
A Unified Framework For Solving

Multiagent Task Assignment Problems

DISSERTATION

Kevin Couśin, Major, USAF

AFIT/DCS/ENG/08-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/DCS/ENG/08-01

A Unified Framework For Solving
Multiagent Task Assignment Problems

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Kevin Couśin, BS, MA

Major, USAF

December 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/DCS/ENG/08-0l

A UNIFIED FRAMEWORK FOR SOLVING

MULTIAGENT TASK ASSIGNMENT PROBLEMS

Kevin Cousin, BS, MA

Major, USAF

Approved:

Dr. Gilbert L. Peterson Date'

2g1!()1/ () 2
D . John O. Miller

Chairman

Date
Dean's Representative

Maj Robert J. eber
Member

Date

Date

Accepted:

170-e<.. 01

DateM.V.THOMAS
Dean, Graduate School of E,ngineering

and Management
Air Force Institute of Technology

AFIT/DCS/ENG/08-01

Abstract

Multiagent task assignment problem descriptors do not fully represent the com-

plex interactions in a multiagent domain, and algorithmic solutions vary widely de-

pending on how the domain is represented. This issue is compounded as related

research fields contain descriptors that similarly describe multiagent task assignment

problems, including complex domain interactions, but generally do not provide the

mechanisms needed to solve the multiagent aspect of task assignment.

This research presents a unified approach to representing and solving the mul-

tiagent task assignment problem for complex problem domains. Ideas central to

multiagent task allocation, project scheduling, constraint satisfaction, and coalition

formation are combined to form the basis of the constrained multiagent task schedul-

ing (CMTS) problem. Basic analysis reveals the exponential size of the solution space

for a CMTS problem, approximated by O(2n(m+n)) based on the number of agents

and tasks involved in a problem. The shape of the solution space is shown to contain

numerous discontinuous regions due to the complexities involved in relational con-

straints defined between agents and tasks. The CMTS descriptor represents a wide

range of classical and modern problems, such as job shop scheduling, the traveling

salesman problem, vehicle routing, and cooperative multi-object tracking.

Problems using the CMTS representation are solvable by a suite of algorithms,

with varying degrees of suitability. Solution generating methods range from simple

random scheduling to state-of-the-art biologically inspired approaches. Techniques

from classical task assignment solvers are extended to handle multiagent task problems

where agents can also multitask. Additional ideas are incorporated from constraint

satisfaction, project scheduling, evolutionary algorithms, dynamic coalition formation,

auctioning, and behavior-based robotics to highlight how different solution generation

strategies apply to the complex problem space.

iv

Furthermore, a new approach to solving the CMTS problem using a distributed

system shows how to scale the adapted algorithms to solve increasingly larger domain

problems. The distributed approach introduces several methods for decomposing a

problem and recomposing subsolutions into a complete solution without significantly

compromising solution quality. On the other hand, decomposition techniques show

methods to reduce the search space by several orders of magnitude allowing for im-

proved search efficiency.

Finally, experimentation in the search and recovery problem domain instance

for the CMTS problem class demonstrates the ability to use the CMTS descriptor as

a unified descriptor for a variety of algorithms. The results of various algorithms in

turn empirically demonstrate key characteristics of the solving the search and rescue

problem with and without enhanced heuristics, such as those from dynamic coalition

formation and behavior-based robotics. Ultimately, the efficiency and effectiveness

of solving the problem in a distributed process empirically demonstrates methods to

dramatically reduce search space complexity while maintaining acceptable quality so-

lutions in this domain. Experiments in alarm handling and search and rescue problem

domains show search space reductions of 1039 and 10106 solution points respectively

while producing competitive solutions.

v

AFIT/DCS/ENG/08-01

For the family, all of the Couśins, everywhere.

vi

Acknowledgements

I would like to foremost thank my advisor Dr. Bert Peterson for the guidance,

enlightenment and opportunities he has given to me. I learned more about artificial

intelligence and the business and art of doing research under his watch than I thought

possible.

I also thank my committee members Major Bob Weber for helping me get into

the program, Dr. John Miller, and especially Dr. Gary Lamont whom I hold in the

highest regard for his expertice and experience. I also acknowledge the camaraderie

and tremendous support I have received from my classmates, ENG faculty and staff,

AFIT staff members, and commanders and mentors from past assignments who made

this possible in so many ways.

I deeply appreciate the research support and inspiration I received from Dr.

Elizabeth Downie of the Dayton Area Graduate Studies Institute, Dr. Mikel Miller

and Dr. Jason Campbell from the Air Force Research Laboratory, and Dr. Roger

Quinn and Alex Boxerbaum of Case Western Reserve University. Their professional-

ism and continual approval motivated this work in many ways.

Most importantly, I thank my beautiful wife for encouraging me from day one,

my children who are as proud of me as I am of them, and my parents’ and brother’s

support. There is nothing more important to me than having such a supportive family.

Kevin Couśin

vii

Table of Contents
Page

Abstract . iv

Acknowledgements . vii

List of Figures . xi

List of Tables . xiv

List of Algorithms . xvii

List of Symbols . xviii

List of Abbreviations . xx

I. Introduction to Multiagent Task Assignment 1

1.1 A Unifying Approach . 2

1.2 Contribution . 4
1.3 Outline . 5

II. Current Research in Task Assignment 7

2.1 Defining Features of the Task Assignment Problem 7

2.1.1 Multiagent Task Allocation 7

2.1.2 Resource Constrained Project Scheduling 11

2.1.3 Distributed Constraint Satisfaction 12
2.1.4 Dynamic Coalition Formation 13

2.2 Solution Techniques For Multiagent Task Assignment 14

2.2.1 Direct Search . 15
2.2.2 Policy-based Learning . 16

2.2.3 Evolutionary . 17

2.2.4 Behavioral . 18
2.2.5 Economic . 18

2.3 Summary . 19

III. Modeling Multiagent Task Assignment Problems 21

3.1 Constrained Multiagent Task Scheduling (CMTS) Problems . . . 21

3.2 Solution Representation . 25

3.2.1 Directed Acyclic Graph Representation 25

3.2.2 Validating Solutions . 26

viii

Page

3.2.3 Matrix-Equivalent Representation 28

3.3 Solution Space Analysis . 28

3.3.1 Size and Complexity Models 29

3.3.2 Landscape . 32

3.4 Representing Classical and Modern Problems 35

3.4.1 Optimal Assignment Problem 35

3.4.2 Flow Shop and Job Shop Scheduling 36

3.4.3 Multiple Traveling Salesman and Vehicle Routing Problem 38

3.4.4 Multi-object Tracking . 39

3.4.5 Autonomous Search And Recovery 40

3.5 Summary . 42

IV. Solving Constrained Multiagent Task Scheduling Problems 43

4.1 Algorithm Domain Mapping of CMTS Problems 43

4.2 Tree-based Complete Search Algorithms 45

4.2.1 Breadth-First Search . 45
4.2.2 Depth-First Search . 48

4.3 Tree-based Heuristic Search Algorithms 50

4.3.1 A* . 50
4.3.2 Beam Search . 52

4.4 Greedy Auction Algorithms . 56

4.4.1 Serial Auctioning . 56

4.4.2 Concurrent Auctioning . 58

4.5 Constructive Stochastic Algorithms 60

4.5.1 Ant Colony Optimization 60

4.5.2 Reinforcement Learning 64

4.6 Random Algorithms . 67

4.6.1 Random Search . 68
4.6.2 Task Sequencer . 70

4.7 Solution-Space Algorithms . 72

4.7.1 Genetic Algorithm . 72

4.7.2 Particle Swarm Optimization 79

4.8 Alternative Approaches . 82

4.9 Solving Problems With Uncertain Information 84

4.10 Summary . 88

ix

Page

V. Distributed Methods . 90
5.1 Decomposition Strategies . 90

5.2 Problem Decomposition . 91

5.2.1 By Agent . 91

5.2.2 By Task . 92

5.2.3 By Operation . 93

5.2.4 By System Size . 93

5.3 Problem Recomposition . 95

5.4 A Distributed Processing Meta-Heuristic 96

5.5 Distributed Methods For Generating Optimal Solutions 98

5.6 Summary . 99

VI. Experimentation and Simulation . 101

6.1 Gathering Domain Experiments With Auction Methods 102

6.1.1 Gathering Problem Domain 102

6.1.2 Auction Methodology . 104

6.1.3 Experiments and Results 104

6.2 Alarm Domain Experiments With Search Tree Methods 108

6.2.1 Alarm Handling Problem Domain 109

6.2.2 Algorithm Selection . 111

6.2.3 Experiment and Results 112

6.2.4 Additional Distributed Experiments 114

6.3 Autonomous Search and Recovery Domain Experiments 116

6.3.1 Autonomous Search and Recovery Problem Details 117

6.3.2 Problem and Algorithm Selection 120

6.3.3 Serial Algorithm Comparison 123

6.3.4 Distributed Analysis . 126

6.4 Behavioral Observations . 136
6.5 Summary . 137

VII. Conclusions . 140
7.1 The Unified Framework . 140
7.2 Future Work . 141
7.3 Summary . 142

Appendix A. Problem Specific Experiment Results 145

Appendix B. ASAR Problem Repository 176

Bibliography . 198

x

List of Figures
Figure Page

2.1 MRTA Class Examples. 8

3.1 Formal Model for the CMTS Problem. 22

3.2 Example CMTS Problem. 23

3.3 Solution Graph Representation. 25

3.4 Solution Space Visualization on 3-Axis Coordinate System. . . 32

3.5 Sample Solution Space for a 2x3 Problem. 33

3.6 Utility Surface for 2x3 Problem on 3-Axis Coordinate System. . 34

4.1 Select CMTS-Enabled Algorithms. 44

5.1 Problem Instance For Decomposition. 91

6.1 Average Utility Value Per Algorithm in Cooperative Gathering. 106

6.2 Average Utility Value Per Algorithm in Competitive Gathering. 107

6.3 Average Error Per Algorithm in Cooperative Gathering. 108

6.4 Average Error Per Algorithm in Competitive Gathering. 109

6.5 Comparison of Solution Quality for Alarm Handling. 112

6.6 Comparison of Algorithm Performance for Alarm Handling. . . 113

6.7 Average Utility Value Per Algorithm With Distributed Process-

ing for Alarms, Ranked Best First. 116

6.8 Experiment Problems—Size Mapped By Complexity. 121

6.9 Average Utility Value Per Algorithm for ASAR, Ranked Best

First. 124

6.10 Convergence Results of Iterative Algorithms for ASAR. 125

6.11 Iterated Algorithm Convergence Comparison. 126

6.12 Average Utility Value Per Algorithm With Distributed Process-

ing for ASAR, Ranked Best First. 129

6.13 Average Solution Space Size Per Algorithm for ASAR. 133

6.14 Average Utility Error Per Algorithm for ASAR. 135

xi

Figure Page

A.1 3× 6 ASAR Problem Results. 146

A.2 3× 7 ASAR Problem Results. 147

A.3 3× 8 ASAR Problem Results. 148

A.4 3× 9 ASAR Problem Results. 149

A.5 3× 10 ASAR Problem Results. 150

A.6 3× 11 ASAR Problem Results. 151

A.7 3× 12 ASAR Problem Results. 152

A.8 3× 13 ASAR Problem Results. 153

A.9 3× 14 ASAR Problem Results. 154

A.10 3× 15 ASAR Problem Results. 155

A.11 4× 6 ASAR Problem Results. 156

A.12 4× 7 ASAR Problem Results. 157

A.13 4× 8 ASAR Problem Results. 158

A.14 4× 9 ASAR Problem Results. 159

A.15 4× 10 ASAR Problem Results. 160

A.16 4× 11 ASAR Problem Results. 161

A.17 4× 12 ASAR Problem Results. 162

A.18 4× 13 ASAR Problem Results. 163

A.19 4× 14 ASAR Problem Results. 164

A.20 4× 15 ASAR Problem Results. 165

A.21 5× 6 ASAR Problem Results. 166

A.22 5× 7 ASAR Problem Results. 167

A.23 5× 8 ASAR Problem Results. 168

A.24 5× 9 ASAR Problem Results. 169

A.25 5× 10 ASAR Problem Results. 170

A.26 5× 11 ASAR Problem Results. 171

A.27 5× 12 ASAR Problem Results. 172

A.28 5× 13 ASAR Problem Results. 173

xii

Figure Page

A.29 5× 14 ASAR Problem Results. 174

A.30 5× 15 ASAR Problem Results. 175

xiii

List of Tables
Table Page

2.1 MRTA Taxonomy [42,45]. 9

3.1 CMTS Solution Constraint Checks. 27

3.2 Solution Matrix Representation. 27

4.1 Summary of CMTS-ready Algorithms. 88

6.1 Gather Problem Instance Characteristics 105

6.2 Number of Alarm Subproblems Generated Through Decomposi-

tion . 115

6.3 Averaged Results for Utility Value and Space Size for Alarms. . 117

6.4 ASAR Problem Instance Characteristics. 121

6.5 Number of ASAR Subproblems Generated Through Decomposi-

tion. 127

6.6 Averaged Results for Utility Value and Space Size for ASAR. . 128

6.7 Right-tailed WSR Test Results (C-Auction - MT-MR). 131

6.8 Right-tailed WSR Test Results (MT-MR - S-Auction). 132

B.1 ASAR Repository Problem Characteristics. 177

B.2 2× 6 ASAR Problem Instance. 178

B.3 2× 10 ASAR Problem Instance. 178

B.4 2× 15 ASAR Problem Instance. 178

B.5 2× 20 ASAR Problem Instance. 178

B.6 3× 6 ASAR Problem Instance. 179

B.7 3× 7 ASAR Problem Instance. 179

B.8 3× 8 ASAR Problem Instance. 179

B.9 3× 9 ASAR Problem Instance. 180

B.10 3× 10 ASAR Problem Instance. 180

B.11 3× 11 ASAR Problem Instance. 180

B.12 3× 12 ASAR Problem Instance. 181

xiv

Table Page

B.13 3× 13 ASAR Problem Instance. 181

B.14 3× 14 ASAR Problem Instance. 181

B.15 3× 15 ASAR Problem Instance. 182

B.16 3× 20 ASAR Problem Instance. 182

B.17 4× 6 ASAR Problem Instance. 182

B.18 4× 7 ASAR Problem Instance. 183

B.19 4× 8 ASAR Problem Instance. 183

B.20 4× 9 ASAR Problem Instance. 183

B.21 4× 10 ASAR Problem Instance. 184

B.22 4× 11 ASAR Problem Instance. 184

B.23 4× 12 ASAR Problem Instance. 184

B.24 4× 13 ASAR Problem Instance. 185

B.25 4× 14 ASAR Problem Instance. 185

B.26 4× 15 ASAR Problem Instance. 186

B.27 4× 20 ASAR Problem Instance. 186

B.28 5× 6 ASAR Problem Instance. 187

B.29 5× 7 ASAR Problem Instance. 187

B.30 5× 8 ASAR Problem Instance. 187

B.31 5× 9 ASAR Problem Instance. 188

B.32 5× 10 ASAR Problem Instance. 188

B.33 5× 11 ASAR Problem Instance. 188

B.34 5× 12 ASAR Problem Instance. 189

B.35 5× 13 ASAR Problem Instance. 189

B.36 5× 14 ASAR Problem Instance. 190

B.37 5× 15 ASAR Problem Instance. 190

B.38 5× 20 ASAR Problem Instance. 191

B.39 6× 6 ASAR Problem Instance. 191

B.40 6× 10 ASAR Problem Instance. 192

xv

Table Page

B.41 6× 15 ASAR Problem Instance. 192

B.42 6× 20 ASAR Problem Instance. 193

B.43 7× 6 ASAR Problem Instance. 193

B.44 7× 10 ASAR Problem Instance. 194

B.45 7× 15 ASAR Problem Instance. 194

B.46 7× 20 ASAR Problem Instance. 195

B.47 8× 6 ASAR Problem Instance. 195

B.48 8× 10 ASAR Problem Instance. 196

B.49 8× 15 ASAR Problem Instance. 196

B.50 8× 20 ASAR Problem Instance. 197

xvi

List of Algorithms
Algorithm Page

1 Breadth-First Search . 46

2 Depth-First Search . 48

3 A* . 51

4 Beam Search . 54

5 Value-based Beam Search . 55

6 Serial Auction . 57

7 Concurrent Auction . 58

8 ACO Graph Building Method 61

9 WoLF Ant Algorithm . 62

10 Reinforcement Learning Algorithm 65

11 Random Solution Method . 68

12 Random Search . 68

13 Smart Random Search . 69

14 Task Sequencing Algorithm . 71

15 Genetic Algorithm . 73

16 Genetic Algorithm Crossover Method 74

17 Task Sequence Parent-Child Swap Method 76

18 Genetic Algorithm Mutation Method 77

19 Genetic Algorithm Repair Method 78

20 PSO Algorithm . 80

21 Distributed Scheduling Process 97

xvii

List of Symbols
Symbol Page

M set of multi-capable agents/machines 22

Y set of multi-agent tasks/jobs 22

D set of problem domain operations 22

Cm agent’s ability set . 22

Ry task requirement set . 22

Bx ability binding set . 22

Hx ability inhibitor set . 22

Py task prerequisite set . 22

Cy task coalition . 22

vx ability value function . 22

vy task value function . 22

fC coalition combination function 22

u assignment utility function . 22

fA assignment combination function 22

S CMTS solution . 22

U(S) solution utility value . 22

FU assignment utility combination function 22

E[U(S)] expected solution utility value 22

LUB lower upper bound on CMTS problem size 30

χ CMTS problem constraint metric 32

τ ACO pheromone . 63

η ACO heuristic . 63

V (t) RL value function . 64

π RL policy . 64

εm expertness metric . 66

xviii

Symbol Page

ω WSS weight . 66

ρ influence parameter . 66

PS finite set of domain states for a POMDP 84

PA finite set of domain actions for a POMDP 84

T probabilistic state transition function for a POMDP 84

Ω finite set of observations in a POMDP 84

O probability of an observation in a POMDP 84

bt(st) belief probability distribution for a POMDP 85

δM agent decomposition bias . 93

δY task decomposition bias . 93

xix

List of Abbreviations
Abbreviation Page

MRTA multi-robot task allocation 8

SPP set partitioning problem 10

SCP set covering problem . 10

PSP project scheduling problem 11

RCPSP resource-constrained project scheduling problem 11

POMDP partially-observable Markov decision problem 12

DCSP distributed constraint satisfaction problem 12

CSP constraint satisfaction problem 12

DCOP distributed constraint optimization problem 13

ACO-QAP ACO for the quadratic assignment problem 17

BLE Broadcast for Local Eligibility 19

CMTS constrained multiagent task scheduling 21

DAG directed acyclic graph . 25

OAP optimal assignment problem 35

FSP flow shop scheduling problem 36

JSP job shop scheduling problem 38

MTSP multiple traveling salesman problem 38

VRP vehicle routing problem 38

CMOMMT cooperative multi-robot observation/multiple moving targets 39

SAR search and recovery . 40

ASAR autonomous search and recover 40

BFS breadth-first search . 45

DFS depth-first search . 48

ACO ant colony optimization 60

RL reinforcement learning . 64

xx

Abbreviation Page

WSS weighted strategy sharing 66

WoLF Win or Learn Fast . 67

PDWoLF policy-dynamics WoLF . 67

GA genetic algorithm . 72

PSO particle swarm optimization 79

ILP integer linear programming 83

GP genetic programming . 83

SA simulated annealing . 83

TS tabu search . 83

xxi

A Unified Framework For Solving

Multiagent Task Assignment Problems

I. Introduction to Multiagent Task Assignment

The task assignment problem belongs to the general class of satisfiability problems

[89]. Essentially, one pairs every task in a job to a worker capable of performing

that task. These types of problems have been the focus of active research for several

decades, dating back as early as the 1950s [73]. Researchers have since studied dozens

of aspects of the task assignment problem [22,31,42] and provided numerous ways to

solve it [28, 74, 81, 105, 107]. With the growing size of task assignment problems and

the new complexities introduced over the years, multiagent task assignment problems

have become an important focus of task assignment research [45, 120]. This research

consolidates describing and solving the task assignment problem into a unified frame-

work approach.

However, the problem descriptors of the majority of published work do not

adequately represent realistic modern problems. Taxonomies of the task assignment

problem [31,44] which define key aspects of the general problem domain show that cur-

rent descriptors generally work within key subsets of task assignment taxonomies, but

few encompass every aspect of the problem domain. Particularly, modern problems

support notions of multi-capable agents concurrently performing groups of tasks, each

task possibly requiring multiple agents (perhaps in great numbers). Many problem

descriptors only provide for simpler problem domains with one-to-many, many-to-one

or one-to-one relationships between agents and tasks.

Even fewer problem descriptors involve relational constraints or stochastic en-

vironments. Relational constraints restrict how agents are assigned to tasks or the

order that tasks are performed. For example, it seems crucial that the frame of a

vehicle is assembled before the interior is installed (task prerequisites), and that the

1

frame assembler is not working on the same vehicle at the same time as the interior

installer (agent inhibition). Of course, in a stochastic environment, the existence or

some quality of an agent or task could be unknown during the assignment process.

But several solutions are available to solve specific subsets of the multiagent

task assignment problem as defined by the many known problem descriptors. Most

algorithms employ standard approaches [89] to solving satisfiability problems, such as

solutions for the set covering or set partitioning problem [57, 107]. Some algorithms

use novel approaches to tree-based searches [103,105], iterative solution construction

[30, 86, 112] or evolutionary approaches [6, 33, 61]. Yet others use economic [13, 46,

121] or social-behavioral based rules [36,96] to develop solutions, such as auctions or

impatience.

These algorithmic approaches are generally sensitive to the structure of the

specific problem it is designed to solve and, if the algorithm is unmodified, fail when

the problem structure changes. This unfortunately leads to the development of a

variety of algorithms that solve similar problems but require substantive changes

since they look at different aspects of the problem. In general, there is a need [45,92]

for a comprehensive algorithmic approach to solve the overarching multiagent task

assignment problem.

1.1 A Unifying Approach

The central idea behind defining a framework is a supporting structure around

which something can be built [19, 88, 100]. A unified framework combines the per-

spective ideas from several related frameworks in a way such that systems developed

from one perspective remain consistent in the unified framework. The popularity of

unified frameworks is prevalent across several disciplines but is especially present in

multiagent research [3, 48, 82]. In many cases, a unified framework combined defini-

tions that identify by multiplicity [44], represent a single foundational structure for

developing various offspring algorithms [98,108,126], or define a set of core algorithms

that can be combined to treat complex problems [25,65].

2

This research proposes a unified framework to comprehensively define and solve

the broad number of multiagent task assignment problems. This includes a unified

problem descriptor capable of describing every taxonomic description found in [31,

44] based on the number of agents and tasks in a problem with different types of

relational constraints and dynamic environment factors. Additionally, algorithmic

solutions for problems using the unified descriptor are provided to generate optimal

and approximate solutions while handling wide variations in problem domains without

modification.

First, a problem descriptor is developed based on ideas central to multiagent

task allocation [44], scheduling [83], distributed constraint satisfaction [125] and coali-

tion formation [105]. Research in task allocation provides a solid basis for representing

problems with everything from one-to-one to many-to-many agent-to-task relation-

ships. However, ideas from project scheduling and constraint satisfaction are needed

in order to properly represent relational complexities in the problem domain, such

as task ordering, agent inhibition, and restricting solutions to acceptable measurable

values. Combined, these ideas form the basis of a new problem class, the constrained

multiagent task scheduling (CMTS) problem. Ideas from methods used to solve task

allocation, project scheduling, and constraint satisfaction are incorporated into the

problem descriptor with concepts from coalition formation and behavior-based robots.

The expressive power of the unifying CMTS problem descriptor is demonstrated

by using identical notation to describe several classical and modern problems com-

monly found in single- and multi-agent task assignment problems. The re-expressed

problems include the optimal assignment problem [73], flow and job shop [7, 32]

scheduling, the multiple traveling salesman problem [90, 116], the vehicle routing

problem [116], and cooperative multi-robot observation of multiple moving targets

(CMOMMT) [97]. Since each of these describes a rather different type of problem,

having a problem descriptor capable of single-handedly representing all of them pro-

vides grounds to claim significant multiagent problem domain unification.

3

Additionally, this research presents a select suite of standard algorithms that are

modified to solve CMTS-described problems. The selected group shows the varying

effectiveness of different algorithmic approaches to solving the CMTS problem. First

are the direct approaches to generating a solution without regard for solution quality,

the random search and task sequencer. Then follow the constructive algorithms, state-

space searches, that rely on solution quality to build solutions, often by employing

heuristics. These include two types of upgraded auctioning algorithms, breadth-first

and depth-first search, A*, two types of beam search, ant colony optimization, and

reinforcement learning. Finally, two evolutionary algorithms, the genetic algorithm

and particle swarm optimization, show how to apply solution-space searches to the

problem.

The framework also contains a distributed approach to solving CMTS problems

to show how to improve efficiency. Improved efficiency is vital to scaling the standard

algorithms to larger problem domain instances. The distributed process first involves

decomposing problems into smaller “chunks” which are independently solved. The

methods used by the framework offer four ways to decompose a problem: by each

task or agent individually, by general classes of domain activities (where agents are

mapped to tasks via a set of domain operations), or by dividing the agents and

tasks into similarly sized subproblems. After each decomposed problem is solved, a

recomposition combines the subsolutions into a complete solution for the decomposed

problem.

1.2 Contribution

Ultimately, this research contributes a unified framework which 1) models a wide

range of problems through the CMTS problem descriptor and 2) presents a core suite

of distributable algorithmic techniques. The framework is forward-looking, allowing

current and future task assignment approaches to utilize, by agglomeration, various

novel, independently-developed techniques that contribute to improving some aspect

of the defining or solving of the multiagent task assignment problem. The framework

4

presented here incorporates several fundamental concepts: task allocation, project

scheduling, relational constraints, and coalition formation. It provides a means to

include metrics from dynamic coalition formation, behavior-based characteristics and

partially-observable environment constraints directly into the problem domain and

algorithmic approaches. Ideally, researchers examining any specific portion of the

general problem domain can plug their ideas into the framework and test it with a

variety of CMTS-ready problem definitions and algorithms.

Also contributed is the first CMTS class of problems, autonomous search and

recovery (ASAR), for solving the problem of streamlining cooperative robotic search

and rescue/recovery. This problem is applicable to a wide range of operations, such as

military or civilian search and rescue, hostage crisis action, and mobile target tracking.

The solutions generated by the framework provide a systematic and flexible approach

for allowing robots to autonomously find, track, and deliver items of interest, which

can remove people from harm’s way and potentially save lives.

1.3 Outline

This dissertation is organized as follows. Chapter II presents a literature review

of concepts central to the unified approach to representing and solving multiagent task

assignment problems, specifically detailing the different definitions that are combined

to form the CMTS problem descriptor. A brief summary of some of the different

methodologies used to solve various aspects of the definitions are also highlighted.

Chapters III, IV and V present the unified model for representing and solving

multiagent task assignment problems. Chapter III fully develops the CMTS problem

descriptor by combining the definitions from Section 2.1 into a single representation.

Section 3.2 focuses on solution representations and methods for validating a solution.

Section 3.3 provides an analysis of the solution space involved in CMTS problems,

including various measurements. Section 3.4 completes the problem domain mod-

eling by representing a number of classical and modern multiagent task assignment

problems in CMTS form, showing the descriptive range expected of a unified modeler.

5

The chapter concludes with the definition of a problem class designed for autonomous

search and rescue.

Methods presented in Chapter IV solve the CMTS-represented problems, in-

cluding algorithmic solutions by direct search, informed solution construction, and

solution-space searching. Section 4.8 briefly discusses additional, similar methods

that can be modified to solve the CMTS problem. Section 4.9 presents a method to

incorporate uncertain information in a solution process.

Chapter V presents methods for solving a multiagent task assignment problem

using a distributed system. Based on two types of decomposition strategies described

in Section 5.1, Section 5.2 introduces four ways to decompose a problem based on

problem domain elements and characteristics of the distributed system. This is fol-

lowed by a discussion on how to recompose a complete solution from a distributed

system. These methods are employed in Section 5.4 which presents the standard dis-

tributed approach and a new meta-heuristic for online learning while developing a

solution among a distributed system. The chapter concludes with the development of

a distributed algorithm designed to generate optimal solutions.

Chapter VI details three experiments applying many of the revised algorithms

from Chapter IV. Sections 6.1 and 6.2 demonstrate the effectiveness and efficiency

of various task assignment methods for simple domain problems. Section 6.3 applies

CMTS-ready algorithms to the ASAR problem detailed in Section 3.4.5, showing

the general performance of algorithms in serial experiments in Section 6.3.3 and in

distributed experiments in Section 6.3.4. The last section details some additional

behavioral observations discovered during experimentation.

Finally, Chapter VII provides conclusive results about the unified multiagent

task assignment model. Section 7.2 outlines additional directions for continuing this

research in future projects.

6

II. Current Research in Task Assignment

This research primarily contributes to the intersection of multiagent research and

task assignment by incorporating ideas from outside these two tracks of interest with

modern approaches to solving multiagent task assignment problems. Specifically, the

most relevant and fundamental ideas of describing and solving task allocation, task

scheduling, and constraint satisfaction are summarized in order to better understand

the components of the unified framework. Then, to gain the multiagent perspective,

ideas behind the foremost multi-robot approaches and dynamic coalition formation

are presented. The incorporation of each of these ideas into a single unified approach

to describe and solve multiagent task assignment problems are respectively addressed

in Chapters III and IV.

2.1 Defining Features of the Task Assignment Problem

The problem descriptor component of the unified framework involves combin-

ing elements from three distinct areas of research: task allocation, scheduling, and

constraint satisfaction. However, the framework extends to support additional multi-

agent concepts such as coalition formation and robot behaviors. This section provides

a brief summary of the different techniques in current literature on multiagent task al-

location, resource constrained project scheduling, distributed constraint satisfaction,

and dynamic coalition formation.

2.1.1 Multiagent Task Allocation. The task allocation problem fits within

the class of NP-hard satisfiability problems [89], which includes problems such as job

shop scheduling [32]. The deterministic multiagent task allocation problem is formally

defined as a set of machines M , a set of tasks Y , each having a corresponding weight

wy, and a real-valued utility value uxy ≥ 0. The solution takes the general form

S = {(x ∈ M, y ∈ Y)} where (x, y) implies that agent x is assigned to task y. The

7

(a) ST-SR Class (b) ST-MR Class

(c) MT-SR Class (d) MT-MR Class

Figure 2.1: MRTA Class Examples.

objective is to construct a solution S that optimizes the utility value U , where

U(S) =
∑

(i,j)∈S

uijwj. (2.1)

Optimizing the utility value depends on the problem domain. For example, in prob-

lems that involve cost functions, the utility is often maximized in terms of profit−cost

or minimized in terms of cost.

Gerkey develops a multi-robot task allocation (MRTA) taxonomy [42, 45] to

analyze how multi-robot frameworks apply to the multiagent task allocation problem.

The taxonomy accurately describes a fairly comprehensive set of multi-robot task

allocation approaches based on three attributes commonly seen in multiagent task

allocation problems. These attributes form axes in the taxonomy to produce eight

different classes of problems.

The first attribute is the number of tasks a robot can concurrently perform. The

taxonomy divides this into ST for single-task robots and MT for multi-task robots.

8

Table 2.1: MRTA Taxonomy [42,45].

Class Equivalent Problem
ST-SR-IA Optimal Assignment Problem
ST-SR-TE Scheduling Problem
ST-MR-IA Set Partitioning Problem or Coalition Forming
ST-MR-TE Dynamic Coalition Forming
MT-SR-IA ST-MR-IA
MT-SR-TE ST-MR-TEA
MT-MR-IA Set Covering Problem
MT-MR-TE Scheduling multi-processor tasks on multi-purpose machines

The distinction is that single task robots perform only one task at a time whereas

multi-task robots can concurrently perform more than one. If any robot in a group

is a multi-task robot, then the group as a whole falls into the MT class of problems.

The second attribute similarly groups by the number of robots required to per-

form a task. This class is divided into SR for single-robot tasks and MR for multi-robot

tasks. Again, if any task in a set is a multi-robot task, then the set belongs in the

MR class of problems.

The third attribute classifies how much of the allocation can be performed at any

given moment. This class is divided into IA for instantaneous assignment and TE1 for

time-extended assignment. IA implies that no planning for future allocations occurs

given the information (robots, tasks and environment) available at some time. For

example, this happens when the total number of tasks may be unknown. TE, on the

other hand, permits future modeling of allocations since there is enough information

to do so.

Figure 2.1 illustrates agent-to-task mappings for the ST-SR, ST-MR, MT-SR

and MT-MR classes.

Each of the taxonomy categories strongly correlates to classical assignment class

problems, summarized in Table 2.1. The instantaneous assignment nature of the ST-

SR problem represents the well-studied optimal assignment problem (OAP) for which

1The designation is denoted TA in [45].

9

there are numerous problem instances across a wide variety of research subjects, from

the original stable marriage problem [38] to modern economic problems. The time-

extended version of this class is regarded as a general scheduling problem since tasks

are performed in some order. There is also a wealth of scheduling problems spanning

several subjects.

Single-task robots in a multi-robot task problem, or conversely, multi-task robots

in a single task problem, along the instantaneous taxonomy axis represent the set

partitioning problem (SPP), the division of a set into a set of non-intersecting subsets.

The ST-MR version also applies to coalition formation, further discussed in Section

2.1.4. Along the time-extended axis, the classifications represent dynamic coalition

formation, which reforms coalitions from existing coalitions to meet a goal. Several

problem domain sources exist for coalition-based problems, for example, cooperative

multi-robot observation of multiple moving targets (CMOMMT) [97], the multiple

traveling salesman problem (MTSP), or the vehicle routing problem (VRP) [116].

Multi-task robots in instantaneous assignment multi-robot task problems rep-

resent the set covering problem (SCP) where, similar to SPP, a set is divided into a

set of subsets. However, the subsets are not necessarily unique. The TE axis forms

the basis for most real world problems: multi-capable entities performing tasks re-

quiring multiple skill sets using a schedule to order tasks. In terms of a problem, the

best description is the scheduling of multiprocessor tasks on multi-purpose machines.

Sources of domain problems for MT-MR class problems generally stem from appro-

priately extending ST-MR and MT-SR problems, such as cooperative box-pushing or

CMOMMT.

Although the taxonomy collectively describes a significantly large group of mul-

tiagent task assignment problems, each class is equated to a specific type of problem

class which is generally different from other classes. This carries a drawback of requir-

ing multiple algorithms just to solve MRTA problems. Furthermore, the taxonomy

does not address stochastic environments and estimations for the expected value of

10

the utility of an allocation solution. Unifying the problem descriptions of the classes

in MRTA closes the gap on producing a framework that describes any instance of a

multiagent task assignment problem.

2.1.2 Resource Constrained Project Scheduling. The project scheduling

problem (PSP) involves assigning resources to a number of tasks or jobs in an ordered

manner, often based on the allocation of jobs to resources at, or during, explicit

times. One type of scheduling problem related to multiagent task assignment is

resource-constrained project scheduling problem (RCPSP) [67, 77]. The RCPSP has

a set of tasks Y with precedence relationships and a set of resources M with resource

capacities. Tasks are assigned to resources based on meeting resource requirements

and a starting time. The solution takes the form of a vector of start times for each of

the tasks with the objective of minimizing the total time, or makespan, of completing

the set of tasks.

The RCPSP presents definitions that constrain the allocation of tasks to re-

sources (agents) which are not a feature available in the MRTA taxonomy. Since

the single-task agent, single-agent task (ST-SR) taxonomy class generally describes

scheduling when using time-extended features, merging the contraint features of

RCPSP with ST-SR-TE definitions produces one definition for expressing value-based

constraints in multi-robot task allocation problems.

A majority of the problem domains studied for PSPs are found in operations

research. The operations research community has established several repositories of

different kinds of problems, for instance, the PSPLIB [68, 69] which contains many

PSPs. This library provides domain problem instances for many types of schedul-

ing problems, including RCPSP, and typically includes known solutions useful for

benchmarking [51, 66, 102] various approaches. Additionally, [114] contains several

benchmark instances for basic scheduling and RCPSP problems.

Additionally, a number of research experiments examine the effects of uncer-

tainty in scheduling projects. The use of partially-observable Markov decision prob-

11

lems (POMDPs) is applied to the RCPSP in [117, 118] with respect to general plan-

ning [76]. Essentially, the problems focus on either a probabilistic assignment of a

task to a resource, or have a known assignment with only an estimated completion

time, which potentially extends the total makespan of a solution.

The scheduling problem covers a significant portion of the multiagent task

assignment problem domain, to include multiagent assignments with multitasking

agents, scheduling uncertainty, and task ordering. However, constraints between re-

sources are generally not addressed. To fill this shortfall, another type of research

must be incorporated which addresses how resources interact, such as constraint sat-

isfaction.

2.1.3 Distributed Constraint Satisfaction. The distributed constraint satis-

faction problem (DCSP) [125] is a satisfiability problem where each entity of a group

has boolean predicates indicating whether that member is present in a group solution

based on a value associated to the entity. Essentially, the constraint satisfaction prob-

lem (CSP) involves careful selection of items in a group based on their value. The

distributed form of the constraint satisfaction problem extends the CSP such that

each group entity is associated to more than one value. The entity is then subject to

meeting all of the constraints of each value associated to it.

The key feature taken from constraint satisfaction, in regard to this multiagent

task assignment approach, is the representation of relational constraints. In the mul-

tiagent task assignment problem, there are a set of tasks to be performed and a set

of agents that can perform such tasks. The CSP applies by introducing selection

predicates for these sets that limit which tasks are concurrently performed and which

agents collectively perform a task. DCSP addresses the selection of which components

of an agent uses to perform a task when multiple tasks are concurrently assigned.

