

CREATING AN AGENT BASED FRAMEWORK
TO MAXIMIZE INFORMATION UTILITY

THESIS

John M. Pecarina, Captain, USAF

AFIT/GCS/ENG/08-19

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GCS/ENG/08-19

CREATING AN AGENT BASED FRAMEWORK
TO MAXIMIZE INFORMATION UTILITY

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

John M. Pecarina, BS

Captain, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/08-19

CREATING AN AGENT BASED FRAMEWORK
TO MAXIMIZE INFORMATION UTILITY

John M. Pecarina, BS

Captain, USAF

Approved:

______________/signed/________________ __________
Dr. Kenneth M. Hopkinson (Chairman) Date

______________/signed/________________ __________
Dr. Gilbert L. Peterson (Member) Date

______________/signed/________________ __________
Capt Ryan W. Thomas, PhD (Member) Date

iv

Abstract

With increased reliance on communications to conduct military operations,

information centric network management becomes vital. A Defense department study of

information management for net-centric operations lists the need for tools for information

triage (based on relevance, priority, and quality) to counter information overload, semi-

automated mechanisms for assessment of quality and relevance of information, and

advances to enhance cognition and information understanding in the context of missions

[30]. Maximizing information utility to match mission objectives is a complex problem

that requires a comprehensive solution in information classification, in scheduling, in

resource allocation, and in QoS support. Of these research areas, the resource allocation

mechanism provides a framework to build the entire solution. Through an agent based

mindset, the lessons of robot control architecture are applied to the network domain. The

task of managing information flows is achieved with a hybrid reactive architecture. By

demonstration, the reactive agent responds to the observed state of the network through

the Unified Behavior Framework (UBF). As information flows relay through the

network, agents in the network nodes limit resource contention to improve average utility

and create a network with smarter bandwidth utilization. While this is an important result

for information maximization, the agent based framework may have broader applications

for managing communication networks.

Acknowledgments

First, I sincerely thank my wife for granting me the freedom to complete this

work. Let these algorithms be a love song to thee. I extend my sincere appreciation to my

faculty advisor, Dr. Kenneth Hopkinson, for his guidance and support throughout the

course of this thesis effort. Also, I would like to acknowledge the vital contribution of Dr.

Gilbert Peterson for his instruction concerning robotics and artificial intelligence.

Finally, but foremost, I give praise to God for his provision, through Him all

things are possible.

 John M. Pecarina

v

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures ..x

List of Tables .. xii

List of Abbreviations ... xiii

I. Introduction ..1

Background...1

Problem Statement ..4

Vision ...8

Preview ...10

II. Literature Review ..11

Classification for Information Maximization ...12

Descriptors --- 13

Mission Association --- 15

Timeliness -- 17

User Input -- 18

Scheduling for Information Maximization ...19

Information Flow Scheduling Problem --- 19

Restless Bandit Problem -- 20

vi

Computational Complexity --- 21

Approximate Solutions --- 22

Solution in Information Maximization --- 22

Resource Allocation for Information Maximization ..25

Agent Architectures --- 27

Reactive Control Architecture --- 28

Three Layer Architecture --- 30

Multi-Agent Systems -- 33

Quality of Service for Information Maximization ..39

Protocol Support for QoS --- 40

Middleware Support for QoS -- 42

Research Overview ...45

Summary...45

III. Methodology ..46

Domain ...47

Requirements ..48

Conceptual Design..51

Utility Threshold --- 52

The Hybrid Agent for Network Control (HANC) ---------------------------------- 54

Specific Design ...58

Perception -- 59

State --- 59

vii

Sequencer --- 61

Coordinator --- 61

Actions -- 62

UBF Module --- 64

Behaviors --- 67

Arbiter --- 69

Expected Results ..71

Test 1 – Arbitrary Drop Test --- 71

Test 2 – Utilization Test -- 71

Test 3 – Bandwidth Flux Test -- 72

Test 4 – Multiple Sink Test -- 72

Summary...73

IV. Analysis and Results ..75

Implementation ...75

Simulation Environment -- 75

Network Setup --- 76

Simulation Management -- 78

HANC Implementation --- 80

Experiments ..81

Experiment 1 – Simple Network -- 81

Experiment 2 – Expanded Network --- 83

Experiment 3 – Multiple Sink Network -- 87

viii

ix

Experiment 4 – Bandwidth Flux Test --- 91

Analysis ..93

Summary...93

V. Conclusions and Recommendations ...95

Research Summary ...95

Research Conclusions ...96

Future Research Recommendations ...97

Final Remarks ...98

Appendix A: Pseudo Code for Additional Behaviors ...99

Appendix B: Software and Procedures for Set Up and Simulation101

Bibliography ..102

Vita. ..106

List of Figures

Page

Figure 2-1: Goal Lattice for “In Harm’s Way” scenario. ... 16

Figure 2-2: Suboptimal aggregate information utility. ... 26

Figure 2-3: Poor utilization of network resources. ... 27

Figure 2-4: Three Layer Architecture including the UBF. ... 32

Figure 2-5: The HAMR Architecture Supporting Multi-Robot Systems. 38

Figure 3-1: Simple Network. .. 48

Figure 3-2: Generalized Routing Decision. .. 53

Figure 3-3: Conceptual Design of HANC. ... 55

Figure 3-4: Conceptual Design of the UBF Module. .. 57

Figure 3-5: UML Diagram for HANC. ... 58

Figure 3-7: HANC’s Execute Function. ... 63

Figure 3-8: UML Diagram for the UBF Module. ... 65

Figure 3-9: UBF Module Functions.. .. 66

Figure 3-10: The Composite Class genAction() Function. .. 67

Figure 3-11: MaxThreshold genAction(). .. 68

Figure 3-12: MinThreshold genAction().. ... 68

Figure 3-13: The CommandFusion Arbiter Evaluate Function. 70

Figure 4-1. Basic Topology for Network Information Maximization in NS2. 77

Figure 4-2: AgentHQ Main Execution. .. 79

Figure 4-3: UML Diagram for AgentHQ. ... 79

x

xi

Figure 4-4. Simple Network Experiment, Default and Using HANC. 82

Figure 4-5: Average Utility Comparison in a 4 Node Network.. 84

Figure 4-6. Extended Network Experiment, Default and Using HANC. 86

Figure 4-7 Average Utility Comparison in an 8 Node Network. 87

Figure 4-8: Multiple Sink Network Experiment, Default and Using HANC. 88

Figure 4-9: Average Utility Comparison in a 9 Node Network.. 89

Figure 4-10: Improved Utilization of Link to Alternate Source. 90

Figure 4-11: Demonstration of Bandwidth Flux Adaptation. ... 92

Figure A-1: SendRaise and SendLower Action Generators. .. 99

Figure A-2: HighFlux and LowFlux Action Generators. .. 100

List of Tables

Page

Table 2-1: US Air Force doctrinal goals from “In Harm's Way” scenario 16

Table 2-2: Cao’s Taxonomy for the NIM ... 35

Table 2-3: Dudek’s Taxonomy for the NIM ... 37

Table 4-1: Utilization comparison over most congested link in 4 node network. 84

Table 4-2: Utilization comparison over most congested link in an 8 node network. 85

Table 4-3: Utilization comparison over most congested link in a 9 node network 90

xii

xiii

List of Abbreviations

AFB Air Force Base
AOC Air Operations Center
ATO Air Tasking Order
DOD Department of Defense
GIG Global Information Grid
HAMR Hybrid Architecture for Multiple Robots
IP Internet Protocol
JFACC Joint Forces Air Component Commander
JFCCC Joint Forces Cyber Component Commander
JNO Joint Net-Centric Operations
LSP Label Switched Path
MAS Multi Agent System
MPLS Multiprotocol Label Switching
NIM Network Information Maximization
NS2 Network Simulator 2
NTO Network Tasking Order
OSD Office of the Secretary of Defense
QoS Quality of Service
RSVP Resource Reservation Protocol
SECAF Secretary of the Air Force
UAV Unmanned Aerial Vehicle
UBF Unified Behavior Framework
TCP Transmission Control Protocol
TLA Three Layer Architecture
US United States
UDP User Datagram Protocol
USSTRATCOM United States Strategic Command

CREATING AN AGENT BASED FRAMEWORK

TO MAXIMIZE INFORMATION UTILITY

I. Introduction

Thesis Statement: The quality of information as it relates to the mission can be effectively

drawn out of a network using automated, decentralized agent based techniques.

Background

In this era of the information age, there is no doubt that the United States Air

Force has become increasingly dependent on the cyberspace domain. As the Secretary of

the Air Force (SECAF) stated recently, “A great deal of our combat capability operates in

cyberspace: command and control systems as well as the intelligence, surveillance, and

reconnaissance platforms that ensure battlefield awareness” [38]. The operations in

cyberspace have become so significant that it has become internalized in the Air Force’s

doctrine. The mission of the United States Air Force is to deliver sovereign options for

the defense of the United States of America and its global interests – to fly and fight in

Air, Space, and Cyberspace. [34]

With this ever increasing role comes greater challenges. Foremost of these

challenges is in the management of the enormous quantities of bits and bytes that

represent huge stockpiles of information. This is the most critical aspect of cyberspace,

because the availability of information is the very core of the decision making process at

any level of command or specialty. The information subspace within cyberspace can be

1

acted on offensively, using network attack mechanisms, or defensively, as in network

defense. However, both operations hinge on the basis that information can be managed in

an efficient and effective manner in the first place. Network attack and defense may

reduce or bolster this efficiency, but the core competency of information superiority is

ensuring an optimal information flow.

 Ensuring an optimal information flow is not a trivial ability. It is not simply

fulfilled by connecting sensors, users and other data sources with commanders in robust

and reliable network architectures and having them communicate, even though this is a

daunting task. But merely establishing this would not solve an ever increasing problem.

Information has been, is, and will be so ubiquitous that drawing relevant data from a

reservoir of data is increasingly complex, time consuming and debilitating. It is a task

that the Joint Net-Centric Operations (JNO) address in their Net-Centric Operations

Campaign Plan, summarized thusly. The Joint Force and mission partners must have

rapid access to relevant, accurate, and timely information, and also the ability to create

and share the knowledge required to make superior decisions in an assured environment

amid unprecedented quantities of operational data [20].

Much of the work in this problem domain is covered procedurally. Organizations

are built on the concept that higher level decisions have greater impact than lower levels

decisions. The functional hierarchy and informational hierarchy of organizations tend to

grow upwards to satisfy this concept in parallel. At the tactical level, low level actors

receive local and specific information. With steps up the hierarchy, and through the

operational level, information is globalized and generalized. At the highest, strategic

2

level, information has been sorted, filtered and fused through the mechanisms of the

organization, like a bureaucracy or a command chain. However, the proliferation of

information technology has given our adversaries and threats great agility, leaving the

traditional construct of organizations cumbersome.

Many military commands have gone to much effort to ‘flatten’ organizations

through various means to bring actionable information closer to commanders. Besides the

all too familiar re-organizations that seem to occur every 2-3 years, there have been

technological efforts as well. From this author’s personal observation, General

Cartwright, when he was in his former office as the USSTRATCOM Commander,

introduced SkiWeb (pronounced Sky-Web) which he used as a blog site. His charge for

the site was that his entire staff, down to the airman, private, and seaman, could answer a

blog from the four star general with the intention that information could be quickly

escalated to decision makers who needed it. The use of technology to flatten

organizations is present on a larger scale in the Department of Defense (DOD), which is

in the midst of transforming its vast collection of information-technology systems into an

interconnected Global Information Grid (GIG). The GIG will ultimately connect sensors

to weapons systems, enable personnel to share information at will, and provide

unprecedented levels of situational awareness to commanders at all levels. As Maj Bass

indicates in his research, however, if we do not implement the GIG with a proper level of

restriction on the flow of information, war fighters risk being overwhelmed not only by

too much information but also by information presented at the wrong time, at the wrong

level of detail, and without proper analysis and interpretation [1].

3

With the abandonment of traditional organizational structures to sort, fuse and

filter information, technology must fill the gap. The Office of the Secretary of Defense

(OSD) recently commissioned an intensive study of information management for net-

centric operations [30]. Some of the necessities for technological advancement in the

field of information management are:

1) Tools for information triage (based on relevance, priority, and quality) to

counter information overload … will become increasingly important.

2) Operators require tools for semi-automated assessment of quality and relevance

of information.

3) Advances are needed to enhance cognition and information understanding in

the context of missions.

4) A key future capability will be to learn users’ context, information needs, and

preferences through observation.

Problem Statement

 The necessities described in the previous section are the basic motivations for this

thesis. However, in order to truly define the problem for the specific context of this work,

several scenarios are presented to capture the intended application and focused

requirements for this research.

Scenario 1 – In an Air Operations Center (AOC) the commander has several

information sources coming to the AOC’s central router, each through its own link with a

fixed amount of bandwidth. Low bandwidth demand traffic includes sensor inputs that

give telemetry and geolocation for aircraft and satellite, and other data link feeds provide

4

tracking data on friendly and enemy forces. Medium bandwidth demand traffic is

comprised of intermittent messages and file transfers from human users outside of the

AOC. High bandwidth demand traffic involves multimedia feeds from Unmanned Aerial

Vehicles (UAV), camera sensors and very large file transfers. In an ideal setting, the

commander would ask to have all this data brought into the AOC and let human eyes

decide what is important to the warfighter. However, during periods of peak information

flows, available bandwidth capacity is limited, resulting in information loss. The network

nodes have limited information to make decisions on what information is allowed to pass

through, so decisions become arbitrary. Arbitrary decisions mean that the routing agents

make no ‘thoughtful’ decision, dropping packets regardless of their importance to the

mission in a network wide context. This scenario leads to the first problem a system

combating information overload would need to solve.

Requirement 1 – Create a system that makes ‘thoughtful’ decisions on what traffic to

drop and what traffic to keep in relation to mission importance.

Scenario 2 – There is a trade off between important information and bandwidth

utilization, but often higher utility items must take precedence over lower utility ones.

For example, a critical video stream showing a target of interest may occupy a large part

of the bandwidth resources of a link. Suppose several other information flows combine to

give near optimal utilization of the same link, yet because the video stream is of higher

utility, it forces poor utilization. If the system was only concerned with utilization, the

second set of information flows would be chosen. There is an obvious tradeoff in this

5

scenario between utilization and utility, and the system must be capable of finding an

appropriate balance.

Requirement 2 – Create a system that balances network resources and mission

objectives.

Scenario 3 – The AOC commander has an information network as described

above. In this scenario, however, there are several interconnected links between source

nodes in the battlespace domain, routing information towards a destination, or sink, node.

The source nodes have diverse traffic flows, ranging from low value to high value

information and low to high bandwidth demands. Amongst all the nodes in the network,

any single source node must compete for the common bandwidth resources of the entire

network. If nodes can not effectively communicate in a distributed environment, nodes

may reserve all bandwidth at the network’s bottlenecks, without considering the utility of

competing information flows. Excessive communication may select the highest utility

flow, but will also create a less adaptive network with low throughput. The system must

have a mechanism to make distributed decisions about its information flows.

Requirement 3 – Create a system that makes distributed decisions about what

information needs to flow from source to sink.

Scenario 4 – The battlespace network described above consists of intermittent

connections as well as robust connections. One example of these connections involves

the scenario where satellites and airplanes pass overhead for a limited but predictable

6

amount of time. The usage of these connections could be planned for ahead of time using

a network tasking plan. Another example of intermittent connections is wireless links that

are affected by changes due to mobility or weather effects. Without regard for this reality

of this type of hybrid communication model, the network may perform unpredictably and

inefficiently. If the goal, furthermore, is to promote relevant data in reaching the sink

node, the system must adapt to conditions where bandwidth is in high flux.

Requirement 4 – The system must adapt to periods of bandwidth flux.

Scenario 5 – Building on previous scenarios, this scenario describes the addition

of multiple users. In the previous scenario, the AOC Commander is the only user, now

there are many actors in the network. Examples of these users are those with tactical level

responsibilities amongst the source nodes and users outside of the network, such as an

external intelligence analysis site. The additional entities may have distinct and

competing mission objectives.

Requirement 5 – Create a system that negotiates multiple, competing mission

objectives.

Beyond these 5 issues, there are several other considerations that should be considered

important in this field, yet are not specifically addressed.

