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The project (Grant No. W911NF-06-01-0469) titled Formal-language-theoretic 

Control & Co-ordination of Mobile Robots was started on September 20, 2006 and 
ended on September 19, 2007. It was conducted under the leadership of Prof. Asok Ray 
and Dr. Ishanu Chattopadhyay, Pennsylvania State University, University Park, PA. This 
research project has developed a novel approach to control of co-operating and non-co-
operating teams of autonomous and semi-autonomous agents and has made fundamental 
contributions to the enhancement of the state of the art in the field of Probabilistic 
Robotics. On the experimental side of the project, Penn State has developed the 
Networked Robotics and Sensors Laboratory (NRSL) for conducting research in robotics, 
which has been supported  through a DURIP equipment grant. 

The research work, conducted under this project, has resulted in 8 scholarly 
publications. This project has laid the groundwork for effectively transferring the newly 
developed technology to defense industry through future SBIR and STTR projects in 
collaboration with industry. 
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The Future Combat Systems (FCS) program of the U.S. Army calls for collaboration 
among heterogeneous groups of semi-autonomous and autonomous mobile platforms, 
such as Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs), 
supported by communication of onboard sensor and ancillary information among  
individual platforms and human users. The research conducted under this project 
addresses the challenge of developing C4I systems for applications to groups of 
autonomous vehicles that must adapt themselves to operate in uncertain and dynamically 
evolving environments of battlefields. The research has formulated and experimentally 
validated robust adaptive algorithms and software codes for decision & control of mobile 
robotic platforms, as applied to real-time computation and execution of combat mission 
strategies. These algorithms are executable within a general-purpose programming 
language environment and make use of the generative power of formal-language-
theoretic models instead of ad-hoc rule-based expert systems. Research efforts have been 
concentrated in the following inter-related areas. 
 

• Formulation of operational intelligence models in a formal-language-theoretic 
setting for: (i) autonomous agents and decision & control architectures, and (ii) 
interchangeable (i.e., platform-independent) human-machine interactions  

 
• Algorithm development for intelligent coordination of autonomous agent teams to 

accomplish complex mission tasks with automated resource and risk optimization 
with (possibly) incomplete knowledge of work-space parameters due to: (i) 
insufficient information, and (ii) sensor and/or communication link failures  

 
• Experimental validation of the mathematical tools and software codes in: (i) 

Systems Simulation Laboratory, and (ii) Networked Robotics & Sensors 
Laboratory, developed at Penn State under ARO-funded MURI and DURIP grants 
(PM: Dr. M-H. Chang) 
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Formal-language-theoretic Control  

&  
Co-ordination of Mobile Robots  

Principal Investigator: Professor Asok Ray, Pennsylvania State University 
Key Contributor: Dr. Ishanu Chattopadhyay, Pennsylvania State University 
     
      The verifiable outcomes of the project include novel algorithms, associated numerical 
methods, and validated software codes for decision & control of a group of mobile 
robots, focusing on the following issues.  

• Coordination of heterogeneous groups of autonomous mobile platforms 
• Robustness of controlled behavior under disturbances and loss of information 
• Computational speed and memory requirements for real-time on-board execution, 

especially under unusual off-nominal circumstances 
Furthermore, the study of robust optimal control and coordination of mobile robots 
carried out under the project will enhance C4I capabilities of DoD for completely 
autonomous or command-aided remote mission execution in uncertain and dynamically 
evolving combat environments. The research project has pursued technology transition 
and develop multidisciplinary educational and training programs for academia and 
industry, which are vital to DoD. 

On the theoretical side of the project, a rigorous methodology has been developed for 
automated modeling of observed behavior of autonomous agents and designing optimal 
mission strategies via a novel measure-theoretic optimization of probabilistic finite state 
behavior generators. The past decade has witnessed the development of a range of 
methodologies for design and control of autonomous systems, ranging from model-based 
to purely reactive paradigms. One of these approaches, Probabilistic Robotics, has led to 
implementations with significant autonomy and robustness. The research carried out 
under this project enhances the state of the art in Probabilistic Robotics by addressing the 
following key issues: 

• Probabilistic Perception: Robots are inherently uncertain about the state of their 
environments. Uncertainty arises from sensor limitations, noise, and the fact that most 
interesting environments are, to a certain degree, unpredictable. Moreover, a 
probabilistic robot knows about its own ignorance - a key prerequisite of true 
autonomy. 

• Probabilistic Control: Autonomous robots must act in the face of uncertainty. 
Probabilistic decision-making approaches take the robot’s uncertainty into account; 
some consider only the robot’s current uncertainty, others anticipate future 
uncertainty.  

  

SUMMARY OF THE MOST IMPORTANT RESULTS 
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Structural Transformations of Probabilistic Finite State Machines⋆

Ishanu Chattopadhyay‡ Asok Ray‡

ixc128@psu.edu axr2@psu.edu

Abstract— Probabilistic finite state machines have re-

cently emerged as a viable tool for modeling and analy-

sis of complex non-linear dynamical systems. This paper

rigorously establishes such models as finite encodings of

probability measure spaces defined over symbol strings. The

well known Nerode equivalence relation is generalized in

the probabilistic setting and pertinent results on existence

and uniqueness of minimal representations of probabilistic

finite state machines are presented. The binary operations of

probabilistic synchronous composition and projective com-

position are introduced, which have applications in symbolic

model-based supervisory control and in symbolic pattern

recognition problems. The results are elucidated with nu-

merical examples and are validated on experimental data for

statistical pattern classification in a laboratory environment.

Index Terms— Formal Language Theory; Probabilistic Fi-

nite State Automata; Minimization of Probabilistic Au-

tomata; Model Order Reduction

1. INTRODUCTION & MOTIVATION

Probabilistic finite state machines have recently emerged

as a modeling paradigm for constructing causal models of

complex dynamics. The general inapplicability of classical

identification algorithms in complex non-linear systems has

led to development of several techniques for construction

of probabilistic representations of dynamical evolution from

observed system behavior. The essential feature of a ma-

jority of such reported approaches is partial or complete

departure from the classical continuous-domain modeling

towards a formal language theoretic and hence symbolic

paradigm [1][2]. The continuous range of a sufficiently long

observed data set is discretized and tagged with labels to

obtain a symbolic sequence [2], which is subsequently used

to compute a language-theoretic finite state probabilistic

predictor via recursive model update algorithms. Symboliza-

tion essentially discretizes the continuous state space and

gives rise to probabilistic dynamics from the underlying

deterministic process, as illustrated in Fig. 1.

Among various reported symbolic reconstruction algo-

rithms, Causal-State Splitting Reconstruction (CSSR) [1]

computes optimal representations (e.g., ǫ-machines) and is

⋆This work has been supported in part by the U.S. Army Research

Office under Grant Nos. W911NF-06-1-0469 and W911NF-07-1-

0376.
‡The Pennsylvania State University, University Park, PA 16802
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Fig. 1. Emergence of probabilistic dynamics from the underlying de-

terministic system due to discretization as symbolic states q1, q2, q3;

and σ, τ are symbolic events

reported to yield the minimal representation consistent with

accurate prediction. In contrast, the D-Markov construc-

tion [2] produces a sub-optimal model, but it has a significant

computational advantage and has been shown to be better

suited for online detection of small parametric anomalies in

dynamic behavior of physical processes [3].

This paper addresses the issue of structural manipulation

of such inferred probabilistic models of system dynamics. The

ability to transform and manipulate the automaton structure

is critical for design of supervisory control algorithms for

symbolic models and real-time pattern recognition from sym-

bol sequences. Specific issues are delineated in the sequel.

A. Applications of Symbolic Model-based Control

The natural setting for developing control algorithms for

symbolic models is that of probabilistic languages. The no-

tion of probabilistic languages in the context of studying

qualitative stochastic behavior of discrete-event systems first

appeared in [4] and [5], where the concept of p-languages (’p’

implying probabilistic) is introduced and an algebra is devel-

oped to model probabilistic languages based on concurrency.

A multitude of control algorithms for p-language-theoretic

models have been reported. Earlier approaches [6][7] at-

tempt a direct generalization of Ramadge and Wonham’s

Supervisory Control Theory [8] for deterministic languages

and proves to be somewhat cumbersome in practice. A signif-

icantly simpler approach is suggested in [9][10][11], where

supervisory control laws are synthesized by elementwise

maximization of a language measure vector [12][9] to ensure

that the generated event strings cause the supervised plant

to visit the "good" states while attempting to avoid the "bad"

states optimally in a probabilistic sense. The notion of "good"

and "bad" is induced by specifying scalar weights on the
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model states, with relatively more negative weights indicat-

ing less desirable states. Unlike the previous approaches, the

measure-theoretic approach does not require a "specification

automaton"; however, a specification weight is assigned to

each state of the finite state machine. (Note: These states

are different from the states obtained via symbolic recon-

struction of observed physical data.)

Figure 2 illustrates the underlying concept. The symbolic

model shown on the left which has three states q1, q2, q3, while

the control objective is specified by weights +1 and −1 on

states qA, qB of the two-state automaton on the right.

q1

q2 q3

1/0.41/0.2

0/.7 0/.8

0/0.6

1/0.3

qA qB

0

1

01

−1 +1

MODEL

CONTROL

SPECIFICATION

Fig. 2. Symbolic Model and Control Specification

q1

q2

q3

qA (−1)

qB (+1)

+1
+1

+1

−1 −1

−1

qA3 qA1 qA2

qB2 qB3 qB1

1/0.4 1/0.2

0/0.6 0/0.8

1/0.3 0/0.70/0.6 1/0.2
0/0.8

1/0.4

1/0.3

0/0.7

−1 −1

+1 +1

−1

+1

(a) (c)(b)

(d)

Σ⋆

Fig. 3. Imposing control specification by probabilistic synchronous

composition of automata

Recalling that every finite state automaton induces a right

invariant partition on the set of all possible finite length

strings, the above situation is illustrated by Figs. 3(a) and

3(b). The operation of probabilistic synchronous composition,

defined later in this paper, resolves the problem by consider-

ing the product partition in Fig. 3(c). Then, the given model

is transformed into the one shown in Fig. 3(d), on which

the optimization algorithm reported in [11] can be directly

applied to yield the optimal supervision policy.

B. Applications of Symbolic Pattern Recognition

As mentioned earlier, the symbolic reconstruction algo-

rithms [1][2] generate probabilistic finite state models from

observed time series. However, in a pattern classification

problem, one may be only interested in a given class of

possible future evolutions. For example, as illustrated in

Fig. 4, while the systems G1,G2, · · · ,Gk yield different sym-

bolic models A1,A2, · · · ,Ak, we may be only interested in

matching a given template, i.e., knowing how similar the

systems are as far as strings with even number of 0s is

concerned (Note: qA = {strings with even number of 0s}).

The operation of projective composition, defined in this pa-

per, allows transformation of each model Ai to the structure

of the template while preserving the distribution over the

strings of interest, and is of critical importance in symbolic

pattern classification problems. As shown in the sequel, the

model order of the machines Ai is not particularly impor-

tant; hence projective composition accomplishes model order

reduction within a quantifiable error.

G1

G2

Gk

0101010001

0101011001

1101001101

A1

A2

Ak
RECONSTRUCTED

MODELS

qA qB

0

0

11

TEMPLATE

Fig. 4. Symbolic template matching problem

C. Organization of the Paper

The paper is organized in seven sections including the

present one. Section 2 presents preliminary concepts and

pertinent results that are necessary for subsequent develop-

ment. Section 3 introduces the concept of probabilistic finite

state automata as finite encodings of probability measure

spaces. The concept of Nerode equivalence is generalized to

probabilistic automata and the key results on existence and

uniqueness of minimal representations are established. Sec-

tion 4 presents metrics on the space of probability measures

on symbolic strings which is shown to induce pseudometrics

on the space of probabilistic finite state automata. Along

this line, the concept of probabilistic synchronous compo-

sition is introduced and the results are elucidated with a

simple example. Section 5 defines projective composition

and invariance of projected distributions is established. A

numerical example is provided for clarity of exposition. Sec-

tion 6 demonstrates applicability of the developed method

2
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to a pattern classification problem on experimental data.

The paper is summarized and concluded in Section 7 with

recommendations for future research.

2. PRELIMINARY NOTIONS

A deterministic finite state automaton (DFSA) is de-

fined [13] as a quintuple Gi = (Q,Σ, δ, qi,Qm), where Q is the

finite set of states, and qi ∈ Q is the initial state; Σ is the

(finite) alphabet of events. The Kleene closure of Σ, denoted

as Σ⋆, is the set of all finite-length strings of events including

the empty string ε; the set of all finite-length strings of

events excluding the empty string ε is denoted as Σ+ and the

set of all strictly infinite-length strings of events is denoted

as Σω. A subset of Σω is called an ω-language on the alphabet

Σ and a subset of Σ⋆ is called a ⋆-language. If the meaning

is clear from context, we refer to a set of strings simply as

a language. The function δ : Q × Σ→ Q represents the state

transition map and δ⋆ : Q × Σ⋆ → Q is the reflexive and

transitive closure [13] of δ and Qm ⊆ Q is the set of marked

(i.e. accepting) states. For given functions f and 1, we denote

the composition as f ◦ 1.

Definition 2.1: The classical Nerode equivalence N [13]

on Σ⋆ with respect to a given language L is defined as:

∀x, y ∈ Σ⋆,

(
xN y⇔

(
∀u ∈ Σ∗ ( xu ∈ L) ⇐⇒

(
yu ∈ L

) )
)

(1)

A language L ⊆ Σ⋆ is regular if and only if the corresponding

Nerode equivalence is of finite index [13].

Probabilistic Finite State automata (PFSA) considered in

this paper are built upon Deterministic Finite State Au-

tomata (DFSA) with a specified event generating function.

The formal definition is stated next.

Definition 2.2: (PFSA) A probabilistic finite state au-

tomata (PFSA) is a quintuple Pi , (Q,Σ, δ, qi, π̃) where the

quadruple (Q,Σ, δ, qi) is a DFSA with unspecified marked

states and the mapping π̃ : Q × Σ → [0, 1] satisfies the

following condition:

∀q j ∈ Q,
∑

σ∈Σ

π̃(q j, σ) = 1 (2)

In the sequel, π̃ is denoted as the event generating function.

For a PFSA Pi, cardinality of the set of states is denoted as

NUMSTATES(Pi).

Definition 2.3: For every PFSA Pi = (Q,Σ, δ, qi, π̃), there

is an associated stochastic matrix Π ∈ RNUMSTATES (Pi)×NUMSTATES (Pi),

called the state transition probability matrix, which is defined

as follows:

Π jk =

∑

σ:δ(q j ,σ)=qk

π̃(q j, σ) (3)

We further note that for every stochastic matrix Π, there exists

at least one row-vector ℘ such that

℘Π = ℘, where ∀ j ℘ j ≧ 0 and

NUMSTATES (Pi)∑

j=1

℘ j = 1 (4)

where ℘ is a stable long term distribution over the PFSA

states. If Π is irreducible, then ℘ is unique. Otherwise, there

may exist more than one possible solution to Eq. (4), one for

each eigenvector corresponding to unity eigenvalue. However,

if the initial state is specified (as it is in this paper), then

℘ is always unique. Several efficient algorithms have been

reported in the literature [14][15][16] for computation of ℘.

Key definitions and results from Measure theory that are

used here are recalled.

Definition 2.4: (σ-Algebra) A collection M of subsets of

a non-empty set X is said to be a σ-algebra [17] in X if M has

the following properties:

1) X ∈M

2) If A ∈ M, then Ac ∈ M where Ac is the complement of A

relative to X, i.e., Ac
= X \ A

3) If A =
⋃∞

n=1 An and if An ∈M for n ∈N, then A ∈M.

Theorem 2.1: If F is any collection of subsets of X, there

exists a smallest σ-algebra M⋆ in X such that F ⊆M⋆.

Proof: See Theorem 1.10 in [17]. ❒

Definition 2.5: (Measure) A finite (non-negative) mea-

sure is a countably additive function µ, defined on a σ-algebra

M, whose range is [0,K] for some K ∈ R. Countable additivity

means that if {Ai} is a disjoint countable collection of members

of M, then

µ



∞⋃

i=1

Ai


 =

∞∑

i=1

µ(Ai) (5)

Theorem 2.2: If µ is a (non-negative) measure on a σ-

algebra M, then

1) µ(∅) = 0

2) (Monotonicity) A ⊆ B =⇒ µ(A) ≤ µ(B) if A,B ∈M.

Proof: See Theorem 1.19 in [17]. ❒

Definition 2.6: A probability measure on a non-empty set

with a specified σ-algebra M is a finite non-negative measure

on M. Although not required by the theory, a probability

measure is defined to have the unit interval [0, 1] as its range.

Definition 2.7: A probability measure space is a triple

(X,M, p) where X is the underlying set, M is the σ-algebra

in X and p is a finite non-negative measure on M.

3. PROPERTIES OF PROBABILISTIC FINITE STATE

AUTOMATA

For any τ ∈ Σ⋆, the language τΣω has an important

physical interpretation pertaining to systems modeled as

probabilistic language generators (See Fig. 5). A string τ ∈ Σ⋆

can be interpreted as a symbol sequence that has been al-

ready generated, and any string in Σω qualifies as a possible

3
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future evolution. Thus, the language τΣω is conceptually

associated with the current dynamical state of the modeled

system.

q0 qk
τ

s1

s3

s4

Σ
ω

Past
︷       ︸︸       ︷

Present

Possible
Future

Fig. 5. Interpretation of the language τΣω pertaining to

dynamical evolution of a language generator

Definition 3.1: Given an alphabet Σ, the set BΣ , 2Σ
⋆
Σω

is defined to be the σ-algebra generated by the set

{
L : L =

τΣω where τ ∈ Σ⋆
}
, i.e., the smallest σ-algebra on the set Σω,

which contains the set

{
L : L = τΣω where τ ∈ Σ⋆

}
.

Remark 3.1: Cardinality of BΣ is ℵ1 because both 2Σ
⋆

and

Σω have cardinality ℵ1.

The following relations in the probability measure space

(Σω,BΣ, p) are consequences of Definition 3.1.

• p(Σω) = p(εΣω) = 1

• ∀x,u ∈ Σ⋆, xuΣω j xΣω and hence p(xuΣω) ≦ p(Σω)

Notation 3.1: For brevity, the probability p(τΣω) is de-

noted as p(τ) ∀τ ∈ Σ⋆ in the sequel.

Next the notion of probabilistic Nerode equivalence Np

is introduced on Σ⋆ for representing the measure space

(Σω,BΣ, p) in the form of a PFSA. In this context, the fol-

lowing logical formulae are introduced.

Definition 3.2: For x, y ∈ Σ⋆,

U1(x, y) ,
(
p(x) = 0

∧
p(y) = 0

)
(6a)

U2(x, y) ,
(
p(x) , 0

∧
p(y) , 0

)∧

(
∀u ∈ Σ⋆

(
p(xu)

p(x)
=
p(yu)

p(y)

))
(6b)

Theorem 3.1: (Probabilistic Nerode Equivalence)

Given an alphabet Σ, every measure space (Σω,BΣ, p) induces

a right-invariant equivalence relation Np on Σ⋆ defined as:

∀x, y ∈ Σ⋆,

(
xNpy⇐⇒ U1(x, y)

∨
U2(x, y)

)
(7)

Proof: Reflexivity and symmetry properties of the

relation Np follow from Definition 3.2. Let x, y, z ∈ Σ⋆ be

distinct and arbitrary strings such that xNpy and yNpz.

Then, transitivity property of Np follows from Eq. (7) and

Definition 3.2. Hence, Np is an equivalence relation.

To establish right-invariance [13] of Np, it suffices to show

that

∀x, y ∈ Σ⋆,

(
xNpy =⇒ ∀u ∈ Σ⋆,

(
xuNpyu

))
(8)

Let x, y,u be arbitrary strings in Σ⋆ such that xNpy. If p(x) =

0, p(y) = 0 from Eq. (7). Then, it follows from the monotonicity

property of the measure (See Theorem 2.2) that p(xu) = 0,

which implies the truth of U1(xu, yu) and hence the truth of

xuNpyu. If p(x) , 0, then
(
xNpy

)∧ (
p(x) , 0

)
implies p(y) , 0.

Hence,

p(xuτ)

p(xu)
=
p(xuτ)

p(x)
×
p(x)

p(xu)
(9)

If p(x) = p(y), then xNpy implies p(xu) = p(yu) and also ∀τ ∈

Σ⋆
(
p(xuτ) = p(yuτ)

)
. Similarly, if p(x) , p(y), then xNpy implies

p(xu) , p(yu) and also ∀τ ∈ Σ⋆
(
p(xuτ) , p(yuτ)

)
. Hence, ∀τ ∈

Σ⋆
((
p(xu) = p(yu)

)
⇐⇒

(
p(xuτ) = p(yuτ)

))
. ❒

Definition 3.3: (Perfect Encoding) Given an alphabet

Σ, PFSA Pi = (Q,Σ, δ, qi, π̃) is defined to be a perfect encoding

of the measure space (Σω,BΣ, p) if ∀τ ∈ Σ+ and τ = σ1σ2 · · ·σr,

p(τ) = π̃(qi, σ1)

r−1∏

k=1

π̃(δ⋆(qi, σ1 · · ·σk), σk+1) (10)

Remark 3.2: The implications of Definition 3.3 are as

follows: The encoding introduced is perfect in the sense that

the measure p can be reconstructed without error from the

specification of Pi.

Theorem 3.2: A PFSA is a perfect encoding if and only if

the corresponding probabilistic Nerode equivalence Np is of

finite index.

Proof: (Left to Right:) Let Q be the finite set of

equivalence classes of the relation Np of the PFSA Pi =

(Q,Σ, δ, qi, π̃) that is constructed as follows:

1) Since Np is an equivalence relation on Σ⋆, there exists

a unique qi ∈ Q such that ε ∈ qi. The initial state of Pi is

set to qi.

2) If x ∈ q j and xσ ∈ qk, then δ(q j, σ) = qk

3) π̃(q j, σ) =
p(xσ)
p(x)

where x ∈ q j.

First we verify that the steps 2 and 3 are consistent in the

sense that δ and π̃ are well-defined.

Probabilistic Nerode equivalence (See Theorem 3.1) im-

plies that if x, y ∈ Σ⋆, then
( (

x ∈ q j

)
∧

(
xσ ∈ qk

)
∧

(
y ∈ q j

) )
=⇒(

yσ ∈ qk

)
. Therefore, the constructed δ is well-defined. Sim-

ilarly, since (x, y ∈ q j) =⇒
(
p(x) = p(y)

)∧ (
p(xσ) = p(yσ)

)
, the

constructed π̃ is also well-defined. Therefore, the steps 2 and

3 are consistent. For τ = σ1σ2 · · ·σr ∈ Σ
+, it follows that

p(τ) = p(σ1)

R∏

r=2

p(σ1 · · ·σr)

p(σ1 · · ·σr−1)

= π̃(qi, σ1)

R−1∏

r=1

π̃(δ⋆(qi, σ1 · · ·σr), σr+1)

Hence, the criterion for perfect encoding (See Definition 3.3)

is satisfied.

(Right to Left:) Let the PFSA Pi = (Q,Σ, δ, qi, π̃) be a perfect

encoding; and let the probabilistic Nerode equivalence Np be

of infinite index. Then, there exists a set of strings H ⊆ Σ⋆,

4
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having the same cardinality as Σ⋆, such that each element

of H belongs to a distinct Np-equivalence class. That is,

∀h j, hk ∈ H such that j , k, we have h jNp
∣∣∣ hk. Since p(h j) =

p(hk) = 0 implies h jNphk, there can exist at most one element

h0 ∈H such that p(h0) = 0. That is, p(h j) , 0 ∀h j ∈H − {h0}.