A variety of techniques have been applied in DCSP-based experiments involving

multiagent problems. One features a synthesis of the DCSP and the POMDP [95],

which introduces uncertainty into a constraint problem. Another approach supersedes

12

the DCSP by presenting the distributed constraint optimization problem (DCOP) [93]

which adds iterative constraint optimization to the values of the DSCP problem while

satisfying the relational constraint properties.

Constraint satisfaction problems abound in various areas of research. Classical

problems include graph coloring and the eight-queens problem. Modern problems in-

volve resource conflict mediation and efficiently manufacturing componentized prod-

ucts. Like scheduling problems, there are repositories of CSP problems, although

some publications only offer summaries of research performed and not actual problem

instance data. However, the generation of CSP data is defined in [123, 124] with an

online repository at [78].

The chief drawback of the DCSP is also its greatest benefit, namely the associa-

tion of relational constraints between entities of the same group. The central issue is

that constructing a distributed solution involves decomposing the problem, but it is

impossible to guarantee valid solutions if the subproblems do not involve all aspects

of the relations being constrained. This tends to force DCSP solvers to have a more

centralized solution approach [93]. Furthermore, DCSP solutions assign agents to

tasks without regard for task order. Multiagent tasks are presumed to be solved in

one step. Thus, the solution methods do not generally account for the sequencing of

tasks, but do generate relationally constrained coalitions for tasks.

2.1.4 Dynamic Coalition Formation. Coalition formation [105, 107] is the

cooperative effort of a collective of agents to perform an activity together. It is a

highly visible and very important part of modern approaches to solving multiagent

task assignment problems with a substantial surge of research in recent years. Es-

sentially, a coalition is a subset of agents assigned to concurrently perform a task.

The process of selecting the proper set of agents lies at the heart of coalition forma-

tion. Dynamic coalition formation [63] extends the definition of coalition formation

by allowing changes in coalition structure during the duration of a problem.

13

Coalition formation and its dynamic extension are both fundamental axes in

the MRTA taxonomy. With the prevalence of multiagent approaches to classic and

current problem domains, coalition formation, in one form or another, has a strong

influence the development of algorithms and heuristics for solving the task assignment

problem. Any problem that is expressible as a time-extended set partitioning problem

works as a problem for dynamic coalition formation. Unfortunately, there are few,

if any, well-established repositories that provide source problems for testing and/or

benchmarking of coalition-based algorithms.

However, there is a wealth of literature that demonstrate the use of coalition for-

mation in several areas of research. For instance, forming coalitions for n-player games

is examined in [4,28], and for marketplace economics in [80]. Constraints are imposed

on how coalitions are formed, in the spirit of satisfiability, in [58]. Additionally, the

use of coalitions in uncertain environments with Bayesian models is presented in [20],

with reduced information/limited sensing in [71,91] and using POMDPs in [99].

One interesting aspect of dynamic coalition formation research is that no recent

literature examines the notion that an agent can belong to multiple coalitions simul-

taneously. This is a basic requirement for an agent to be able to perform multiple

tasks concurrently, where each overlapping task is performed by a unique coalition.

2.2 Solution Techniques For Multiagent Task Assignment

There are many published solution techniques covering a wide range of multia-

gent assignment domain problems. The predominant algorithms found in current re-

search implement tree-based searches, particularly DFS, reinforcement learning (RL),

coalition formation and evolutionary algorithms. However, novel approaches that ap-

ply to multiagent problems come from a variety of fields outside of the mainstream

multiagent research community. This section highlights some of the recent solution

techniques from the research areas listed in Section 2.1 used to solve multiagent task

assignment problems.

14

2.2.1 Direct Search. Several researchers generate solutions to the multiagent

task assignment problem by directly generating a solution, usually through a tree-

based search technique such as best-first search or by set constructing methods such

as set partitioning. Classically, the OAP, which represents the most basic of task

allocation problems, has been solvable by the Hungarian method [73] since 1955 with

a remarkable number of approaches developed since then.

Approaches to the DCOP problem are shown in [93] where a best-first search is

performed with intelligent backtracking mechanisms on the graph coloring problem.

In [95], the DCOP solution method is integrated with a POMDP representation to

solve the distributed sensor net problem. A branch-and-bound technique is used in [91]

to solve multiagent cooperative transport in an unknown, partially observable static

environment. A theoretical model for the DCSP is presented in [92] using the asyn-

chronous weak-commitment (AWC) [129] search method for solving the distributed

sensor network problem.

However, many algorithms choose a variation of set partitioning to develop solu-

tions to the problem. Greedy set covering and set partitioning methods are applied to

the multiagent problem in [107] using the RETSINA robot system [113] for the block

pushing problem. Likewise, a coalition structure generation algorithm for character-

istic function games (CFG) [27,28] provides anytime CFG algorithms using selection

methods similar to set partitioning approaches to establish error bounds from optimal

solutions for single-task coalitions.

Other algorithms directly solve the problem using alternate selection methods.

Complexity bounds for task allocation with greedy selection and n-dimensional knap-

sack algorithms are used in [75] for general game-theoretic payoff problems. A direct

hill-climbing approach, Asynchronous Partial Overlay [85] solves the DCSP as applied

to the multi-object tracking problem. A series of greedy set-packing algorithms are

presented in [81]. Hill climbing and k-means clustering are also applied to cooperative

target observation in [84].

15

Various scheduling algorithms provide direct methods for solving the multiagent

problem. Seminal papers in this area include [83], which provides several methods to

solve the basic scheduling problem. The schedule generation scheme (SGS) [66, 77]

solves RCPSP (see Section 2.1.2), and can do so optimally. Likewise, several constraint

satisfaction approaches are described in [74].

Finally, a series of theoretic approaches are outlined in [105] to generate coalition

stability methods for CFGs as applied to the distributed vehicle routing problem.

Many of the approaches in this section are derived from these theoretical outlines.

2.2.2 Policy-based Learning. Substantial research in the machine learning

community has produced a variety of policy-based approaches to multiagent task

assignment, many based on RL [112]. A summary of current RL methods is presented

in [126] for multiagent game theory. The authors previously show their work using

seven variations of Q-learning [119] with Markov decision processes (MDPs) in the

robot soccer [111] problem domain. More foundational work is described in [22] where

Q-learning models are applied to multiagent games and in [5] which applies the models

to the multiagent, multi-task pursuit domain to maximize reward payout for capturing

a group of prey. More recently, RL is applied to the multi-robot transportation

problem using task allocation vacancy chains (TAVCs) [115], a biologically-based

resource distribution model where vacated worker positions are hierarchically filled,

to predict group performance in a greedy producer-consumer service model. In [17],

RL is applied to group utility functions to solve foraging tasks seen in computer

games.

Other types of policy-based learning algorithms incorporate Bayesian models

and MDPs to guide the selection of actions or coalition formation for the multiagent

problem. A point-based value iteration approach in [99] uses a policy-based approach

with a POMDP for robots that play tag. A Bayesian model, the Bayesian core, is

introduced in [20] to reduce uncertainty in the value of a coalition of agents in prob-

abilistic assignments. Some of the direct solution generation approaches in [95] are

16

translated into policy-based tree graphs that are used to solve POMDP problems.

Otherwise, policy-driven planning approaches using MDPs in an uncertain environ-

ment are outlined in [117] for agents solving mazes with limited sensing ability.

2.2.3 Evolutionary. A variety of evolutionary algorithms are applied to

the multiagent task assignment problem, particularly the genetic algorithm (GA)

[6] and more recently ant colony optimization (ACO) [30]. The GA is often seen

solving scheduling problems with a general treatment of such problems and solutions

in [7]. Additional approaches, namely tabu search and hill climbing, are found in

[32]. Constrained job shop scheduling with tabu search is also discussed in [54].

Tangentially related is a processor scheduling model in [109] that uses an acyclic

directed graph (DAG) with genetic operations to evaluate the involvement-contention

model for processors.

A variation of the ACO meta-heuristic is tailored to solve the quadratic as-

signment problem (ACO-QAP) [86] with variations supporting concepts such as con-

vergence speedup, multi-objective solutions, biasing the pheromones, and dynamic

networks. ACO is also used to solve the resource constrained scheduling problem

RCPSP in [87] for several problem instances from the PSPLIB [68, 69] repository.

The ant-inspired approach is also used in cooperative block (in this case ball) pushing

in [12] with variable pheromone placement techniques for guiding agents to tasks.

Another emerging approach for solving the problem is particle swarm optimiza-

tion (PSO) [61]. PSO is shown to be a viable approach for solving task assignment

problems in [104]. Development of a hybrid-PSO using concepts from gentic algo-

rithms is described in [127, 128]. The PSO complement to ACO-QAP is defined

in [50] showing the ability of a swarm to tackle quadratic assignment problems from

the QAP-LIB [18]. The approach is applied to UAV task modeling in [59]. Limited

robot communications are examined in [101] using a PSO with genetic operators.

17

2.2.4 Behavioral. The most recently emerged field for solving multiagent

task assignment problems is behavior-based, interactive approaches, which is argued

as more significant than traditional algorithmic approaches [120]. Several behavioral

models based on emotions are demonstrated by robot groups in interactive environ-

ments or their own social groups. One of the original robotic implementations is the

fault-tolerant ALLIANCE [96] implementation which uses impatience, acquiescence

and motivation behaviors to select tasks in a hazardous waste clean-up scenario. The

B-CMOMMT behavioral model [70] is applied to problems where agents request help

to perform surveillance in the CMOMMT problem.

Affection models [36] are used to control robot actions in two different problem

groups: using shame [37] for autonomous robots navigating a minefield, and a waiter-

refiller service environment [94] where robots interactively serve finger food at a public

gathering. Three additional types of behavior mechanisms are presented in [49] to

develop controllers for multi-robot collection tasks.

Other types of behavior-based techniques come from different disciplines alto-

gether. Coalition stability metrics are derived from leaderless distributed flocking

in [52] where agents can fail in the environment. Brownian motion and viscous fluid

flow equations form the basis for micro-robot swarms to aggregate at target locations

to perform specific tasks in [40]. Finally, a phenomenological model based on a sum-

mary of local observations in [79] determines dynamic task selections for agents in a

multi-robot, multi-foraging problem.

2.2.5 Economic. Another popular method of solving the multiagent task

assignment problem is through economic approaches, particularly auctioning (or ne-

gotiation). These solutions are inspired by economic processes that drive profit max-

imization business rules. Multiple algorithms in [80] center on coalition formation

with combinatorial auction methods, or combinatorial coalition formation (CCF), to

measure the effectiveness of buyer subcoalitions for an item as compared to the full

coalition in an electronic marketplace. The request for proposal (RFP) problem in-

18

troduced in [71] establishes coalition formation heuristics that maximize payout for

agent cooperatively performing subtasks with limited information. In [130], decom-

posed tasks are auctioned to available agents to perform area reconnaissance.

A number of economic auction methods are implemented for robot groups. The

M+ [13, 14] implementation has distributed robots bidding for tasks in a hospital

environment based on cooperative and opportunistic behavior values. The Broad-

cast for Local Eligibility (BLE) implementation [121] uses auction mechanisms for

variations of the CMOMMT [97] problem using an eligibility score to request task

assignments. Another approach along the lines of an economic system is the publish-

subscribe system [46]. It is also implemented by for a robotic system, MURDOCH [43],

where robots cooperatively build task allocation solutions using behavior-based auc-

tion methods.

2.3 Summary

Various elements of the multiagent task assignment problem have a rich history

and are still active areas of research. These resources provide an initial starting point

for developing a unified framework needed to represent and solve the broad range

of domain problems associated with task assignment. Concepts embed in task allo-

cation, project scheduling, constraint satisfaction, and coalition formation are key to

developing a unified representation of multiagent task assignment problems. The task

allocation formulation provides the basis for task assignment representation. Schedul-

ing allows for representation of task ordering and problem uncertainty. Constraint

satisfaction provides relational constraints among the tasks and/or agents. Then,

coalition formation provides ways to quantify the assignment of a group of agents to

a task.

Several novel approaches apply to directly solving different forms of the task

assignment problem, but use representations that do not necessarily single-handedly

apply to all types of problem domains. Fortunately, several algorithms outside of

the mainstream multiagent research area provide a template for solving portions of

19

the multiagent task assignment problem. The majority of the applicable algorithms

take a direct approach to solving the problem or apply techniques from reinforcement

learning or evolutionary algorithms. Robotic-inspired implementations often generate

solutions using behavior and emotion based value functions and auctioning methods.

There has also been a number of successful distributed algorithms suggesting that a

unified solver should also be distributable. Furthermore, studies on these problem

classes have introduced and developed refined methods for estimating error bounds,

incorporating constraints, measuring group dynamics, and incorporating uncertainty.

However, in most cases, this valuable research was applied with specialized al-

gorithms that are not suited to solve the entire space of problems without some modi-

fication. A vast majority of the robotic experiments conducted using these algorithms

used relatively simple problems, and often very few robot agents.

20

III. Modeling Multiagent Task Assignment Problems

Despite the volume of contributions available for solving task assignment problems,

what remains lacking is a unifying representation of multiagent task assignment prob-

lems. Many multiagent scheduling and task allocation publications present a defini-

tion, but the definitions generally cover only one or two of several categories identified

by various taxonomies available [31,35,44,75]. Furthermore, the taxonomies examine

the different components of the problem but list algorithms that do not generally

solve the entire span of problem types discussed. The taxonomies consistently iden-

tify assignments that require one or more agents to accomplish a task. Another key

assignment aspect includes the number of tasks one agent can perform, which when

combined with the number of agents allows for representing a range of one-to-one to

many-on-many task assignment strategies.

The taxonomies also address other assignment problem considerations such as

task order, communication features, heterogeneity/composition, constraints and ob-

servability. The constrained multiagent task scheduling (CMTS) problem descriptor,

developed in this chapter, engages each of these topics with the exception of com-

munication [31, 64]. This topic is addressed by the algorithmic components of the

unified framework. Thus, this framework begins by exploiting the depth of research

in several areas with the CMTS problem descriptor as a unifying representation for

task assignment problems. This effectively allows any task scheduling or allocation

algorithm to advantageously apply existing and forthcoming technologies to various

multiagent task assignment problems.

3.1 Constrained Multiagent Task Scheduling (CMTS) Problems

The CMTS problem, formally stated in Figure 3.1, is expressed as a set of

multi-capable agents and a set of tasks, each mapped to a set of common domain

operations, with quantification functions. Every agent performs some subset of the

domain operations through independent abilities, and each task requires a subset

of domain operations for completion. Figure 3.2 illustrates an example mapping of

21

Assume a group of multi-capable agents, M , are to perform multi-agent
tasks Y . Frequently, agents and tasks are defined with a common set of
domain operations to ensure competent pairing; so, let D define a set of
domain operations. Then, define for every agent a set of abilities derived
from the domain operations, i.e., ∀m ∈ M,Cm ⊆ D to base agent m’s ability
set Cm. Similarly, define for every task a set of requirements derived from
the domain, i.e., ∀y ∈ Y,Ry ⊆ D for task y’s requirements Ry. Formulate
constraint sets Bx, Hx and Py such that the set Bx ⊂

⋃
minM

Cm has every
ability x′ ∈

⋃
Cm that is bound to an ability x, Hx ⊂

⋃
m∈M Cm identifies

every ability x′ ∈
⋃
minM

Cm that inhibits agent ability x from performing a
task, and Py ⊂ Y identifies every task that must completely precede a task y.
Note: x ∈ Bx, x /∈ Hx, Bx

⋂
Hx = ∅ and y /∈ Py.

Provided the constraints are satisfied, an assignment, (Cy, y), matches
a coalition Cy such that Cy ⊆

⋃
m∈M Cm to a task y to be performed during

at given state s. Individual agent abilities are quantified by vx(y, s); tasks
by vy(Cy, s). The assignment of a coalition Cy to any task is quantified by
a function fC over the agent ability functions, i.e., fCx∈Cy

(vx(y, s)). Thus, an
assignment is quantified by the assignment utility function u((Cy, y), s) as a
function, fA, of coalition and task associated value functions, fC(vx) and vy,
as shown in Equation 3.1.

u((Cy, y), s) = fA(fCx∈Cy
(vx(y, s)), vy(Cy, s)) (3.1)

A solution, S, is an acyclic directed graph of nodes (Cy, y) where the sequence
of assignments are determined by paths in the graph. U(S), Equation 3.2,
quantifies the utility value of a solution S as a function FU of the assign-
ment utility values u((Cy, y)). Furthermore, the expected value of a solution,
E[U(S)], is evaluated by Equation 3.3 as the combined value of U(S) and
the expected value of assigning the entire agent set to the remaining tasks
{y|y /∈ S}.

U(S) ≡ U(S, s) = FU
(Cy ,y)∈Su((Cy, y), s) (3.2)

E[U(S)] = FU
(
U(S), fA(X,y)3y/∈SE[vy(X, s)]

)
(3.3)

Figure 3.1: Formal Model for the CMTS Problem.

22

Figure 3.2: Example CMTS Problem.

agents to tasks through a set of domain operations. The solution to a CMTS problem

involves coalitions of agent abilities assigned to perform every task in multi-sequential

order.

The coalition of agent abilities forms by selecting a group from all of the abil-

ities that meet any operation required by a task. For any task requirement, one or

more abilities can perform the exact same operation, potentially from several different

agents. Each ability has two types of relational constraints that determine member-

ship in a coalition. The first constraint is inhibition. Inhibition prevents an ability

from performing any operation of a task, and is caused by the presence of another

ability in the coalition. For example, if it is not possible for an agent to push an item

and lift it at the same time, the ability to push inhibits the ability to lift, and possibly

vice-versa.

The other constraint is binding. Binding forces an ability to only perform the

same task as the ability that bound it at any given moment. This constraint is most

practical for physical problems where two abilities of a robot cannot perform spatially

separated tasks such as pushing an item in one corner of a room while lifting an object

in the center. In this case, the abilities bind each other so that they can only perform

the same task. Note for the examples given that the combination of inhibition and

binding forces a multiagent assignment to any task that requires pushing and lifting.

23

The task given to a coalition also has a relational constraint, prerequisites.

Prerequisites are tasks that must precede a given task. This constraint enforces

partial or full task ordering in the assignment sequences. For example, only solutions

that enforce moving the furniture before cleaning the floor are acceptable, so moving

is a prerequisite task to cleaning.

The value of a coalition ability or task in an assignment is quantifiable through

ability and task value functions, synonymous to weighted utility values in task allo-

cation or coalition formation. The task value function offers the value of performing

a task given a coalition at some state in the problem domain. This value function is

useful for, among many other things, defining the weighted priority of performing a

task or the probability of successful completion in a stochastic environment. Com-

plementary, the ability value function quantifies the value of an ability performing

a given task for some problem state. Examples using this concept include robotic

behaviors, coalition formation metrics, or cost functions. The value of a coalition of

abilities is simply a function combining the ability value functions of each coalition

ability, e.g., a summation or maximum value.

The value of an assignment is quantifiable based on the task value and coalition

combination functions. An assignment combination function takes the coalition value

and task value at a given state and produces a single result. One application comes

from marketing where agents (abilities) bid their costs and the task yields a profit.

The assignment combination function produces the difference to measure the value of

assigning a coalition to some task.

The domain state used for deriving assignments and assignment utility values

encapsulates domain specific information required to make the value calculations.

For instance, one of the simplest domain states is time. An agent may be able to

calculate its distance to an object if it knows how much time has elapsed, or a task

might increase its prioritization if not promptly addressed. Alternately, a partially

constructed solution containing the set of assignments already made and what needs

24

Figure 3.3: Solution Graph Representation.

to be accomplished can represent the domain state. For example, the effectiveness of

a coalition can be measured by when and which abilities are available or by the types

of tasks that have been assigned.

Ultimately, the utility value of a solution is realized by combining the assignment

values in a meaningful way. This combining function represents the quantifiable por-

tion of the objective for the problem. Example objective functions include maximizing

profit or minimizing distance. The utility combination function for these examples

might be a summation over the assignment values. Another complex approach is to

sum the maximum profit of each agent ability. Algorithms seeking to find the best

assignment solution for a problem attempt to optimize this utility value.

3.2 Solution Representation

The solution to a CMTS problem holds a multi-sequential set of assignment of

coalitions to tasks. Tasks that are serially performed are often represented as a single

sequence. However, to properly represent potentially overlapping assignments, the

solution must use a branching structure. Therefore, the clear choice for representing

a CMTS solution is a graph.

3.2.1 Directed Acyclic Graph Representation. The solutions for CMTS prob-

lems in the framework are formed as a directed acyclic graph (DAG). The nodes in

25

the graph represent assignments of an agent ability coalition to a task. The edges in

the graph, denoted edge(ai, aj) for any two assignments, represent a state transition

of agent abilities finishing one task to performing the next. A directed edge exists

between two nodes, a parent and child, where the complete performance of the task in

the parent node explicitly precedes the performance of the task in the child node. The

ancestors (anc) of an assignment a include all assignments that precede a on every

path containing a. Similarly, the descendants (des) of an assignment a are all the

assignments that appear after a on every path containing a. A path is any connected,

linear sequence of assignments in the graph.

The nodes in a solution graph have as many parent and child nodes as warranted,

provided that there are no cycles. Semantically, an outbound branch represents the

dissolution of a coalition where agents move on to different tasks. An inbound branch

shows the sources of the coalition formed to solve a task. The edges indicate the

scheduled order of performing the tasks. Two or more branches from a node means

that the assignments in the child nodes are performed in any order, including concur-

rently. An agent ability assigned to tasks that are on separate branches is potentially

multi-tasking by performing two unique tasks at the same time.

Acceptable DAG solutions can have multiple paths between two nodes, such as

a node’s parent (or any of its ancestors) directly referencing its children. Each task

appears exactly once, and agent abilities appear as needed to solve the problem. For

problems with recurring tasks, each instance of the task appears uniquely identified.

Figure 3.2 illustrates a graph representation of the components of a 3-agent, 5-

task CMTS problem showing how agent abilities and tasks map to domain operations.

A potential schedule graph solution appears in 3.3. The graph shows the pairing of a

coalition of abilities to a task, forming the assignment nodes.

3.2.2 Validating Solutions. Five tests are performed to validate the correct-

ness of a solution: coalition conflict, separated abilities, assignment cycles, prerequi-

site ordering, and unsatisfied requirements. In order to be a valid solution, each of

26

Table 3.1: CMTS Solution Constraint Checks.

Validation Formal Constraint Definition
Ability inhibition Hx

⋂
Cy = ∅

Ability binding ∀x′ ∈ Bx,∃path ((Cy, y), (Cz, z)) 3
x ∈ Cy ∧ x′ ∈ Cz ∧ y = z

Assignment cycles ∀(Cy, y), (Cz, z) ∈ anc((Cy, y),
@edge ((Cy, y), (Cz, z))

Prerequisite ordering ∀z ∈ Py,∃(Cz, z) ∈ anc ((Cy, y))
Unsatisfied requirements ∀d ∈ Ry,∃x ∈ Cy 3 x = d

the five tests must be satisfied. The first test checks that no inhibiting agent ability

is in the same coalition as a given ability. The second ensures that every bound abil-

ity is not working concurrently on a separate task which implies that it is separated

from the binding ability. Any assignment that is not in the ancestry of descendency

of the task an ability is assigned to has a potentially concurrently performed task.

The third test is an assignment cycle check. The solution must preserve an acyclic

structure so that no prerequisite assignment can become an ancestor and descendant

to a constrained assignment. Fourth, for every task, each of its prerequisites must

appear in ancestor assignments. This ensures that all prerequisite tasks are complete

before a given task is started. The final check ensures that there exists at least one

capable ability provided for every operational requirement of a task.

These checks ensure that solutions are valid and consistent. Any constructed

solution that fails any one of the tests must be considered invalid. Table 3.1 lists the

checks with descriptive and formal annotations. Note: an algorithmic approach to

repairing invalid solutions is defined in Algorithm 19.

Table 3.2: Solution Matrix Representation.

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

y1 1 1 0 1 0 0 0 0 0 0
y2 1 1 1 1 0 0 0 1 1 0
y3 0 0 1 0 0 0 0 0 0 1
y4 0 0 0 1 1 1 0 0 0 1
y5 0 0 1 0 1 0 0 0 0 0

27

3.2.3 Matrix-Equivalent Representation. Alternately, a CMTS solution

DAG is compactly represented by a two-part binary matrix. The graph represen-

tation holds two sets of facts about a solution: the allocation of agent abilities to a

task and the schedule of task execution. Then, the first part of a matrix represen-

tation, the allocation submatrix, shows coalition membership in an |X| × |Y | binary

matrix where |Y | is the number of tasks in Y , and |X| is the total number of agent

abilities in
⋃
Cm. The submatrix contains a value of one for every agent ability that

is assigned to perform the row-indexed task. The second part, the sequencing sub-

matrix, indicates task order in an |Y | × |Y | binary matrix, adjacent to the first part.

This submatrix contains a value of one where a column-indexed task is an immediate

child to the row-indexed task. All other values are zero. Note that a value of one in

a column of the sequencing submatrix indicates which row-indexed tasks are parent

tasks to the column-indexed task. The matrix form for the graph solution in Figure

3.3 appears in Table 3.2.

The matrix representation of the DAG has numerous advantages. First, the

use of structured binary values has proven more useful for manipulating the solution

structures in some of the algorithms used to solve the problem, especially the genetic

algorithm. Also, the matrix can be stored, compressed, and transmitted using very

few resources, particularly computer memory. Finally, the binary values allow for the

application of mathematical operators, e.g., AND, bit shifting, Hamming distances,

or non-overflow binary addition. The operations help visualize the solution space of

the task assignment problem as a discrete, binary field. This reveals the structure of

the solution space and supports basic solution space analysis.

3.3 Solution Space Analysis

Some mathematical analysis is proposed for the defined unified model and solu-

tion structures. Specifically, the size of the problem is defined for the homogeneous,

unconstrained problem with additional modeling for sizing the problem with hetero-

28

geneous agents under constraint. The impact of constraints on the solution space is

also analyzed.

3.3.1 Size and Complexity Models. A number of analytical expressions

characterize the CMTS problem, solutions, and solution space. Two key metrics

that are useful for comparing problems and qualifying the effectiveness of algorithmic

approaches are problem domain size and an introduced problem complexity statistic.

The simplest task assignment problem only describes domains where each agent

performs at most one task, and each task only requires any one agent. These problems

are very simple one-to-one relationships, readily solved by any form of the optimal

assignment algorithm which is an O(n3) algorithm. CMTS problems with one-to-

one relationships between m agents and y tasks are solvable in O((my)3) time. By

increasing the complexity of the problem to allow for agents performing more than

one task at a time, and equivalently, tasks requiring more than one agent, the solution

space increases exponentially due to the selection of multiple agent abilities per task

or vice-versa for a one-to-many relationship. Variations on solving this problem have

the complexity of solving the set partitioning problem, which is NP-Hard. However,

when applying scheduling methods to solve a sequence of task allocations, the solution

space size becomes exponential, making the problem NP-Complete [89].

The solution to a CMTS problem represents a series of coalition mappings to

tasks and a sequencing of tasks. First, given |X| independent abilities, there are a

maximum of 2|X| − 1 coalitions that can perform a task. This assumes that every

agent contains an ability for each domain operation, no ability is inhibited, and the

task requires every operation. Clearly, if an agent does not perform every domain

operation, then there are fewer coalitions. Each coalition is formed by selecting at least

one ability for each task requirement. The coalition may also include abilities that do

not perform the task but are still present. Specifically, let cd be the set of all agent

abilities that perform domain operation d ∈ D, i.e., cd = {x ∈
⋃
Cm|x = d,∀m ∈M}.

Then the number of possible coalitions available to perform a task y is expressed in

29

Equation 3.4 as the independent selection of a subset of abilities that perform each

required operation of a task and a selection of abilities that do not perform any

requirement of the task.

|C| = Πy∈Y

[
Πd∈Ry

(
2|cd| − 1

)
· Πd3Ry

2|cd|
]

(3.4)

|C|xj∈Hxi
= Πd∈Ry\{xi,xj}

(
2|cd| − 1

)
·

2|cxi |−2 if xi = xj = d,

2|cxi |−1 · 2|cxj |−1 otherwise

(3.5)

However, inhibition lowers the number of valid coalitions, which results in a

very complex equation. For instance, Equation 3.5 provides the precise number of

coalitions available to perform the task when an inhibition exists between just two

abilities. The true total number of coalitions is then the universal size, |C| minus all

non-duplicate sets containing inhibitor conflicts. Over |Y | tasks, the total number of

coalition sets is approximated by |C||Y |.

Task sequencing, on the other hand, is the selection of tasks that are performed

sequentially. For every task y, at most |Y | − 1 tasks can be subsequently performed.

Thus, there are 2|Y |−1 possible selections, including the case where no task is per-

formed afterwards. However, task prerequisites reduce the size of the selections to

Πy∈Y 2|Y \Py |−1. Furthermore, additional selections are eliminated based on the forma-

tion of cycles in the solution. As with counting the total number of coalitions that

are free from inhibitor conflicts, the expression for the number of cycle-free solutions

with prerequisite constraints is complex, requiring knowledge of the task sequencing

for all tasks. If Sy represents the number of valid sequences for a task, then there are

Πy∈Y 2Sy total complete task sequences for a problem solution.

Thus, the solution space has an maximum upper bound shown in Equation

3.6 for the completely unconstrained version. A tighter bound can be represented

by using the constrained counts of coalitions and task sequences where available to

calculate the lower upper bound (LUB) on the solution space size, shown in Equation

30

3.7.

UB =
[
2|X| − 1

]|Y | · [2|Y |−1
]|Y | ∼ O

(
2|Y |(|X|+|Y |)

)
(3.6)

LUB = Πy∈Y

[
Πd∈Ry

(
2|cd| − 1

)
· Πd3Ry

2|cd| · Πy∈Y 2|Y \Py |−1
]

(3.7)

The UB shows that the size of the solution space for a CMTS problem is suf-

ficiently large enough to solve problems with O(n!) solutions where there is a fixed

number of agent abilities. Without proof, the UB is much greater than the Sterling

series approximation to n!—more specifically, 2|Y |(|X|+|Y |) � |X| · (|Y |!) (parenthesis

added for clarity) for |X|, |Y | ≥ 1 provided |X| is not grossly larger than |Y |. If

the number of agent abilities grows exponentially, then space built on the defined

solution structure is quickly deficient since (|X||Y |)! grows exceptionally faster than

UB as |X| and |Y | increase. However, for unconstrained problems, the LUB is best

approximated by the UB.

Additionally, the LUB is used in computing a statistical constraint metric. The

constraint metric basically indicates how constrained a problem is by counting the

number of constraints instead of the number of coalitions of sequences that have

constraints. For coalition sets, there are exactly
∑

x∈X |Hx| unique constraints out of(|X|
2

)
= |X|(|X|−1) possible constrained relationships. Similarly, there are

∑
y∈Y |Py|

unique constraints out of
(|Y |

2

)
= |Y |(|Y | − 1) possible task sequencing assignments.

Combined, these counts provide the base problem complexity shown in Equation 3.8,

which is bound between 0 and 1.

χC =

∑
x∈X |Hx|+

∑
y∈Y |Py|

|X|(|X| − 1) + |Y |(|Y | − 1)
(3.8)

This metric captures the problem constraint, but does not take into account the

number of unconstrained tasks and agents. To derive the complete constraint statistic,

χ, the metric χC is treated as one variable in a two-variable distribution, where the

other variable counts the number of unconstrained tasks and agents. That value, χE

is represented in Equation 3.9 as the total number of entities with a constraint over

31

Figure 3.4: Solution Space Visualization on 3-Axis Coordinate System.

the total number of entities.

χE =
|{x ∈ X 3 Hx 6= ∅}|+ |{y ∈ Y 3 Py 6= ∅}|

|X|+ |Y |
(3.9)

Then, the final constraint metric, χ, is (χC)χE as expressed in Equation 3.10.

χ = (χC)χE =

(∑
x∈X |Hx|+

∑
y∈Y |Py|

|X|(|X| − 1) + |Y |(|Y | − 1)

) |{x∈X3Hx 6=∅}|+|{y∈Y 3Py 6=∅}|
|X|+|Y |

(3.10)

3.3.2 Landscape. Since each coalition set and task sequencing is enumerable

(based on the binary matrix representation), one way to visualize the solution value

space, the utility value function U(S), is to form a discrete three-axis system. Two

axes form the solution space with one axis enumerating the coalition set, and the other

enumerating the sequences. The third axis holds the value of the solution formed by

the other two axes. Figure 3.4 illustrates this visualization.

32

Figure 3.5: Sample Solution Space for a 2x3 Problem.

Constraints in the problem reduce the size of the solution space in various ways.

An inhibition constraint reduces the number of coalitions that can form for a task.

Task prerequisites eliminate certain sequences. These constraint-based reductions

are represented in the three-axis visualization as point discontinuities in the value

plane. For large enough or significant constraints, the solution space will contain

sizeable holes which are seen in the value space as larger continuity jumps. Figure

3.5 illustrates a 2x3 problem with several types of constraints affecting the solution

space. The horizontal axis represents each of the possible coalitions of two abilities

for three tasks; the opposing axis shows all possible sequences for the tasks. From the

33

Figure 3.6: Utility Surface for 2x3 Problem on 3-Axis Coordinate System.

figure, every 2x3 problem, before relational constraints, already contains a significant

number of invalid solution shapes.

The shape of the surface of the value plane depends on the functions and values

used to compute the solutions utility value U(S), namely the assignment utility val-

ues u((Cy, y)), and the enumeration of the coalition sets and sequences on the axes.

When the changes in utility value are relatively small, the surface appears relatively

smooth with some number of peaks and valleys regardless of the enumeration scheme

of the solution space. However, with discontinuities, an enumeration causes various

shaped “holes” in the surface. Value functions that change significantly can cause

spiky surface features that challenge gradient-based search methods. Various enu-

meration schemes on dynamically ranged value functions can produce very different

landscapes, most of which are likely to contain spiky surfaces. Value functions that

are equal-valued for all but a few solutions instead produce landscapes with several

34

plateaus. Constraints in these problems can create discontinuities that cross plateaus.

Ultimately, the shape of the landscape is defined by the structure and value functions

of the CMTS problem itself.

An example of the surface plane for a relatively small 2 agent, 3 task problem

is plotted in Figure 3.6 showing the full solution space sketched in Figure 3.5. The

problem used to generate the figure has 5,184 possible coalitions and 16 task sequences.

The bottom layer of the image shows a gradient contour map of utility values with

lighter colors representing better utility values. The center layer shows where invalid

solution shapes occur—each of these solutions is invalid by one of the constraints

listed in Table 3.1. The upper layer plots the utility values U(S) for valid solutions.

This surface layer shows how spiky a typical solution space appears. The brighter

spots on the bottom contour shows where are the better solutions.

3.4 Representing Classical and Modern Problems

Problem instances found in each of the contributing research areas used to form

the CMTS problem descriptor are readily expressed using the CMTS formal notation.

In this section, classical problem classes are rephrased using the new descriptor to

show its wide range of expressiveness. Specifically, the fundamental problems of the

job shop, the traveling salesman, vehicle routing, the flow shop, and multi-object

tracking are expressed. However, to illustrate the full prowess of the descriptor, a

new problem class based on search and recovery is constructed that intentionally

involves every aspect of the CMTS problem since none of the classical problems are

intended to do so.

3.4.1 Optimal Assignment Problem. One of the most classical task assign-

ment problems is the optimal assignment problem (OAP) [39]. In this problem, a

group of jobs are assigned to a group of workers. In most instances, each worker has

a quantitative performance rating associated with performing a job. The objective is

to identify the set of assignments that maximizes overall performance.

35

This is the basic construct for task allocation. The problem as stated does

not contain any of the constraints expressible in CMTS, however, the OAP can be

presented with job prioritization. The problem does imply a one-to-one assignment

process; i.e., each agent performs exactly one task, and each task requires at most one

agent. Also, any agent can perform any task, and vice-versa, implying the system is

homogeneous.

The CMTS presentation of the OAP is very straightforward. Exactly one do-

main operation is all that is required, and every agent performs the one operation.

Likewise, each task requires that one operation. Every coalition assigned to a task

consists of one agent ability. The agent value function, vx, equals the worker’s perfor-

mance rating, and the task value function is identically zero. The assignment utility

function, fA, coalition combination function, fC , and utility combination function,

FU , are each a summation. The objective is to maximize U(S), which is simply

U(S) =
∑

(Cy ,y)∈S vx(x ∈ Cy, y). (Note: a state is not required to compute this

utility.)

3.4.2 Flow Shop and Job Shop Scheduling. The flow shop scheduling prob-

lem (FSP) [7] is another classical approach that models task assignment. In a flow

shop, a group of jobs is processed through a fixed series of machines. Each machine

processes one operation of each job then passes the job to the next machine for con-

tinued processing. The goal is to arrange the jobs to minimize the time to process

the entire group sequentially. In classical definitions, each machine only processes one

part of a job at a time and machines can be idle while another machine is processing

a job.

Representation by CMTS makes a few assumptions: each job is associated with

a fixed processing time per machine which includes between-machine transfer times,

jobs must be processed by every machine, and (for the classical version) there is

no precedence among jobs. Then, the description uses a set of domain operations

equivalent to the set of jobs where each job is represented by an independent job

36

task for every one of the operations. Thus, for n operations, every job has n tasks

to be scheduled. Furthermore, since the machine operations are ordered and fixed,

each job task has prerequisites such that job task mi,j is a prerequisite of mi,k iff

j < k with machine j performing the job before machine k. Finally, each machine

performs exactly one operation. This construct ensures that no two job operations are

performed on one machine. Furthermore, each machine inhibits every other machine.

This constrains the problem such that only one machine can process a job at any

given time.

A state is required to quantify the time required to process all jobs. For the

assignment utility and value functions, the state is the partial solution of all assign-

ments that have been made. Then, the job (task) value function provides the total

processing time required to perform and transfer the job to the machine plus the total

time spent on parent assignments, as derived from the state. The machine (agent)

value function is identically zero. Since each machine has only one operation, the

coalition combination function is the identity function (fC(vx) = vx). And, since

the agent value function vx is non-contributing, the assignment utility value function

provides only the value of the task value function, i.e., fA ≡= vy(Cy, s). The solution

utility function is the maximum of all of the assignment utility values, FU ≡ max.

