 88 8 40 
m126 N334259 W1155906 STK 1 16 16 60 
m127 N333540 W1115204 STK 17 32 16 60 
m128 N312538 W1145510 STK 33 48 16 60 
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m129 N334259 W1155906 STK 49 64 16 60 
m130 N333540 W1115204 STK 65 80 16 60 
m131 N312538 W1145510 STK 81 96 16 60 
m132 N334259 W1155906 STK 25 40 16 60 
m133 N333540 W1115204 STK 73 88 16 60 
m134 N312538 W1145510 LSR_D 1 8 8 40 
m135 N334259 W1155906 LSR_D 25 32 8 40 
m136 N333540 W1115204 LSR_D 49 56 8 40 
m137 N312538 W1145510 LSR_D 73 80 8 40 
m138 N334259 W1155906 AV_CLR 1 24 24 5 
m139 N333540 W1115204 AV_CLR 25 48 24 5 
m140 N312538 W1145510 AV_CLR 49 72 24 5 
m141 N334259 W1155906 AV_CLR 73 96 24 5 
m142 N333540 W1115204 AV_CLR 1 24 24 5 
m143 N312538 W1145510 AV_CLR 25 48 24 5 
m144 N334259 W1155906 AV_CLR 49 72 24 5 
m145 N333540 W1115204 AV_CLR 73 96 24 5 
m146 N312538 W1145510 AV_CLR 1 24 24 5 
m147 N334259 W1155906 AV_CLR 25 48 24 5 
m148 N333540 W1115204 AV_CLR 49 72 24 5 
m149 N312538 W1145510 AV_CLR 73 96 24 5 
m150 N334259 W1155906 AV_CLR 1 24 24 5 
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APPENDIX B VBA CODE 

Sub SolveUAS() 

  Dim bSolveResult As Boolean 

  bSolveResult = SolveProblem(True) 

End Sub 

Sub BuildData() 

  Dim uasDataFN As Integer 

  Dim uasSetsFN As Integer 

  Dim uasDynSetsFN As Integer 

  Dim logFN As Integer 

  Dim rTiers As Range 

  Dim rGCSs As Range 

  Dim rLRSs As Range 

  Dim rUAVs As Range 

  Dim rMissions As Range 

  Dim rPayloads As Range 

  Dim rSchedules As Range 

  Dim rClasses As Range 

  Dim lNumTiers As Long, lNumGCSs As Long, lNumLRSs As Long, lNumUAVs As 
Long 

  Dim lNumMissions As Long, lNumPayloads As Long, lNumClasses As Long 

  Dim lNumSchedules As Long 

  Dim lNumLRSSchedules As Long 

  Dim bNextRoute As Boolean 

 

  Dim rValues As Range 

  Dim lNumValues As Long 

  Dim rDependencies As Range 

  Dim lPlanPeriods As Long 

  Dim lFirstPeriod As Long 

  Dim lLastPeriod As Long 

  Dim lPeriodsPerHour As Long 

   

  Dim lCount As Long 

  Dim currCell As Range 

  Dim iRow As Integer, iCol As Integer 

  Dim lMission As Long, lMission2 As Long, lUAV As Long 
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  Dim lPeriod As Long, lPeriod1 As Long, lPeriod2 As Long 

  Dim lTier As Long, lPayload As Long, lGCS As Long, lLRS As Long 

  Dim lClass As Long 

   

  Dim tierNames As StringDictionaryClass 

  Dim uavNames As StringDictionaryClass 

  Dim gcsNames As StringDictionaryClass 

  Dim lrsNames As StringDictionaryClass 

  Dim missionNames As StringDictionaryClass 

  Dim payloadNames As StringDictionaryClass 

  Dim classNames As StringDictionaryClass 

  Dim periodNames As StringDictionaryClass 

  Dim tValues As TupleDictionaryClass 

   

  uasDataFN = FreeFile() 

  Open ThisWorkbook.path & "\uasData.gms" For Output As uasDataFN 

  uasSetsFN = FreeFile() 

  Open ThisWorkbook.path & "\uasSets.gms" For Output As uasSetsFN 

  logFN = FreeFile() 

  Open ThisWorkbook.path & "\uasXL.log" For Output As logFN 

   

' {STATIC, GROUNDED} SETS 

'   v             Tier levels 

'   h             mission types           {active, passive} 

'   g             Ground control stations 

'   l             Launch and recovery sites 

'   m             Missions                {missions that ships can be 
assigned} 

'   t             Time periods 

'   p             Payload module types 

'   s             UAV employment schedules 

' ; 

   

  Print #logFN, "Starting output" 

  Print #uasSetsFN, " OPTIONS" 

  Print #uasSetsFN, "   MIP = " & wsDashboard.Range("SOLVER") 

  Print #uasSetsFN, "   OPTCR = " & wsDashboard.Range("OPTCR") 

  Print #uasSetsFN, "   RESLIM = " & wsDashboard.Range("RESLIM") 

  Print #uasSetsFN, " ;" 
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  Print #uasSetsFN, " SETS" 

  Set rTiers = wsTiers.Range("A4", wsTiers.Range("A4").End(xlDown)) 

  Call GAMSWriteSetDef(rTiers, "v", uasSetsFN, "Tier levels") 

  Set rUAVs = wsUAV.Range("A4", wsUAV.Range("A4").End(xlDown)) 

  Print #uasSetsFN, "   h /" 

  Print #uasSetsFN, "     h_active" 

  Print #uasSetsFN, "     h_passive" 

  Print #uasSetsFN, "   /" 

  Set rGCSs = wsGCS.Range("A4", wsGCS.Range("A4").End(xlDown)) 

  Call GAMSWriteSetDef(rGCSs, "g", uasSetsFN, "Ground control stations") 

  Set rLRSs = wsLRS.Range("A4", wsLRS.Range("A4").End(xlDown)) 

  Call GAMSWriteSetDef(rLRSs, "l", uasSetsFN, "Launch and recovery 
sites") 

  Set rMissions = wsMissions.Range("A4", 
wsMissions.Range("A4").End(xlDown)) 

  Call GAMSWriteSetDef(rMissions, "m", uasSetsFN, "Missions") 

  Set rPayloads = wsPayloads.Range("A4", 
wsPayloads.Range("A4").End(xlDown)) 

'  Call GAMSWriteSetDef(rPayloads, "p", uasSetsFN, "Payloads") 

  Set rClasses = wsMClasses.Range("A4", 
wsMClasses.Range("A4").End(xlDown)) 

  Call GAMSWriteSetDef(rClasses, "c", uasSetsFN, "Payload Classes") 

   

  lPeriodsPerHour = CLng(wsDashboard.Range("PERIODS_PER_HOUR")) 

  lPlanPeriods = CLng(wsDashboard.Range("HORIZON")) 

  lFirstPeriod = CLng(wsDashboard.Range("FIRST_PERIOD")) 

  lLastPeriod = CLng(wsDashboard.Range("LAST_PERIOD")) 

  If lLastPeriod > lPlanPeriods Then 

    MsgBox "Last Period comes after maximum planning horizon: 
truncating." 

    lLastPeriod = lPlanPeriods 

  End If 

  If lFirstPeriod > lLastPeriod Then 

    MsgBox "Empty planning horizon: first Period occurs after last 
Period. Aborting." 