Scalability Security Fault Tolerance Reliability

Availability Authenticity Timeliness

7

Vision

A solution that can satisfy the requirements listed above will prove to be an

invaluable tool for a commander trying to manage the battlespace. It would give the

commander a tool to form the information flow in his environment. True to the SECAF’s

guidance, such a tool would empower a warfighter in a subset of cyberspace. One could

envision a cyber battle analogous to the air battle.

In the current warfighting mindset in an AOC, the commanding authority is the

Joint Forces Air Component Commander (JFACC). His major daily efforts are focused

around decision making for the Air Tasking Order (ATO) process. The ATO is used to

task and prepare air units to accomplish the overall mission. While analyzing how the

previous ATO was played out, the JFACC watches as the current ATO is managed,

makes necessary changes to the next day’s ATO and creates an ATO for three days out.

One of his major tools in affecting the development process is in assigning weights of

effort to the air battle’s many objectives. For instance, if the supreme commander feels

that protecting a major urban center from attack is a priority, then the air component

commander guides the strategy to task by assigning a certain portion of his force to it.

This guidance helps war planners devise air tasking options needed to reach the objective.

It is feasible to envision a movement towards a Network Tasking Order (NTO),

similar to an ATO, which would guide communication assets in a theater of operations.

To provide an illustration about how this may occur, a Joint Forces Cyber Component

Commander (JFCCC) could assign weights of effort to different mission goals in

cyberspace. For example, if protecting an urban center is a priority, the JFCCC will see it

8

as a necessity to ensure information superiority over that area to support the other

commanders. Thus, he would scale his weight of effort to give planners a queue to favor

missions that support this objective. Mission planners could subsequently coordinate to

provide more airborne or land based communication assets to provide extra bandwidth in

that area of the battlespace.

However, due to the incredible dynamics associated with network

communications, it may be infeasible to expect a daily tasking order to be carried out in

any manner close to what is planned. As bandwidth and connectivity vary over time,

battlespace communication nodes will require protocols that can negotiate amongst

themselves to split additional bandwidth or, when bandwidth is lower than expected,

remove low-priority communication tasks. In a real sense, the NTO will be a dynamic

plan that may change on the order of seconds, taking into account changes in satellite

orbits, airborne and seaborne platforms, as well as land based lines that may suddenly

appear or disappear in a battlespace environment. Given that an NTO is a likely step

forward, real-time mechanisms must be in place to detect deviations from preplanned

network bandwidth and link availability. The network must self-adapt, bearing in mind

the commander’s intent, his weights of effort. It is the goal of this research to devise a

system which could provide the interface for such a commander to have this input, and

expect it to be reasonably carried out.

There are many research areas that require solutions that match the requirements

and vision that will bring a cyberspace commander more control of his network. A

solution needed within information maximization involves creating a multi-agent system

9

to control the network. With the backdrop of the motivation for this research, this thesis

creates an agent based framework to maximize information utility.

Preview

In summary, the military is moving towards a more information-rich environment

for the warfighter. While this has the potential to revolutionize the way that wars are

fought, getting the right information to the right decision makers becomes extremely

difficult as attempts are made to scale up to an entire battlefront. UAVs, sensor networks,

advanced satellite data, and publish-subscribe systems all have the potential to be a great

aid, but they require bandwidth management and topology control on a much wider and

more complex scale than exists at the present time. This thesis will help to move closer to

a world where warfighters can have the information they need, in the form it is needed in,

and at the time they need it. The work will simultaneously help to move to a point where

the information that is not needed, that wastes time, bandwidth, and energy is blocked to

allow the critical data to get through.

This chapter provided motivation for the research area and presented a brief

description of the problem. Chapter II will present the subject matter in more depth to

show what research that has already been conducted in this area. It will also describe how

this research is different from previous research on the same topic. Chapter III gives a full

explanation of the methodology and details the approach used in conducting the

experiments. Chapter IV compares the different experiments conducted and presents the

results is a logical manner. Finally, Chapter V summarizes the experiment results,

explains the significance of the research, and presents areas for future research.

10

II. Literature Review

Network information maximization, simply stated, is the ability of a network of

queues, schedulers and routers to produce the most useful data to a user or users given

time and bandwidth constraints. The most useful data for any window of time consists of

the optimal set of information flows in terms of information utility. Information flows are

not merely file or message transfers. They are much broader than that, representing long

standing, heterogeneous, and sometimes discontinuous blocks of data answering specific

information requirements for a user. Information utility is a measure of the importance of

a piece of information to a user who desires it. In the literature, information utility can be

synonymous with the terms “information value” [27] or “information measure” [15] and

“relevance” [26]. It is somewhat synonymous to the term “priority” or “ultimate priority”

[22], though priority has been closely associated with timeliness in multimedia.

Timeliness requirements may not be the sole decision point for maximizing useful

information from a network. This paper chooses to use the term information utility for

this association with usefulness. The goal of the network information maximization

problem is to maximize the aggregate utility of the set of information flows presented to a

user, which can be defined as the sum of all utilities of all information streams. A related

metric, average utility, can be defined as the aggregate utility divided by the number of

packets received over a time interval. Average utility is also maximized as aggregate

utility is maximized.

11

 Network information maximization (NIM) is a problem within network

management that is concerned with the research areas of information classification,

scheduling, resource allocation, and providing quality of service (QoS). A comprehensive

solution requires a system that accounts for all of these aspects. Although the work

presented in this thesis concentrates on resource allocation, it makes assumptions about

classification and scheduling of information flows that call for some elucidation. The

resource allocation solution implements an agent based approach, built with reactive

robot control architecture that works on top of a QoS framework. Keeping a

comprehensive view, this chapter illuminates information flow classification, a solution

for scheduling, an agent based architecture to exploit information and mechanisms for

QoS.

Classification for Information Maximization

 The classification of information flows into a meaningful description of its value

is one critical competency of managing an information system. As will later be shown,

classification can support the ability to index information flows for scheduling and the

allocation of resources and can help define a class of service for QoS. It is important to

use a quantitative descriptor for an information flow. The sources of that descriptor can

be numerous, but this work focuses on mission association, timeliness, and user input to

determine value. Finally, these classifiers can be combined to form an information utility

for an information flow. Appropriate information classification relies upon choosing a

type of descriptor and the sources of classification to combine a usable index for

information.

12

Descriptors

In non-specific terms, information utility may be a qualitative description of the

information, where one would expect the adjectives low value, fair value, high value. For

example, Huang [19] asserts the terms critical, essential or non-essential class. However,

if only one qualitative descriptor is used, it is very difficult to capture a user’s true intent

in deciding what information needs to be seen by the commander. To illustrate this,

consider a commander interested in maintaining air superiority over Baghdad. Assuming

air superiority has already been established, the commander may wait on certain

information flags to alert him to the possibility of an escalating threat. Some information

flags are obvious, like detecting mobile surface to air missile sites, enemy aircraft, and

jamming events. Information drawing these conclusions would garner a high value rating,

because they explicitly match his intent. Other events in the area over Baghdad are more

subtle, such as enemy troop movement, which may or may not have a capability to hinder

air operations. Information in this category may have a fair value rating. Finally, many

seemingly unrelated events, such as reports of snipers in buildings, may occur. This

information would likely have a low value rating. If a commander asked to see all

information, information overload may occur. A new threshold could be set to receive

only high value information, but the risk of missing important information from a lower

perceived value increases. Also, information from lower value events when combined

with other low value events could be missed when setting a qualitative threshold. For

instance, snipers in several building in strategic topographic locations could be setting

themselves up for a coordinated jamming attack while enemy troops position themselves

13

for an urban ground battle. If their coordination succeeds, their combined efforts may

overwhelm ground forces when aircraft are unable to give close air support and deliver

precision guided munitions.

 The example illustrates a problem that qualitative descriptors have, arbitrating

between quality levels. A quantitative description can help alleviate the problem, using

numbers instead of words to describe the value of information. Low, fair, and high can be

replaced by 1, 2, and 3. These numbers can be adjusted in the presence of other events. In

the example, a sniper being spotted in Baghdad may increase the next spotted sniper to

1.2. Events can be combined with other events and given an average or intermediate

value which is more meaningful if they could only be described as low value.

Kwiatkowski [22] proposes a combination of 3 qualitative and quantitative

descriptors that are combined into a single quantitative descriptor. The first is a mission

identifier that contains a weighting based on relative importance assigned by a

commander or a policy in place on the network. The second is a precedence value, given

the values Routine, Priority, Immediate or Flash. These values correspond to the time,

order of minutes and hours, that the information is needed. They would correspond to

time constraints written in military procedure or doctrine. The third descriptor comes

from a user-perceived priority. These descriptors are combined into an ultimate priority

by a network policy, which may assign a value using the descriptors and factors like

resource demand or traffic type. This research parallels Kwiatkowski’s notion of

descriptors, but describes the attributes in different detail. This thesis asserts that mission

association, timeliness, and user input are used to calculate an information utility value.

14

Mission Association

In a military environment, mission objectives and goals are the most obvious

source of value for information utility. Hintz and McVey [15] attempted to maximize the

flow of information in a group of sensors by minimizing the uncertainty of the perception

of the world held by a mathematical model and the world itself. While this view

maximizes information flow, it lacks a representation of information needs. While

maintaining the model of reducing uncertainty to maximize information flow, Hintz and

McIntyre [14] developed the concept of a goal lattice, to extract sensor task weightings

from mission objectives. A software system called GMUGLE decomposes a goal into

sub-goals and eventually into tasks. The top level goal is always given a weight of one.

Every level down allocates the parent’s weight among the different sub-goals. The

bottom level consists solely of tasks, weighted to reflect how they support the top mission

goal. This weighting is then used to decide where to focus information foraging efforts. A

mission oriented goal lattice developed by McIntyre [25] is shown in Table 2-1 and

Figure 2-1. Taking seventeen mission goals from Air Force doctrine, he produced a goal

lattice to weight sensor tasking. The top goals in the table correspond to the top goals in

the goal lattice, continuing as the graph moves to the bottom goals. The bottom three

goals of track, identification (ID), and search are reflected in the bottom layer of the goal

lattice, and their respective weights are used in choosing a task. Hintz and Malachowski

[13] extend this model to dynamically build goal lattices to fit real operations

environments better.

15

1Table 2-1: US Air Force doctrinal goals from “In Harm's Way” scenario [25].

15
16

17

14

13 12 11 10 9

6 7 8

2 3 4 5

1

Figure 2-1: Goal Lattice for “In Harm’s Way” scenario [25].

16

In the NIM, a goal lattice method could decompose the commander’s goals to

sub-goals in tasks. As information flows enter the system, they would be registered with a

mission goal or task to receive a weighting reflecting their importance to the mission. If

the information flow supports more than one goal to a varying degree, it would be

registered with a weighted average for the various goals it supports. An information

flow’s weighting would give it a quantitative mission association value. The goal lattice

construct enables a commander to manage a network using the NTO. Being able to

weight goals and tasks, a commander can see how their intent is being disseminated to an

army of network devices and can rearticulate mission objectives accordingly.

Timeliness

 In some cases, timeliness is the most critical attribute of information. Intrinsic to

the concept of an information flow is that the entire stream of information is of value to a

user at or before a deadline. Keshav [21] explains that utility can be represented as a

function of the time delay that it takes for information to reach a destination. One

possible utility function is u(t) = U - t. If the time delay were infinitely small, the utility

of receiving information in this case would be U. As t increases, u(t) decreases. When t >

U, the utility of receiving such information would actually begin to be negative, since it

has no value and ties up resources in order to be sent late. Information flows that consist

of voice, video, or extremely critical information may be classified into timeliness

clusters of immediate. Other clusters, like priority and routine, could express increasing

levels of delay tolerance.

17

User Input

User input may provide another means of classifying information. One form of

user input is user driven segmentation, described by Berkhin [2], refers to the process that

utilizes expert knowledge regarding the importance of certain sub-domains. In this case,

user knowledge could be derived from an NTO process in which the commander and his

staff create rules that could be incorporated into an expert system. For example, a

commander could assign a rule linking the appearance of a known terrorist in the

presence of other explicitly named terrorists to a mission critical cluster. User input

should be limited, however, because the capability for a user to react to dynamic events

in information flow is also limited. Therefore, for simplicity, three categories, Mission

Critical, Mission Essential and Mission Non Essential are adopted for user input.

Popularity is another form of user input. Search engines on the World Wide Web

provide powerful keyword search mechanisms that may be applied to the battlespace

network. Search engines can weight previous page hits to guide future searches. One way

to use search engine concepts is to reinforce value in popular information flows, allowing

user input to alter information utility to exploit useful information flows. Popularity tends

to focus on a commonly accessed subset of all available information. Thus, popularity

must be limited so exploration is balanced among information flows [18].

 Information classification is a vital piece to network information maximization.

Proper classification supports the ability to index information flows for scheduling and

the allocation of resources. This work focuses on mission association, timeliness and user

input to determine classification. After classification, these three attributes can be

18

combined to form an information utility for an information flow during the scheduling

process.

Scheduling for Information Maximization

The scheduler determines an information flow’s utility value to prepare it for

resource allocation and routing. The three attributes determined by a classifier are

combined to form an information utility, used as an index in scheduling. This section

describes the information flow scheduling problem and maps it to the restless bandit

problem. The restless bandit problem is formulated, then its complexity is described and

an approximate solution is shown. This section concludes with an applied solution to the

information maximization domain. The information flow scheduling problem, similar to

the restless bandit problem is solved with an approximate greedy solution that supports

the concept of indexing information utilities.

Information Flow Scheduling Problem

The information flow scheduling problem solver must choose an optimal set of

information flows for a user. If only one user existed, such as an AOC commander, the

network goal is to select the set of commodities that produces maximum information

utility to the AOC commander. For each node in a network, a scheduling device is

responsible for selecting a set of information flows to forward to the next node that will

contribute to the network goal. The multi-armed bandit problem further characterizes this

scheduling problem.

The multi-armed bandit problem [28] is based on an analogy to a slot machine

(the one armed bandit), but with many levers. Each lever is associated with an expected

19

distribution that comes with each pull of the lever. If the lever is activated, a user receives

a reward. Without initial knowledge of the distributions, a gambler must select a subset of

levers that maximizes distributions over time. The gambler faces the dilemma of

exploiting one set of levers for their value or exploring other sets of levers to gain better

distributions. In the information scheduling problem, each network scheduling device

plays the role of a gambler. The scheduling device chooses from a set of information

flows to maximize utility in the long term.

The multi-armed bandit problem is solvable in polynomial time using a priority

index approach. The approach is to assign a priority index to every lever corresponding to

its current state. The optimized set at any given time includes all the levers with the

largest indices in the current state, selected greedily [3]. However, for this research, a

slightly adapted model of this problem must be used, because the multi-armed bandit

problem assumes that there is no incurred cost and no change in the state of an item if it

is not activated [31]. On the contrary, not choosing an information flow as a service

deadline approaches may incur cost in its utility or alter its relative popularity. Therefore,

this paper presents an extension of the multi-armed bandit problem, the restless bandit

problem.

Restless Bandit Problem

Bertsimas and Nino-Mora [3] presented a formulation of the restless bandit

problem. Let there be a collection of N projects. Project n ∈ N = {1, …, N } can be in

one of a finite number of states in ∈ In, for n = 1 ,..., N. At each instant of discrete time,

20

t = 0, 1, 2,...,∞ exactly M < N projects must be operated. Let an(t) = {0 , 1} denote that

project n is active at time t. If project n, in state in(t), is in operation, then an active

reward R1
i is earned, and the project state changes with an active transition probability. If

the project remains idle, then a passive reward R0
 i is received, and the project state

changes with a passive transition probability. Rewards are discounted in time by a

discount factor 0 < β < 1. Projects are to be selected for operation according to an

admissible scheduling policy u: the decision as to which M projects to operate at any time

t must be based only on information on the current states of the projects. Let U denote the

class of admissible scheduling policies. The goal is to find an admissible scheduling

policy, Π*, that maximizes the total expected discounted reward over an infinite time

horizon.

1

1

()()
() ()

0

max (...)n

n

a ta t t
u i t i t

t

E R R β
∞

∗

=

⎡ ⎤Π = + +⎢ ⎥⎣ ⎦
∑

Later, this section describes how this formulation applies to the NIM scheduling problem

through substituting projects for information retrieval.

Computational Complexity

Papadimitriou and Tsitsiklis [31] described the complexity of optimal queuing

network control and specifically address the restless bandit problem. They proved that the

problem of finding an optimal control policy in a multiclass closed queuing network is an

intractable problem. Not merely this, but also that the problem provably requires

exponential time for its solution, or EXP-complete. If both routing and the service times

21

are deterministic, they show the problem to be PSPACE complete. Finally, they show

that the restless bandit problem is PSPACE complete even for deterministic problems.