Thus, the solution utility value is U(S) = max{(vy(Cy ∈ S, S)}. Various solu-

tions are compared by U(S) with the solution having the smallest utility value chosen

as the schedule that minimizes the total amount of time to process the jobs. For a

different metric, such as job latency, the value functions may require redefinition.

The typical graph solution structure for a valid solution resembles a diamond

shape where only nodes containing the first assignment of a machine branch into

two, one to continue processing the job on another machine and one to show a new

job operation being assigned to the current machine. Other graph structures violate

problem domain constraints or graph consistency rules (Section 3.2.1).

37

The job shop scheduling problem (JSP) [7] is similar to flow shop with one

important distinction. Job shop scheduling involves processing a series of jobs by

several machines without regard to a fixed chain of operations. In other words, a job

can take a different route through a series of machines than another job. Classically,

the job shop problem poses that each machine is unique, each machine performs only

one operation of a job at a time, no two operations of a job are processed on the same

machine, and machines can be idle while others are processing. The typical goal is

to find the schedule that minimizes the total amount of time required to process the

jobs.

Representation by CMTS keeps all of the assumptions of the FSP with the

exception of the prerequisites on the tasks. Likewise, a state is required to evaluate

a solutions utility value and the functions used in FSP hold for JSP provided the

goal is to minimize the total time. Typical solution structures emerge between one

long sequential processing (clearly non-optimal), or n distinct chains, where each

assignment is uniquely one of n machines.

3.4.3 Multiple Traveling Salesman and Vehicle Routing Problem. The

multiple traveling salesman problem (MTSP) [90, 116] and vehicle routing problem

(VRP) [21,116] are well defined problems that are readily converted into CMTS rep-

resentation. Each problem consists of a number of salesmen or vehicles, n, that must

visit each of m cities exactly once. Furthermore, the MTSP requires salesmen to re-

turn to their initial city. Any number of entities in a common city can travel together

to another. In either problem, costs are associated with traveling between cities, and

possibly differential costs in which salesman/vehicle visits a city. The objective, usu-

ally represented as a summation over the costs, is to generate a route that minimizes

the overall cost of servicing the cities. Instances of both the MTSP and VRP are

found in the OR-Library [9] with solutions to benchmark problems.

This problem exhibits characteristics where all agents, represented as salesman

or vehicles, perform exactly one task (i.e., visit one city at a time) and each task,

38

represented as travel to a city, requires multiple agents. In CMTS, only one operation

is performed, namely travel. Every agent has only one ability, and every task only

has the one requirement. The assignment of several agents in a coalition to one

task naturally fills the requirement to have multiple salesmen or vehicles travel to a

destination city.

The agent value function, vx, varies depending on the model of the problem,

e.g. a cost associated to using an agent, but can suitably be set to zero since there is

generally no associated cost on the agent’s part. The task value function, vy, equals

the associated cost of performing the task. Common practice uses a distance function.

The assignment utility function fA and coalition combination function fC are both

summations to total the distance traveled by each agent in the problem. The solution

utility combination function FU is also summation.

3.4.4 Multi-object Tracking. Another benchmark problem domain is coop-

erative multi-robot observation of multiple moving targets (CMOMMT) [97]. Ad-

ditional work on tracking and/or surveillance of targets appears in [70, 72, 84]. The

CMOMMT problem involves a team of agents with range-limited, omni-directional

sensing to track a set of targets within some defined region. The objective is to maxi-

mize the number of targets being observed in the region over a given time period with

agents adjusting their positions to compensate for areas that are not being sensed.

The CMOMMT problem assumes that the targets and their paths are not known

ahead of time which forces a dynamic solution to this problem. The CMTS descriptor

is limited to solving static instances of a problem, so the CMOMMT problem assump-

tions are relaxed so that all targets are known ahead of time and that their paths

are predictable once detected. Otherwise, the problem must be solved as a series of

k-target instances, where up to k targets are detected or observed.

The problem is effectively a many-to-one mapping with several agents observing

a target. However, only one agent is ever needed to observe the target, and that is

the only ability of the agent. Thus, in CMTS, this problem only has one domain

39

operation, the observance of a target. Every agent has as many abilities needed to

observe all of the targets such that |Cm| = |Y |. A task is created for each target with

only one requirement, i.e., to be observed. States include a period of time.

The agent ability value function vx(y, s) reports one iff the ability is actively

tracking the target associated with task y, otherwise zero. The coalition utility func-

tion fC reports the OR of the ability functions, so that if any ability is tracking the

target, then the coalition is tracking the target. The task value function vy does not

contribute, so it can be any appropriate identity function. The assignment utility

function fA then only reports a value of one or zero depending on whether or not the

coalition is tracking its target. The solution utility function FU is then the summation

of the assignment utilities. This value indicates how may targets have a coalition ac-

tively tracking it. The objective is to maximize U(S). Agents are free to move within

the domain independent of the solution mechanism in order to maximize U(S).

3.4.5 Autonomous Search And Recovery. Problem instances generally abound

for specialized task assignment domains, particularly for OAP, MTSP, and VRP. How-

ever, some publications describe, but do not provide data for, many problems used

in experiments, especially CMOMMT. Unfortunately, even if the data were available,

these problems are not complex enough to fully utilize the expressive power of the

CMTS descriptor in the unified framework.

To fully test the framework descriptor, a combined problem domain is intro-

duced based on search and recovery (SAR) operations [62]. The autonomous search

and recover (ASAR) problem is a combined application of vehicle routing (for route

planning and transporting objects), cooperative multi-target tracking (for searching

and tracking), and job scheduling (for prioritizing tasks over time) as developed from

the translated MTSP, VRP, JSP and CMOMMT problems in previous sections.

The general concept behind the ASAR problem is that a group of multi-capable

agents are to recover some number of items from an uncharted area. Agents must

thoroughly search the area observing various items that must be moved to a recovery

40

area or otherwise dealt with. Discovery of new locations or items in a location warrant

a task to either secure a location or to recover items from a location.

Thus, the problem domain contains two distinct tasks. The first task is to

secure a location. Securing a location involves monitoring all objects and pathways

in a bounded area and disabling any items as required. The second task is to recover

items. To recover an item, it must be monitored and transported to a recovery area.

As a prerequisite, any recovery operation in a location first needs to be secured.

In order to accomplish the tasks, the problem uses four domain operations:

monitor, observe, transport and disable. The monitor operation requires an entity to

observe all events within a sensory range of some fixed location. The observe operation

requires continuous observation of a moving entity. The transport operation requires

the physical movement of an item from one location to another. The disable operation

causes an item to be neutralized, eliminated or otherwise arrested, e.g., a threat is

eliminated. The transport and disable operations are mutually exclusive—an agent

that possesses both of these abilities can only use one at a time. Similarly, the monitor

and escort operations are mutually exclusive. Otherwise, all of the abilities of an agent

are bound to each other to restrict separate components of one agent to work on two

tasks that are not co-located.

The secure task is mapped to monitor and disable, and the recover task is

mapped to observe, monitor and transport. Agents have any combination of oper-

ations according to the problem instance. The overall objective is to minimize the

effort required to complete the recovery. This objective can be met by minimizing the

total distance to move items to the recovery area. Additional details are provided in

Section 6.3.1 for experimentation and simulation.

The general complexity of the problem is bounded below χ = 1 since only two of

the four types of abilities cause inhibition. A maximally inhibited problem accounts

for a minimum complexity of χ = 0.5. Also, since each recover task has only one

prerequisite and there must be at least one secure task, the maximum number of

41

prerequisites in a problem with |Y | agents is |Y | − 1. The constrain complexity for

tasks is then (|Y | − 1)/2|Y | → 0 as |Y | → ∞. This function is bounded above by

1/log(1/x+ 1) and has a maximal value of 1
4

at |Y | = 2, 3. So maximum prerequisites

account for a minimum complexity of χ = 0.25. This implies that the maximally

constrained ASAR problem has a maximum complexity of χ = 0.75. On the other

hand, one unconstrained disabling agent for one secure task is a valid ASAR problem

and has complexity χ = 0, which shows that the lower complexity bound is zero.

3.5 Summary

The CMTS problem description represents a unified set of multiagent task as-

signment problems by combining key concepts of task allocation, project scheduling,

and constraint satisfaction with elements of dynamic coalition formation. Solutions

to the problem take the form of a directed acyclic graph, or alternatively, a binary

matrix based on the parent-child relationships of the graph representation. The rep-

resentation provides quantification for measuring the utility of an assignment of a

coalition to a task by u((Cy, y)) in Equation 3.1, and for the overall utility of the

solution U(S) by Equation 3.2.

An analysis of the solution space shows a maximum problem size bound of

O
(
(2|Y |(|X|+|Y |)

)
. Constraints placed on the problem significantly reduce the space

complexity, but create odd discontinuous spaces that are problematic for solution-

space algorithms to navigate.

The expressiveness of the CMTS model is demonstrated by translating several

multiagent task assignment problems into CMTS form. The combined set of multia-

gent task assignment problems is vast but fails to adequately capture the full potential

of the unified problem descriptor. Thus, a new problem class suitable for completely

testing the framework, the autonomous search and recover problem, ASAR, is intro-

duced.

42

IV. Solving Constrained Multiagent Task Scheduling

Problems

The second part of the unified framework contributes a series of algorithms designed

specifically to solve the constrained multiagent task scheduling (CMTS) problem.

Although there has been success in implementing algorithms that solve various forms

of the task assignment problem, as noted in Chapter II, the CMTS problem introduces

complexities that are generally not addressed by other algorithmic approaches.

Algorithms solving the CMTS problem must produce both the coalition for a

task as well as the ordering of tasks in order to generate a solution. Traditionally,

this has been done separately as either a coalition formation problem approach [20,

27, 28, 71, 80, 95, 99, 105, 130] or a scheduling problem approach [66, 74, 77, 83]. The

algorithms presented in this chapter build upon previously successful models, but are

modified to concurrently solve both aspects of the CMTS problem in a single process.

Particularly, they ensure support for solving any multiplicity of agents-to-task and

tasks-to-agent identified in task assignment taxonomies.

4.1 Algorithm Domain Mapping of CMTS Problems

The CMTS problem domain descriptor identifies four key elements in a problem:

the agents set needed for coalition formation, the task set identified by the problem,

relational constraints between agent abilities and/or tasks, and value functions. The

solution space is also well-defined by an acyclic directed graph (DAG) which contains

nodes of assignments (tuples) representing agent ability coalitions performing a task

and edges indicating the asynchronous, parallel performance of tasks.

The algorithm domain design for CMTS problem solving algorithms work by

taking an instance of the problem domain as an input and producing, as an output, one

or more solutions in the solution space. The operational input is the set of agents and

associated capabilities (M , X), tasks (Y), relational constraints (Hx, Bx, Ry, Py), and

value and combination functions (vx, vy, f
C , fA, FU) from the problem. The output

operation produces solutions {S} as DAGs based on algorithm-specific operations:

43

Figure 4.1: Select CMTS-Enabled Algorithms.

next state generation, selection, feasibility, solution and objective. The objective

operation, however, remains consistent among all algorithms as the optimization of

the utility function U(S) based on the composition of value functions.

The remaining operations are discussed in more detail relative to the techniques

used by the various algorithms modified to produce solutions to CMTS problems in

this chapter. Both deterministic and stochastic algorithms, outlined in Figure 4.1,

are modified to demonstrate how to apply the general concepts of a broad range

of solution techniques to this problem class. Deterministic algorithms are further

broken down into three categories: tree-based complete searches, tree-based heuris-

44

tic searches and greedy auction methods. Stochastic algorithms techniques include

iterative construction, Monte Carlo techniques, and solution space searches.

4.2 Tree-based Complete Search Algorithms

The tree-based, complete search algorithms presented in the framework generate

solutions by combinatorically constructing all solutions for a problem. Starting with

an empty solution at the head of a tree, they iteratively grow branches by inserting

one new assignment to the partial solution held by the parent node. The leaves of

the tree hold the solutions, and the best solutions are selected based on optimizing

the utility value function for the problem domain. This approach is guaranteed to

find an optimal solution since all solutions are exposed, however, finding this solution

is computationally infeasible for sufficiently large problems since any instance of the

task allocation problem can be shown to be at least NP-Hard [75,79].

Algorithm classes that fall into this category are based on non-heuristically

driven breadth-first search (BFS) and depth-first search (DFS). This section presents

the basic approach for using either algorithm to solve a CMTS problem.

4.2.1 Breadth-First Search. The breadth-first search (BFS) algorithm gen-

erates solutions by expanding each node of a layer of a search tree before expanding

child nodes. This method opts to generate all leaf nodes last while fully expanding

each branch. For task assignment problems, each depth in the search graph (most

often a binary tree) up to the leaves represents a partial solution. The leaves of the

tree represent completed assignment sets and constitute a solution.

The BFS algorithm is modified to use the CMTS definition with a graph-based

solution. The technical implementation of the CMTS-ready BFS algorithm, shown in

Algorithm 1, uses a queue initialized with nodes from the initial layer to perform the

breadth search. The initial layer contains a node for every task in the problem and

every possible coalition that could be assigned to the task. Remaining tasks are also

tracked at each node.

45

Algorithm 1 Breadth-First Search

Require: CMTS problem (M,Y)
Ensure: A solution S∗ that is optimal for (M,Y)

1: Let Q be a solution list
2: Initialize Q with an empty solution
3: Let S+ be a solution queue initialized with an empty solution

4: while Q is not empty do
5: Let S be the first element of Q, and Q← Q \ {S}
6: Let Y be the set of tasks y that are not assigned in S
7: if Y is empty then
8: if U(S) is better than the utility of the best solution in S+ then
9: Let S+ = {S}

10: else if U(S) equals the utility of the best solution in S+ then
11: S+ ← S+ ∪ S
12: end if
13: else
14: for all tasks y in Y do
15: Let P = all non-empty subsets of {y|y is assigned in S}
16: for all coalitions Cy assignable to y do
17: Let S ′ = S ⊕ (Cy, y) such that y is a child of all tasks in P
18: if isValid(S ′) then
19: Add S ′ to the end of list Q
20: end if
21: end for
22: end for
23: end if
24: end while
25: Let S∗ be any member of S+

26: return S+

The node on the front of the queue is dequeued and provides the partial solution

needed to generate extended solutions. When expanding a partial solution, a series

of new child nodes are created for new partial schedule solutions, each containing one

additional assignment of a remaining task. The series includes all possible coalitions

for the task inserted in the partial solution as a child node to every legal subset of

existing assignments. For example, for a node with three tasks assigned and two

tasks remaining, there are two sets of new child nodes, one for each remaining task.

Each set of child nodes includes the insertion of the new node in one of seven child

46

positions: a child of the first task, of the second task, of the third task, of the first and

second task, etc. Then, for each of those extensions, there is a node that represents

every possible coalition that can perform that task in the assigned sequence. Thus,

for a problem with three identical agent abilities, there would be seven child nodes

for each of the seven extended positions totaling 49 new nodes for each one of the

remaining tasks.

If a node is found to have an invalid partial solution due to a constraint enforce-

ment from Table 3.1 during the expansion, it is not used in the search. This primarily

occurs when coalitions contain abilities that have binding or inhibition violations are

inserted into the partial solution, or the remaining tasks of an assignment contain a

prerequisite task. Otherwise, each of the new search tree’s child nodes are inserted

into the tree and track which tasks are left by removing the newly inserted task from

the parent node’s remaining task list. The new nodes are then queued to the back.

When no remaining tasks are identified for a queued entry, the node holds a

complete solution that is evaluated for a utility value (Equation 3.2). If the utility

value of that current solution is better than the utility value of the best seen solution,

then the set of best solutions is reset to hold only the current solution. If the utility

values are equal, then the current solution is added to the set of best solutions. All

possible solutions have been examined when the queue is empty and the set of best

solutions holds the preferred solutions for the problem.

Since the BFS algorithm examines every possible solution to a problem, the

result provides a set of equivalent optimal solutions for the problem. However, the

queue used to track partial solutions grows as a function of the number of candidate

assignments are valid for a partial solution. Since the growth is factorial and every

node of a layer is in the queue at one time, resource consumption is high. The best,

worst, and average search time is the complete size of the search space, O(2|Y |(|X|+|Y |)),

for abilities set X and task set Y . Using this search quickly becomes infeasible when

either the number of tasks or agents grows. Thus, the complete searching nature of

47

Algorithm 2 Depth-First Search

Require: CMTS problem (M,Y)
Ensure: A solution S∗ that is optimal for (M,Y)

1: Let Q be a solution stack
2: Initialize Q with an empty solution
3: Let S+ be a solution queue initialized with an empty solution

4: while Q is not empty do
5: Let S = top(Q), and Q← Q \ {S}
6: Let Y be the set of tasks y that are not assigned in S
7: if Y is empty then
8: if U(S) is better than the utility of the best solution in S+ then
9: Let S+ = {S}

10: else if U(S) equals the utility of the best solution in S+ then
11: S+ ← S+ ∪ S
12: end if
13: else
14: for all tasks y in Y do
15: Let P = all non-empty subsets of {y|y is assigned in S}
16: for all coalitions Cy assignable to y do
17: Let S ′ = S ⊕ (Cy, y) such that y is a child of all tasks in P
18: if isValid(S ′) then
19: Add S ′ to top of stack Q
20: end if
21: end for
22: end for
23: end if
24: end while
25: Let S∗ be any member of S+

26: return S+

the BFS algorithm becomes a very time- and resource-consuming process useful only

for very small problems.

4.2.2 Depth-First Search. The depth-first search (DFS) algorithm, contrary

to a BFS, generates solutions by searching the children of a graph node before search-

ing nodes of the same depth. This method opts to generate fully constructed solutions

before expanding every possible partial solution. For task assignment problems, each

depth in the graph (most often a binary tree) represents a partial solution with an

48

equal number of assignments. The leaves of the tree represent completed assignment

sets and constitute a solution.

The DFS algorithm is modified to use the CMTS definition in the same manner

as the BFS algorithm with a graph-based solution. The initial layer contains a node

for every possible task in the problem and every possible coalition that could be

assigned to the tasks with remaining tasks are tracked at each node. Child nodes

are created as explained in Section 4.2.1 until every node on each layer of one branch

has been expanded. The leaves hold all of the possible valid solutions to the problem

with the preferred solutions being the ones which optimizes the utility value function

U(S).

The technical implementation of the CMTS-ready DFS algorithm, shown in

Algorithm 2, uses a stack to perform the depth search. The stack is initialized with

nodes from the initial layer. Then the node on the top of the stack is popped and all

valid extensions are pushed back on top. When no remaining tasks are identified for

the topmost entry, the node holds a complete solution that is evaluated for a utility

value (Equation 3.2) to see if it belongs in the best solutions set. All possible solutions

have been examined when the stack is empty, and the set of best solutions holds the

preferred solutions for the problem.

Since the DFS algorithm also examines every possible solution to a problem,

the set of solutions provided as an answer is the optimal solution set for the problem.

This approach uses depth over breadth, solutions are generated quickly allowing this

approach to be used as an anytime algorithm. These attributes represent the benefits

of implementing a DFS. Although, there is no guarantee on solution quality at any

intermediate iteration—the best solutions could be equally found first or last.

The best, worst, and average search time is the same as BFS, the complete size

of the search space, O(2|Y |(|X|+|Y |)), for abilities set X and task set Y . The stack used

to track partial solutions grows factorially as a function of the number of candidate

assignments causing high resource consumption. So, using this search also becomes

49

quickly infeasible when either the number of tasks or agents grows. However, nodes

with complete solutions are found quickly, so the stack-based implementation uses

substantially less memory that the queue-based BFS implementation since solution

nodes are removed early and frequently during processing. Still, the complete search-

ing nature of the DFS algorithm is a very time-consuming process with significant

resource usage.

4.3 Tree-based Heuristic Search Algorithms

Complementary to tree-based complete searches are the generally more efficient

heuristic-based tree searches. The basic premise remains the same: the head of the

tree is an empty solution with branches being built by appending an assignment to

the parent node’s partial solution. The difference comes in the selection of which

branches are selected for expansion. Whereas BFS and DFS expand every possible

branch, heuristic searches select which branches to expand based on their predictive

solution quality before all of the branches are explored.

This section presents a modified A* and two beam search algorithms to generate

solutions to the CMTS problem. The A* approach takes advantage of the estimated

utility E[U(S)] to rank partial solutions that provide the best valued solution. Two

types of beam search extend the A* paradigm by bounding the number of partial

solutions that are examined in different ways.

4.3.1 A*. The A* algorithm helps functions like a DFS, but uses heuristics

to selectively choose which nodes offer the most promise for finding the best solutions.

Branches with poor heuristic evaluation may not be expanded if an acceptable solution

is found first. If the heuristic is admissible [103], then the A* algorithm is guaranteed

to find an optimal solution. Thus, the CMTS-solving A* algorithm, implemented

by Algorithm 3, provides the convenience of finding an optimal solution to a CMTS

problem like the DFS algorithm, but possibly with considerably less graph searching.

50

Algorithm 3 A*

Require: CMTS problem (M,Y)
Ensure: A solution S∗ that is optimal for (M,Y)

1: Let Q be a solution priority queue, prioritized by E[U(S)], Eq 3.3
2: Initialize Q with an empty solution

3: while Q is not empty do
4: Let S = front(Q), and Q← Q \ {S}
5: Let Y be the set of tasks y that are not assigned in S
6: if Y is empty then
7: S∗ = S; return
8: else
9: for all tasks y in Y do

10: Let P = all non-empty subsets of {y|y is assigned in S}
11: for all coalitions Cy assignable to y do
12: Let S ′ = S ⊕ (Cy, y) such that y is a child of all tasks in P
13: if isValid(S ′) then
14: Add S ′ by priority E[U(S)] to Q
15: end if
16: end for
17: end for
18: end if
19: end while

The CMTS A* scheduling algorithm constructs a set of agent abilities from the

agents provided and inserts candidate assignments into partial solutions similar to the

depth-first search algorithm (in Section 4.2.2), but uses a priority queue to manage

which nodes are chosen for extension. The nodes are prioritized by the utility value

of the associated partial solution (g()) plus a heuristic for estimating the value of

scheduling the remaining tasks (h()) to form a priority value (f() = g() + h()).

Child nodes, including leaves with complete solutions, are ordered in the priority

queue according to their priority value. Nodes with better priority values move closer

to the front of the queue. The node with the best priority value sits at the front.

When the front of the queue contains a node with a complete solution, that solution

is provided as the best solution for the given problem.

51

The benefit of using this algorithmic approach is that the search graph is evalu-

ated in an ordered manner with potentially better candidate solutions begin examined

earlier. Also, if the heuristic element (h()) is admissible and consistent, then the so-

lution found on the front of the queue is guaranteed to be an optimal solution. So,

the A* approach can provide an intelligent search of the search space that does not

require a complete search and still produces an optimal solution. This results in a

faster delivery of the best solution.

However, unlike DFS, A* cannot serve as an anytime algorithm since complete

solutions are not necessarily quickly developed. The algorithm backs-up to a previous

partial solution if those assignments appear to have a better chance of providing a

better solution (based on the utility value of the solution with the heuristic estima-

tion). So, there is no guarantee that A* has generated a complete solution at any

intermediate iteration.

The backup ability of A* also leads to another disadvantage, namely bookkeep-

ing overhead. For problems where partial solutions tend to have a relatively uniform

heuristic element, child nodes move to the back of the priority queue. This creates a

situation where every possible partial solution is evaluated and tracked. This behav-

ior effectively makes A* solve like a DFS and adds considerable memory overhead to

store the backup information, e.g., heuristic values.

Another potential limitation is that A* only provides one solution, the first

suitable solution discovered. Problems that use multi-objective values generally desire

a set of solutions that represent optimization of a multi-objective function. This

algorithm is not designed to meet the needs of multi-objective problems that need an

optimal set of solutions.

4.3.2 Beam Search. Beam search [57] involves searching a tree using heuris-

tic values to eliminate branches that do not seem to hold promising solutions. Branches

can be heuristically eliminated, for instance, if the assignment solution utility value is

52

over a cut-off value for a minimization problem. The cut-off value is usually defined

by elements of the domain.

This algorithm fortunately is a minor adaptation of the A* algorithm since that

algorithm similarly involves building a tree structure to find solutions. But rather than

having approximately 2my potential children for any given node, the beam search only

chooses those within a top percentage of desirable values of the utility value of any

solution using Equation 3.3 as the heuristic function. This process happens at each

level of depth so that only a fraction of the tree is searched.

This technique significantly speeds up the time to generate a final solution, but

unless the selection bound includes all children, it does not completely search the

solution space. Therefore, beam search is not guaranteed to find an optimal solution.

However, given the potentially large size of the trees, this search quickly finds good

approximations given a suitable estimation of solution utility values.

Two types of beam search are presented in this section. The first CMTS-solving

beam searching algorithm, Algorithm 4, is a derivative of the A* scheduling algorithm

(4.3.1), differing only by bounding the number of nodes retained in the queue to a

given size. It applies the same heuristic-based approach to order child nodes generated

by inserting candidate assignments, but truncates the priority queue to a fixed size

after all of the extended nodes are inserted into the queue. The solution on the front

of the queue is the best solution for the problem.

The second CMTS-solving beam search algorithm, Algorithm 5, modifies the

DFS scheduling algorithm (4.2.2) by replacing the stack with a priority queue and

using a retention criteria based on the expected value of the best seen partial solution

value. The algorithm requires a deviation percentage, ρ, to bound the maximum

allowable difference of the expected utility value of a partial schedule solution from

the best seen expected value. Child nodes are constructed identically to the DFS

scheduling algorithm and inserted into the priority queue based on the expected value

of their partial solution. After all child nodes are inserted into the queue, all nodes

53

Algorithm 4 Beam Search

Require: CMTS problem (M,Y)
Require: Beam size MAX
Ensure: A solution S∗ for (M,Y)

1: Let Q be a solution priority queue, prioritized by E[U(S)], Eq 3.3
2: Initialize Q with an empty solution

3: while Q is not empty do
4: Let S = front(Q), and Q← Q \ {S}
5: Let Y be the set of tasks y that are not assigned in S
6: if Y is empty then
7: S∗ = S; return
8: else
9: for all tasks y in Y do

10: Let P = all non-empty subsets of {y|y is assigned in S}
11: for all coalitions Cy assignable to y do
12: Let S ′ = S ⊕ (Cy, y) such that y is a child of all tasks in P
13: if isValid(S ′) then
14: Add S ′ by priority E[U(S)] to Q
15: if size(Q) > MAX then
16: Remove the last (back) element of Q
17: end if
18: end if
19: end for
20: end for
21: end if
22: end while

with a partial solution utility over ρ percent of the partial solution utility on the

front of the queue are removed. The remaining nodes form the basis of the next

iteration. All solutions with equivalent value as the solution on the front of the queue

are returned as the best solution set.

The benefit provided by both of these approaches is that they provide intelli-

gent bounding of the search space ensuring only the most promising candidates are

explored. The bulk elimination of candidate partial solutions allows reduced book-

keeping depending on the size or percentage limitations. In either algorithm, how-

ever, the limitations can be set high enough that the size-based beam search performs

54

Algorithm 5 Value-based Beam Search

Require: CMTS problem (M,Y)
Require: Beam value percentage R
Ensure: A solution S∗ for (M,Y)

1: Let Q be a solution priority queue, prioritized by E[U(S)], Eq 3.3
2: Initialize Q with an empty solution

3: while Q is not empty do
4: Let S = front(Q), and Q← Q \ {S}
5: Let Y be the set of tasks y that are not assigned in S
6: if Y is empty then
7: S∗ = S; return
8: else
9: for all tasks y in Y do

10: Let P = all non-empty subsets of {y|y is assigned in S}
11: for all coalitions Cy assignable to y do
12: Let S ′ = S ⊕ (Cy, y) such that y is a child of all tasks in P
13: if isValid(S ′) then
14: Add S ′ by priority E[U(S)] to Q
15: end if
16: end for
17: end for
18: for all S ′ in the Q do

B Assuming a maximization check; use the appropriate comparitor
19: if |E[U(S ′)]− E[U(Q’s front)]| < R · E[U(Q’s front)] then
20: Remove S ′ from Q
21: end if
22: end for
23: end if
24: end while

equivalent to A*, and the value-based beam search like an ordered DFS. For care-

fully selected limits, which very likely requires domain knowledge, either algorithm

will readily outperform the algorithm they are derived from. The value-based beam

search with a low percentage value can potentially search less of a graph than the

efficient size-based beam search.

However, each algorithm relies on having a suitable limitation value (size or per-

centage) to balance memory overhead with sufficient graph searching. Finding such

55

a value, not within the scope of this work, is challenging without knowing domain-

specific characteristics to guide the selection of these values. This can limit the effec-

tiveness of the solutions provided as the best.

Also, neither algorithm is necessarily a complete search algorithm. The solutions

generated by these algorithms are susceptible to being local maxima versus global.

Even as a derivative of A*, the size beam search cannot guarantee an optimal solution

with an admissible heuristic due to the elimination of candidate partial solutions.

4.4 Greedy Auction Algorithms

Greedy algorithms generate solutions by taking the most valuable choice, or the

local optimum, at each stage of constructing a solution. Auction methods solicit bids

for the value of a partial solution and generally selects the bid that provides the most

value, similar to greedy algorithms. For CMTS problems, a greedy auction method

can choose to locally optimize on the value of the coalition, assignment, task ordering,

or any combination of these elements.

This section presents two modified versions of auctioning methods using greedy

algorithm techniques for generating serial solutions similar to a serial project sched-

uler and concurrent solutions similar to a parallel project scheduler. First, the serial

auction locally optimizes on only the assignment values to generate a solution. Com-

plementary, the concurrent auction locally optimizes on the coalition membership

relative to maximizing concurrent task ordering using a bin-packing approach. Algo-

rithmic solutions to the multi-tasking agents on multi-agent tasks (MT-MR) category

of the MTRA taxonomy [42, 45] combine the serial and concurrent auction methods

to locally optimize on both assignment value and task ordering.

4.4.1 Serial Auctioning. The serial auctioning algorithm, based on AL-

LIANCE [96], creates a serial schedule of assignments based on a greedy selection

criteria. Every task is performed in a given order depending on which coalition-task

pairing offers the most optimal value. Initially, the assignment with the best value

56

Algorithm 6 Serial Auction

Require: CMTS problem (M,Y)
Ensure: A solution S∗ for (M,Y)

1: Initialize S∗ to the empty solution
2: Let P be a task, initially null
3: Let Y = Y
4: while Y is not empty do
5: Let A = the set of assignments {(Cy, y)}, ∀y ∈ Y ,∀Cy 3 Cy performs y
6: Choose (Cy, y) ∈ A such that U(S∗ ⊕ (Cy, y)) is the best utility value with y

a child of P
7: S∗ ← S∗ ⊕ (Cy, y) such that y is a child of task P
8: P ← P ∪ y
9: Y ← Y \ {y}

10: end while
11: return

is scheduled first. Subsequent assignments are ordered similarly until each task is

arranged in a solution.

The implementation of the CMTS-ready serial auctioning algorithm, shown in

Algorithm 6, begins with an empty partial solution and initializes the set of remaining

tasks to the complete set of tasks in the problem. Then, for every task in the remaining

set, a derivative set of solutions is generated with each new partial solution having

one new assignment for every possible coalition to each remaining task. The partial

solution with the best utility value is selected the best seen solution and the task of

the assignment given to the solution is removed from the remaining tasks list. This

process continues until the remaining tasks list is empty. The resulting solution is the

final solution for the serial auctioning algorithm.

This process generates the best possible sequential schedule for the set of prob-

lem tasks. But, it is not necessarily optimal since it fails to consider concurrently

performed tasks that can be performed concurrently. However, if constraints shape

the problem such that only a serial solution is valid, then this algorithm is optimal.

Although it represents a qualitative improvement over the randomly selected

sequential algorithm in Section 4.6.2, it requires the construction of every possible

57

Algorithm 7 Concurrent Auction

Require: CMTS problem (M,Y)
Ensure: A solution S∗ for (M,Y)

1: Initialize S∗ to the empty solution
2: Let P be a set of parent tasks, and R a set of sibling tasks, each initially empty
3: Let X be the set of all agent abilities, X =

⋃
Cm∀m ∈M

4: Let Y = Y
5: Let X = X
6: while Y is not empty do
7: Let A = the set of assignments {(Cy, y)}, ∀y ∈ Y ,∀Cy ∈ 2X 3 Cy performs y
8: if A is not empty then

B Assignments are available from the remaining tasks and abilities
B So, add the best but don’t descend

9: Choose (Cy, y) ∈ A such that U(S∗⊕ (Cy, y)) is the best utility value with
y a child of every task in P

10: S∗ ← S∗ ⊕ (Cy, y) such that y is a child of every task in P
11: R← R ∪ y
12: Y ← Y \ {y}
13: X ← X \ Cy; reduce the eligible abilities for the next task
14: else
15: B Otherwise, descend to the next layer of the solution
16: P ← R; reset the parent set to the siblings
17: Empty the sibling set R
18: X ← X; Reset the abilities set to all available members
19: end if
20: end while
21: return

assignment for each step of the process. This is a significant increase in processing

time, but since it is theoretically only necessary to save two partial solutions at any

given moment, the best seen and the one-extended solutions, there is no additional

memory overhead. Thus, this algorithm scales very well to problems of any size in a

memory-constrained environment. However, the implementation of Algorithm 6 does

store the combinatorial list of assignments, so memory usage becomes an issue for

large problems.

4.4.2 Concurrent Auctioning. The concurrent auctioning algorithm, based

on the Broadcast of Local Eligibility (BLE) [121] algorithm, takes the serial auc-

58

tioning algorithm one step further by accounting for tasks that can be performed

concurrently. Instead of necessarily scheduling each task alone in a sequence, the

concurrent auction allows multiple tasks per depth in a solution. Whereas the serial

auction algorithm’s solutions are a linear graph with an average degree of one, the

solutions to this algorithm allow nodes with degree greater than one. Essentially, the

concurrent algorithm creates as many assignments as possible per step rather than

optimize for just one assignment.

The CMTS-ready concurrent auctioning algorithm, shown in Algorithm 7, starts

with an empty solution and a set of remaining tasks equal to the initial set of problem

tasks. Added are a set of remaining abilities equal to the initial set of abilities available

in the problem and an initially empty set of parent and child assignments.

Then, while the remaining task set is non-empty, a new partial solution is created

for every possible assignment covering the remaining tasks and remaining abilities. If

there are valid partial solutions, the assignment of the best partial solution becomes

a member of the child assignment set, and the abilities used in the assignment are

removed from the remaining abilities set. The assignment becomes a child of every

assignment held in the parent assignment set. The task in the assignment is removed

from set of remaining tasks. However, if there are no possible assignments for the

remaining entity sets, then the remaining abilities set is reset to the initial set of

abilities and the set of parent assignments equals the set of child assignment. The

child assignment set is then emptied. This forces subsequent assignments into the

next layer of the solution starting with a fresh set of agent abilities. This process

continues until the set of remaining tasks is empty. The resulting solution is the final

answer for the concurrent auctioning algorithm.

This method continually evaluates every possible assignment in the problem but

fails to provide an optimal solution since assigning the remaining agent abilities to

multiple coalitions is not considered. Instead the algorithm takes a greedy bin-packing

approach. Otherwise, if the algorithm did check every distribution of the remaining

59

agents over the remaining tasks then it would find an optimal solution. As a matter

of fact, this is exactly how the DFS algorithm works.

Since concurrent tasks are accounted for in this algorithm, it represents an

improvement over the serial algorithm for problems where concurrent task execution

is beneficial. Since the size of the additional data structures used to solve this version

of the auction are fixed and based solely on the number of entities in the problem, only

a trivial amount of overhead is added compared to the serial scheduler. But since it

necessarily searches for concurrent opportunities, problems which penalize concurrent

execution may cause the concurrent auction to generate solutions with less quality

than a serial approach.

4.5 Constructive Stochastic Algorithms

Constructive stochastic methods involve building solutions from initially empty

solutions using non-deterministic methods, principally random selection and other

Monte Carlo methods. This is one of the key differences between the algorithms de-

scribed in this section and deterministic algorithms. As with deterministic algorithms,

there are several types of stochastic methods that are used to construct solutions.

This section describes two stochastic approaches. First is the biologically-

inspired ant colony optimization (ACO) which presents an alternative heuristic con-

struction to solve the multiagent problem using digital pheromone trails updated by

multiple search agents. Alternately, reinforcement learning (RL) presents a way for

agents to learn how to build the best assignment solution by making step-by-step

construction choices with a reward feedback function to guide subsequent assignment

selections.

4.5.1 Ant Colony Optimization. Another paradigm to generating multiagent

task assignment solutions uses ant colony optimization (ACO) [11, 29, 30]. ACO,

outlined in Algorithm 9, uses a biologically inspired approach to solving combinatorial

optimization problems.

60

Algorithm 8 ACO Graph Building Method

1: procedure BUILDGRAPH(M,Y)
2: Let X =

⋃
Cm∀m ∈M , the set of all abilities

3: B Build a set of all coalitions that perform a given task
4: Let Wy = {(Cy, y) 3 Cy ⊆ X and Cy performs Y }
5: B Build a set of all assignments involving concurrently performed tasks
6: Let Z be all non-empty subsets of Y
7: ∀z ∈ Z, let Az = {(Cy, y) 3 y ∈ z and Cyi

⋂
Cyj

= ∅∀yi, yj ∈ z}
8: B Construct an assignment graph for ACO
9: Construct G with nodes from

⋃
z∈Z Az

10: Edge(Azi
, Azj

) exists iff {y ∈ Azi
}
⋂
{y ∈ Azj

} = ∅,∀zi, zj ∈ Z
return Graph G

11: end procedure

In ACO algorithms, ants (agents) navigate a graph representation of a problem

in order to construct a solution. Ants deposit pheromone on graph edges used in

their solutions relative to the quality of the solutions they construct. Over time,

edges involved in high-quality solutions contain higher pheromone concentrations than

edges used in good or low-quality solutions. As such, the pheromone serves as a

collective memory about which edges contribute to the best solutions. During solution

construction, an ant’s decision to move from one node to another is directly influenced

by the amount of pheromone on each edge and a heuristic desirability of each edge.