For the PFSA Pi = (Q,Σ, δ, qi, π̃), where Q is the finite set of

states, there exists qℓ ∈ Q and h j, hk ∈H such that δ⋆(qi, h j) =

δ⋆(qi, hk) = qℓ. Let τ ∈ Σ+ and τ = σ1σ2 · · ·σr. Since Pi ia a

perfect encoding, it follows from Definition 3.3 that

p(h jτ) = p(h j)π̃(qℓ, σ1)

r−1∏

m=1

π̃(δ⋆(qℓ, σ1 · · ·σm), σm+1)

p(hkτ) = p(hk)π̃(qℓ, σ1)

r−1∏

m=1

π̃(δ⋆(qℓ, σ1 · · ·σm), σm+1)

Now, it follows that

(
p(h j) , 0 ∧ p(hk) , 0

)∧(
p(h jτ)

p(h j)
=
p(hkτ))

p(hk)

)

=⇒ U2(h j, hk) =⇒ h jNphk

which contradicts the initial assertion that h jNp
∣∣∣ hk ∀h j, hk ∈

H . This completes the proof. ❒

The construction in the first part of Theorem 3.2 is stated

in the form of Algorithm 1.

Algorithm 1: Construction of PFSA from the probability

measure space (Σω,BΣ, p)

input : (Σω,BΣ, p) such that Np is of finite index

output: Pi

begin1

Let Q =
{
q j : j ∈ J $ N

}
be the set of equivalence classes of2

the relation Np;

Set the initial state of Pi as qi such that ε belongs to the3

equivalence class qi; If x ∈ q j and xσ ∈ qk, then set

δ(q j, σ) = qk;

π̃(q j, σ) =
p(xσ)
p(x)

where x ∈ q j;4

end5

Corollary 3.1: (to Theorem 3.2) A PFSA Pi =

(Q,Σ, δ, qi, π̃) induces a probability measure p on the σ-algebra

BΣ and the corresponding probabilistic Nerode equivalence is

of finite index.

Proof: Let a probability measure p be constructed on

the σ-algebra BΣ as follows:

∀τ ∈ Σ+,
(
p(τ) = π̃(qi, σ1)

r−1∏

k=1

π̃(δ⋆(qi, σ1 · · ·σk), σk+1)
)

It follows from Definition 3.3 that Pi perfectly encodes the

measure p and Theorem 3.2 implies that the corresponding

Np is of finite index. ❒

On account of Corollary 3.1, we can map any given PFSA

to a measure space (Σω,BΣ ,p).

Definition 3.4: Let P be the space of all probability mea-

sures on BΣ and A be the space of all possible PFSA Pi =

(Q,Σ, δ, qi, π̃).

• The map H : A →P is defined as H(Pi) = p such that

∀τ ∈ Σ+,
(
p(τ) = π̃(qi, σ1)

r−1∏

k=1

π̃(δ⋆(qi, σ1 · · · σk), σk+1)
)

where τ = σ1σ2 · · ·σr (11)

• The map H−1 : P → A is defined as:

H−1(p) =


Pi given by Algo. 1 if Np is of finite index

Undefined otherwise

(12)

Lemma 3.1: Pi is a perfect encoding for H(Pi).

Proof: The proof follows from Definition 3.3 and Defi-

nition 3.4. ❒

Next we show that, similar to classical finite state ma-

chines, an arbitrary PFSA can be uniquely minimized. How-

ever, the sense in which the minimization is achieved is

somewhat different. To this end, we introduce the notion of

reachable states in a PFSA and define isomorphism of two

PFSA.

Definition 3.5: (Reachable States) Given a PFSA Pi =

(Q,Σ, δ, qi, π̃), the set of reachable states RCH(Pi) j Q is defined

as:

q̃ ∈ RCH(Pi) =⇒ ∃τ = σ1 · · ·σR ∈ Σ
⋆ such that

(
δ⋆(qi, τ) = q̃

)∧(
π̃(qi, σ1)

R−1∏

r=1

π̃(δ⋆(qi, σ1 · · ·σr), σr+1) > 0
)

Remark 3.3: The strict positivity condition in Defini-

tion 3.5 ensures that every state in the set of reachable states

can actually be attained with a strictly non-zero probability.

In other words, for every state q j ∈ RCH(Pi), there exists at least

one string ω, initiating from qi and eventually terminating on

state q j, such that the generation probability of ω is strictly

positive.

Definition 3.6: (Isomorphism:) Two PFSA Pi =

(Q,Σ, δ, qi, π̃) and P′
i′

= (Q′,Σ, δ′, q′
i′
, π̃′) are defined

to be isomorphic if there exists a bijective map

η : RCH(Pi) −→ RCH(P′
i′
) such that

π̃(q j, σ) , 0⇒
(
π̃′(η(q j), σ) = π̃(q j, σ)

)∧

(
δ′(η(q j), σk) = η(δ(q j, σk))

)

Remark 3.4: The notion of isomorphism stated in Defi-

nition 3.6 generalizes graph isomorphism to PFSA by con-

sidering only the states that can be reached with non-zero

probability and transitions that have a non-zero probability

of occurrence.

Theorem 3.3: (Minimization of PFSA:) For a PFSA Pi =

(Q,Σ, δ, qi, π̃), H−1 ◦H(Pi) is the unique minimal realization of

Pi in the sense that the following conditions are satisfied:

5
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1) The PFSA H−1 ◦ H(Pi) perfectly encodes the probability

measure H(Pi).

2) For a PFSA P′i′ that perfectly encodes H(Pi), the inequality

CARD(RCH(H−1 ◦H(Pi))) ≦ CARD(RCH(P′i′ )) holds.

3) The equality, CARD(RCH(H−1 ◦H(Pi))) = CARD(RCH(P′
i′
)),

implies isomorphism of Pi and P′
i′

in the sense of Defini-

tion 3.6.

Proof:

1) The proof follows from the construction in Theorem 3.2.

2) Let P′
i′
= (Q′,Σ, δ′, qi′ , π̃

′) be an arbitrary PFSA that

perfectly encodes the probability measure H(Pi). Let us

construct a PFSA P†
i′
= (Q′ ∪ {qd},Σ, δ

†, qi′ , π̃
†), where qd is

a new state not in Q′, as follows:

∀q′j ∈ Q′, σ ∈ Σ,

δ†(q′j, σk) =


qd if π̃′(q′

j
, σk) = 0

δ′(q′
j
, σk) otherwise

(13a)

∀σ ∈ Σ, δ†(qd, σk) = qd (13b)

∀q′j ∈ Q′, ∀σ ∈ Σ, π̃†(q′j, σk) = π̃′(q′j, σk) (13c)

It is seen that P†
i′

perfectly encodes H(Pi) as well, which

follows from Definition 3.3 and Eq. (13c). It is claimed

that

CARD(RCH(P†i′ )) = CARD(RCH(P′i′ )) (14)

based on the following rationale.

Let q′
j
∈ RCH(P′

i′
). Following Definition 3.5, there ex-

ists a string τ ∈ Σ⋆ such that δ′⋆(qi′ , x) = q′
j

and

π̃′(qi′ , σ1)
∏R−1

r=1 π̃
′(δ′⋆(qi′ , σ1 · · ·σr), σr+1) > 0. It follows from

Eq. (13c) that π̃†(qi′ , σ1)
∏R−1

r=1 π̃
†(δ†⋆(qi′ , σ1 · · ·σr), σr+1) > 0

and hence we conclude using Eq. (13a) that δ†⋆(qi′ , x) =

q j , qd which then implies that q′
j
∈ RCH(P†

i′
). Hence

we have CARD(RCH(P′
i′
)) ≦ CARD(RCH(P†

i′
)).By a similar

argument, we have CARD(RCH(P†
i′
)) ≦ CARD(RCH(P′

i′
))

and hence CARD(RCH(P†
i′
)) = CARD(RCH(P′

i′
)).

Next, we claim

∀x, y ∈ Σ⋆
((
δ†(qi′ , x) = δ†(qi′ , y)

)
=⇒ xNH(Pi) y

)
(15)

based on the following rationale.

Let x, y ∈ Σ⋆ s.t.
(
δ†(qi′ , x) = δ†(qi′ , y)

)
. It follows from Eqs.

(13a), (13b) and (13c) that


(
H(Pi)(x) = 0 ∧H(Pi)(y) = 0

)
if δ†(qi′ , x) = qd(

H(Pi)(x) , 0 ∧H(Pi)(y) , 0
)

otherwise
(16)

Now, if
(
H(Pi)(x) = 0 ∧H(Pi)(y) = 0

)
, then it follows from

Eq. (6b) that xNH(Pi) y. On the other hand, if
(
H(Pi)(x) ,

0 ∧H(Pi)(y) , 0
)
, then Eq. (6a) yields:

∀u = σ1 · · ·σR ∈ Σ
⋆,

H(Pi)(xu)

H(Pi)(x)
=

H(Pi)(yu)

H(Pi)(y)

= π̃†(qi′ , σ1)

R−1∏

r=1

π̃†(δ†(qi′ , σ1 · · ·σr), σr+1)⇒ xNH(Pi) y

We define a map ζ : RCH(H−1 ◦ H(Pi)) → RCH(P†i′) as

follows: Let q# ∈ RCH(H−1 ◦ H(Pi)) and let E (q#) be the

equivalence class of the relation NH(Pi) represented by

q#. Let x = σ1 · · ·σR ∈ E (q#).

H(Pi)(x) > 0 (See Definition 3.5)

=⇒ π̃†(qi′ , σ1)

R−1∏

r=1

π̃†(δ†⋆(qi′ , σ1 · · ·σr), σr+1) > 0

(Since P†i′ perfectly encodes H(Pi))

=⇒ δ†⋆(qi′ , x) ∈ RCH(P†i′ )

Let ζ(q#) = δ†⋆(qi′ , x). Note that ζ(q#) depends on the

choice of x. Let q#
1
, q#

2 ∈ RCH(H−1 ◦H(Pi)) such that ζ(q#
1
) =

ζ(q#
2). If x1, x2 are the corresponding strings chosen to

define ζ(q#
1
), ζ(q#

2), we have δ†⋆(qi′ , x1) = δ†⋆(qi′ , x2) which

implies x1NH(Pi) x2, i.e., q#
1
= q#

2. Hence we conclude ζ is

injective which, in turn, implies

CARD(RCH(H−1 ◦H(Pi))) ≦ CARD(RCH(P†i′ )) (17)

Finally, from Eqs. (14) and (17), it follows that

CARD(RCH(H−1 ◦H(Pi))) ≦ CARD(RCH(P′i′ )) (18)

3) Let P′
i′
= (Q′,Σ, δ′, qi′ , π̃

′) be an arbitrary PFSA that

perfectly encodes H(Pi) such that

CARD(RCH(H−1 ◦H(Pi))) = CARD(RCH(P′i′ )) (C1)

Let the PFSA H−1 ◦H(Pi) be denoted as (Q#,Σ, δ#, q#
i#
, π̃#).

Let E (q#
j
) denote the equivalence class of NH(Pi) that q#

represents. We define a map φ : RCH(H−1 ◦ H(Pi)) →

2RCH(P′
i′

) as follows:

φ(q#
j ) =

{
q′j ∈ Q′

∣∣∣∃x ∈ E (q#
j ) s.t. δ′⋆(qi′ , x) = q′j

}
(19)

We claim

∀q#
j , q

#
k ∈ Q#

((
q#

j , q#
k

)
⇒

(
φ(q#

j )
⋂
φ(q#

k) = ∅
))

(C2)

Let q′
ℓ
∈ φ(q#

j
)
⋂
φ(q#

k
). Hence there exists x j ∈ E (q#

j
), xk ∈

E (q#
k
) such that

q′ℓ = δ
′⋆(qi′ , x j) = δ

′⋆(qi′ , xk) (20)

that

x jNH(Pi)

∣∣∣ xk ⇒ ∃u ∈ Σ⋆
(
H(Pi)(x ju)

H(Pi)(x j)
,

H(Pi)(xku)

H(Pi)(xk)

)
(21)

But, P′i′ perfectly encodes H(Pi) implying

∀u = σ1 · · ·σR ∈ Σ
⋆

(
H(Pi)(x ju)

H(Pi)(x j)
=

H(Pi)(xku)

H(Pi)(xk)

= π̃′(q′ℓ, σ1)

R−1∏

r=1

π̃′(δ′⋆(qi′ , σ1 · · ·σr), σr+1)

)

6



Chattopadhyay, Mallapragada & Ray Structural Transformations of PFSM

which contradicts Eq. (21).

Next we claim that

∀q#
j ∈ RCH(H−1 ◦H(Pi)), CARD(φ(q#

j )) = 1 (C3)

Let x1, x2 ∈ E (q#
j
) such that

δ′⋆(qi′ , x1) = q′
j

δ′⋆(qi′ , x2) = q′
k

with q′j , q′k (22)

Therefore,

CARD(φ(q#
j )) > 1

=⇒
∑

q#
k
∈RCH(H−1◦H(Pi))

CARD(φ(q#
k)) > CARD(RCH(H−1 ◦H(Pi)))

=⇒ CARD(RCH(P′i′ )) > CARD(RCH(H−1 ◦H(Pi)))

which contradicts C1 thus proving C3.

On account of C2 and C3, let us define a bijective map

φ̃ : RCH(H−1 ◦H(Pi)) → RCH(P′
i′
) as φ̃(q#

j
) = δ

′⋆(qi′ , x), x ∈

E (q#
j
). Then,

∀σk ∈ Σ,∀q#
j ∈ RCH(H−1 ◦H(Pi))), x ∈ E (q#

j ),

π̃#(q#
j , σk) =

H(Pi)(xσk)

H(Pi)(x)
= π̃#(φ̃(q#

j ), σk) (23)

φ̃(δ#(q#
j , σk)) = δ

′⋆(qi′ , xσk)

= δ′(δ′⋆(qi′ , σk), σk) = δ
′(φ̃(q#

j ), σk) (24)

which implies that H−1 ◦H(Pi) and P′
i′

are isomorphic in

the sense of Definition 3.6. This completes the proof.

❒

Theorem 3.4: For a PFSA Pi = (E ,Σ, δ,Ei, π̃), the function

π̃ : Q × Σ→ Q can be extended to π̃ : Q × Σ⋆ → Q as:

∀q j ∈ Q, τ ∈ Σ⋆, σ ∈ Σ,


π̃(q j, ε) = 1

π̃(q j, στ) = π̃(q j, σ)π̃(δ(q j, σ), τ)
(25)

Proof: Let p = H(Pi). We note that that Pi perfectly

encodes p (See Lemma 3.1). It follows from Theorem 3.2 that

∀q j ∈ Q, π̃(q j, ε) =
p(xε)

p(x)
=
p(x)

p(x)
= 1 where δ⋆(qi, x) = q j

Similarly, for a string στ initiating from state q j, where σ ∈

Σ, τ ∈ Σ⋆, we have

π̃(q j, στ) =
p(xστ)

p(x)
=
p(xσ)

p(x)
×
p(xστ)

p(xσ)
(26)

We note that
p(xσ)
p(x)

= π̃(q j, σ). Also, δ⋆(qi, x) = q j implies

δ(q j, σ) = δ
⋆(qi, xσ). Therefore,

p(xστ)
p(xσ) = π̃(δ(q j, σ), τ) and hence

π̃(q j, στ) = π̃(q j, σ)π̃(δ(q j, σ), τ)

This completes the proof. ❒

Theorem 3.5: For a measure space (Σω,BΣ , p),

H ◦H−1(p) = p (27)

i.e., H ◦H−1 is the identity map from P onto itself.

Proof: Let H−1(p) = Pi = (Q,Σ, δ, qi, π̃). We note Pi

perfectly encodes p (See Lemma 3.1). Let H(Pi) = p
′. We claim

∀x ∈ Σ⋆, p(x) = p′(x)

The result is immediate for |x| = 0, i.e., x = ǫ. For |x| ≥ 1, we

proceed by the method of induction. For |x| = 1, we note

∀σ ∈ Σ, p′(σ) = π̃(qi, σ) = p(σ) (Perfect Encoding)

Next let us assume that ∀x ∈ Σ⋆, s.t. |x| = r ∈N, p′(x) = p(x).

Since ∀x ∈ Σ⋆ with |x| = r ∈N, it follows that

p
′(xσ) = p′(x)π̃(q j, σ) where δ⋆(qi, x) = q j

= p(x)π̃(q j, σ) = p(xσ)

This completes the proof. ❒

4. METRIZATION OF THE SPACE P OF PROBABILITY

MEASURES ON BΣ

Metrization of P is important for differentiating physical

processes modeled as dynamical systems evolving probabilis-

tically on discrete state spaces of finite cardinality. In this

section, we introduce two metric families, each of which

captures a different aspect of such dynamical behavior and

can be combined to form physically meaningful and useful

metrics for system analysis and design.

Definition 4.1: Given two probability measures p1, p2 on

the σ-algebra BΣ and a parameter s ∈ [1,∞], the function ds :

P ×P → [0, 1] is defined as follows:

ds(p1, p2) = sup
x∈Σ⋆

( |Σ|∑

j=1

∣∣∣∣
p1(xσ j)

p1(x)
−
p2(xσ j)

p2(x)

∣∣∣∣
s
)1/s

∀s ∈ [1,∞) (28a)

d∞(p1, p2) = sup
x∈Σ⋆

max
σ∈Σ

∣∣∣∣
p1(xσ j)

p1(x)
−
p2(xσ j)

p2(x)

∣∣∣∣ (28b)

Theorem 4.1: The space P of all probability measures on

BΣ is ds-metrizable for s ∈ [1,∞].

Proof: Strict positivity and symmetry properties of a

metric follow directly from Definition 4.1. Validity of the

remaining property of triangular inequality follows by ap-

plication of Minkowski inequality [17]. ❒

Definition 4.2: Let M be a right invariant equivalence

relation on Σ⋆ with the ith equivalence class of M be de-

noted as Mi, i ∈ I, where I is an arbitrary index set. Let

p be a probability measure on the σ-algebra BΣ inducing

the probabilistic Nerode equivalence Np on Σ⋆ with the jth

equivalence class of Np denoted as N
j

p
, j ∈ J , where J is

an index set distinct from I. Then, the map ΩM : P −→

[0, 1]CARD(I) × [0, 1]CARD (J ) is defined as

ΩM(p)

∣∣∣∣∣
i j

=

∑

x∈Mi∩N
j

p

p(x)

7
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Definition 4.3: Let p1, p2 be two probability measures on

the σ-algebra BΣ . Then, the function dF : P ×P → [0, 1] is

defined as follows:

dF(p1, p2) =
∣∣∣
∣∣∣ΩNp2 (p1) −ΩNp1

(p2)
∣∣∣
∣∣∣
F

(29)

where
∣∣∣
∣∣∣Θ

∣∣∣
∣∣∣
F
=

√
Trace[ΘHΘ] is the Frobenius norm of the

operator Θ, and ΘH is the Hermitian of Θ.

Definition 4.3 implies that if I and J are the index sets

corresponding to Np1 and Np2 respectively, then ΩNp1
(p2) ∈

[0, 1]CARD (I) × [0, 1]CARD(J ) and ΩNp2
(p1) ∈ [0, 1]CARD(J ) ×

[0, 1]CARD (I).

Theorem 4.2: The function dF is a pseudometric on the

space P of probability measures.

Proof: The Frobenius norm on a probability space

satisfies the metric properties except strict positivity because

of the almost sure property of a probability measure. ❒

Theorem 4.3: For ∀α ∈ [0, 1) and ∀s ∈ [1,∞], the parame-

tized function µ
α,s , αdF + (1 − α)ds is a metric on P .

Proof: Following Theorems 4.1 and 4.2, ds is a metric

for s ∈ [1,∞] and dF is a pseudometric on P . Non-negativity,

finiteness, symmetry and sub-additivity of µ
α,s follow from

the respective properties of dF and ds. Strict positivity of µ
α,s

on α ∈ [0, 1) is established below.

µ
α,s(p1, p2) = 0⇒ (1 − α)ds(p1, p2) = 0⇒ p1 = p2 (30)

❒

Remark 4.1: If two physical processes are modeled as

discrete-event dynamical systems, then the respective prob-

abilistic language generators can be associated with proba-

bility measures p1 and p2. The metric ds(p1, p2) is related to the

production of single symbols as arbitrary strings and hence

captures the difference in short term dynamic evolution. In

contrast, the pseudometric dF is related to generation of all

possible strings and therefore captures the difference in long

term behavior of the physical processes. The metric µ
α,s thus

captures the both short-term and long-term behavior with

respective relative weights of 1 − α and α.

Definition 4.4: The metric µ
α,s on P for α ∈ [0, 1), s ∈

[1,∞], induces a function να,s on A ×A as follows:

∀Pi,P
′
i′ ∈ A ,να,s(Pi,P

′
i′ ) = µα,s(H(Pi),H(P′i′ )) (31)

Corollary 4.1: (to Theorem 4.3) The function να,s in

Definition 4.4 for α ∈ [0, 1) and s ∈ [1,∞] is a pseudometric

on A . Specifically, the following condition holds:

να,s(Pi,H−1 ◦H(Pi)) = 0 (32)

Proof: Following Theorem 3.5,

να,s(Pi,H−1 ◦H(Pi)) = µα,s(H(Pi),H ◦H−1 ◦H(Pi))

= µ
α,s(H(Pi),

(
H ◦H−1

)
◦H(Pi)) = µα,s(H(Pi),H(Pi)) = 0

❒

Remark 4.2: Corollary 4.1 can be physically interpreted

to imply that the metric family να,s does not diffrentiate be-

tween different realizations of the same probability measure.

Thus when comparing two probabilistic finite state machines,

we need not concern ourselves with whether the machines

are represented in their minimal realizations; the distance

between two non-minimal realizations of the same PFSA is

always zero. However this implies that να,s only qualifies as

a pseudo-metric on A .

A. Explicit Computation of the Pseudometric ν for

PFSA

The pseudometric να,s is computed explicitly for pairs of

PFSA over the same alphabet. Before proceeding to the

general case, να,s is computed for the special case, where

the pair of PFSA have identical state sets, initial states and

transition maps.

