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We describe the adsorption of H on Si~114!-~231! as characterized by scanning tunneling
microscopy and first-principles calculations. Like Si~001!—and despite the relative complexity of
the ~114! structure—a well-ordered, low-defect-density monohydride surface forms at;400 °C.
Surprisingly, the clean surface reconstruction is essentially maintained on the (231) monohydride
surface, composed of dimers, rebonded double-layer steps, and nonrebonded double-layer steps,
with each surface atom terminated by a single H. This H-passivated surface can also be easily and
uniformly patterned by selectively desorbing the H with low-voltage electrons. ©1999 American
Institute of Physics.@S0003-6951~99!04010-3#
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The structural anisotropy inherent to high-index silic
surfaces makes them potentially significant substrates
electronic device fabrication.1–4 Of the planar surfaces be
tween~001! and ~111!,5–8 Si~114! has the simplest structur
and a surface energy comparable to Si~001!.7 Given its natu-
ral anisotropic ‘‘single-domain’’ structure~see Fig. 1!,
Si~114! should make an interesting substrate for heteroe
axy.

The potential of Si~114! as a substrate would be great
enhanced if it could be easily hydrogen terminated. Hyd
gen can be used to reduce surface contamination and i
face states,9,10 and can also serve as a surfactant11 and as an
electron-beam lithography mask for nanoelectro
structures.12–15 However, to our knowledge Si~001! is the
only Si surface that can be easily monohydride termina
with gaseous hydrogen.16 On high-index surfaces th
H-surface chemistry is generally complex, a consequenc
the heterogeneity of the potential binding sites.17,18 Even on
the low-index Si~111! face the complexity of the (737)
reconstruction is such that a monohydride surface can o
be achieved using extreme exposure conditions, with a h
density of defects remaining on the resulting surface.16,19

In this letter we describe the adsorption of H on Si~114!
as characterized by scanning tunneling microscopy~STM!
and first-principles calculations. Despite the relatively co
plex structure of Si~114!, we find that a well-ordered, low
defect-density monohydride surface can be easily made,
that this surface can be uniformly patterned with low-volta
electrons.

The experiments were performed in ultrahigh vacu
using Si wafers oriented to within 0.3° of~114!. The surfaces
were cleaned by heating in vacuum to;1225 °C for 60 s.
Sample temperatures were determined based on the sa
heating power, which was calibrated using both an infra
pyrometer and thermocouple measurements~the estimated
uncertainties are625° below 500 °C and610° above!.
Atomic hydrogen exposure was performed by dissociat
H2 ~typically, 231025 Torr! with a hot W filament located
;1 cm from the surface. After the exposure, the samp
were held at the deposition temperature in vacuum for

a!Electronic mail: laracuen@stm2.nrl.navy.mil
1390003-6951/99/74(10)/1397/3/$15.00
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least 5 min. Although STM images of both empty and fille
electronic states have been acquired at room tempera
only filled-state images are shown here.

To determine the equilibrium surface geometry of t
H-terminated Si~114! surface, we performed first-principle
calculations within the local-density approximation~LDA ! to
density-functional theory. The calculations used a doub
sided slab geometry consisting of ten Si layers plus hyd
gen. All but the inner two layers were completely relax
until the surface energy was converged to within 1 meV/Å2.
Total energies and forces were calculated using Troulli
Martins pseudopotentials in a plane-wave basis with
kinetic-energy cutoff of 12 Ry, as implemented in th
FHI96MD code.20 STM images were simulated by computin
the surfaces of constant-energy-integrated local density
states.