Outgoing edges with high pheromone concentrations and/or high heuristic values

are more likely to be selected than other outgoing edges. The ACO approach for

building CMTS scheduling solutions incorporates the WoLF Ant ACO algorithm [26],

which incorporates a policy-based decision matrix (see Section 4.5.2) into the heuristic

component to guide the selection of edges chosen for a solution.

The nodes of a graph contain sets of assignments that represent a layer of the

search graph. The nodes are constructed by selecting a subset of a every possible

assignment for each task based on matching agent abilities. Every legal set of assign-

ments has a node in the graph. Directional edges between nodes indicate that every

assignment of the first node serve as parents to every assignment of the second node,

and conversely, every assignment of the second node is a child of every assignment

61

Algorithm 9 WoLF Ant Algorithm

Require: CMTS problem (M,Y)
Require: A random walk criteria q0 > 0
Ensure: A schedule S∗ holding a schedule that is best for (M,Y)

1: Build graph G = BUILDGRAPH(M,Y)
2: Let Z be all non-empty subsets of Y
3: ∀z ∈ Z, let Az = {(Cy, y) 3 y ∈ z and Cyi

⋂
Cyj

= ∅∀yi, yj ∈ z}

4: Initialize pheromones τij = τ0, policy πij = 1/|Eij|, ∆ij = ∆2
ij = 0

5: Let heuristic ηij = E[U(Sk)], the expected value of ant k’s solution where Azi

parents Azj

6: for i← 1,MAX ITERATION do
7: For each ant k, initialize solution Sk to random assignment set vk,0 = Azrandom

8: B Ants build solutions by adding assignments sets from a subsequent node
9: while some ant is still building a schedule do

10: for each ant k do
11: Let vk,i be the ant’s latest assignment set
12: if there are unassigned tasks in Sk then
13: B Choose assignment set as valid child to vk,i
14: Let A = {Az 3 {y ∈ Sk}

⋂
{y ∈ Az} = ∅

15: if random ≤ q0 then
16: select vk,j ∈ A according to Eq 4.2
17: else
18: select vk,j ∈ A according to Eq 4.1
19: end if
20: ∀(Cy, y) ∈ vk,j, set (Cy, y) as child to (C ′y, y

′) ∈ vk,i in Sk
21: If isValid(Sk), update pheromone τij
22: end if
23: end for
24: end while
25: B Each ant now has a solution, so choose the best then update values
26: Choose S∗ so that U(S∗) = argmax {U(Sk)∀k, U(S∗)}
27: B Elitist update the pheromones and policy
28: for all v∗,i, v∗,j ∈ S∗ do
29: update pheromones τij ← (1− ρ) · τij + ρ ·∆τ (from [26])
30: calculate policy change ∆πij (from [26])
31: update policy πij ← πij + ∆πij
32: normalize πi, update ∆2

ij ← ∆πij −∆ij, ∆ij ← ∆πij
33: end for
34: end for
35: return solution S∗

62

in the first node. Edges that cause constraint violations, i.e., violates inhibitions,

prerequisites or solution form rules, are not allowed in the graph.

The ACO approach of the development of a best solution occurs over a fixed

number of iterations. Each iteration, ants develop a complete solution based on the

values on the edges of the problem graph. The overall best solution is tracked over

each iteration as the best solution developed during any iteration by an ant. The

number of ants that are used to generate solutions is based on a given percentage.

Empirical studies show a value of 60% − 100% of the graph size seem sufficient to

produce highly effective solutions [11].

During an iteration, each ant is initialized to a randomly selected node which

serves as the first layer of assignments in the ant’s solution. Each ant iteratively builds

its solution by choosing an edge to follow to a subsequent set of assignments which

form the next layer of the solution graph. The selection of an edge is biased by a

random walk value. If a randomly selected value q ∈ [0, 1] is less than a given bound,

q0, then the ant chooses the edge Eij that maximizes the pheromone selection rule

in Equation 4.1. Otherwise, the ant randomly chooses an edge to form its extended

partial solution through weighted selection based on Equation 4.2. Pheromone values

are referred as τ , policy by π, and heuristic by η.

Pij =
[τij]

α · [ηij]β · [πij]φ∑
l∈Ji

[τil]α · [ηil]β · [πil]φ
(4.1)

j = argmaxj∈Ji
{[τij]α · [ηij]β · [πij]φ} (4.2)

After an ant selects an edge, it increases the pheromone value (τ) by some

given rate. This encourages other ants to use the same edge while extending their

partial solutions. This process continues until each ant has a complete solution. The

best solution from the group is identified and compared to the best overall solution.

Finally, the pheromone and policy values of the edges in the overall best solution are

updated to guide ants for next iteration solution development.

63

The main benefit to using WoLF Ant is the fast convergence rate [26] to finding

a solution. The efficiency of the WoLF Ant algorithm generally offsets the additional

computational overhead required to find high quality solutions. ACO is known to ex-

plore the solution space very well looking for alternatives that lead to better, perhaps

optimal, solutions. Because ants develop solutions as quickly as possible, the WoLF

Ant approach is an anytime algorithm like the DFS scheduling algorithm.

Also, since the nodes and edges of the problem graph are created ahead of time

and do not change, there is a fixed, determinable memory requirement. The ants

generate as many solutions as desired without requiring any more or less bookkeeping.

However, large problem sizes can be problematic since the problem graph size increases

exponentially based on the number and capabilities of each agent in the problem. And

increasing the number of tasks also results in a combinatorial increase of problem

nodes. Problems may easily require extensive amounts of resources to represent the

search graph used to produce a solution.

4.5.2 Reinforcement Learning. Another means to approximate optimal

solutions is policy-based reinforcement learning (RL) [112]. RL provides a structure

where agents are rewarded for doing tasks. This reward is used to learn which tasks

are most appropriate for an agent. A value function captures the influence of rewards

given for taking actions over time to generate a policy. The policy is used by the

agent to determine which tasks to select given a state of the partial solution.

The basic approach for using policy-based reinforcement learning with CMTS

problems, presented in Algorithm 10, is to implement a hybrid reinforcement learning

value function with Q-learning [119] and shared policy cooperation. The expected

value of an assignment solution, E[U(S)], serves as the reward-generating value func-

tion, V (t) for Q-learning. Each agent has a policy, π, of state-action pairs where

states are represented as a combination of agents and unassigned tasks and actions

are the selection of a task to perform.

64

Algorithm 10 Reinforcement Learning Algorithm

Require: CMTS problem (M,Y)
Require: PDWoLF and reinforcement learning constants, α, γ, δw, δl
Require: Exploration constant q0 ∈ [0, 1]
Ensure: A solution S∗ that is optimal for (M,Y)

1: Let S be the set of all possible assignment set {(Cy, y)}∀y in every subset of Y
2: Let As be the set of all possible child tasks for a state s ∈ S
3: Initialize Q(s ∈ S, a ∈ As)← 0, π(s ∈ S, a ∈ As)← 1/ |As| − 1, PDWoLF, WSS
4: Initialize solution S∗ to the empty solution
5: Initialize assignment set P to the empty set
6: while Converging... do
7: Observe state s as P
8: if random ≥ q0 then
9: Randomly choose action a = {(Cy, y)} ∈ As

10: else
11: Choose action a = {(Cy, y)} ← textrmargmaxπ(s)
12: end if
13: Update S∗ ← S∗ ⊕ a such that all (Cy, y) ∈ a is a child of all tasks in P
14: Update P ← a
15: Observe reward r = E[U(S∗)] and next state s′ as P
16: Update Q(s, a)← (1− α)Q(s, a) + α [r + γargmaxa′ inAsQ(s′, a′)]
17: Update π(s, a)← π(s, a) + ∆π(s, a) where ∆π(s, a) comes from Equation 4.3

18: if time to cooperate then
19: B Cooperate policy π using weighted strategy sharing (WSS)
20: Update π by Equation 4.5
21: end if
22: if S∗ is a complete solution then
23: Reset S∗ to the empty solution, and P to the empty set
24: end if
25: end while

26: B Reconstruct the final solution based on maximal policy values
27: Reset S∗ to the empty solution, and P to the empty set
28: Initialize s to the no-task state
29: while ∃y ∈ Y and y /∈ S∗ do
30: Choose action a = {(Cy, y)} so that π(s, a) is maximal
31: Update S∗ ← S∗ ⊕ a such that all (Cy, y) ∈ a is a child of all tasks in P
32: Update P ← a
33: Set s← P
34: end while
35: return S∗

65

Each agent determines which task to perform as an action based on its policy.

Agents then deconflict actions using a variety of methods such as voting or auctioning

to settle conflicts in a potential solution. The cumulative result of the agents selecting

tasks results in a series of assignments that fit into an existing solution. The expected

value of the new partial solution drives the computation of the reward values for

the Q-learning process, which then updates the policy. This process iterates with

agents continually selecting assignments until the policy stabilizes to an equilibrium.

Equation 4.3 shows the update rule for agent m transitioning from one state (partial

solution) to another.

π(st, at)← (1− α)π(st, at) + α (r + γargmaxa′∈AV (st+1, a
′)) (4.3)

During the iterative process, agents cooperate policies using weighted strategy

sharing (WSS) [2] in order to converge solutions to a global optimum. Each agent

builds an expertness metric [1,2,34] based on the rewards received for constructing a

partial schedule. This metric, εm, is used to weight the qualitative value of the policies

of other agents solving the problem. The weights, ω, are computed by Equation 4.4

for a group of agents that only incorporate policy information from agents that are

performing better than itself. The weight is biased by an influence parameter, ρ, to

control how sensitive an agent is to changing its policy. Then for every state that

an agent needs updated in its policy, it applies the weight formula to combine the

collective values of all equal or better performing agents into its own policy, as shown

in Equation 4.5.

ωmn =

1− ρ, if m = n

ρ · εn−εm∑|M|
z=1 εz−εm

, if εn ≥ εm

0, otherwise

(4.4)

πms =

|M |∑
n=1

ωmn · πms (4.5)

66

A final solution is available when agents complete several iterations of solution

building, possibly resulting in the convergence to a Nash equilibrium indicating an

optimal policy. The solution is derived by following the series of actions taken by an

agent from the converged policy to build a complete schedule of assignments.

When a proper value function is implemented in RL, the policy converges opti-

mally. This implies that optimal solutions can be found, but only over infinite time.

However, convergence to an optimal policy is aided by applying fast gradient ascent

methods, such as “Win or Learn Fast” (WoLF) [15, 16] and policy-dynamics WoLF

(PDWoLF) [8], to the value functions feeding the policy. These methods provide

meta-information about how the policy is converging and allow agents to select tasks

based on the quality of the solution’s utility over time versus selecting tasks based

directly on the utility. Using the gradient information of a policy to make the deci-

sion often results in faster convergence [24, 26], better solutions and better response

to dynamic environments where the utility of a solution can change over time.

The most significant drawback to using policies is that the state space must

be stored in the policy. The state space for a sufficiently large problem can readily

overwhelm the resources of any machine. One approach to deal with this issue is to

approximate the state space with a function approximation [112], but this can lead

to slower convergence rates or higher deviation from optimal solutions.

4.6 Random Algorithms

Random methods provide a generally quick way to construct a solution without

regard to the quality of the solution. CMTS problem solutions are randomly con-

structed similar to the methods used for greedy auctioning, i.e., stepwise selection of

coalitions and sequencing, but without necessarily selecting the local optimum. Addi-

tionally, random methods can directly produce complete solutions by simply selecting

an index that maps to a solution in the solution space.

67

Algorithm 11 Random Solution Method

1: procedure MAKERANDOM(M,Y)
2: Initialize S to the empty solution
3: for all y ∈ Y do
4: Randomly choose P as a subset of {y|y is assigned in S}
5: Randomly choose coalition Cy ⊆

⋃
Cm∀m ∈M such that Cy performs y

6: S ← S ⊕ (Cy, y) such that y is a child of all tasks in P
7: end for
8: return S
9: end procedure

Algorithm 12 Random Search

Require: CMTS problem (M,Y)
Ensure: A solution S∗ for (M,Y)

1: Initialize S∗ to the empty solution
2: while not isV alid(S∗) do
3: Let S∗ = MAKERANDOM(M,Y)
4: end while
5: return

This section presents three types of random algorithms. The first two are related

random algorithms that produce any type of solution graph either by selecting a

random solution from the complete solution space until a valid solution is chosen, or by

selecting a random solution from the solution space and “smartly” modifying it until

it is valid. Alternately, the third random approach only builds serial sequences similar

to the serial auction method, but without necessarily choosing the local optimum as

the preferred extension.

4.6.1 Random Search. The random search provides a simple approach

to solving a task assignment problem. The search produces solutions by a random

selection without using any information about a problem other than knowing which

items are selectable. There are no general parameters used to configure this algorithm

for developing a solution.

The simplest random search approach solves a CMTS problem in two phases.

First, for every task in the problem, a randomly selected subset of agent abilities

68

Algorithm 13 Smart Random Search

Require: CMTS problem (M,Y)
Require: Number of iterations N
Ensure: A solution S∗ for (M,Y)

1: for I = 1 doN
2: Initialize S to the empty solution
3: while not isV alid(S) do
4: Let S = MAKERANDOM(M,Y)
5: S ← REPAIR(S)
6: end while
7: if U(S) is better than U(S∗) then
8: S∗ ← S
9: end if

10: end for
11: return

that are able to perform a task are formed into a coalition for that task. Then, the

assignment is randomly placed as a child to any number of other assignments present

in a partial solution to determine when the task is to be performed. This method

is defined in Algorithm 11. Since the method does not necessarily construct several

branches of partial solutions, the matrix representation is used. The resulting matrix

is the solution to the problem. An algorithm to perform a random search for a CMTS

problem is provided in Algorithm 12.

Clearly, without some checking, the random search is likely to generate invalid

solutions when the problem involves constraints. One way to mitigate this concern

is to throw away the invalid solution and perform subsequent iterations until a valid

solution is produced. Invalid solutions are tracked so that they are not repeated to

avoid infinite looping. Or, the selection of random elements is restricted as tasks are

assigned so that invalid solutions are less likely to form. However, it is still possible to

generate an invalid partial solution which would again require invalid solution tracking

and subsequent iteration to find a valid solution.

Alternately, a “smarter” random algorithm, provided in Algorithm 13, performs

some checks through a repair mechanism used for the genetic algorithm described in

69

Section 4.7.1. The smart-random algorithm is still subject to invalid solutions, but

generally requires far fewer iterations to produce a solution.

Since this search relies on random selection, there is no guarantee for generating

an optimal solution. Quite often, the solutions are mediocre at best. However, the

solution generation time has a best case time ofO(1). The worst case isO(2|Y |(|X|+|Y |)),

the maximum size of the solution space, provided invalid solutions are tracked to avoid

infinite looping. The average case depends on the number of constraints involved in

the problem. With no constraints, the average case is the same as the best case, O(1);

with constraints the average case approaches the LUB (Equation 3.7) as the number

of constaints increase.

The poor performance in the presence of constraints and likely probability of

mediocre solution quality are the major drawbacks for using the random search. How-

ever, there are benefits to performing this search. In lightly constrained problems, the

solutions come quickly, i.e., few iterations are required to generate a valid solution.

This can be exploited by other algorithms that need a seed set of solutions, such as

the genetic algorithm (Section 4.7.1) or particle swarm optimization (Section 4.7.2).

Also, the results of this search can provide a benchmark to compare the quality of

other computationally intensive algorithms, such as the genetic algorithm, ant colony

optimization (Section 4.5.1) and reinforcement learning (Section 4.5.2). If the solution

quality of another algorithm does not statistically outweigh the quality of a random

selection, then the algorithm could be rejected based on increased computational

complexity.

4.6.2 Task Sequencer. The task sequencer provides another uninformed

search technique that is constructive in nature. It behaves more like a traditional

serial scheduling algorithm where all able agents perform tasks in some order. Similar

to the random search, this search also produces solutions without using any informa-

tion about a problem. With some heuristic information, this algorithm performs on

70

Algorithm 14 Task Sequencing Algorithm

Require: CMTS problem (M,Y)
Ensure: A solution S∗ for (M,Y)

1: Initialize S∗ to the empty solution
2: Let P be a task, initially null
3: Let Y = Y
4: while Y is not empty do
5: Let A = the set of assignments {(Cy, y)}, ∀y ∈ Y ,∀Cy 3 Cy performs y
6: Choose (Cy, y) ∈ A at random
7: S∗ ← S∗ ⊕ (Cy, y) such that y is a child of task P
8: P ← P ∪ y
9: Y ← Y \ {y}

10: end while
11: return

par with greedy Monte-Carlo or typical bin-packing methods. There are no general

parameters used to configure this algorithm for developing or choosing a solution.

The task sequencer approach solves a CMTS problem by producing a linear

graph where every task is assigned a complete coalition of non-conflicting agent abili-

ties that are able to perform that task. The order of the tasks is arbitrary determined

by random choice, provided task prerequisite constraints are met. This approach uses

the graph-based solution representation. The resulting linear graph is the solution

to the problem. An algorithm to perform task sequencing for a CMTS problem is

provided in Algorithm 14.

Similar to random search, the random sequencer is likely to generate invalid so-

lutions when the problem involves constraints. This is mitigated by tracking invalid

solutions and performing subsequent iterations until a valid solution is produced. If

possible, a permutation set of task orderings can be produced where invalid task

sequences are removed, and a final solution can be selected from the remaining can-

didates.

Since this search relies on random selection, there is no guarantee for generating

an optimal solution. The solution generation time has a best case time of O(1). The

worst case is O(|Y |!), the number of possible task orderings, provided invalid solutions

71

are tracked to avoid infinite looping. The average case depends on the number of

prerequisite constraints involved in the problem. With no constraints, the average

case is the same as the best case, O(1); with constraints the average case approaches

O(|Y |!) as the number of constaints increase.

The drawbacks for sequential scheduling include potentially poor solution qual-

ity and performance in the presence of constraints. The linear graph solutions also

fail to take advantage of concurrent task performance where two coalitions perform

independent tasks at the same time. This is only significant if the problem domain al-

lows for such situations. However, the benefits mirror those of the random algorithm:

a valid solution is generated in fewer iterations and the sequencer can be exploited by

other algorithms that need a seed set of solutions.

4.7 Solution-Space Algorithms

The next set of algorithms use domain value instances to guide solution search,

but do not construct a solution. Rather, they start with a set of complete, valid

solutions and modify them with a set of operators. Modifying a solution graph is not

particularly challenging, but incorporating the concepts behind these algorithms into

graph modifying operators is not easy. Thus, these algorithms use the matrix form of

a solution which is far easier to manipulate, and often is a better suited representation

for the defined operations.

Two algorithms presented here use evolutionary algorithm techniques to search

the multiagent task assignment solution space for best solutions. The first uses a

genetic algorithm (GA) to perform genetic crossover and mutation operations on a

set of solution-based chromosomes. The second, particle swarm optimization (PSO),

moves a set of solution-based particles in a field by vector-based attraction forces.

4.7.1 Genetic Algorithm. Evolutionary algorithms [6] provide many ap-

proaches to solving task assignment problems, such as the genetic algorithm (GA).

The GA converges an initial set of complete solutions to an optimal set through

72

Algorithm 15 Genetic Algorithm

Require: CMTS problem (M,Y)
Require: A population size N
Require: An iteration maximum T
Require: Mutation constant q0 ∈ [0, 1]
Ensure: A solution S∗ that is optimal for (M,Y)

1: Initialize population P0 with randomly constructed solutions
2: for t = 0 to T do
3: Rank Pt such that ∀pi, pj ∈ Pt, U(pi) is better than U(pj)

4: Select elitist population set E =
{
p1, . . . , p 1

4
N

}
5: Select reproducing population R =

{
p1, . . . , p 3

4
N

}
6: Initialize new population Pt+1 to E
7: for all member pi in R do
8: if random > q0 then
9: B Perform a mutation to p

10: Pt+1 ← Pt+1 ∪MUTATE(pi)
11: else
12: B Else, cross pi with another member
13: Randomly select pj ∈ R, i 6= j
14: Pt+1 ← Pt+1 ∪ CROSSOV ER(pi, pj)
15: end if
16: end for
17: Rank Pt+1 such that ∀pi, pj ∈ P ′, U(pi) is better than U(pj)
18: Pt+1 ← {p1, . . . , pN} ∈ Pt+1

19: B Check for stagnation
20: if best p∗ ∈ Pt is the same as the best p∗ ∈ Pt+1 then
21: increment stagnation count
22: else
23: reset stagnation count
24: end if
25: if stagnation count is above stagnation threshold then
26: Reset pk ∈ Pt+1, k > N/2 to a random solution
27: end if
28: end for
29: return S∗ = a solution in P such that U(S∗) is best

biologically-equivalent genetic methods based on genetic chromosomes. A chromo-

some, for a CMTS problem, represents an assignment solution. Through mutation

73

Algorithm 16 Genetic Algorithm Crossover Method

1: procedure CROSSOVER(p1, p2)
2: Randomly choose crossover point x
3: Create child solution c1 as p1 ⊗ p2

4: Create child solution c2 as p2 ⊗ p1

B Using a matrix solution form, the crossover is implemented by
5: Copy p1 → c1 and p2 → c2
6: Randomly choose 1 ≤ i ≤ |X|+ |Y | and 1 ≤ j ≤ |Y |
7: for m = i to |X|+ |Y | do
8: for n = j to |Y | do
9: B Crossover a block from alternate parent

10: c1,(m,n) ← p2,(m,n) and c2,(m,n) ← p1,(m,n)

11: end for
12: end for

13: B There is a good chance c1 and c2 are invalid, so repair them
14: c1 ← REPAIR(c1)
15: c2 ← REPAIR(c2)
16: return {c1, c2}
17: end procedure

and crossover operators, new chromosomes are formed from an existing population.

The fitness of a chromosome is measured through a given domain function.

The CMTS-ready genetic algorithm, listed in Algorithm 15, works identically to

existing GA implementations. The genetic chromosome represents an matrix-based

assignment solution. The fitness of a chromosome is measured through a function

of the utility value, U(S). The general process of the standard algorithm does not

change to be CMTS capable since the work is performed by defined genetic operators.

To begin, an initial population is required to seed the genetic process. For-

tunately, the random search and task sequencer algorithms, respectively in Sections

4.6.1 and 4.6.2, provide quick, albeit not very good, solutions to seed the population.

For some number of iterations or other termination criteria, members of the pop-

ulation, P , are subject to crossover and mutation operations to produce candidate

offspring for the next population generation, P ′.

74

The crossover operation, listed in Algorithm 16, selects two members of the

population P (the parents), and creates two new members (the children), which each

contain chromosomal information from the selected parents. Since the chromosomes

represent matrix-based solutions, the crossover operation defines a 2D point in the

matrix solution to define an upper section and a lower section. The operation creates

the children by copying the upper portion of the first parent to the first child, the

lower portion of the first parent to the second child, the upper portion of the second

parent to the second child, and the lower portion of the second parent to the first

child. This way, each child contains a portion of each parent.

Mutation, listed in Algorithm 18, is much simpler. One form of mutation is to

add or remove an ability from a task coalition. Alternately, the sequence of tasks is

changed by a rearrangement or change of parent assignments. Either method only

requires a single digit flip in the matrix-based representation.

Unfortunately, the operations can generate invalid solutions due to constraint

violations. Mutation causes potential coalition conflicts where a newly assigned ability

causes an inhibitor violation or bound abilities to be present in overlapping tasks, or

potential prerequisite errors caused by changed task sequences. Crossover operations

can cause task duplication errors as well as any of the errors created through mutation.

Since two members of P are independent assignment solutions, swapping portions of

the schedule does not guarantee that the agents of a newly acquired sequence are

free for assignment nor that tasks in the new sequence still require assignment. This

causes task duplication errors such as a task being assigned more than once.

This is mitigated by incorporating a pessimistic genetic repair operator, defined

in Algorithm 19, which chooses to repair errors by non-deterministically changing

the offending assignment or sequence order. The repair function implements a four-

step process to correct violations of the constraints in Table 3.1. First, any cycles

that have formed are broken by randomly removing a link in the cycle. Then, missing

prerequisites sequentially swap into the ancestry of any task with prerequisites that are

75

Algorithm 17 Task Sequence Parent-Child Swap Method

1: procedure SWAP(y, y′, S)
Require: (Cy, y) is parent of (Cy′ , y

′)
2: Let S ′ be a copy of S
3: B Step 1: Clear all sequences
4: Remove all sequence edges (Cyi

, yi)→ (Cyj
, yj) in S ′

5: B Step 2: Set child as parent
6: Add edge (Cy′ , y

′)→ (Cy, y) to S ′

7: B Step 3: Restore relationships not starting from y and y′

8: for all edges (Cyi
, yi)→ (Cyj

, yj) in S do
9: if yi 6= y or y′ and yj 6= y or y′ then

10: Add edge (Cyi
, yi)→ (Cyj

, yj) in S ′

11: end if
12: end for

13: B Step 4: Set parents of (Cy, y) to parent children of (Cy, y)
14: for all (Cyi

, yi) ∈ parent((Cy, y)) do
15: for all (Cyj

, yj) ∈ child((Cy, y)) do
16: Add edge (Cyi

, yi)→ (Cyj
, yj) in S ′

17: end for
18: end for

19: B Step 5: Set parent (Cy, y) as parent of child (Cy′ , y
′)’s children

20: for all (Cyj
, yj) ∈ child((Cy′ , y

′)) do
21: Add edge (Cy, y)→ (Cyj

, yj) in S ′

22: end for
23: return Solution S ′

24: end procedure

not met. Third, it repairs inhibitor and binding errors in coalitions. Inhibitor errors

are fixed by removing any agents that become inhibited. Binding errors are repaired by

moving an assignment randomly into the descendancy of the overlapping assignment.

Finally, every task that does not have its requirements met by the assigned coalition

gains a larger coalition that can perform the task.

Unfortunately, some measures used to correct an invalidated constraint cause

another invalidation. For example, moving an assignment to fix a binding error may

cause a new cyclic error. The repair process is then selectively reapplied until it is

76

Algorithm 18 Genetic Algorithm Mutation Method

1: procedure MUTATE(p)
2: Initialize p′ to p
3: Choose task y in p′ to. . .
4: if randomly choose to change coalition then
5: B This mutation changes the coalition assignment of a random task
6: Option 1: Remove any coalition member that duplicates a requirement
7: Option 2: Add any available ability that duplicates a requirement
8: else
9: B This mutation changes the order of tasks

10: Option 1: Remove any child if y has children
11: Option 2: Add any other task as a child
12: Option 3: Swap a parent with a child
13: end if

14: B There is a good chance p′ is invalid, so repair it
15: p′ ← REPAIR(p′)
16: return p′

17: end procedure

unable to correct a solution. Then, the solution is rejected from the candidate pool

for the next population generation.

A new population of offspring can be produced in a variety of ways [6]. This

approach uses a fixed size population where the new population consists of highly fit

members of the original population and genetically altered members of the top 75%

of members. The bottom 25% of the prior generation are not allowed to contribute to

future solutions, and the middle 50% contribute genetic building blocks only through

genetic operators. The best suited members represent the next generation P ′ which

becomes the standard population P at the end of each iteration.

This process iterates for some fixed number of iterations or until the population

shows excessive stagnation. A stagnant population occurs when the values of the

best and worst members are equal. When some number of iterations occurs with

a stagnant population, the lower-valued half of the population is replaced by new

randomly generated chromosomes. This forces exploration of the solution space. The

algorithm is converged once stagnation is not effectively relieved by a new population.

77

Algorithm 19 Genetic Algorithm Repair Method

1: procedure REPAIR(p)
2: Perform steps 1 - 4 for elements of member p
3: B Step 1: Break any sequence cycles/self-loops
4: while exists P = path((Cy, y), (Cy, y)), any path from a task to itself do
5: if len(P) > 1 then
6: Choose (Cyk

, yk) ∈ P) 3 2 ≤ k ≤ len(P)
7: Remove edge between (Cyk−1

, yk−1) and (Cyk
, yk)

8: else
9: Remove edge between (Cy, y) and itself

10: end if
11: end while

12: B Step 2: Ensure prerequisites are met
13: for all tasks y do
14: while ∃path(. . . , y, . . . , y′ ∈ Py, . . .) do
15: Swap (Cy′ , y

′) sequentially with a preceding parent task using SWAP
16: end while
17: end for

18: B Step 3: Ensure no inhibiting or separated abilities
19: for all coalitions Cy 3 ∃xi ∈ Cy 3 Hxi

⋂
Cy 6= ∅ do

20: Cy ← Cy \Hxi

⋂
Cy

21: B This may need repair handled by step 4
22: end for
23: while Exists a separated bound ability concurrently performing task Cy′ do
24: Move (Cy′ , y

′) as a child of (Cy, y) which contains the binding ability
25: Break any loops that may be created with step 1
26: end while

27: B Step 4: Ensure all task requirements are met
28: while exists Cy that does not meet the requirements of y do
29: Let A be the set of all abilities in the ancestor set of (Cy, y)
30: if A 6= ∅ then
31: B Add every available ability that performs the missing requirement
32: Cy ← Cy

⋃
{x ∈ A 3 x performs an unassigned requirement of y}

33: else
34: B Add every ability that performs the missing requirement and fix
35: Cy ← Cy

⋃
{x ∈ X 3 x performs an unassigned requirement of y}

36: Repair bounded ability errors with step 3
37: end if
38: end while
39: end procedure

78

The drawbacks to using a GA are the complexity of the repair function and

potentially slow convergence rates [89]. The continual repair of members when using

a large population greatly increases the computational processing time required to

iterate solutions. And, GAs sometime require several tens of thousands of iterations

to approach the optimal Pareto front within a specific error bound. However, a key

benefit of using GAs is that multiple correct solutions are available at any given

moment. So, a supervised task assignment GA algorithm offers a choice of solutions

at any time, allowing the GA to perform as an anytime algorithm. Also, the GA

produces optimal solutions over infinite time, so there is little concern for divergence.

4.7.2 Particle Swarm Optimization. Particle swarm optimization (PSO) [61]

provides another evolutionary-based solution-space search. PSO, like a GA, begins

with a population of solutions and creates new solutions by modifying the existing

set. However, the modifications are based on vector algebra or potential fields. Es-

sentially, each particle represents an assignment solution which occupies a position in

n-dimensional field. The particle is moved in this space by adding calculated vectors

to the best seen overall solution position and best seen solution by the particle to the

particle’s own velocity in the field.

Ideally, each particle begins with a zero velocity component and uses its initial

position to represent its best seen solution. The initial global best solution is deter-

mined by selecting the best ranked solution based on their utility value. Then the

particle is moved by adding the weighted difference between the current position with

the best seen particle position, the weighted difference between the current position

and the global best position, and the current particle’s velocity. Equation 4.6 formally

shows the update equation for moving a particle Ak given the local best A+ and global

best A∗.

A′k = Ak + vk + c · rl
(
A+ − Ak

)
+ (1− c) · rg (A∗ − Ak) (4.6)

79

Algorithm 20 PSO Algorithm

Require: CMTS problem (M,Y)
Require: A population size N
Require: An iteration maximum T
Ensure: A solution S∗ that is optimal for (M,Y)

1: Initialize population P with randomly constructed solutions
2: Rank P such that ∀pi, pj ∈ Pt, U(pi) is better than U(pj)
3: Let S∗ = the solution in P such that U(S∗) is best
4: for t = 0 to T do
5: for all member p in P do
6: B Move the particle by reducing the Hamming distance from p to S∗ by 1
7: Randomly select element in p different in value from same element in S∗

8: if no elements differ then
9: Set p to a random solution

10: else
11: Change that element in p to match the value in S∗

12: end if
B Using the matrix form

13: Let ∆ = {(i, j) ∈ p 3 p(i, j) 6= S∗(i, j)
14: if ∆ = ∅ then
15: Set p to a random solution
16: else
17: Randomly select (i, j) ∈ ∆
18: Set p(i, j) = S∗(i, j)
19: end if
20: end for

21: Rank P such that ∀pi, pj ∈ Pt, U(pi) is better than U(pj)
22: Let S∗ = the solution in P such that U(S∗) is best
23: end for
24: return S∗ = a solution in P such that U(S∗) is best

The difference between solutions is weighted by two parameters each, a cognitive

parameter c and a random fluctuation parameter r. The cognitive parameter, c ∈

[0, 1], allows a particle to be more influenced by the group or by itself. The higher

the parameter, the more it prefers the group influence. Two random fluctuation

parameters, rl and rg, provide for exploration in the local neighborhood of best seen

solutions to find potential improvements.

80

Particles continue to move within the field until the majority are within a pre-

defined radius of the global best solution. The global and local best solutions are

reevaluated at each iteration using U(S) and the ranking metric. Finally, the global

best solution then represents the final solution for the problem.

A CMTS-ready PSO algorithm, Algorithm 20, operates similarly using the

matrix-based solution representation. The matrix solution represents a high dimen-

sion binary field that particles occupy. However, there are some significant limitations

due to the way relational constraints shape the search space. First, the velocity vec-

tor representing the difference in solution positions is not necessarily a binary matrix

because negative entries are possible. Likewise, multiplication by real-valued weights

c and r place the particle solution in real space versus binary. This would force

constant corrections by rounding values to the nearest appropriate binary value. Un-

fortunately, the rounding process loses significant information that causes solutions

to get “stuck” in positions that require dramatic velocity changes in order to move in

the search space.

In order to alleviate this limiting effect, velocity for the binary matrix in this

algorithm is represented by Hamming distance instead of Cartesian distance. A ve-

locity of one indicates a change of one value in the particle’s position. Thus, the

distance from one particle to another particle is the number of different elements in

the two solutions. As long as the Hamming distance between a particle’s solution and

the global solution is decreasing, the particle is considered to be moving towards the

global solution. Likewise for the local best seen solution.

Since the only rational change in the solution has a necessary magnitude of one,

the cognitive and random weights lose their meaning as scalar weights. The algorithm

accommodates the concepts behind the weights by setting the cognitive parameter to

zero and allowing particles to randomly select which element to change to reduce the

Hamming distance to the global solution. With a cognitive parameter of zero, all

81

particles are directed to move only towards the global best solution and disregard

their own best position.

This behavior is acceptable since, by simple trials, most velocity changes made

by a particle create an invalid solution due to some type of constraint. Instead of

attempting to repair these solutions, the particle is allowed to exist in invalid space

since it is guaranteed to return to the valid solution space in subsequent moves.

Though, this may not happen until the particle reaches the global best solution.

Otherwise, the particle may find pockets of valid solution space to report new solution

utility values.

Finally, the traditional PSO has the particle swarming around the global solu-

tion, but this is not acceptable for a constrained binary space. Instead, once a particle

reaches the global best solution, it is reset to another position in the solution space,

potentially invalid, similar to the way a particle fountain system works. This approach

is consistent with other PSO implementations for different problems [50, 61, 127]. A

final solution is provided after a maximum number of iterations are performed or

when the global best solution has not changed for some number of iterations.

The PSO algorithm operates quickly using relatively few resources. Since it

deals with a pool of solutions, it can provide solution quickly making it an anytime

algorithm. However, its most significant drawback is managing particles stuck in

invalid solution subspaces since problem constraints have a significant effect on the

shape of the field for matrix-based solutions (Section 3.3). This effectively limits the

amount of valid searching the PSO system provides, possibly making the algorithm

equivalent to trial and error searching.

4.8 Alternative Approaches

The algorithms described in the previous sections represent a wide range of

approaches to solving the multiagent task assignment problem. However, they are not

a comprehensive set of approaches to solving the problem. This section presents a few

82

more approaches that share similar characteristics to the featured implementations,

but not enough difference to warrant thorough testing.

Integer linear programming (ILP) [89], closely related to dynamic programming,

is heavily used in the operations research field to solve task assignment problems.

The techniques behind ILP for task assignment generally work similar to the class

of quadratic assignment algorithms and use a binary matrix structure to indicate as-

signments. This approach is similar to methods used by particle swarm optimization,

genetic algorithms and ant systems. Values are built up through an iterative process

until feasible solutions emerge while minding different types of constraints. ILP, like

its evolutionary counterparts, is not guaranteed to find the optimal solution. Further,

it is resource conservative, but most implementations do not perform in the role of

an anytime algorithm.

Alternately, a genetic programming (GP) [6] approach can be used since the

native solutions are graphs. A narrow-width beam search algorithm seeds the initial

population with solutions, and the GP applies genetic operations directly on the graph

representation of a solution in a tree representation rather than matrix representation.

There is less concern for invalid solutions since the genetic operators work within

the context of the solution instead of an abstract representation. However, a repair

function is still needed for a graph represention to correct some constraint-violating

changes. However, designing graph-based genetic operations that adequately produce

a variety of offspring is technically challenging.

Finally, simulated annealing (SA) [23] and tabu search (TS) [47] perform solution-

space searches using the matrix-based representation of a solution similar to PSO. A

SA or TS approach makes minor alterations to a solution similar to the genetic opera-

tors used for the GA to generate a new set of solutions. Based on the utility values of

neighboring solutions, these searches accept the better solution as a new search point.

TS would keep a set of search points versus SA, which only keeps the best. The tricky

aspect about performing these searches is in clearly defining what is a neighbor. If

83

defined as any change in the assigned coalition or task sequencing, then there are

a factorial number of neighbors as identified by breadth first search node expansion

(Section 4.2.1). For a large problem, selecting the appropriate neighbors would need

to be streamlined to make either SA or TS viable for solving CMTS problems. This

does occur in PSO, which modifies its solution by one element, but it does not keep a

list of potential neighboring solutions, nor does it select the modification that results

in the most beneficial move since it operates in invalid solution space.