Lemma 4.1: Given two PFSA P1
i
= (Q,Σ, δ, qi, π̃

1), P2
i
=

(Q,Σ, δ, qi, π̃
2), and σ ∈ Σ, the steps for computation of

ν0,s(P
1
i
,P2

i
) are:

Set ∆(q j) = π̃
1(q j, σ) − π̃

2(q j, σ)

Then, ν0,s(P
1
i ,P

2
i ) = max

q j∈Q

∣∣∣
∣∣∣∆(q j)

∣∣∣
∣∣∣
s

Proof: Let
H(P2

i
)(xσ)

H(P2
i

)(x)
denote a |Σ|-dimensional vector-

valued function, where σ ∈ Σ. For proof of the lemma, it

suffices to show that the following relation holds:

sup
x∈Σ⋆

ds

(
H(P1

i
)(xσ)

H(P1
i
)(x)
,
H(P2

i
)(xσ)

H(P2
i
)(x)

)
= max

q j∈Q

∣∣∣
∣∣∣∆(q j)

∣∣∣
∣∣∣
s

Since P1
i

perfectly encodes H(P1
i
), it follows that(

∀x, y ∈ Σ⋆, δ(qi, x) = δ(qi, y)
)

implies

H(P1
i
)(xσk)

H(P1
i
)(x)

= π̃1(q j, σk) =
H(P1

i
)(yσ)

H(P1
i
)(y)

where δ(qi, x) = q j. Similar argument holds for H(P2
i
). Hence,

it follows that for computing ν0,s(P
1
i
,P2

i
), only one string needs

to be considered for each state q j ∈ Q. That is,

ν0,s(P
1
i ,P

2
i ) = max

x:δ(qi,x)=q j

∣∣∣∣∣∣

∣∣∣∣∣∣
H(P1

i
)(xσk)

H(P1
i
)(x)

−
H(P2

i
)(xσk)

H(P2
i
)(x)

∣∣∣∣∣∣

∣∣∣∣∣∣
s

= max
x:δ(qi,x)=q j

∣∣∣
∣∣∣π̃1(q j, σk) − π̃

2(q j, σk)
∣∣∣
∣∣∣
s
= max

q j∈Q

∣∣∣
∣∣∣∆(q j)

∣∣∣
∣∣∣
s

❒

Lemma 4.2: Let ℘1, ℘2 be the stable probability distribu-

tions for PFSA P1
i
= (Q,Σ, δ, qi, π̃

1) and P2
i
= (Q,Σ, δ, qi, π̃

2)

respectively. Then,

lim
α→1
να,s(P

1
i ,P

2
i ) = d2

(
℘1, ℘2

)

Proof: Since P1
i

and P2
i

have the same initial state and

state transition maps,

N
j

H(P1
i

)

⋂
N k

H(P2
i

)
=


∅ if j , k

N
j

H(P1
i

)
= N k

H(P2
i

)
otherwise

8
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where N
j

H(P1
i

)
andN k

H(P2
i

)
are the jth and kth equivalence classes

(i.e., states q j and qk) for P1
i
,P2

i
, respectively. The result

follows from Definition 4.3 and Corollary 4.4 and noting that

ΩN
H(P2

i
)
(H(P1

i ))

∣∣∣∣∣
jk

=



∑
x:δ(qi ,x)=q j

p(x) = ℘1

∣∣∣
j

if j = k

0 otherwise

❒

Theorem 4.4: Given two PFSA P1
i
= (Q,Σ, δ, qi, π̃

1) and

P2
i
= (Q,Σ, δ, qi, π̃

2), the pseudometric να,s(P
1
i
,P2

i
) can be com-

puted explicitly for α ∈ [0, 1) and s ∈ [1,∞] as:

να,s(P
1
i ,P

2
i ) = α lim

α→1
να,s(P

1
i ,P

2
i ) + (1 − α)ν0,s(P

1
i ,P

2
i ) (33)

Proof: The result follows from Theorem 4.3 and Corol-

lary 4.4. ❒

The algorithm for computation of the the pseudometric ν

is presented below.

Algorithm 2: Computation of να,s(Pi,P
′
i′ )

input : Pi,P
′
i′
, s, α

output: να,s(Pi,P
′
i′

)

begin1

Compute P12 = (Q,Σ, δ, π̃12) = Pi � P′
i′

;2

Compute P21 = (Q,Σ, δ, π̃21) = P′
i′

� Pi;3

for j = 1 to CARD(Q) do4

∆( j) =
∣∣∣
∣∣∣π̃12(q j, σk) − π̃21(q j, σk)

∣∣∣
∣∣∣
s
;5

endfor6

ν0,s(Pi,P
′
i′

) = max j ∆( j);7

Compute ℘12 ; /* State Prob. for P12(Def. 2.3) */8

Compute ℘21 ; /* State Prob. for P21(Def. 2.3) */9

Compute d = ||℘12 − ℘21||2 ;10

Compute να,s(Pi,P
′
i′

) = αd + (1 − α)ν0,s(Pi,P
′
i′

);11

end12

To extend the approach presented in Lemma 4.1 to ar-

bitrary pairs of PFSA, we need to define the synchronous

composition of a pair of PFSA.

Definition 4.5: The binary operation of synchronous com-

position of PFSA, denoted as � : P ×P −→P , is defined as

follows:

Let


Pi = (Q,Σ, δ, qi, π̃)

Gi′ = (Q′,Σ, δ′, q′
i′
, π̃′)

Then, Pi � Gi′ = (Q ×Q′,Σ, δ�, (qi, q
′
i′ ), π̃

�),where

δ�((q j, q
′
k′ ), σ) =



(
δ(q j, σ), δ

′(q′
j′
, σ)

)
, if δ(q j, σ) and

δ′(q′
j′
, σ) are defined.

Undefined otherwise

(34)

π̃�((q j, q
′
k′ ), σ) = π̃(q j, σ) (35)

Remark 4.3: Synchronous composition for PFSA is not

commutative, i.e., for an arbitrary pair Pi and Gi′ ,

Pi � Gi′ , Gi′ � Pi (36)

Synchronous composition of PFSA is associative, i.e.,

∀P1
i1,P

2
i2,P

3
i3 ∈P ,

(
P1

i1 � P2
i2

)
� P3

i3 = P1
i1 �

(
P2

i2 � P3
i3

)

Theorem 4.5: For a pair of PFSA Pi and Gi′ over the same

alphabet,

H(Pi) = H(Pi � Gi′ ) (37)

Proof: Let p = H(Pi) and p′ = H(Pi � Gi′ ). It suffices to

show that

∀x ∈ Σ⋆, p(x) = p′(x) (C4)

For |x| = 0, i.e., x = ǫ, the result is immediate. For |x| ≧ 1,

we use the method of induction. Since Pi perfectly encodes

H(Pi),

∀σ ∈ Σ, p(σ) = π̃(qi, σ)

= π̃�((qi, q
′
i′), σ) = p

′(σ)

Hence C4 is true for |x| ≦ 1.

With the induction hypothesis

∀x ∈ Σ⋆, s.t, |x| = r ∈N, p(x) = p′(x) (38)

we proceed with an arbitrary σ ∈ Σ to yield

p(xσ) = p(x)π̃(q j, σ) where δ(qi, x) = q j

= p
′(x)π̃�((q j, q

′
j′), σ) where δ�⋆((qi, q

′
i′), x) = (q j, q

′
j′ )

= p
′(xσ)

This completes the proof. ❒

Theorem 4.6: Given a pair of PFSA Pi,P
′
i′

and an arbi-

trary parameter s ∈ [1,∞], Algorithm 2 computes να,s(Pi,P
′
i′
)

for α ∈ [0, 1), s ∈ [1,∞].

Proof: By Theorem 4.5, ∀α ∈ [0, 1), s ∈ [1,∞],

να,s(Pi,P
′
i′ ) = να,s(Pi � P′i′ ,P

′
i′ � Pi) (39)

Since Pi � P′
i′

and P′
i′

� Pi have the same state sets, initial

states and transition maps (See Definition 4.5), correctness

of Algorithm 2 follows from Lemmas 4.1 and 4.2. ❒

Example 4.1: The theoretical results of Section 4 are il-

lustrated with a numerical example. The following PFSA are

considered:

P1
q1
= ({q1, q2, q3}, {0, 1}, δ

1, q1, π̃
1) (40)

P2
qA
= ({qA, qB}, {0, 1}, δ

2, qA, π̃
2) (41)

as shown in Fig. 6 and Fig. 7, respectively, and Fig. 8

illustrates the computed compositions P1
q1

� P2
qA

(above) and

P2
qA

� P1
q1

(below).

Following Algorithm 2, we have

∆s =




||0.4 − 0.9 0.6 − 0.1||s

||0.2 − 0.9 0.8 − 0.1||s

||0.3 − 0.9 0.7 − 0.1||s

||0.3 − 0.7 0.7 − 0.3||s

||0.4 − 0.7 0.6 − 0.3||s

||0.2 − 0.7 0.8 − 0.3||s




(42)

9
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q1

q2 q3

1/0.41/0.2

0/.7 0/.8

0/0.6

1/0.3

Fig. 6. PFSA P1

qA qB

0/0.1

1/.7

0/0.31/0.9

Fig. 7. PFSA P2

qA3 qA1 qA2

qB2 qB3 qB1

1/0.4 1/0.2

0/0.6 0/0.8

1/0.3 0/0.70/0.6 1/0.2
0/0.8

1/0.4

1/0.3

0/0.7

qA3 qA1 qA2

qB2 qB3 qB1

1/0.9 1/0.9

0/0.3 0/0.3

1/0.7 0/0.10/0.1 1/0.7
0/0.1

1/0.7

1/0.9

0/0.3

Fig. 8. P1
� P2 (above) and P2

� P1 (below)

As an illustration, we set s =∞. Hence,

∆∞ =

[
0.5 0.7 0.6 0.4 0.3 0.5

]T
(43)

=⇒ ν0,∞(P1
q1
,P2

qA
) = max(∆∞) = 0.7 (44)

The final state probabilities are computed to be

℘P1�P2 = [0.15 0.07 0.09 0.2 0.22 0.27] (45)

℘P2�P1 = [0.29 0.29 0.29 0.043 0.043 0.043] (46)

For α = 0.5, we have

ν0.5,∞(P1
q1
,P2

qA
) = 0.5d2(℘P1�P2 , ℘P2�P1 ) + 0.5 × 0.7

= 0.4599

The pseudonorm ν0,∞(P1
q1
,P2

qA
) = 0.7 is interpreted as fol-

lows. There exists a string x ∈ Σ⋆ and an event σ ∈ Σ

such that probability of occurrence of σ, given that x has

already occurred, is 70% more in one system compared to the

other. Also, the occurrence probability of any event, given an

arbitrary string has already occurred, is different by no more

than 70% for the two systems. The composition P1
q1

�P2
qA

shown

in the upper part of Fig. 8 is an encoding of the measure

H(P1
i ) and hence is a non-minimal realization of P1

i , while

the composition P2
qA

� P1
q1

shown in the lower part of Fig. 8

encodes H(P2
i′
) and therefore is a non-minimal realization

of P2
i′
. Although the structures of the two compositions are

identical in a graph-theoretic sense (i.e. there is a graph

isomorphism between the compositions), they represent very

different probability distributions on BΣ .

5. MODEL ORDER REDUCTION FOR PFSA

This section investigates the possibility of encoding an

arbitrary probability distribution on BΣ by a PFSA with a

pre-specified graph structure. As expected, such encodings

will not always be perfect. However, we will show that the

error can be rigorously computed and hence is useful for very

close approximation of large PFSA models by smaller models.

Definition 5.1: The binary operation of projective compo-

sition
−→
� : P ×P →P is defined as follows:

Let



Pi = (Q,Σ, δ, qi, π̃)

Gi′ = (Q′,Σ, δ′, q′
i′
, π̃′)

Gi′ � Pi = (Q′ ×Q,Σ, δ�, (q′i′ , qi), π̃
�)

For notational simplicity set ∀q j ∈ Q and ∀q′k′ ∈ Q′,

ϑ(q′k′ , q j) =
∑

x:δ�
⋆

((q′
i′
,qi),x)

=(q′
k′
,q j )

(
H(Gi′ )(x)

)

Then, Gi′
−→
�Pi = (Q,Σ, δ, qi, π̃

−→
�) s.t.

π̃
−→
�(q j, σ) =

∑
q′

k′
∈Q′ ϑ(q′

k′
, q j)π̃

�((q′
k′
, q j), σ)

∑
q′

k′
∈Q′ ϑ(q′

k′
, q j)

(47)

Theorem 5.1: For PFSA Pi, G j, Hk over the same alphabet,

1. Pi
−→
�

(
G j
−→
�Hk

)
= Pi
−→
�Hk

2.
(
Pi
−→
�G j

)−→
�Hk , Pi

−→
�

(
G j
−→
�Hk

)
(Non-associative)

3. Pi
−→
�G j , G j

−→
�Pi (Non-commutative)

Proof: The results follow from Definition 5.1. ❒

We justify the nomenclature "projective" composition in

the following theorem.

Theorem 5.2: For arbitrary PFSA Pi and Gi′ over the same

alphabet,

(
Gi′
−→
�Pi

)−→
�Pi = Gi′

−→
�Pi (48a)

Proof: Let Pi = (Q,Σ, δ, qi, π̃). Definition 5.1 implies

that
(
Gi′
−→
�Pi

)
= (Q,Σ, δ, qi, π̃

‡) for π̃‡ computed as specified

in Eq. (47). It further follows from Definition 5.1, that(
Gi′
−→
�Pi

)−→
�Pi = (Q,Σ, δ, qi, π̃

−→
�), i.e.

(
Gi′
−→
�Pi

)−→
�Pi and Gi′

−→
�Pi

have the same state set, initial state and state transition

maps. Thus, it suffices to show that

∀q j ∈ Q, σ ∈ Σ, π̃‡(q j, σ) = π̃
−→
�(q j, σ) (49)

Considering the probabilistic synchronous composition(
Gi′
−→
�Pi

)
� Pi = (Q ×Q,Σ, δ�, (qi, qi), π̃

�) (See Definition 4.5),

∀x ∈ Σ⋆, δ�
⋆

((qi, qi), x) = (q j, q j), for some q j ∈ Q

10
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It follows that, for qk , q j,

ϑ(qk, q j) =
∑

x:δ�
⋆

((qi,qi),x)
=(qk ,q j)

(
H(Gi′

−→
�Pi)(x)

)
= 0 (50)

Finally we conclude ∀q j ∈ Q, σ ∈ Σ,

π̃
−→
�(q j, σ) =

∑
qk∈Q
ϑ(qk, q j)π̃

�((qk, q j), σ)∑
qk∈Q
ϑ(qk, q j)

=
ϑ(q j, q j)π̃

�((q j, q j), σ)

ϑ(q j, q j)

= π̃�((q j, q j), σ)

= π̃‡(q j, σ) (See Definition 4.5) (51)

This completes the proof. ❒

Projective composition preserves the projected distribution

which is defined next.

Definition 5.2: (Projected Distribution: ) The projected

distribution ℘ ∈ [0, 1]NUMSTATES (Pi) of an arbitrary PFSA Gi′ with

respect to a given PFSA Pi is defined by the map J·KPi
: A →

[0, 1]NUMSTATES (Pi) as follows:
JGi′KPi

= ℘ ∈ [0, 1]NUMSTATES (Pi),

suchthat if N j is the jth equivalence class (i.e. the jth state) of Pi,

then
∑

x∈N j

H(Gi′ )(x) = ℘ j

We note JGi′KPi
is a probability vector, i.e.,

NUMSTATES (Pi)∑

j=1

JGi′KPi

∣∣∣∣∣
j

=

∑

x∈Σ⋆

H(Gi′ )(x) = 1 (52)

Theorem 5.3: (Projected Distribution Invariance:)

For two arbitrary PFSA Pi and Gi′ over the same alphabet,

JGi′KPi
= JGi′

−→
�PiKPi

Proof: Let Pi = (Q,Σ, δ, qi, π̃) and Gi′ = (Q′,Σ, δ′, q′
i′
, π̃′).

It follows that Gi′
−→
�Pi = (Q,Σ, δ, qi, π̃

−→
�), where π̃

−→
� is as

computed in Definition 5.1. Using the same notation as in

Definition 5.1, we have ∀σ ∈ Σ,
∑

x:δ⋆(qi,x)=q j

H(Gi′ )(xσ) =
∑

q′
k′
∈Q′

ϑ(q′k′ , q j)π̃
′(q′k′ , σ)

=

∑

q′
k′
∈Q′

ϑ(q′k′ , q j)
{∑

q′
k′
∈Q′ ϑ(q′

k′
, q j)π̃

′(q′
k′
, σ)

∑
q′

k′
∈Q′ ϑ(q′

k′
, q j)

}

=

{ ∑

q′
k′
∈Q′

ϑ(q′k′ , q j)
}
π̃
−→
�(q j, σ) (53)

Since JGi′KPi

∣∣∣∣∣
j

=
∑

x:δ⋆(qi,x)=q j
H(Gi′ )(x) =

∑
q′

k′
∈Q′ ϑ(q′

k′
, q j), it

follows that ∀σ ∈ Σ,
∑

x:δ⋆(qi,x)=q j
H(Gi′ )(xσ)

JGi′KPi

∣∣∣∣∣
j

= π̃
−→
�(q j, σ)

⇒
∑

σ:δ(q j ,σ)=qℓ

∑
x:δ⋆(qi ,x)=q j

H(Gi′ )(xσ)

JGi′KPi

∣∣∣∣∣
j

=

∑

σ:δ(q j ,σ)=qℓ

π̃
−→
�(q j, σ)

⇒
1

JGi′KPi

∣∣∣∣∣
j

H(Gi′ )(xΣ jℓ) = π
−→
�(q j, qℓ) (54)

where Σ jℓ j Σ such that σ ∈ Σ jℓ ⇒ δ(q j, σ) = qℓ and π
−→
�(q j, qℓ)

is the jℓth element of the stochastic state transition matrix

Π
−→
� corresponding to the PFSA Gi′

−→
�Pi. It follows from Eq.

(54), that

∑

q j∈Q

H(Gi′ )(xΣ jℓ) =
∑

q j∈Q

JGi′KPi

∣∣∣∣∣
j

π
−→
�(q j, qℓ)

⇒ JGi′KPi

∣∣∣∣∣
ℓ

=

∑

q j∈Q

JGi′KPi

∣∣∣∣∣
j

π
−→
�(q j, qℓ) (55)

It follows that JGi′KPi
satisfies the vector equation

JGi′KPi
= JGi′KPi

Π
−→
� (56)

We note that JGi′
−→
�PiKPi

is the stable probability distribution

of the PFSA Gi′
−→
�Pi and hence, we have

JGi′
−→
�PiKPi

= JGi′
−→
�PiKPi

Π
−→
� (57)

In general, a stochastic matrix may have more than one

eigenvector corresponding to unity eigenvalue [18]. However,

as per our definition of PFSA (See Definition 2.2), the initial

state is explicitly specified. It follows that the right hand

side of Eq.(53) assumes that all strings begin from the same

state qi ∈ Q. Hence it follows:

JGi′KPi
= JGi′

−→
�PiKPi

(58)

This completes the proof. ❒

A. Physical Significance of Projected Distribution In-

variance

Given a symbolic language theoretic PFSA model for a

physical system of interest, one is often concerned with

only certain class of possible future evolutions. For exam-

ple, in the paradigm of deterministic finite state automata

(DFSA) [8], the control requirements are expressed in the

form of a specification language or a specification automaton.

In that setting, it is critical to determine which state of the

specification automaton the system is currently visiting. In

contrast, for a PFSA, the issue is the probability of certain

class of future evolutions. For example, given a large order

model of a physical system, it might be necessary to work

with a much smaller order PFSA, that has the same long-

term behavior with respect to a specified set of event strings.

Although projective composition may incur a representation

error in general, the long-term distribution over the states of

the projected model is preserved as shown in Theorem 5.3.

The idea is further clarified in the commutative diagram of

Fig. 9.

Probabilistic synchronous composition is an exact repre-

sentation with no loss of statistical information; but the

11
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Pi

Pi
−→
�Gi′

℘

Pi � Gi′

−→
�Gi′

J·KGi′

J·KGi′

�Gi′

J·KGi′

Fig. 9. Commutative Diagram relating probabilistic composition,

projective composition and the original projected distribution

model order increases due to the product automaton con-

struction. On the other hand, the projective composition

has the same number of states as the second argument in

(•)
−→
�(•). Both representations have exactly the same pro-

jected distribution with respect to a fixed second argument,

thus making
−→
� an extremely useful tool for model order

reduction. Algorithm 3 computes the projected composition

of two arbitrary PFSA.

Algorithm 3: Computation of Projected Composition

input : Pi = (Q,Σ, δ, qi, π̃),Gi′ = (Q′,Σ, δ′, qi′ , π̃
′)

output: Pi
−→
�Gi′

begin1

Compute Pi � Gi′ = (Q × Q′,Σ, δ� , (qi, q
′
i′

), π̃�);2

/*See Definition 4.5*/3

Compute ℘; /* State Prob. for Pi � Gi′(Def. 2.3) */4

Set up matrix T s.t. T jk = ℘((q j, q
′
k
));5

Compute π̃
−→
� = Tπ̃;6

return Pi
−→
�Gi′ = (Q′,Σ, δ′, qi′ , π̃

−→
�);7

end8

B. Incurred Error in Projective Composition

Given any two PFSA Pi and Gi′ , the incurred error in

projective composition operation P
−→
�Gi′ is quantified in the

pseudo-metric defined in Section 4 as follows:

να,s(Pi,Pi
−→
�Gi′ ) (59)

Next we establish a sufficient condition for guaranteeing zero

incurred error in projective composition.

Theorem 5.4: For arbitrary PFSA Pi = (Q,Σ, δ, qi, π̃) and

Gi′ = (Q′,Σ, δ′, q′
i′
, π̃′) with corresponding probabilistic Nerode

equivalence relations N and N ′, we have

N ≦ N ′ =⇒ να,s(Gi′ ,Gi′
−→
�Pi) = 0

Proof: N ≦ N ′ implies that there exists a possibly non-

injective map f : Q→ Q′ such that

∀x ∈ Σ⋆, δ⋆(qi, x) = q j ∈ Q =⇒ δ⋆(q′i′ , x) = f (q j) ∈ Q′

It then follows from Definition 5.1 that

ϑ(q′k′ , q j) = 0 if f (q j) , q′k′

Denoting Gi′ � Pi = (Q × Q′,Σ, δ�, (qi, q
′
i′
), π̃�) and Gi′

−→
�Pi =

(Q,Σ, δ, qi, π̃
−→
�), we have fron Definition 5.1 that

π̃
−→
�(q j, σ) =

∑
q′

k′
∈Q′ ϑ(q′

k′
, q j)π̃

�((q′
k′
, q j), σ)

∑
q′

k′
∈Q′ ϑ(q′

k′
, q j)

= π̃�(( f (q j), q j), σ) = π̃
′( f (q j), σ)

where the last step follows from Definition 4.5. The proof is

completed by noting

∀x ∈ Σ⋆, H(Gi′ )(x) = π̃′(q′i′ , x) = π̃�(( f (qi), qi), x)

= π̃
−→
�(qi, x) = H(Gi′

−→
�Pi)(x)

❒

Example 5.1: The results of Section 5 are illustrated con-

sidering the PFSA models described in Example 4.1. Given

the PFSA models P1
q1
= ({q1, q2, q3},Σ, δ

1, q1, π̃
1) and P2

qA
=

({qA, qB},Σ, δ
2, qA, π̃

2) (See Eqns. (40) and (41)), we compute the

projected compositions P1
q1

−→
�P2

qA
= ({qA, qB},Σ, δ

2, qA, π̃
12) and

P2
qA

−→
�P1

q1
= ({q1, q2, q3},Σ, δ

1, q1, π̃
21). The synchronous composi-

tions P1
q1 � P2

qA
and P2

qA
� P1

q1 were computed in Example 4.1

and are shown in Fig. 8. Denoting the associated stochastic

transition matrices for P1
q1 � P2

qA
and P2

qA
� P1

q1 as Π12 and Π21

respectively, we note:

Π
12
=




0.20 0 0.8

0 0.3.70 0

.40 0 0.60

0.20 0 0.8

0 0.3.70 0

.40 0 0.60




,Π21
=




0.90 0 0.1

0 0.9.10 0

.90 0 0.10

0.70 0 0.3

0 0.7.30 0

.70 0 0.30




· · · (q1, qA)

· · · (q2, qA)

· · · (q3, qA)

· · · (q1, qB)

· · · (q2, qB)

· · · (q3, qB)

The stable probability distributions ℘12 and ℘21 are computed

to be:

℘12
= [0.1458 0.0695 0.0864 0.2017 0.2186 0.2780] (60a)

℘21
= [0.2917 0.2917 0.2917 0.0417 0.0417 0.0417] (60b)

Using Algorithm 3, we compute the event generating func-

tions Π̃12 and Π̃21 as:

Π̃
12
=




0.7197 0.2803

0.6891 0.3109


 , Π̃

21
=




0.1250 0.8750

0.1250 0.8750

0.1250 0.8750




(61)

We note that the stable distributions for P1
q1

−→
�P2

qA
and P2

qA

−→
�P1

q1

are given by:

−−→
℘12
= [0.3017 0.6983],

−−→
℘21
= [0.3333 0.3333 0.3333] (62)

The operations are illustrated in Figs. 10 and 11 and

invariance of the projected distribution is checked as follows:

℘12(1) + ℘12(2) + ℘12(3) = 0.3017 =
−−→
℘12(1) (63a)

℘12(4) + ℘12(5) + ℘12(6) = 0.6983 =
−−→
℘12(2) (63b)

12
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℘21(2) + ℘21(5) = 0.333 =
−−→
℘21(2) (63c)

℘21(3) + ℘21(6) = 0.333 =
−−→
℘21(3) (63d)

q1

q2 q3

1/0.41/0.2

0/.7 0/.8

0/0.6

1/0.3

qA qB

0/0.7197

.31

1

0/0.68911/0.2803

−→
�P2

qA

Fig. 10. P1
q1

projectively composed with P2
qA

q1

q2 q3

1/.8751/.875

0
.125

0

0/.125

1/.875

qA qB

0/0.1

0.7

1

0/0.31/0.9

−→
�P1

q1

Fig. 11. P2
qA

projectively composed with P1
q1

6. AN ENGINEERING APPLICATION OF PATTERN

RECOGNITION

Projective composition is applied to a symbolic pattern

identification problem. Continuous-valued data from a laser

ranging array in a sensor fusion test bed are fed to a

symbolic model reconstruction algorithm (CSSR) [1] to yield

probabilistic finite state models over a four-letter alphabet.