Approximate Solutions

 The well-known optimality of Gittins priority index rule was applied to the

restless bandit problem by Whittle in 1988. However, in 1990 Weber and Weiss found

instances of the restless bandit problem that did not satisfy a certain indexability property.

Bertsimas and Nino-Mora produce a second order linear programming relaxation to

approximate a heuristic they called the primal-dual heuristic. Using the primal-dual

heuristic in place of the Gittins priority index, they found excellent performance in

computational experiments that could be improved with stochastic optimization methods,

like Genetic Algorithms [3]. Later, Nino-Mora [29] pared down the linear programming

solution into an adaptive greedy algorithm that calculated an index for each item state.

Solution in Information Maximization

Huberman [18] built upon this adaptive greedy algorithm and applied it

specifically to an information maximization problem. His viewpoint was that the average

user is bombarded with information overload while searching the web for useful

information. He claims that search engines can often employ arbitrary methods for listing

the top search items instead of ranking items by user preference. The average user

becomes saturated very quickly, often choosing only the first few hits in a search, though

sometimes the best results exist much later in the list of results. In his formulation, he

mapped the problem of optimizing the information one gets from exploring web pages or

any other digital content to Bertsimas’ optimal allocation of effort to a number of

22

competing projects. His mathematical model varies from Bertsimas in semantics, but

maintains the same idea of maximizing reward over time.

At any time t, n items exist, but only m of those items can be displayed at any

given time. In every time step, it is assumed that the system can update its list of items to

display. Let An(t) be the set of all items, i at time t, where An(t) = 1 if it is displayed at

time t, and 0 otherwise. Let ri be the total expected utility of any item. Let I be the set of

all states that any item can be in at any time. Let U be the set of all users, u and let β be

the future discount factor such that 0 < β < 1. Then, the objective function to maximize

total expected utility for all users is given below.

 ()
0 1

max (())
m

n

u i t mu U t m

E r A t β
∞

∈
= =

⎡ ⎤
⎢ ⎥⎣ ⎦
∑∑

 Huberman simplifies the problem by creating a dual speed assumption. This

means that active actions, choosing an item, causes a faster change in state than, passive

actions, not selecting an item. This is an important assumption because it gives the

problem the property of indexability. It makes sense in this environment because search

engine hits that are viewed are far more likely to be selected or not selected again after

they are viewed. This is a plausible assumption in the network information maximization

problem as well, because once information is viewed, users can better categorize it as

something they prefer or no longer prefer to see. Thus, this thesis makes the same

assumption as Huberman does.

 Huberman continued in solving the information maximization problem by

determining a set of constants which he uses in the Bertsimas-Nino-Mora greedy

23

algorithm to calculate a set of indices for each of the states in I. These indices were rank-

ordered to produce his top information retrievals. In his experiment, Huberman created a

state space that consisted of a two attribute vector, containing a 5 star rating system and a

5 access level rating (based on number of website hits). His state space held 25 states, and

using the adaptive greedy algorithm, the optimal set of search items was found. One

unexpected result in his experiments showed that items that were rarely seen were in

states that held higher value than items that were seen occasionally but had mediocre

ratings. The author claimed this is due to the fact that the algorithm gives high index

values to potentially valuable states. Such a property would be desirable in information

retrieval methods to encourage exploration of all available information, rather than

focusing only on what has been seen.

 In the NIM problem, the classification process described in the previous section

would create a state space that would consist of 100 discretized points describing a

percentage towards mission support multiplied by the number of timeliness clusters

multiplied by the number of user input clusters. Using the adaptive greedy algorithm

presented by Bertsimas, the states could be indexed and sorted on their information

utility. After scheduling, resource allocation and QoS routing mechanisms ensure the

information flows reach their end destinations.

 The study of the information scheduling problem gives an important result.

Huberman’s formulation shows that information has the property of indexibility. This is

critical to the success of the resource allocation mechanism, which relies on an accurate

indexing of information flows to ensure the highest aggregate utility for network users.

24

Resource Allocation for Information Maximization

 Classification provides the attributes that are used in scheduling through indexing.

However, a problem that still exists comes from a system wide allocation of bandwidth

so bottlenecks in the network will appropriately assign bandwidth and time to

information flows that are farther upstream or to prevent congestion at bottlenecks

downstream. This must be done in a dynamic way, because the utility of information

flows can change drastically from one moment to the next, affecting changes in resource

allocation. Also, the addition of information flows and loss of bandwidth can change

resource allocation. To react dynamically, an agent based approach is introduced. A

hybrid agent architecture can perform tasks for resource allocation by coordinating with

fellow agents in a multi-agent system.

Without significantly altering a network, the combined utility of information

coming from a network can be greatly increased simply by placing priority queues at

each network node. By doing so, the lowest utility flows are dropped before higher utility

flows, ensuring that the most useful of all flows get to the end user. The problem with

this simplistic arrangement is that it does not ensure that the second highest utility flow

gets to the end user, since it may have been dropped because of contention with the

highest utility flow. A later introduction of a lesser utility flow produces a lower

aggregate utility. This scenario is shown in Figure 2-2.

25

Figure 2-2: Suboptimal aggregate information utility. A high utility flow and a low utility
flow are relayed through a network while the decision point arbitrarily drops the mid
value utility flow.

Another problem comes when an arbitrary resource allocation process merely

looks at utility but not at utilization of network resources. In the scenario depicted in

Figure 2-3, source 2’s low utility flow vies for bandwidth against the high utility flow and

a flow heading to an alternate sink node. Here, the low utility does not gain access to the

sink node because of competition with the downstream mid-utility flow. Yet, the low

utility flow still utilizes the bandwidth that the alternate source could use to reach the

alternate sink. The underutilization of the link to the alternate sink indicates poor

utilization of network resources.

26

3Figure 2-3: Poor utilization of network resources. An alternate flow attempting to reach
an alternate sink in the network is unable to compete for the bandwidth of a shared
congested link. Since high and mid utility flows occupy the final link to the sink, the low
utility flow unnecessarily utilizes the shared congested link, resulting in poor utilization
of the link to the alternate sink.

Agent Architectures

An agent is an entity that uses machine logic to analyze state and perception to act

on its environment. This paper uses the term robot and agent interchangeably, but the

term robot typically describes an agent in the physical or simulated real world. Still,

many typical robot control architectures can be used in agents. This work proposes that

agents using a three layer architecture (TLA) [11] can perform the duties of resource

allocation.

Before 1985, traditional implementations of robot control architectures exhibit the

same issues that centralized control of networks face. Typically, a planning module or

27

“brain” of the robot created an action based on state information through extensive

planning algorithms. The robot executed actions through its actuators. If the environment

is highly dynamic, planning would be intensive. Traditional implementations suffered

from excessive time delay in dynamic environments [11]. In the same way, the dynamic

environments present in wireless networks with dynamic topologies hinder the

centralized control of a network. Time delay and uncertainty in distributed systems create

very difficult or impossible optimization problems. As robot control architectures have

modernized, the lessons learned from their evolution can be applied to communications

networks.

Reactive Control Architecture

Modern ideas about how robot control architectures work have a basis in the work

of psychologist Valentino Braitenberg [5]. Braitenberg described proposes that simple

systems can exhibit complex behavior. First, he described how robots can dynamically

react to an environmental stimulus by just wiring sensors to motors. As a sensor measures

the increasing presence of a stimulus, the robot accelerates toward the stimulus and

decelerates as the absence of it increases. The opposite may also occur when the wires are

crossed. The important thing to note is that this property of locomotion sets the stage for

emotion. For example, a robot that charges a stimulus demonstrates aggression. If the

robot flees the stimulus, it demonstrates fear. Next, Braitenberg adds sensors that react to

different stimuli to build a multisensorial vehicle that exhibits a sense of knowledge or

values. Then, he introduced a motor that was not simply on or off, but instead was

powered proportionally based on the intensity of the stimulus. The robot that was created

28

by this development had very complex trajectories that can be perceived as instincts and

decision making, which gives the observer an impression that thought was occurring.

Braitenberg suggests an important point in the field of robotics, that a robot can

display characteristics and behaviors that mimic those of real living creatures. The

motor/sensor organisms describe an elemental view of robots and illustrate how they

exhibit emotion, value, knowledge and logic. He also showed how simple behaviors can

combine to form more complex ones.

 Rodney Brooks [6] published this idea concurrently as it applied to robot control

architectures. Brooks described robot control architecture based on the behaviors the

robot must exhibit. He emphasized simplicity, even in a complex environment,

commenting that simple implementations are more manageable than complex, more

capable ones. Brooks illustrated his ideas about the robot control architecture, based on a

behavior model, which built levels of competence. Starting with the lowest level, obstacle

avoidance, each level built on the previous one, adding mobility, sensing, and planning

until a very sophisticated, reasoning robot emerged. In his design, the highest level of

competence overrode the behavior in the levels below it in what he described as

subsumption. The delineation in the levels allowed Brooks the ability to engineer

solutions in an incremental fashion, adding new levels of competence to the control

architecture when they were called for or available.

The subsumption architecture provided four advantages. 1) it allowed multiple

goals, as long as a higher level goal did not cancel a lower level one, 2) it allowed

multiple sensors to operate, through fusion or centralization, 3) it brought a limited

29

robustness, where failure at one level meant falling back to a lower one, and 4) it was

additive, since each level came with its own processor. To implement each layer, Brooks

used a finite state machine implementation, claiming that each layer only used the parts

of the traditional planning model that it required, thereby speeding processing time.

Brooks’ article was important because it provided a new understanding of robot

control that freed it from traditional linear planning methods. The new method created the

reactive robot that could act faster on changes in its environment. According to Gat [11],

the reactive robots had huge successes early on, running circles around the traditional

planners. However, in 1989, the robot Herbert demonstrated what was perceived as the

“capability ceiling” in the subsumption style. The fatal flaw of subsumption was an

inability to deal with complexity, owing first to not being able to separate the layers into

prioritized levels and second to not being able to keep state information. The problem

with the pure planners was its slow speed because of its state intensive planning and

searching. On the other hand, the pure reactive systems suffered from having no state

information which caused it to be unreliable and incompetent in complex environments.

However, Gat argued that these layers were complementary and that both have value, yet

a third layer was needed to reside between them.

Three Layer Architecture

Gat [11] presented a seminal paper on TLAs in 1998. TLAs consist of control,

sequencing and deliberative layers. The basic idea is that a low level control layer

handled functions which reactive architectures were good at, such as wandering and

obstacle avoidance. At the top, a deliberative layer performed planning functions which

30

required time. Between these layers, Gat identified a sequencing layer that selected an

appropriate reactive behavior based on the perceived state of the environment. This layer

made the robot act more intelligently than if it used a reactive approach alone, and faster

than if it was only a deliberative planner.

To make the TLA more flexible, Woolley [37] introduced the Unified Behavior

Framework. The UBF works at the controller level of the three layer architecture. Several

low level behaviors run concurrently at the controller layer, producing instinctive actions

to a perception of the environment. Each action also produces a vote that indicates how

strongly each behavior module believes its action should be implemented. An arbiter

selects an action for a situation based on the behavior votes. Arbitration between voting

behaviors can be done with a simple or fusion approach. The simple, or winner take all

approach chooses one action based on the highest vote. The fusion approach can take

many forms. One form, command fusion creates an action that is a weighted average of

all inputs. Another form, utility fusion selects the highest voting action but adds actions

to unused resources in vote order. The simple arbitration scheme can be quite adaptive to

dynamic environments, but lack the complex, emergent behavior property of the fusion

techniques.

Hooper [16] portrayed how the UBF fits into a TLA. He asserts that the

Controller is responsible for selecting and activating behaviors through the UBF. The

Sequencer selects a set of candidate behaviors for the UBF by analyzing current tasks and

state information. A depiction of how the UBF fits into the TLA is shown in Figure 2-4.

31

Figure 2-4: Three Layer Architecture including the UBF.

Brooks, Gat, Woolley and Hooper applied their concepts to robots in the physical

(or simulated physical) world. Their goals were aimed at creating robots that could

navigate around obstacles and perform tasks in an environment that mimicked the

physical world. This research attempts to apply robot control concepts to a virtual

computer network domain. The deliberator layer allows for input (i.e. a network tasking

order) from network owners, (i.e. commanders) to alter a network based on mission

objectives. The sequencer layer can take decomposed goals from the deliberator to build

a library of behaviors that are sufficiently capable of performing a task. The controller

layer ensures task execution. The end result is an agent deployed in every node that

32

considers the state of the network and selects actions that seek to maximize the aggregate

utility of the network flows, while balancing the efficient usage of resources.

Yet, because of the networks constraints of bandwidth and time, agents can not

act strictly independently. A single controller can use global knowledge to arbitrate

among several agents to compete for bandwidth reservations to cross the network. The

obvious difficulty with this method is that it forces a centralized network architecture,

which will not scale well and is not fault tolerant. Since decisions are given to local

agents for the purpose of decentralization, coordination is necessary to select the optimal

set of information flows. Therefore, information maximization requires a multi agent

system that can perform resource allocation through cooperative behavior. Cao [7]

defines cooperative behavior in this way "Given some task specified by a designer, a

multiple-robot system displays cooperative behavior if, due to some underlying

mechanism (i.e., the “mechanism of cooperation”), there is an increase in the total utility

of the system." The next section describes multi agent systems in the context of network

information maximization.

Multi-Agent Systems

 A Multi-Agent System (MAS) is a generalization of a multi-robot system, but

many of the same characteristics are present in both. Like many multi-robot systems, a

MAS has no global system controller, asynchronous computation, decentralized data, and

agents without complete information or capabilities to solve a problem [35]. A multi-

agent system can also be described as a distributed system. According to Wang [36], a

distributed computing system contains many computing devices that are geographically

33

separated, where each computing device consists of processing and storage facilities as

well as a subsystem that supports inter-process communication. Cao calls the multi robot

system a special case of a distributed system [7], so the taxonomies of multi-robot

systems can be applied to multi-agent and distributed systems. The taxonomies of Cao

and Dudek [9] characterize several traits for a multi-robot system which can be applied

for the NIM problem.

 Cao [7] offers four traits of multi-robot systems. The first trait is that they are

either centralized or decentralized. If they are decentralized, then the system is either

hierarchical, meaning local centralization, or distributed, meaning all agents are equal in

control. The NIM has disregarded centralization as infeasible, so its solution must be

decentralized. Further, it is hierarchical since nodes closer to the sink node or at

bottlenecks will have greater impact on information flows than others. The greater impact

is present because leaf nodes have less access to information while interior nodes may

have to decide how to route a larger percentage of information. The second trait describes

whether all nodes are homogenous or heterogeneous in regards to capabilities. In the

NIM, all nodes have the same capabilities. However, bandwidth capabilities may hinder

some nodes from functioning as well as others. Nevertheless, in describing this Multi-

Agent System functionality, bandwidth capability is disregarded. The third trait in Cao’s

taxonomy is the agents’ communication structure. Agents interact via the environment,

sensing or communication processes. Communication can be either directed or broadcast.

The existence of the agents on a communications network implies that communication is

probable, and could be directed or broadcast. Wang [36] proposes 3 ways in which

34

communication may occur, 1) Message Passing, 2) Broadcasting, and 3) Shared Memory.

Because shared memory can cause scalability problems and broadcasting may produce

excessive overhead, message passing appears to be the most economical and feasible

approach. The fourth trait is in how agents model how other agents will perceive and act

on the environment. The benefit of predicting behavior can assist in cooperation toward a

common goal, and it is definitely possible in the NIM. A summary of the NIM using

Cao’s taxonomy is shown in Table 2-2.

2Table 2-2: Cao’s Taxonomy for the NIM.

Cao Centralization Capabilities Communication Modeling

NIM Decentralized,
Hierarchical

Homogeneous,
without
Bandwidth
Limitations

Directed Some

 Dudek [9] proposed seven characteristics for multi-robot systems. Dudek’s

taxonomy is useful because it describes communication requirements more explicitly

than Cao. The first characteristic is size, described as ALONE, PAIR, limited with

respect to the environment (LIM-GROUP), and infinite (INF-GROUP). As each agent

will reside on one node, the proper choice in the NIM is LIM-GROUP. The second

characteristic is communication range. With COM-NONE, robots can not directly

communicate, with COM-NEAR, they can communicate in a range sufficiently nearby,

and in COM-INF they can communicate with any other robot. As networks gain size,

efficient communication is generally limited to neighbors, thus the NIM is COM-NEAR.