    GoTo subExit 

  End If 

  Print #logFN, "Periods " & lPlanPeriods & "  First: " & lFirstPeriod & 
"  Last: " & lLastPeriod 

  Print #uasSetsFN, "   t Time Periods /t_" & Format(lFirstPeriod) & 
"*t_" & Format(lLastPeriod) & "/" 
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  Set tierNames = New StringDictionaryClass 

  If DefineGroundedSet(rTiers, tierNames) = False Then 

    Print #logFN, "Duplicate element in grounded set (tiers). User chose 
to cancel: no further output." 

    GoTo subExit 

  End If 

  lNumTiers = tierNames.Count 

   

  For lCount = 1 To lNumTiers 

    Print #logFN, Format(lCount) & " : " & tierNames.Item(lCount) 

  Next lCount 

   

  Set uavNames = New StringDictionaryClass 

  If DefineGroundedSet(rUAVs, uavNames) = False Then 

    Print #logFN, "Duplicate element in grounded set (uavs). User chose 
to cancel: no further output." 

    GoTo subExit 

  End If 

  lNumUAVs = uavNames.Count 

   

  For lCount = 1 To lNumUAVs 

    Print #logFN, Format(lCount) & " : " & uavNames.Item(lCount) 

  Next lCount 

   

  Set missionNames = New StringDictionaryClass 

  If DefineGroundedSet(rMissions, missionNames) = False Then 

    Print #logFN, "Duplicate element in grounded set (missions). User 
chose to cancel: no further output." 

    GoTo subExit 

  End If 

  lNumMissions = missionNames.Count 

   

  For lCount = 1 To lNumMissions 

    Print #logFN, Format(lCount) & " : " & missionNames.Item(lCount) 

  Next lCount 

   

  Set payloadNames = New StringDictionaryClass 

  If DefineGroundedSet(rPayloads, payloadNames) = False Then 

    Print #logFN, "Duplicate element in grounded set (payloads). User 
chose to cancel: no further output." 
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    GoTo subExit 

  End If 

  lNumPayloads = payloadNames.Count 

   

  For lCount = 1 To lNumPayloads 

    Print #logFN, Format(lCount) & " : " & payloadNames.Item(lCount) 

  Next lCount 

   

  Set classNames = New StringDictionaryClass 

  If DefineGroundedSet(rClasses, classNames) = False Then 

    Print #logFN, "Duplicate element in grounded set (classes). User 
chose to cancel: no further output." 

    GoTo subExit 

  End If 

  lNumClasses = classNames.Count 

   

  For lCount = 1 To lNumPayloads 

    Print #logFN, Format(lCount) & " : " & payloadNames.Item(lCount) 

  Next lCount 

   

  Set gcsNames = New StringDictionaryClass 

  If DefineGroundedSet(rGCSs, gcsNames) = False Then 

    Print #logFN, "Duplicate element in grounded set (GCS). User chose to 
cancel: no further output." 

    GoTo subExit 

  End If 

  lNumGCSs = gcsNames.Count 

   

  For lCount = 1 To lNumGCSs 

    Print #logFN, Format(lCount) & " : " & gcsNames.Item(lCount) 

  Next lCount 

   

  Set lrsNames = New StringDictionaryClass 

  If DefineGroundedSet(rLRSs, lrsNames) = False Then 

    Print #logFN, "Duplicate element in grounded set (LRS). User chose to 
cancel: no further output." 

    GoTo subExit 

  End If 

  lNumLRSs = lrsNames.Count 
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  For lCount = 1 To lNumLRSs 

    Print #logFN, Format(lCount) & " : " & lrsNames.Item(lCount) 

  Next lCount 

   

  Set periodNames = New StringDictionaryClass 

  periodNames.Size = 3 * lPlanPeriods 

  For lCount = 1 To lPlanPeriods 

    periodNames.Add "t" & Format(lCount) 

  Next lCount 

   

  For lCount = lFirstPeriod To lLastPeriod 

    Print #logFN, Format(lCount) & " : " & periodNames.Item(lCount) 

  Next lCount 

    

' {GIVEN} PARAMETERS 

'   num_uavs(l,v,t) number of uavs available at lrs l in tier v in period 
t 

'   num_mods(p,t)   number of payload modules available of ID p in period 
t 

'   gcs_cap(g,t,h)  max num UAVs on gcs g in period t on mission type h 

'   lrs_cap(l,t)    max num UAVs at LRS l in period t 

'   length(m)       maximum periods of coverage of mission m 

'   val(m)          value of mission m 

'   k(l,s,t)        indicator if lrs l used by schedule s in period t 

' ; 

   

  Print #uasDataFN, " PARAMETERS" 

'   num_uavs(l,v,t)   number of uavs available at lrs l in tier v in 
period t 

  Print #uasDataFN, "   num_uavs(l,v,t) /" 

  ReDim lNumUAVinPeriod(1 To lrsNames.Count, 1 To tierNames.Count, 
lFirstPeriod To lLastPeriod) As Long 

  For lPeriod = lFirstPeriod To lLastPeriod 

    For lLRS = 1 To lrsNames.Count 

      For lTier = 1 To tierNames.Count 

        lNumUAVinPeriod(lLRS, lTier, lPeriod) = 0 

      Next lTier 

    Next lLRS 

    For iRow = 1 To rUAVs.Rows.Count 

      If rUAVs(iRow, COL_UAV_FIRST_AVAIL) <= lPeriod And rUAVs(iRow, 
COL_UAV_LAST_AVAIL) >= lPeriod Then 
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        lLRS = lrsNames.Lookup(rUAVs(iRow, COL_UAV_LRS)) 

        lTier = tierNames.Lookup(rUAVs(iRow, COL_UAV_TIER)) 

        If lLRS = 0 Then 

          MsgBox "Error: invalid LRS name in UAV list" 

          wsUAV.Activate 

          rUAVs(iRow, COL_UAV_LRS).Select 

          GoTo subExit 

        ElseIf lTier = 0 Then 

          MsgBox "Error: invalid tier name in UAV list" 

          wsUAV.Activate 

          rUAVs(iRow, COL_UAV_TIER).Select 

          GoTo subExit 

        Else 

          lNumUAVinPeriod(lLRS, lTier, lPeriod) = lNumUAVinPeriod(lLRS, 
lTier, lPeriod) + 1 

        End If 

      End If 

    Next iRow 

  Next lPeriod 

   

  For lLRS = 1 To lrsNames.Count 

    For lTier = 1 To lNumTiers 

      For lPeriod = lFirstPeriod To lLastPeriod 

        If lNumUAVinPeriod(lLRS, lTier, lPeriod) >= 1 Then 

          Print #uasDataFN, "     l_" & lrsNames.Item(lLRS) & ".v_" & 
tierNames.Item(lTier) & ".t_" & lPeriod & " " & _ 

            lNumUAVinPeriod(lLRS, lTier, lPeriod) 