4.9 Solving Problems With Uncertain Information

One important approach to solving multiagent task assignment problems is to

be able to handle uncertainty in the environment. A common approach in task assign-

ment is to use a partially-observable Markov decision process (POMDP) model [110].

Some of the methods mentioned in Section 2.2 show how to apply the POMDP to

the multiagent problem. Generally, the models only apply to either the coalition

structure or the task sequencing, but not both. Since the CMTS representation en-

capsulates both coalition formation and task sequencing into one representation, a

POMDP model for the CMTS problem or algorithms then handles uncertainty for

both aspects of the problem.

The POMDP model, derived from [60], is defined as the tuple (PS, PA, T , Ω, R,

O), for a finite set of states, PS, and discrete actions, PA, that transition from one state

to another. T is a transition function defining the probability of moving to a state from

some state based on a selected action represented as T (st+1, at, st) = Pr(st+1|at, st). Ω

is a finite set of observations related to states in PS where members of the observations

set, o ∈ Ω, are representative of states that have incomplete or noisy information. O

defines the probability of having some observation based on the state generated by

some action, represented as O(st+1, at, ot+1) = Pr(ot+1|at, st+1). R defines a reward

for being in some state after having taken an action.

Essential to the POMDP model, as related to the multiagent problem, are agent

beliefs about the state that it is in. The belief states for a probability distribution

84

over the state space PS are derived by calculating the probability that the agent is in

a state given the history of observations o ∈ O and actions a ∈ PA taken. The belief

probability distribution defining bt(st) is given in Equation 4.7.

bt+1(st+1) = Pr(st+1|ot, at, bt)→
O(st+1, at, ot)

∑
s∈PS

T (s, at, st+1)bt(s)

Pr(ot|at, bt)
(4.7)

The POMDP model is applied to the CMTS problem by defining the finite set

of states PS as the set of all partial and complete solutions. This set is finite as it

is bounded by the maximum upper bound (UB) given in Equation 3.6. The set of

actions is represented by the addition of either one coalition member or setting one

assignment as a child in the task sequence. These actions are represented by the set

of all matrices having a Hamming distance of one from the empty solution. Since

the matrix representation of a solution is bound by the number of agent abilities and

tasks, the number of matrices having a Hamming distance of one is finite. Precisely,

there are |Y |(|X|+ |Y |) such matrices for a problem containing |X| agent abilities and

|Y | tasks. The action set also includes the null action which is useful for indicating

solution terminal points.

The transition probability T for CMTS defines the probability of reaching a

valid (partial) solution from an action as a uniform distribution over the number of

valid actions. The transition probability to invalid solutions is zero since it should

not be considered, or even believed, to be reachable. So, define T by Equation 4.8.

T (st, at, st+1) =

1

valid (partial) solutions
if st+1 results in a valid solution

0 otherwise

(4.8)

The set of observations Ω can be defined in many ways. For uncertainty in the

coalition set, the observation set includes only the portion of the coalition where an

agent can contribute an ability over every possible task sequence. Complementary,

for uncertainty in the task sequencing, the observation set includes every possible

85

coalition set for each task, but no task sequencing. The most encompassing approach

is to use the intersection of these observation sets which is each agent accounting only

for its abilities in a coalition and having no task sequence information. The last two

definitions are somewhat problematic in an implementation since no task sequencing

in a matrix representation can appear the same as the solution where all tasks are

concurrently executed. The implementation for this research includes a special null

task sequence to differentiate the representations.

The probability transition function, O, for CMTS problems then depends on

which observation set is chosen. For the encompassing option, the transition function

measures the probability of making an observation as the uniform probability dis-

tribution over the number of solutions containing a non-empty intersection between

each assigned coalition and the abilities an agent has. For example, if an agent has

two abilities, but only one is assigned in a coalition, then the probability of observing

a solution with only the one ability assigned is the number of solutions that have the

one ability assigned and the other not assigned over the total number of coalitions.

Thus, the observation transition probability function, expressed in Equation 4.9, re-

duces to the number of solutions that contain the specific subcoalition offered by an

agent m ∈M as the total number of coalitions made by other agent abilities X. The

observation transition probability functions for uncertainty only in the coalition set

or task sequence are similarly derived, but not used in this research.

O(st+1, at, ot+1) = Pr(ot+1|at, st + 1) =
1

2|X|−|Cm|
(4.9)

The reward for a POMDP solution to a CMTS problem is the utility value of

the solution represented by the state if the solution is complete. If the state represents

a partial solution, then the reward is zero. However, since it is possible to extend a

complete solution into another complete solution, a non-zero reward is only offered

when having selected the null action.

86

The final POMDP component for CMTS is the belief state. Modifying Equation

4.7 by replacing T and O with Equations 4.8 and 4.9 respectively derives the proper

belief state probability. The factor in the denominator, Pr(ot|at, bt), is a normalization

value used to ensure that the belief state remains a valid probability distribution

over the entire state space. Using the encompassing observation set, this probability

is defined as one over the number of actions that can change the observation, or

1/
(
2|Y ||Cm| − 1

)
for |Y | tasks.

With these formulas, the POMDP version of a CMTS is solved using value

iteration [60,110]. The value function used for this research uses the policy-dynamics

“Win or Learn Fast” (PDWoLF) [8] gradient descent based policy value iteration

function, equivalent to Equation 4.3 described in Section 4.5.2. The value iteration

converges to an optimal policy over infinite time based on stochastic action selection.

The solution is the policy state that is maximal over all states.

However, the computational requirements of the model, in addition to main-

taining a policy that grows asymptotically with the power set of the number of ca-

pabilities and tasks, can be overwhelming. Alternate approaches have managed to

control the size of the policy using state space folding [41, 55] with experiments con-

taining hundreds of millions of states to solve the coalition assignment component.

When incorporating task sequencing, only very small problems contain less than 109

states which is roughly equivalent to a moderately constrained four-ability, six-task

problem. Other techniques bound the computational complexity with correlation [10]

or through other types of value iteration methods [99].

More importantly, the main benefit to using this approach is the incorporation

of uncertainty in deriving solutions, under the Markov assumption. This is often the

case in real world problems: agents may not know what the abilities of another agent

are, or that actual order of tasks may not be resolved until the solution is completely

assembled. But, this approach also fundamentally breaks the problem down into

agent-centric views of the solving problem, as though the problem were decomposed

87

Table 4.1: Summary of CMTS-ready Algorithms.

Algorithm Search
Method

Iterates Heuristic Optimal Resource
Usage

Smart Random construct yes no no O(1)
Sequencer construct no no no O(1)
Serial Auction construct no no no variable
Concurrent Auction construct no no no variable
Breadth-first Search construct no no yes variable
Depth-first Search construct no no yes variable
A* construct no yes yes† variable
Beam Search construct no yes no fixed, O(n)
Value Beam Search construct no yes no variable
Ant Colony Opt. construct yes yes no fixed, O(2n)
Reinforcement Learning construct yes yes no‡ fixed, O(2n)
Genetic Algorithm soln-space yes yes no‡ fixed, O(n)
Particle Swarm Opt. soln-space yes yes no‡ fixed, O(n)
Value Iteration soln-space yes yes no‡ fixed, O(2n)

†- Algorithm finds optimal solution with an admissible heuristic.
‡- Algorithm finds optimal solution with infinite time.

and solved individually by the agents. This hints that the CMTS problem, in general,

can be solved using a distributed process.

4.10 Summary

The algorithms presented in this work, as shown in Figure 4.1, extend algorithms

previously applied to the multiagent task assignment problem to use the CMTS prob-

lem description. The methods include generation of optimal solutions through the use

of tree-based searches such as DFS and A*, or apply heuristic techniques to generate

approximated solutions such as beam search, ACO, RL. Also included are economic-

based auctioning methods and evolutionary approaches, including GA and PSO. The

CMTS problem is also solvable by using a POMDP model when uncertainties are

present in the problem domain.

Each algorithm provides a unique way of generating solutions either by con-

struction of a solution one task at a time, or by using complete solutions to generate

new solution points. The impact of the different search techniques used by these algo-

88

rithms only becomes apparent through testing. However, many of the algorithms are

only applicable for small problems since their resource requirements are high. Table

4.1 summarizes the characteristics of these algorithms, including their resource us-

age. In general, the algorithms that find the better solutions tend to have the worst

scalability. This leaves the ultimate trade-off as reducing solution quality in favor of

solving larger problems. Unfortunately, the larger the problem, the lower the solution

quality. The most appropriate way to leverage this trade-off is to use a distributed

system.

89

V. Distributed Methods

To improve the efficiency of solving complex multiagent task assignment problems,

the unified framework includes distributed processing approaches. The approaches

are based upon applying one of two decomposition strategies to reduce the size of

the solution space: solution space or problem space decomposition. Then, for either

strategy are a number of techniques for managing the solution process for finding the

best solution. Collectively, these processes demonstrate how to generate approximate

and optimal solutions to CMTS problems with opportunities to increase efficiency

using one or a combination of the algorithms from Chapter IV.

5.1 Decomposition Strategies

There are two decomposition strategies associated with CMTS problems. First,

the finite-sized solution space associated with the problem is decomposed into granular

subspace chunks with search algorithms applied to each subspace. This only increases

the efficiency of the overall process if the subspaces are being searched concurrently.

For properly sized subspaces and enough available processors, the increased efficiency

can be significant. However, this strategy does not necessarily take advantage of the

efficiency of the algorithms searching the subspaces. So it is possible that a heuris-

tic algorithm could search the whole space more efficiently than several subspaces

concurrently. Section 5.5 discusses the advantages to using this approach.

The alternate strategy is to decompose the CMTS problem space into smaller

subproblems and solve those independently. This involves selecting subsets of agents

and/or tasks to form a subproblem within the domain. Solutions to these subproblems

are recombined through another algorithmic technique to generate an answer to the

overall problem. There are a number of ways to perform problem-space decomposition

and the associated recombination process as explained in the next couple of sections.

90

Figure 5.1: Problem Instance For Decomposition.

5.2 Problem Decomposition

The constrained multiagent task scheduling (CMTS) problem description pro-

vides several opportunities for decomposition. Since the problem is organized in

terms of agents and tasks mapped to a set of domain operations, any one of these

three elements forms a basis for decomposition. These breakdowns create a number

of subproblems dependent on the number of elements in the set used to break down

the problem. For example, a decomposition of a problem with five agents creates

five subproblems; if there were only three agents, then three subproblems. Since the

number of subproblems may not equal the number of distributed nodes in the cluster,

a fourth type of decomposition is based on creating an equal number of subproblems

as there are processors.

5.2.1 By Agent. The first approach to decomposing a CMTS problem is to

create subproblems that single out the abilities of an agent. For every agent, a new

subproblem is created where only that agent is available. Every task that requires one

of the domain operations provided by an ability of the agent belongs in the subproblem

task set. The resulting problem is based on a one-to-many agent-task decomposition.

The inherent problem with this decomposition is that possible agent inhibition

or binding constraints are lost. To correct this, any other agent ability that performs

any of the domain operations as the chosen agent are included. This potentially

expands the problem back into a many-to-many agent-task subproblem where many

91

other agents perform the same operations. If every other agent performs at least one

of the same operations, then the subproblem is not reduced. However, if no other

agent performs any of the operations of the chosen agent, then the decomposition

successfully reduces the problem space complexity of the overall problem by one agent.

The problem shown in Figure 5.1 decomposes into four subproblems, one for

each agent. The problems before additional relational constraints are reintroduced:

[m1]×[y1, y2, y3, y4]

[m2]×[y1, y2, y3, y4]

[m3]×[y1, y2, y3, y4]

[m4]×[y3, y4]

5.2.2 By Task. Alternately, the problem can be decomposed by task.

This decomposition requires a new subproblem for each task resulting in many-to-

one agent-task based subproblems. Every agent that has an ability that performs a

requirement the task is included in the agent set. Since this is equivalent to coali-

tion assignment (there is only one task so pick the best coalition), recomposing this

problem is equivalent to the serial auction method.

The central issue with this decomposition is that possible task ordering con-

straints (prerequisites) are lost. This is corrected by including every prerequisite task

in the task set, potentially expanding the problem to a many-to-many agent-task

problem. Prerequisites of the prerequisites are not needed since resolution occurs

with the recomposer. The only case where one of the subproblems matches the orig-

inal problem is if the task has a prerequisite set containing every other task and

requires every agent. Although there is only one location to place the task, in this

case, at the end of the sequence, the algorithm designated to solve this problem is

still faced with sequencing the remaining tasks.

Figure 5.1 also decomposes into four subproblems for the task decomposition

method, one for each task. The problems before additional relational constraints are

reintroduced:

92

[m1,m2,m3]×[y1]

[m1,m2,m3]×[y2]

[m1,m2,m3,m4]×[y3]

[m1,m2,m3,m4]×[y4]

5.2.3 By Operation. The third decomposition method divides a problem

based on its domain operations. A new subproblem is created for each domain oper-

ation. Every task that requires an operation belongs in the task set, and every agent

that has an ability that performs the operation also belongs in the agent set. This

decomposition is more likely to create smaller many-to-many agent-task subproblems

rather than isolate an agent or task. If optimally decomposed, this method isolates

completely independent operations that can be concurrently performed.

Since the selection of agents is based on operations, the problem seen with agent

decomposition is already managed for operation-based decomposition. However, there

is still the opportunity to lose prerequisite information. The corrective action is to add

the prerequisites of each task into the problem as prescribed by the task decomposition

method.

Figure 5.1 only decomposes into three subproblems for the operation-based de-

composition method, one for each operation. The problems before additional rela-

tional constraints are reintroduced:

d1 : [m1,m2]×[y1, y2, y4]

d2 : [m1,m3]×[y1, y2, y3, y4]

d3 : [m2,m3,m4]×[y3, y4]

5.2.4 By System Size. The final approach for decomposing a problem in-

volves decomposing both agents and tasks into subsets based on the number of pro-

cessing nodes used by the distributed system. To create k subproblems (one for each

of k processing nodes) from a problem with agent set M and task set Y , |M |/k+ δM

agents and |Y |/k+δY tasks, δM , δY≥ 0, are sequentially selected for each subproblem.

The δ bias controls how much overlap there is between problems. A bias greater than

93

one ensures that there is some overlap between subproblems which forces some task

assignment decisions to be examined by more than one processing algorithm. This is

useful for getting second or more “opinions” about an assignment since entities are

not likely to appear in another subproblem if the bias is zero.

This decomposition produces a fixed-size number of many-to-many problems

with overlap. However, it has all of the troubles from the other three decompositions:

it can lose agent inhibition information, binding information, and task ordering con-

straints. To correct this, all prerequisites of tasks in the subproblem are added, and

an agent ability that can perform a missing operation requirement is chosen at ran-

dom to cover the task that requires the operation. After the additions, the resulting

subproblems may grow back to original size. Such a situation primarily occurs when

a task has a prerequisite set that contains all other tasks.

For a three- or four- node system with δM = δY = 2, Figure 5.1 decomposes iden-

tically into three subproblems. The problems are {[m1,m2]× [y1, y2, y4]}, {[m1,m3]×

[y1, y2, y3, y4]}, and {[m2,m3,m4]×[y3, y4]} before additional relational constraints are

reintroduced. When extended to a five-node system, the problem decomposes into

duplicate pairs of {[m1,m2]× [y1, y2]} and {[m3,m4]× [y3, y4]} subproblems. On the

other hand, with δM = 2 and δY = 3, the five-node system decomposes into a more

interesting set of subproblems:

[m1,m2]×[y1, y2, y3]

[m3,m4]×[y4, y1, y2]

[m1,m2]×[y1, y3, y4]

[m3,m4]×[y2, y3, y4]

[m1,m2]×[y1, y2, y3]

Also note, that for a two-node system, the problem decomposes into duplicate

pairs of the original problem.

94

5.3 Problem Recomposition

Once each of the distributed solvers generates a subsolution to their subprob-

lem, the results are combined into a complete solution through a majority-takes-all

approach. Three statistics are collected about the subsolutions in reference to the

complete solution based on every coalition membership and task sequence entry of a

matrix representation: the number of subsolutions that want the relationship (indi-

cated by a one in the subsolution), the number of subsolutions that do not want the

relationship (indicated by a zero in the subsolution), and the number of subsolutions

that do not consider the relationship (indicated by the coalition ability or task not

being in the subsolution).

Let W , NW and NC be integer matrices equivalent in structure to the complete

solution respectively representing the number of subsolutions wanting, not wanting

and not considering elements of the problem domain. The total number of votes

across each (i, j) in the matrices must sum to the total number of subsolutions; i.e.,

for k subsolutions, W (i, j) +NW (i, j) +NC(i, j) = k.

The status of a relationship in the final solution is determined by the higher vote

between W and NW . If the number of subsolutions wanting a relation is greater than

the number not wanting a relationship, W (i, j) > NW (i, j), then the relationship is

established. Conversely, if W (i, j) < NW (i, j) then the relationship is not established.

But, if there are equal numbers of votes, then the relationship is in dispute.

There are many ways to resolve disputed relationships. One is to qualify each

subsolution with a metric that can uniquely rank the subsolutions. One such metric

is to use the utility value U(Ai) of the subsolutions. This value is immediately avail-

able, but is heavily influenced by the decomposition of the problem. Another metric

is to track how many votes were accepted in the non-disputed relationships. Yet, a

better measure is to accept the result of a subsolution from a larger subproblem since

that solution has likely searched a broader section of the solution space. The subso-

lution with the better metric is considered a better source to resolve the dispute, and

95

that subsolution’s relationship is the accepted relationship for the complete problem.

Random selection can be used to break further ties.

Alternately, the elements not involved in a dispute are frozen in place, and each

of the distributed solvers re-accomplishes a subsolution for only the components that

are in dispute. This effectively gives hints to the algorithms on how to build a better

schedule with several additional assignment constraints put into place from frozen

portions of a solution. The additional constraints significantly reduce the problem

graph size making subsequent scheduling processes faster. And, the hints may help

guide algorithms towards better assignment selection similar to a local search option.

The updated subsolutions are then submitted to the voting process to recom-

bine a final solution. If disputes continue to arise, then all non-disputes in the new

subsolutions are frozen and a new set of subsolutions is generated for the decreased

set of disputed elements. This process continues until there are no more disputes,

or that some relationships cannot be settled, in which case a random or informed

selection settles the matter.

5.4 A Distributed Processing Meta-Heuristic

The process of generating a solution differs from traditional methods where dis-

tributed processes use a distributed form of a single algorithm to develop solutions.

The method used here allows for any collection of CMTS algorithms to provide a

scheduling solution to a distributed process. The approach still supports using tradi-

tional methods by having each distributed process use the same algorithm to develop

solutions, but using multiple algorithms across the processes aims to exploit the char-

acteristics that make the algorithms excel in generating solutions. For example, a

narrow-width beam search with a random search minimizes memory consumption

while finding solutions quickly with decent exploration of the search space. Then, the

sub-solutions developed by each is combined to provide a single solution.

96

Algorithm 21 Distributed Scheduling Process

Require: CMTS problem (M,Y)
Ensure: S∗ as the solution

1: Let P represent a set of subproblems to (M,Y)
2: Let S represent a set of subsolutions to problem (M,Y)
3: Let S+ represent a complete solution to problem (M,Y), initially empty
4: Decompose problem (M,Y) into a set of subproblems P = {P1, P2, . . . , Pn} (Sec-

tion 5.2)
5: while Solution S+ is not completely locked or maximum iterations exceeded do
6: for all subproblems Pi ∈ P do
7: Generate solution Si by solving Pi locked by S+ with any CMTS algorithm
8: end for
9: Recompose solution S+ from solutions in S (Section 5.3)

10: Optional: Score solutions Si based on recomposition S+

11: Lock agreed elements of S+

12: end while
13: return S∗ ← S+ as the final solution

Based on the methods used for decomposing and recomposing solutions, the dis-

tributed meta-heuristic, shown in Algorithm 21, is as follows. For a set of k solvers,

decompose the CMTS problem P into k subproblems using any one of the four decom-

position methods presented in Section 5.2, making adjustments as necessary. Issue

subproblem Pi to solver Si for a subsolution. In turn, each solver returns subsolution

Ai. The subsolutions are recombined with the method described in Section 5.3 using

the best-voting heuristic as the ranking strategy. Non-disputed elements are locked

and the resulting solution is iteratively redistributed to the problem solvers until no

further disputes appear. This basic approach generates an agreed, complete solution

for problem P .

Furthermore, minor additions can be made to potentially improve the solu-

tion process. One improvement is to pass along a subsolution metric to the solver

that generated it. By using the metric as a measure of comparable performance,

underperforming algorithms reconfigure their parameters in order to generate better

subsolutions for future problems. Alternately, the metrics of the entire group are

shared so that algorithms can match parameters with better performing algorithms.

97

For example, if a value beam search of 50% is more agreeable than a value beam search

of 20%, the latter search algorithm should increase its percentage parameter. This

approach is used in weighted strategy sharing algorithms [1,2,24,34] for reinforcement

learning while optimizing multiagent problems.

5.5 Distributed Methods For Generating Optimal Solutions

To get an optimal solution to a CMTS problem in a distributed system, the

system must be able to evaluate every possible solution and compare the utility values

of those solutions. The distributed meta-heuristic operates by generating a solution

from decomposing the problem into subproblems. This approach does not necessarily

reach every point of the solution space, so the distributed process is not guaranteed

to provide an optimal solution.

In order to guarantee an optimal solution, a CMTS-ready distributed approach

must instead partition the solution space, not the problem space. Since the solution

space effectively is arranged on a two-dimensional discrete grid, any mechanism of

partitioning the grid into k subspaces allows for parallel processing of the problem

on k processors. Essentially, a processor evaluates every solution in a subspace and

reports the best utility value to a master process. The master process then compares

the best value of each process to determine which holds the optimal solution to the

problem.

One partitioning scheme forms subspaces by assuming the first assignment in

the solution and constructing the rest of a solution tree with a non-empty parent

node. For instance, given a set of tasks Y , every solution will begin with some subset

of these tasks. So, one approach is to send 2|Y |−1 subproblems to a processing cluster

where each problem starts with a unique, fixed set of root assignments. An algorithm

such as A* could finish the subsolution for each subproblem on each processor. Then,

in the same manner as before, the processor with the best utility holds the optimal

solution.

98

Alternately, from a matrix-based perspective, solution subspace partitions are

formed based on selecting regions of the matrix, such as sets of rows, sets of columns, or

submatrix “blocks”. The rest of the solution matrix is fixed to some arrangement, and

the identified submatrix areas are solved by concurrent processes. The assumed first

assignment partitioning scheme, discussed in the previous paragraph, is equivalent

to this approach where only a small region of the matrix is fixed. Otherwise, this

approach potentially assumes several assignments before distribution. However, the

fixed portion of the matrix still needs to be enumerated to ensure the optimal solution

is discovered.

Unfortunately, these processes scale poorly since every solution must still be

evaluated using a complete search. Furthermore, every processing node must have

the entire problem context in order to find the optimal solution regardless of the

partition scheme. At a minimum, for every agent and task in a processing node’s

subproblem, every other agent and task identified as a relational constraint must

also be in the problem. However, if, for example, task ordering affects the overall

utility value, partitioned problems become dependent. The optimal value of such a

problem can be missed if separate clusters independently solved the partitions without

evaluating the subsolution in the context of the entire problem.

5.6 Summary

Distributing the solution generation process for large CMTS problems increases

the efficiency of solving the problem. The distributed meta-heuristic presented in this

research uses any CMTS-ready algorithm to solve subproblems of a larger domain

problem to capture the basic process for solving a problem with a distributed system.

The basic process requires problem-space decomposition and recomposition methods

that maintain the integrity of the problem constraints on solution form. Four different

methods to perform decomposition are proposed along with subsolution recomposition

methods to provide flexibility in applying a distributed solution.

99

CMTS problems are decomposed by agent, task, operation, or a fixed number

of subproblems. Each method divides the problem space based on problem domain

elements or the number of processing nodes. Depending on relational constraints, the

methods produce smaller subproblems that have smaller search space sizes. However,

when accounting for relational constraints, it is possible to not be able to decompose

a problem. Another limitation is that this partitioning does not guarantee generation

of optimal solutions since any one of the methods can remove an element from the

problem that is required for an optimal solution. In order to guarantee finding an

optimal solution using a distributed system, the solution space must be partitioned

with each subspace completely searched. This approach searches sections of one solu-

tion space for one problem by distributed processes instead of searching overlapping

sections of independent solution spaces for several subproblems. Furthermore, each

processing node must evaluate solutions in the context of the entire problem in order

to ensure relational constraints are properly handled.

Subsolutions are recombined into a single overall solution using a mediating

voting process. Essentially, the more frequently an assignment appears in various

overlapping subsolutions, the greater the chance of the assignment belonging to the

final solution. Assignments in contention, where there are an equal number of votes

to have it as there are to not have it, are resolved through tie-breaking techniques

such as selecting the decision of the highest ranked subsolution or the most informed

subsolution offering a vote. Alternately, the assignments are chosen through reiterat-

ing the disputed parts of a solution to the distributed system until there is complete

agreement. This improves the overall solution by only using solutions from the best

solvers, or by allowing solvers to adjust their search parameters to potentially improve

solution development.

100

VI. Experimentation and Simulation

Three experiments demonstrate aspects of the effectiveness and efficiency of algo-

rithms designed to solve constrained multiagent task scheduling (CMTS) problems.

The first experiment involves a simple gathering problem domain with no constraints

in order to comparatively test the effectiveness of taxonomy-driven approaches in solv-

ing multi-capable agent, multiagent task problems. Four auction algorithms based on

the multi-robot task allocation taxonomy (MRTA) [42, 45] provide insight into the

solution trade-offs of solving multiagent task assignment problems with single-tasked

agents and multi-tasked agents.

The second set of experiments demonstrates the effectiveness and efficiency of

some of the direct search algorithms, such as depth-first search (DFS) and A*, for

an alarm handling domain [25]. This unconstrained domain involves multi-capable

agents cooperatively handling spatially separated alarms and requires multiagent,

multi-tasking solutions. CMTS tree-based approaches are measured for effectiveness

as compared to optimal and efficiency when solved using distributed methods in this

domain.

The third experiment employs lower-resource-using CMTS algorithms in the

autonomous search and recovery (ASAR) domain. This domain, described in Section

3.4.5, presents several relational constraints while requiring multiagent, multi-tasking

solutions. Algorithms capable of performing larger scale problems are measured to

determine which methodologies provide effective approaches to solving higher com-

plexity CMTS problems. These methods are also tested in a distributed process to

measure processing efficiency and error rates when solving complex problems decom-

posed by the methods discussed in Section 5.2.

The assumptions that hold during experimentation are that the multiagent ap-

proach provides higher quality solutions than single-agent or single-task approaches,

but that there should not be a single approximation algorithm identified in Chapter

IV that consistently outperforms all other algorithms for every single problem. Such

an algorithm would contradict the No Free Lunch Theorem [122], the widely accepted

101

position that no single approximation algorithm solves every problem better than all

other algorithms.

6.1 Gathering Domain Experiments With Auction Methods

The value added in allowing multiple agents to perform multiagent tasks is

realized through several experiments using a common solution method, auctioning.

Auction methods solving each class of the multi-robot task allocation (MRTA) taxon-

omy [42,45] are compared based on solution quality to determine which taxonomy class

algorithm provides the highest quality solutions. The experiment domain is simpli-

fied gathering, and it is represented using the constrained multiagent task scheduling

(CMTS) problem descriptor.

6.1.1 Gathering Problem Domain. In gathering, there are mixed pools of

resources that agents have to gather in minimum time. Each agent has one or more

abilities that collects a resource type at some rate. For instance, an agent may be

able to collect three red blocks and two green blocks at a time. A task in this problem

is simply to have agents collect all of the resources in a given pool, e.g., agents must

collect 15 red blocks, 10 blue blocks and 7 green blocks from some location. Distance

between locations is not considered, only the total work rate. There are no constraints

involved in these experiments in order to differentiate the effectiveness of the preferred

many robots per multi-robot task, MT-MR, auctioning method versus ST-SR (one-

to-one assignment), MT-SR (many tasks per robot, single-robot task assignment),

and ST-MR (many robots per task, single-task robot assignment).

The CMTS description for this problem involves three independent operations:

gather red blocks, gather blue blocks and gather green blocks. An agent has any

number of abilities that performs one of these operations at a certain work rate rx.

This rate is the value function of the ability, vx(y, s) = rx iff dx ∈ Ry, otherwise zero.

Tasks have a pool of size by blocks of one specific color. The requirement of a task,

102

Ry is only the one corresponding domain operation, e.g., Ry = { gather red blocks }

for a pool of red blocks. The value of a task is the pool size, i.e., vy(Cy, s) = by.

For cooperative gathering, agents work together to perform the task. The coali-

tion combination function, fC , is a summation of the work rates of each of the abilities

in the coalition. Conversely, in competitive gathering, only a certain number of agents

are allowed to perform any specific operation of a task. Extra abilities degrade the

value of performing the task. The coalition combination function in this case changes

to reflect that any number of abilities above a threshold ξ > 0 performing a specific

operation causes a work rate of zero. The cooperative form assumes ξ = ∞. The

value of an assignment u((Cy, y), s), is then the total time for a coalition to perform

a task. This is fully expressed in Equation 6.1 where the assignment combination

function, fA is fA ≡ d vy

fC(vx)
e. The state provided s is the full or partial solution

involving the assignment.

u((Cy, y), s) = d vy(Cy, s)

fCx∈Cy
(vx(y, s))

e =

d by∑

x∈Cy
rx
e if ∃d ∈ Ry 3 |{x ∈ Cy|x = d}| > ξ

0 otherwise

(6.1)

Then, the utility U(S) for a set of assignments is the maximum of the sum of

assignment utilities (performance times) over every possible path in the solution S.

This is expressed in Equation 6.2.

U(S) = FU((Cy, y) ∈ S) ≡ argmax{
∑

u((Cy, y), S) ∈ path(S)∀paths ∈ S} (6.2)

This representation remains consistent for every instance of a gathering domain

problem. Each of the auction methods used to solve an instance of the problem use

the same set of equations. The only difference is the value of ξ for the cooperative

and competitive versions of the domain.

103

6.1.2 Auction Methodology. Four different auction-style methods generate

solutions to a cooperative gathering problem based on the MRTA class representation.

In principle, the auction methods are equivalent to greedy algorithms. The basic ap-

proach is to form all possible assignments for a task and select the one that minimizes

partial solution utility values until all tasks are assigned. So, the algorithms are at

least assignment-complete searches since they test every possible assignment. This

approach is outlined, for the MT-MR taxonomy class, by the concurrent auctioning

algorithm in Section 4.4.2 using Algorithm 7.

The differences in algorithmic approaches are as follows. For the ST-SR and

MT-SR auctions, only one-agent is allowed in a coalition. So modify Algorithm 7 so

that only coalitions of one member are allowed in a task assignment. For ST-SR and

ST-MR, ensure that assignments having coalitions with common agent abilities are

serially ordered, similar to Algorithm 6.

The difference in instantaneous assignment (IA) versus time extended (TE)

assignment depends on both the auction class and the problem. An ST class auction

is TE if there are more tasks requiring an operation than there are abilities to perform

that task. Otherwise, the auction is IA. The MT class auction is likely to always be

instantaneous for this problem domain. This is because agents can work on all tasks

concurrently in one step since there are no constraints forcing a separation. When

constaints are introduced, the MT class auction divides into IA and TE based upon

the the number of abilities that can perform a task given the constraints.

6.1.3 Experiments and Results. Fifty-six random instances of cooperative

and competitive gather domain problems are used to quantify the effectiveness of the

four auction approaches. Each instance represents a problem size of m agents and

y tasks. Each agent is assigned one to three abilities that perform a unique domain

operations with a rate rx ∈ [1, 5]. Tasks randomly select one domain operation as its

only requirement with a capacity by ∈ [1, 20]. The problem sizes range from two to

six agents performing three to six tasks. There are no relational constraints for any of

104

Table 6.1: Gather Problem Instance Characteristics

M×Y X Size (LUB) M×Y X Size (LUB)
2×3 4 7.37·1004 5×7 8 1.07·1029

2×4 2 6.55·1004 5×8 10 3.68·1040

2×5 4 1.74·1011 5×9 10 2.48·1048

2×6 2 6.87·1010 5×10 8 3.94·1050

2×7 3 7.21·1016 6×3 16 1.64·1016

2×8 4 4.08·1024 6×4 13 1.47·1019

2×9 5 5.54·1033 6×5 11 2.55·1022

2×10 5 3.49·1040 6×6 11 4.69·1028

3×3 7 7.71·1007 6×7 13 7.65·1039

3×4 5 9.06·1008 6×8 12 3.41·1045

3×5 6 2.67·1014 6×9 13 4.84·1056

3×6 5 2.05·1017 6×10 12 8.63·1062

3×7 5 1.34·1022 7×3 11 4.23·1011

3×8 6 2.03·1030 7×4 15 4.16·1021

3×9 6 6.39·1036 7×5 13 2.80·1025

3×10 8 3.37·1050 7×6 15 1.10·1036

4×3 9 5.75·1009 7×7 16 1.95·1046

4×4 7 4.74·1011 7×8 18 1.42·1060

4×5 6 2.67·1014 7×9 12 8.57·1053

4×6 8 1.36·1023 7×10 18 1.62·1081

4×7 5 2.02·1022 8×3 10 4.93·1010

4×8 8 3.36·1035 8×4 17 1.14·1024

4×9 10 2.16·1048 8×5 17 3.69·1031

4×10 11 6.85·1059 8×6 14 1.72·1034

5×3 11 3.95·1011 8×7 18 3.35·1050

5×4 10 2.64·1015 8×8 15 7.43·1052

5×5 8 5.91·1017 8×9 11 1.27·1051

5×6 11 4.69·1028 8×10 12 8.63·1062

the problem instances. Competition is set for maximum coalition per operation sizes

of ξ = 2. Table 6.1 lists problem size characteristics for each of the problems used in

the experiment. The complexity of each problem, χ, is zero.

Figures 6.1 and 6.2 show the rank-ordered solution quality, measured by aver-

aged solution utility value, of each auction method for the cooperative and competitive

problems. The better performing methods appear to the right on the bottom axis

having an average lower utility value in a minimization problem. The results show

105

Figure 6.1: Average Utility Value Per Algorithm in Cooperative Gathering.

that the MT-MR auction method provides a significantly smaller utility value than

the other algorithms. Statistical analysis using the Wilcoxen signed rank (WSR) [56]

significance test show that the solutions from MT-MR are statistically significantly

different from each of the other methods in both problem classes. The analysis shows

that each algorithm has a less than 0.1% probability of being from the same popula-

tion distribution from any other distribution.

Figures 6.3 and 6.4 illustrate the average error for each algorithm from the aver-

age of the best solutions found for each problem. The MT-MR algorithm has a total

error percentage of 0% which implies that it found the best solution every time. The

data indicates that ST-SR performs the worst, requiring over four times the problem

solution time to perform a set of tasks than the MT-MR approach. The coalition-

based methods, MT-SR and ST-MR, both provide better solutions than a one-to-one

106

Figure 6.2: Average Utility Value Per Algorithm in Competitive Gathering.

approach, but underperform the concurrent auction by 71.0% and 278.0% respectively

on cooperative performances, and 47.0% and 276.4% on competitive tasks.

As expected, the error margin decreases for competitive problems because the

number of agent abilities per task is limited. This effectively eliminates potential

multi-agent solutions which increases the minimum value of the MR-based auctions

thereby making the SR auctions produce identical, yet closer results. The ST-MR

approach has an average utility value elevated by 15.9%, and the MT-MR is elevated

by 16.4% but still produces the best results.

These results suggest that using multiple agents is more effective for single-agent

and multiple-agent tasks regardless of whether the the agents are cooperating or com-

peting for gathering problem tasks. In both cooperative and competitive problems,

the MT auction algorithms tend to generate completely instantaneous assignment

solutions since agents perform all tasks at once. So, the multi-tasking agents provide

107

Figure 6.3: Average Error Per Algorithm in Cooperative Gathering.

better results than non-multi-tasking agents. The ST auction algorithms generate

poorer solutions since they require planned sequences when there are more tasks than

available agent operations for the requirements of the tasks. This results in longer

solution times, thus less effective results.

6.2 Alarm Domain Experiments With Search Tree Methods

The second experiment builds upon the first by examining the alarm problem

domain as a CMTS problem domain [25] where multiagent, multitasking solutions

are required. The problem size for the experiments is kept relatively small to demon-

strate the effectiveness of the search-tree methods. However, two experiments test 1)

serial performance and three-node distributed processing using identical and mixed

algorithmic solutions and 2) additional distributed methods using tree-based search

methods and auction methods.

108

Figure 6.4: Average Error Per Algorithm in Competitive Gathering.

6.2.1 Alarm Handling Problem Domain. The multiagent problem domain

used for experiment is a multi-capable agent, multi-agent task alarm response where

alarms require one to three distinct domain operations to be deactivated. A problem

instance involves a group of agents scattered across a two-dimensional area containing

some number of activated alarms. Each alarm identifies a task requiring assistance

from one or more agents. Depending on the number of alarms, the agents may be

require to handle the alarms in stages rather than all at once. The goal is for the

agents to efficiently service all of the alarms.

Solutions to this problem must optimize two objectives: minimize the total dis-

tance traveled to deactivate the alarms and minimize the number tasks any agent

performs. The first objective implies that agents are to complete the problem as

quickly as possible while the second encourages coalitions that balance the work-

load—although having one agent do it all is a valid solution, having several others sit

109

idle is generally not very operationally efficient. The second objective incorporates

ideas similar to the behavioral methods identified in Section 2.2.4.