Communication Topology is the third characteristic in Dudek’s taxonomy, dictating the

35

way that robots communicate. Communication can occur through broadcast only (TOP-

BROAD), by name or address (TOP-ADD), by tree structure (TOP-TREE) or by graph

structure (TOP-GRAPH). A communications network, being a graph, fits the TOP-

GRAPH topology. The fourth characteristic, Communication Bandwidth, describes the

cost and possibility of communication. The possibilities range from BAND-HIGH, where

communication costs are negligible to BAND-ZERO, where communication is

impossible. BAND-MOTION and BAND-LOW express intermediate cost incursion, but

the communications network is best described as BAND-HIGH, although occasionally,

as congestion rises, communication can approach BAND-ZERO. Reconfigurability, as

the fifth characteristic, portrays the agents as fixed (ARR-STATIC), mobile (ARR-

COMM) or rearrange arbitrarily (ARR-DYN). The node agents will likely be fixed in the

scope of this work; however, future research could describe the nodes as being able to

coordinate rearrangement to use resources better. Sixth, processing ability expresses how

capable each agent is in regards to computation. This paper assumes that the processing

power of an agent in the NIM is Turing Machine equivalent, the highest possible in

Dudek’s taxonomy. The final and seventh characteristic describes the composition of

agents, homogeneous or heterogeneous. As in Cao’s taxonomy, all agents are

homogeneous in this domain. Table 2-3 summarizes how Dudek’s taxonomy portrays the

probable solution for the NIM domain.

36

3Table 2-3: Dudek’s Taxonomy for the NIM.

Dudek Size Comm
Range

Top-
ology

Band-
width

Reconfig-
urability

Processing Comp-
osition

NIM LIM NEAR GRAPH HIGH STATIC TME Homo-
geneous

 By characterizing the NIM into the taxonomies of Cao and Dudek, this paper

shows how implementing an agent based framework in the nodes of a network can be

used to form a multi-agent system for network optimization. Hooper [16] used the

taxonomies of Dudek and Cao to alter the three layer architecture to support

communications requirements in multi-robot systems. His model, shown in Figure 2-5, is

named HAMR (Hybrid Architecture for Multiple Robots), and introduces a coordinator

component to work alongside the sequencing layer of the TLA. The coordinator is

responsible for providing feedback to the Deliberator to aid in decision making,

monitoring state, requesting new tasks if state changes significantly, and modeling other

agents and the environment. According to Hooper, provided that modeling is extensive,

communication can be significantly reduced using a coordinator. The addition of a

coordinator element offers a simple construct for cooperation that can extend disparate

agents using a three layer architecture into a cooperative system. Later, Hooper’s design

is adapted for a network agent using the unique taxonomy of a multi-agent system in the

NIM problem.

37

5Figure 2-5: The HAMR Architecture Supporting Multi-Robot Systems [16].

 Resource allocation in the network information maximization problem calls for a

distributed agent that builds on reactive and hybrid robot control architectures. Using the

modular UBF design, an agent is capable of dynamic and reactive behavior while

allowing the system enough planning ability if new tasks need to completed. The

characteristics expressed in the description of the NIM with Cao’s or Dudek’s taxonomy

demands that some level of coordination occur between agents. The addition of a

coordinator element is one such way to produce a cooperative multi-agent system. In

order to use this agent-based framework, a communications node must support it. Next,

this paper presents quality of service routing and middleware as the appropriate

placement for such an agent.

38

Quality of Service for Information Maximization

Quality of Service is the ability to provide different priority to different

applications, users, or data flows, or to guarantee a certain level of performance to a data

flow [32]. As the introductory chapter describes, commanders must have assurances for

important information in military environments. In addition, QoS guarantees increase

network efficiency, which in turn increases the amount of useful information that can

pass through a network. The ability to provide end-to-end quality of service is not the

focus of this research, yet QoS guarantees are necessary for this research.

Many well known protocols exist that are able to route information based on an

index, priority, QoS or other traffic characteristic. It is not the purpose of this work to

build a new routing protocol. Instead, it asserts that for any network state, a routing

protocol could perform better with adjustment. An illustration of such a scenario is

described by Harmon [12]. Harmon stated that optimal TCP performance depends on its

ability to estimate network performance and adapt. TCP estimates the condition of the

network based on the reception of acknowledgments and perception of failed

transmissions. In a challenged environment like wireless domains, failed transmissions

may exist for a variety of reasons, yet TCP may attribute them to network congestion. In

this situation, it fails to transmit when conditions are favorable, losing the opportunity

and delaying successful delivery of the message. TCP can also result in suboptimal

behavior when its timeout windows are not set appropriately in the wireless domain,

causing excessive retransmissions and congesting the network with duplicate messages.

39

In this domain, TCP would perform better if its congestion avoidance mechanisms could

be adjusted to fit the requirements of the wireless domain.

Likewise, the dynamic battlespace network environment demands a dynamic

protocol. If, for any network state, there is a routing protocol which would perform as

good as or better than any other, then a means for finding this routing protocol must exist.

In this problem formulation, information maximization is the primary criteria of

optimization, but the system is not complete unless it is able to efficiently use its

resources. With the efficient use of resources, more information can get to the users who

require it. At the same time, the problem of information overload may cause a

commander to stop information at a certain utility from reaching select decision makers

[1]. In this dynamic information environment, a dynamic means of selecting parameters

for routing protocols is seen as essential to information maximization. To enable this

concept, a local and automated system is presented in this thesis. For the purpose of

assurance, it will be built on a routing protocol that supports QoS.

Protocol Support for QoS

A number of protocols can achieve reasonable guarantees for QoS. Resource

ReSerVation Protocol (RSVP) [39] and Multi-Protocol Label Switching (MPLS) [33] are

two protocols of many that do this by setting up reservations through network nodes.

RSVP is a communications protocol that interfaces with a routing layer protocol to give

stronger guarantees for end-to-end transmissions. It does this by scheduling reservations

through a sink tree that reverses the list nodes that lead to the sink node (the return path)

[39]. A data flow achieves QoS by three traffic control mechanisms, including (1) a

40

packet classifier, (2) admission control, and (3) a packet scheduler. The packet classifier

determines the QoS class for each packet. For each outgoing interface, the packet

scheduler or other link-layer-dependent mechanism achieves the promised QoS [4].

Admission control determines which reservations to grant and which to deny,

maintaining a manageable network load [39].

RSVP operates in the following manner. RSVP establishes a sink tree that

represents the reverse routes from each receiver to all source nodes. The network nodes

maintain the sink tree using periodic path messages. Reservations are set up by

propagating flow information from the receiver back to the source node. As each relay

node in the return path accepts the reservation, it updates its state information to include

the reservation. If any relay rejects the reservation, a reject message propagates back to

the receiver. If a reservation is set up, reservation refresh messages are also passed among

nodes to maintain reservations. When a packet is sent from a source node, the packet

enters the routing layer of a relay at a classifier. The classifier determines a class of

service for the packet and schedules it for transmission which includes checking for a

reservation. When the reservation is no longer needed, the receiver sends a path teardown

message.

The RSVP use of soft state to maintain reservations prevents the permanence of

reservations that fail because of network errors. However, soft state reservations can use

the network inefficiently in traditional implementations of RSVP because of their high

communication overhead. The use of unreliable system messages can cause delays in

41

reservation setup and teardowns, leading to more inefficiency. As a result RSVP can have

poor scalability and performance in dynamic networks [24].

MPLS addresses the scalability issue of RSVP. When packets enter a router, they

are assigned a label by a label edge router. Label switched routers use these labels to

forward packets along a label switched path (LSP). Network engineers design LSPs for a

variety of purposes, but most importantly, for guaranteeing a class of service or routing

around congested links. MPLS resides between the network layer and the data link layer.

MPLS provides the mechanism for reserving a single path, using multicommodity flow

algorithms to find an optimal set of paths given multiple flows. Among various types of

MPLS protocols, several may split the flow along multiple paths of the network or keep

them whole. Splitting flows may increase utilization but keeping them together keeps

routing complexity low. [33]

The MPLS protocol is desirable because it can be used to guarantee a class of

service to information flows and to perform dynamic routing tasks. Its widespread use

and scalability properties are also desirable properties. Later, this paper presents a

mechanism that reacts to the state of the network to perform routing tasks using a

modified version of the MPLS protocol.

Middleware Support for QoS

Even with an underlying protocol, QoS requires some middleware support to

ensure proper QoS objectives are met. While this work does not only support QoS, some

work has been done in this field that relates to this thesis.

42

Like this work, Huang, et al. [19] describes a middleware service that assigns

network resources to information flows based on their criticality. Huang analyzes

multimedia flows into a critical, essential or non-essential class. This work generalizes

the types of traffic that are analyzed by an information classifier, while Huang only

considers multimedia traffic. Also, Huang focuses on scheduling algorithms to improve

QoS, while this thesis takes a comprehensive view of the scheduling, classification and

routing mechanisms.

In harmony with the opinion of this author, Kwiatkowski [22] states that when not

enough capacity exists to send all information in military networks, messages carrying

mission critical information should be delivered first. He argues that the traditional IP

layer of networks is not capable of dynamically assigning information flows to network

resources, because the network layer lacks an interface for dynamic resource allocation.

Subsequently, Kwiatkowski builds a distributed software framework for network

management at the middleware layer using three levels of interface. At the bottom level,

right above the network layer, software abstractions of physical routing components

provide a common interface for access. At the middle level, a service API provides the

network management tasks of classifying and manipulating information flows according

to their value. At the top level, a user interface interacts with a user or commander to set

priorities to information flows. While this thesis is concerned with the same core problem

and view that Kwiatkowski does, this work differs from his in many ways. One

difference is the attributes used to assign value to information flows. In addition, he uses

traffic engineering algorithms to manipulate flows, while this work asserts the use of

43

network agents. Finally, Kwiatkowski builds on a distributed processing environment

using a CORBA based middleware framework, while this work will build on an agent

based middleware framework. The key advantage of using an agent based middleware

framework is simplicity because support decisions can be made close to the routing layer,

while CORBA infers greater communication and processing requirements that affect

speed or scalability.

Hopkinson [17] created an agent based middleware framework to synchronize

various components of a power system simulator. One of his components is in NS2 [10],

a network simulator developed by the University of California at Berkeley, Lawrence

Berkeley Labs, the University of Southern California, and Xerox PARC. NS2 is a high-

quality simulator, which allows the creation of a wide variety of communication

scenarios. NS2 is able to simulate the behavior of network protocols under various forms

of stress, such as might be caused by competition for network resources when multiple

applications share a network and communicate over the same routers and communication

links. An agent in every communications node inside NS2 coordinates with other nodes

using system messages. While the framework was not created to support QoS, it was

extended to do this by Llewellyn [23]. Llewellyn used a reservation based routing

protocol and supported its QoS properties by establishing fault recovery mechanisms.

This work extends the work of Llewellyn and Hopkinson, using the agent based

middleware framework and reservation based routing protocol to establish underlying

QoS guarantees. Then it applies information centric resource allocation to support QoS

routing using techniques that are described later.

44

45

QoS guarantees are critical to support network information maximization.

Reservation based routing protocols like MPLS provide a base for QoS in a network.

Middleware support can increase their effectiveness and provide a foundation for other

optimizations.

Research Overview

By using the underlying support of a QoS mechanism, this research is aimed at

extending a middleware framework in each network node that will maximize the utility

of information delivered by a network. Assuming classification and scheduling

mechanisms are in place; this agent based framework will allocate network resources,

namely bandwidth, in a MAS to produce valuable information to a user.

Summary

 The problems of information classification, scheduling, providing quality of

service, and resource allocation converge in the network information maximization

problem. Information classification segments information on three attributes: mission

association, timeliness and user input. Scheduling combines these attributes into an

information utility that acts as an index to solve the information flow scheduling problem,

a special case of the Restless Bandit Problem. Assuming these problems can be

reasonably solved, an agent employing robot control architecture may allocate bandwidth

and other resources to maximize the aggregate utility of information flows throughout the

network. Additionally, using a QoS framework, end-to-end transmission is guaranteed.

The following chapter presents an information maximization agent, using information

classification, scheduling, robot control and QoS mechanisms.

III. Methodology

As discussed in Chapter I, the long range vision of this work is to create a

comprehensive system for ensuring information is optimally gathered from a network.

The comprehensive system would need to contain an information classification

mechanism, scheduler and a resource allocation and routing scheme.

Chapter II describes different information classification approaches that indicated

the information classification mechanism’s design. In it, a commander could interface

with an application to create an NTO to articulate mission objectives and their priorities.

The interface would deliver mission goals to a dynamic GMUGLE type goal decomposer

[13], breaking high level goals into low level goals and tasks, each weighted with respect

to how well they fulfill mission requirements. Another application distributes sub goals

and tasks to individual nodes. Individual nodes would contain a classification module to

characterize an information flow along three attributes: mission association, timeliness

and user input. A scheduler assigns an expected utility for the current state of the

information flow, and the information flows could be greedily selected to find a near

optimal set of traffic in a discrete time window.

Given that there is a means of assigning such a utility, and scheduling messages

based on this, there would need to be a means of routing these messages to their end

destination. A QoS support protocol running on top of IP could give some guarantees in

routing, but since reservations are involved, the protocol requires a means of distributing

46

bandwidth resources. The purpose of this chapter is to describe a methodology to create

this part of the system, the resource allocation mechanism to work with QoS routing.

Domain

The information system will reside on a hybrid communications network with

wired and wireless links. Such a network contains long lasting connections and ones that

are intermittent. Network nodes can have highly complex interactions, some may

communicate over a multitude of duplex links, and others may communicate over single,

simplex links. Without belaboring the point, a hybrid communications network can be

highly complex; therefore for the purpose of introducing the information system, a

smaller network is described for initial work.

In this example network, a single sink is buffered to the network by a single relay.

The relay draws information through a network of relays. In this particular example, there

are three relays. Two nodes, performing information harvesting, connect to each of the

relays. Figure 3-1 depicts this network. Initially, the following assumptions are made.

First, the network has a hierarchical architecture, meaning that exterior nodes gather data

from the environment, while interior nodes have processing power and perform routing

tasks. Second, nodes have a uni-directional data flow, so information travels from source

to sink. However, acknowledgements and service messages can travel from sink to

source. Further, the network is setup using an end to end QoS protocol on top of IP.

MPLS and other QoS protocols use reservations to set a path through a network.

47

6Figure 3-1: Simple Network.

Information flows that do not have a reservation are sent as best effort traffic.

Best effort transmission is analogous to flying standby instead of with an assigned seat. A

reservation policy sets up how much bandwidth of the total available is used for

reservations and how much is used for best effort. Once reservations are filled, the

remaining messages are all sent best effort. Deciding how bandwidth is assigned over

time to fill these reservations is the concern of the resource allocator.

Requirements

 As stated in Chapter I, the system needs to fulfill five requirements. Here, these

are reviewed in light of the domain, giving an indication of the solution to follow.

48

Requirement 1 – Create a network that makes ‘thoughtful’ decisions on what traffic to

drop and what traffic to keep in relation to mission importance.

First and foremost, this network must route high utility information to the sink. If

there were no bandwidth constraints, this task would be simple, since all traffic would be

routed to the sink. If the network is limited on the links between the nodes and sink in

bandwidth, then agents in the network must decide what information should flow to the

sink and what should not. Because of the assumed existence of a classifier module,

finding high utility information is simpler. The classifier module determines each

packet’s utility when it enters the system by associating the packet with a known

information flow. The optimal set of traffic to send to the source includes information

flows with utility above a certain threshold.

Requirement 2 – Create a network that balances network resources and mission

objectives.

Relays must choose an optimal traffic set to the source. The optimal set of traffic

not only includes the traffic with highest relevance, but also whatever information flows

may fit in the bandwidth constrained channel’s remaining capacity after the top flows are

assigned. Leftover bandwidth makes this problem more complicated, because it allows

for a situation in which the information utilities of two flows are similar but their sizes

are different. If the higher value one is also smaller and leaves a greater gap in the

channel, it may be more appropriate to send the slightly lower value stream if it increases

utilization. Also, the agents in a network must be able to decide when it is appropriate to

squelch on information flow so an alternate flow may proceed.