In order to understand any changes induced by H
sorption on Si~114!, it is useful to review the characteristic
of the clean surface as observed with STM. As shown in F
1, Si~114!-~231! terraces are composed of a periodic arr
of row-like structures oriented along the@ 1̄10# direction.
Rows composed of three structures are observed: rebo
double-layerB-type (DB) steps~R!; tetramers~T!, each made
up of a dimer bonded to a nonrebondedDB step; and isolated

FIG. 1. Filled-state STM images of clean Si~114!. ~a! 106 nm3142 nm

image showing periodically spaced rowsalwaysoriented along the@ 1̄10#
direction. ~b! 3.7 nm33.7 nm image with structural model highlighting th
three motifs that make up the (231) reconstruction: rebonded double-laye
B-type (DB) step~R!; tetramer~T!, made up of a dimer bonded to a nonr
bondedDB step; and isolated dimer~D!. One primitive unit cell is outlined.
7 © 1999 American Institute of Physics
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dimers ~D!. All three structures are buckled along@ 1̄10#,
with the ‘‘up’’ rebonded step atoms~every other one! corre-
sponding to the brightest, spherical protrusions in the gr
scale STM images. Tetramers appear as an asymmetrica
of lobes oriented perpendicular to the@ 1̄10#. The isolated
dimers are the darkest protrusions in the images, consis
with their relative structural height within the unit cell.

The changes induced by atomic hydrogen adsorption
Si~114!-~231! are illustrated in Fig. 2, where images r
corded following exposures at different temperatures are
played. Room-temperature exposure disrupts the atom
scale features@Fig. 2~a!#, leaving about 60% of the surfac
covered with;1-nm-high protrusions. Although unreacte
regions can be seen between these features, they disa
after ;20 L total exposure. With further exposure at roo
temperature the protrusions get larger, increasing the sur
roughness~not shown!, similar to what is observed for H on
Si~001!.16 Increasing the surface temperature reduces the
order caused by H adsorption, so that following exposure
250 °C the large protrusions that appear at room tempera
are mostly absent@Fig. 2~b!#. Under these conditions mul
tiple layers of Si react with H, as indicated by the presence
dimer-like features oriented inboth the @ 1̄10# and @221̄#
directions and the range of heights within the images. Ex
sure at 300 °C produces a surface with noticeably be
atomic-scale order@Fig. 2~c!#, with two distinct (231)-like
morphologies@outlined in Fig. 2~c!#. Similar to surfaces ex-
posed at 250 °C, dimer-like features are observed oriente
both directions. Although the specific H-termination state
these structures is not known, the relative heights and lat
spacing of the two orientations of dimer-like features o
served indicate that they arise from a splitting of doub
layerDB steps~R andT! into two adjacent single-layer step
(SA1SB).

In contrast to the effects of H at lower temperatur
exposure above 400 °C produces a well-ordered, low-def

FIG. 2. 11.5 nm311.5 nm filled-state STM images of Si~114! following H
exposure~H2 with a hot filament! at various substrate temperatures.~a! 10 L
exposure at room temperature. The arrow indicates a row of unreacte
atoms.~b! 480 L at 250 °C.~c! 480 L at 300 °C. Two different types o
(231) domains are outlined.~d! 240 L at 420 °C. A well-ordered
H-terminated (231) surface.
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density, single-domain (231)-reconstructed Si~114! sur-
face, as shown in Fig. 2~d!. The overall morphology of this
surface, i.e., terrace size, defect density, and periodic co
gation, is so similar to that of the clean surface that ima
on the;100 nm scale are indistinguishable from Fig. 1~a!.
At higher magnifications, however, differences on the atom
scale become apparent@compare Fig. 1~b! with Fig. 3~a!#,
especially in the highest rows. Whereas on the clean sur
the 23 row of alternately buckled rebonded atoms stan
out, on the H-terminated surface a row with a nearly 13
periodicity is observed between rows of dimer-like stru
tures, all with similar heights in the filled-state images.

On Si~001!-~231! gaseous atomic H reacts with the da
gling bonds to produce Si42nHn ~n51, 2, 3! species, with
the relative composition dependent on adsorpt
temperature.21–24 Room-temperature adsorption etches t
surface, producing a rough, disordered mixture of hydride16

Under certain H-exposure conditions, a well-ordered
31) surface can be prepared at;130 °C, with alternating
dihydride- and monohydride-terminated dimers.16,25,26 The
surface coverage of the monohydride phase increases
exposure temperature, culminating about 400 °C in a ne
perfect monohydride-passivated Si~001!:H-~231! surface
composed of H–Si–Si–H dimer rows. In general, the re
tion of atomic H with Si~114! appears qualitatively similar to
Si~001!—producing rough disorder at low temperatures a
more homogeneous, ordered structures with increas
temperature—suggesting that similar atomic-scale react
occur. It appears that room-temperature exposure etche
~114! surface~we assume that the various indistinct cluste
observed on the surface are silicon hydrides!. At higher tem-
peratures, H adsorption produces more well-ordered st
tures. Although the atomic-scale structures of the differ
features observed following exposure between 200
350 °C are not known, we suspect that they are associ