Using the CMTS problem descriptor, the agent ability value function, vx, mea-

sures the distance of an agent to an alarm task from its last working position (or

an initial position if it has not yet performed a task) for the first objective. This

provides its portion of the total contribution towards a task, yielding the function

vx(y, s) = (dist(x, y), 1
|Cy |), where Cy is the coalition performing task y. The coalition

combination function sums both the distances required by the abilities to travel to

the alarm task and the steps to the task, which comes to (
∑

x∈Cy
dist(x, y), 1). The

task value function quantifies the objectives by denoting a distance value of zero and

a step value equal to the depth of the assignment in the solution, one plus the number

of tasks that precede it in the graph,yielding vy(Cy, s) = (0, depth(y)). The state, s,

used for these functions is the currently built schedule.

The assignment combination function merges the ability and task value func-

tions as a sum over the agent distances and a product of task steps for each ability[
fA = (

∑
x∈Cy

dist(x, y) + 0,
∑

x∈Cy

1
|Cy | · depth(y))

]
, ultimately simplifying the assign-

ment utility value to u((Cy, y)) =
(∑

x∈Cy
dist(x, y), depth(y)

)
. The utility combina-

tion function combines the assignment utility values into the final utility value U(S)

by producing a single two-dimensional value by summing over each of the distances

and taking the maximum of the task depths. The value is quantified into a single real

value for ranking by taking the ratio of coalition balance to distance.

The heuristic chosen for the alarm problem domain is to choose the smallest

distance to all remaining tasks and assume that all remaining tasks are completed

within d|Y ′|/|X|e steps of a partial solution, where Y ′ is the set of unassigned tasks.

Using these values to estimate the utility of an assignment consistently underesti-

mates (at most equals) the true assignment utility value. Likewise, the heuristic

is consistent since the distances are summed and the estimated number of remain-

ing steps is monotonically decreasing. Thus the heuristic component to the prob-

110

lem yields E[vy(X, s)] =
(
argmin{dist(x, y)}, d |Y−{y∈A}||X| e

)
, per the estimated utility

value shown Equation 3.3.

6.2.2 Algorithm Selection. In the first experiment, three serial algorithms

provide the base algorithms for the distributed tests: A* (Section 4.3.1), beam search

(Section 4.3.2) and random selection (Section 4.6.1). The A* algorithm is chosen

because, for the given heuristic, it generates optimal solutions. Beam search performs

similarly to A* (heuristically driven), but can only approximate solutions since it

limits the number of potential solution candidates it evaluates. The experiments test

beam search using pool sizes of 50, 100, 150, 200, 250 and 500 candidate solutions. The

A* and the beam search algorithms use the same heuristic to determine which partial

solutions are the most competitive for further expansion. Finally, the random selection

provides a way to sample the quality of the solutions generated by the distributed

approach. The DFS (Section 4.2.2) is also tested, but does not provide timely nor

memory-efficient solutions to majority of the problem set. It is not distinctly reported

in detail since results do not exist for it.

The distributed tests involve three mixtures of the serial algorithms over three

processing nodes using decomposition by three nodes from Section 5.2. The first

configuration has all three processors using the A* algorithm. Although the A* al-

gorithm generates optimal solutions, the distributed algorithm using only A* solvers

is not guaranteed to produce an optimal solution due to the fixed subproblem size

decomposition method. The second configuration generates solutions with three pro-

cessors using the beam search algorithm set to a pool size of 200. The final distributed

test mixes the algorithms with one processor running A* and the other two running

beam search with 200 candidates. The distributed portion of this experiment shows

how efficient each algorithm is in searching a reduced solution space using common

or different distributed solvers.

The second experiment expands the number and types of algorithms and dis-

tributed methods. The serial auction (Section 4.4.1) and concurrent auction (Section

111

Figure 6.5: Comparison of Solution Quality for Alarm Handling.

4.4.2) are included and comparably tested with the A* results from the first experi-

ment. Distribution is performed using each of the problem decomposition methods in

Section 5.2 using matching algorithms. Decomposition by size is performed for four

and five processing nodes versus three.

6.2.3 Experiment and Results. Each of the CMTS algorithms and dis-

tributed approaches are tested on alarm domain problem instances having two to five

agents, with each agent having two or more abilities, collectively perform a problem

consisting of 2, 4, 6, or 8 alarm tasks, many requiring more than one ability. The

A* algorithm serves as the baseline for optimal solutions, and the random selection

algorithm provides comparative sample quality.

Figures 6.5 and 6.6 plot head-to-head comparisons of the algorithms to gauge

their effectiveness and efficiency in serial and distributed processing. The serial A*

algorithm provided baseline optimal results for each of the problems except the eight-

112

Figure 6.6: Comparison of Algorithm Performance for Alarm Handling.

task problems which it was unable to complete due to resource limitations. The

results in Figure 6.5 show how the quality of solutions deviated in unit steps (metric

distance of the distance and number of steps of agents in the problem domain) from

the optimal results found by A* for 2, 4 and 6-task problems and the best solution

found for the eight-task problems. As expected, the beam searches generally improve

as the beam width grows, but the potentially negative effects of approximating the

solution by limiting candidate pool sizes is apparent for a pool size of 500, where the

search result has a higher error than smaller beams. This occurs when the algorithm

is evaluating too many nodes with similar values early in the search and removes

potentially good paths to explore a broader section of the upper tree.

The distributed algorithms offer an average 51% improvement over randomly

generated solutions which brings some merit to the distributed approach in light of the

straight-forward decomposition approach. However, each version of the distributed

113

test fails to outperform its serial counterpart. As expected, the distributed A* algo-

rithm is non-optimal compared to serial A* because of the problem decomposition

method. Interestingly, the distributed beam and distributed mix both provide less

error to optimal solutions than the distributed A*. This is most likely due to the in-

dividual A* algorithms optimizing solutions to subproblems that do not have enough

information to reach the global optimum. The recombination of the optimized sub-

solutions then fails to produce better solutions than approximation methods. Thus,

using a distributed system with fixed-size decomposition is not as effective for solving

the alarm problem.

On the other hand, the results in Figure 6.6 show the efficiency of the algorithms

when solving the same problem set by identifying precisely the number of solutions

generated for each algorithm. The beam search algorithms generate fewer solutions

for the same set of problems as A* during serial solving, but distributed approach

requires significantly fewer solutions to produce results that are within 20% of the

optimal solution. The solution generation rates show that the distributed approach

requires nearly two orders of magnitudes less generation than stand-alone algorithms.

Specifically, the distributed beam search required less than 0.4% of the number of

generations to find it solution; the distributed A*, at worst, needed less than 0.7%.

6.2.4 Additional Distributed Experiments. Based on these results, addi-

tional solution methods and problem decomposition techniques are applied to the

problems to test their effectiveness on smaller, unconstrained CMTS problems. Table

6.2 shows how many subproblems are created after applying the problem decomposi-

tion methods. A decomposition of one in the table indicates that the method is not

able to provide a set of subproblems where each are smaller than the original problem.

Only the agent and task based methods are able to decompose every problem after

relational constraints resize the problem set. But, on average, task decomposition

produced the most subproblems which contributes to making it the most efficient

approach for the alarm problem domain.

114

Problem Agent 4 nodes 5 nodes Operation Task Average
002x002 2 1 1 2 2 1.6
002x004 2 4 2 1 4 2.9
002x006 2 2 2 3 6 3.6
002x008 2 2 5 3 8 4.7
003x002 3 1 1 1 2 2.5
003x004 3 4 2 3 4 3.7
003x006 3 2 2 3 6 3.9
003x008 3 2 5 3 8 5.0
004x002 4 1 1 3 2 3.2
004x004 4 4 4 3 4 4.4
004x006 4 3 3 3 6 4.7
004x008 4 4 5 3 8 5.7
005x002 5 3 4 3 2 4.5
005x004 5 4 5 3 4 5.1
005x006 5 4 5 3 6 5.6
005x008 5 4 5 3 8 6.1
Average 3.5 2.8 3.3 2.7 5.0

Table 6.2: Number of Alarm Subproblems Generated Through Decomposition

Figure 6.7 shows the rank-ordered effectiveness of A*, beam search, serial auc-

tion and concurrent auction when used as a serial algorithm, which has no subscript,

and when used in a distributed approach, showing a subscript. The subscript denotes

which decomposition method applies: Da for agent, Dt for task, Do for operation, and

Df/n for n number of nodes (four and five in this experiment). The better performing

algorithms are ordered to the left where a lower average utility value best optimizes

the minimization objective function, U(S), as specified in Section 6.2.1.

The results indicate that the A* algorithm performs the best, as it should be-

ing the sole algorithm that generates optimal solutions. Likewise, four of the five

distributed A* algorithms performed better than any other distributed approach al-

though none of the distributed A* algorithms outperformed serial beam search. This

is in line with the results discussed in the previous section. However, the best per-

forming problem decomposition method is task-based decomposition.

Table 6.3 shows the averaged utility values and associated search space size

relative to the algorithm and decomposition method, corresponding to Figure 6.7. The

115

0.0000000

50000.0000000

100000.0000000

150000.0000000

200000.0000000

250000.0000000

A
*

B
eam

S
earch(200)

A
*D

o

S
-A

uction
A

*D
f/04

C
-A

uction
A

*D
f/05

A
*D

t

B
eam

S
earch(200)D

t
C

-A
uction

D
t

S
-A

uction
D

t

S
-A

uction
D

f/05

B
eam

S
earch(200)D

f/05
C

-A
uction

D
f/05

B
eam

S
earch(200)D

o
A

*D
a

S
-A

uction
D

f/04

B
eam

S
earch(200)D

f/04
C

-A
uction

D
f/04

S
-A

uction
D

o

C
-A

uction
D

o

B
eam

S
earch(200)D

a
S

-A
uction

D
a

C
-A

uction
D

a
U

(S
)

Max/Avg/Min
Global Average

Figure 6.7: Average Utility Value Per Algorithm With Distributed Processing for
Alarms, Ranked Best First.

best utility values for serial and distributed processing belong to the serial auction

method, and the task decomposition method is identified as the best performing

decomposition method except for A*. The last row of the table identifies the average

size (LUB) of the solution space used to perform the search. Task decomposition uses

the smallest search space of all of the methods by several orders of magnitude. This

is key to efficiently solving much larger problems.

6.3 Autonomous Search and Recovery Domain Experiments

Additional algorithms described in Chapter IV are implemented and tested with

autonomous search and recovery (ASAR) problem instances. The ASAR problems

in this experiment also require multiagent, multi-task solutions, but involve varying

116

Table 6.3: Averaged Results for Utility Value and Space Size for Alarms.

Decomposition Method
Algorithm Serial Agent 4-Node 5-Node Operation Task

A* 6766.09 13822.08 8625.93 10729.21 8609.81 11454.61
Beam Search 8405.34 40192.86 14019.45 13387.29 13815.65 11454.6

S-Auction 8615.13 45337.19 13980.26 13008.27 17431.29 11454.6
C-Auction 9718.47 46969.39 14891.32 13544.55 17716.62 11454.6
LUB Size 4.6× 1041 1.6× 1019 3.0× 1014 5.1× 109 9.3× 1031 7.9×102

degrees of relational constraints for significantly larger problems than in the alarm

and gathering experiments. This experiment complements the alarms domain exper-

iment by testing the algorithms for serial processing to measure effectiveness, then

performing distributed processing to determine if the solution space savings provides

quality solutions.

6.3.1 Autonomous Search and Recovery Problem Details. The ASAR prob-

lems used in these experiments are static instances of the domain problem where there

are a known number of agents, tasks and domain entities. Gunmen and hostages com-

pose the domain entities. A set of locations, to include a recovery point, provide points

of reference for identifying the locations of agents, tasks and domain entities. Initially,

all of the agents begin at the recovery point. Gunmen and hostages are randomly dis-

tributed at different locations. The positions of each of the entities, including agents,

are globally known.

There are two tasks associated with the ASAR problem: secure and recover.

Every location in the problem represents two tasks, one to secure a location and

another to recover the location. Each recover task has the complementary secure task

as a prerequisite. Coalitions are formed to complete each task. The goal is to recover

all of the hostages to the recovery point as efficiently as possible. This is measured by

minimizing the total time to perform the problem and maximizing the effect of each

operation performed.

In order to secure a location, a coalition of agents must monitor the location

and disable each of the gunmen. In order to monitor a location, at least one agent

117

must provide a monitor ability at the specified location. The effect of monitoring

is quantified by a value of one if an agent with a monitor ability is present at the

location, otherwise zero. To disable a gunman, agents must provide disable abilities

at the specified location. The effect of disabling gunmen is measured by maximizing

the probability of success of a group of disabling abilities such that if there are more

disablers than gunmen, the probability is one, or if there are twice as many gunmen as

shooters the probability is zero. The probability is the ratio of gunmen to disablers for

all other events. This is mathematically expressed by the cases 0 if n ≥ 2x, 1 if n ≤

x, n
x

otherwise, where x is the number of disable abilities and n is the number of

gunmen at the location. Essentially, the effect is maximized when there are at least

an equal number of disabling abilities as there are gunmen, otherwise, the effect is

linearly minimized.

The other task is to recover a location. To recover a location, a coalition of

agents must monitor the location and move every hostage under observation to the

recovery point. The monitoring of a location for a recovery task is the same for the

secure task. However, moving a hostage also involves an agent with an ability to

observe, as well as agents that can transport. The effect of transporting a hostage

is measured by a simplified diminishing gains formula. To maximize the effect, two

agent abilities are needed. Anything other than two represents a diminished effect.

This is governed by the formula x
2n

if 0 < x ≤ 2n, else n
x
.

In order to minimize the total time to complete the tasks, agents must minimize

the total distance traveled to complete their tasks, assuming each agent travels at the

same rate. When performing a disable ability, the distance is measured from the

agent’s last known location to the location of the task. The distance of observe

operations are measured identically. However, the distance of the transport ability is

the total distance of the agent from its current location to the task location plus the

distance from the task location to the recovery point for each involved agent.

118

The problem prerequisites include task ordering such that each location is se-

cured before recovered. Solutions involve locations to be secured then recovered iter-

atively, or to have all locations secured before any one is recovered. Both forms are

acceptable solutions, though the optimal solution likely lies between these extremes.

Also, having the abilities transport and disable together on an agent causes the two

to inhibit each other. This implies that an agent cannot simultaneously disable a

gunman while moving a hostage. Finally, every ability of an agent is bound to each

other to ensure that parts of an agent are not separated to perform spatially separated

tasks.

The components of the utility function U(S) for the ASAR problem uses the

distance and effect formulas to form the basis of the agent ability and task value

functions, vx and vy respectively. More precisely, the agent ability value function

is the distance the agent must travel in order to perform the task expressed as

vx(y, s) = (0, distance(x, y)) plus any travel to the recovery location if needed. The

ability combination function fC sums the distances that each member of the coalition

moves, even if two abilities belong to the same agent. The task value function vy

presents the effect values of the coalition assigned to perform the task. The value

of the task value function is the product of the operation effect functions associated

with the entities. So, vy(Cy, s) = (effdisable · effmonitor · efftransport, 0).

The value of an assignment, u ((Cy, y), s) combines the agent and task value

functions through the assignment function combiner fA. This is formally expressed

as u ((Cy, y), s) ≡ fA
(
fC(vx(y, s)), vy(Cy, y)

)
= (Πd∈Deffd(Cy, y),

∑
distance(x, y)).

Finally, the utility of the solution U(S) combines the assignments with the assign-

ment utility combination function FU . For the ASAR problem, FU ≡ tan−1(+,+),

implying that the value of the solution is a ratio of the sum over all distances to

perform tasks and the sum of all effect products. The higher the ratio, as provided by

the inverse tangent, the better the solution maximizes the effect and minimizes the

119

time. Equation 6.3 states the equation in its entirety.

U(S) ∼= tan−1
(

Πd∈Deffectd(Cy, y),
∑

distance(x, y)
)

(6.3)

The expected utility for completing a task, E[vy] in the ASAR problem domain

is the shortest distance of each agent capable of performing the task to that task, and

assumes an efficiency rating of zero for any assigned coalition. This is expressed as

E[U(S)] =
(
0,
∑

m∈M min{dist(x ∈ Cm, y)}∀y /∈ S
)
, using the form of the expected

utility value shown Equation 3.3. Using these values to estimate the utility of an

assignment consistently underestimates the true assignment utility value. This allows

the expected value E[U(S)] to be used as an admissible heuristic. The heuristic is con-

sistent since the distances are summed and the estimated number of remaining steps

is non-increasing. This enables appropriate algorithms to perform better searches,

especially for the branch-and-bound techniques used in A* and beam search.

6.3.2 Problem and Algorithm Selection. The ASAR problem instances used

in this experiment are randomly generated by the method described in Appendix B.

The problems are generated on a 100x70 Cartesian space with all agents starting

at a recovery point located at (0,-20). Tasks in the problem are randomly spread

throughout a 100x50 Cartesian space with the x-axis covering the range [−50, 50].

Each of the ASAR problems used for preliminary and experimental testing are listed

in Appendix B as an initial repository.

Only original ASAR problems are tested in these experiments. Benchmark prob-

lems from various repositories can provide problem domain instance data, but since

the objectives differ between ASAR and other problems, optimal solutions provided

for the library problems are not necessarily optimal for nor compatible with the ASAR

problem. A separate series of tests could be run for other benchmark problems, but

they do not exploit the complexity involved in a fully-defined CMTS problem and

120

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 1e+120

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

P
ro

bl
em

 S
iz

e
(L

U
B

)

Complexity

Figure 6.8: Experiment Problems—Size Mapped By Complexity.

Table 6.4: ASAR Problem Instance Characteristics.

M×Y X Size (LUB) χ M×Y X Size (LUB) χ
3×6 6 3.21·1015 0.2347 4×12 10 3.44·1068 0.4243
3×7 9 2.65·1028 0.5696 4×13 11 3.30·1085 0.3402
3×8 9 8.68·1034 0.5838 4×14 9 9.72·1085 0.3738
3×9 7 1.16·1034 0.3293 4×15 9 5.45·1094 0.2063
3×10 8 1.32·1046 0.3037 5×6 11 3.77·1026 0.2749
3×11 9 3.13·1057 0.4633 5×7 7 1.72·1023 0.2213
3×12 8 2.13·1062 0.4588 5×8 9 8.68·1034 0.4206
3×13 10 3.06·1080 0.4980 5×9 14 2.07·1056 0.5625
3×14 9 2.57·1086 0.3738 5×10 11 2.15·1056 0.3530
3×15 6 8.00·1078 0.2770 5×11 11 5.96·1063 0.3673
4×6 10 3.71·1024 0.3220 5×12 15 1.00·1091 0.3748
4×7 13 9.97·1037 0.4517 5×13 10 3.23·1080 0.2359
4×8 11 3.70·1040 0.2643 5×14 11 3.47·1096 0.3050
4×9 12 4.74·1050 0.5455 5×15 13 2.29·10116 0.4358

the CMTS algorithms presented in this work do not exploit the heuristics involved in

solving producing the known results.

121

Problem instances intentionally use a relatively low number of agents to emulate

a team concept, but each agent can have up to four unique abilities. A team of five

agents can potentially present a problem requiring the scheduling of 20 abilities which

is a significantly increased number of entities to assign from the gathering and alarm

domains. The number of tasks is kept at a minimum of six to ensure that only

time extended solutions are generated in order to test the multiagent, multitasking,

time-extended capabilities of CMTS-ready algorithms.

The purpose behind using randomly generated problems is to create problems

with sufficiently uniformly distributed complexity over problem size. The size and

complexity of the problems generated for this work is listed in Table 6.4. Figure 6.8

visually confirms the uniform distribution of problem sizes to complexity where each

diamond shape represents a problem from Table 6.4. The generated set of problems

from this experiment range in complexity from χ ∈ [.206, .584] which is well-centered

in the ASAR complexity range of [0, 0.75] derived in Section 3.4.5. Problems involve

solution spaces larger than 10116 with the average of the lower upper bounds for the

problems in 1059. For comparison, chess is 1043 [106].

Thus, this experiment is designed to test the efficiency and effectiveness of low-

resource algorithms from Chapter IV since the complexity and size of the ASAR

problems are significant increases over the gathering and alarm problems. Although

conceptually sound, algorithms such as breadth-first search, DFS and A* consume

resources far too quickly to be a viable approach for even the smallest of problems.

This is unfortunate since those algorithms provide optimal solutions that can be used

to benchmark the quality of solutions generated by additionally evaluated CMTS-

enabled algorithms. Ant colony optimization (ACO) and reinforcement learning (RL)

also quickly consume resources and become bottlenecks too early when increasing

problem sizes and cannot be reported in detail.

So, the experiment uses random search (using smart random), serial auctioning,

concurrent auctioning, the genetic algorithm (GA), and particle swarm optimization

122

(PSO). The tree-based searches are not included for reasons listed above, but the

MT-MR auction is included to provide a comparative analysis of how these other

CMTS algorithms perform. The task sequencer algorithm, a random sequencer similar

to ST-MR auctioning, is also not reported in detail since it, through preliminary

testing, provided significantly worse results than any other algorithm in this test.

Including the results of the task sequencer unfairly biases averaging techniques applied

to comparative solution analysis.

It should be noted that algorithmic approaches other than the ones presented

in Chapter IV either fail to handle the relational constraints expressed in CMTS

without substantial modification, or completely fail to solve the problem. The latter

case is evident when multiple agents are required to perform a task yet the algorithm

only performs single-agent tasking such as the one-to-one auction method used in

the gathering experiments. For this reason, only the serial, concurrent and MT-MR

auction methods are used for the ASAR problem.

6.3.3 Serial Algorithm Comparison. Each of the algorithms are tested on

several randomly-generated ASAR domain problem instances ranging in various sizes

as identified in Table 6.4. The averaged results indicate the effectiveness of each

algorithm for solving ASAR problems. The results of the average utility value, from

Equation 6.3, for each algorithm are shown in Figure 6.9 where better performing

algorithms are ranked to the left. The highest and lowest found values of any problem

are plot on the line with a histogram box showing the average utility over all of the

problems for each algorithm tested. Numbers next to an algorithm in parentheses

indicate the number of iterations followed by the population size as applicable.

From the chart, the auction methods appear to have an advantage in finding

better solutions over the other methods, although, the GA is capable of discovering

higher-valued solutions than any other. The average solution quality of the algorithms

form three groups based on significant statistical difference (p < 0.05). The serial auc-

tion is generating better results than any other algorithm as the top algorithm. The

123

0.0010000

0.0015000

0.0020000

0.0025000

0.0030000

0.0035000

0.0040000

0.0045000

0.0050000

0.0055000

0.0060000

S
-A

uction

C
-A

uction

G
A

(500;30)

M
T

-M
R

R
andom

(500)

P
S

O
(500;100)

U
(S

)

Max/Avg/Min
Global Average

Figure 6.9: Average Utility Value Per Algorithm for ASAR, Ranked Best First.

GA, concurrent auction and MT-MR auction share similar results as the second tier

group. The PSO and random algorithms trail all other algorithms, but share similar

solution quality. Tables 6.7 and 6.8 shows the statistical differences and highlights

in bold which solutions sets are statistically different using the WSR statistical test.

From the utility figure and statistics table, it is clear that the PSO algorithm has dif-

ficulty generating solutions of the same quality of any other algorithm except smart

random selection.

One of the reasons is because the PSO has a much slower convergence rate

for finding better solutions since particles may iterate through large invalid solution

subspaces. The rate of convergence for algorithms that perform iterative processes is

shown in Figure 6.10 by annotating the value of the best held solution over time. The

data shown is averaged over the total problem set for the GA, PSO and the random

algorithms. Comparatively, the GA employs different types of repair methods to avoid

124

0.0020000

0.0022000

0.0024000

0.0026000

0.0028000

0.0030000

0.0032000

0.0034000

 0 100 200 300 400 500

A
ve

ra
ge

 U
(S

)

Iteration

Random(500)
PSO(500;100)

GA(500;30)

Figure 6.10: Convergence Results of Iterative Algorithms for ASAR.

consistently generating invalid solutions. The smart random algorithm only chooses

from valid assignment sequences in order to avoid invalid solutions altogether.

While all three algorithms show iterative improvement over time, the GA shows

the fastest convergence rate and quickly terminates. Figure 6.11 shows the conver-

gence trends in the early iterative stages for each of the three iterative algorithms for

a subset of ASAR problems over a longer span of iterations, up to 3,000. The GA and

PSO have increasing population sizes to measure the effects of adding more solution

points. As shown in the ASAR experiment solution set shown in Figure 6.10, the

GA demonstrates the fastest convergence and finds better solutions with more mem-

bers. However, the random algorithm does not appear to stagnate in these iterations,

and shows a convergence rate that quickly overtakes various sized PSOs. With PSO

showing incremental improvement throughout the iteration span, a faster converg-

ing random algorithm indicates that the choice of operators for the PSO algorithm

does not explore the solution space very effectively or efficiently. Furthermore, since

125

0.0020000

0.0022000

0.0024000

0.0026000

0.0028000

0.0030000

0.0032000

0.0034000

0.0036000

0.0038000

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 U
(S

)

Iteration

GA(3000;100)
GA(3000;200)
GA(3000;25)
GA(3000;50)

PSO(3000;100)
PSO(3000;200)

PSO(3000;25)
PSO(3000;400)

PSO(3000;50)
Random(3000)

Figure 6.11: Iterated Algorithm Convergence Comparison.

each algorithm can reproduce identical results, duplicate solutions further degrade

the ability to explore the solution space.

The serial algorithm experiment results support using the serial auction method

for solving the ASAR problem. The serial auction is a variant of MT-MR which prefers

to build longer sequences of assignments rather than short sequences. This result is

consistent with the fact that the ASAR domain uses prerequisite task constraints

which requires longer sequences. However, a GA can be used for off-line solution

generation over long iteration periods since it is generally better at finding higher

solution values than the other algorithms. The PSO, unfortunately, fails to excel

over a random selection which implies that the approach outlined in Section 4.7.2 is

possibly deficient for CMTS algorithms in general.

6.3.4 Distributed Analysis. The same set of problems in Table 6.4 are

tested using a distribution process with identical serial algorithms. The problems are

126

Problem Agent 4-Node 5-Node Operation Task Average
3×6 1 2 2 1 6 2.4
3×7 1 4 5 4 7 4.7
3×8 1 2 5 1 8 4.3
3×9 1 4 3 1 9 4.5
3×10 1 4 5 3 10 5.5
3×11 1 4 5 1 11 5.5
3×12 1 4 3 1 12 5.3
3×13 1 4 5 1 13 5.9
3×14 1 4 5 1 14 6.2
3×15 1 3 3 1 15 5.8
4×6 1 2 2 1 6 3.6
4×7 1 4 5 1 7 4.3
4×8 1 2 5 4 8 4.9
4×9 1 4 3 4 9 5.2
4×10 1 4 5 1 10 5.2
4×11 1 4 5 4 11 6.0
4×12 1 4 3 1 12 5.4
4×13 1 4 5 4 13 6.5
4×14 1 4 5 1 14 6.3
4×15 3 3 5 3 15 7.1
5×6 1 4 5 4 6 5.4
5×7 1 4 5 1 7 4.7
5×8 1 4 5 1 8 4.7
5×9 1 4 5 4 9 5.5
5×10 1 4 5 4 10 5.9
5×11 1 4 5 3 11 6.0
5×12 1 4 3 3 12 5.8
5×13 1 4 5 4 13 6.6
5×14 1 4 5 4 14 6.9
5×15 1 3 5 4 15 7.0
Average 1.1 3.6 4.4 2.4 10.5 —

Table 6.5: Number of ASAR Subproblems Generated Through Decomposition.

decomposed by each method discussed in Section 5.2. Table 6.5 shows how many

subproblems are actually created after correcting the subproblems for relational con-

straints. A decomposition of one in the table indicates that the method is not able to

provide a set of subproblems each of which are all smaller than the original problem.

127

Table 6.6: Averaged Results for Utility Value and Space Size for ASAR.

Decomposition Method
Algorithm Serial Agent 4-Node 5-Node Operation Task
C-Auction 0.003283 0.003269 0.003224 0.003086 0.002970 0.003235

GA(500;30) 0.003237 0.003233 0.003130 0.003095 0.002883 0.003251
MT-MR 0.003226 0.003212 0.003163 0.003028 0.002823 0.003241

PSO(500;100) 0.002977 0.002954 0.003067 0.003044 0.002734 0.002954
Random(500) 0.002977 — — — — —

S-Auction 0.003443 0.003428 0.003337 0.003215 0.003034 0.003254
LUB Size 7.6× 10114 7.6× 10114 7.0× 1058 7.7× 1041 3.6× 10100 3.7×108

From this data, it is clear that task decomposition provides the highest aver-

age number of subproblems and an optimal number of subproblems. Each task in

a decomposed problem is placed in its own subproblem. The fixed node decomposi-

tions also generate an average number of subproblems close to their intended cluster

size. Similarly, the operations-based decomposition provides an intended number of

subproblems (based on the four operations of an ASAR problem) roughly one-half of

the time. The agent decomposition, however, fails to provide a set of subproblems

that does not include a problem equal to the original except in one case. In this case,

the agent decomposition effectively nullifies the distributed approach by generating

subproblems that are equal to the original, which forces at least one solution node to

solve the problem serially.

Once the set of generated subproblems are solved, recombination merges the

solutions, settling disputes by preferring the solutions of larger subproblems. No

subsequent redistribution of partially locked solutions are performed in these experi-

ments. The utility value results of the distributed process using the merged solutions

are shown in Figure 6.12 according to how it was distributed. A distributed process

is denoted by the algorithm involved in the distribution with a subscript ’D’ followed

by the decomposition method used—’a’ for decomposition by agent, ’o’ for operation,

’t’ for task, and ’f ’ for a fixed number of nodes with a number indicating exactly how

many nodes. Serial tests are included for comparison (from Figure 6.9) with those

algorithms not having a subscript. (Results specific to individual problems are listed

in Appendix A.) The algorithms are ranked with the best performing algorithm, in

128

Figure 6.12: Average Utility Value Per Algorithm With Distributed Processing for
ASAR, Ranked Best First.

terms of average solution, appearing to the left. Each value is unique, so statistically

significant differences between algorithms implies a performance difference that makes

one algorithm “better” than the other.

Table 6.6 provides the actual average solution utility values corresponding to

Figure 6.12 for each algorithm broken down by decomposition method. The best

utility values for serial and distributed processing belong to the serial auction method,

and the task decomposition method is identified as the best performing decomposition

method. The last row of the table identifies the average size (LUB) of the solution

space used to perform the search, corresponding to Figure 6.13. As discovered in the

alarm domain, the best method is task decomposition with a relatively very small

search space.

In terms of solution quality, the decomposition methods show varied success in

general and per algorithm type. Disregarding agent-based decomposition, which per-

129

formed serial solutions, task-based decomposition provides the highest utility values

for ASAR problems. Each of the five task decomposition approaches made the top

one-third of ranked solutions with four of the five outperforming all serial perform-

ers except serial and concurrent auctioning. This demonstrates that the task-based

decomposition is capable of improving the serial solution approach of the GA, MT-

MR auction and PSO. In a very surprising result, task decomposition improved the

performance of the PSO above the GA and MT-MR, and also the task decomposi-

tion approaches for serial and concurrent auction, ranking it fifth among all solution

approaches. It is only one of two subproblem-producing decomposition that out-

performed serial counterparts—the other being four-node decomposition for serial

auction.

Otherwise, within each algorithm type, fixed node processing, a nearly per-

fect decomposition technique, provides mid-level solution quality with the four-node

cluster size performing better than five nodes. Operation-based decomposition, the

worst subproblem generating method, provides below average solution quality on ev-

ery distributed test with four out of five tests performing worse than iterative random

selection.

By algorithm type, the serial and concurrent algorithms hold six of the top

seven ranked positions, with the serial algorithm appearing in four of those spots.

This indicates that the auctioning methods are best at generating quality solutions

in a distributed environment for the ASAR problem domain. However, the three

highest scoring tests belong to fixed sized distributed approaches, the five-node GA,

four-node PSO and five-node PSO. This shows that the decomposition/recomposition

methodology is very capable of providing improved solutions to ASAR problems over

a serial approach.

Statistically, however, the non-distributed serial auction approach ranks as the

top algorithm and has a statistically significant difference from all other algorithms

making it the preferred algorithm choice for this sample of ASAR problems. Compar-

130

T
ab

le
6.

7:
R

ig
h
t-

ta
il
ed

W
S
R

T
es

t
R

es
u
lt

s
(C

-A
u
ct

io
n

-
M

T
-M

R
).

A
lg

or
it
hm

C−Auction

C−AuctionDa

C−AuctionDf/04

C−AuctionDf/05

C−AuctionDo

C−AuctionDt

GA(500;30)

GA(500;30)Da

GA(500;30)Df/04

GA(500;30)Df/05

GA(500;30)Do

GA(500;30)Dt

MT−MR

MT−MRDa

MT−MRDf/04

MT−MRDf/05

C
−

A
u
ct

io
n

-
1.

0
.0

3
.0

0
.0

0
.2

4
.1

8
.1

8
.0

0
.0

0
.0

0
.1

1
.2

2
.2

0
.0

2
.0

0
C
−

A
u
ct

io
n

D
a

1.
0

-
.0

7
.0

0
.0

0
.3

5
.3

0
.2

4
.0

1
.0

1
.0

0
.2

6
.3

7
.2

2
.0

5
.0

0
C
−

A
u
ct

io
n

D
f

/
0
4

.0
3

.0
7

-
.0

1
.0

5
.7

3
.6

4
.6

4
.0

1
.0

1
.0

0
.9

5
.7

5
.6

9
.1

2
.0

0
C
−

A
u
ct

io
n

D
f

/
0
5

.0
0

.0
0

.0
1

-
.7

7
.1

1
.0

9
.1

0
.8

2
.6

1
.0

2
.0

5
.2

7
.2

9
.9

5
.0

9
C
−

A
u
ct

io
n

D
o

.0
0

.0
0

.0
5

.7
7

-
.1

5
.0

6
.0

7
.6

3
.7

0
.4

0
.0

7
.1

7
.2

1
.6

1
.7

0
C
−

A
u
ct

io
n

D
t

.2
4

.3
5

.7
3

.1
1

.1
5

-
.9

9
.9

3
.1

1
.0

7
.0

1
.1

9
.5

8
.7

9
.7

2
.0

0
G

A
(5

00
;3

0)
.1

8
.3

0
.6

4
.0

9
.0

6
.9

9
-

1.
0

.0
6

.0
2

.0
0

.7
2

.6
1

.8
7

.2
9

.0
0

G
A

(5
00

;3
0)

D
a

.1
8

.2
4

.6
4

.1
0

.0
7

.9
3

1.
0

-
.0

6
.0

3
.0

0
.6

3
.5

4
.8

6
.3

4
.0

0
G

A
(5

00
;3

0)
D

f
/
0
4

.0
0

.0
1

.0
1

.8
2

.6
3

.1
1

.0
6

.0
6

-
.4

4
.0

3
.0

4
.2

9
.3

3
.5

2
.2

5
G

A
(5

00
;3

0)
D

f
/
0
5

.0
0

.0
1

.0
1

.6
1

.7
0

.0
7

.0
2

.0
3

.4
4

-
.0

9
.0

3
.2

5
.3

3
.6

6
.1

5
G

A
(5

00
;3

0)
D

o
.0

0
.0

0
.0

0
.0

2
.4

0
.0

1
.0

0
.0

0
.0

3
.0

9
-

.0
0

.0
1

.0
2

.0
3

.5
0

G
A

(5
00

;3
0)

D
t

.1
1

.2
6

.9
5

.0
5

.0
7

.1
9

.7
2

.6
3

.0
4

.0
3

.0
0

-
.5

8
.7

6
.2

6
.0

0
M

T
−

M
R

A
u
ct

io
n

.2
2

.3
7

.7
5

.2
7

.1
7

.5
8

.6
1

.5
4

.2
9

.2
5

.0
1

.5
8

-
1.

0
.0

2
.0

0
M

T
−

M
R

A
u
ct

io
n

D
a

.2
0

.2
2

.6
9

.2
9

.2
1

.7
9

.8
7

.8
6

.3
3

.3
3

.0
2

.7
6

1.
0

-
.0

6
.0

0
M

T
−

M
R

A
u
ct

io
n

D
f

/
0
4

.0
2

.0
5

.1
2

.9
5

.6
1

.7
2

.2
9

.3
4

.5
2

.6
6

.0
3

.2
6

.0
2

.0
6

-
.0

3
M

T
−

M
R

A
u
ct

io
n

D
f

/
0
5

.0
0

.0
0

.0
0

.0
9

.7
0

.0
0

.0
0

.0
0

.2
5

.1
5

.5
0

.0
0

.0
0

.0
0

.0
3

-
M

T
−

M
R

A
u
ct

io
n

D
o

.0
0

.0
0

.0
0

.0
0

.1
0

.0
0

.0
0

.0
0

.0
1

.0
0

.3
2

.0
0

.0
0

.0
0

.0
1

.0
3

M
T
−

M
R

A
u
ct

io
n

D
t

.2
7

.3
9

.9
2

.0
8

.1
3

.5
1

.9
5

.9
0

.0
8

.0
7

.0
1

.1
6

.5
8

.8
2

.7
8

.0
0

P
S

O
(5

00
;1

00
)

.0
0

.0
0

.0
0

.0
8

.8
4

.0
0

.0
0

.0
0

.0
3

.0
5

.3
1

.0
0

.0
0

.0
1

.0
1

.6
4

P
S

O
(5

00
;1

00
) D

a
.0

0
.0

0
.0

0
.0

4
.6

4
.0

0
.0

0
.0

0
.0

2
.0

3
.5

4
.0

0
.0

0
.0

0
.0

0
.4

4
P

S
O

(5
00

;1
00

) D
f

/
0
4

.0
0

.0
0

.0
0

.5
3

.8
1

.0
5

.0
4

.0
5

.2
5

.9
9

.1
6

.0
1

.0
6

.0
9

.3
6

.4
2

P
S

O
(5

00
;1

00
) D

f
/
0
5

.0
0

.0
0

.0
0

.2
7

.9
2

.0
1

.0
0

.0
0

.0
5

.2
6

.3
5

.0
0

.0
5

.1
0

.0
6

.5
4

P
S

O
(5

00
;1

00
) D

o
.0

0
.0

0
.0

0
.0

0
.0

3
.0

0
.0

0
.0

0
.0

0
.0

0
.0

2
.0

0
.0

0
.0

0
.0

0
.0

0
P

S
O

(5
00

;1
00

) D
t

.3
8

.5
6

.9
9

.0
3

.0
5

.1
0

.5
0

.4
5

.0
3

.0
1

.0
0

.9
5

.7
2

.9
9

.2
8

.0
0

R
a
n
d
om

(5
00

)
.0

0
.0

0
.0

0
.2

1
.8

9
.0

0
.0

0
.0

0
.0

4
.0

8
.2

3
.0

0
.0

0
.0

1
.0

1
.9

0
S
−

A
u
ct

io
n

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

S
−

A
u
ct

io
n

D
a

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

S
−

A
u
ct

io
n

D
f

/
0
4

.3
5

.2
1

.0
1

.0
0

.0
0

.0
0

.0
2

.0
2

.0
0

.0
0

.0
0

.0
2

.1
6

.1
3

.0
0

.0
0

S
−

A
u
ct

io
n

D
f

/
0
5

.2
2

.3
2

.4
1

.0
2

.1
0

.9
2

.7
8

.9
0

.2
0

.0
2

.0
0

.9
2

.9
2

.7
5

.2
7

.0
0

S
−

A
u
ct

io
n

D
o

.0
5

.1
0

.3
1

.5
1

.0
5

.6
4

.4
9

.5
0

.9
5

.5
7

.0
4

.5
2

.4
4

.5
2

.8
6

.3
6

S
−

A
u
ct

io
n

D
t

.4
0

.6
1

.9
0

.0
5

.0
9

.0
6

.7
0

.6
3

.0
4

.0
3

.0
1

.4
9

.8
6

.9
5

.4
3

.0
0

B
ol

d
va

lu
es

in
di

ca
te

st
at

is
ti

ca
lly

si
gn

ifi
ca

nt
di

ffe
re

nc
es

be
tw

ee
n

so
lu

ti
on

va
lu

es
(p
≤

0.
05

).