49

Our network model naturally accounts for this. A certain portion of the network is

allocated for reservation only traffic, while other traffic is sent best-effort, or as space

becomes available. Balancing network resources and mission objectives relies upon

balancing how much bandwidth is set aside for reservations and for best effort traffic as

well as deciding how to manage reserved traffic.

Requirement 3 – Create a network that makes distributed decisions about what

information needs to flow from source to sink.

 A network that makes distributed decisions is one in which global knowledge,

contact, and control is not available. In this design, each network relay takes action in the

environment only using information gained through perception and peer communication.

Peer communication is limited to immediate neighbors, but does not limit the amount of

information that can be shared. Such a network may be thought to have individual agents

at each node, which have the means to communicate with agents at neighbor nodes, using

shared links between them. Further, each agent will be required to take action based on

its perception of the environment and this shared information.

Requirement 4 – The network must adapt to periods of bandwidth flux.

 The existence of communication between nodes allows neighbor nodes to become

aware when their neighbors fail or when links degrade. This information must propagate

quickly in the network so nodes using these failed or degrade links can react to changes

and route critical information through different routes. When bandwidth flux is

significant enough, affected nodes may be forced to recalculate entire routing tables and

reservation assignments.

50

Requirement 5 – Create a network that negotiates multiple, competing mission

objectives.

 Scaling the network to handle multiple mission objectives requires a change in the

way a goal decomposer/task distributer works. Instead of sending out task weightings

from one source, having multiple sources forces arbitration between competing mission

objectives at some level in the system. This work abstracts this point, since it is not

concerned with the details of the information classification process.

However, the network must be able to route to multiple sinks in the network. The

hierarchical assumption made earlier precludes that source from being on the interior of

the network, because it alters the capabilities of interior nodes. The uni-directional flow

assumption also precludes the interior node because it may cause the flow of information

to go from source to sink to source. These assumptions have been made to simplify the

analysis of the network’s performance, though it may be possible that the design will

scale to situations like this as well. In this work, a multiple sink test is devised to

illustrate this requirement.

Conceptual Design

 Assuming that information classification techniques can produce an information

utility index based in part on mission objectives, it is reasonable to tailor a system around

this index to manage the information flow in a network. Using a utility threshold within

each node is an effective way to manage indices to fulfill the requirements. Responding

to the requirements of having a distributed and adaptable system is achievable through

51

employing network agents based on robot control architectures. This section discusses the

concepts of utility threshold management and an agent based framework in further detail.

Utility Threshold

The requirements point out two potential decision making points, as shown in

Figure 3-2: 1) whether or not to send or hold in a queue, based on a threshold, and 2)

whether or not to make a reservation, based on available reservation space. A utility

threshold is merely a number assigned to eliminate traffic overload. Used simply,

messages above the thresholds are sent, messages that are below, are not. Thresholds

could also be used to set up a reservation. Available reservation space is the percentage of

the average bandwidth capacity to be used for reservations. If no reservation space exists,

reservations can not be made. The remainder of the average bandwidth capacity, equal to

the total capacity minus the available reservation space, is used for best effort traffic

flows, those which could not gain a reservation. The basis for setting up a reservation is

partially dependent on its utility as it compares to the utility threshold, since a reservation

won’t be made for information flows that do not meet the threshold.

Thus, thresholds become the main information management device in the system.

Packets are not generated unless they meet the threshold, and they are not routed with

reservations if a downstream node has a higher threshold to meet. During the process of

sending packets with these information flows, some nodes may become overwhelmed,

arbitrarily dropping packets. Therefore, packets that do not meet the nodes threshold may

lose their reservation while higher value packets persist.

52

7 Figure 3-2: Generalized Routing Decision.

Managing the utility thresholds becomes a crucial capability. Keeping a

distributed architecture in mind, agents must synchronize their threshold management to

use resources effectively, becoming highly reactive to their neighbors, so changes can

propagate rapidly. One means of synchronization is through sending system messages to

neighbor nodes to either raise thresholds when links become congested, or lower them

when links are underutilized.

 Using this method, the system maintains the distributed requirement stated earlier.

Further, utility thresholds perform well to adapt to bandwidth flux. When links degrade,

thresholds will naturally increase on those links. When links fail, nodes notice their

absence when coordination messages are no longer received by neighbor nodes.

53

The Hybrid Agent for Network Control (HANC)

Provided that utility thresholds will be able to fulfill the requirements, something

must be able to perform the management functions on the threshold. Applied at every

node, the three layer architecture in multi robot domains can fit well with the needs of

this domain. It has the capacity to be reactive to the state of the network, while it can also

be tailored to the demands of the mission. Thus, agents employing the three layer

architecture are applied here to select the actions of managing thresholds, sending raise

and lower messages, and managing reservations. This section describes HANC, the

Hybrid Agent for Network Control.

The HANC control architecture consists of three layers of control, as well as two

additional components for coordination and state information. The three layer, two

component construct is illustrated in Figure 3-3. The first and highest layer, the

deliberator, is a pure planner. It decides what the best course of action is for a particular

long term goal. For the sake of this work, we will consider the commander or the person

carrying out commander’s intent to be the deliberator. Based on his view of the network,

he may opt for greater throughput or utilization in the network at the cost of utility. He

may want to lower the amount of information coming into the battle center or increase

security and he communicates his intent through a network tasking order.

Deliberator input from an NTO gains access to the agent through a coordinator

component, which passes this input to a sequencer layer. An interface to receive the

54

8Figure 3-3: Conceptual Design of HANC. HANC contains a controller layer that
generates an action on the environment through the UBF. The sequencer reacts to the
deliberator by creating a set of behaviors that will optimize the network to the Network
Tasking Order. A coordinator module is necessary to maintain coordination with other
agents through message passing.

network tasking order at the sequencer layer constitutes the functionality of a deliberator.

The deliberator interacts with a sequencer to carry out long range planning.

 The second layer is the sequencer, which is used to weight the tasks at the layer

below based on the goals being generated from the deliberator. Two of the concepts

covered thus far have been maximizing utilization and minimizing information overload.

The two are obviously divergent goals, the former calls for all information to be sent to

the user, while the latter calls for a strict adherence to only the amount of information that

55

a user can absorb. The sequencer may use an expert system, machine learning, or manual

input to alter how the controller layer acts. Before illustrating how that interaction occurs,

it is necessary to discuss the next layer of control.

 The third, lowest layer is the controller, the reactive layer. In a purely reactive

environment, the controller hardwires sensor input to actuators performing actions in the

environment. To increase the flexibility of a pure reactive and make it act more

intelligently, sensor input is buffered into memory and is stored as state. From the current

state, agents choose how to act. In this design, the UBF is the controller layer of the

system. The UBF is useful because it simplifies development and testing, promotes code

reuse, allows complex behaviors to emerge from basic ones, and allows system

developers to use the architecture they feel works best [37].

Using a UBF at the controller layer, the sequencer in this system selects among a

library of all behaviors to create behavior sets that can fit the proper system objective. It

also selects an arbitration unit for the UBF to select or combine an action from all the

actions that the set of behaviors generate. In Figure 3-4, a network is perceived by the

agent and perception is stored in state. The composite behavior, in the upper left of the

figure, is populated with behaviors and an arbiter by the sequencer layer. Next, the

behaviors generate candidate actions for the composite behavior based on the current

perceived state of the node. Then, the candidate actions are sent to an arbiter to create a

composite action. The HANC Agent executes the composite action.

In this work, the sequencer is manually adjusted, based on the implementer’s

expert knowledge about the network. In future work, the sequencer can be extended to

56

9Figure 3-4: Conceptual Design of the UBF Module. The UBF Module resides in the
controller layer in Figure 3.3. The sequencer layer populates the composite behavior with
and arbiter and behaviors to create an executable action based on perceived network state.

accept NTO input and weigh this input against its state information. State is the second

component in the HANC agent. It stores the agent’s perception of the network and some

limited trend analysis of network traffic characteristics.

To summarize, HANC, as depicted in Figure 3-3, directs information flow for its

resident node. In this system, the controller and sequencer layers reside on every node

while the deliberator is abstracted to the end user. The controller is supported by the UBF

which creates a policy for threshold and reservations to determine how the router will

run. Shown in Figure 3-4, data enters the nodes and feed into the sensors and state of

HANC. Goals from the deliberator are issued to the sequencer to help it select a set of

behaviors and an arbiter for the controller layer. The behaviors generate actions that are

57

selected or combined in an arbiter. The selected or combined action is executed in the

environment.

Specific Design

 HANC can be used for many optimization tasks, but to show its capability in the

information maximization problem, it is limited here to a subset of its possible uses. In

this section, the agent is specifically designed to maximize information utility, outlining

how the sequencer interacts with the controller and how the controller reacts to

perception to produce actions. Starting with perception, the specific design explains the

UML diagram in Figure 3-5.

10Figure 3-5: UML Diagram for HANC. HANC is supported by four components: State,
Sequencer, Coordinator and UBF Module. HANC interacts in the network environment
by generating and executing actions.

58

Perception

In the physical robot environment, a pure reactive robot is one in which sensors

are directly attached to actuators so that sensing produces near immediate action.

Although the UBF uses a limited amount of state memory to store sensory input to

generate actions it still remains reactive. The hope for this work is to maintain the

reactive property of the UBF to make the system dynamic. The key to plugging the UBF

into to network domain is in finding meaningful preceptors and tying perceived events to

actionable parts of the system.

 Three meaningful sources of perception stand out. Inbound data packets are the

first source. Inbound packet header information includes flow identifiers, utilities, and

size. The rate of inbound traffic can also indicate what is occurring at upstream nodes.

System messages are a second source. As nodes get overwhelmed, they generate raise

threshold messages. Conversely, when nodes are not being appropriately utilized, lower

threshold messages are sent. Both types of messages can be used to perceive the

environment. Internal node characteristics are a third source of perception. Nodes can

perceive their own queue sizes, outbound data rates and routing tables. To be able to

apply these perceptions, they are stored in state.

State

 To tie perception to action, HANC must maintain state information. State contains

all the perception elements and can also be altered to monitor trends in the data. With

some decay rate, state information can be removed or replaced as it loses meaning or

certainty. For instance, state may attempt to estimate the utilization in a link by taking the

59

average amount of traffic sent over a time period divided by the average amount of

bandwidth available in that same time period. In time, however, this metric becomes

inaccurate to current network characteristics and must be recalculated.

 In this design, shown in Figure 3-5, some of the state variables are the number of

packets dropped in the previous second (droppedPackets) and the current utilization of

the outbound queue (utilization). Averaging utilization over time, another variable is

established, utilizationTrend. State also maintains the number of raise and lower

threshold messages received by the coordinator component. To update state information,

HANC calls an update state function. Figure 3-6 shows the pseudo code that places this

command in HANC’s execution function, named action().

void HANCAGENT->action() { //main call of HancAgent, by AgentHQ

//Update state variables for Sequencer and UBF_Module use

State->updateState();

//Send a command to the sequencer to decide behavior sets for the controller

Sequencer->command(); //calls UBF_Module->changeBehavior()

//Execute the action returned by the call to the UBF_Module

execute(UBF_Module->genAction());

//Send ping to neighbor nodes that implies that this node is still functioning

Coordinator->sendAliveMessage();

}

11Figure 3-6: HANC’s Action Function. The main call of the HANC Agent updates state
information, calls the sequencer module to build behaviors in the UBF, and next calls
the UBF Module to generate an action. The execute function performs the action and
sends an “alive” message through the coordinator.

60

Sequencer

As proposed in the previous section, the sequencer layer of HANC must be able

to choose between maximizing utilization and minimizing information overload based on

the input given from the deliberator level. The sequencer can do this by selecting a

different set of behavior when one of these optimizations is called for. The behaviors that

propose to maximize utilization are described below. The sequencer employed by HANC

in this iteration of research is rudimentary, consisting of an interface that must be altered

manually. However, the sequencer in this design can be called with command to change

the behavior set in the UBF Module.

Coordinator

 Because the UBF Module and execute(Action) function use the coordinator, the

coordinator is described before the lowest layer of this design. The coordinator

component of HANC is responsible for sending and receiving coordination messages

from other HANC agents. In an expanded system, a part of this responsibility is the

dissemination of the NTO. At the sequencer layer, this coordination is concerned with

having fellow agents optimizing for the same network tasks. At the controller layer,

which this paper focuses on, coordination involves sending messages to neighbor nodes

to accomplish a task. For example, the coordinator periodically sends “alive” messages to

its neighbors to inform them that the link between two nodes is functioning. A loss of this

alive message would cause a solve routing action to be executed. The UBF Module has a

subset of actions that involve leveraging the coordinator component. These actions and

others are described next.

61

Actions

In the UBF implemented by Woolley [37], each behavior in the behavior set

accesses state information and generates an action and a vote. The action is the behaviors

best guess on what to do and the vote can be thought of as a confidence that the behavior

should be implemented. Individual behaviors can choose to generate a single action or

many, depending on how many degrees of freedom are available to the agent. The four

actions shown in Figure 3-6 are described below. Figure 3-7 illustrates how HANC’s

execute(Action) function performs these tasks.

Threshold – The threshold value is based on perceived demand at downstream

sources, ultimately the sink node, propagating the user’s preference and mission demands

throughout the system. HANC manages the threshold value by detecting threshold

demands at other nodes. Upon the receipt of raise threshold messages and lower threshold

messages, the agent acts accordingly to select a new threshold. The threshold value is

used to generate information flows and also to maintain reservations. If a reserved flow

passes through a node requiring a higher threshold, the reservation is removed.

Send Raise Threshold Message - HANC is also responsible for generating actions

that would help its neighbors manage threshold values. For this action, the UBF Module

leverages the coordinator’s send and receive mechanisms. The agent could choose to

send raise threshold messages based on its perception that too much information is

coming in. One way to do this is to monitor queue sizes. As packets drop from queues, it

is an indication that too much traffic is coming to the node. A count is updated in state

that maintains the current amount of lost packets. Proportionally, the vote to send a raise

62

void HANCAGENT->execute(ACTION action) { //called by HANC Agent

 /****************ADJUST THRESHOLD ************************/

 if (action->getThreshold() > currentThreshold)

 State->decreaseRaiseCount(); //decrease raise threshold message count

 else

 State->decreaseLowerCount(); //decrease lower threshold message count

 currentThreshold = action->getThreshold()

 /***************GENERATE INFO FLOW MESSAGE*************/

 //If this node is a source node for information flows...

 if (InfoFlow->Utility > currentThreshold)

 Coordinator->sendInfoFlowMessage(InfoFlow->ID);

 /***************SEND RAISE THRESHOLD MESSAGE***********/

 if (action->getSendRaiseThresholdMsg())

 for each node in UpstreamNodes{ //send to upstream neighbors

 Coordinator->sendRaiseThresholdMessage(location, n->location);

 }

 /***************SEND LOWER THRESHOLD MESSAGE**********/

 if (action->getSendLowerThresholdMsg())

 for each node in UpstreamNodes{ //send to upstream neighbors

 Coordinator->sendLowerThresholdMessage(location, n->location);

 }

 /***************SOLVE ROUTING TOPOLOGY******************/

 if (action->getSolveRoutingTopology())

 RoutingLayer->solve_routing();

}

12Figure 3-7: HANC’s Execute Function. The pseudo code describes four actions that are
taken when the proper parameters are set by the UBF Module. The first four actions focus
on information utility, while the fifth action focuses on adjusting to bandwidth flux.

63

threshold message increases. Packet drops are counted until enough packet drops will

force a message to send or enough time has passed that the entire packet drop count is not

meaningful.

Send Lower Threshold Message – Likewise, HANC could send a lower threshold

message based on its perception that too little information is coming in. Using queue

sizes again, if queues are empty or near empty, it is an indication that too little traffic is

coming to the node. Thus, the vote to send a lower threshold message increases, and the

same process of sending a raise threshold message applies. Again, this action is executed

using the coordinator’s send and receive mechanisms.

Solve Routing Topology – As stated earlier, the coordinator sends “alive”

messages periodically to its neighbors to inform them that their shared link is still fit for

use. When messages cease to cross a link, the neighbor makes the assumption that the

link is no longer valid. To compensate, a solve routing topology action is generated. This

action, when executed in the HANC agent, replaces the old routing table and all

reservations for information flows with a new configuration.