        End If 

      Next lPeriod 

    Next lTier 

  Next lLRS 

  Print #uasDataFN, "   /" 

   

  ReDim numMods(classNames.Count, tierNames.Count) As Long 

  For lPayload = 1 To rPayloads.Rows.Count 

    iRow = classNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_CLASS)) 

    iCol = tierNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_TIER)) 

    numMods(iRow, iCol) = numMods(iRow, iCol) + rPayloads(lPayload, 
COL_PAYLOAD_QUANTITY) 

  Next lPayload 
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'   num_mods(c,v)   number of payload modules available of class c for 
tier v 

  Print #uasDataFN, "   num_mods(c,v) /" 

  For lClass = 1 To classNames.Count 

    For lTier = 1 To tierNames.Count 

      Print #uasDataFN, "c_" & classNames.Item(lClass) & ".v_" & 
tierNames.Item(lTier) & " " & numMods(lClass, lTier) 

    Next lTier 

  Next lClass 

  Print #uasDataFN, "   /" 

 

'   gcs_cap(g,t,h)  max num UAVs on gcs g in period t on mission type h 

  Print #uasDataFN, "   gcs_cap(g,t,h) /" 

  For lGCS = 1 To lNumGCSs 

    For lPeriod = lFirstPeriod To lLastPeriod 

      Print #uasDataFN, "     g_" & gcsNames.Item(lGCS) & ".t_" & lPeriod 
& ".h_active " & rGCSs(lGCS, COL_GCS_ACTIVE) 

      Print #uasDataFN, "     g_" & gcsNames.Item(lGCS) & ".t_" & lPeriod 
& ".h_passive " & rGCSs(lGCS, COL_GCS_PASSIVE) 

    Next lPeriod 

  Next lGCS 

  Print #uasDataFN, "   /" 

   

'   lrs_cap(l,t)    max num UAVs at LRS l in period t 

  Print #uasDataFN, "   lrs_cap(l,t) /" 

  For lLRS = 1 To lNumLRSs 

    For lPeriod = lFirstPeriod To lLastPeriod 

      Print #uasDataFN, "     l_" & lrsNames.Item(lLRS) & ".t_" & lPeriod 
& " " & rLRSs(lLRS, COL_LRS_ACTIVE) 

    Next lPeriod 

  Next lLRS 

  Print #uasDataFN, "   /" 

   

'   length(m)       maximum periods of coverage of mission m 

  Print #uasDataFN, "   length(m) /" 

  For lMission = 1 To lNumMissions 

    Print #uasDataFN, "     m_" & missionNames.Item(lMission) & " " & 
rMissions(lMission, COL_MISSION_PERIODS) 

  Next lMission 

  Print #uasDataFN, "   /" 
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'   val(m)          value of mission m 

  Print #uasDataFN, "   val(m) /" 

  For lMission = 1 To lNumMissions 

    Print #uasDataFN, "     m_" & missionNames.Item(lMission) & " " & 
rMissions(lMission, COL_MISSION_VALUE) 

  Next lMission 

  Print #uasDataFN, "   /" 

   

'   Calculate distances between GCS-Mission pairs, LRS-mission pairs, and 
mission-mission pairs 

  ReDim dDistGM(lNumGCSs, lNumMissions) As Double 

  ReDim dDistLM(lNumLRSs, lNumMissions) As Double 

  ReDim dDistMM(lNumMissions, lNumMissions) As Double 

   

  Dim i As Long, j As Long 

   

  For lGCS = 1 To rGCSs.Rows.Count 

    i = gcsNames.Lookup(rGCSs(lGCS, COL_GCS_NAME)) 

    For lMission = 1 To rMissions.Rows.Count 

      j = missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME)) 

      dDistGM(i, j) = SphericalDistance(rGCSs(lGCS, COL_GCS_LAT), 
rGCSs(lGCS, COL_GCS_LON), _ 

                                       rMissions(lMission, 
COL_MISSION_LAT), rMissions(lMission, COL_MISSION_LON)) 

    Next lMission 

  Next lGCS 

   

  For lLRS = 1 To rLRSs.Rows.Count 

    i = lrsNames.Lookup(rLRSs(lLRS, COL_LRS_NAME)) 

    For lMission = 1 To rMissions.Rows.Count 

      j = missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME)) 

      dDistLM(i, j) = SphericalDistance(rLRSs(lLRS, COL_LRS_LAT), 
rLRSs(lLRS, COL_LRS_LON), _ 

                                       rMissions(lMission, 
COL_MISSION_LAT), rMissions(lMission, COL_MISSION_LON)) 

    Next lMission 

  Next lLRS 

   

  For lMission = 1 To rMissions.Rows.Count 

    i = missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME)) 

    For lMission2 = 1 To rMissions.Rows.Count 
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      j = missionNames.Lookup(rMissions(lMission2, COL_MISSION_NAME)) 

      dDistMM(i, j) = SphericalDistance(rMissions(lMission, 
COL_MISSION_LAT), rMissions(lMission, COL_MISSION_LON), _ 

                                        rMissions(lMission2, 
COL_MISSION_LAT), rMissions(lMission2, COL_MISSION_LON)) 

    Next lMission2 

  Next lMission 

   

'Find GCSs within range of each mission.  If none, require one of the 
AV_CLR missions 

  Dim pFN As Integer, hpFN As Integer 

  Dim numPreq As Long 

  numPreq = 0 

  pFN = FreeFile() 

  Open "p.gms" For Output As pFN 

  hpFN = FreeFile() 

  Open "hp.gms" For Output As hpFN 

  Print #pFN, " SET P(m,mp) /" 

  Print #hpFN, " SET HP(m) /" 

  For lMission = 1 To missionNames.Count 

    For lGCS = 1 To gcsNames.Count 

      If dDistGM(lGCS, lMission) <= rGCSs(lGCS, COL_GCS_LOS) Then GoTo 
nextMissionGCS 

    Next lGCS 

    numPreq = numPreq + 1 

    Print #hpFN, "   m_" & missionNames.Item(lMission) 

    For lMission2 = 1 To rMissions.Rows.Count 

      If rMissions(lMission2, COL_MISSION_CLASS) = 
wsGCS.Range("LINK").Value Then 

        Print #pFN, "     m_" & missionNames.Item(lMission) & ".m_" & 
rMissions(lMission2, COL_MISSION_NAME) 

      End If 

    Next lMission2 

nextMissionGCS: 

  Next lMission 

  If numPreq = 0 Then 

    Print #pFN, "     m_" & missionNames.Item(1) & ".m_" & 
missionNames.Item(1) 

    Print #hpFN, " m_" & missionNames.Item(1) 

  End If 

  Print #pFN, "   /" 

  Print #pFN, " ;" 
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  Close pFN 

  Print #hpFN, "   /" 

  Print #hpFN, " ;" 

  Close hpFN 

   