A maximum entropy partitioning scheme [3] is employed

to create the symbolic alphabet on the continuous time

series. Figure 12 depicts the results from four different

experimental runs. Two of those runs in the top two rows

of Fig. 12 correspond to a human subject moving in the

sensor field; the other two runs in the bottom two rows corre-

spond to a robot representing an unmanned ground vehicle

(UGV). The symbolic reconstruction algorithm yields PFSA

having disparate number of states in each of the above four

cases (i.e., two each for the human subject and the robot),

with their graph structures being significantly different. The

resulting patterns (i.e., state probability vectors) for these

PFSA models in each of the four cases are shown on the left

side of Fig. 12. The models are then projectively composed

with a 64 state D-Markov machine [2] having alphabet size

= 4 and depth = 3. The resulting pattern vectors are shown

on the right hand column of Fig. 12. The four rows in Fig. 12

demonstrate the applicability of projective composition to

statistical pattern classification; the state probability vectors

of projected models unambiguously identify the respective

patterns of a human subject and an UGV.

7. SUMMARY, CONCLUSIONS & FUTURE WORK

This paper presents a rigorous measure-theoretic ap-

proach to probabilistic finite state machines. Key concepts

from classical language theory such as the Nerode equiva-

lence relation is generalized to the probabilistic paradigm

and the existence and uniqueness of minimal represen-

tations for PFSA is established. Two binary operations,

namely, probabilistic synchronous composition and projective

composition of PFSA are introduced and their properties

are investigated. Numerical examples have been provided

for clarity of exposition. The applicability of the defined

binary operators has been demonstrated on experimental

data from a laboratory test bed in a pattern identification

and classification problem. This paper lays the framework for

three major directions for future research and the associated

applications.

• Probabilistic Non-regular Languages: Since projec-

tive composition can be used to obtain smaller order

models with quantifiable error, the possibility of pro-

jectively composing infinite state probabilistic models

with finite state machines must be investigated. The

extension of the theory developed in this paper to non-

regular probabilistic languages would prove invaluable

in handling strictly non-Markovian models in the sym-

bolic paradigm, especially physical processes that fail to

have the semi-Martingle property, e.1., fractional Brown-

ian motion [19]. Future work will investigate language-

theoretic non-regularity as the symbolic analogue to

chaotic behavior in the continuous domain.

• Optimal Control: The reported measure-theoretic ap-

proach to optimal supervisor design in PFSA models will

be extended in the light of the developments reported in

this paper to situations where the control specification is

given as weights on the states of DFSA models disparate

from the plant under consideration. Such a general-

ization would allow the fusion of Ramadge and Won-

ham’s constraint based supervision approach [8] with

the measure-theoretic approach reported in [10][11].

This new control synthesis tool would prove invaluable

in the design of event driven controllers in probabilistic

robotics.

• Pattern Identification: Preliminary application in pat-

tern classification has already been demonstrated in

Section 6. Future research will formalize the approach

and investigate methodologies for optimally choosing the

plant model on which to project the constructed PFSA

to yield maximum algorithmic performance. Future in-

vestigations will explore applicability of the structural

transformations developed in this paper for the fusion,

refinement and computation of bounded order symbolic

13
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Fig. 12. Experimental Validation of Projective Composition in Pattern Recognition: (a) and (b) correspond to ranging data for a human

subject in sensor field; (c) and (d) correspond to an UGV

models of observed system behavior in complex dynam-

ical systems.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Eric Keller for his

valuable contribution in obtaining the experimental results.

REFERENCES

[1] C. R. Shalizi and K. L. Shalizi, “Blind construction of optimal

nonlinear recursive predictors for discrete sequences,” in AUAI

’04: Proceedings of the 20th conference on Uncertainty in artifi-

cial intelligence, (Arlington, Virginia, United States), pp. 504–

511, AUAI Press, 2004.

[2] A. Ray, “Symbolic dynamic analysis of complex systems for

anomaly detection,” Signal Processing, vol. 84, no. 7, pp. 1115–

1130, 2004.

[3] V. Rajagopalan and A.Ray, “Symbolic time series analysis via

wavelet-based partitioning,” Signal Processing, vol. 86, no. 11,

pp. 3309–3320, 2006.

[4] V. Garg, “An algebraic approach to modeling probabilistic dis-

crete event systems,” Proceedings of 1992 IEEE Conference on

Decision and Control, pp. 2348–2353, Tucson, AZ, December

1992.

[5] V. Garg, “Probabilistic lnaguages for modeling of DEDs,” Pro-

ceedings of 1992 IEEE Conference on Information and Sciences,

pp. 198–203, Princeton, NJ, March 1992.

[6] M. Lawford and W. Wonham, “Supervisory control of proba-

bilistic discrete event systems,” Proceedings of 36th Midwest

Symposium on Circuits and Systems, pp. 327–331, 1993.

[7] R. Kumar and V. Garg, “Control of stochastic discrete event sys-

tems modeled by probabilistic languages,” IEEE Transactions

on Automatic Control, vol. 46, no. 2, pp. 593–606, 2001.

[8] P. J. Ramadge and W. M. Wonham, “Supervisory control of

a class of discrete event processes,” SIAM J. Control and

Optimization, vol. 25, no. 1, pp. 206–230, 1987.

[9] A. Ray, “Signed real measure of regular languages for discrete-

event supervisory control,” Int. J. Control, vol. 78, no. 12,

pp. 949–967, 2005.

[10] I. Chattopadhyay, “Quantitative control of probabilistic discrete

event systems,” PhD Dissertation, Dept. of Mech. Engg. Pennsyl-

vania State University, http:// etda.libraries.psu.edu / theses

/ approved / WorldWideIndex / ETD-1443, 2006.

[11] I. Chattopadhyay and A. Ray, “Language-measure-theoretic

optimal control of probabilistic finite-state systems,” Int. J.

Control, vol. 80, no. 8, pp. 1271–1290, 2007.

[12] I. Chattopadhyay and A. Ray, “Renormalized measure of reg-

ular languages,” Int. J. Control, vol. 79, no. 9, pp. 1107–1117,

2006.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction

to Automata Theory, Languages, and Computation, 2nd ed.

Addison-Wesley, Boston, MA, USA, 2001.

[14] W. J. Harrod and R. J. Plemmons, “Comparison of some direct

methods for computing the stationary distributions of markov

chains,” SIAM J. Sci. Statist. Comput., vol. 5, pp. 453–469,

1984.

[15] J. G. Kemeny and J. L. Snell, Finite Markov Chains. New York:

Springer, 2 ed., 1960.

[16] W. Stewart, Computational Probability: Numerical methods for

computing stationary distribution of finite irreducible Markov

chains. New York: Springer, 1999.

[17] W. Rudin, Real and Complex Analysis, 3rd ed. McGraw Hill,

14



Chattopadhyay, Mallapragada & Ray Structural Transformations of PFSM

New York, 1988.

[18] R. Bapat and T. Raghavan, Nonnegative matrices and Applica-

tions. Cambridge University Press, 1997.

[19] L. Decreusefond and A. Ustunel, “Stochastic analysis of the

fractional brownian motion,” Potential Analysis, vol. 10, no. 2,

pp. 177–214, 1999.

15



International Journal of Control
Vol. 80, No. 8, August 2007, 1271–1290

Language-measure-theoretic optimal control

of probabilistic finite-state systems

I. CHATTOPADHYAY and A. RAY*

Mechanical Engineering Department, The Pennsylvania State University,
University Park, PA 16802, USA

(Received 10 October 2006; in final form 17 February 2007)

Supervisory control theory for discrete event systems, introduced by Ramadge and Wonham,
is based on a non-probabilistic formal language framework. However, models for physical
processes inherently involve modelling errors and noise-corrupted observations, implying

that any practical finite-state approximation would require consideration of event occurrence
probabilities. Building on the concept of signed real measure of regular languages, this paper
formulates a comprehensive theory for optimal control of finite-state probabilistic processes.
It is shown that the resulting discrete-event supervisor is optimal in the sense of elementwise

maximizing the renormalized langauge measure vector for the controlled plant behaviour and
is efficiently computable. The theoretical results are validated through several examples includ-
ing the simulation of an engineering problem.

1. Introduction

Supervisory control theory (SCT) of discrete-event

systems (DES), pioneered by Ramadge and

Wonham (1987), models a physical or human-engi-

neered process as a finite-state language generator and

constructs a supervisor that attempts to constrain the

‘‘supervized’’ plant behaviour within a specification lan-

guage. The original theory is based on a deterministic

language framework. Although allowing non-determin-

ism in the sense that more than one continuation of a

generated event trace (i.e., a string) is possible, no

attempt is made to quantify this randomness.

As Wonham himself observes in Lawford and

Wonham (1993), ‘‘the choice of a possible continuation

of a string is made by some internal structure unmodeled

by the systems designer’’. The notion of probabilistic

languages in the context of studying qualitative stochas-

tic behaviour of discrete-event systems first appears

in Garg (1992a, b), where the concept of p-languages

(‘p’ implying probabilistic) is introduced and an algebra

is developed to model probabilistic languages based on

concurrency (Milner 1989). A regular p-language is

essentially a set of prefix-closed traces of events,

generated by a finite-state automaton with probabilities

associated with the transitions. A p-language-theoretic

model differs in several important aspects from

other discrete-event models of stochastic analysis

such as Markov chains (Cassandras and Lafortune

1999), stochastic Petri nets (Molloy 1982, Chung et al.

1994), probabilistic automata (Rabin 1963, Paz 1971,

Doberkat 1981), and fuzzy models (Lee and

Zadeh 1969). Garg et al. (1999) and Kumar and Garg

(2001) provide a brief comparison of the p-language-

theoretic modelling paradigm with the above-mentioned

theories.
Lawford and Wonham (1993) have attempted to

extend discrete-event (SCT) to plants modelled by

p-languages, where a formal statement of the probabilis-

tic supervisory control problem (PSCP) first appears and

the notion of probabilistic supervision is introduced by

random disabling of controllable events. The key differ-

ence from other stochastic supervision approaches (e.g.,

Mortzavian 1993) lies in the fact that the computed

probabilistic supervisor is not allowed to change the*Corresponding author. Email: axr2@psu.edu
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underlying plant dynamics in the following sense:
‘‘The probabilistic effect of random disablement is deter-
mined entirely by the plant’’. The control objective is
specified as a p-language and necessary and sufficient
conditions are derived for existence of a probabilistic
supervisor that attempts to restrict the plant language
within the control specification in a probabilistic sense.
The theory of supervision of p-languages is further
developed by Kumar and Garg (2001), where the control
objective is specified as upper and lower bound
constraints. The upper bound is a non-probabilistic
language that serves as a legality constraint, while the
lower bound is a p-language. This relatively relaxed
approach to control objective specification allows for a
non-probabilistic supervisor that attempts to cut down
illegal event traces, while ensuring that legal traces
occur with probabilities greater than or equal to that
specified by the lower bound. Intuitively, the designed
supervisor stops ‘‘bad’’ strings from occurring while
guaranteeing that ‘‘good’’ strings occur with some mini-
mum pre-set frequency. However, construction of such
a control objective specification may not be possible in
many applications (e.g., battlefield command, control,
communications, and intelligence (C3I) (Phoha et al.
2002)), especially if the decisions are to made in real
time. For the theory to be useful in practice, one
must generate the specification from the definition of
the physical problem at hand. Given that one has
to come up with a non-probabilistic language to serve
as the upper legality constraint and a probabilistic
language to serve as the lower bound, this goal
may not always be achievable. The situation becomes
worse for non-stationary stochastic environments,
where the control specifications may have to be updated
online.
A significantly simplified approach to the above pro-

blem is reported by Ray (2005) and Ray et al. (2005),
where the control objective is specified as characteristic
weights on the states of the plant automaton. These
weights are normalized in the interval ½�1, 1� with posi-
tive weights assigned to good states and negative weights
to bad states. A signed real measure of regular languages
(of event traces) is defined as a function of the character-
istic weights and the state transition probabilities; and
supervisory control laws are synthesized by elementwise
maximizing the language measure vector (Ray et al.
2004, 2005). Intuitively, the supervisor ensures that the
generated event traces cause the plant to visit the
‘‘good’’ states while attempting to avoid the ‘‘bad’’
states in a probabilistic sense. As mentioned earlier,
Kumar and Garg’s work on supervisory control of
probabilistic automata (Kumar and Garg 2001) also
has a notion of ‘‘good’’ and ‘‘bad’’ strings. However,
the classification is strictly binary; the theory has no
way of saying if one ‘‘good’’ string is ‘‘better’’ than

another ‘‘good’’ string and vice versa. This implies that
the supervisor must eliminate all bad strings and hence
may not be optimal, or fail to exist if the conditions
defined in Kumar and Garg (2001) are not satisfied.
In contrast, in the measure-theoretic approach
(Ray 2005), the event traces are less or more desirable
in a continuous scale with the supervisor optimizing
the controlled plant behaviour to ensure that the
‘‘most’’ desirable strings occur ‘‘most’’ often. This has
an immediate advantage that the problem of existence
disappears; the optimal supervisor always exists and
can be computed effectively with polynomial complex-
ity. The latter approach is, in one sense, closer to
Markov chain modelling since the control specification
is state-based. However, as shown by Ray (2005),
this does not restrict the modeling power of the techni-
que. It is shown in Kumar and Garg (2001) that,
in general, maximally permissive supervisors are
non-unique. For the measure-theoretic approach, how-
ever, the optimization is shown to yield unique maximal
permissiveness among all optimal supervisors (Ray et al.
2004, 2005).

Optimal control in the context of discrete event
dynamic systems has been addressed earlier by several
investigators as cited in (Ray et al. 2004). For example,
Sengupta and Lafortune (1998) have analysed
non-probabilistic DES with assigned event and control
costs; the optimal supervisor is computed in the frame-
work of dynamic programming (DP) with two critical
assumptions to guarantee polynomial complexity of
the solution: all costs are strictly positive and there is
only one marked state (Sengupta and Lafortune 1998,
p. 34). The work reported in Ray (2005) and Ray
et al. (2005) is different in the sense that the latter
deals with probabilistic automata and the optimization,
even in the completely general case, has guaranteed
polynomial complexity of Oðn3Þ, where n is the number
of states in the unsupervised plant model. The mea-
sure-theoretic approach was originally reported for a
restricted class of terminating p-languages Ray (2005)
and Ray et al. (2005); and this restriction has been elimi-
nated in a subsequent publication (Chattopadhyay and
Ray 2006a).

The notion of terminating and non-terminating auto-
mata is originally due to Garg (19992a, b). A probabil-
istic automaton is terminating if there exist states at
which the sum of the probabilities of all defined events
is strictly less than 1. The interpretation is that the differ-
ence of the sum from 1 is the probability that the plant
terminates operation at that particular state. It is shown
in Ray (2005) that the language measure vector can be
expressed as ½I�&��1s where & is the transition prob-
ability matrix and s is the characteristic vector, where
�ij is the probability of transition from the ith state to
the jth state and �i is the characteristic weight of the

1272 I. Chattopadhyay and A. Ray



state i). A sufficient condition for the inverse of
�
I�&

�
to exist is that

P
j �ij < 1 2 i, i.e., the plant has a strictly

non-zero probability of termination from each state.
This paper eliminates the above restrictive assumption

by adopting the recently reported renormalized measure
of regular languages (Chattopadhyay and Ray 2006a)
as the performance index. It also extends the measure-
theoretic concept for optimal control of terminating
plants (Ray et al. 2004) to non-terminating plant
models, which requires a minor modification of the
control philosophy as explained below.
Supervisors in the SCT paradigm are allowed to affect

the underlying plant behaviour by selectively disabling
controllable events (Ramadge and Wonham 1987).
In case of terminating p-languages, a similar approach
suffices; the supervisor selectively nulls the occurrence
probability of controllable events to achieve the desired
control objective. However, the non-terminating case
poses a problem since any such disabling action converts
the system to a terminating p-language (i.e., the prob-
abilities of the events defined at a state fail to add up
to 1). The solution (Kumar and Garg 2001) is to propor-
tionately increase the probabilities of the remaining
enabled events at the state at which event disabling is
undertaken. An alternative approach is proposed in
this paper, where each disabled event creates a self
loop at the state (at which the event was generated)
with occurrence probability of the original transition.
The paper is organized in six sections and an

appendix. Section 2 lays down the basic framework of
the analysis and briefly reviews the original notion of
language measure (Ray 2005) and its renormalization
(Chattopadhyay and Ray 2006a). Section 3 formulates
the optimal control problem based on the concept of
renormalized measure and presents the key results.
Section 4 presents a solution of the optimal control
problem and derives the necessary algorithms for its
implementation. Section 5 presents an engineering
example, where the optimal supervisor is designed for
a three-processor message decoding system. The
paper is summarized and concluded in x 6 along with
recommendations for future research. Appendix G
establishes bounds on the derivatives of the
renormalized measure that is necessary for formulation
of the optimal control law in x 3.

2. Preliminary concepts

This section briefly reviews the concept of signed real
measure of regular languages Ray (2005) and Ray
et al. (2005) followed by a review of the notion of
renormalized measure and the pertinent notations used
in the sequel.

2.1 Brief review of language measure

Let the plant behaviour be modelled as a deterministic
finite state automaton (DFSA) as Gi , ðQ,�, �, qi,QmÞ,
where Q is the finite set of states with jQj ¼ n, and
qi2Q is the initial state; � is the (finite) alphabet of
events with �j j ¼ m; the Kleene closure of � is denoted
as �? that is the set of all finite-length strings of events
including the empty string "; the (possibly partial) func-
tion � : Q��! Q represents state transitions and
�?: Q��? ! Q is an extension of �; and Qm � Q is
the set of marked (i.e., accepted) states.

Definition 1: The language L(Gi) generated by the
DFSA Gi is defined as LðGiÞ ¼ fs 2 �� j ��ðqi, sÞ 2 Qg.

Definition 2: The marked language Lm(Gi) by the
DFSA Gi is defined as LmðGiÞ ¼ fs 2 ��j ��ðqi, sÞ 2 Qmg.

The language LðGiÞ of the DFSA Gi is partitioned as
the non-marked and the marked languages,
LoðGiÞ,LðGiÞ � LmðGiÞ and LmðGiÞ, consisting of event
strings that, starting from qi 2 Q, terminate at one of
the non-marked states in Q�Qm and one of
the marked states in Qm, respectively. The set Qm is
partitioned into Qþm and Q�m where Qþm contains all
good marked states that one may desire to terminate
on, and Q�m contains all bad marked states that one
would attempt to avoid terminating on, although it
may not always be possible to bypass a bad state
before reaching a good state. The marked language
LmðGiÞ is further partitioned into LþmðGiÞ and L�mðGiÞ

consisting of good and bad strings that, starting from
qi, terminate on Qþm and Q�m, respectively.

A signed real measure �: 2�
?
! R, �1, 1ð Þ is

constructed for quantitative evaluation of every event
string s 2 �?. The language LðGiÞ is decomposed into
null, i.e., LoðGiÞ, positive, i.e., LþmðGiÞ, and negative,
i.e., L�mðGiÞ sublanguages.

Definition 3: The language of all strings that, starting
at a state qi 2 Q, terminates on a state qj 2 Q, is denoted
as Lðqi, qjÞ. That is,

Lðqi, qjÞ, fs 2 LðGiÞ : �
?ðqi, sÞ ¼ qjg: ð1Þ

Definition 4: The characteristic function that assigns a
signed real weight to each state qi, i ¼ 1, 2, . . . , n, is
defined as: � : Q! ½�1, 1� such that

�ðqjÞ 2

½�1, 0Þ if qj 2 Q�m

f0g if qj =2Qm

ð0, 1� if qj 2 Qþm

8>>><>>>:
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Definition 5: The event cost is conditioned on a DFSA
state at which the event is generated, and is defined as
~� : �? � Q! ½0, 1� such that 8qj 2 Q, 8�k 2 �,
8s 2 �?,

1. ~�½�k, qj�, ~�jk 2 ½0, 1Þ;
P

k ~�jk < 1;
2. ~�½�, qj� ¼ 0 if �ðqj, �Þ is undefined; ~�½�, qj� ¼ 1;
3. ~�½�ks, qj� ¼ ~�½�k, qj� ~�½s, �ðqj, �kÞ�.

The event cost matrix, denoted as e�-matrix, is
defined as

e� ¼ ~�11 . . . ~�1m

..

. . .
. ..

.

~�n1 . . . ~�nm

264
375

An application of the induction principle to part (3) in
Definition 5 shows ~�½st, qj� ¼ ~�½s, qj� ~�½t, �

�ðqj, sÞ�.
The condition �k ~�jk < 1 provides a sufficient condition
for the existence of the real signed measure as discussed
in Ray (2005) along with additional comments on the
physical interpretation of the event cost.
Now let us define the measure of a sublanguage of the

plant language L Gið Þ in terms of the signed characteristic
function � and the non-negative event cost ~�.

Definition 6: The signed real measure � of a singleton
string set fsg � Lðqi, qjÞ � LðGiÞ 2 2�? is defined as

�ðfsgÞ, ~�ðs, qiÞ�ðqjÞ 8s 2 Lðqi, qjÞ:

The signed real measure of Lðqi, qjÞ is defined as

� Lðqi, qjÞ
� �

,

X
s2Lðqi, qjÞ

� fsgð Þ

and the signed real measure of a DFSA Gi, initialized at
the state qi 2 Q, is denoted as

�i ,�ðLðGiÞÞ ¼
X

j
� Lðqi, qjÞ
� �

:

Definition 7: The state transition cost of the DFSA is
defined as a function �: Q� Q! ½0, 1Þ such that

�ðqj, qkÞ

¼

0 if f� 2�: �ðqj, �Þ ¼ qkg ¼;P
�2�:�ðqj, �Þ¼qk

~�ð�, qjÞ, �jk otherwise :

8<:
ð2Þ

The state transition cost matrix, denoted as &-matrix, is
defined as

& ¼

�11 . . . �1n

..