UBF Module

Having described the actions generated by the controller layer, the UBF Module

is presented. The UBF operates in a hierarchical fashion to proliferate code reuse. Figure

3-8 presents the structure of the UBF in a UML class diagram. The major components of

the design are arbiters and behaviors. The goal of this structure is to generate actions

from simple behaviors which view only a portion of the state to limit complexity and

increase speed.

64

13Figure 3-8: UML Diagram for the UBF Module. The UBF’s composite behavior consists
of an Arbiter and several Leaf Behaviors. The Leaf Behaviors generate candidate actions
that the arbiter combines into a single action. The action is returned to the Agent.

 The UBF Module has two main functions that handle operations. The first was

mentioned in the description of the sequencer. When the sequencer decides to change the

task of a node, it chooses a behavior set that may be different from the previous set. The

sequencer accesses UBF_Module->changeBehavior(Arbiter) to set the new behaviors and

arbiter in the Composite Behavior class. The second function is the main execution of the

UBF Module which calls the Composite->genAction() function to generate an action.

These two functions are written in pseudo code in Figure 3-9.

65

void UBF_MODULE->changeBehaviors(ARBITER arbiter){ //called by Sequencer

 Composite->setBehaviorList(new BehaviorList);

 for each LeafBehavior of all BEHAVIORS {

 if (LeafBehavior->isActive())

 Composite->add(LeafBehavior);

 }

 Composite->setArbiter(arbiter);

}

Action UBF_MODULE->genAction(){ //when called by HANCAgent

 return Composite->genAction();

}

14Figure 3-9: UBF Module Functions. In changeBehaviors(Arbiter), the Sequencer adapts
to a task by choosing appropriate behaviors for the Composite behavior. In genAction(),
the Composite behavior generates an action for the HANCAgent.

 The UBF Module tasks the Composite class to generate the action for the HANC

agent. In turn, the Composite class’s genAction() develops an action by calling on one or

many Leaf Behaviors to perform their genAction() functions. The resultant actions are

gathered in an ActionSet for later arbitration. Once all Leaf Behaviors have the chance to

add an action, the ActionSet is passed to the Arbiter for evaluation. A representation of

the pseudo code is shown in Figure 3-10. The next subsection describes a selection of the

Composite class’s Leaf Behaviors and Arbiters for use in the Network Information

Maximization problem.

66

Action COMPOSITE->genAction(){ //when called by UBF_Module

 ACTION action = new ACTION; //action to be returned

 for each LeafBehavior in LeafBehaviorList { //iterate all behaviors

 //each Behavior generates an action

 ActionSet->add(LeafBehavior->genAction());

 }

 action = Arbiter->evaluate(ActionSet); //arbiter selects/combines actions

 return action;

}

15Figure 3-10: The Composite Class genAction() Function. Leaf Behaviors offer actions
that are selected or combined in the Arbiter’s evaluate function.

Behaviors

Leaf Behaviors, described above, implement the genAction() function of the Leaf

and Behavior abstract classes. They do so by focusing on generating particular actions,

created with a limited view of the state space. While several behaviors may be able to

work inside the network domain, three pairs are discussed here that specifically address

the NIM. The first pair, MinThreshold and MaxThreshold, seeks to set threshold to 0 and

infinity, respectively. The normal vote for MinThreshold is to vote decay the current

threshold by one percent, so there is never a situation where some information stream is

never sent while bandwidth is available to do so. When MinThreshold receives a lower

threshold message, it votes higher to lower the threshold by a greater amount.

Conversely, MaxThreshold raises the threshold after receiving a number of raise

threshold messages. Figures 3-11 and 3-12 show the pseudo code for these behaviors.

67

16Figure 3-11: MaxThreshold genAction(). Seeks a high threshold.

Action MINTHRESHOLD genAction() { //called by Composite behavior

 ACTION action = new ACTION;

 double decay_rate = .992; //possible parameter

 //Set the threshold to a decayed value of the last threshold

 double threshold = State->getLastThreshold() * decay_rate;

 //Get the number of Lower Threshold Messages received

 int LowCount = State->get_received_Lower_Threshold_Messages();

 //Set the threshold to account for these Lower Threshold requests

 threshold = threshold – LowCount;

 action->setThreshold(threshold); //Set the action attributes

 action->setVote(100); //Assign a vote

 return action; //Return the action

}

Action MAXTHRESHOLD genAction() { //called by Composite behavior

 ACTION action = new ACTION;

 //Set the threshold to a decayed value of the last threshold

 double threshold = State->getLastThreshold();

 //Get the number of Raise Threshold Messages received

 int RaiseCount = State->get_received_Raise_Threshold_Messages();

 //Set the threshold to account for these Raise Threshold requests

 threshold = threshold + RaiseCount;

 action->setThreshold(threshold); //Set the action attributes

 action->setVote(1); //Assign a vote

 return action; //Return the action

}

17Figure 3-12: MinThreshold genAction(). Seeks a low threshold.

68

A second pair of behaviors, SendRaise and SendLower, is created in a similar

way. SendRaise seeks to send raise threshold messages when dropped packets appear,

while never seeking to send a lower threshold message. The SendLower behavior seeks

to send lower threshold messages when the state contains information that the queues are

empty. Another behavior pair is HighFlux and LowFlux. These two behaviors adapt to

the fluctuations in bandwidth on the network, generating an action to solve for the routing

topology. HighFlux is coded to expect a network with a lot of nodes going in and out of

the network, and likewise waits a longer time to reroute information because the failed

node in question is expected to come back soon. LowFlux makes the assumption that

when links are down, they go down for good. Therefore, LowFlux reacts aggressively to

the loss of a network link or node. The pseudo code for these behaviors follow the pattern

of the MaxThreshold and MinThreshold behaviors, but they are contained in appendix A

for further study. For optimizations outside the scope of the NIM, additional behaviors

may be needed. Regardless of the behavior set, an arbiter is needed to select or combine

all generated actions.

Arbiter

The UBF can use a number of arbiters to select an action from many behaviors. A

Highest Activation arbiter chooses the action with the highest vote. A Command Fusion

arbiter, described in Figure 3-13, selects an average action for all actions in the

ActionSet. The Command Fusion arbiter in this design takes the MaxThreshold and

MinThreshold behaviors and sets a threshold that is the vote weighted average between

the two. It sets SendRaiseThresholdMessage to true if the number of votes to send raise

69

Action COMMANDFUSION->evaluate(vector ActionSet) { //called by Composite

 ACTION arbitrated_action = new ACTION; //the combined action to be returned

 int votes = 0; //temp vote tally variable

 double sumThreshold = 0;

/********************THRESHOLD ARBITRATION*****************/

 for each action in ActionSet { //iterate through all actions

 if (action->isThresholdSet()) { //if this attribute is set...

 votes += action->getVote(); //increase the votes

 //increase the vote weighted sum

 sumThreshold += action->getVote() * action->getThreshold();

 } }

 //Set the action to the average sum

 arbitrated_action->set(sumThreshold / votes);

 votes = 0; //reset votes for the next attribute

/**********SEND RAISE THRESHOLD MESSAGE ARBITRATION******/

 for each action in ActionSet {

 if (action->isSendRaiseThresholdMessageSet())

 votes += action->getVote(); //increase votes when set

 else votes -= action->getVote(); //decrease votes when not set

 }

 // If votes for this were more than votes against this set to true

 arbitrated_action->setSendRaiseThresholdMessage (votes > 0);

 votes = 0;

/****************Other actions set in similar fashion*********************/

 return arbitrated_action; //returns the average of all actions

}

18Figure 3-13: The CommandFusion Arbiter Evaluate Function. An arbitrated action is
returned to the Composite function that is a vote weighted average of all actions.

70

threshold messages exceeds the number of votes not to. It does the same for send lower

threshold message and solve routing topology. The exact point chosen between the

behaviors is a matter of expert knowledge or trial and error to set how individual

behaviors vote. In this instance, trial and error is the preferred method of finding the good

balance between the behaviors.

Expected Results

The system designed in this chapter should meet the requirements that were

devised in the introductory chapter. To show this, a series of tests are described to

evaluate whether the system has performed up to its intended standards.

Test 1 – Arbitrary Drop Test

 If the network is limited in bandwidth capacity and as a result, can not carry the

entire traffic load for any particular time step, traffic will be dropped with little regard to

its effect on average utility at the sink node. As a default, network queues are set up so to

enque higher utility packets while dequeing and dropping lower utility packets. What the

queues can not do, however, is perform a system wide adjustment to the information flow

to maximize the average utility at the sink. To pass the arbitrary drop test, HANC must be

able to improve the system wide aggregation of data. This will be done by analyzing

received traffic at the sink node. If average utility is higher using the multi agent system,

then the arbitrary drop test is passed.

Test 2 – Utilization Test

 In a default setting, an overloaded network will utilize bandwidth close to the

network’s peak rate. In adding the multi agent system, network utilization, must not fall

71

from this peak rate. The first part of the utilization test is to ensure that equivalency holds

between the agent framework and the default mode on the network’s overloaded links.

This is the equivalency condition.

As portrayed in Figure 2-3, a situation that involves alternate flows utilizing the

same links as primary traffic may force alternate links to be underutilized. The second

part of the utilization test is passed if utilization is improved on the network’s

underutilized links. This is the improvement condition. Therefore, the utilization test is

passed when the equivalency and improvement conditions are met.

Test 3 – Bandwidth Flux Test

 When a routing protocol using reservations is employed, the ability of the

reservations to be rerouted to links that work is critical. The requirement that drives the

bandwidth flux test called for a system that could adapt to link degradation or failure. If

the system were not employed, we would expect the default behavior to drop traffic until

human intervention corrected the fault. To prove that HANC can adapt to periods of

bandwidth flux, it must demonstrate the ability to recognize and recovery from link

failures. It also must demonstrate the ability to cope with new links in the network. A

scenario that shows a network node failing then later restoring can show these

capabilities.

Test 4 – Multiple Sink Test

 When running on a network with multiple sinks, the experiment is simulating

having multiple organizations attached to a network. This requirement’s primary concern

is in how information is classified to meet mission objectives when arbitration between

72

competing objectives is needed. Since this thesis is assuming classification is being done

separately from routing, the test is simple. The system passes the multiple sink test by

proving an ability to route to multiple sinks.

Since the distributed requirement is fulfilled in proper design and implementation,

it is not tested experimentally. The remaining four requirements must be seen during

experimentation in Chapter IV. The first test is satisfied when the decision to drop traffic

is no longer being made arbitrarily. The second test is satisfied when the network

resource, bandwidth, remains close to being optimally utilized. The third test is passed

when the system demonstrates the ability to adapt to the network in times of bandwidth

flux. Finally, the fourth test shows that the system will extend to multiple sink nodes and

therefore multiple organizations.

Summary

This chapter outlines a resource allocation mechanism that can assign bandwidth

among all the nodes of a network assuming that classification and scheduling messages

can assign an information utility value. This task requires an agent-based framework to

coordinate among nodes in the network and adjust threshold and reservation policy. To

do this, the agent based framework employs a three layer robot control architecture using

a UBF at the controller layer. The applicable behaviors, arbiters, and actions coalesce to

provide maximum utilization and minimize information overload. Four tests will show

that the agents work to reduce arbitrarily dropped packets, improve utilization, adapt to

bandwidth flux, and perform in a distributed manner for several organizations. The agent

73

74

based resource allocation mechanism works with QoS routing to help maximize

information utility in a network.

IV. Analysis and Results

 The network information maximization problem requires a range of solutions, but

the design of an agent based framework is a vital component. The agent based framework

allocates resources according to the information utility associated with an information

flow. Through an NS2 implementation, HANC works with a reservation based routing

protocol to send information from source to sink. As packets relay through the network,

nodes limit resource contention to the highest utility information. After implementing the

multi agent system, experiments show improved average utility and bandwidth

utilization.

Implementation

 HANC must be evaluated through experimentation that proves its ability to pass

the four tests in Chapter III. Thus, proper implementation is necessary to match the

design requirements stated earlier. Using the NS2 simulator, a network is designed to

provide support to the agent based framework. Finally, HANC is designed in C++ to

contain the sequencer, coordinator and UBF module as depicted in Figure 3-3.

Simulation Environment

 In order to evaluate a network information maximization solution, a suitable test

environment is needed. This work’s concern with communication networks demands a

network simulator. NS2 is a network simulation tool designed to show how packets flow

through networks. It connects nodes with links and uses a wide range of communication

protocols to simulate communication networks. The flexibility of NS2 and its large

75

76

library of protocols is a great advantage in its use. In addition, NS2 is packaged with the

Network AniMator (NAM). NAM provides the ability to watch the network simulation

for emergent behavior. For testing and demonstration, this becomes very useful. This

paper illustrates emergent behavior with screenshots of the NAM.

Network Setup

The networks described in experiments below use very similar topologies. They

are hierarchical in design and have unidirectional flows from source to sink. The most

basic topology for the network information maximization problem is shown in Figure 4-

1. In this basic network, there are interconnected nodes that provide the functions of

information sources, decision points, and information sinks.

Packets are sent from information source to information sink using the available

bandwidth at links along the way. Decision points connect links and choose what packets

pass over the next links. All packets in the network are associated with an information

flow and are generated at periodic intervals at the source nodes. The packets are also

uniform in size. Their periodicity and size characteristics reflect packet generation in

streaming information. At a big picture level, these sources could be sensor input,

streaming video from a UAV, or very large file transfers. The packet headers carry

information like flow identifiers, utility values and packet size.

While NS2 simulates many protocols, only a few are used in these experiments.

At the transport layer, packets are sent in a connectionless fashion using User Datagram

Protocol (UDP). UDP reduces the complexity of connection setup and increases the

speed of data transmission. It is also a more realistic protocol for multimedia streams,

Information
Sink

Information
Source

Decision
Point

19Figure 4-1. Basic Topology for Network Information Maximization in NS2. Nodes 0 and
1 generate information that is relayed through the decision point at node 2. Node 3
collects information from the network.

which the information flows closely emulate. The routing layer uses Internet Protocol

(IP) with a reservation based routing scheme.

During network setup, the information flows are assigned to paths through the

network using PPRN [8]. PPRN is a multicommodity network flow solver. PPRN

generates routing paths that are used to set up reservations in the network, using an

information flow’s service requirements. During the simulation, information flows

produce packetized data that carries the identifier of a particular information flow. The

packets traverse links to a router and may enter a classifier upon arrival. The classifier

identifies the packet’s information flow ID and assigns it to its next hop according to the

77

preset reservation. If a packet is not associated with an information flow, it is assigned to

best effort traffic. A packet’s reservation can be rescinded at any node which identifies it

as a poor use of resources. Once the packet is classified, it is put in an outbound queue

before being sent over a link to its next hop. The queue is designed to drop more low

utility packets than higher ones, creating a fast quasi priority queue.

Simulation Management

Some mechanism must manage the simulation, so a controller is put in place to

cycle through the several agents in the simulation. Using the backbone of Hopkinson’s

work [17], the simulator uses a controller called AgentHQ to handle this task. Figure 4-2

shows the pseudo code for the main execution of the AgentHQ. AgentHQ creates the

network agents and manages them in an Agent list. AgentHQ also acts as the interface

between the middleware and routing layers in the nodes of the network. For instance, the

routing topology and reservations are initialized in the AgentHQ. After initialization, the

AgentHQ enters into an execution loop that calls each Agent in the Agent list to action

for every time step. Typically, this time step is set to 0.002 seconds. A typical action at an

information source node is to create another packet for an information flow, while

decision point nodes manage relay tasks and sink nodes simply receive messages.

Although the AgentHQ allows for a central repository of knowledge, proper

implementation ensures that a node only accesses information and procedures for its

node.

AgentHQ provides a simulation manager, but it does not perform actions. Figure

4-3 shows the UML diagram of the AgentHQ. Agents are created to perform these

78

AGENTHQ->main_execution(){

//network setup, create Agent and add to AgentList

for each Agent in SIMULATION {

HYBRIDCOMMAGENT Agent = new HANCAGENT(location);

AgentList->add(Agent);

}

RoutingTopologyControl->solveRouting(); //initial routing setup

for each time_step{ //main execution loop

for each Agent in AgentList{

 Agent->action();

} } }

20Figure 4-2: AgentHQ Main Execution.

21Figure 4-3: UML Diagram for AgentHQ. Agent HQ instantiates the routing functions of
the network and builds a network of HybridCommAgents that abstract HANC Agents.

79

actions, but these agents may be of different types. To allow for heterogeneity, the

HybridCommAgent class abstracts the agents while connecting their functionality to the

AgentHQ to tie them into the network simulator and the routing layer, also called

RoutingTopologyControl. RoutingTopologyControl gives the interface to solve routing

when bandwidth flux occurs. It is within this framework that the HancAgent is

implemented.