131

T
ab

le
6.

8:
R

ig
h
t-

ta
il
ed

W
S
R

T
es

t
R

es
u
lt

s
(M

T
-M

R
-

S
-A

u
ct

io
n
).

A
lg

or
it
hm

MT−MRDo

MT−MRDt

PSO(500;100)

PSO(500;100)Da

PSO(500;100)Df/04

PSO(500;100)Df/05

PSO(500;100)Do

PSO(500;100)Dt

Random(500)

S−Auction

S−AuctionDa

S−AuctionDf/04

S−AuctionDf/05

S−AuctionDo

S−AuctionDt

C
−

A
u
ct

io
n

.0
0

.2
7

.0
0

.0
0

.0
0

.0
0

.0
0

.3
8

.0
0

.0
0

.0
0

.3
5

.2
2

.0
5

.4
0

C
−

A
u
ct

io
n

D
a

.0
0

.3
9

.0
0

.0
0

.0
0

.0
0

.0
0

.5
6

.0
0

.0
0

.0
0

.2
1

.3
2

.1
0

.6
1

C
−

A
u
ct

io
n

D
f

/
0
4

.0
0

.9
2

.0
0

.0
0

.0
0

.0
0

.0
0

.9
9

.0
0

.0
0

.0
0

.0
1

.4
1

.3
1

.9
0

C
−

A
u
ct

io
n

D
f

/
0
5

.0
0

.0
8

.0
8

.0
4

.5
3

.2
7

.0
0

.0
3

.2
1

.0
0

.0
0

.0
0

.0
2

.5
1

.0
5

C
−

A
u
ct

io
n

D
o

.1
0

.1
3

.8
4

.6
4

.8
1

.9
2

.0
3

.0
5

.8
9

.0
0

.0
0

.0
0

.1
0

.0
5

.0
9

C
−

A
u
ct

io
n

D
t

.0
0

.5
1

.0
0

.0
0

.0
5

.0
1

.0
0

.1
0

.0
0

.0
0

.0
0

.0
0

.9
2

.6
4

.0
6

G
A

(5
00

;3
0)

.0
0

.9
5

.0
0

.0
0

.0
4

.0
0

.0
0

.5
0

.0
0

.0
0

.0
0

.0
2

.7
8

.4
9

.7
0

G
A

(5
00

;3
0)

D
a

.0
0

.9
0

.0
0

.0
0

.0
5

.0
0

.0
0

.4
5

.0
0

.0
0

.0
0

.0
2

.9
0

.5
0

.6
3

G
A

(5
00

;3
0)

D
f

/
0
4

.0
1

.0
8

.0
3

.0
2

.2
5

.0
5

.0
0

.0
3

.0
4

.0
0

.0
0

.0
0

.2
0

.9
5

.0
4

G
A

(5
00

;3
0)

D
f

/
0
5

.0
0

.0
7

.0
5

.0
3

.9
9

.2
6

.0
0

.0
1

.0
8

.0
0

.0
0

.0
0

.0
2

.5
7

.0
3

G
A

(5
00

;3
0)

D
o

.3
2

.0
1

.3
1

.5
4

.1
6

.3
5

.0
2

.0
0

.2
3

.0
0

.0
0

.0
0

.0
0

.0
4

.0
1

G
A

(5
00

;3
0)

D
t

.0
0

.1
6

.0
0

.0
0

.0
1

.0
0

.0
0

.9
5

.0
0

.0
0

.0
0

.0
2

.9
2

.5
2

.4
9

M
T
−

M
R

A
u
ct

io
n

.0
0

.5
8

.0
0

.0
0

.0
6

.0
5

.0
0

.7
2

.0
0

.0
0

.0
0

.1
6

.9
2

.4
4

.8
6

M
T
−

M
R

A
u
ct

io
n

D
a

.0
0

.8
2

.0
1

.0
0

.0
9

.1
0

.0
0

.9
9

.0
1

.0
0

.0
0

.1
3

.7
5

.5
2

.9
5

M
T
−

M
R

A
u
ct

io
n

D
f

/
0
4

.0
1

.7
8

.0
1

.0
0

.3
6

.0
6

.0
0

.2
8

.0
1

.0
0

.0
0

.0
0

.2
7

.8
6

.4
3

M
T
−

M
R

A
u
ct

io
n

D
f

/
0
5

.0
3

.0
0

.6
4

.4
4

.4
2

.5
4

.0
0

.0
0

.9
0

.0
0

.0
0

.0
0

.0
0

.3
6

.0
0

M
T
−

M
R

A
u
ct

io
n

D
o

-
.0

0
.1

6
.2

7
.0

1
.0

1
.2

5
.0

0
.0

4
.0

0
.0

0
.0

0
.0

0
.0

1
.0

0
M

T
−

M
R

A
u
ct

io
n

D
t

.0
0

-
.0

0
.0

0
.0

3
.0

1
.0

0
.1

5
.0

0
.0

0
.0

0
.0

1
.9

5
.6

1
.7

1
P

S
O

(5
00

;1
00

)
.1

6
.0

0
-

1.
0

.0
3

.2
4

.0
0

.0
0

.1
6

.0
0

.0
0

.0
0

.0
0

.4
5

.0
0

P
S

O
(5

00
;1

00
) D

a
.2

7
.0

0
1.

0
-

.0
2

.1
0

.0
0

.0
0

.0
5

.0
0

.0
0

.0
0

.0
0

.3
2

.0
0

P
S

O
(5

00
;1

00
) D

f
/
0
4

.0
1

.0
3

.0
3

.0
2

-
.4

6
.0

0
.0

0
.0

5
.0

0
.0

0
.0

0
.0

3
.5

6
.0

1
P

S
O

(5
00

;1
00

) D
f

/
0
5

.0
1

.0
1

.2
4

.1
0

.4
6

-
.0

0
.0

0
.5

3
.0

0
.0

0
.0

0
.0

0
.5

2
.0

0
P

S
O

(5
00

;1
00

) D
o

.2
5

.0
0

.0
0

.0
0

.0
0

.0
0

-
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.0

0
P

S
O

(5
00

;1
00

) D
t

.0
0

.1
5

.0
0

.0
0

.0
0

.0
0

.0
0

-
.0

0
.0

0
.0

0
.0

3
.7

6
.5

6
.2

5
R

a
n
d
om

(5
00

)
.0

4
.0

0
.1

6
.0

5
.0

5
.5

3
.0

0
.0

0
-

.0
0

.0
0

.0
0

.0
0

.3
8

.0
0

S
−

A
u
ct

io
n

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

-
1.

0
.0

0
.0

0
.0

0
.0

0
S
−

A
u
ct

io
n

D
a

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

1.
0

-
.0

0
.0

0
.0

0
.0

0
S
−

A
u
ct

io
n

D
f

/
0
4

.0
0

.0
1

.0
0

.0
0

.0
0

.0
0

.0
0

.0
3

.0
0

.0
0

.0
0

-
.0

2
.0

6
.0

3
S
−

A
u
ct

io
n

D
f

/
0
5

.0
0

.9
5

.0
0

.0
0

.0
3

.0
0

.0
0

.7
6

.0
0

.0
0

.0
0

.0
2

-
.6

6
.6

3
S
−

A
u
ct

io
n

D
o

.0
1

.6
1

.4
5

.3
2

.5
6

.5
2

.0
1

.5
6

.3
8

.0
0

.0
0

.0
6

.6
6

-
.4

4
S
−

A
u
ct

io
n

D
t

.0
0

.7
1

.0
0

.0
0

.0
1

.0
0

.0
0

.2
5

.0
0

.0
0

.0
0

.0
3

.6
3

.4
4

-

B
ol

d
va

lu
es

in
di

ca
te

st
at

is
ti

ca
lly

si
gn

ifi
ca

nt
di

ffe
re

nc
es

be
tw

ee
n

so
lu

ti
on

va
lu

es
(p
≤

0.
05

).

132

Figure 6.13: Average Solution Space Size Per Algorithm for ASAR.

isons of each of the algorithms is shown in Tables 6.7 and 6.8. These tables highlight

in bold which solutions pairs are significantly statistically different using the WSR

statistical test. The statistics confirm that the PSO and random approaches generally

produce the least desirable results.

Although the effectiveness of the distributed approaches compares similarly with

serial processing, the reduced search size of the distributed searches is more profound.

Figure 6.13 shows the total size of the solution search space used by each of the solution

approaches. The vertical bar indicates the range of solution space sizes from the

smallest to the largest lower upper bound with a line in between indicating the average

size. The non-distributed entries indicate the entire range of problems found in Table

6.4. Distributed entries indicate the range for the subproblems produced by the

indicated decomposition method. Table 6.6 lists specific values for the decomposition

methods as compared to the original problem solution space size.

133

The data clearly shows that distributing the problem using any decomposition

method other than by agent substantially reduces the size of the solution space by

several orders of magnitude over serial processing. There is a likely correlation be-

tween the success of the decomposition and the reduction in solution space size. The

decomposition methods closer to an optimal decomposition reduces the size of the so-

lution space the most. In this case, the task decomposition, which produced optimal

decomposition, has the greatest reduction in solution space with an average reduction

of 10106 (LUB) solutions. The other decomposition methods show, in sorted order,

space reductions roughly equivalent to 0, 1014, 1056, and 1073 for agent, operation,

four-node and five-node decompositions.

Interestingly, task decomposition, the best utility-producing method, is also the

best solution space reduction method. On average, it used less than 1.8× 10−13% (!)

of the solution space to generate solutions. The other methods to not show such a

significant size reduction. The worst subproblem-generating method, operation-based

decomposition, only reduces the space by 50%. The five-node decomposition reduces

the space more than four-node decomposition, but both are small fractions of the

original space at 1.7 × 10−7 and 8.9 × 10−9. However, the fixed-size decomposition

methods appropriately generate smaller spaces for a larger number of processors as

expected. Decomposition by agent only decreased the solution space in one specific

case, otherwise that method searches 100% of the original solution space due to the

increased relational constraints placed in the ASAR problem. But, overall, this implies

that task decomposition provides the best search performance for solving an ASAR

problem.

This is confirmed by measuring the average percent in utility error and solution

space reduction for the test results. Figure 6.14 plots the average solution utility

error for each algorithmic approach with a black bar. The lower the bar, the lower

the difference percentage-wise from the best known utility solution value. From the

data, it is clear that no one algorithm performs the best [122] with all algorithms

showing an average error rate above 1%. However, the serial auction shows approaches

134

Figure 6.14: Average Utility Error Per Algorithm for ASAR.

with the least amount of error, averaging 6.83% from the best with a minimum error

of 1.78% given by the serial solution approach. The concurrent auction, GA and

MT-MR auction provide the next best average error rates in order. The PSO has

an average error rate that is 0.97% higher than the smart random algorithm. On

the other hand, the average error for task decomposition approaches, at 7.78%, is

0.81% lower than the average error for serial approaches at 8.59%. The next best

decomposition method error exceeds 10%. Therefore, the task decomposition method

for a distributed system provides less average error for the random ASAR problems

used in this experiment.

Although there seems to be a correlation between the performance of the decom-

position method and the reduction in solution space size, the data does not support

any correlation between problem complexity and error margins. This suggests that

the error in utility value of the distributed approach is independent of the complexity

135

in the problem even though decomposition is strongly related to problem complex-

ity. This relationship is unexpected and requires further investigation to determine

whether it is specific to the ASAR problem domain or if it generalizes over CMTS

problems. The reduction in solution space is too constant (only six sample points on

a line) to firmly conclude if there is a relationship between complexity and solution

space reduction.

Thus, the distributed experiments demonstrate that the task decomposition

method presents an approach that significantly increases efficiency by reducing the

solution space search size while lowering the average utility error rate over the set

of experimental algorithms for the ASAR problem. The effect is best noticed by

the significant boost in performance given to the PSO algorithm, which moves from

a last place serial method to fifth place of 31 distributed approaches. The task-

based decomposition also boosted the performance of the GA and MT-MR auction

approaches above their serial counterparts. However, the data continues to show

that the serial auction method tends to perform the best on average in either a

serial or distributed process, but with less confidence that they provide statistically

significant solutions from all but operation-based decomposition using PSO and MT-

MR. Though, the distributed forms of the evolutionary algorithms, GA and PSO,

provide the highest possible solution quality for specific domain problems.

6.4 Behavioral Observations

Several interesting events occurred during the experiments. First, an over-

whelming number of solutions generated throughout the ASAR problem set contained

coalition assignments to tasks where not all members of the coalition could perform

the task. Fortunately, this is not a design flaw, but rather the effect of using behavior-

like methods for the agent and task value functions. The algorithms, based on the

feedback of these methods, chose such solutions because they pre-staged some agents

to a location close to a subsequent task in order to minimize total overall distance.

Granted that there is a well-understood mathematical model behind the value of a

136

solution, pre-staging an agent could be considered a type of emergent behavior, such

as those revealed in multi-robot behavior systems. Note that a pre-staged agent may

adversely affect the assignment value of the coalition since the presence of additional

abilities tends to lower the effect of performing a task.

Another type of behavior observed in the alarms and ASAR problem is coali-

tion splitting and joining actions similar to animal flocking. Again, this behavior is

encouraged by the underlying agent and task value functions, but becomes prevalent

in solutions based on optimization of an objective function which is transformed to a

single value. It appears that even without specific coalition-level balancing methods,

the value functions of the agent abilities are sufficient to drive coalition-level effects.

6.5 Summary

Three distinct experiments are conducted to test the effectiveness and efficiency

of multiagent task assignment algorithms modified to solve CMTS problems. In the

first test, four auction-based methods implement MRTA taxonomy classes for a simple

gathering domain problem. As expected, the MT-MR concurrent auctioning method

outperforms the other taxonomy auction approaches for the cooperative gathering

problem, offering solutions at least 31% more effective than any other approach. In

these experiments, the concurrent auction always found the best solution. Although

the auction approaches are assignment-complete searches, they are not guaranteed

to find the optimal solution because they lack the benefits of scheduling found in

other CMTS-ready algorithms defined in Chapter IV. The gathering problem domain

used in these experiments does not often enough force the auction methods to form

solutions with significant depth because the problems are not complex—each problem

has complexity χ = 0.

The second experiment involved applying tree-based searches, A* and beam

search, to the alarm handling problem domain where multiagent solutions are re-

quired. This experiment tests the effectiveness of the tree-based search algorithm

in reaching optimal values and the efficiency of those algorithms when using fixed

137

node size distributed processing. The A* algorithm provides optimal solutions for all

domain instances with the beam search coming to within roughly 5% of the optimal

solution. As compared to random selection, the tree-searches offer solutions averag-

ing 50% more effective. The distributed approach, however, generates solutions that

come within 20% but require less than 0.7% of the number of solutions to generate

a result. This shows that the effectiveness of the distributed approach for fixed-sized

distribution is not remarkably effective, but is highly efficient.

Secondary tests add two auction methods for a distributed-only series of tri-

als using all four problem space decomposition methods. The results show that the

A* algorithm produces better quality solutions than auctioning, which is competitive

with the beam search. Task decomposition produced an optimal set of subproblems,

showed the least error from serial processing than the other decoposition methods,

and required the smallest search space. The decomposition methods averaged a re-

duction of 1026 solutions of a search space of size magnitude 1041; task decomposition

managed with a reduction of 1039 while producing solutions within 37% of the serial

solution. However, like the gathering problems, the alarm problems do not have any

relational constraints in order to use large-resource-using methods to solve small do-

main problems. Therefore, a better test of CMTS-ready algorithms requires a much

more complex domain that includes constrained problems.

Thus, the third experiment shows the effectiveness of low-resource-using ap-

proximation algorithms, specifically, serial and concurrent auction with the MT-MR

variant, the GA, and the PSO, with the complex ASAR problem domain. The prob-

lem instances are larger than the other domains and have varied complexity. Results

show that the serial auction method produces the best results for both serial and

distributed processing. However, task-based decomposition tends to improve the so-

lution quality on average by just under one percent while using less than 2× 10−13%

of the solution space. The average error for task-based decomposition for the complex

problems stayed within 7.78% of the serial solution. This empirically shows that task

138

decomposition is a highly viable approach to increasing the effectiveness and efficiency

of solving larger CMTS problems.

139

VII. Conclusions

This research presents a two-part unified framework that provides a novel approach

to unifying the representation of and solving multiagent task assignment domain

problems. The constrained multiagent task scheduling (CMTS) problem descriptor

models complex multiagent task scheduling problems involving multi-capable agents

concurrently performing tasks that can require multiple agents. The model is founded

in multiagent task allocation and blends in concepts from resource constrained project

scheduling, distributed constraint satisfaction and coalition formation.

7.1 The Unified Framework

The CMTS descriptor combines key elements of the multi-robot task allocation

(MRTA) taxonomy (Section 2.1.1) with project scheduling (Section 2.1.2), distributed

constraint satisfaction (Section 2.1.3) and coalition formation (Section 2.1.4), to pro-

duce a unified problem representation for multiagent task assignment problems. The

expressiveness of the descriptor is shown by representing several classical and modern

problems from combinatorial optimization in the same notation as defined in Section

3.1. The problems include foundational forms of the optimal assignment problem,

flow and job shop scheduling, multiple traveling salesman, vehicle routing, and multi-

object tracking, each defined in Section 3.2. Elements of these problems are combined

to form the autonomous search and recovery (ASAR) problem as a demonstration of

the level of complexity the CMTS problem expresses.

Solutions to the CMTS problem are generated by modifying existing algorithm

bases and multiagent approaches to utilize the CMTS descriptor as prescribed in

Chapter IV. Branch and bound techniques provide methods to generate optimal

solutions but require a significant amount of resources to generate solutions. Al-

ternately, approximation algorithms based on auctioning, policy learning and evolu-

tionary approaches provide effective solutions without requiring significant resources.

Furthermore, domain uncertainty is incorporated in the solution development process

through partially observable Markov decision process models as shown in Section 4.9.

140

Algorithms modified to use the CMTS definition are able to solve the broad range

of simple, unconstrained one-to-one agent-to task problems to highly complex, rela-

tionally constrained many-to-many problems as well as problems from the constaint

satisfaction and resource scheduling domains.

To solve increasingly larger problems, distributed algorithms decompose large

problems (Section 5.2) and recompose solutions (Section 5.3) from a set of subso-

lutions. The distribution uses multiple instances of the modified CMTS algorithms

with one of four types of problem decompositions to generate approximated solutions.

The distributed system also provides methods to generate optimal solutions based on

solution-space decomposition rather than problem-space decomposition (Section 5.5).

7.2 Future Work

The algorithms presented in this framework modify different types of solution

techniques used to solve multiagent task assignment to use the CMTS problem rep-

resentation. Significant research, discussed in Chapter II, has formulated and demon-

strated improvements to the search characteristics of the underlying algorithms in a

variety of problem domains. That work can now apply to CMTS algorithms. The

CMTS-ready implementations are provided for researchers to build upon, particularly

for implementing the improved versions of these basic templates found in current lit-

erature, or by generating new algorithms by creating hybrids of these.

Although many algorithms generate competitive solutions, the solution space

for a typical CMTS problem can be very complex based on the image in Figure

3.6. However, given the nature of some of the search techniques, is it possible to

enumerate the coalitions and task sequences in such a way to minimize the number

of disjoint, invalid solution subspaces? This kind of enumeration can be captured in

algorithmic operations such as crossover or particle velocity in order to take advantage

of the search capabilities in the overlying algorithms. Similarly, are there problem-

specific enumerations such that the surface of the value plane is continuous almost

141

everywhere? Such enumerations increase the probability of creating a valid solution

which can lead to more effective and efficient searching.

The results generated by the CMTS-ready algorithms, despite the solution enu-

meration, demonstrate that distributed problem solving with task-based decomposi-

tion is generally the best approach for solving ASAR problems. But the design of the

problem is possibly influencing these results. Additional problem domains that use all

of the components of the CMTS problem need to be developed in order to sufficiently

generalize the performance characteristics of the distributed process. The difference

in problems domains should be clearly delineated in order to precisely capture how

the decomposition methods are related to relational constraints if such a relationship

exists.

Another direction for future work is to incorporate conditional relational con-

straints into the CMTS definition. For instance, the binding set, influenced by physical

world models, prohibits abilities from concurrently working on separate tasks. But,

if those tasks were “close enough,” then the binding should be relaxed to allow for

agents to concurrently perform both such as two grippers picking up blocks that are

centimeters apart. A similar idea applies to inhibitor sets where maybe abilities only

inhibit each other within a certain radius, such as mobile antennas.

Finally, the CMTS problem descriptor does not model assignment failure. This

dynamic event is only solvable by continuously solving updated problem instances

relevant to a dynamic environment. Most real time robot systems handle this on-

the-fly using the equivalent to value functions, but whether there is an underlying

analytical model for handling situations like preemption or intentional coalition failure

are not specifically addressed by this work.

7.3 Summary

In conclusion, this unified framework for multiagent task assignment is an inno-

vative advancement in the multiagent research field. The CMTS problem descriptor

142

is the first problem model to compositely represent a broad range of multiagent task

assignment problems from a number of disciplines in a single description. The de-

scriptor provides a unified approach to representing variable agent-to-task ratios with

inter-agent and inter-task relational constraints. The solution representation pro-

vides a well-understood structure that single-handedly shows the task allocation and

scheduling results for a CMTS problem. The algorithms presented in this work gen-

erate optimal and highly effective approximated solutions to simple and challenging

problem domains while simultaneously solving the coalition formation and scheduling

aspects of the problem. Thus, the CMTS-ready algorithms fulfill a critically missing

requirement in the multiagent task assignment field by solving a wide variety of task

assignment problems without requiring modification and in a single stage. Further-

more, a distributed process with an appropriate problem decomposition technique

applied to solve the domains used in these experiments empirically shows significant

reduction in solution search size without impacting solution quality.

Experiments using simple and complex CMTS problem domains show that

multiagent approaches to solving CMTS problems can outperform single-agent ap-

proaches. The multiagent approach performs than better single-agent approaches in

cooperative and competitive environments, regardless of whether tasks require mul-

tiple agents or time-extended planning. For complex problems, the serial auction

algorithm provides the best average utility value for individual and distributed pro-

cessing. However, the task decomposition method for a distributed system often

improves solution quality. Task decomposition is also the most effective method for

reducing the solution space size for distributed search algorithms based on the exper-

imental results summarized in Section 6.5. Yet, no single approximation algorithm

provided the best answer across the span of all problem instances as predicted by

the No Free Lunch theorems [122], which state that there is no best algorithm for

optimization problems.

Therefore, the unified framework, consisting of unified problem descriptor and

problem-independent algorithmic solvers, offers a viable approach to researching mul-

143

tiagent task assignment through a universal interface. The techniques illustrated by

this research demonstrate the basic approach to representing and solving constrained

assignment problems while incorporating basic agent behaviors in a multiagent en-

vironment. This research opens the door for hybridized algorithm development, dis-

tributed solution development with high scalability and real-time scheduling in a

dynamic environment using techniques coming from several disciplines.

144

Appendix A. Problem Specific Experiment Results

This appendix provides individual results graphs for each problem. The top-most

figure shows the solution utility values generated by each algorithm with the horizontal

axis showing the algorithms rank-ordered with the best performing algorithm to the

left. The line across the chart represents the average solution value over all of the

algorithms for the one problem. The middle figure shows the percent error in solution

value each algorithm produces from the best value by a black bar. The lower the

bar, the lower the difference percentage-wise from the best known utility solution

value for the problem. Algorithms with no bar found the best solution. The bottom

figure illustrates the total size of the solution space used to generate solutions relative

to the original problem size. This primarily highlights how much solution space the

decomposition methods are using when searching for solutions.

145

0.0027500

0.0028000

0.0028500

0.0029000

0.0029500

0.0030000

0.0030500

0.0031000

PSO(500;100)Df/04
S-AuctionDo

S-AuctionDf/05
S-AuctionDf/04
S-AuctionDa
S-Auction
MT-MR

Do

MT-MR
Da

MT-MR
C-AuctionDo

C-AuctionDf/05
C-AuctionDf/04
C-AuctionDa
C-Auction
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
GA(500;30)Do
GA(500;30)Da
GA(500;30)
Random(500)
MT-MR

Df/05

MT-MR
Df/04

GA(500;30)Df/04
PSO(500;100)Df/05
GA(500;30)Df/05
PSO(500;100)Dt
GA(500;30)Dt
S-AuctionDt

C-AuctionDt

MT-MR
Dt

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.1: 3× 6 ASAR Problem Results.

146

0.0035000

0.0040000

0.0045000

0.0050000

0.0055000

0.0060000

GA(500;30)Df/05
PSO(500;100)Df/04
MT-MR

Dt

PSO(500;100)Df/05
S-AuctionDf/04
S-AuctionDt

PSO(500;100)Dt
C-AuctionDt

GA(500;30)Da
GA(500;30)
C-AuctionDf/05
S-AuctionDf/05
S-AuctionDa
S-Auction
MT-MR

Df/05

MT-MR
Df/04

MT-MR
Da

MT-MR
C-AuctionDf/04
C-AuctionDa
C-Auction
PSO(500;100)Da
PSO(500;100)
GA(500;30)Dt
Random(500)
GA(500;30)Df/04
MT-MR

Do

C-AuctionDo

PSO(500;100)Do
GA(500;30)Do
S-AuctionDo

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.2: 3× 7 ASAR Problem Results.

147

0.0020000

0.0020500

0.0021000

0.0021500

0.0022000

0.0022500

0.0023000

0.0023500

GA(500;30)Do
GA(500;30)Da
GA(500;30)
GA(500;30)Df/04
S-AuctionDo

S-AuctionDf/05
S-AuctionDf/04
S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDf/05
C-AuctionDf/04
C-AuctionDa
C-Auction
S-AuctionDt

C-AuctionDt

MT-MR
Do

MT-MR
Df/05

MT-MR
Da

MT-MR
PSO(500;100)Dt
GA(500;30)Df/05
GA(500;30)Dt
MT-MR

Df/04

PSO(500;100)Df/04
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
PSO(500;100)Df/05
MT-MR

Dt

Random(500)
U(

S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.3: 3× 8 ASAR Problem Results.

148

0.0030000

0.0031000

0.0032000

0.0033000

0.0034000

0.0035000

0.0036000

GA(500;30)Do
GA(500;30)Da
GA(500;30)
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
Random(500)
S-AuctionDo

S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDa
C-Auction
S-AuctionDf/05
C-AuctionDf/05
GA(500;30)Df/04
PSO(500;100)Df/05
S-AuctionDf/04
C-AuctionDf/04
GA(500;30)Df/05
PSO(500;100)Df/04
MT-MR

Df/04

MT-MR
Do

MT-MR
Da

MT-MR
MT-MR

Df/05

PSO(500;100)Dt
GA(500;30)Dt
MT-MR

Dt

S-AuctionDt

C-AuctionDt

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.4: 3× 9 ASAR Problem Results.

149

0.0031000

0.0032000

0.0033000

0.0034000

0.0035000

0.0036000

0.0037000

0.0038000

0.0039000

0.0040000

0.0041000

S-AuctionDf/05
S-AuctionDa
S-Auction
S-AuctionDf/04
GA(500;30)Da
GA(500;30)
MT-MR

Da

MT-MR
C-AuctionDa
C-Auction
C-AuctionDf/04
GA(500;30)Df/05
MT-MR

Df/05

MT-MR
Df/04

GA(500;30)Dt
S-AuctionDt

C-AuctionDt

GA(500;30)Df/04
C-AuctionDf/05
Random(500)
MT-MR

Dt

PSO(500;100)Df/05
PSO(500;100)Dt
PSO(500;100)Df/04
PSO(500;100)Da
PSO(500;100)
GA(500;30)Do
MT-MR

Do

S-AuctionDo

C-AuctionDo

PSO(500;100)Do

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.5: 3× 10 ASAR Problem Results.

150

0.0027000

0.0027500

0.0028000

0.0028500

0.0029000

0.0029500

0.0030000

0.0030500

0.0031000

0.0031500

0.0032000

S-AuctionDo

S-AuctionDf/05
S-AuctionDf/04
S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDf/05
C-AuctionDf/04
C-AuctionDa
C-Auction
GA(500;30)Dt
MT-MR

Do

MT-MR
Da

MT-MR
MT-MR

Df/05

PSO(500;100)Dt
MT-MR

Df/04

MT-MR
Dt

PSO(500;100)Df/05
GA(500;30)Df/04
GA(500;30)Df/05
S-AuctionDt

C-AuctionDt

GA(500;30)Do
GA(500;30)Da
GA(500;30)
PSO(500;100)Df/04
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
Random(500)

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.6: 3× 11 ASAR Problem Results.

151

0.0036000

0.0037000

0.0038000

0.0039000

0.0040000

0.0041000

0.0042000

0.0043000

0.0044000

0.0045000

S-AuctionDo

S-AuctionDf/04
S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDa
C-Auction
GA(500;30)Df/04
GA(500;30)Do
GA(500;30)Da
GA(500;30)
C-AuctionDf/04
MT-MR

Do

MT-MR
Da

MT-MR
S-AuctionDf/05
PSO(500;100)Dt
GA(500;30)Df/05
GA(500;30)Dt
C-AuctionDf/05
MT-MR

Df/04

PSO(500;100)Df/04
PSO(500;100)Df/05
MT-MR

Df/05

MT-MR
Dt

S-AuctionDt

C-AuctionDt
Random(500)
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.7: 3× 12 ASAR Problem Results.

152

0.0027000

0.0027500

0.0028000

0.0028500

0.0029000

0.0029500

0.0030000

0.0030500

0.0031000

0.0031500

S-AuctionDo

S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDa
C-Auction
GA(500;30)Do
GA(500;30)Da
GA(500;30)
MT-MR

Do

MT-MR
Da

MT-MR
PSO(500;100)Df/05
MT-MR

Df/04

MT-MR
Dt

S-AuctionDf/05
S-AuctionDt

C-AuctionDt

MT-MR
Df/05

C-AuctionDf/05
S-AuctionDf/04
C-AuctionDf/04
GA(500;30)Dt
PSO(500;100)Df/04
Random(500)
GA(500;30)Df/04
GA(500;30)Df/05
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04

GA(500;30)Df/05

GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.8: 3× 13 ASAR Problem Results.

153

0.0024000

0.0025000

0.0026000

0.0027000

0.0028000

0.0029000

0.0030000

0.0031000

0.0032000

S-AuctionDo

S-AuctionDa
S-Auction
MT-MR

Do

MT-MR
Da

MT-MR
C-AuctionDo

C-AuctionDa
C-Auction
S-AuctionDf/05
C-AuctionDf/05
GA(500;30)Df/04
MT-MR

Df/04

S-AuctionDf/04
C-AuctionDf/04
GA(500;30)Df/05
GA(500;30)Dt
PSO(500;100)Df/04
PSO(500;100)Dt
GA(500;30)Do
GA(500;30)Da
GA(500;30)
MT-MR

Dt

S-AuctionDt

C-AuctionDt

PSO(500;100)Df/05
MT-MR

Df/05
Random(500)
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.9: 3× 14 ASAR Problem Results.

154

0.0014500

0.0015000

0.0015500

0.0016000

0.0016500

0.0017000

0.0017500

S-AuctionDf/05
S-AuctionDo

S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDa
C-Auction
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
GA(500;30)Df/05
Random(500)
C-AuctionDf/04
PSO(500;100)Df/04
S-AuctionDf/04
MT-MR

Df/05

MT-MR
Do

MT-MR
Da

MT-MR
GA(500;30)Df/04
MT-MR

Df/04

MT-MR
Dt

C-AuctionDf/05
PSO(500;100)Dt
GA(500;30)Do
GA(500;30)Da
GA(500;30)
GA(500;30)Dt
PSO(500;100)Df/05
S-AuctionDt

C-AuctionDt

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.10: 3× 15 ASAR Problem Results.

155

0.0014500

0.0015000

0.0015500

0.0016000

0.0016500

0.0017000

0.0017500

0.0018000

0.0018500

0.0019000

0.0019500

0.0020000

C-AuctionDf/05
C-AuctionDf/04
GA(500;30)Do
GA(500;30)Da
GA(500;30)
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
PSO(500;100)Dt
PSO(500;100)Df/05
GA(500;30)Df/05
S-AuctionDt

PSO(500;100)Df/04
S-AuctionDo

S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDa
C-Auction
GA(500;30)Dt
Random(500)
GA(500;30)Df/04
S-AuctionDf/05
S-AuctionDf/04
C-AuctionDt

MT-MR
Do

MT-MR
Df/05

MT-MR
Df/04

MT-MR
Da

MT-MR
MT-MR

Dt

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.11: 4× 6 ASAR Problem Results.

156

0.0038000

0.0039000

0.0040000

0.0041000

0.0042000

0.0043000

0.0044000

S-AuctionDo

S-AuctionDa
S-Auction
GA(500;30)Df/05
S-AuctionDf/04
GA(500;30)Do
GA(500;30)Da
GA(500;30)
C-AuctionDo

C-AuctionDa
C-Auction
S-AuctionDt

C-AuctionDt

S-AuctionDf/05
MT-MR

Dt

MT-MR
Df/05

MT-MR
Df/04

MT-MR
Do

MT-MR
Da

MT-MR
GA(500;30)Dt
PSO(500;100)Df/05
GA(500;30)Df/04
C-AuctionDf/05
C-AuctionDf/04
PSO(500;100)Dt
Random(500)
PSO(500;100)Df/04
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.12: 4× 7 ASAR Problem Results.

157

0.0032000

0.0034000

0.0036000

0.0038000

0.0040000

0.0042000

0.0044000

0.0046000

0.0048000

0.0050000

0.0052000

MT-MR
Df/05

S-AuctionDa
S-Auction
MT-MR

Df/04

MT-MR
Da

MT-MR
GA(500;30)Df/04
PSO(500;100)Dt
S-AuctionDf/04
S-AuctionDf/05
GA(500;30)Da
GA(500;30)
S-AuctionDt

C-AuctionDt

MT-MR
Dt

GA(500;30)Dt
PSO(500;100)Df/05
GA(500;30)Df/05
PSO(500;100)Df/04
PSO(500;100)Da
PSO(500;100)
C-AuctionDa
C-Auction
Random(500)
C-AuctionDf/05
C-AuctionDf/04
S-AuctionDo

MT-MR
Do

GA(500;30)Do
PSO(500;100)Do
C-AuctionDo

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.13: 4× 8 ASAR Problem Results.

158

0.0012000

0.0014000

0.0016000

0.0018000

0.0020000

0.0022000

0.0024000

0.0026000

0.0028000

0.0030000

MT-MR
Dt

S-AuctionDa
S-Auction
S-AuctionDt

C-AuctionDt

C-AuctionDf/04
MT-MR

Da

MT-MR
PSO(500;100)Df/05
MT-MR

Df/04

S-AuctionDf/05
C-AuctionDf/05
MT-MR

Df/05

S-AuctionDf/04
GA(500;30)Df/05
GA(500;30)Da
GA(500;30)
PSO(500;100)Df/04
PSO(500;100)Dt
PSO(500;100)Da
PSO(500;100)
GA(500;30)Df/04
Random(500)
C-AuctionDa
C-Auction
GA(500;30)Dt
PSO(500;100)Do
GA(500;30)Do
MT-MR

Do

S-AuctionDo

C-AuctionDo

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

C-Auction
C-AuctionDa

C-AuctionDf/04
C-AuctionDf/05
C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04
S-AuctionDf/05
S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.14: 4× 9 ASAR Problem Results.

159

0.0030000

0.0035000

0.0040000

0.0045000

0.0050000

0.0055000

S-AuctionDf/04
S-AuctionDf/05
S-AuctionDo

S-AuctionDa
S-Auction
PSO(500;100)Dt
MT-MR

Dt

S-AuctionDt

C-AuctionDt

GA(500;30)Dt
C-AuctionDf/05
C-AuctionDf/04
GA(500;30)Do
GA(500;30)Da
GA(500;30)
C-AuctionDo

C-AuctionDa
C-Auction
GA(500;30)Df/05
GA(500;30)Df/04
MT-MR

Df/05

PSO(500;100)Df/05
PSO(500;100)Df/04
MT-MR

Do

MT-MR
Da

MT-MR
Random(500)
MT-MR

Df/04

PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.15: 4× 10 ASAR Problem Results.