. . .
. ..

.

�n1 . . . �nn

264
375:

It has been shown in (Ray 2005 and Ray et al. 2005)
that the measure �i ,�ðLðGiÞÞ of the language LðGiÞ,
with the initial state qi, can be expressed as
�i ¼

P
j �ij �j þ �i where �i ,�ðqiÞ. Equivalently, in

vector notation

l ¼ &lþ s ¼) l ¼ ½I�&��1s; ð3Þ

where the measure vector l, ½�1 �2 � � � �n�
T and

the characteristic vector s, ½�1 �2 � � � �n�
T; and the

condition
P

j ~�ij < 1 2 i (see Definition 5) is sufficient
for the inverse to exist.

Although the preceding analysis reported
in (Ray 2005 and Ray et al. 2005) was intended for
non-probabilistic regular languages, the event costs can
be easily interpreted as occurrence probabilities.
As such the ~&-matrix is analogous to the morph
matrix of a Markov chain in the sense that an element
~�ij represents the probability of the jth event occurring
at the ith state with the exception that the strict inequal-
ity condition

P
j ~�ij < 1 is enforced instead of satisfying

the equality. Equivalently, the &-matrix is analogous to
the state transition probability matrix of a Markov
chain in the sense that an element �jk is analogous to
the transition probability from state qj to state qk with
the exception that the strict inequality conditionP

k �jk < 1 is enforced instead of satisfying the
equality. It follows that the preceding analysis is applic-
able to the case of terminating probabilistic languages
(Garg et al: 1992a, b) that have a strictly non-zero
probability of termination at each state.

Let �u denote the set of all unmodelled events in the
terminating plant. A new unmarked absorbing state
qnþ1, called the dump state (Ramadge and Wonham
1987), is created and the transition function � is extended
to �ext : ðQ [ fqnþ1gÞ � ð� [�

uÞ ! ðQ [ fqnþ1gÞ. The
residue �j ¼ 1�

P
k �jk denotes the probability of transi-

tion from qj to qnþ1. Consequently, the &-matrix
(see Definition 7) is augmented to obtain the stochastic
state transition probability matrix as

&aug ¼

�11 �12 . . . �1n �1

�21 �22 . . . �2n �2

..

. ..
. . .

. ..
. ..

.

�n1 �n2 . . . �nn �n

0 0 0 . . . 1

26666664

37777775: ð4Þ

Since the dump state qnþ1 is not marked (Ramadge and
Wonham 1987), it follows from Definition 4 that the
corresponding state weight �nþ1 ¼ 0. Hence, the
�-vector is augmented as

saug ¼ ½s
T 0�T: ð5Þ
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Denoting ? ¼ ½�1 �2 � � � �n�
T, where �i 2 ð0, 1Þ is the

probability of transition from the state qi to the dump
state, it follows from equations (4) and (5) that the
measure of the augmented system (Chattopadhyay and
Ray 2006a) is

laugð?Þ ¼ ½lð?Þ
T 0�T: ð6Þ

Then, the event cost matrix (see Definition 5) and the
state transition cost matrix (see Definition 7) can be
represented as

e&ð?Þ ¼ �I�Diag½?�

�eP and &ð?Þ ¼

�
I�Diag½?�

�
P;

ð7Þ

where eP and P are both stochastic matrices (Bapat and
Raghavan 1997), i.e., �j

ePij ¼ 1 8i 2 f1, . . . ,mg and
�jPij ¼ 1 8i 2 f1, . . . , ng.
If the probability of termination (or equivalently the

probability of transition to the dump state) is equal
for all states, qi 2 Q, i.e., �i ¼ � 8i 2 f1, 2, . . . , ng, then
equation (6) is expressed as

laugð�Þ ¼ ½lð�Þ
T 0�T ð8Þ

Consequently, e& and& in equation (7) are represented as

e&ð�Þ ¼ ð1� �ÞeP and &ð�Þ ¼ ð1� �ÞP ð9Þ

where � is the uniform probability of termination at all
states; and botheP and P retain the properties of stochas-
tic matrices (Bapat and Raghavan 1997).

2.2 Renormalization of language measure

The notion of language measure has been recently
extended to non-terminating models by assuming a uni-
form non-zero probability of termination (�) at each
state, renormalizing the language measure vector with
respect to the probability of termination and computing
the limit of the renormalized measure (Chattopadhyay
and Ray 2006a) as �! 0þ. As the probability of termi-
nation approaches zero (i.e., �! 0þ), and the plant
coincides with the desired non-terminating model in
the limit. The construction of renormalized measure is
briefly outlined below.
The regular language generated by the DFSA under

consideration is a sublanguage of the Kleene closure
�� of the alphabet �, for which the automaton states
can be merged into a single state. In that case, the
state transition cost matrix &ð�Þ degenerates to the
1� 1 matrix ½1� �� and the normalized state weight

vector s becomes one-dimensional and can be assigned
as s ¼ 1; consequently, the measure vector lð�Þ
degenerates to the scalar measure ��1. To alleviate the
singularity of the matrix operator ½I�&ð�Þ� at �¼ 0,
the measure vector lð�Þ in (3) is normalized with respect
to ��1 to obtain the renormalized measure vector.

Definition 8: The renormalized measure is defined as

mð�Þ ¼ � lð�Þ ¼ � ½I�&ð�Þ��1s ð10Þ

and it follows from (8) that

� laugð�Þ ¼ ½mð�Þ
T 0�T: ð11Þ

3. Optimal control problem: formulation

The following notations are needed for elementwise
comparison of finite-dimensional vectors and matrices
for the analysis developed in the sequel.

Notation 1: Let Va and Vb be ðm� nÞ real matrices.
The following elementwise equality and inequalities
imply that�

Va�EV
b

�
,

�
Va

ij ¼ Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg�

Va 6¼E Vb

�
,

�
Va

ij 6¼ Vb
ij

�
9 i 2 f1, . . . ,ng, j 2 f1, . . . ,mg�

Va^EV
b

�
,

�
Va

ij � Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg�

Va >E Vb

�
,

�
Va

ij > Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg:

For the terminating plant, investigated in (Ray 2005
and Ray et al. 2005), the optimal supervisor selectively
disables controllable transitions by setting their occur-
rence probabilities to zero. This implies that if &? and
& are the transition probability matrices for the opti-
mally supervised plant and the unsupervised plant,
respectively, then

&? %E &, i:e:, �?
ij 	 �ij:

Since for any non-trivial supervisor, there is at least one
disabled transition in the supervised plant, i.e.,

9i, j such that �i, j > 0 and �?
i, j ¼ 0

it follows that if the unsupervised plant is non-
terminating, then any non-trivial supervision will result
in a terminating model. The policy of Kumar and
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Garg 2001 maintains the non-termination property by
proportionately increasing the probabilities of the
remaining enabled events at the state at which
the disabling action is applied. The first issue here is
that the supervisor must be able to affect the event
occurrence probabilities, which is more than just inhibit-
ing a transition. The second issue is that there is a
possibility of disabling all events defined at a given
state if all these events are controllable. In that case,
the row sum cannot be maintained at 1 as it becomes
strictly equal to zero. Thus, it is necessary to impose
special constraints on the unsupervised plant to circum-
vent this situation. This paper investigates an alternative
approach as described below.

Definition 9 (control philosophy): Disabling any
transition � at a given state q results in reconfiguration
of the automaton structure as: Set the self-loop
�ðq, �Þ ¼ q with the occurrence probability of � from
the state q remaining unchanged in the supervised and
unsupervised plants.
This is equivalent to adding a self-loop to the state at

which the event is being disabled, with the same occur-
rence probability as the disabled transition.

Preposition 1: For the control philosophy in
Definition 9, a supervised plant is non-terminating if
and only if the unsupervised plant is non-terminating.

Proof: The proof follows from two lemmas.

Lemma 1: Each row sum of the &-matrix remains
unchanged after supervisory actions for the control
philosophy in Definition 9.

Proof: Let & and &y be the transition probability
matrices for the unsupervised and supervised plants,
respectively. Let there be exactly one disabled transition,
in which a (controllable) event � at state qi is disabled
and let the occurrence probability of � at state qi be ~�.
If �ðqi, �Þ ¼ qk, then it follows that

kth column

#

&y ¼ &þ

0 0 � � � � � � 0 0

..

. . .
. ..

. ..
. ..

.

0 � � � ~� � � � � ~� 0

..

.
� � � 0 . .

.
0 ..

.

..

. ..
. ..

. . .
. ..

.

0 � � � � � � � � � � � � 0

266666666664

377777777775
 ith row

implying
P

j �
y

ij ¼
P

j �ij 8i. The proof follows by
induction on the number of disabled events. œ

Lemma 2: Self-loops cannot be disabled.

Proof: For the control philosophy in Definition 9,
disabling a self-loop at any given state causes regenera-
tion of the self-loop at the same state with identical
occurrence probability. œ

It is evident from the above two lemmas that each row
sum of the reconfigured &-matrix remains invariant.
The proof of Proposition 1 is thus complete. œ

Remark 1: The control philosophy in Definition 9 is
natural in the following sense. If qi !� qk, and the
controllable event � is disabled at state qi, then
the sole effect of the supervisory action is to prevent
the plant from making a transition to the state qk.
That is, the plant is forced to stay at the original state
qi and this is represented by the additional self-loop at
state qi instead of the original arc from qi to qk.

The notion of controllability is now clarified in the
context of the present paper.

Definition 10 (controllable transitions): For a given
plant, transitions that can be disabled in the sense of
Definition 9 are defined to be controllable transitions
in the sequel.

In view of Definition 10, controllability becomes state-
based, i.e., transitions labelled by the same event may be
controllable from one state and uncontrollable from
some other state. This implies that the event alphabet
� cannot be partitioned into uncontrollable and
controllable events sets as proposed in Ramadge and
Wonham (1987). Thus, a controllable transition qi

�
!
qk

refers to a triple fqi, �, qkg and the set of all such
transitions is denoted by C .

3.1 Model specification

Plant models considered in this paper are deterministic
finite state automata (DFSA) with well-defined event
occurrence probabilities. In other words, the occurrence
of events is probabilistic, but the state at which the plant
ends up, given a particular event has occurred, is
deterministic. Furthermore, no emphasis is laid on the
initial state of the plant and it is assumed that the
plant may start from any state. Furthermore, having
defined the characteristic state weight vector s, it may
not be necessary to specify the set of marked states,
because if �i ¼ 0, then qi is not marked and if �i 6¼ 0,
then qi is marked. Therefore, plant models with an
arbitrary uniform termination probability � 2 ð0, 1Þ,
i.e., �i ¼ � 8i 2 f1, 2, . . . , ng, can be completely specified
by a sextuple as

Gð�Þ ¼
�
Q,�, �,e&ð�Þ, s,C�; ð12Þ
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where e&ð�Þij is the occurrence probability of event �j from
state qi and

P
j
e&ð�Þij ¼ 1� � 8i. An application of (7)

with uniform uniform termination probability � yields
an alternative representation of the sextuple in (12).

Gð�Þ ¼
�
Q,�, �, ð1� �ÞeP, s,C�; ð13Þ

where eP is the the morph matrix of the underlying
Markov chain.
As �! 0þ, the resulting non-terminating plant model

is denoted as

Gð0Þ ¼ ðQ,�, �,eP, s,C Þ: ð14Þ

Definition 11: Given � 2 ð0, 1Þ, a terminating plant
Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ is defined to be the
�-neighbour of the non-terminating plant
Gð0Þ ¼ ðQ,�, �,eP, s,C Þ.
For a given non-terminating plant G(0) and a fixed
�0 2 ð0, 1Þ, there is exactly one �0-neighbour Gð�0Þ.

Notation 2: Let � 2 ð0, 1Þ be the unform probability of
termination for a terminating plant Gð�Þ ¼ ðQ,�, �,
ð1� �ÞeP, s,C Þ. Let P be the state transition probability
matrix of the underlying Markov chain, which is gener-
ated from � and e& (see equation (2)). Then, the (renor-
malized) language measure vector (see Definition 8)
is obtained as

mð�Þ ¼ �
h
I� ð1� �ÞP

i�1
s ð15Þ

where ð1� �ÞP is the sub-stochastic transition probabil-
ity matrix for the terminating plant. Similarly, for a non-
terminating plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ having the
stochastic transition probability matrix P, the (renorma-
lized) measure vector (Chattopadhyay and Ray 2006a) is
denoted as

mð0Þ ¼ lim
�!0þ

mð�Þ ¼ lim
�!0þ

�

�
I� ð1� �ÞP

��1
s ð16Þ

In the sequel, renormalized measure m in equations (10)
and (11) is referred to as measure for brevity.

3.2 Construction of an optimal supervisor

A supervisor disables a subset of the set C of controlla-
ble transitions and hence there is a bijection between the
set of all possible supervision policies and the power set
2C . That is, there exists 2jC j possible supervisors and
each supervisor is uniquely identifiable with a subset of
C and the language measure � allows a quantitative
comparison of different supervision policies.

Definition 12: For an unsupervised (non-terminating)
plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ, let Gy and Gz be the
supervised plants with sets of disabled transitions,
Dy � C and Dz � C , respectively, whose measures are
my and mz. Then, the supervisor that disables Dy is
defined to be superior to the supervisor that disables
Dz if my^E m

z and strictly superior if my>E m
z.

Definition 13 (Optimal supervision problem): Given a
(non-terminating) plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ, the
problem is to compute a supervisor that disables a
subset D?

� C , such that

m? ^E m
y 8Dy � C

where m? and my are the measure vectors of the supervised
plants G? and Gy under D? and Dy, respectively.

Remark 2: For a non-trivial plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ (i.e., jQj > 1), there may exist two supervisors
that are not comparable in the sense of Definition 12.
For example, given a two-state unsupervised plant G,
if Gy and Gz are supervised plants under two different
supervisors with disabled transition sets, Dy and Dz,
respectively, then the following situation may occur for
the indices i 6¼ j.

�yi > �zi

	 
 ^
�yj < �zj

	 

;

where myi and m
z

i are the ith elements of the measure vec-
tors for Gy and Gz, respectively. It is shown in the next
section that, for a given plant, an optimal supervisor
(in the sense of Definition 13) does exist for which the
measure vector is elementwise greater than or equal
to the measure vector of the plant under any other
supervision policy.

Terminating plant models have sub-stochastic
transition probability matrices (see Definition 7). By
postulating the existence of unmodelled transitions,
such plants can be transformed to non-terminating
models as explained below. For uniform termination
probability � 2 ð0, 1Þ, equations (8) and (11) suggest
the possibility of computing optimal supervision
policies for terminating plants based on the analysis of
non-terminating plants.

4. Optimal control problem: solution

This section presents a solution to the optimal supervi-
sion problem by assuming a uniform non-zero probabil-
ity of termination, �, at each state. Then, it is shown that
the solution for the corresponding non-terminating
plant can be obtained from the control policy of the
terminating plant and the bounds on the derivatives of
the language measure (see Appendix A).
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Let � 2 ð0, 1Þ be the uniform termination probability of
an unsupervised plant Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ.
The resulting (substochastic) state transition cost
matrix is &ð�Þ ¼ ð1� �ÞP. For such plants with uniform
non-zero termination probability, the following lemma
states existence of an augmented plant model.

Lemma 3: For the terminating plant Gð�Þ ¼
ðQ,�, �, ð1� �ÞeP, s,C Þ, let the corresponding
augmented non-terminating plant be Gaug ¼ ðQaug,
�aug, �aug,e&aug, saug,C Þ. Let m

?ð�Þ and myð�Þ be the mea-
sures of the terminating plant with the respective sets of
disabled transitions D?

� C and Dy � C . Then,

9D?
� C s:t: m?ð�Þ^Em

yð�Þ 8Dy � C 8� 2 ð0, 1Þ

ð17Þ

which implies that an optimal supervisor for Gaug exists
(in the sense of Definition 13) which disables D?

� C .

Proof: The first n elements of the measure vectors of
the augmented plant and the unaugmented plant are
identically equal as seen in equation (11). Then, the
proof follows from Definition 12. œ

The remainder of this section derives an algorithm for a
supervision policy that elementwise maximizes
the measure of the terminating plant G(�). Lemma 3
guarantees that the optimal policy is based on a non-
terminating plant.

Proposition 2 (Monotonicity): Let &ð�Þ and mð�Þ be the
state transition cost matrix and the measure vector of
an unsupervised plant Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ,
respectively. Let a supervisor be constructed to reconfi-
gure the plant by disabling a set of controllable transi-
tions Dy � C such that & is modified to &y by
following Algorithm 1. Then, denoting the measure
vector of the supervised plant by my, it follows that
my^E m; and equality holds if and only if &y ¼ &.

Proof: It follows from equation (15) in Notation 2 that

my � m ¼ � I�&y
� ��1

�� I�&½ �
�1s

¼ � I�&y
� ��1

½I�&� � ½I�&y�
� �

I�&½ �
�1s

¼ � I�&y
� ��1

&y �&
� �

m:

Defining the matrix ",&y �&, and the ith row of " as
�i, it follows that

�i
Tm ¼

X
j

�ij�j ¼
X
j

�	ij�ij ð18Þ

where

�ij ¼

ð�i � �jÞ if �i > �j

0 if �i ¼ �j

ð�j � �iÞ if �i < �j

8>><>>: ¼)�ij ^ 0 8i, j:

Since
Pn

i¼1 &ij ¼
Pn

i¼1 &
y

ij; 8j, k, it follows from non-
negativity of &, that ½I�&y��1>E 0. Since 	i � 0 8i, it
follows that �i

Tm � 0 8i ) my^E m. For �j 6¼ 0 and
� as defined above, �T

i m
k ¼ 0 if and only if �¼ 0.

Then, &y ¼ & and my ¼ m. œ

Corollary 1: Under an identical situation to that
assumed in the statement of Proposition 2, let the
plant be reconfigured as given in Algorithm 2. Then,
denoting the measure vector of the modified plant by
my, it follows that my%E m; and equality holds if and
only if &y ¼ &.

Proof: The proof is similar to that of
Proposition 26. œ

Proposition 2 facilitates formulation of the algorithm
for computing an optimal supervisor for plants with
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uniform non-zero probability of termination at

each state. Let the kth iteration of the algorithm com-

pute a set D½k� � C of controllable transitions to be

disabled in the sense of the control philosophy in

Definition 9. The language measure vector computed

in the kth iteration of the algorithm is denoted by m½k�.

The algorithm terminates at the ðkþ 1Þth iteration if

D½k� ¼ D½kþ1�, which is the optimal set of disabled transi-

tions computed by the algorithm and is denoted by D?.

The algorithm is started with the unsupervised plant

(i.e., with all controllable transitions enabled) and

hence D½0� ¼ ;. A formal description is given in

Algorithm 3.

Proposition 3: Let m½k� be the language measure

vector computed in the kth iteration of Algorithm 3.

The measure vectors computed by the algorithm

form an elementwise non-decreasing sequence, i.e.,

m½kþ1�^E m
½k� 8k.

Proof: Let the state transition probability matrix in

the kth iteration of Algorithm 3 be denoted by &½k�.
Then, the matrix &½kþ1� is generated from &½k� by follow-

ing the procedure as described in Proposition 2. Hence,

m½kþ1�^E m
½k�. œ

Proposition 4 (effectiveness): Algorithm 3 is an

effective procedure (Hopcroft et al. 2001), i.e., it is

guaranteed to terminate.

Proof: Let Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ be the unsu-

pervised plant and let CardðC Þ ¼ ‘ 2 N. Denoting the

set of all permutations of the vector ½1 2 � � � ‘�T by

P ð‘Þ, a function 
 : 2C�!P ð‘Þ is defined as

1: 8Dy � C , �yi1 > �yi2 > � � � > �yin

	 

¼) 
ðDyÞ ¼ ½i1 i2 � � � in�

T
� �

2: �yis ¼ �yit

	 

^ is > itð Þ

¼) if 
ðDyÞs ¼ is and 
ðDyÞt ¼ it then s > t
� �

:

Let m½k� be the measure vector computed in the kth itera-
tion of Algorithm 3. Then, m½k� ¼ m½kþ1� implies that

Algorithm 3 terminates in kþ 1 iterations according to

its stopping rule.
Next let D½k1� and D½k2� be the disabling sets in itera-

tions k1 and k2, respectively. If 
ðD
½k1�Þ ¼ 
ðD½k2�Þ, then

m½k1þ1� ¼ m½k2þ1�. Since 
ðD½k1�Þ ¼ 
ðD½k2�Þ, it follows from

the definition of 
 that if �½k1�i > �½k1�j , then �½k2�i ^ �½k2�j .

If �½k2�i > �½k2�j then controllable transitions qi!� qj are

disabled in both iterations k1 þ 1 and k2 þ 1. If

�½k1�i ¼ �½k1�j , then disabling or enabling controllable

transitions qi!� qj does not affect the measure vector.

Hence, it follows that m½k1þ1� and m½k2þ1� can be obtained

by disabling the same set of controllable transitions,

thus implying m½k1þ1� ¼ m½k2þ1�. Since the measure

vectors can repeat only at the final iteration,

Algorithm 3 is guaranteed to terminate within

CardðP ð‘ÞÞ ¼ ‘! iterations. Therefore, effectiveness of

Algorithm 3 is established. œ

Next it is established that Algorithm 3 is correct in the

sense that an optimal supervision policy is generated.

Proposition 5 (Optimality): For a terminating plant

Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP,s,C Þ, the supervision policy

computed by Algorithm 3 is optimal in the sense of

Definition 13.

Proof: Let G(�) have the state transition cost matrix &,

measure m½0�, no disabled events, i.e., D0
¼ ;. Let G(�) be

configured as the supervised plant G?ð�Þ by application

of Algorithm 3 when it stops.
Let Gy be another configured plant distinct from G?.

Let D?
� C and Dy � C be the respective sets of

disabled transitions and �? and �y be the respective

measures for G? and Gy; and D?
6¼ Dy.

Let the following set differences be denoted as:

4D,D?
nDy and rD,Dy nD?. An application of

Algorithm 3 yields

. 8i, j �?i > �?j ¼) all controllable transitions qi
!

� qj are

disabled.
. 8i, j �?i%�?j ¼) all controllable transitions qi

!

� qj are

enabled.

Optional control of probabilistic finite-state systems 1279



To change the plant configuration from G? to Gy, all
transitions in 4D are enabled and all transitions in
rD are disabled. Since any such change requires us to
either disable a transition qi!� qj where �?i 	 �?j or
enable a disabled transition qi!� qj where �?i > �?j , it
follows from Corollary 1 that my%E m

?.
Since Gy is an arbitrary configuration distinct from

G?, it follows that G? is an optimal supervision policy
in the sense of Definition 13. œ

In the reported work on discrete event control of non-
probabilistic regular languages (e.g., (Ramadge and
Wonham 1987)), the emphasis is on computing the
maximally permissive supervisor in the sense that the
supervised plant language is the supremal controllable
sub-language of the specification. A similar approach
is taken for probabilistic regular languages (Garg
1992a, b). In contrast, the measure-theoretic concept
in this paper computes a policy that maximizes the
elements of the language measure vector elementwise
to find a supervisor with maximal performance.
Proposition 5 shows that there exists at least one optimal
supervisor. Now it is shown that the optimal
supervisor computed by Algorithm 3 is unique in the
sense of being maximally permissive among all
policies that guarantee optimal performance of the
supervised plant.