HANC Implementation

 Agents are installed at every network node to manage the flow of information.

The requirements described in Chapter III pointed to an agent design that could be

reactive to the network state. HANC contains a robot control architecture as shown in

Figure 3-3. The deliberator layer is an interface to a commander’s input through the

NTO. The sequencer layer uses network tasking and state analysis to choose a set of

behaviors in the controller layer. The controller layer uses these behavior sets to optimize

the network for a particular task. The task for network information maximization calls on

the HANC’s ability to maximize utility and utilization of network resources and requires

a specific implementation of the controller layer of the robot control architecture.

 HANC implements a rudimentary sequencer, coordinator and UBF Module. A

Command Fusion arbiter arbitrates the generated action from five behaviors. The first

two are MinThreshold and MaxThreshold, which manage the node’s utility threshold.

The next two are SendRaise and SendLower, which manage the agent’s coordination

with its neighbor node though Raise Threshold and Lower Threshold messages. The fifth

behavior is HighFlux. HighFlux reacts to the perception of a failed communications node

80

81

by triggering an action to repair routing reservations. These five behaviors access a node

specific state class to generate their actions.

 The main execution of the simulation involves network setup and routing

initialization. After nodes, their agents and their routing tables are configured, a central

control agent governs the simulation by selecting nodes one at a time in an endless

execution loop. When each node is selected, the node is prompted to take an action. The

controller layer selects an action when prompted and the agent performs it.

Experiments

 To validate the HANC multi-agent system, four tests were prescribed in Chapter

III, including the Arbitrary Drop Test, the Utilization Test, the Bandwidth Flux Test, and

the Multiple Sink Test. The network simulated experiments to pass these tests.

Experiment 1 – Simple Network

 The arbitrary drop test was designed to test an agent’s ability to decide what

information flows to drop and what to keep. The control experiment runs a network using

only priority queues as a means of choosing what to drop. The agent attempts to match

or better the results of a priority queue implementation.

A run of the experiment is shown in Figure 4-4. Two information sources send the

packets of an information flow to a destination or sink node (4-4a). Default behavior

results in the dropping of lower utility packets (4-4b). At 2 seconds, a third information

flow vies for network resources. As it has a higher utility, the packets

from the third information flow keep QoS guarantees as lower utility flows lose them.

Figure 4-4c shows the highly congested network as the network stabilizes.

(a)

(b)

(c)

(e)

(f)

(d)

HANC Default

22Figure 4-4. Simple Network Experiment, Default and Using HANC. In default mode,
nodes forward packets (a) until they are overload and begin to drop less important flows
(b) and (c). Using HANC, the network allows moderate packet drops to ensure high link
utilization (d), but during overload, agents coordinate (e) to reduce excess flows (f).

82

 In the experiment, HANC maintains the priority queue from the default mode.

When information overflows at network relays, the network stabilizes by providing a

degraded quality of service to lower utility flows (4-4d). As the third flow enters the

network, the network becomes greatly congested, resulting in increased coordination to

raise threshold values (4-4e). Eventually, the network adapts to the increased congestion

by reducing lower utility flows and allocating bandwidth to the highest utility flows (4-

4f). Occasionally, lower utility flows reenter the network to vie for bandwidth.

 Figure 4-5 shows how the agents work to achieve a higher average information

utility at the sink node than the network of priority queues. The calculation used to

determine average information utility divides the total utility of all received packets at

each time step divided by the number of packets received at the sink node. In addition,

the agent passes the equivalence condition of the utilization test. Table 4-1 shows how

utilization of the congested link is identical whether using HANC or default methods.

Experiment 2 – Expanded Network

 In the second experiment, the network was expanded to include twice the nodes

and an extra information flow. This time, node 4 produced the highest utility flow and

node 1’s flow produced the second highest utility. Node 0 produced the lowest utility

flow, but it is connected directly to the bottleneck to witness how proximity can affect its

inclusion into the average information flow. The purpose of the experiment is to ensure

that the agents can propagate information requirements through a hierarchy of nodes.

Again, the arbitrary drop and utilization tests are evaluated against the network.

83

23Figure 4-5: Average Utility Comparison in a 4 Node Network. The agent outperforms the
default method after the introduction of a mid range utility flow at 2 seconds (dotted
line).

4Table 4-1: Utilization Comparison over Congested Link in 4 Node Network.

Time Utilization (Default) Utilization (HANC)

0.616 0.121499594 0.121499594

1.226 0.123241232 0.123241232

1.811 0.123809359 0.123809359

2.471 0.124127378 0.124127378

3.026 0.124287426 0.124287426

3.49975 0.124383885 0.124383885

84

Experiment 3 is demonstrated in Figure 4-6. The network passes all information

through a bottleneck link (4-6a). As network links overload, lower priority packets drop

and higher utility packets get through. Figure 4-6b shows this default behavior. At 2

seconds, a fourth information flow appeared at node 3. As time went on, the two highest

utility flows captured the contested link. Meanwhile, lower utility flows still used

network resources in a futile attempt to cross the bottleneck link (4-6c).

Using the agent based framework, an agent at the bottleneck (node 6) coordinated

with source nodes to maintain high utilization on the bottleneck link (4-6d). At the

introduction of a fourth information flow, the highest information flows dominate the use

of the contested link, so the HANC system coordinates to reduce bandwidth utilization on

the links used by lower utility flows (4-6e). In Figure 4-6f, the lower utility flows are shut

down. The agent based framework succeeds in producing higher average utility at the

sink node, while maintaining equivalent utilization at the bottleneck. Table 4-2 shows the

utilization result, while Figure 4-7 shows the average utility comparison.

5Table 4-2: Utilization Comparison over Congested Link in an 8 Node Network.

Time Utilization (Default) Utilization (Agent)

0.619 0.120910743 0.120910743

1.814 0.123604603 0.123604603

2.464 0.123972707 0.123972707

3.034 0.124165705 0.124165705

3.499 0.124276579 0.124276579

85

(a)

(b)

(c)

(e)

(f)

(d)

HANC Default

24Figure 4-6. Extended Network Experiment, Default and Using HANC. In default mode,
nodes forward packets (a) until they are overload and begin to drop less important flows
(b) and (c). As in the simple network, the HANC system allows moderate packet drops
for high utilization (d), but coordinates during overload (e) to reduce excess flows (f).

86

25Figure 4-7 Average Utility Comparison in an 8 Node Network. The agent outperforms
the default method after the introduction of a mid range utility flow at 2 seconds (dotted
line).

Experiment 3 – Multiple Sink Network

A third experiment shows the importance of these results. In this network, shown

in Figure 4-8, a second sink node is added. A fifth information flow transmits information

from node 2 to node 8 (the alternate sink). Sent as best effort traffic, it can be thought of

as a separate organization that uses the same communications infrastructure. As

compared with the information flows of the main network, it has no value, although the

main network has no jurisdiction to manage it. This experiment is designed to validate

the improvement condition of the utilization test and the multiple sink test.

87

(a)

(b) (c)

HANC Default

26Figure 4-8: Multiple Sink Network Experiment, Default and Using HANC. The network
routes an alternate flow to an alternate sink using the resources of the primary network
(a). Default operation results in underutilization of the alternate link, while HANC
removes unused flows to improve resource usage.

The problem, shown in the default run on this network in Figure 4-8b, is that

when network congestion is highest, the alternative flow loses to main flows for

bandwidth allocation of the contested link between node 2 and node 6. Congestion here

forces poor utilization and packet throughput on the link from node 6 to node 8. In the

agent based run, Figure 4-8c, lower utility flows reduce traffic flow when the network is

congested, opening the link for alternative flows. In this run, the link from 6-8 is more

88

heavily used. Figure 4-9 shows that despite this improvement, average utilities at the

main sink node are still higher with the agent based framework, passing the arbitrary drop

test. The utilization test is also passed, because utilization is the same on the bottleneck

link in both the default and agent based runs (Table 4-3). The most powerful result is in

Figure 4-10, however, where the utilization of the link from node 6 to 8 is dramatically

improved.

27Figure 4-9: Average Utility Comparison in a 9 Node Network. The dotted line at 2
seconds shows the introduction of a higher utility flow to the network.

89

6Table 4-3: Utilization Comparison over Congested Link in a 9 Node Network

Time Utilization (Default) Utilization (Agent)

0.619 0.120910743 0.120910743

1.274 0.123013148 0.123013148

1.814 0.123604603 0.123604603

2.464 0.123972707 0.123972707

3.034 0.124165705 0.124165705

3.499 0.124276579 0.124276579

28Figure 4-10: Improved Utilization of Link to Alternate Source. The dotted line at 2
seconds shows the introduction of a higher utility flow to the network.

90

Experiment 4 – Bandwidth Flux Test

 The fourth experiment attempts to pass the bandwidth flux test. In this

experiment, the network must adapt to the loss of a communications node to maintain

QoS for high utility traffic flows. The network in Figure 4-11 is built to test this. Two

source nodes, 0 and 1, send information flows to node 8. They route information along

two paths. Throughout the simulation, nodes communicate their existence using ping

messages. Each node tracks the last time it heard from its neighbor nodes. If the time

elapsed since the last node update exceeds a timeout period, the UBF selects an action to

solve the routing problem without the failed node.

The path from node 1 initially routes information through node 3, as shown in

Figure 4-11a. While the nodes are not sending meaningful information, they send alive

pings to notify neighbor nodes of their existence (4-11b). At 0.998 seconds into the

simulation, node 3 fails, causing traffic going through that node to be lost (4-11c). Since

node 3 fails, it no longer sends pings to neighbor nodes, and after the timeout period, (set

arbitrarily in this scenario to 0.01 seconds) the node generates an action to resolve the

routing without node 3. The resolved network goes around node 3 (4-11d). At 1.1

seconds, node 3 comes back into the network, sending alive pings yet again (4-11e).

After node 3’s first ping message is received by a neighbor node, the network routing

topology is resolved. Figure 4-11f shows the restored network. This behavior

demonstrates HANC’s ability to pass the bandwidth flux test.

91

(a)

(e)

(f)

(d)

(b)

(c)

29Figure 4-11: Demonstration of Bandwidth Flux Adaptation. Nodes route information (a)
and send alive pings (b) during normal operation. If a node fails (c), the HANC agents act
to repair the network routing (d). As the failed node returns (e), the agents act to use the
newly available links (f).

92

Analysis

 The agents employed in the three experiments improve the ability to use resources

efficiently, playing a part in maximizing the average utility of a network. The first two

experiments demonstrate the ability of the agent based framework to pass the arbitrary

drop test and the utilization test. The third test shows how network resources can be

better utilized in a highly congested network, opening poorly used resources for

alternative traffic flows. The alternate sink in the third experiment shows that the agent

based framework passes the multiple sink test. The fourth experiment demonstrates the

capability to react to periods of bandwidth flux.

 The experiments in this paper show an improved network in terms of balancing

information utility and bandwidth utilization. Likewise, the agent has been designed to

handle this optimization task, accessing an appropriate library of behaviors. The

experimental scenarios in this section would likely arise in situations where a network

sink is overloaded with information and packet losses are high, like when networks

experience periods of peak traffic. A sequencer must recognize the signs of impending

periods of peak traffic and could build its network agents to perform resource allocation

tasks accordingly.

Summary

 Commanders desire greater amounts of useful information in terms of mission

objectives. While the network information maximization problem requires a range of

solutions, the design of an agent based framework is a critical addition. This chapter

described the benefits of the agent based framework in resource allocation. Through an

93

94

NS2 implementation, the agent works with a reservation based routing protocol to send

information from source to sink. As packets relay through the network, nodes limit

resource contention to improve average utility and create a network with smarter

bandwidth utilization. Yet, as is discussed next, this result is only a small part of the

capability of the agent based framework for network control.

V. Conclusions and Recommendations

Research Summary

With increased reliance on communications to conduct military operations,

information centric network management becomes vital. OSD’s study of information

management for net-centric operations list the need for tools for information triage (based

on relevance, priority, and quality) to counter information overload, semi-automated

mechanisms for assessment of quality and relevance of information, and advances to

enhance cognition and information understanding in the context of missions [30]. This

study provides impetus to providing a solution to the network information maximization

problem.

Maximizing information utility to match mission objectives is a complex problem

that requires a comprehensive solution. That solution covers a gamut of research areas. In

information classification, the problem involves choosing proper classifiers to determine

information value. This paper proposes mission association, timeliness and user input as

possible sources. In scheduling, information maximization can be mapped to the restless

bandit problem. The solution creates an index for every information flow in the network

and selects an approximate solution with a greedy algorithm. In resource allocation, a

multi agent system selects actions that manage information flows based on the indexing

solution. In QoS support, information flows are given end to end service guarantees

through the reservation scheme. Solutions in all of these research areas contribute to

maximize average utility.

 Of these research areas, the resource allocation mechanism provides a framework

to build the entire solution. Through an agent based mindset, the lessons of robot control

95

architecture are applied to the network domain. The task of managing information flows

is achieved in a three tiered mindset. At the top tier, a deliberative planner interfaces with

commanders to develop network tasks from mission objectives. The deliberative planner

decomposes the mission objectives into network goals. The middle tier, the sequencer,

uses these goals and network state to select a library of behaviors that network agents

employ to achieve local tasks. In a distributed fashion, nodes coordinate among each

other to allocate resources appropriately. At the bottom tier, the controller layer of each

agent reacts quickly to the observed state of the network, adjusting policy in dynamic

fashion. Using the UBF, agent behaviors combine actions through an arbiter to select a

composite action. The action is executed using the available actuators, including message

passing, information utility threshold adjustments, and information flow reservation

management. The agents employed in the network domain describe a multi agent system

that aligns with Cao’s and Dudek’s taxonomies for multi robot systems. The alignment

validates this researches claim that the agent based framework is sound theory.

Research Conclusions

This work presents a distributed agent based framework around the requirements

laid out in Chapter I, tailored to the network information maximization problem. The

specific purpose for this implementation is to maximize average utility while using

resources as efficiently as possible. Chapter IV described the implementation of the agent

that could perform this task. Using NS2 to simulate information flows, experimentation

showed that the agent based framework passes the arbitrary drop test, outperforming a

simple method of priority queues. In addition, it was shown that network resources could

be allocated smartly in this framework, as the agents passed the utilization test. Then, the

96

agent framework performed in a distributed manner with multiple sinks. Finally, the

HANC multi agent system proved its ability to react during periods of bandwidth flux.

Future Research Recommendations

This research points to a cornucopia of research areas in the field of network

information maximization. Further study of information classification is warranted to

confirm the theory that information flows can be classified during network execution

without slowing the routing process. This paper proposes mission association, timeliness

and user input as attributes, but future research may find other classifiers.

Further work can be done in the scheduling domain to implement the adaptive

greedy algorithm for information flows. The object of such study would be to create an

index using at least three attributes during network execution. As network execution

progresses, indices should change as information flows reach deadlines for timeliness.

Along the same line of thinking, as mission goals change or users give feedback, the

scheduler should produce different values for information utility.

The most exciting extension to this work requires further development of the

agent based framework. With HANC in place and a few behaviors implemented, other

network optimizations can be attempted by adjusting behavior sets. The sequencer

component of HANC can be expanded to automate parameter selection in the behavior

sets. Currently, parameters are set using trial and error techniques, but the addition of a

neural network or genetic algorithm at the primitive sequencer layer would empower the

agent based framework. For further expansion, an addition of a deliberative planning

interface would demonstrate how the NTO process could be implemented in a network of

agents. Once an interface is devised, one could watch as network agents perform tasks to

97

meet the commander’s intent in the network. Currently, this research is continuing to

attempt to incorporate an encryption mechanism to demonstrate HANC’s ability to adapt

to changing security requirements. Another application of the agent based framework is

fault tolerance and topology control. As communication links increase and decrease, the

agent based framework could carry a set of behaviors that could vote how to adapt to the

network’s flux, including physical movement. An agent could reset its topology if the

perception of future quality is bleak, or could choose to remain in its current topology if

the cost of moving is too high. If node mobility is possible, a node might even vote to

move to another area where links have greater quality. The addition of other network

control mechanisms is a significant expansion area.