  Dim mgFN As Integer 

  mgFN = FreeFile() 

  Open "mg.gms" For Output As mgFN 

  Print #mgFN, " SET mg(m,g) /" 

  For lMission = 1 To missionNames.Count 

    For iRow = 1 To rGCSs.Rows.Count 

      lGCS = gcsNames.Lookup(rGCSs(iRow, COL_GCS_NAME)) 

      If dDistGM(lGCS, lMission) <= rGCSs(iRow, COL_GCS_LOS) Then 

        Print #mgFN, "   m_" & missionNames.Item(lMission) & ".g_" & 
gcsNames.Item(lGCS) 

      End If 

    Next iRow 

  Next lMission 

  Print #mgFN, " /;" 

  Close mgFN 

   

  Dim mhFN As Integer 

  mhFN = FreeFile() 

  Open "mh.gms" For Output As mgFN 

   

  ReDim bClassActive(classNames.Count) As Boolean 

  For iRow = 1 To rClasses.Rows.Count 

    lClass = classNames.Lookup(rClasses(iRow, COL_MCLASS_NAME)) 

    If CLng(rClasses(iRow, COL_MCLASS_ACTIVE)) = 1 Then 

      bClassActive(lClass) = True 

    Else 

      bClassActive(lClass) = False 

    End If 

  Next iRow 

   

  Print #mhFN, " SET mh(m,h) /" 

  For iRow = 1 To rMissions.Rows.Count 

    lClass = classNames.Lookup(rMissions(iRow, COL_MISSION_CLASS)) 

    If bClassActive(lClass) Then 
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      Print #mhFN, "   m_" & rMissions(iRow, COL_MISSION_NAME) & 
".h_active" 

    Else 

      Print #mhFN, "   m_" & rMissions(iRow, COL_MISSION_NAME) & 
".h_passive" 

    End If 

  Next iRow 

  Print #mhFN, " /;" 

  Close mhFN 

   

  Dim gvFN As Integer 

  gvFN = FreeFile() 

  Open "gv.gms" For Output As mgFN 

  Print #gvFN, " SET GV(g,v) /" 

  For iRow = 1 To rGCSs.Rows.Count 

    lGCS = gcsNames.Lookup(rGCSs(iRow, COL_GCS_NAME)) 

    lTier = tierNames.Lookup(rGCSs(iRow, COL_GCS_TIER)) 

    Print #gvFN, "   g_" & gcsNames.Item(lGCS) & ".v_" & 
tierNames.Item(lTier) 

  Next iRow 

  Print #gvFN, " /;" 

  Close gvFN 

   

  Print #uasDataFN, " r(m) /" 

  For iRow = 1 To rMissions.Rows.Count 

    lMission = missionNames.Lookup(rMissions(iRow, COL_MISSION_NAME)) 

    If Trim(CStr(rMissions(iRow, COL_MISSION_REQUIRED))) <> "" Then 

      If CLng(rMissions(iRow, COL_MISSION_REQUIRED)) > 
CLng(rMissions(iRow, COL_MISSION_PERIODS)) Then 

        If MsgBox("Required coverage exceeds total mission time", 
vbOKCancel) = vbCancel Then 

          wsMissions.Activate 

          rMissions(iRow, COL_MISSION_REQUIRED).Select 

          Exit Sub 

        Else 

          Print #uasDataFN, "   m_" & missionNames.Item(lMission) & "  " 
& CLng(rMissions(iRow, COL_MISSION_PERIODS)) 

        End If 

      Else 

        Print #uasDataFN, "   m_" & missionNames.Item(lMission) & "  " & 
CLng(rMissions(iRow, COL_MISSION_REQUIRED)) 

      End If 
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    Else 

      Print #uasDataFN, "   m_" & missionNames.Item(lMission) & "  0" 

    End If 

  Next iRow 

  Print #uasDataFN, " /" 

   

   

'   Count number of UAVs in each tier at each LRS 

  ReDim tierAtLRS(tierNames.Count, lrsNames.Count) As Long 

  For lLRS = 1 To lrsNames.Count 

    For lTier = 1 To tierNames.Count 

      tierAtLRS(lTier, lLRS) = 0 

    Next lTier 

  Next lLRS 

 

  For lUAV = 1 To rUAVs.Rows.Count 

    i = tierNames.Lookup(rUAVs(lUAV, COL_UAV_TIER)) 

    j = lrsNames.Lookup(rUAVs(lUAV, COL_UAV_LRS)) 

    tierAtLRS(i, j) = tierAtLRS(i, j) + 1 

  Next lUAV 

   

'   a(m,s,t)        indicator if mission m covered by schedule s in 
period t 

'   b(v,s,t)        indicator if UAV in Tier v required by schedule s in 
period t 

'   f(g,s,t,h)      indicator if gcs g used by schedule s in period t for 
mission type h 

'   k(l,s,t)        indicator if lrs l used by schedule s in period t 

'   q(p,s,t)        indicator if payload p used by schedule s in period t 

   

  Dim lMaxRoutes As Long 

  lMaxRoutes = CLng(wsDashboard.Range("MAX_ROUTES")) 

  Dim lMaxMissions As Long 

  lMaxMissions = CLng(wsDashboard.Range("MAX_MISSIONS")) + 1 

   

  ReDim a(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long 

  ReDim b(lMaxRoutes) As Long 

  ReDim f_act(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long 

  ReDim f_pas(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long 

  ReDim k(lMaxRoutes, wsDashboard.Range("LAST_PERIOD")) As Long 



 54

  ReDim q(lMaxRoutes, classNames.Count) As Long 

   

  ReDim stack(lMaxMissions + 1) As Long 

  ReDim onStack(lNumMissions) As Long 

  ReDim dwell(lMaxMissions + 1) As Long 

   

  For lMission = 1 To lNumMissions 

    onStack(lMission) = 0 

  Next lMission 

   

  Dim top As Long 

  top = 0 

   

  lNumSchedules = 0 

  lNumLRSSchedules = 0 

  bNextRoute = True 

  lLRS = 1 

  Dim s As Long, t As Long 

  Dim lNextMission As Long, lCurrMission As Long 

  ReDim lNextStack(lMaxMissions + 1) As Long 

  Dim dRemTime As Double 

  Dim lRemPeriods As Long 

  Dim dTransitTime As Double 

  Dim lTransitPeriods As Long 

  Dim lcurrNumClasses As Long 

  Dim dTierSpeed As Double 

  Dim lThisLaunchPeriod As Long 

  Dim lThisRecoverPeriod As Long 

  Dim lMaxClasses As Long 

  ReDim lTransitPeriod(lMaxMissions + 1) As Long 

  ReDim lIdlePeriod(lMaxMissions + 1) As Long 

  ReDim lMissionPeriod(lMaxMissions + 1) As Long 

  ReDim lStartPeriod(lNumMissions) As Long 

  ReDim lFinishPeriod(lNumMissions) As Long 

  For lMission = 1 To rMissions.Rows.Count 

    lStartPeriod(missionNames.Lookup(rMissions(lMission, 
COL_MISSION_NAME))) = CLng(rMissions(lMission, COL_MISSION_START_PERIOD)) 

    lFinishPeriod(missionNames.Lookup(rMissions(lMission, 
COL_MISSION_NAME))) = CLng(rMissions(lMission, COL_MISSION_FINISH_PERIOD)) 