Si

FIG. 3. ~a! Atomic-resolution filled-state STM image of Si~114!:H-~231!
produced at 420 °C~2 V, 3.7 nm33.7 nm!. The proposed structural model i
overlaid and shown in detail in~b! using the theoretically relaxed geometr
~c! Simulated filled-state image~2 V! calculated for this structure.~d!
38 nm338 nm image showing an area 19 nm319 nm where H has been
removed by scanning with a sample bias of 7 V. The dashed line is a g
to the eye along one rebonded double-layer step.
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with locally ordered combinations of mono- and dihydri
dimers and step structures. In contrast to Si~001!, a dihydride
reconstruction with long-range order is not observed on
surface. Additional surface characterization including vib
tional spectroscopy is planned to more definitively ident
these H–Si structures.

When we expose Si~001! to H under conditions identica
to those used to produce the well-ordered Si~114!:H-~231!
structure @Figs. 2~d! and 3~a!#, a nearly perfect
Si~001!:H-~231! monohydride surface results~not shown!.
Combining our STM results with LDA calculations, we hav
determined that the Si~114!:H-~231! produced under thes
conditions is also a simple monohydride-terminated surfa
The structure of this (231) surface is essentially that of th
clean surface with each dangling bond~db! capped by a
single H atom@Fig. 3~b!#. The first-principles calculations
show that this structure readily relaxes into a low surfa
energy configuration, and the corresponding simulated S
images accurately reproduce the general appearance o
atomic-scale features@Fig. 3~c!#. The main effect of the H on
Si~114! is to remove the buckling, which on the clean surfa
is driven by charge transfer between the otherwise half-fi
dbs. With H saturating each db, there is no charge-rela
driving force for buckling; as a consequence, the rebon
atoms~R! and the adjacent dimers~D and dimer half ofT!
relax to similar heights. This relaxation changes the rela
prominence of the different features in the STM images, w
the rebonded and dimer rows become relatively equa
height. The nonrebonded step within the H-terminated
ramers usually appears as the lowest feature~although the
heights are somewhat variable with tunneling conditions!.

Given the relative complexity of the~114! surface struc-
ture, it is surprising that the surface can be so easily
uniformly terminated with H. On the clean Si~114!-~231!
surface the rebonding atoms serve to halve the density o
dbs at the underlying double-layer steps, albeit at the
pense of additional surface stress. Because H can sat
every db without requiring strained Si bonds, one might
pect H exposure to remove the rebonding atoms~leaving a
H-terminated step!. In fact, although the rebonding atom
remain on Si~114! following high-temperature exposure t
H, we have found that on surfaces oriented closer to~001!—
where the double steps are separated by three or m
dimers—most of the rebonding atoms are stripped off. T
‘‘unrebonding’’ of the double-layer steps on these surfa
has a destabilizing effect, dramatically altering the step
ergetics and thereby the overall surface morphology.~This
phenomenon will be discussed in more detail in a sepa
publication.!

The ability to simply H terminate each db on the cle
Si~114!-~231! surface implies that the three different stru
tures, ~001!-like dimers, rebonded double-layer steps, a
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nonrebonded double-layer steps, each react similarly wit
under appropriate conditions. A significant consequence
this unexpected homogeneity is the ability to selectively p
tern the surface by using the STM probe touniformlydesorb
H. Removal of the H in this way exposes a relatively we
ordered area with the usual clean surface structure, as sh
in Fig. 3~d!. As expected, the H-free regions appear highe
the filled-state image, with the buckled rebonded rows
stored to prominence. Although we have not investiga
such lithography on Si~114!:H as exhaustively as has bee
done for Si~001!:H, we expect a similar degree of contro
will be possible. These results set the stage for further inv
tigations of Si~114! as a substrate for electronic application
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