Final Remarks

This paper broke ground in the network information maximization problem by

identifying several key areas of future study. The core implementation of this thesis, the

agent based framework, provides the basic architecture for the entire information

maximization system. Future research should be able to extend this framework and

provide constant improvement in this research area. Yet the strength of this work may not

be in its ability to route information to maximize average utility. Although this may be

useful in managing networks during periods of peak load, alternative applications abound

for the agent based framework. The agent-based framework makes a significant

contribution to network management. In a future that includes a cyberspace commander

issuing an NTO to match mission objectives, the agent based framework paves the way

for the cyberspace commander to operationalize the network.

98

Appendix A: Pseudo Code for Additional Behaviors

 Chapter III described three behavior pairs. The first pair, MinThreshold and

MaxThreshold, were described in pseudo code in that chapter. The remaining pairs,

SendRaise/SendLower, HighFlux/LowFlux are described in Figures A-1 and A-2

respectively.

Action SENDRAISE genAction() { //called by Composite behavior

 ACTION action = new ACTION;

 int droppedPacketTolerance = 2;

 if (State->getDroppedPackets() > droppedPacketTolerance) {

 action->setSendRaiseThresholdMsg(true); //Set the action attributes

 action->setSendLowerThresholdMsg(false); //Set the action attributes

 }

 action->setVote(State->getDroppedPackets()); //Set a vote

 return action; //Return an action

}

Action SENDLOWER genAction() { //called by Composite behavior

 ACTION action = new ACTION;

 if (State->getUtilizationTrend()< 0) //if outbound queue sizes are dropping

 action->setSendLowerThresholdMsg(true); //Set the action attributes

 action->setSendRaiseThresholdMsg(false); //Set the action attributes

 action->setVote(10); //Set an arbitrary vote

 return action; //Return an action

}

30Figure A-1: SendRaise and SendLower Action Generators. The two behaviors watch
queue sizes to determine if coordination must intervene to manage information flows.

99

Action HIGHFLUX genAction() { //called by Composite behavior

 ACTION action = new ACTION;

 double fluxTolerance = .2; //long delay

 if (State->getTimeElapsedSinceUpdate() > fluxTolerance)

 action->setSolveRoutingTopology(true); //Set the action attribute

 else if (State->newNode())

 action->setSolveRoutingTopology(true); //Set the action attribute

 else

 action->setSolveRoutingTopology(false); //Set the action attribute

 action->setVote(2); //Set a vote

 return action; //Return an action

}

Action LOWFLUX genAction() { //called by Composite behavior

 ACTION action = new ACTION;

 double fluxTolerance = .02; //short delay

 if (State->getTimeElapsedSinceUpdate() > fluxTolerance)

 action->setSolveRoutingTopology(true); //Set the action attribute

 else if (State->newNode())

 action->setSolveRoutingTopology(true); //Set the action attribute

 else

 action->setSolveRoutingTopology(false); //Set the action attribute

 action->setVote(2); //Set a vote

 return action; //Return an action

}

31Figure A-2: HighFlux and LowFlux Action Generators. The two behaviors activate the
solve routing action when nodes seem to disappear or when new nodes appear in the
network.

100

101

Appendix B: Software and Procedures for Set Up and Simulation

A. (Optional) Install the latest version of Cygwin in order to provide a Linux-like

environment for Windows.

B. Install, configure and compile Network Simulator version 2 to be run inside of
Cygwin or Linux.

C. Install Network Animator (NAM) to run on NS2 output files.

D. Copy the HANC Agent Hybrid Communications files into the proper

directories of NS-2.

E. Add the new files into the Makefile.

F. Load PPRN executable into the NS2 root directory.

G. Build an NS-2 script using the tcl language. A script generator is available

among the HANC files.

H. Run NS2 on the NS2 script. Example command at command line is
home/ns-2.29/> ./ns ./nscript.tcl

I. Run NAM to view the NAM output file. Example command is

home/ns-2.29/> ../nam-1.11/nam MyNamFile

Bibliography

1. Bass, Samuel D. “A Model for Managing Decision-Making Information in the GIG-
Enabled Battlespace” Air and Space Power Journal 21, no. 2 (Summer 2007): p. 6-8,
http://www.airpower.maxwell.af.mil/airchronicles/apj/apj07/sum07/sum07.pdf.

2. Berkhin, P. “Survey of clustering data mining techniques.” Technical Report. Accrue
Software, San Jose, CA. 2002.

3. Bertsimas, Dimitris and Jose Nino-Mora. "Restless bandits, linear programming
relaxations, and a primal-dual index heuristic." Operations Research. v. 48 n 1 p. 80-
90. 2000.

4. Braden, R., L. Zhang, S. Berson, S. Herzog, and S. Jamin, "Resource ReSeVation
Protocol (RSVP) Version 1, Functional Specification." RFC 2205, IETF, Sep 1997.

5. Braitenberg, V., 1984, “Vehicles: Experiments in Synthetic Psychology”, MIT Press,
Cambridge Massachusetts.

6. Brooks, R.A., “A Robust Layered Control System for a Mobile Robot.” IEEE Journal
of Robotics and Automation, Vol. 2, No. 1, p. 14-23, Mar 1986.

7. Cao Y. Uny, Alex S. Fukunaga, and Andrew Kahng. “Cooperative mobile robotics:
Antecedents and directions. Autonomous Robots.” 4(1) p. 7-27, 1997.

8. Castro, J. PPRN 1.0 User's Guide. Technical Report. Universitat Politknica de
Catalunya. Sep 1994.

9. Dudek, Gregory, Michael Jenkin, Evangelos Milios, and D. Wilkes. “A Taxonomy for
Swarm Robots”. Proceedings of the 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems, p. 441–447. Yokohama, Japan, 1993.

10. Fall, K. and K. Varadhan. The ns Manual. Technical Report. UC Berkeley, LBL,
USC/ISI, and Xerox PARC. Feb 2008. http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf

11. Gat, Erann. “On Three-Layer Architectures.” Artificial Intelligence and Mobile
Robots. Pasadena, CA. AAAI Press, (1998).

102

http://www.airpower.maxwell.af.mil/airchronicles/apj/apj07/sum07/sum07.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf

12. Harmon, D., “Overcoming TCP Degradation in the Presence of Multiple Intermittent
Link Failures Utilizing Intermediate Buffering”, Technical Report, Air Force Institute
of Technology: Wright-Patterson AFB, 2007.

13. Hintz, K. and J. Malachowski, "Dynamic goal instantiation in goal lattices for sensor
management," Signal Processing, Sensor Fusion, and Target Recognition XIV; Ivan
Kadar; Ed., Proc. SPIE Vol. 5809, p. 93-99, Orlando, FL, April 2005.

14. Hintz, K. and G. McIntyre., “Goal Lattices for Sensor Management.” Proceedings
Signal Processing, Sensor Fusion, and Target Recognition VIII, Ivan Kadar; Ed.,
Proc. SPIE vol. 3720, p. 249-255, Orlando, FL, Apr 1999.

15. Hintz, K.J. and E.S. McVey. “Multi-Process Constrained Estimation.” In IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 21, No. 1 Jan/Feb 1991.

16. Hooper, D., “A Hybrid Multi-Robot Control Architecture”, Technical Report, Air
Force Institute of Technology: Wright-Patterson AFB, 2007.

17. Hopkinson, K., et al., “EPOCHS: A Platform for Agent-Based Electric Power and
Communication Simulation Built From Commercial Off-the-Shelf Components.”
IEEE Transactions, 21: p. 11. 2006.

18. Huberman, Bernardo A. and Wu, Fang. "The Economics of Attention: Maximizing
User Value in Information-Rich Environments." HP Labs, Palo Alto, CA 94304. 25
May 2007.

19. Huang, J. Wang, Y. and Cao, F. “On Developing Distributed Middleware Services
for QoS- and Criticality-Based Resource Negotiation and Adaptation.” The
International Journal of Time-Critical Computing Systems. Kluwer Academic
Publishers, p. 187-221. Boston. 1999.

20. Joint Chiefs of Staff, Joint Net-Centric Operations Campaign Plan: Joint Net-Centric
Operations Fact Sheet (Washington, DC: Joint Staff; Command, Control,
Communications, and Computer Systems Directorate [J-6]; October 2006),
http://www.jcs.mil/j6/c4campaignplan/JNO_fact_sheet.pdf (accessed 8 October
2007).

103

http://www.jcs.mil/j6/c4campaignplan/JNO_fact_sheet.pdf

21. Keshav, Srinivasan. An Engineering Approach to Computer Networking: ATM
Networks, the Internet and the Telephone Network. p. 446-449. Addison-Wesley
Publishing. Reading, Massachusetts.1997.

22. Kwiatkowski, Marek George, Peter. “A Network Control and Management
Framework Supporting Military Quality of Service.” In Military Communications
Conference Proceedings, MILCOM 1999. IEEE. P. 1161-1165 vol.2. 1999.

23. Llewellyn, L., “Distributed Fault Tolerant Quality of Service Routing in Hybrid
Directional Wireless Networks.”, Technical Report, Air Force Institute of
Technology: Wright-Patterson AFB, 2007.

24. Mathy, L. and D. Hutchison and S. Schmid and G. Coulson. “Improving RSVP for
Better Support of Internet Multimedia Communications.” from ICMCS ’99, Florence,
Italy, Jun 1999.

25. McIntyre, G. A. "A comprehensive approach to sensor management and scheduling."
Fairfax, VA: George Mason University, 1998.

26. Mizzaro, S. “Relevance: The whole history.” Journal of the American Society for
Information Science, 48(9), p. 810–832. 1997.

27. Morrison, Clayton T. and Cohen Paul R. “Noisy Information Value in Utility Based
Decision Making.” UBDM ‘05 ACM. August 21, 2005. Chicago, Illinois, USA. 2005.

28. “Multi-Armed Bandit Problem.” http://en.wikipedia.org/wiki/Multi-armed_bandit.
accessed 30 Nov 2007

29. Nino-Mora, J. "Restless bandits, partial conservation laws and indexability." Adv.
Appl. Probab. 33, p. 76–98. 2001.

30. Office of the Secretary of Defense, “2006 Summer Study: Information Management
for Net-Centric Operations.” Vol I. http://www.acq.osd.mil/dsb/reports/2007-04-
IM_Vol_I.pdf

31. Papadimitriou, C.H. and J.N. Tsitsiklis. “The complexity of optimal queueing network
control.” Math. Oper. Res. 24, p. 293–305 (1999).

104

http://en.wikipedia.org/wiki/Multi-armed_bandit

32. “Quality of Service.” http://en.wikipedia.org/wiki/Quality_of_service accessed 15 Jan
2008.

33. Rosen, E., A. Viswanathan, R.Callon “Multiprotocol Label Switching Architecture
(RFC 3031)” Jan 2001. http://www.ietf.org/rfc/rfc3031.txt.

34. Secretary of the Air Force. “SECAF/CSAF Letter to Airmen: Mission Statement,” Air
Force Link, 7 Dec 2005.
http://www.af.mil/library/viewpoints/jvp.asp?id=192 accessed 8 Oct 2007.

35. Sycara, Katia P. "Multiagent Systems." AI Magazine. v. 19 n. 2 , p 79-92. 1998.

36. Wang, J. and G. Beni. ”Distributed computing problems in cellular robotic systems.”
In IEEE/RSJ IROS, p 819–826, 1990.

37. Woolley, B., and G.L. Peterson, “Unified Behavior Framework for Reactive Robot
Control.”, ACM Transaction on Autonomous and Adaptive Systems. (submitted).

38. Wynne, Michael W. “Flying and Fighting in Cyberspace,” Air and Space Power
Journal 21, no. 1, p 6-8, Spring 2007.
http://www.airpower.maxwell.af.mil/airchronicles/apj/apj07/spr07/spr07.pdf

39. Zhang, L., S. Deering, D. Estrin, S. Shenker, and D. Zappala. “RSVP: A New
Resource ReSerVation Protocol.” IEEE Network, p 8-18, Sep1993.

105

http://en.wikipedia.org/wiki/Quality_of_service
http://www.ietf.org/rfc/rfc3031.txt
http://www.af.mil/library/viewpoints/jvp.asp?id=192
http://www.airpower.maxwell.af.mil/airchronicles/apj/apj07/spr07/spr07.pdf

Vita.

Captain John Matthew Pecarina graduated from Central High School in San

Angelo, Texas. He received his Bachelor of Science in Computer Science from Angelo

State University in December 2001. Immediately after graduation, he was commissioned

in the Air Force as a communications officer. In January 2002, Captain Pecarina

assumed the duties of a crew commander in the Air Force Space Command Network

Operations Security Center at Peterson Air Force Base (AFB). In October 2004, he was

assigned to the 608th Air Communications Squadron at Barksdale AFB, supporting the

Combined Air and Space Operations Center for USSTRATCOM’s Global Strike mission.

Before attending the Air Force Institute of Technology in August 2006, Captain

Pecarina served as Aide-de-Camp to the Commander of Eighth Air Force and Joint

Functional Component Commander for Space and Global Strike. His next assignment is

with the Communications Directorate of Air Mobility Command at Scott AFB, Illinois.

106

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
27-03-2008

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2006 – Mar 2008

4. TITLE AND SUBTITLE

Creating an Agent Based Framework
to Maximize Information Utility

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

John M. Pecarina, Captain, USAF

5d. PROJECT NUMBER
JON # 08-175
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/08-19

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Office of Scientific Research/NM
 Dr. David Luginbuhl
 875 N. Randolph, Ste. 325, Rm. 3112
 Arlington, Virginia, 22203
 (703) 696-6207 david.luginbuhl@afosr.af.mil

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 With increased reliance on communications to conduct military operations, information centric network management becomes vital. A Defense
department study of information management for net-centric operations lists the need for tools for information triage (based on relevance, priority, and quality)
to counter information overload, semi-automated mechanisms for assessment of quality and relevance of information, and advances to enhance cognition and
information understanding in the context of missions. Maximizing information utility to match mission objectives is a complex problem that requires a
comprehensive solution in information classification, in scheduling, in resource allocation, and in QoS support. Of these research areas, the resource allocation
mechanism provides a framework to build the entire solution. Through an agent based mindset, the lessons of robot control architecture are applied to the
network domain. The task of managing information flows is achieved with a hybrid reactive architecture. By demonstration, the reactive agent responds to the
observed state of the network through the Unified Behavior Framework (UBF). As information flows relay through the network, agents in the network nodes
limit resource contention to improve average utility and create a network with smarter bandwidth utilization. While this is an important result for information
maximization, the agent based framework may have broader applications for managing communication networks.

15. SUBJECT TERMS
 Network Management, Robot Control Architecture, Information Maximization, Multi Agent systems

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
122

19a. NAME OF RESPONSIBLE PERSON
Dr Kenneth M. Hopkinson (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(937) 785-3636, ext 4579; e-mail: Kenneth.Hopkinson@afit.af.mil

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

107

108

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	Background
	Problem Statement
	Vision
	Preview

	II. Literature Review
	Classification for Information Maximization
	Descriptors
	Mission Association
	Timeliness
	User Input

	Scheduling for Information Maximization
	Information Flow Scheduling Problem
	Restless Bandit Problem
	Computational Complexity
	Approximate Solutions
	Solution in Information Maximization

	Resource Allocation for Information Maximization
	Agent Architectures
	Reactive Control Architecture
	Three Layer Architecture
	Multi-Agent Systems

	Quality of Service for Information Maximization
	Protocol Support for QoS
	Middleware Support for QoS

	Research Overview
	Summary

	III. Methodology
	Domain
	Requirements
	Conceptual Design
	Utility Threshold
	The Hybrid Agent for Network Control (HANC)

	Specific Design
	Perception
	State
	Sequencer
	Coordinator
	Actions
	UBF Module
	Behaviors
	Arbiter

	Expected Results
	Test 1 – Arbitrary Drop Test
	Test 2 – Utilization Test
	Test 3 – Bandwidth Flux Test
	Test 4 – Multiple Sink Test

	Summary

	IV. Analysis and Results
	Implementation
	Simulation Environment
	Network Setup
	Simulation Management
	HANC Implementation

	Experiments
	Experiment 1 – Simple Network
	Experiment 2 – Expanded Network
	Experiment 3 – Multiple Sink Network
	Experiment 4 – Bandwidth Flux Test

	Analysis
	Summary

	V. Conclusions and Recommendations
	Research Summary
	Research Conclusions
	Future Research Recommendations
	Final Remarks

	Appendix A: Pseudo Code for Additional Behaviors
	Appendix B: Software and Procedures for Set Up and Simulation
	Bibliography
	Vita.