  Next lMission 
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  ReDim dMissionValue(missionNames.Count) As Double 

  For lMission = 1 To rMissions.Rows.Count 

    dMissionValue(missionNames.Lookup(rMissions(lMission, 
COL_MISSION_NAME))) = CDbl(rMissions(lMission, COL_MISSION_VALUE)) 

  Next lMission 

  ReDim lHasClass(lNumClasses) As Long 

  For lClass = 1 To lNumClasses 

    lHasClass(lClass) = 0 

  Next lClass 

  lcurrNumClasses = 0 

  ReDim reqClass(lNumMissions) 

  For lMission = 1 To rMissions.Rows.Count 

    reqClass(missionNames.Lookup(rMissions(lMission, COL_MISSION_NAME))) 
= _ 

     classNames.Lookup(rMissions(lMission, COL_MISSION_CLASS)) 

  Next lMission 

  ReDim lClassTierAvail(classNames.Count, tierNames.Count) As Long 

  For lClass = 1 To classNames.Count 

    For lTier = 1 To tierNames.Count 

      lClassTierAvail(lClass, lTier) = 0 

    Next lTier 

  Next lClass 

  For lPayload = 1 To rPayloads.Rows.Count 

    lClass = classNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_CLASS)) 

    lTier = tierNames.Lookup(rPayloads(lPayload, COL_PAYLOAD_TIER)) 

    lClassTierAvail(lClass, lTier) = CLng(rPayloads(lPayload, 
COL_PAYLOAD_QUANTITY)) 

  Next lPayload 

  Dim aFN As Integer, bFN As Integer, fFN As Integer, kFN As Integer, qFN 
As Integer 

  aFN = FreeFile() 

  Open ThisWorkbook.path & "\a.gms" For Output As aFN 

  bFN = FreeFile() 

  Open ThisWorkbook.path & "\b.gms" For Output As bFN 

  kFN = FreeFile() 

  Open ThisWorkbook.path & "\k.gms" For Output As kFN 

  qFN = FreeFile() 

  Open ThisWorkbook.path & "\q.gms" For Output As qFN 

   

  s = 0 

  Print #aFN, " SET A(s,m,t) /" 
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  Print #bFN, " SET B(s,v,t) /" 

  Print #qFN, " SET Q(s,c,t) /" 

   

  Dim tierLRScombos As Long 

  tierLRScombos = 0 

  For lTier = 1 To tierNames.Count 

    For lLRS = 1 To lrsNames.Count 

      If tierAtLRS(lTier, lLRS) Then 

        tierLRScombos = tierLRScombos + 1 

      End If 

    Next lLRS 

  Next lTier 

  Dim currCombo As Long 

  currCombo = 1 

   

  For lLRS = 1 To rLRSs.Rows.Count 

    Print #logFN, "LRS " & rLRSs(lLRS, COL_LRS_NAME) & ":" & 
lrsNames.Lookup(rLRSs(lLRS, COL_LRS_NAME)) 

    For lTier = 1 To rTiers.Rows.Count 

      Print #logFN, " tier " & rTiers(lTier, COL_TIER_NAME) & ":" & 
tierNames.Lookup(rTiers(lTier, COL_TIER_NAME)) 

      If tierAtLRS(tierNames.Lookup(rTiers(lTier, COL_TIER_NAME)), 
lrsNames.Lookup(rLRSs(lLRS, COL_LRS_NAME))) > 0 Then 

        dTierSpeed = rTiers(lTier, COL_TIER_SPEED) 

        dRemTime = rTiers(lTier, COL_TIER_ENDURANCE) '* rTiers(lTier, 
COL_TIER_SPEED) 

        lRemPeriods = Ceiling(dRemTime * lPeriodsPerHour) 

        lMaxClasses = rTiers(lTier, COL_TIER_CAPACITY) 

        Print #logFN, " tierAtLRS? yes lMaxClasses=" & lMaxClasses 

        For lClass = 1 To lNumClasses 

          lHasClass(lClass) = 0 

        Next lClass 

        lcurrNumClasses = 0 

 

        top = 1 

        stack(top) = EVENT_LR 'L/R event at lLRS 

        lNextStack(top) = 1 

        Do 

          lCurrMission = stack(top) 

          lNextMission = lNextStack(top) 

          'Find next mission to put on the stack 
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          Do While lNextMission <= lNumMissions 

            If onStack(lNextMission) > 0 Then 

              'Print #logFN, "  onstack" 

              GoTo skipMission 

            End If 

            If dDistLM(lLRS, lNextMission) > rTiers(lTier, 
COL_TIER_RADIUS) Then 

              'Print #logFN, "Out of range" 

              GoTo skipMission 

            End If 

            If lClassTierAvail(reqClass(lNextMission), lTier) = 0 Then 

              'Print #logFN, "No Payloads available for this Tier" 

              GoTo skipMission 

            End If 

            If lCurrMission = EVENT_LR Then 

              dTransitTime = dDistLM(lLRS, lNextMission) / dTierSpeed 

            Else 

              dTransitTime = dDistMM(lCurrMission, lNextMission) / 
dTierSpeed 

            End If 

            lTransitPeriods = Ceiling(dTransitTime * lPeriodsPerHour) 

            If lCurrMission <= 0 Then 

              If lFinishPeriod(lNextMission) <= 
lStartPeriod(lCurrMission) + lTransitPeriods Then 

                'Print #logFN, "  time warp" 

                GoTo skipMission 

              End If 

            ElseIf dMissionValue(lNextMission) <= 
dMissionValue(lCurrMission) Then 

              If lFinishPeriod(lNextMission) <= 
lFinishPeriod(lCurrMission) + lTransitPeriods Then 

                'Print #logFN, "  time warp" 

                GoTo skipMission 

              End If 

            Else 

              If lStartPeriod(lNextMission) <= lStartPeriod(lCurrMission) 
+ lTransitPeriods Then 

                'Print #logFN, "  time-value warp" 

                GoTo skipMission 

              End If 

            End If 
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            If lTransitPeriods + Ceiling(lPeriodsPerHour * (dDistLM(lLRS, 
lNextMission) / rTiers(lTier, COL_TIER_SPEED))) > lRemPeriods Then 

              'Print #logFN, "  out of time" 

              GoTo skipMission 

            End If 

            If (lcurrNumClasses = lMaxClasses And 
lHasClass(reqClass(lNextMission)) = 0) Then 

              'Print #logFN, "  no payload space left" 

              GoTo skipMission 

            End If 

            GoTo foundMission 

skipMission: 

            lNextMission = lNextMission + 1 

          Loop 

foundMission: 

          If lNextMission > lNumMissions Or top >= lMaxMissions Then 'out 
of missions: pop stack 