Proposition 6 (uniqueness): Given an unsupervised
plant G(�), the optimal supervisor G?ð�Þ, computed by
Algorithm 3, is unique in the sense that it is maximally
permissive among all possible supervision policies with
optimal performance. That is, if D? and Dy are the dis-
abled transition sets, and m? and my are the language
measure vectors for G? and an arbitrarily supervised
plant Gy, respectively, then

m?�E m
y ¼)D?


 Dy � C : ð19Þ

Proof: If G? and Gy are distinct, then D#
6¼ D?. Given

m?�E m
#, let G? be reconfigured to Gy by disabling and/or

re-enabling appropriate controllable transitions. It
follows from equation (18) that

0 ¼ my � m? ¼ I�&y
� ��1

&y �&?
� �

m?

) &y �&?
� �

m? ¼ 0: ð20Þ

The ith element of &y �&?
� �

m? is expressed as the
finite sum of real numbers

0 ¼

 
&y �&?
� �

m?

!
i

¼
X�
r¼1

Ti
r; ð21Þ

where 0 	 � 	 2CardðC Þ and each Ti
r is of the form:

Ti
r ¼

�i
rð�

?
i � �?j Þ > 0, if Ti

r arises due to disabling

qi
!

� qj for some qj 2 Q

�i
rð�

?
j � �?i Þ � 0, if Ti

r arises due to enabling

qi
!

� qj for some qj 2 Q

8>>>>><>>>>>:
ð22Þ

because each �i
r represents event occurrence

probabilities and hence are positive, and the the logic
of disabling and re-enabling follows Algorithm 3.
Therefore, it follows from equation (22) that
Ti
r ¼ 0 8r 2 f1, . . . , �g.
Hence, it is necessary to re-enable controllable transi-

tions qi!� qj and disable the self loop at qi such that

�yi ¼ �yj for reconfiguration from Gy� to G?
�. Note that

all such transitions are guaranteed to be enabled in G?
�

(see line 10 in Algorithm 3). Therefore, given m?�E m
y,

it follows that D?
� Dy. That is, G?ð�Þ is unique for

all � 2 ð0, 1Þ in the sense that the configured plant is
maximally permissive among all other configurations
that yield the same optimal measure m?ð�Þ. œ

4.1 Optimal control of non-terminating plants

This section presents the optimal supervision problem
for non-terminating plants (i.e., with termination prob-
ability �¼ 0 at each state) having the structure
Gð0Þ ¼ ðQ,�, �,eP, s,C Þ and the corresponding stochas-
tic transition probability matrix is P. The rationale
for working on a terminating plant, instead of the
non-terminating plant is explained below.

By maximizing the measure mð�Þ for a given � 2 ð0, 1Þ,
an optimal control law can be derived based on the state
transition cost matrix &ð�Þ ¼ ð1� �ÞP of the supervised
plant language and the originally assigned s-vector.
Such an optimal control law is sought to be �-indepen-
dent in the sense of having the same disabling set
D � C for a given range of �, where � might be restricted
to be not too far away from 0þ. On the other hand, from
the perspective of numerical stability and accuracy in
computation of mð�Þ (see Definition 8), it is desirable to
have a relatively large positive value of �. The results
derived in this section serve toward establishing upper
bounds on � for which the optimal control law should
be �-independent and the associated computation is
numerically stable. The main objective is summarized
below.

A uniform non-zero probability of termination �? 2 ð0, 1Þ is to
be computed such that the terminating plant Gð�?Þ and the

1280 I. Chattopadhyay and A. Ray



non-terminating plant G(0) shall have the same the disabling set
D � C . However, in general, their measures could be different,
i.e., mð�?Þ 6¼E mð0Þ.

Proposition 7: Let ð1� �ÞP and mð�Þ be the state transi-
tion cost matrix and the measure of the plant
Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ. Then, for all qi, qj 2 Q,
there exists �?ij 2 ð0, 1� such that 8� 2 ð0, �?ijÞ, the sign
of �ið�Þ � �jð�Þ

� �
is fixed (i.e., positive, negative or

zero); and �?ij can be computed as an explicit function
of the stochastic matrix P and state characteristic
vector s.

Proof: Let ijð�Þ, �ið�Þ � �jð�Þ 8� 2 ð0, 1Þ, which is a
smooth function of �, and ijð0Þ ¼ lim�!0þijð�Þ. The
proof is based on the following two cases.

Case 1: No sign change of ijð�Þ in ð0, 1Þ ) �?ij ¼ 1.
This includes: ijð0Þ ¼ 0 and ðdkijð�Þ=d�

kÞj�¼0 ¼ 0 for all
k� 0 because ijð�Þ ¼ 0 8� 2 ð0, 1Þ by Proposition A.3.

Case 2: ijð�Þ changes sign in ð0, 1Þ; and
ð@rijð�Þ=@�

rÞj�¼0 ¼ �ij 6¼ 0 for some integer r� 0.

If r¼ 0, there exists �1 2 ð0, 1Þ such that ijð�1Þ ¼ 0 for
the first time. If r>0, it is possible that ijð0Þ ¼ 0.
Then, as � is increased from zero, ijð�Þ becomes non-
zero and there exists �1 2 ð0, 1Þ such that ijð�1Þ ¼ 0
again. Smoothness of ijð�Þ necessitates that
ð@rijð�Þ=@�

rÞj�¼�?
ij
¼ 0 for some �?ij 2 ð0, �1Þ. Then, it

follows from the Mean value Theorem that there exists
�2 2 ð0, �

?
ijÞ such that

@rþ1ijð�Þ

@�rþ1
��
�¼�2
¼

�ij
�?ij

for the given r� 0, Proposition A.2, triangular inequal-
ity, and the relation ijð�Þ ¼ �ið�Þ � �jð�Þ yield

�?ij ¼

����ð@r�ið�Þ=@�rÞ���¼0 � ð@r�jð�Þ=@�rþ1Þ���¼0����
ðrþ 1Þ! 2rþ3 inf�6¼0

���������I� Pþ �P
��1��������

1

� �rþ1

¼

jf½I�PþP ��1��P�gi �f½I�PþP ��1��P�gjj

8� inf�6¼0 I�Pþ�P½ ��1k k1ð Þ
; if r ¼ 0

I�PþP½ ��1 I� I�PþP½ ��1½ �
r
s

� 
i

� I�PþP½ ��1 I� I�PþP½ ��1½ �
r
s

� 
j

������
������

2r�3
�
inf�6¼0

�����
I�Pþ�P

��1����
1

�rþ1 ; if r > 0:

8>>>>>>>><>>>>>>>>:
ð23Þ

œ

Remark 3: For a non-terminating plant Gð0Þ ¼

ðQ,�, �, ~P, sÞ, let �? ¼ mini, j �
?
ij. Then, the plant config-

uration obtained by applying a single iteration of

Algorithm 3 to the �-parameterized plant Gð�Þ ¼
ðQ,�, �, ð1� �ÞeP, s,C Þ is identical for all � 	 �?.

The procedure of computing �? is summarized as

Algorithm 4.

Proposition 8: Complexity of computing a positive

bound for �? is Oðn3Þ where n is the number of

plant states.
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Proof: Referring to Algorithm 4, the part within the

nested For loops (lines 10 to 32) is executed at most n2

times and each iteration involves only single-iteration

scalar operations. Thus the computational complexity
of this part is of the order of Oðn2Þ. Lines 5 and 6 involve

inversion of n� n dimensional non-singular matrices
and hence the complexity of execution is of the order

of Oðn3Þ. Proposition G (see Appendix) guarantees
that the complexity of computing P is, in general,

of the order of Oðn3Þ. Line 7, which computes
M2 ¼ inf�6¼0 k½I� Pþ �0P �

�1
k1, is a search problem.

However, since M2 appears only in the denominator of
the expressions for �curr, it follows that, if for some

� ¼ �0 6¼ 0 and by using

M2 ¼

�����I� Pþ �0P
��1����

1

ð24Þ

it is possible to obtain a positive lower bound of �?
in Algorithm 4. Since the computation of
k½I� Pþ �0P �

�1
k1 is of the order of Oðn3) due to the

matrix inversion, it is concluded that a positive lower
bound of �? can be computed with a complexity
of Oðn3Þ. œ

Remark 4: It is shown in (Chattopadhyay and Ray
2006a) that for any stochastic matrix P

�
I�Pþ�P

��1
¼
�
I�PþP

��1
þ

�
1��

�

�
P 8 � 6¼ 0

¼)

	�
I�PþP

��1
�P



þ

�
1

�

�
P : ð25Þ

Using M2 ¼ k½I� Pþ P ��1k1 instead of
M2 ¼ inf�6¼0 k½I� Pþ �P ��1k1 (i.e., using � ¼ 1) in

Algorithm 4 yields a value which satisfies the require-
ment stated in Remark 3 and therefore qualifies as �?.
Thus, the major advantage of this approximation is
having significantly smaller computational complexity

because the search involved in computing the infimum
is avoided at the cost of using a smaller value of �?,
which may make subsequent computation of measure
slightly more difficult due to possible ill-conditioning

(see Definition 8).

On account of Proposition 7 and Remark 3, Algorithm 3
is modified to solve the optimal supervision problem

for non-terminating plants and the modified version is
formally presented in Algorithm 5.

Proposition 9 (effectiveness): Algorithm 5 is an effec-
tive procedure (Hopcroft et al. 2001), i.e., it is guaran-
teed to terminate.

Proof: Comparison of Algorithm 3 and Algorithm 5
reveals that while the former assumes a fixed probability
of termination � at each state, the latter modifies
this parameter, denoted as �½k�? , at each iteration k. Let
�min ¼ min

�
�½1�? , �½2�?

�
and let D½1�ð�minÞ and D½2�ð�minÞ be

sets of disabled transition at the first and second itera-
tions, respectively, for the terminating plant Gð�minÞ.
Similarly, for the non-terminating plant G(0), let
D½1�ð0Þ and D½2�ð0Þ be the sets of disabled transitions
at the first and second iterations, respectively. It
follows from Remark 3 that D½1�ð0Þ ¼ D½1�ð�minÞ and
D½2�ð0Þ ¼ D½2�ð�minÞ.

Extending the above argument by induction based
on k iterations of Algorithm 5 and denoting
�min ¼ minð�½1�? , . . . , �½k�? Þ, an application of Algorithm 3
on a terminating plant Gð�minÞ yields

D½r�ð0Þ ¼ D½r�ð�minÞ 8r 2 f1, . . . , kg:
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Proposition 4 states that, for an arbitrary plant,
Algorithm 3 is guaranteed to terminate within finitely
many iterations. Hence, Algorithm 5 is an effective
procedure. œ

Next, it is shown that the plant configuration obtained
by Algorithm 5 is optimal in the sense of Definition 13.

Proposition 10 (optimality): For a non-terminating
plant Gð0Þ ¼ ðQ,�, �,eP, s,C ÞÞ, the supervision policy
computed by Algorithm 5 is optimal in the sense of
Definition 13.

Proof: Let the set of disabled transitions computed at
the kth iteration Algorithm 5 be denoted by D

½k�
lim and

the termination probability be denoted by �½k�? .
Let the set of disabled transitions at the convergence
of Algorithm 5 be D

½m�
lim. Let �min ¼ minr2f1,..., ‘g

ð�½1�? , . . . , �½‘�? Þ > 0.
Let Gð�minÞ be a terminating plant with

&ð�minÞ ¼ ð1� �minÞP. It follows from the proof of
Proposition 9 that applications of Algorithm 3 to
Gð�minÞ and Algorithm 5 to G(0) yield the same set D

of disabled controllable events although the optimal
measures, being �-dependent would be different, i.e.,

mð�minÞ 6¼E mð0Þ.
Proposition 5 implies that the optimal disabling set

for a plant G(�) generates the the same set of disabled
controllable transitions for all 0 < �% �min. Because of
continuity of mð�Þ with respect to �, it is argued that
G?ð0Þ is optimal in the sense of Definition 13, i.e.,
m? ^E m

y, where Gyð0Þ is obtained by arbitrarily disabling
controllable transitions in G. This completes the
proof. œ

Next it is shown that the supervision policy computed by
Algorithm 5 is unique in the same sense as
Proposition 6.

Proposition 11 (Uniqueness): Let G(0) be an unsuper-
vised non-terminating plant and G?ð0Þ be the supervised
plant configured by Algorithm 5. Then, G? is unique in
the sense that it is maximally permissive among super-
vised plants that yield optimal performance based on

�-neighbours G(�) of G(0) (see Definition 11) for all
� 2 ð0, �?Þ, where �? is computed by Algorithm 4.
Equivalently, if Gyð�) is an arbitrarily supervised plant,
then the following condition holds:

�
m?ð�Þ^E m

yð�Þ
�^��

D?
� Dy

�_�
m?ð�Þ 6¼E m

yð�Þ
��

;

where m and D denote respective language measures and
sets of disabled transitions.

Proof: It follows from Proposition 10 that
m?ð0Þ^E m

yð0Þ. It also follows from Proposition that
m?ð�Þ^E m

yð�Þ for � 2 ð0, �?Þ. If m
?ð�Þ�E m

yð�Þ, then G?ð�Þ
and Gyð�Þ are both optimal supervised configurations
of the unsupervised terminating plant G(�). It follows
from Proposition 6 that D?

� Dy; otherwise
m?ð�Þ 6¼E m

yð�Þ. œ

Proposition 12: Computational complexity of
Algorithm 5 is of the same order as that of Algorithm 3.

Proof: Algorithm 5 computes �? in each iteration and
complexity of this computation is Oðn3Þ, where n is the
number of states in the plant (see Proposition 8). Each
iteration of both Algorithm 3 and Algorithm 5 involves
computation of the measure vector m, whose complexity
is also Oðn3Þ because of n� n matrix inversion. Hence,
computational complexity of each iteration is Oðn3Þ
for both Algorithm 3 and Algorithm 5. Finally, the
argument presented in Proposition 9 implies that
the number of iterations in Algorithm 5 is of the
same order as that in Algorithm 3. This completes
the proof. œ

4.2 Testing of computational complexity

Proposition 4 shows that Algorithm 3 is an effective
procedure (Hopcroft et al. 2001), i.e., the solution is
guaranteed to converge in a finite number of iterations.
Extensive simulation suggests that the the maximum
number of iterations for Algorithm 3 is actually of poly-
nomial order in n, where n is the number of states in the
unsupervised plant. The result is illustrated in figure 6,
where the maximum number of required iterations
Imax is plotted against number, n, of plant states. For
each n, 10, 000 simulation runs were conducted for
synthesis of optimal plant configuration with randomly
generated entries in the pair

�
ð1� �ÞP, s

�
; and Imax

was chosen to be the maximum number of iterations
required by Algorithm 3 to converge; this is the most
conservative case. The plot in figure 1 shows a distinct
sub-linear variation. The following conjecture is made
based on these observations.

Conjecture 1 (polynomial convergence): Given a termi-
nating plant G(�) with a uniform non-zero probability of
termination � at each of the n plant states,

1. Algorithm 3 converges in at most O(n) iterations.
2. Computational complexity of Algorithm 3 is bounded

by Oðn4Þ.

Statement 2 in Conjecture 1 follows from Statement 1
and the following facts: Each iteration has complexity
of Oðn3Þ due to matrix inversion in the computation of
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the language measure vector, and matrix inversion has
complexity of Oðn3Þ). Combination of Conjecture 1
and Proposition 12 implies that Algorithm 5 converges
in O(n) iterations and that complexity of the algorithm
is Oðn4Þ. Similar to the procedure, described above for
Algorithm 3, 10, 000 random simulation runs for each
n were conducted for testing Algorithm 5. Figure 2
shows the plot of average number of iterations required
to converge at each value of n in contrast to figure 1,
where the maximum number of iterations is potted. As
expected, the plot of figure 2 is also sub-linear.

5. Optimal control of three processor message decoding

This section presents the design of a discrete-event
(controllable) supervisor for a multiprocessor message

decoding system, described in an earlier
publication (Ray et al. 2004). The optimal supervisory
algorithm has been synthesized based on the algorithms
presented in earlier sections.

Figure 3 depicts the arrangement of the message
decoding system, where each of the three processors,
p1, p2 and p3, receives encoded messages that are to
be decoded. The processor p3 normally receives the
most important messages, and p1 receives the least
important messages. There is a server between each
pair of processors—s1 between p1 and p2; s2 between
p2 and p3; and s3 between p3 and p1. Each server is
connected to each of its two adjacent processors by
a link—the server sj is connected to the adjacent pro-
cessors pi and pk through the links Lij and Lkj, respec-
tively. Out of these six links, each of the three links,
L11, L12, and L21, is equipped with a switch to disable
the respective connection whenever it is necessary;
each of the remaining three links, L22, L32, and L33,
always remain connected. Each server si is equipped
with a decoding key ki that, at any given time, can
only be accessed by only one of the two processors,
adjacent to the server, through the link connecting
the processor and the server. In order to decode the
message, the processor holds the information on
both keys of the servers next to it, one at a time.
After decoding, the processor simultaneously releases
both keys so that other processors may obtain
access to them.

Figure 4 depicts the unsupervised plant model of the
decoding system as a finite state automaton, where
state 1 is the initial state. The event pij indicates that
processor pi has accessed the key kj; and the event fi
indicates that the processor pi has finished decoding
and (simultaneously) released both keys in its possession
upon completion of decoding. The events fi
are uncontrollable because, after the decoding is
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Figure 1. Number of iterations to converge in Algorithm 3.
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Figure 2. Number of iterations to converge in Algorithm 5.
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Figure 3. Arrangement of the processor links.
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initiated, there is no control on when a processor finishes
decoding.
Table 1 lists the event cost matrix e&. Two different

control specifications are investigated. The first set of
specifications, which emphasizes avoiding deadlock, is

represented by the s vector in the first column of
table 2. The second set of specifications, which focuses

on increasing the throughput of processor 1, is repre-
sented by the s vector in the second column of table 2.

The positive elements of the s vector are assigned to
the states 8 to 16 that represent successful decoding of
each processor. The s values of the deadlock states 26

and 27, where each processor holds exactly one key
and hence no processor releases its key, are assigned

negative values. The remaining states are non-marked
and are assigned zero weights.
Algorithm 5 is applied to obtain the sequence of

measure vectors for the two control specifications.
The results of successive iterations, enumerating the
renormalized measure vectors, are presented in Table 3

and 4 respectively. The last column in each table is
the optimal renormalized measure vector. The

optimization requires 7 iterations in Case 1 and 5
iterations in Case 2.
The optimal configurations for the plant obtained

under Algorithm 5 are depicted in figures 5 and 6 respec-
tively. For supervisor policy 1, the controlled plant is
not trim and, for supervisor policy 2, there are discon-

nected states in the controlled model. This is interpreted
as the supervisor successfully preventing the plant

from visiting these states. The critical values for the
termination probability �? computed by the optimiza-

tion algorithm for each control specification is shown
in figure 7.

Next the stable probability distributions of the plant
states are compared for the following three cases:

. Open-loop or unsupervised plant

. Plant with the optimal supervision policy for
specification 1

. Plant with the optimal supervision policy for
specification 2

The distributions are obtained by considering the first
row of the matrix P , based on the measure �1
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Figure 4. Finite state model of the message decoding system.

Table 1. Event occurrence probabilities for
processor models.

p11 p13 p21 p22 p32 p33 f 1 f 2 f 3

0.16 0.04 0.16 0.16 0.16 0.32 0.00 0.00 0.00
0.00 0.16 0.00 0.26 0.26 0.32 0.00 0.00 0.00

0.37 0.00 0.21 0.21 0.21 0.00 0.00 0.00 0.00
0.32 0.11 0.26 0.00 0.00 0.32 0.00 0.00 0.00
0.00 0.11 0.00 0.28 0.28 0.33 0.00 0.00 0.00
0.25 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.00

0.28 0.11 0.28 0.00 0.00 0.33 0.00 0.00 0.00
0.00 0.00 0.00 0.39 0.39 0.00 0.22 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.14 0.00 0.00 0.00 0.43 0.00 0.43 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.34
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00 0.00 0.75 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00 0.00 0.75 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.34
0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.34

Table 2. Vectors for control specifications.

Case 1 Case 2

0.000 0.010 0.000 0.000 1.000 0.000
0.000 0.020 0.000 0.000 0.020 0.000

0.000 0.020 0.000 0.000 0.020 0.000
0.000 0.020 0.000 0.000 0.020 0.000
0.000 0.040 0.000 0.000 0.040 0.000

0.000 0.040 0.000 0.000 0.040 0.000
0.000 0.040 0.000 0.000 0.040 0.000
0.010 0.000 �1.000 1.000 0.000 �0.200
0.010 0.000 �1.000 1.000 0.000 �0.200
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corresponding to state 1 which is the initial state in both
cases. If the stochastic matrix P is primitive (i.e., irredu-
cible and acyclic), then all rows of P would be identical.
However, primitiveness of P is not guaranteed even if
the unsupervised plant model have this property because
any subsequent event disabling may cause loss of
reducibility or acyclic properties.
The results on evolution of the distribution are plotted

in figure 8. While the unsupervised plant has a finite
probability of reaching the deadlock states 26 and 27,
the optimal supervisors in both cases successfully
prevent occurrence of deadlock in the sense that the
stable occupation probabilities for states 26 and 27 are
zero for each supervisor. However, supervisor 2
increases the throughput of processor 1 as seen from
the increased probability of occupying states 1 and 2.

6. Summary, conclusions, and recommendations for

future work

This paper presents the theory, formulation, and
validation of optimal supervisory control policies for
dynamical systems, modelled as probabilistic finite

state automata. The procedure for synthesis of the opti-
mal control policy relies on a (renormalized) signed
real measure of regular languages (Chattopadhyay and
Ray 2006a) to construct the performance index. The
language measure is based on the state transition

Table 3. Iteration vectors for multi-processor model: case 1.

Itr 1 Itr 2 Itr 3 Itr 4 Itr 5 Itr 6 Itr 7

�0.0616 0.0006 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0001 0.0063 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0003 0.0055 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0011 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0002 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0003 0.0055 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0013 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0010 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0011 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0001 0.0063 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0001 0.0000 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0009 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0000 0.0000 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0003 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0003 0.0000 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0014 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143

Table 4. Iteration vectors for multi-processor model: case 2.

Itr 1 Itr 2 Itr 3 Itr 4 Itr 5

0.0598 0.2076 0.2879 0.3245 0.3245
0.0598 0.2074 0.2880 0.3245 0.3245

0.0598 0.2101 0.2879 0.3245 0.3245
0.0598 0.2167 0.2876 0.3232 0.3245
0.0598 0.2109 0.2878 0.3236 0.3245

0.0598 0.2084 0.2882 0.3245 0.3245
0.0598 0.2059 0.2878 0.3245 0.3245
0.0598 0.2090 0.2879 0.3245 0.3245
0.0598 0.2059 0.2878 0.3245 0.3245

0.0598 0.2175 0.2875 0.3230 0.3245
0.0598 0.2089 0.2879 0.3245 0.3245
0.0598 0.2105 0.2879 0.3245 0.3245

0.0598 0.2086 0.2882 0.3245 0.3245
0.0598 0.2078 0.2879 0.3245 0.3245
0.0598 0.2114 0.2878 0.3235 0.3245

0.0598 0.2076 0.2880 0.3245 0.3245
0.0598 0.2080 0.2880 0.3245 0.3245
0.0598 0.2059 0.2878 0.3245 0.3245
0.0598 0.2216 0.2872 0.3241 0.3245

0.0598 0.2059 0.2878 0.3245 0.3245
0.0598 0.2147 0.2879 0.3245 0.3245
0.0598 0.2116 0.2879 0.3245 0.3245

0.0598 0.2084 0.2879 0.3245 0.3245
0.0598 0.2105 0.2878 0.3232 0.3245
0.0598 0.2110 0.2878 0.3236 0.3245

0.0598 0.2077 0.2879 0.3245 0.3245
0.0598 0.2077 0.2879 0.3245 0.3245
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Figure 5. Optimal plant configuration for specification 1.