            If lCurrMission > 0 Then 

              lHasClass(reqClass(lCurrMission)) = 
lHasClass(reqClass(lCurrMission)) - 1 

              If lHasClass(reqClass(lCurrMission)) = 0 Then 

                lcurrNumClasses = lcurrNumClasses - 1 

              End If 

              onStack(lCurrMission) = 0 

            End If 

            top = top - 1 

            GoTo nextMission 

          End If 

          If lCurrMission = EVENT_LR Then 

            lTransitPeriod(top) = lTransitPeriods 

            lThisLaunchPeriod = lStartPeriod(lNextMission) - 
lTransitPeriods - 1 

            If lThisLaunchPeriod < 1 Then 

              lThisLaunchPeriod = 1 

            End If 

            lRemPeriods = Ceiling(dRemTime * lPeriodsPerHour) + 
lThisLaunchPeriod - 1 

            lTransitPeriod(top) = lThisLaunchPeriod + lTransitPeriods 

            lIdlePeriod(top) = lThisLaunchPeriod - 1 

          Else 

            lMissionPeriod(top) = lFinishPeriod(lCurrMission) 
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            If dMissionValue(lCurrMission) < dMissionValue(lNextMission) 
And _ 

               lStartPeriod(lNextMission) - lTransitPeriods - 1 < 
lFinishPeriod(lCurrMission) Then 

              lMissionPeriod(top) = lStartPeriod(lNextMission) - 
lTransitPeriods - 1 

            End If 

            lTransitPeriod(top) = lMissionPeriod(top) + lTransitPeriods 

            lIdlePeriod(top) = lStartPeriod(lNextMission) - 1 

          End If 

          lNextStack(top) = lNextMission + 1 

          top = top + 1 

          stack(top) = lNextMission 

          onStack(lNextMission) = top 

          lMissionPeriod(top) = lFinishPeriod(lNextMission) 

          lTransitPeriod(top) = lFinishPeriod(top) + 
Ceiling((dDistLM(lLRS, lNextMission) / rTiers(lTier, COL_TIER_SPEED)) * 
lPeriodsPerHour) 

          lNextStack(top) = 1 

          If lHasClass(reqClass(lNextMission)) = 0 Then 

            lcurrNumClasses = lcurrNumClasses + 1 

          End If 

          lHasClass(reqClass(lNextMission)) = 
lHasClass(reqClass(lNextMission)) + 1 

           

          'New feasible schedule: now copy stack info into appropriate 
arrays 

          s = s + 1 

          t = 1 

          'calculate start period of mission sequence: find start time of 
first mission 

          ' in stack(2), figure out latest departure period to arrive at 
first mission (if 

          ' earlier than period 1, then l/r in period 1, transit, and do 
as much of mission 

          ' as possible 

          Print #logFN, "dTransitTime " & dTransitTime & " 
lTransitPeriods " & lTransitPeriods 

          Print #logFN, "s:" & CStr(s) & " "; 

          For iRow = 1 To top 

            Print #logFN, stack(iRow) & ","; 

          Next iRow 

          Print #logFN, "0" 
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          Print #logFN, "m:" & CStr(s) & " "; 

          For iRow = 1 To top 

            Print #logFN, lMissionPeriod(iRow) & ","; 

          Next iRow 

          Print #logFN, "0" 

          Print #logFN, "t:" & CStr(s) & " "; 

          For iRow = 1 To top 

            Print #logFN, lTransitPeriod(iRow) & ","; 

          Next iRow 

          Print #logFN, "0" 

          Print #logFN, "i:" & CStr(s) & " "; 

          For iRow = 1 To top 

            Print #logFN, lIdlePeriod(iRow) & ","; 

          Next iRow 

          Print #logFN, "0" 

           

          Do While t < lThisLaunchPeriod And t <= lLastPeriod 

            a(s, t) = EVENT_IDLE 

            t = t + 1 

          Loop 

          a(s, t) = EVENT_LR 

          f_act(s, t) = 1 

          k(s, t) = lLRS 

          t = t + 1 

          Do While t <= lTransitPeriod(1) And t <= lLastPeriod 

            a(s, t) = EVENT_TRANSIT 

            f_pas(s, t) = 1 

            t = t + 1 

          Loop 

          For iRow = 2 To top 

            lCurrMission = stack(iRow) 

            If iRow < top Then 

              lNextMission = stack(iRow + 1) 

            Else 

              lNextMission = EVENT_LR 'L/R event 

            End If 

            ' XXX Need upper bounds: time horizon, flight time, etc... 

            Do While t <= lMissionPeriod(iRow) And t <= lLastPeriod 

              'fill in arrays 
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              a(s, t) = lCurrMission 

              f_act(s, t) = 1 

              t = t + 1 

            Loop 

            Do While t <= lTransitPeriod(iRow) And t <= lLastPeriod 

              a(s, t) = EVENT_TRANSIT 

              f_pas(s, t) = 1 

              t = t + 1 

            Loop 

            Do While t <= lIdlePeriod(iRow) And t <= lLastPeriod 

              a(s, t) = EVENT_IDLE 

              f_pas(s, t) = 1 

              t = t + 1 

            Loop 

          Next iRow 

           

          If t <= lLastPeriod Then 

            a(s, t) = EVENT_LR 

            lThisRecoverPeriod = t 

            f_act(s, t) = 1 

            k(s, t) = lLRS 

            b(s) = lTier 

          End If 

          For iRow = 1 To lLastPeriod 

            Print #logFN, ":" & a(s, iRow); 

          Next iRow 

          Print #logFN, "" 

          For iRow = 2 To top 

            For lPeriod = 1 To lLastPeriod 

              If a(s, lPeriod) = stack(iRow) Then 

                Print #aFN, "     s_" & CStr(s) & ".m_" & 
missionNames.Item(stack(iRow)) & ".t_" & CStr(lPeriod) 

              End If 

            Next lPeriod 

          Next iRow 

          For lPeriod = 1 To lLastPeriod 

            If lPeriod >= lThisLaunchPeriod And lPeriod <= 
lThisRecoverPeriod Then 

              Print #bFN, "     s_" & CStr(s) & ".v_" & 
Trim(rTiers(lTier, COL_TIER_NAME)) & ".t_" & CStr(lPeriod) 
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            End If 

          Next lPeriod 

          Print #kFN, " k('s_" & CStr(s) & "','l_" & Trim(rLRSs(lLRS, 
COL_LRS_NAME)) & "','t_" & CStr(lThisLaunchPeriod) & "')=1;" 

          Print #kFN, " k('s_" & CStr(s) & "','l_" & Trim(rLRSs(lLRS, 
COL_LRS_NAME)) & "','t_" & CStr(lThisRecoverPeriod) & "')=1;" 

          For lClass = 1 To classNames.Count 

            If lHasClass(lClass) > 0 Then 

              q(s, lClass) = 1 

              For lPeriod = 1 To lLastPeriod 

                If lPeriod >= lThisLaunchPeriod And lPeriod <= 
lThisRecoverPeriod Then 

                  Print #qFN, "     s_" & CStr(s) & ".c_" & 
classNames.Item(lClass) & ".t_" & CStr(lPeriod) 

                End If 

              Next lPeriod 

            End If 

          Next lClass 

          If s >= lMaxRoutes Then GoTo doneMissions 

          If s Mod 1000 = 0 Then wsDashboard.Range("ROUTESCELL") = s 

          If s >= (currCombo - 1) * lMaxRoutes / (tierLRScombos) Then 
GoTo nextTier 

nextMission: 

        Loop While top > 0 

      End If 

nextTier: 

      currCombo = currCombo + 1 

    Next lTier 

  Next lLRS 

   

doneMissions: 

  wsDashboard.Range("ROUTESCELL") = s 

  Print #uasSetsFN, " s /s_1*s_" & CStr(s) & " /" 

  Print #uasSetsFN, " ;" 

  Print #uasDataFN, " ;" 

  Print #aFN, "   /" 

  Print #aFN, " ;" 

  Print #bFN, "   /" 

  Print #bFN, " ;" 

  Print #qFN, "   /" 

  Print #qFN, " ;" 
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subExit: 

  Print #logFN, "Ending output" 

  Close uasSetsFN 

  Close uasDataFN 

  Close aFN 

  Close bFN 

  Close kFN 

  Close qFN 

  Close logFN 

End Sub 
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APPENDIX C GAMS CODE 

$TITLE UAS Planner 08.06.02 

 

$ontext 

MCCDC/OAD UAS Mission Planner 

Assigns a fleet of UAVs to a list of missions with various 

requirements and time windows over a fixed time horizon of many 

time periods. 

Solved using explicit column generation, one column per UAS schedule. 

$offtext 

$inlinecom { } 

 FILE UASP_log/UASP.log/ ; 

 PUT UASP_log ; 

 PUT 'UASP - MCCDC/OAD UAS Planner 08.06.02' // ; 

 PUTCLOSE UASP_log ; 

 

 FILE UASP_sta/UASP.sta/ ; 

 PUT UASP_sta ; 

 PUT 'ERROR - Did not solve' // ; 

 PUTCLOSE UASP_sta ; 

 

 FILE VALUE_CSV/VALUE.csv/ ; 

 PUT VALUE_CSV ; 

 PUT ' ' / ;          { scratch legacy file contents } 

 PUTCLOSE VALUE_CSV ; 

 

 FILE MISSIONS_CSV/MISSIONS.csv/ ; 

 PUT MISSIONS_CSV ; 

 PUT ' ' / ;          { scratch legacy file contents } 

 PUTCLOSE MISSIONS_CSV ; 
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 FILE SCHEDULES_CSV/SCHEDULES.csv/ ; 

 PUT SCHEDULES_CSV ; 

 PUT ' ' / ;          { scratch legacy file contents } 

 PUTCLOSE SCHEDULES_CSV 

 

 FILE DUALS_CSV/DUALS.csv/ ; 

 PUT DUALS_CSV ; 

 PUT ' ' / ;          { scratch legacy file contents } 

 PUTCLOSE DUALS_CSV 

 

 PUT UASP_log ; 

 UASP_log.ap=1 ;     { re-open log file, appending to prior contents } 

 

 OPTIONS 

   optcr    = 0.1 

   limrow   =   0 

   limcol   =   0 

   SEED     = 1234 

   ITERLIM  = 10000000 

   LP       = CPLEX 

   RMIP     = CPLEX 

   MIP      = CPLEX 

 ; 

$ONTEXT 

 {STATIC, GROUNDED} SETS 

   v            Tier levels 

   h            mission types           {active, passive} 

   g            Ground control stations 

   l             Launch and recovery sites 

   m            Missions                {missions that ships can be assigned} 

   c             Payload classes 
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   t             Time periods 

   s             UAV emplyment schedules 

 ; 

$OFFTEXT 

$INCLUDE uasSets.gms 

 

 alias(m,mp); 

$ONTEXT 

 {GIVEN} PARAMETERS 

   num_uavs(l,v,t)   number of uavs available in tier v in period t 

   num_mods(c,t)    number of payload modules available of class c in period t 

   gcs_cap(g,t,h)      max num UAVs on gcs g in period t on mission type h 

   lrs_cap(l,t)           max num UAVs at LRS l in period t 

   length(m)             maximum periods of coverage of mission m 

   val(m)                  value of mission m 

   r(m)                      required periods of coverage for mission m 

   k(s,l,t)                  indicator if lrs l used by schedule s in period t 

 ; 

 

$OFFTEXT 

$OFFLISTING 

$INCLUDE uasData.gms 

 PARAMETER 

   k(s,l,t) 

 ; 

$INCLUDE k.gms 

 

$ONTEXT 

 {DYNAMIC} SETS 

   A(s,m,t)         schedule s covers mission m in period t 

   B(s,v,t)           schedule s uses tier v UAV in period t 

   Q(s,c,t)           schedule s requires payload class c in period t 
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   P(m,mp)          mission prerequisite fixed mission m requires at least one  
      mission mp in same period 

   E(m,mp)          exclusive missions m and mp cannot be accomplished in same  
      period 

 ; 

 {Notional data: will be replaced with INCLUDE statements and accompanying 
data files} 

$OFFTEXT 

 alias(m,mp); 

 alias(v,vp); 

 alias(t,tp); 

$INCLUDE a.gms 

$INCLUDE b.gms 

$INCLUDE q.gms 

$INCLUDE hp.gms 

$INCLUDE p.gms 

$INCLUDE mg.gms 

$INCLUDE mh.gms 

$INCLUDE gv.gms 

$ONLISTING 

 

SET sl(s,l); 

LOOP((s,l)$(SUM(t,k(s,l,t))>eps), 

  sl(s,l) = yes; 

); 

 

 SCALARS errors,warnings ; 

 

 errors=0 ; 

 warnings=0; 

{Loops for data checking go here} 

 IF(errors>0, 

   PUT / 'inconsistencies found in active and value data: ',errors:10:0 / ; 
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   PUT '(should I have shut you down here?' / ; 

 ); 

 

 VARIABLE 

   OBJECTIVE 

 ; 

 BINARY VARIABLES 

   X(s)                Schedule s flown by some UAV 

   Y(m,v,t)         Mission m covered in period t 

   W(m,v,g,t)     Mission m handled by GCS g in period t 

 ; 

 INTEGER VARIABLES 

   D(m)           Total number of dwell periods on mission m 

   MODS(c,v,l) 

 ; 

 EQUATIONS 

   eqnObj                  {R0} Objective function measures total value of mission  
            accomplishment 

   UAVLimit(l,v,t)      {R1} limit on UAVs flying by tier and period 

   ModuleLimit(c,v,l,t) {R2} limit on payload modules flying by payload and 
period 

   TotalMods(c,v)          {R2.5} 

   GCSLimit(g,t,h)        {R3} limit on GCS use by gcs period and type 

   LRSLimit(l,t)             {R4} limit on LRS use by LRS and period 

   CoverageLimit(m,v,t)    {R5} mission and period coverage control 

   DwellLimit(m)           {R6} limit on total dwell time by mission 

   Prerequisite(m,v,t)      {R7} prerequisite controls by period 

   Mission_Control(m,v,t) 

*   Exclusive(m,mp,t)      {R8} mutually exclusive missions by period 

   RequiredDwell(m)       {R9} required missions must be completely covered 

 ; 
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 eqnObj..                            {R0} 

   OBJECTIVE =e= sum(m, val(m)*D(m)) 

 ; 

 UAVLimit(l,v,t)..                     {R1} 

   SUM(s$(B(s,v,t) and sl(s,l)), X(s)) =l= num_uavs(l,v,t) 

 ; 

 ModuleLimit(c,v,l,t)..                  {R2} 

   SUM(s$(sl(s,l) and B(s,v,t) and Q(s,c,t)), X(s)) =l= MODS(c,v,l) 

 ; 

 TotalMods(c,v).. 