1286 I. Chattopadhyay and A. Ray



probability matrix of the underlying finite-state Markov
chain model of the process and a characteristic vector of
state weights, which serves as the control specification.
The main contribution of the paper is reformulation

of the optimal supervisor synthesis algorithm (Ray
et al. 2004, 2005) for probabilistic finite state plant
models in terms of the renormalized measure and
extension of the technique to general non-terminating

probabilistic models. Specifically, the work reported in
this paper removes a fundamental restriction of earlier
analysis (Ray et al. 2004, Ray 2005), namely, each row
sum of the state transition cost matrix & being strictly

less than one, instead of being exactly equal to one.
The novel concept of language-based control synthesis,
presented in this paper, allows quantification of plant

performance instead of solely relying on its qualitative

performance (e.g., permissiveness), which is the current

state of the art for discrete event supervisory

control (Ramadge and Wonham 1987, Cassandras and

Lafortune 1999).
The following conclusion is drawn in view of using the

language measure for construction of the performance

index for deriving an optimal control policy. Like any

other optimization procedure, it is possible to choose

different performance indices to arrive at different

optimal policies for discrete event supervisory control.

Nevertheless, usage of the language measure provides

a systematic procedure for precise comparative evalua-

tion of different supervisors so that the optimal control

policy(ies) can be unambiguously identified. These

theoretical results also lay the foundation for extension

of the language-measure-theoretic framework to plant

modelling and control, where all events may not be

observable at the supervisory level.
The paper provides details of the algorithms that are

required for synthesis of the optimal supervisory control

policy. These algorithms are executable in real time on

commercially available platforms. Computational com-

plexity of the presented algorithms is polynomial in

the number of plant model states. The concepts are

elucidated with simple examples and a relevant engineer-

ing example. As such it is straight-forward to develop

real-time software codes in standard languages, based

on the algorithms provided in this paper.
There are several issues that need to be addressed for

implementation of the theory of discrete-event supervi-

sory control in an operating plant. For example, the

events must be generated in real time, based on physical

measurements, to provide the supervisor with the
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Figure 6. Optimal plant configuration for specification 2.
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current information on the plant; this is beyond what is
done off-line for construction of the plant model and
control synthesis. Similarly, the event disabling/enabling
decisions of the supervisor must be translated in real
time as appropriate actions to control the plant.

6.1 Recommendations for future research

Synthesis of supervisory control systems may become a
significant challenge if some of the events are delayed,
intermittent, or not observable at all, possibly due to
sensor faults or malfunctions in network communication
links. In that case, the control algorithms may turn out
to be computationally very complex because of
delayed or lost information on the plant dynamics.
Future work in this direction should involve research
on construction of language measures under partial
observation (Chattopadhyay and Ray 2006b) and
associated synthesis of optimal control policies to miti-
gate the detrimental effects of loss of observability.
The latter research could be an extension of the work
on optimal control under full observation, reported in
this paper.
It would be a challenging task to extend the concept

of (regular) language measure for languages higher up
in the Chomsky hierarchy (Hopcroft et al. 2001) such
as context-free and context-sensitive languages. This
extension would lead to controller synthesis when the
plant dynamics is modelled by non-regular languages
such as the Petri net (Cassandras and Lafortune 1999,
Murata 1989). The research thrust should focus
on retaining the polynomial order of computational
complexity.
Another critical issue is how to extend the language

measure for timed automaton, especially if the events
are observed with varying delays at different states.
Another research topic that may also be worth investi-
gating is: how to extend the GF(2) field, over which
the vector space of languages is defined (Ray 2005), to
richer fields like the set of real numbers.
Areas of future research also include applications of

the language measure in anomaly detection, model iden-
tification, model order reduction, and analysis and
synthesis of interfaces between the continuously-varying
and discrete-event spaces in the language-measure
setting. Future research for advancement of the theory
of optimal supervisory control for discrete event systems
include the following areas:

. Robustness of the control policy relative to unstruc-
tured and structured uncertainties in the plant model
including variations in the language measure
parameters (Lagoa et al. 2005)

. Control synthesis under partial observation to accom-
modate loss of observability at the supervisory level

possibly due to sensor faults or communication link
failures (Chattopadhyay and Ray 2006b)

. Construction of grammar-based measures, instead of
memory-less state-based measures (Chattopadhyay
and Ray 2005), for non-regular languages when

details of transitions in plant dynamics cannot be
captured by finitely many states
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Appendix A: Derivatives of renormalized measure

This appendix establishes bounds on the derivatives of
the renormalized measure mð�Þ for all � 2 ð0, 1Þ and
computes the limits of the derivatives as �! 0þ as an
extension of what was reported in the previous

publication (Chattopadhyay and Ray 2006a).
The main result on boundedness of the derivatives of

�ð�Þ are presented as propositions. Specifically, the
results reported in Chattopadhyay and Ray (2006a)
are combined as the next two propositions.

Proposition A.1: Let �ð�Þ, � I� ð1� �ÞP½ �
�1, where P

is a ðn� nÞ stochastic matrix and n 2 N. Then,

ðiÞ 8 k 2Nnf1g

lim
�!0þ

@k�ð�Þ

@�k
¼�k lim

�!0þ

@k� 1�ð�Þ

@�k� 1
PþP½ � I�PþP½ �

�1

ðiiÞ lim
�!0þ

@k�ð�Þ

@�k

¼

½I�PþP
��1
�P , if k¼ 1

ð�1Þkk!½I�PþP ��1

� I� I�PþP½ �
�1

� �k�1
, if k 2Nnf1g:

8>><>>:

Proof: Given in Chattopadhyay and Ray (2006a, x 3,
pp. 1111–1112 as Corollary 3 and Corollary 6). œ

The next proposition establishes bounds on the deriva-

tives of mð�Þ in an elementwise sense by computing
bounds on the induced sup-norm of the derivatives of
�ð�Þ. Recall that s has been defined to have infinity
norm equal to 1.
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Proposition A.2

�����@k�ð�Þ@�k

�����
1

	 k! 2kþ1

 
inf
�6¼0

�����I�Pþ�P
��1����

1

!k

8� 2 ½0,1�:

Proof: Given in of Chattopadhyay and Ray (2006a,
x 3, p. 1113 as Proposition 5). œ

Proposition A.3: Denoting the ith element of the kth
derivative of the measure vector as ð@k�ð�Þ=@�kÞ

��
i
, it

follows that

8k 2 f1, . . . , ng,
@k�ð�Þ

@�k
��
i
¼

@k�ð�Þ

@�k
��
j

¼)8� 2 ½0, 1�, �ð�Þ
��
i
¼ �ð�Þ

��
j
;

where n is the number of states in the plant model.

Proof: First it is noted that

�ð�Þ ¼ �
X1
k¼0

ð1� �ÞkPks 8� 2 ð0, 1�

¼ �
X1
k¼0

&kð�Þs 8� 2 ð0, 1�: ð26Þ

Since &ð�Þ is a matrix of dimension n� n, it follows
from the Cayley–Hamilton Theorem (Bapat and
Raghavan 1997) that integral powers of &ð�Þ can be
expressed as polynomials of degree n� 1 as follows:

8r 2 N, &rð�Þ ¼
Xn�1
k¼0

ck&
kð�Þ with ck 2 C: ð27Þ

Since each term in the summation on the left hand side
of equation (26) is a polynomial in � of degree n� 1, it
follows that the summation is also a polynomial in
degree n� 1 (since the summation exists due to the
sub-stochastic property of &ð�Þ). Then it follows that
each element of �ð�Þ is a polynomial of degree n. The
result then follows from continuity. œ

Proposition A.4: For any stochastic matrix P of
dimension n� n, the complexity of computing the limit-
ing matrix P is of the order of Oðn3Þ.

Proof: Since the limit limk!1 ð1=kÞ
Pk�1

j¼0 Pj ¼ P

always exists, it is possible to compute P within any
specified precision simply by computing the sumPk�1

j¼0 Pj followed by division by k, for a large
enough value of k. The procedure is summarized in
Algorithm 6.

Referring to Line 7 of Algorithm 6, it is observed that
Q½k� is a stochastic matrix for all k and hence it follows
that the algorithm is guaranteed to terminate in
ð1=epsÞ iterations, independent of n. Each iteration
involves a single matrix multiplication (P� A) and
hence algorithmic complexity is of the same order as
multiplication of two n� n matrices, i.e., 	 Oðn3Þ.
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The signed real measure of regular languages has been introduced and validated in recent
literature for quantitative analysis of discrete-event systems. This paper reports generalizations

of the language measure, which can serve as performance indices for synthesis of optimal
discrete-event supervisory decision and control laws. These generalizations eliminate a
user-selectable parameter in the original concept of language measure. The concepts are
illustrated with simple examples.

1. Introduction

In the discrete-event setting, a finite-state automaton

(FSA) model of a physical plant is a generator of its

regular language, whose behaviour is constrained by

the supervisor (or controller) to meet a given specifica-

tion. A signed real measure of regular languages has

been reported in Ray (2005) and Ray et al. (2005) to

provide a mathematical framework for quantitative

comparison of controlled sublanguages. In this work,

each transition is assigned a cost, similar to its probabil-

ity measure that can be quantitatively evaluated from

physical experimentation or extensive simulation on a

test bed. Each state of the FSA model is assigned a

signed real weight whose upper and lower bounds are

normalized to 1 and �1, respectively. The measure of

a given event trace is obtained as the product of the

cost of transitions and the (normalized) weight of the

terminating state. The sum of the measures of all

traces yield the language measure.
Optimal control of finite state automata has been

recently reported Ray et al. (2004, 2005) based on the

total ordering induced by the language measure as aug-

mentation to the supervisory control theory of Ramadge

and Wonham (1987). This work consolidates the theory

and applications of optimal supervisory control of

regular languages, where the performance index is

obtained by combining a real signed measure of the

supervised plant language with the cost of disabled

event(s). Starting with the (regular) language of an unsu-

pervised plant automaton, the optimal control policy

makes a trade-off between the measure of the supervised

sublanguage and the associated event disabling cost to

achieve the best performance. Like any other optimiza-

tion procedure, it is possible to choose different perfor-

mance indices to arrive at different optimal policies

for discrete event supervisory control. It is recognized

that optimal control of discrete-event systems can be

achieved with a cost function that may not qualify as

a measure (e.g., Sengupta and Lafortune (1998)).

Nevertheless, usage of a language measure as the cost

function facilitates precise comparative evaluation of

different supervisors so that the appropriate control

policy(ies) can be conclusively identified.
From the above perspectives, this paper presents

generalizations of the language measure (Ray 2005),

each generalization being a formal measure in its own

right and having physical implications that are relevant

to synthesis of discrete-event supervisory control

policies. These generalizations are achieved through

a new concept of trace measure that is characterized

by both initiating and terminating states as well as the

length of the trace and the choice of a vector*Corresponding author. Eamil: axr2@psu.edu
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norm (Naylor and Sell 1982). The concept of generaliza-
tion can be viewed as renormalization (Chattopadhyay
and Ray 2006) of the (normalized) language
measure (Ray 2005).
The paper is organized in six sections including the

present one. Section 2 briefly reviews background con-
cepts on language measure. Section 3 derives measures
related to the stationary state probability vector of the
finite-state automaton. Section 4 introduces the notion
of shaped measures, which allows assignment of selec-
tive length-based importance to different traces in the
generated language. It is further shown that measures
introduced in x 3 can be obtained as limits of sequences
of shaped measures. Section 5 presents an example of
optimal automaton configurations. Section 6 concludes
the paper along with recommendations for future
research.

2. Brief review of language measure

This section briefly reviews the concept of signed real
measure of regular languages Ray (2005) and Ray
et al. (2005). Let Gi � hQ,�, �, qi,Qmi be a trim (i.e.,
accessible and co-accessible) deterministic finite-state
automaton (DFSA) model (Ramadge and Wonham
1987) that represents the discrete-event dynamics of a
physical plant, where Q ¼ fqk : k 2 IQg is the set of
states and IQ � f1, 2, . . . , ng is the index set of states;
the automaton starts with the initial state qi; the alpha-
bet of events is � ¼ f�k : k 2 I�g, and I� � f1, 2, . . . , ‘g
is the index set of events; �: Q��! Q is the (possibly
partial) function of state transitions; and Qm �

fqm1
, qm2

, . . . , qmr
g � Q is the set of marked (i.e.,

accepted) states with qmk
¼ qj for some j 2 IQ.

Let �? be the Kleene closure of �, i.e., the set of all
finite-length traces made of the events belonging to �
as well as the empty trace � that is viewed as the identity
of the monoid �? under the operation of trace concate-
nation, i.e., �s ¼ s ¼ s�. The extension �?: Q��? ! Q
is defined recursively in the usual sense (Hppcroft
et al. 2001).

Definition 1: The language L(Gi) generated by a DFSA
G initialized at the state qi 2 Q is defined as
LðGiÞ ¼ fs 2 �? j �?ðqi, sÞ 2 Qg.

Definition 2: The language Lm(Gi) marked by a DFSA
Gi initialized at the state qi 2 Q is defined as
LmðGiÞ ¼ fs 2 �? j �?ðqi, sÞ 2 Qmg.

The language LðGiÞ is partitioned into non-marked and
marked languages, LoðGiÞ � LðGiÞ � LmðGiÞ and LmðGiÞ,
consisting of event traces that, starting from qi 2 Q,
terminate at one of the non-marked states in Q�Qm

and one of the marked states in Qm, respectively.

The set Qm is further partitioned into Qþm and Q�m,
where Qþm contains all good marked states that are
desired to be terminated on and Q�m contains all bad
marked states that one may not want to terminate on,
although it may not always be possible to avoid the
bad states while attempting to reach the good states.
Accordingly, the marked language LmðGiÞ is further
partitioned into LþmðGiÞ and L�mðGiÞ consisting of good
and bad traces that, starting from qi, terminate on Qþm
and Q�m, respectively. Thus, the language LðGiÞ is decom-
posed into null, i.e., LoðGiÞ, positive, i.e., L

þ
mðGiÞ, and

negative, i.e., L�mðGiÞ sublanguages. A signed real mea-
sure �: 2LðGiÞ ! R � �1, 1ð Þ is constructed for quan-
titative evaluation of every event trace s 2 LðGiÞ.

Definition 3: The language of all traces that, starting at
a state qi 2 Q, terminates on a state qj 2 Q, is denoted as
Lðqi, qjÞ. That is, Lðqi, qjÞ � fs 2 LðGiÞ : �

?ðqi, sÞ ¼ qjg.

Definition 4: The terminating characteristic function
that assigns a normalized signed real weight to state-
partitioned sublanguages Lðqi, qjÞ, i ¼ 1, 2, . . . , n,
j ¼ 1, 2, . . . , n is defined as �: Q! ½�1, 1� such that

�j 2

½�1, 0Þ if qj 2 Q�m
f0g if qj =2Qm

ð0, 1� if qj 2 Qþm:

8><>: ð1Þ

Definition 5: The event cost is conditioned on a DFSA
state at which the event is generated, and is defined as
~� : LðGiÞÞ �Q ! ½0, 1� such that 8qj 2 Q, 8�k 2 �,
8s 2 LðGiÞÞ

(1) ~�½�k, qj� � ~�jk 2 ½0, 1Þ;
P

k ~�jk < 1;
(2) ~�½�, qj� ¼ 0 if �ðqj, �Þ is undefined; ~�½�, qj� ¼ 1;
(3) ~�½�ks, qj� ¼ ~�½�k, qj� ~�½s, �ðqj, �kÞ�.

The event cost matrix is defined as e&ij ¼ ~�ij with
i 2 f1, . . . , ng and j 2 f1, . . . ,mg where the automaton
has n states and cardinality of the event alphabet � is m.

An application of the induction principle to part (3)
in Definition 5 shows ~�½st, qj� ¼ ~�½s, qj� ~�½t, �

?ðqj, sÞ�. The
condition

P
k ~�jk < 1 provides a sufficient condition

for the existence of the real signed measure (Ray
2005). Next a measure of sublanguages of the plant
language L Gið Þ is formulated in terms of the signed char-
acteristic function � and the non-negative event cost ~�.

Definition 6: The state transition cost, �: Q�
Q! ½0, 1Þ, of the DFSA Gi is defined as follows:
8qi, qj 2 Q,

�ij ¼

P
�2� ~�½�, qi�, if �ðqi, �Þ ¼ qj

0 iff�ðqi, �Þ ¼ qjg ¼ ;:

�
ð2Þ

790 I. Chattopadhyay and A. Ray
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Consequently, the n� n state transition cost &-matrix
is defined as &ij ¼ �ij with i, j 2 f1, . . . , ng where the
number of states in the automaton is n.

Although the preceding analysis reported in Ray
(2005) and Ray et al. (2005) was intended for non-
probabilistic regular languages, the event costs can
be interpreted as conditional probabilities of event
occurrence. A brief discussion on the physical inter-
pretation of the event costs is given in Ray (2005)
to explain this issue. Furthermore, an element �jk of
the �-matrix is conceptually similar to the state tran-
sition probability of a Markov chain or a semi-
Markov chain with the exception that the equality
condition

P
k �jk ¼ 1 is not satisfied. Specifically, the

inequality
P

k �jk < 1, j ¼ 1, 2, . . . , n provides a suffi-
cient condition for the language measure to be finite.
This implies that the preceding analysis is applicable
to the case of terminating probabilistic
languages (Garg 1992a, b) that have a non-zero prob-
ability of termination (arising from either intentional
design or unmodelled dynamics of the plant automa-
ton) at each state. If the probability of termination
at each state, or equivalently the probability of transi-
tion to the (deadlock) dump state from each of the
other states qi 2 Q, is set identically equal to
� 2 ð0, 1Þ, then the e&-matrix and the &-matrix can
be �-parameterized as follows (Chattopadhyay and
Ray 2006):

e&ð�Þ � ð1� �ÞeP and &ð�Þ � ð1� �ÞP, ð3Þ

where eP is the event matrix (also known as the morph
matrix), which is derived from experimental data or
simulation data (Ray 2005) and the resulting stochastic
state transition matrix P is obtained from eP in a way
similar to equation (2). Since P is a stochastic matrix
(i.e.,

P
j Pij ¼ 1 8i 2 f1, . . . , ng), the row sumsP

j �ij ¼ ð1� �Þ < 1, j ¼ 1, 2, . . . , n (see Definition 6)
make & a contraction operator with the magnitude of
each of its eigenvalues being less than or equal to
ð1� �Þ; consequently, ½I�&� becomes invertible (Ray
2005).
In the sequel, the preceding measure construction is

generalized and the notion of language measure is
extended to non-terminating models by first assuming
a uniform non-zero probability of termination � at
each state and then computing the limit as �! 0þ,
i.e., the probability of termination approaching zero.
The resulting �-parameterized model coincides with
the desired non-terminating model in the limit
(Chattopadhyay and Ray 2006).

Definition 7: The �-parameterized measure of the
language Lðqi, qjÞ is defined in terms of its traces

(see Definitions 3, 4 and 5) as

��ðfsgÞ � ~�ðs, qiÞ�j, 8s 2 Lðqi, qjÞ ð4Þ

�� Lðqi, qjÞ
� �

�
X

s2Lðqi, qjÞ

�� fsgð Þ: ð5Þ

Then, the measure of the language L(Gi) of a DFSA Gi,
initialized at the state qi 2 Q, is defined as

��ðLðGiÞÞ ¼
X

j
�� Lðqi, qjÞ
� �

ð6Þ

It is shown in Ray (2005) that the measure
��
i � ��ðLðGiÞÞ can be expressed as: ��

i ¼P
j �ij �

�
j þ �i. In vector notation, the �-parameterized

language measure vector is expressed by making use of
equation (3) as

l� ¼ I� ð1� �ÞP½ �
�1s, ð7Þ

where the measure vector l� � ½��
1 �

�
2 � � � �

�
n�
T and the

terminating characteristic vector s � ½�1 �2 � � � �n�
T.

Note that lim�!0þ l
� of the normalized language

measure does not exist. This problem has been circum-
vented via renormalization (Chattopadhyay and Ray
2006) as explained below.

The regular language L(Gi) is a sublanguage of the
Kleene closure �? of the alphabet �, for which the auto-
maton states can be merged into a single state. Then,
P degenerates to the 1� 1 identity matrix and the termi-
nating characteristic vector s becomes one-dimensional
and can be assigned as s ¼ 1 by normalization.
Consequently, the measure vector l� in equation (7)
degenerates to a scalar measure ��1. The renormalized
measure is obtained from equation (7) after normaliza-
tion with respect to ��1.

q�
j1 ¼ � I� ð1� �ÞP½ �

�1s: ð8Þ

3. Generalization of language measure

This section generalizes the notion of language measure
�� (see Definition 7 and equation (7)), which also leads
to a renormalized measure #� (see equation (8)). This
is achieved by redefining the measure of individual
traces in terms of an initiating characteristic function
�: Q 7 �! ½0, 1� that assigns a positive weight to each
initiating state qi and serves as a renormalizing factor
(i.e., a multiplicative constant) for the measure of the
traces initiating from the respective state. Figure 1
illustrates the relationship among the initiating and
terminating characteristics. Different initiating

Language measure of finite state systems 791
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characteristics lead to different renormalized
language measures that may have different physical
interpretations.

Definition 8: The �-parameterized generalized measure
of a singleton event trace set fsg � Lðqi, qjÞ � LðGiÞ in
the �-algebra 2LðGiÞ is defined as

#�ðfsgÞ � �i�
�ðfsgÞ ¼ �ðqiÞ ~�ðs, qiÞ�j, 8s 2 Lðqi, qjÞ: ð9Þ

The generalized measure of Lðqi, qjÞ is defined as

#� Lðqi, qjÞ
� �

�
X

s2Lðqi, qjÞ

#� fsgð Þ:
ð10Þ

The generalized measure of a DFSA Gi, initialized
at the state qi 2 Q, is denoted as #�

i � #�ðLðGiÞÞ ¼P
j #

�ðLðqi, qjÞÞ.
Now it is ascertained that Definition 8 satisfies the

properties of a measure on the defined �-algebra.

Proposition 1: The generalized measure
#�: 2LðGiÞ 7 �!R is defined on the measure space
ðLðGiÞ, 2

LðGiÞ,#�Þ.

Proof: It suffices to establish �-additivity from the
following fact. For a fixed � 2 ð0, 1Þ, #�

i is the product
of �i (which is a constant) and ��

i which is a signed
real measure on the �-algebra 2LðGiÞ. œ

A special family of initiating characteristic functions
is considered for the generalized language measure.

Definition 9: Let�ð�Þ � I� ð1� �ÞP½ �
�1. The ‘p-family

of initiating characteristic functions is defined as

�pi ð�Þ ¼
�����ð�Þi������1p

8p 2 ½1,1�, 8� 2 ð0, 1Þ, ð11Þ

where k � kp denotes the ‘p-norm of �; and ith row of a
matrix M is denoted as Mi� and the jth column as M�j.

Remark 1: Note that lim�!0þ �
p
i ð�Þ does not exist due

to non-invertibility of the operator I� P½ �. However,
ð��1�pi ð�ÞÞj�¼0 is well-defined by virtue of norm
continuity (Naylor and Sell 1982) and hence
lim�!0þ �

�1�pi ð�Þ exists.

Lemma 1: For p¼ 1, the initiating characteristic

�1i ð�Þ ¼ �, 8i8� 2 ð0, 1�: ð12Þ

Proof: Let e ¼ ½1 � � � 1�T. Since P is stochastic, non-
negativity of �ð�Þ follows from the following expansion:

�ð�Þ ¼
X1
k¼0

ð1� �ÞkPk 8� 2 ð0, 1�

¼) �ð�Þe ¼
X1
k¼0

ð1� �ÞkPke ¼
X1
k¼0

ð1� �Þke ¼ ��1e

which implies that k �ð�Þi� k1¼ ��1 8i ¼)�1i ¼ �. œ

The �-parameterized generalized measure for p¼ 1 is
obtained in the vector notation as

q�
j1 ¼ � I� ð1� �ÞP½ �

�1s ð13Þ

which is identical to the renormalized measure in
equation (8).

In general, the �-parameterized generalized measure
for p 2 ½1,1� is obtained in the matrix notation as

q�
jp ¼

�p1ð�Þ � � � 0

..

.
�pi ð�Þ

..

.

0 � � � �pnð�Þ

2664
3775 I� ð1� �ÞP½ �

�1s: ð14Þ

Non-negativity of P and invertibility of I� ð1� �ÞP½ �

guarantee that k�ð�Þi�kp 2 ð0,1Þ 8i, which implies
�pi ð�Þ 2 ð0,1Þ 8 p 2 ½1,1� 8 � 2 ð0,1Þ.

3.1 Limiting values of qh
jp as h! 0Q

This section computes the generalized measures q�
jp

as �! 0þ, based on the state transition probability
matrix P of a stationary Markov chain with finitely
many states. Then, P is a stochastic matrix. That is,
P is non-negative with each row sum being identically
equal to unity (Bapat and Raghavan 1997).

Proposition 2: For every stochastic matrix P, the
following limit exists

lim
k!1

1

k

Xk�1
j¼0

Pj ¼ P , ð15Þ

where P is a stochastic matrix. Furthermore, P

commutes with P and is idempotent. That is,

PP ¼ PP ¼ P ¼ P 2: ð16Þ

qi qj

Initiating characteristic ξi

Terminating characteristic χj

Similar to conditional probability

Figure 1. Generalization of langauge measure.
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Proof: The proof is given in Bapat and Raghavan
(1997). œ

Since P is a stochastic matrix, ½I� P�e ¼ 0 where
e � ½1, 1, . . . , 1�T. Therefore, ½I� P� is not invertible
for any stochastic matrix P; however, ½I� ð1� �ÞP� is
always invertible for � 2 ð0, 1Þ. The lemma to the next
proposition shows that ½I� Pþ P � is invertible.

Proposition 3: The matrix ½I� Pþ 	P � is invertible for
all 	 6¼ 0.

Proof: The proof is based on the commutative and
idempotent properties of P in equation (16) and uses
the principle of contradiction.
Let ½I� Pþ 	P � be non-invertible for an

arbitrary 	 6¼ 0. Then, there is a vector # 6¼ 0 such that

I� Pþ 	P½ �# ¼ 0

) ½P� 	P �# ¼ #) 	P ½P� 	P �# ¼ 	P #

) ½	P � 	2P �# ¼ 	P #

) 	2P # ¼ 0) P # ¼ 0 because 	 6¼ 0:

Hence, P# ¼ P#� 	P # ¼ ½P� 	P �# ¼ #

) Pk# ¼ # 8k 2 N [ f0g,

which implies 
1

k

Xk�1
j¼0

Pj

!
# ¼ # 8k ¼) lim

k!1

 
1

k

Xk�1
j¼0

Pj

!
# ¼ P # ¼ #

¼)# ¼ 0 because P # ¼ 0:

This is a contradiction. œ

Lemma 2: The matrix ½I� Pþ P � is invertible.

Proof: The proof follows by setting 	¼ 1 in
Proposition 3. œ

Proposition 4:

P� 	P½ �
k
¼ Pk � 1� ð1� 	Þk

� �
P , 8k 2 N 8	 6¼ 0:

ð17Þ

Proof: The above identity is valid for k¼ 0 and k¼ 1.
It is also true for k¼ 2 by virtue of the commutative
and idempotent properties of P in equation (16). The
proof follows directly by the method of induction. œ

Lemma 3: P� P½ �
k
¼ Pk � P 8k 2 N:

Proof: The proof follows by setting 	¼ 1 in
Proposition 4. œ

Proposition 5:

lim
�!0þ

� I� ð1� �ÞP½ �
�1
¼ P : ð18Þ

Proof: For � 2 ð0, 1Þ, it follows from equation (16)
and Lemma 3 that

� I� ð1� �ÞP½ �
�1
�P

¼ �
X1
k¼0

�
ð1� �ÞkPk

�
� �

X1
k¼0

ð1� �Þk P

¼ �
X1
k¼0

ð1� �Þk
�
Pk � P

�
¼ �

X1
k¼0

ð1� �Þk
�
P� P

�k
by Lemma 3

¼ � I� ð1� �ÞðP� P Þ½ �
�1 by Lemma 2

) lim
�!0þ

� I� ð1� �ÞP½ �
�1
�P

� �
¼ lim

�!0þ
� I� ð1� �ÞðP� P Þ½ �

�1:

Since, for continuous functions f( � ) and g( � ) with

lim
�!0þ

fð�Þ ¼ 0 and lim
�!0þ

gð�Þ <1

¼) lim
�!0þ

fð�Þgð�Þ ¼ 0,

it follows from Lemma 2 that

lim
�!0þ

� I� ð1� �ÞðP� P Þ½ �
�1
¼ 0

) lim
�!0þ

� I� ð1� �ÞP½ �
�1
�P

� �
¼ 0:

The proof is thus complete. œ

Proposition 6: For every stochastic matrix P, the

generalized measure is expressed as

q0
jp � lim

�!0þ
q�
jp ¼

..

.

P i�s

kP i�kp

..

.

8>>>>><>>>>>:

9>>>>>=>>>>>;
, ð19Þ

where P i� is the ith row of P .

Language measure of finite state systems 793
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Proof: Following equation (11) in Definition 9, it
suffices to show that

lim
�!0

�p1ð�Þ � � � 0

..

.
�pi ð�Þ

..

.

0 � � � �pnð�Þ

2664
3775 I� ð1� �ÞP½ �

�1

¼

kP 1�kp � � � 0

..

.
kP i�kp

..

.

0 � � � kP n�kp

2664
3775
�1

P 1�

� � �

P n�

264
375

The above identity is a direct consequence of the
following two relations:

lim
�!0

� I� ð1� �ÞP��1 ¼ P
�

lim
�!0þ

��1

�p1ð�Þ � � � 0

..

.
�pi ð�Þ

..

.

0 � � � �pnð�Þ

2664
3775

¼

kP 1�kp � � � 0

..

.
kP i�kp

..

.

0 � � � kP n�kp

2664
3775
�1

:

The first relation is a restatement of equation (18) in
Proposition 6. The second relation is obtained from
continuity of norm in equation (11) (see Remark 1). œ

We now consider the special class of primitive
(i.e., irreducible and acyclic (Bapat and Raghavan
1997)) stochastic matrices. The restriction of primitivity
is valid for many applications such as finite-state
machines without any deadlock or local livelock. A
primitive stochastic matrix P has the following
properties (Bapat and Raghavan 1997):

(i) limk!1 Pk ¼ P and PP ¼ PP ¼ P ¼ P 2

(ii) The matrix P has the following structure:

P ¼

}T

� � �

}T

264
375 where }TP ¼ }T

implying that } is the left eigenvector of P

corresponding to its unique unity eigenvalue
(iii) Upon ‘1-normalization, } becomes the state

probability vector of the stationary Markov chain
associated with the stochastic primitive matrix P.

(iv) The spectral radius of the matrix ðP� P Þ is less
than unity, i.e., the eigenvalues of ðP� P Þ are

located within the unit radius circle with center at
the origin.

For a primitive stochastic matrix, the expression for
q0
jp in equation (19) of Proposition 6 is simplified as

presented in the following proposition.

Proposition 7: For a primitive stochastic matrix P, the
generalized measure is expressed as

q0
jp � lim

�!0þ
q�
jp ¼

}Ts

k}kp

1

..

.

1

8><>:
9>=>;, ð20Þ

where }TP ¼ }T.

Proof: From the properties (i) and (ii) of primitive
matrices, it follows that

P j� ¼ }T 8j 2 f1, . . . , ng, ð21Þ

where }T is the state probability vector of the associated
Markov chain. Then, the proof follows from
Proposition 6. œ

3.2 Physical interpretation of the q0
jp measures

All entries of the q0
jp vector in equation (19) are

identical for a primitive stochastic matrix and hence a
single entry can be taken as a scalar measure, #0jp �

}T�=k}kp, of the regular language of the underlying
automaton. For all p 2 ½1,1�, the measure #0jp repre-
sents the long-range behaviour of the plant dynamics
in terms of the (assigned) terminating characteristics
and the stationary state probability vector of the finite
Markov chain model. However, the measures for differ-
ent values of p are not equivalent in the sense that a con-
trol policy optimizing #0jp does not necessarily coincide
with one that optimizes #0jq for p 6¼ q. For example,
a control policy that maximizes #0j1 selectively disables
controllable events such that }Ts is maximized; and
a control policy that maximizes #0j2 chooses an automa-
ton configuration to make the stationary state probabil-
ity vector } closest to the terminal characteristic vector s
in the Euclidean sense. For physical understanding
and visualization, let S be a bounded submanifold of
R

n such that

8 p ¼
�
p1, . . . , pn

�
2 S with

pi 	 0Pn
i¼0 pi ¼ kpkl1 ¼ 1:

�
ð22Þ

Then, for any n-state automaton, the stationary state
probability vector is } 2 S . Figure 2 illustrates S for

794 I. Chattopadhyay and A. Ray
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n¼ 3, where the central point }c denotes the uniform

probability vector ½1=n, . . . , 1=n�, which is interpreted

to have maximum entropy log2 n in the Shannon

sense (Cover and Thomas 1991). Moving away from

}c on the S -plane, the distribution becomes non-

uniform, i.e., the Shannon entropy S �

�
Pn

k¼1 pk log2 pk
� �

decreases toward zero.
In view of the above discussion and Lemma 4, a

supervisory control policy can be constructed by opti-

mizing #0jp in the sense of equation (19) for a specified

p 2 ½1,1� to obtain a stationary state probability

vector }. For example, if p¼ 1, then the optimization

algorithm attempts to choose } as a unit vector in the

direction of one of the axes of R
n for which the

s-vector has the largest element; if this is the case,

then Shannon entropy S¼ 0. If p¼ 2, then the optimiza-

tion algorithm attempts to choose } as the point of

intersection of the s vector with the S -plane; in this

case, the Shannon entropy is S>0 unless s is coincident

with one of the axes of R
n. For p>2, the algorithm

attempts to choose } closer to the central point }c

more and more aggressively as p increases toward

infinity, for which the Shannon entropy S increases

toward its maximum value log2 n.
Three measures are considered to be significant; #0j1

and #0j1 optimal policies are useful to obtain low

and high entropy (thermodynamically stable) distribu-

tions, respectively, and #0j2 optimality is useful when

the problem definition requires achieving a target

distribution over the plant states as closely as the

controllability criteria would allow. An example is

given in x 5.
The following lemma is useful for interpretation

of the q0
jp measures.

Lemma 4: Let 
 be a n-dimensional vector with


i 2 ½0, 1� and
P

i 
i ¼ 1. Then we have

ðiÞ k
kp 2 nð1�pÞ=p, 1
� �

8p 2 ½1,1� ð23Þ

ðiiÞ k
kp 
 k
kq 8p > q with p, q 2 ½1,1� ð24Þ

Proof: For Assertion (i),


i 2 ½0, 1� ) 
pi 
 
i )
X
i


pi 

X
i


i ) k
kp 
 1:

The result follows by noting that the smallest
value is attained when all 
i are equal i.e.


i ¼ 1=n 8i. Assertion (ii) follows by noting that

pi 
 
qi if p > q. œ

4. Shaped measures

The measures defined in the previous sections put equal
importance to all traces in the generated language of

an automaton, including traces of unbounded lengths.

This section investigates formal measures that generalize
the process of assigning importance or weight to a

trace as a function of its length. For a given automaton
Gi, a partition of the generated language L(Gi) is

obtained as:

LðGiÞ ¼
[1
i¼0

L r
i where L r

i ¼

�
! 2 Lðqi, qjÞ : j!j ¼ r

	
:

ð25Þ

(Note that L r
i

T
r 6¼s L

s
i ¼ ;.) From �-additivity of

the language measure (Ray 2005), the following notion

of language measure is introduced.

Definition 10: For a given starting state qi and the

parameter � 2 ð0, 1Þ, the shaped measure of the language
L(Gi) is defined as


ðLðGiÞÞ ¼
X1
r¼0

��
i ðL

r
i Þ: ð26Þ

The above definition, as observed before, fails to exist
as �! 0þ. The singularity at � ¼ 0 is alleviated by a
shaping sequence that provides appropriate weights on

the individual terms of the infinite sum in equation
(26). The next proposition establishes that every

‘1-sequence qualifies as a shaping sequence.

Figure 2. Representation of the S -plane for three states.
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Proposition 8: For a real ‘1-sequence � ¼ f�ig with
�i 2 ½0,1Þ,

ðiÞ
X1
i¼0

��
i ðL

iÞ�i <1 8 � 2 ð0, 1Þ ð27Þ

ðiiÞ lim
�!0þ

X1
i¼0

��
i ðL

iÞ �i <1: ð28Þ

Proof: The proof of the proposition requires the
following lemma. œ

Lemma 5: The following expression holds for the
�-parameterized shaped measure

l�ðL r
i Þ ¼ ð1� �ÞrPrs: ð29Þ

Proof: From Definition 7, we have

��
i ðL

r
i Þ ¼

Xn
j¼1

X
!2

Lðqi , qjÞ\L
r
i

~�ðqi,!Þ�j

¼
Xn
j¼1

(X
i1

� � �
X
ir

�ii1 � � ��irj

)
�j

¼
X
j

�r
ij�j ¼

X
j

ð1� �ÞrPr
ij�j

Using Lemma 5 and noting that for all � 2 ½0, 1Þ, it
follows that

kð1� �ÞrPrsk1 
 j1� �jr kPkr1 ksk1 
 1, ð30Þ

where k � k1 is the induced sup-norm of �. œ

The shaped measure is now formally defined based on
Proposition 33 by setting the parameter � to 0.

Definition 11: Let � ¼ f�ig be a ‘1-sequence of non-
negative real numbers (called the shaping sequence
in the sequel). The shaped measure ��i of a trace set
fsg � Lðqi, qjÞ � LðGiÞ with s ¼ k 2 N [ f0g relative to
� is defined as

��i ðfsgÞ � ��ðfsgÞk ¼ ~�ðs, qiÞ�ðqjÞk 8s 2 Lðqi, qjÞ: ð31Þ

The shaped measure of Lðqi, qjÞ is defined as:

��i Lðqi, qjÞ
� �

�
X1
r¼0

X
!2

Lðqi , qj Þ\L
r
i

��i fsgð Þ: ð32Þ

The shaped measure of a DFSA Gi, relative to the
sequence � and initialized at the state qi 2 Q, is
denoted as: ��i � ��i ðLðGiÞÞ ¼

P
j �

�
i ðLðqi, qjÞÞ.

The shaped measure vector, relative to the sequence
�, is denoted as: �� � ½��1 , . . . , �

�
n �.

Remark 2: If the short-term behaviour of the
discrete-event system is of interest, then all but finitely
many elements of the shaping sequence � ¼ f�ig in
Definition 11 could be restricted to be zeros. Then,
there exists r? 2 N such that L r

i ¼ ; 8r 	 r?, i.e., the
generated language has only bounded length traces.

4.1 Relation between sCðpÞ and q0
jp measures

In spite of a different construction, shaped measures are
related to the generalized measure defined in x3.
Specifically, there exist sequences of shaped measures
that converge to q0

jp.

Remark 3: Let p 2 ½1,1� and let �kðpÞ, k 2 N be a
sequence of non-negative real numbers, whose all ele-
ments, except the kth one, are zeroes and the kth element
is k}kp. Let �ðpÞ � limk!1 �kðpÞ. Then, it follows from
Proposition 6 or Proposition 7 that there exists �(p)
such that ��ðpÞ ¼ q0

jp 8p 2 ½1,1�.

4.2 Physical interpretation of shaped measures

A shaping sequence � specifies length-based relative
importance of traces in the generated language.
Intuitively, one is rarely interested in all traces generated
by an automaton. More often than not, either short
traces or very long traces (specifically of unbounded
length) are important. The first case is handled by shap-
ing sequences with finitely many non-zero terms and
the latter, shown in Remark 3 is viewed as a limit of
the shaped measures. However, shaping sequences can
be more complicated; the only requirement is that the
sequence be in ‘1 (see Proposition 8). In this context,
Remark 3 implies that #0j1 addresses the long-term
behaviour of the discrete-event system based on the
traces of unbounded length with no importance to
finite traces. This follows from the fact that, for p¼ 1
and all elements of the sequence �k are zeros with
the exception of the kth element being equal to 1.

5. An illustrative example

Figure 3 shows the finite-state automaton model of
the plant, where the state set Q ¼ fq1, . . . , q9g and the
event alphabet � ¼ f�r, �l, �f, �b, �fl, �rf, �rb, �lb,!1g.
The transitions, shown by dashed lines, are controllable
and those, shown by solid lines, are uncontrollable. The
state transition matrix P is given in table 1. The stochas-
tic matrix P is primitive because P2 is a positive matrix.
The stationary state probability vector of P and the

796 I. Chattopadhyay and A. Ray
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�-vector for the DFSA are

The scalar measures #0jp and k}kp for the primitive

matrix in table 1 are plotted for different values of p

in figure 4. A shaping sequence � evaluates the short-

term behaviour based on traces of length less than

60 and the resulting measure vector is

Supervisory control policies have been computed

based on #0jp, k}kp and �� by optimizing the respective

scalar measures via a standard search algorithm.

Different values of p ¼ 1, 4, and 1 are chosen to illus-

trate the fact that they result in different optimal

control policies. The choices of p¼ 1 and p ¼ 1 are

made as they are familiar norms used in engineering

analysis; and the choice of p¼ 4 is made because

it effects are intermediate between p¼ 1 and p ¼ 1

and are different from those of the Euclidean norm

p¼ 2 (see x 3). For these cases, the results of

improved performance under optimal supervision are

summarized below.

For p¼ 1, #0j1 is increased from 0.12 to 0.35.
For p¼ 4, #0j4 is increased from 0.48 to 1.03.
For p ¼ 1, #0j1 is increased from 0.52 to 1.3 and
�� is increased elementwise from

Table 1. State transition matrix P of the plant automaton model.

0 0.015 0.102 0.041 0.120 0.048 0.300 0.139 0.139
0.372 0 0.131 0 0 0 0 0 0

0.130 0.319 0 0.551 0 0 0 0 0
0.087 0 0.424 0 0.489 0 0 0 0
0.351 0 0 0.411 0 0.238 0 0 0

0.337 0 0 0 0.240 0 0.423 0 0
0.069 0 0 0 0 0.470 0 0.460 0.460
0.738 0 0 0 0 0 0.259 0 0
0.199 0.218 0 0 0 0 0 0.583 0.583

q8 q0 q4

q1 q2 q3

q7 q6 q5

σl

σr

σb

σf

σfl

σlb

σrf 

σrb

σf

σb 

σr 

σl

σf 

σb

σl

σr 

σb

σf 

σl 

σr

σf 

σb

σr

σl

ω1

ω1

ω1 

ω1

ω1

ω1 

ω1

ω1

Figure 3. Plant automaton model.

0 2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ϑ(0)|p
||℘||p

p 

Figure 4. Profiles of #0
jp and k}kp with p. Note the

stabilizing feature of each plot for increasing p.

}T ¼ 0:234 0:041 0:065 0:084 0:095 0:016 0:153 0:147 0:076
� �

s ¼ 0:66 �0:42 �0:97 0:52 �0:49 �0:57 0:57 �0:09 0:43
� �T

:

s� ¼ 0:276 �0:252 0:627 �0:375 0:256 �0:055 �0:059 �0:103 0:475
� �T

:

Language measure of finite state systems 797
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1:2 1:5 0:9 0:3 1:1 1:4 1:2 1:7 1:4½ �
T to

3:4 3:8 2:5 1:7 2:6 3:3 3:5 3:7 4:0½ �
T.

Table 2 enumerates the optimal decision sets for
disabling of controllable events obtained in the above
four cases, where � and X indicate disabled controllable
events and enabled controllable events, respectively. The
decisions are made from the stationary state probability
distributions achieved from the optimal policies shown
in figure 5. It is seen that the #0j1-optimal policy achieves
both maximum and minimum probability values in
states 9 and 6, respectively. This shows that #0j1-optimal
policy does indeed produce relatively less uniform distri-
bution in comparison to the #0j1-optimal policy, as
stated in x 3. It is also noted that the ��-optimal policy
achieves the least uniform distribution.

6. Summary, conclusions, and future work

This paper formulates and validates a concept of gener-
alization of signed real measure of regular languages,
which also leads to renormalization (Chattopadhyay
and Ray 2006) of the normalized measure and eliminates
the need for a user-selectable parameter in the original
concept of language measure Ray (2005). These general-
izations are achieved through a trace measure that is
characterized by both initial and terminal states as well
as the length of the trace and the choice of a vector
norm for renormalization. The generalized measures
with different norms are not equivalent in the sense
that the respective optimal control policies with these
measures as the performance cost functionals are differ-
ent. These concepts are illustrated with simple examples
for quantitative analysis and synthesis of discrete-event

supervisory control systems. It is envisioned that

optimal supervisory decision & control of discrete-

event systems (Sengupta and Lafortune 1998, Ray et

al. 2004) can be enhanced through appropriate selection

of a language measure to enhance the objectives at hand.

In this context, future research is recommended in the

following areas:

. Generalization of the language-measure-based opti-

mal control algorithms (Ray et al. 2004) for sub-

stochastic transition matrices to the stochastic case.

A potential application is to compute a sufficiently

small termination probability � such that, as �! 0þ,

the optimal control policies approach the true situa-

tion for the non-terminating plant.
. Extension the concept of (regular) language measure

for (non-regular) languages higher up in the

Chomsky Hierarchy such as context-free and context

-sensitive languages. A first attempt to extend the

concept of the language measure to linear grammars

was reported in (Ray et al. 2004). Further investiga-

tions in this direction is required for extension of the

concept to more complex models.
. Applications of language measure in anomaly detec-

tion, model identification and order reduction, and

construction of interfaces between continuously

varying and discrete-event spaces.
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Table 2 Optimal decision for disabling of controllable events.

Controllable
events

#0
j1 #0

j4 #0
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! q6 � � � �

q1
�l
! q9 X X X X
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!1
! q1 X X X X

q2
�r
! q3 � � � �
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! q8 � � � �

q9
�f
! q2 � � X �
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Figure 5. Stable distributions for computed optimal
policies.
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