   SUM(l, MODS(c,v,l)) =l= num_mods(c,v) 

 ; 

 GCSLimit(g,t,h)..                    {R3} 

   SUM((m,v)$(MG(m,g) and MH(m,h) and GV(g,v)), W(m,v,g,t)) =l= 
gcs_cap(g,t,h) 

 ; 

 LRSLimit(l,t)..                     {R4} 

   SUM(s$(k(s,l,t)>eps), X(s)) =l= lrs_cap(l,t) 

 ; 

 CoverageLimit(m,v,t)..                {R5} 

   Y(m,v,t) =l= SUM(s$(A(s,m,t) and B(s,v,t)), X(s)) 

 ; 

 DwellLimit(m)..                     {R6} 

   D(m) =l= SUM((v,t), Y(m,v,t)) 

 ; 

 Prerequisite(m,v,t)$HP(m)..            {R7} 

   Y(m,v,t) =l= SUM((mp,vp)$P(m,mp),Y(mp,vp,t)) 

 ; 

 Mission_Control(m,v,t)$(not HP(m)).. 

   Y(m,v,t) =l= SUM(g$(MG(m,g) and GV(g,v)), W(m,v,g,t)) 

 ; 

* Exclusive(m,mp,t)$E(m,mp)..         {R8} 
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*   Y(m,t) + Y(mp,t) =l= 1 

* ; 

 RequiredDwell(m)$(r(m)>eps)..             {R9} 

   D(m) =g= r(m) 

 ; 

 LOOP(m, 

   D.up(m) = length(m);              {R10} 

 ); 

 

 MODEL UAS_PLANNER / 

  eqnObj 

  UAVLimit 

  ModuleLimit 

  TotalMods 

  GCSLimit 

  LRSLimit 

  CoverageLimit 

  DwellLimit 

  Prerequisite 

*  Exclusive 

  Mission_Control 

  RequiredDwell 

 / 

 ; 

 

 IF(errors=0, 

   PUT 'solve UAS_PLANNER' / ; 

*   UAS_PLANNER.reslim=60. ; 

*   UAS_PLANNER.optcr=0.05 ; 

   PUT '  reslim=',UAS_PLANNER.reslim:5:0,' seconds, 
optcr=',UAS_PLANNER.optcr:5:2 ; 

   PUT '  optfile=',UAS_PLANNER.optfile:2:0 / ; 
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   SOLVE UAS_PLANNER USING MIP MAXIMIZING OBJECTIVE; 

   PUT 'PLANNER solver and model status 
',UAS_PLANNER.solvestat:4:0,UAS_PLANNER.modelstat:4:0 / ; 

   IF( UAS_PLANNER.modelstat<>1 and UAS_PLANNER.modelstat<>8, 

     errors=1 ; 

   ELSE 

     PUT / 'Objective: ',OBJECTIVE.l:10:4 /; 

     PUT / 'Module Deployment' / ; 

     LOOP((c,v,l)$(MODS.L(c,v,l)>eps), 

       PUT '  ',c.tl:10,' ',v.tl:8,' ',l.tl:10,': ',MODS.L(c,v,l):4:0 / ; 

     ); 

     PUT / 'UAV flight schedules..' // ; 

     LOOP(s$(X.l(s)>eps), 

       PUT '  ',s.tl:10,'  ' ; 

       LOOP(v$SUM(t$B(s,v,t),1), 

         PUT '  ',v.tl:8 ; 

       ); 

       PUT '  ',X.l(s):4:1 / ; 

       LOOP(m$(SUM(t$A(s,m,t),1)>0), 

         PUT '    ',m.tl:10 ; 

         LOOP(t$A(s,m,t), 

           PUT ' ',t.tl:5 ; 

         ); 

         PUT / ; 

       ); 

     ); 

     PUT / 'GCS Usage' / ; 

     LOOP(g$(SUM((m,v,t)$(MG(m,g) and GV(g,v)),W.l(m,v,g,t))>eps), 

       PUT '  ',g.tl:8 / ; 

       LOOP((m,v)$(MG(m,g) and GV(g,v) and (SUM(t,W.l(m,v,g,t))>eps)), 

         PUT '     ',m.tl:8,'   ',(SUM(t,W.l(m,v,g,t))) ; 

         LOOP(t$(W.l(m,v,g,t)>eps), 
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           PUT ' ',t.tl:8 ; 

         ); 

         PUT / ; 

       ); 

     ); 

     PUT / 'MISSION COVERAGE' / ; 

     PUT '   Mission    Dwell Time' / ; 

     LOOP(m$(D.l(m)>0), 

       PUT '  ',m.tl:8,'  ',D.l(m):5:1 / ; 

       LOOP(t$(SUM(v,Y.l(m,v,t))>eps), 

         PUT '    ',t.tl:4,' ',(SUM(v,Y.l(m,v,t))):4:1 / ; 

       ); 

     ); 

     PUTCLOSE UASP_LOG; 

 

     PUT MISSIONS_CSV ; 

     PUT ',,,Total,Total,Value,Total' /; 

     PUT ',Start,End,Time Periods,Time Periods,Per Time,Value' /; 

     PUT 
'Mission,Time,Time,Requested,Assigned,Period,Achieved,',OBJECTIVE.L /; 

     LOOP(m, 

       PUT m.tl,',,,,',D.l(m),',',val(m),',',(D.l(m)*val(m)) /; 

     ); 

     PUTCLOSE MISSIONS_CSV; 

      {Rest of report writer goes here} 

   ); 

 ); 

 

 IF(errors>0, 

   PUT ' <*** errors aborting this run:',errors:10:0 / ; 

 ); 

 IF(warnings>0, 



 74

   PUT / ' <+++ warnings generated by this run: ',warnings:10:0 / ; 

   PUT '  please find out what these indicate' / ; 

 ); 

 PUTCLOSE UASP_log ; 

 

 IF(errors=0, 

 

   {Build CSV Output Files} 

 

   PUT UASP_STA; 

   PUT 'Optimal solution found. Successful completion.' /; 

   PUTCLOSE UASP_STA; 

 ); 
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