160

0.0015000

0.0020000

0.0025000

0.0030000

0.0035000

0.0040000

MT-MR
Dt

S-AuctionDa
S-Auction
C-AuctionDa
C-Auction
C-AuctionDf/04
C-AuctionDf/05
S-AuctionDt

PSO(500;100)Dt
GA(500;30)Dt
C-AuctionDt

S-AuctionDf/04
S-AuctionDf/05
PSO(500;100)Df/04
MT-MR

Da

MT-MR
MT-MR

Df/05

MT-MR
Df/04

PSO(500;100)Df/05
GA(500;30)Df/05
GA(500;30)Da
GA(500;30)
GA(500;30)Df/04
Random(500)
PSO(500;100)Da
PSO(500;100)
MT-MR

Do

PSO(500;100)Do
GA(500;30)Do
S-AuctionDo

C-AuctionDo

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

C-Auction
C-AuctionDa

C-AuctionDf/04
C-AuctionDf/05
C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04
S-AuctionDf/05
S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.16: 4× 11 ASAR Problem Results.

161

0.0022500

0.0023000

0.0023500

0.0024000

0.0024500

0.0025000

0.0025500

0.0026000

0.0026500

S-AuctionDo

S-AuctionDa
S-Auction
S-AuctionDf/05
C-AuctionDf/04
PSO(500;100)Dt
S-AuctionDt

C-AuctionDt

S-AuctionDf/04
GA(500;30)Dt
MT-MR

Dt

PSO(500;100)Df/05
MT-MR

Do

MT-MR
Df/04

MT-MR
Da

MT-MR
C-AuctionDo

C-AuctionDa
C-Auction
C-AuctionDf/05
GA(500;30)Df/04
MT-MR

Df/05
Random(500)
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
PSO(500;100)Df/04
GA(500;30)Df/05
GA(500;30)Do
GA(500;30)Da
GA(500;30)

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.17: 4× 12 ASAR Problem Results.

162

0.0022000

0.0024000

0.0026000

0.0028000

0.0030000

0.0032000

0.0034000

0.0036000

0.0038000

0.0040000

S-AuctionDa
S-Auction
S-AuctionDo

GA(500;30)Da
GA(500;30)
MT-MR

Da

MT-MR
MT-MR

Df/04

GA(500;30)Dt
PSO(500;100)Dt
S-AuctionDf/05
S-AuctionDt

C-AuctionDt

GA(500;30)Df/05
MT-MR

Dt

S-AuctionDf/04
PSO(500;100)Df/05
MT-MR

Df/05

GA(500;30)Df/04
C-AuctionDo

C-AuctionDa
C-Auction
C-AuctionDf/05
Random(500)
GA(500;30)Do
MT-MR

Do

C-AuctionDf/04
PSO(500;100)Df/04
PSO(500;100)Da
PSO(500;100)
PSO(500;100)Do

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.18: 4× 13 ASAR Problem Results.

163

0.0027000

0.0028000

0.0029000

0.0030000

0.0031000

0.0032000

0.0033000

0.0034000

S-AuctionDf/04
S-AuctionDo

S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDa
C-Auction
C-AuctionDf/04
PSO(500;100)Df/04
GA(500;30)Dt
PSO(500;100)Dt
S-AuctionDt

C-AuctionDt

MT-MR
Dt

GA(500;30)Df/04
Random(500)
GA(500;30)Do
GA(500;30)Da
GA(500;30)
MT-MR

Df/04

PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
S-AuctionDf/05
C-AuctionDf/05
GA(500;30)Df/05
PSO(500;100)Df/05
MT-MR

Df/05

MT-MR
Do

MT-MR
Da

MT-MR

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.19: 4× 14 ASAR Problem Results.

164

0.0026000

0.0027000

0.0028000

0.0029000

0.0030000

0.0031000

0.0032000

0.0033000

0.0034000

0.0035000

0.0036000

C-AuctionDf/04
S-Auction
C-Auction
S-AuctionDf/04
GA(500;30)Df/04
PSO(500;100)
GA(500;30)Df/05
PSO(500;100)Df/04
S-AuctionDo

C-AuctionDo

GA(500;30)Dt
C-AuctionDf/05
Random(500)
S-AuctionDt

C-AuctionDt

MT-MR
Df/04

MT-MR
MT-MR

Dt

S-AuctionDf/05
PSO(500;100)Dt
GA(500;30)Do
GA(500;30)
S-AuctionDa

C-AuctionDa

GA(500;30)Da
PSO(500;100)Df/05
MT-MR

Do

MT-MR
Da

PSO(500;100)Da
PSO(500;100)Do
MT-MR

Df/05

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.20: 4× 15 ASAR Problem Results.

165

0.0011000

0.0012000

0.0013000

0.0014000

0.0015000

0.0016000

0.0017000

0.0018000

0.0019000

0.0020000

0.0021000

PSO(500;100)Dt
GA(500;30)Dt
GA(500;30)Df/05
S-AuctionDa
S-Auction
C-AuctionDa
C-Auction
C-AuctionDf/05
MT-MR

Da

MT-MR
S-AuctionDt

C-AuctionDf/04
PSO(500;100)Df/04
MT-MR

Df/04

MT-MR
Dt

Random(500)
S-AuctionDf/04
GA(500;30)Df/04
GA(500;30)Da
GA(500;30)
MT-MR

Df/05

S-AuctionDf/05
PSO(500;100)Da
PSO(500;100)
C-AuctionDt

PSO(500;100)Df/05
GA(500;30)Do
PSO(500;100)Do
C-AuctionDo

MT-MR
Do

S-AuctionDo

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.21: 5× 6 ASAR Problem Results.

166

0.0026000

0.0028000

0.0030000

0.0032000

0.0034000

0.0036000

0.0038000

0.0040000

0.0042000

0.0044000

0.0046000

0.0048000

MT-MR
Do

MT-MR
Da

MT-MR
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
S-AuctionDo

S-AuctionDa
S-Auction
C-AuctionDo

C-AuctionDa
C-Auction
Random(500)
MT-MR

Df/04

GA(500;30)Do
GA(500;30)Da
GA(500;30)
PSO(500;100)Dt
GA(500;30)Dt
S-AuctionDt

C-AuctionDt

MT-MR
Dt

MT-MR
Df/05

S-AuctionDf/04
C-AuctionDf/04
GA(500;30)Df/04
S-AuctionDf/05
C-AuctionDf/05
PSO(500;100)Df/04
PSO(500;100)Df/05
GA(500;30)Df/05

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.22: 5× 7 ASAR Problem Results.

167

0.0014000

0.0015000

0.0016000

0.0017000

0.0018000

0.0019000

0.0020000

0.0021000

0.0022000

0.0023000

GA(500;30)Do
GA(500;30)Da
GA(500;30)
S-AuctionDo

S-AuctionDa
S-Auction
PSO(500;100)Do
PSO(500;100)Da
PSO(500;100)
C-AuctionDo

C-AuctionDa
C-Auction
GA(500;30)Dt
Random(500)
PSO(500;100)Df/05
S-AuctionDt

PSO(500;100)Dt
C-AuctionDt

S-AuctionDf/04
MT-MR

Df/04

MT-MR
Dt

PSO(500;100)Df/04
C-AuctionDf/04
GA(500;30)Df/04
S-AuctionDf/05
C-AuctionDf/05
GA(500;30)Df/05
MT-MR

Df/05

MT-MR
Do

MT-MR
Da

MT-MR

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.23: 5× 8 ASAR Problem Results.

168

0.0014000

0.0016000

0.0018000

0.0020000

0.0022000

0.0024000

0.0026000

0.0028000

0.0030000

0.0032000

MT-MR
Da

MT-MR
S-AuctionDf/04
S-AuctionDa
S-Auction
MT-MR

Df/04

C-AuctionDf/04
C-AuctionDa
C-Auction
GA(500;30)Dt
PSO(500;100)Dt
GA(500;30)Da
GA(500;30)
MT-MR

Dt

C-AuctionDo

S-AuctionDt

C-AuctionDt

S-AuctionDo

GA(500;30)Df/04
S-AuctionDf/05
Random(500)
PSO(500;100)Da
PSO(500;100)
C-AuctionDf/05
PSO(500;100)Df/04
GA(500;30)Df/05
PSO(500;100)Df/05
GA(500;30)Do
MT-MR

Df/05

PSO(500;100)Do
MT-MR

Do

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

C-Auction
C-AuctionDa

C-AuctionDf/04
C-AuctionDf/05
C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04
S-AuctionDf/05
S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.24: 5× 9 ASAR Problem Results.

169

0.0018000

0.0020000

0.0022000

0.0024000

0.0026000

0.0028000

0.0030000

0.0032000

0.0034000

MT-MR
Da

MT-MR
MT-MR

Dt

S-AuctionDt

C-AuctionDt

S-AuctionDa
S-Auction
PSO(500;100)Dt
C-AuctionDa
C-Auction
GA(500;30)Dt
S-AuctionDf/04
PSO(500;100)Da
PSO(500;100)
GA(500;30)Da
GA(500;30)
C-AuctionDf/05
PSO(500;100)Df/04
GA(500;30)Df/04
C-AuctionDf/04
Random(500)
GA(500;30)Df/05
MT-MR

Df/05

MT-MR
Df/04

S-AuctionDf/05
PSO(500;100)Df/05
MT-MR

Do

PSO(500;100)Do
GA(500;30)Do
S-AuctionDo

C-AuctionDo

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.25: 5× 10 ASAR Problem Results.

170

0.0032000

0.0034000

0.0036000

0.0038000

0.0040000

0.0042000

0.0044000

0.0046000

0.0048000

MT-MR
Da

MT-MR
S-AuctionDo

MT-MR
Do

GA(500;30)Dt
S-AuctionDa
S-Auction
S-AuctionDt

PSO(500;100)Dt
MT-MR

Dt

MT-MR
Df/04

C-AuctionDt

S-AuctionDf/05
S-AuctionDf/04
MT-MR

Df/05

C-AuctionDf/04
Random(500)
PSO(500;100)Df/04
GA(500;30)Df/04
GA(500;30)Da
GA(500;30)
C-AuctionDa
C-Auction
C-AuctionDf/05
GA(500;30)Df/05
PSO(500;100)Da
PSO(500;100)
C-AuctionDo

GA(500;30)Do
PSO(500;100)Df/05
PSO(500;100)Do

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

 5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.26: 5× 11 ASAR Problem Results.

171

0.0024000

0.0026000

0.0028000

0.0030000

0.0032000

0.0034000

0.0036000

C-AuctionDa
C-Auction
S-AuctionDf/05
S-AuctionDf/04
S-AuctionDt

S-AuctionDa
S-Auction
PSO(500;100)Df/05
PSO(500;100)Dt
C-AuctionDf/04
MT-MR

Da

MT-MR
MT-MR

Dt

C-AuctionDt

GA(500;30)Dt
C-AuctionDf/05
PSO(500;100)Df/04
S-AuctionDo

MT-MR
Df/05

C-AuctionDo

GA(500;30)Da
GA(500;30)
GA(500;30)Df/05
GA(500;30)Do
MT-MR

Df/04
Random(500)
PSO(500;100)Da
PSO(500;100)
MT-MR

Do

PSO(500;100)Do
GA(500;30)Df/04

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.27: 5× 12 ASAR Problem Results.

172

0.0018000

0.0020000

0.0022000

0.0024000

0.0026000

0.0028000

0.0030000

S-AuctionDa
S-Auction
GA(500;30)Dt
S-AuctionDf/04
C-AuctionDa
C-Auction
PSO(500;100)Dt
S-AuctionDt

MT-MR
Dt

C-AuctionDt

PSO(500;100)Df/04
C-AuctionDf/04
GA(500;30)Df/04
Random(500)
GA(500;30)Df/05
PSO(500;100)Df/05
GA(500;30)Da
GA(500;30)
S-AuctionDf/05
PSO(500;100)Do
C-AuctionDf/05
PSO(500;100)Da
PSO(500;100)
MT-MR

Df/05

S-AuctionDo

MT-MR
Do

C-AuctionDo

MT-MR
Df/04

MT-MR
Da

MT-MR
GA(500;30)Do

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.28: 5× 13 ASAR Problem Results.

173

0.0024000

0.0026000

0.0028000

0.0030000

0.0032000

0.0034000

0.0036000

0.0038000

0.0040000

0.0042000

S-AuctionDa
S-Auction
S-AuctionDt

MT-MR
Dt

C-AuctionDt

S-AuctionDf/04
MT-MR

Df/04

C-AuctionDa
C-Auction
C-AuctionDf/04
MT-MR

Da

MT-MR
GA(500;30)Da
GA(500;30)
GA(500;30)Df/04
S-AuctionDf/05
GA(500;30)Dt
PSO(500;100)Da
PSO(500;100)
GA(500;30)Do
PSO(500;100)Dt
Random(500)
PSO(500;100)Df/04
S-AuctionDo

MT-MR
Df/05

PSO(500;100)Df/05
GA(500;30)Df/05
C-AuctionDo

PSO(500;100)Do
C-AuctionDf/05
MT-MR

Do

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.29: 5× 14 ASAR Problem Results.

174

0.0010000

0.0015000

0.0020000

0.0025000

0.0030000

0.0035000

S-AuctionDa
S-Auction
S-AuctionDf/04
MT-MR

Dt

S-AuctionDt

C-AuctionDt

GA(500;30)Dt
GA(500;30)Df/04
PSO(500;100)Dt
C-AuctionDa
C-Auction
MT-MR

Da

MT-MR
MT-MR

Df/04

C-AuctionDf/04
GA(500;30)Df/05
C-AuctionDo

S-AuctionDo

GA(500;30)Da
GA(500;30)
S-AuctionDf/05
PSO(500;100)Df/04
Random(500)
PSO(500;100)Da
PSO(500;100)
PSO(500;100)Df/05
C-AuctionDf/05
GA(500;30)Do
PSO(500;100)Do
MT-MR

Df/05

MT-MR
Do

U(
S)

Max/Avg/Min
Global Average

(a) Sorted Utilities.

 0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

C-Auction
C-AuctionDa

C-AuctionDf/04
C-AuctionDf/05
C-AuctionDo

C-AuctionDt
GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04
S-AuctionDf/05
S-AuctionDo

S-AuctionDt

Av
er

ag
e E

rro
r F

ro
m

Be
st

Ut
ilit

y

(b) Utility Error.

10-10

10-8

10-6

10-4

10-2

100

102

C-Auction
C-AuctionDa

C-AuctionDf/04

C-AuctionDf/05

C-AuctionDo

C-AuctionDt

GA(500;30)
GA(500;30)Da

GA(500;30)Df/04
GA(500;30)Df/05
GA(500;30)Do

GA(500;30)Dt
MT-MR
MT-MR

Da

MT-MR
Df/04

MT-MR
Df/05

MT-MR
Do

MT-MR
Dt

PSO(500;100)
PSO(500;100)Da
PSO(500;100)Df/04
PSO(500;100)Df/05
PSO(500;100)Do
PSO(500;100)Dt
Random(500)
S-Auction
S-AuctionDa

S-AuctionDf/04

S-AuctionDf/05

S-AuctionDo

S-AuctionDt

Pe
rce

nt
of

So
lut

ion
 S

pa
ce

 S
ea

rch
ed

 D
ur

ing
 D

ist
rib

uti
on

(c) Size Reduction.

Figure A.30: 5× 15 ASAR Problem Results.

175

Appendix B. ASAR Problem Repository

This appendix outlines the methods used to generate random autonomous search and

recovery (ASAR) problem data for experimental testing of constrained multiagent task

scheduling (CMTS) algorithms. A list of sample instances used in the experiments

for this research follows this discussion. Characteristics of these problems is identified

in Table B.1 below.

ASAR problems are generated based on the number of agents and tasks that are

desired. Each agent is given a random subset of abilities from the domain operations

with the appropriate constraints placed—disable and transport abilities inhibit each

other within an agent, as do observe and monitor. The problem is checked to make

sure that every ability is able to perform a task. For example, if only one agent has

monitor and observe, then no recover tasks can be performed because the only two

effective abilities are inhibiting each other. In this case, other agents are randomly

given copies. Thus, the total number of abilities varies for and is no less than any

agent size.

Two types of tasks are generated for the ASAR problem: secure and recover.

Each secure task is generated with some random number of gunmen and a 2D location.

The only requirements are to have a coalition capable of performing disable and

monitor operations. There are no prerequisites. Recover tasks complement a secure

task by having a single hostages placed at the same location. The secure task used

for the location becomes the prerequisite for the recover task. A recovery point is

identified for a coalition to observe and transport the hostage. The coalition must

also support monitoring of the initial recover location.

For every secure task, there could be several recover tasks. The problem in-

stances used for this experiment ensures that every secure task has at least one com-

plementary recover task, but that the total number of tasks does not exceed the

desired problem size. This creates a network of tasks potentially requiring multiple

agents to visit and move items while observing the location.

176

Thus, the random generator emulates randomized multiple traveling salesman

and vehicle routing problem data with constraints for monitoring events similar to

cooperative target tracking (see Sections 3.4.3 and 3.4.4 on how to represent these

problems using CMTS). Actual operations research repository data [53,68] can replace

the random data if warranted.

Table B.1: ASAR Repository Problem Characteristics.

M×Y X Size (LUB) χ M×Y X Size (LUB) χ
2×6 4 6.87·1010 0.1577 4×15 9 5.45·1094 0.2063
2×10 8 1.32·1046 0.5939 4×20 7 3.01·10142 0.3990
2×15 5 4.48·1071 0.4318 5×6 11 3.77·1026 0.2749
2×20 8 2.08·10150 0.7362 5×7 7 1.72·1023 0.2213
3×6 6 3.21·1015 0.2347 5×8 9 8.68·1034 0.4206
3×7 9 2.65·1028 0.5696 5×9 14 2.07·1056 0.5625
3×8 9 8.68·1034 0.5838 5×10 11 2.15·1056 0.3530
3×9 7 1.16·1034 0.3293 5×11 11 5.96·1063 0.3673
3×10 8 1.32·1046 0.3037 5×12 15 1.00·1091 0.3748
3×11 9 3.13·1057 0.4633 5×13 10 3.23·1080 0.2359
3×12 8 2.13·1062 0.4588 5×14 11 3.47·1096 0.3050
3×13 10 3.06·1080 0.4980 5×15 13 2.29·10116 0.4358
3×14 9 2.57·1086 0.3738 5×20 16 1.38·10204 0.6037
3×15 6 8.00·1078 0.2770 6×6 16 3.58·1036 0.2018
3×20 8 2.08·10150 0.5913 6×10 17 2.80·1075 0.4176
4×6 10 3.71·1024 0.3220 6×15 14 8.15·10121 0.3521
4×7 13 9.97·1037 0.4517 6×20 14 2.08·10188 0.3955
4×8 11 3.70·1040 0.2643 7×6 14 3.47·1032 0.1759
4×9 12 4.74·1050 0.5455 7×10 18 4.32·1078 0.2903
4×10 15 7.79·1069 0.5157 7×15 21 5.49·10153 0.5006
4×11 12 2.54·1068 0.5684 7×20 14 1.46·10191 0.3556
4×12 10 3.44·1068 0.4243 8×6 14 4.53·1032 0.1759
4×13 11 3.30·1085 0.3402 8×10 16 2.98·1072 0.1679
4×14 9 9.72·1085 0.3738 8×15 19 1.22·10144 0.3976

177

Observe Disable Transport Monitor Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ ...

gunmen # hostages
Site 1 5 1 (16,32)
Site 2 1 1 (9,33)
Site 3 4 1 (26,30)

Table B.2: 2× 6 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ √ √ √ ...

gunmen # hostages
Site 1 3 1 (12,14)
Site 2 2 1 (13,50)
Site 3 3 1 (42,26)
Site 4 5 3 (29,27)

Table B.3: 2× 10 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ ...

gunmen # hostages
Site 1 2 1 (13,50)
Site 2 5 6 (17,30)
Site 3 2 5 (12,18)

Table B.4: 2× 15 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ √ √ √ ...

gunmen # hostages
Site 1 3 6 (-38,44)
Site 2 4 7 (26,20)
Site 3 5 4 (10,24)

Table B.5: 2× 20 ASAR Problem Instance.

178

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

gunmen # hostages
Site 1 5 1 (-13,22)
Site 2 4 1 (-8,42)
Site 3 3 1 (-31,18)

Table B.6: 3× 6 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ ...

gunmen # hostages
Site 1 5 1 (-9,1)
Site 2 3 2 (-9,9)
Site 3 2 1 (-16,14)

Table B.7: 3× 7 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ √ ...

gunmen # hostages
Site 1 2 2 (45,26)
Site 2 5 2 (-3,43)
Site 3 4 1 (48,38)

Table B.8: 3× 8 ASAR Problem Instance.

179

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

gunmen # hostages
Site 1 3 1 (12,34)
Site 2 1 1 (-35,18)
Site 3 3 1 (29,34)
Site 4 2 2 (47,13)

Table B.9: 3× 9 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ √ ...

gunmen # hostages
Site 1 4 1 (-22,1)
Site 2 1 3 (-18,11)
Site 3 5 1 (34,16)
Site 4 5 1 (-12,11)

Table B.10: 3× 10 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ ...

gunmen # hostages
Site 1 2 5 (-15,24)
Site 2 4 1 (45,9)
Site 3 4 2 (17,19)

Table B.11: 3× 11 ASAR Problem Instance.

180

Transport Disable Monitor Observe Position
Agent 1

√
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ √ √ ...

gunmen # hostages
Site 1 1 1 (-2,15)
Site 2 4 1 (30,50)
Site 3 4 5 (10,3)
Site 4 2 1 (-17,6)

Table B.12: 3× 12 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ √ ...

gunmen # hostages
Site 1 5 2 (24,18)
Site 2 1 1 (21,7)
Site 3 1 5 (33,33)
Site 4 4 1 (14,15)

Table B.13: 3× 13 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ √ √ ...

gunmen # hostages
Site 1 4 1 (-29,11)
Site 2 5 1 (34,16)
Site 3 3 1 (-40,31)
Site 4 1 1 (39,5)
Site 5 2 1 (0,25)
Site 6 2 1 (-5,23)
Site 7 5 1 (20,7)

Table B.14: 3× 14 ASAR Problem Instance.

181

Transport Disable Monitor Observe Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ ...

gunmen # hostages
Site 1 4 1 (39,35)
Site 2 4 3 (-34,0)
Site 3 5 3 (47,12)
Site 4 3 1 (-6,15)
Site 5 2 2 (47,25)

Table B.15: 3× 15 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ ...

gunmen # hostages
Site 1 3 10 (2,24)
Site 2 3 6 (28,14)
Site 3 5 1 (-19,19)

Table B.16: 3× 20 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

Agent 4
√ √ √ ...

gunmen # hostages
Site 1 4 1 (-49,47)
Site 2 3 1 (-45,24)
Site 3 5 1 (-4,19)

Table B.17: 4× 6 ASAR Problem Instance.

182

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ √ √ ...

gunmen # hostages
Site 1 1 1 (11,3)
Site 2 3 2 (-35,25)
Site 3 1 1 (-20,37)

Table B.18: 4× 7 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ ...

Agent 4
√ √ √ ...

gunmen # hostages
Site 1 3 1 (-12,5)
Site 2 5 1 (39,7)
Site 3 2 1 (-21,23)
Site 4 5 1 (-8,11)

Table B.19: 4× 8 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ √ ...

Agent 4
√ √ √ √ ...

gunmen # hostages
Site 1 4 1 (-33,48)
Site 2 2 2 (-9,21)
Site 3 2 3 (47,28)

Table B.20: 4× 9 ASAR Problem Instance.

183

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ √ ...

gunmen # hostages
Site 1 3 1 (1,19)
Site 2 4 1 (14,10)
Site 3 5 1 (7,10)
Site 4 4 1 (-24,34)
Site 5 3 1 (-24,18)

Table B.21: 4× 10 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ ...

gunmen # hostages
Site 1 4 2 (-10,1)
Site 2 5 2 (27,14)
Site 3 2 4 (-18,39)

Table B.22: 4× 11 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ √ ...

Agent 4
√ ...

gunmen # hostages
Site 1 1 1 (11,24)
Site 2 3 2 (27,1)
Site 3 5 6 (-39,48)

Table B.23: 4× 12 ASAR Problem Instance.

184

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ √ ...

Agent 4
√ √ √ √ ...

gunmen # hostages
Site 1 3 2 (-35,16)
Site 2 2 1 (36,31)
Site 3 2 1 (-46,40)
Site 4 2 1 (42,26)
Site 5 4 1 (-48,37)
Site 6 2 1 (9,1)

Table B.24: 4× 13 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ ...

Agent 4
√ ...

gunmen # hostages
Site 1 2 1 (9,44)
Site 2 3 1 (-1,38)
Site 3 5 5 (11,27)
Site 4 4 1 (46,15)
Site 5 2 1 (15,11)

Table B.25: 4× 14 ASAR Problem Instance.

185

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ ...

Agent 4
√ ...

gunmen # hostages
Site 1 1 1 (-44,46)
Site 2 5 1 (-50,14)
Site 3 1 2 (-50,9)
Site 4 3 1 (-31,45)
Site 5 2 1 (-46,33)
Site 6 1 1 (39,23)
Site 7 5 1 (13,8)

Table B.26: 4× 15 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

Agent 4
√ √ ...

gunmen # hostages
Site 1 5 2 (34,40)
Site 2 2 3 (39,31)
Site 3 1 1 (2,6)
Site 4 2 3 (-44,34)
Site 5 4 1 (-28,20)
Site 6 5 1 (-50,20)
Site 7 4 2 (44,32)

Table B.27: 4× 20 ASAR Problem Instance.

186

Transport Disable Monitor Observe Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ ...

Agent 4
√ ...

Agent 5
√ √ √ √ ...

gunmen # hostages
Site 1 5 1 (-22,33)
Site 2 5 1 (-44,9)
Site 3 4 1 (-38,25)

Table B.28: 5× 6 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√
(0,-20)

Agent 2
√ ...

Agent 3
√ √ √ ...

Agent 4
√ ...

Agent 5
√ ...

gunmen # hostages
Site 1 1 1 (-7,5)
Site 2 3 2 (-3,24)
Site 3 3 1 (47,12)

Table B.29: 5× 7 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

Agent 4
√ ...

Agent 5
√ √ √ ...

gunmen # hostages
Site 1 4 1 (-12,22)
Site 2 5 2 (34,32)
Site 3 5 2 (-27,27)

Table B.30: 5× 8 ASAR Problem Instance.

187

Transport Disable Monitor Observe Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ √ ...

Agent 5
√ ...

gunmen # hostages
Site 1 3 2 (-45,35)
Site 2 4 3 (18,32)
Site 3 4 1 (9,28)

Table B.31: 5× 9 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ √ ...

Agent 5
√ ...

gunmen # hostages
Site 1 1 3 (46,23)
Site 2 2 2 (-22,40)
Site 3 3 2 (-20,7)

Table B.32: 5× 10 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ ...

Agent 4
√ √ ...

Agent 5
√ √ √ ...

gunmen # hostages
Site 1 1 3 (-9,1)
Site 2 2 1 (47,30)
Site 3 1 4 (6,13)

Table B.33: 5× 11 ASAR Problem Instance.

188

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ ...

Agent 5
√ √ √ √ ...

gunmen # hostages
Site 1 4 1 (-6,43)
Site 2 2 1 (-43,41)
Site 3 2 1 (-16,37)
Site 4 4 1 (-9,11)
Site 5 1 1 (-24,26)
Site 6 4 1 (46,15)

Table B.34: 5× 12 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ ...

Agent 4
√ √ √ ...

Agent 5
√ ...

gunmen # hostages
Site 1 5 1 (7,0)
Site 2 2 3 (-33,37)
Site 3 3 2 (-14,40)
Site 4 3 1 (50,48)
Site 5 4 1 (5,11)

Table B.35: 5× 13 ASAR Problem Instance.

189

Transport Disable Monitor Observe Position
Agent 1

√
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ ...

Agent 4
√ ...

Agent 5
√ √ √ √ ...

gunmen # hostages
Site 1 5 1 (-28,21)
Site 2 1 1 (-36,5)
Site 3 3 1 (27,8)
Site 4 3 1 (9,20)
Site 5 3 1 (-26,17)
Site 6 2 1 (-45,30)
Site 7 3 1 (36,42)

Table B.36: 5× 14 ASAR Problem Instance.

Transport Disable Monitor Observe Position
Agent 1

√ √ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

Agent 4
√ √ √ √ ...

Agent 5
√ √ ...

gunmen # hostages
Site 1 5 3 (27,41)
Site 2 3 1 (17,40)
Site 3 3 3 (-27,16)
Site 4 1 2 (-38,3)
Site 5 4 1 (22,37)

Table B.37: 5× 15 ASAR Problem Instance.

190

Observe Disable Transport Monitor Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ ...

Agent 5
√ √ √ √ ...

gunmen # hostages
Site 1 1 10 (-43,9)
Site 2 5 3 (25,4)
Site 3 1 1 (-6,16)
Site 4 4 2 (-7,28)

Table B.38: 5× 20 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ ...

Agent 4
√ √ √ ...

Agent 5
√ √ √ ...

Agent 6
√ √ √ ...

gunmen # hostages
Site 1 1 1 (-43,30)
Site 2 2 1 (-44,23)
Site 3 4 1 (-9,5)

Table B.39: 6× 6 ASAR Problem Instance.

191

Observe Disable Transport Monitor Position
Agent 1

√
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ √ ...

Agent 5
√ √ ...

Agent 6
√ √ √ √ ...

gunmen # hostages
Site 1 3 2 (-3,50)
Site 2 5 4 (21,0)
Site 3 3 1 (44,16)

Table B.40: 6× 10 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

Agent 4
√ √ √ √ ...

Agent 5
√ √ √ ...

Agent 6
√ ...

gunmen # hostages
Site 1 4 1 (0,36)
Site 2 4 1 (-17,48)
Site 3 3 1 (-27,26)
Site 4 1 3 (-38,3)
Site 5 2 2 (-36,3)
Site 6 5 1 (-44,45)

Table B.41: 6× 15 ASAR Problem Instance.

192

Observe Disable Transport Monitor Position
Agent 1

√
(0,-20)

Agent 2
√ √ ...

Agent 3
√ √ √ √ ...

Agent 4
√ √ √ ...

Agent 5
√ √ √ ...

Agent 6
√ ...

gunmen # hostages
Site 1 4 1 (-9,40)
Site 2 4 7 (-22,25)
Site 3 1 6 (42,23)
Site 4 4 2 (-36,6)

Table B.42: 6× 20 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√
(0,-20)

Agent 2
√ √ ...

Agent 3
√ ...

Agent 4
√ √ √ ...

Agent 5
√ √ ...

Agent 6
√ √ √ √ ...

Agent 7
√ ...

gunmen # hostages
Site 1 2 1 (39,25)
Site 2 1 1 (-50,38)
Site 3 2 1 (20,8)

Table B.43: 7× 6 ASAR Problem Instance.

193

Observe Disable Transport Monitor Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ ...

Agent 4
√ √ ...

Agent 5
√ √ √ ...

Agent 6
√ √ √ ...

Agent 7
√ √ √ √ ...

gunmen # hostages
Site 1 3 4 (23,30)
Site 2 5 1 (29,32)
Site 3 3 2 (47,9)

Table B.44: 7× 10 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ ...

Agent 3
√ √ √ ...

Agent 4
√ √ √ √ ...

Agent 5
√ √ √ √ ...

Agent 6
√ √ √ ...

Agent 7
√ √ √ ...

gunmen # hostages
Site 1 3 3 (-23,13)
Site 2 4 4 (5,24)
Site 3 5 5 (-32,23)

Table B.45: 7× 15 ASAR Problem Instance.

194

Observe Disable Transport Monitor Position
Agent 1

√ √ √
(0,-20)

Agent 2
√ √ ...

Agent 3
√ ...

Agent 4
√ √ ...

Agent 5
√ √ √ ...

Agent 6
√ √ ...

Agent 7
√ ...

gunmen # hostages
Site 1 5 1 (26,16)
Site 2 2 2 (33,15)
Site 3 1 14 (-15,27)

Table B.46: 7× 20 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ ...

Agent 4
√ ...

Agent 5
√ √ ...

Agent 6
√ √ √ ...

Agent 7
√ ...

Agent 8
√ ...

gunmen # hostages
Site 1 5 1 (-38,11)
Site 2 5 1 (38,31)
Site 3 4 1 (-18,12)

Table B.47: 8× 6 ASAR Problem Instance.

195

Observe Disable Transport Monitor Position
Agent 1

√ √
(0,-20)

Agent 2
√ ...

Agent 3
√ ...

Agent 4
√ √ ...

Agent 5
√ √ √ ...

Agent 6
√ √ √ ...

Agent 7
√ √ √ ...

Agent 8
√ ...

gunmen # hostages
Site 1 1 1 (2,35)
Site 2 1 2 (-9,23)
Site 3 2 1 (35,16)
Site 4 4 2 (-16,21)

Table B.48: 8× 10 ASAR Problem Instance.

Observe Disable Transport Monitor Position
Agent 1

√ √
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ ...

Agent 4
√ ...

Agent 5
√ √ √ √ ...

Agent 6
√ √ √ √ ...

Agent 7
√ ...

Agent 8
√ √ ...

gunmen # hostages
Site 1 3 9 (9,10)
Site 2 3 2 (20,35)
Site 3 5 1 (3,24)

Table B.49: 8× 15 ASAR Problem Instance.

196

Observe Disable Transport Monitor Position
Agent 1

√
(0,-20)

Agent 2
√ √ √ ...

Agent 3
√ √ √ ...

Agent 4
√ √ √ √ ...

Agent 5
√ √ ...

Agent 6
√ √ √ √ ...

Agent 7
√ √ √ ...

Agent 8
√ ...

gunmen # hostages
Site 1 3 7 (-13,41)
Site 2 5 4 (-13,23)
Site 3 2 6 (48,6)

Table B.50: 8× 20 ASAR Problem Instance.

197

Bibliography

1. Ahmadabadi, Majid Nili and Masoud Asadpour. “Expertness based cooperative
Q-learning”. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
32(1):66–76, 2000.

2. Ahmadabadi, Majid Nili, Masoud Asadpour, Seyyed H. Khodaabakhsh, and Eiji
Nakano. “Expertness Measuring in Cooperative Learning”. IEEE/RSJ Inter-
national Conference On Intelligent Robots and Systems (IROS 2000), volume 3,
2261–2267. IEEE, 2000.

3. Ambroszkiewicz, Stanislaw, Krzyszof Cetnarowicz, and Wojciech Turek. “Multi-
robot Management Framework Based on the Agent Dual-Space Control
Paradigm”. AAAI RIDIS Workshop 2007. 2007.

4. Apt, K. R. and T. Radzik. “Stable partitions in coalitional games”. ArXiv
Computer Science e-prints, May 2006.

5. Arai, Sachiyo, Katia Sycara, and Terry R. Payne. “Multi-Agent Reinforcement
Learning for Planning and Scheduling Multiple Goals”. Fourth International
Conference on Multi-Agent Systems, 00:0359, 2000.

6. Bäck, Thomas, David B. Fogel, and Zbigniew Michalewicz. Evolutionary Com-
putation, volume 1 - 2. Institute of Physics Publishing, 2000.

7. Bagchi, Tapan P. Multi-objective Scheduling By Genetic Algorithms. Kluwer,
1999.

8. Banerjee, Bikramjit and Jing Peng. “Adaptive policy gradient in multiagent
learning”. 2nd International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), 686–692. ACM Press, 2003.

9. Beasley, J. E. “OR-Library: distributing test problems by electronic mail”.
Journal of the Operational Research Society, 41(11):1069–1072, 1990.

10. Bernstein, D. S., E. Hansen, and S. Zilberstein. “Bounded policy iteration for
decentralized POMDPs”. In Proceedings of the Nineteenth International Joint
Conf. on Artificial Intelligence. 2005.

11. Bonabeau, Eric, Marco Dorigo, and T. Théraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, New York, 1999.

12. Borzello, Eric and Laurence D. Merkle. “Multi-agent Cooperation Using Ant Al-
gorithm with Variable Pheromone Placement”. IEEE Congress on Evolutionary
Computation, volume 2, 1232–1237. IEEE, 2005.

13. Botelho, S. and R. Alami. “M+: a scheme for multi-robot cooperation through
negotiated task allocation and achievement”. IEEE International Conference on
Robotics and Automation, 2:1234–1239, 1999.

198

14. Botelho, S. and R. Alami. “A Multi-Robot Cooperative Task Achievement Sys-
tem”. IEEE International Conference on Robotics and Automation, 2716–2721.
San Francisco, USA, 2000.

15. Bowling, Michael H. Multiagent Learning in the Presence of Agents with Limi-
tations. Ph.D. thesis, Carnegie Mellon University, 2003.

16. Bowling, Michael H. and Manuela M. Veloso. “Multiagent learning using a
variable learning rate”. Artificial Intelligence, 136(2):215–250, 2002.

17. Bradley, Jay and Gillian Hayes. “Adapting Reinforcement Learning for Com-
puter Games: Using Group Utility Functions”. IEEE Symposium on Computa-
tional Intelligence and Games, 133–140, 2005.

18. Burkard, R.E. and F. Rendl. “QAPLIB–A Quadratic Assignment Problem Li-
brary”. European Journal of Operational Research, 55:115–119, 1991.

19. “Cambridge Advance Learner’s Dictionary”. Http://dictionary.cambridge.org/.

20. Chalkiadakis, Georgios and Craig Boutilier. “Bayesian Reinforcement Learning
for Coalition Formation Under Uncertainty”. Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, 03:1090–1097, 2004.

21. Clarke, G. and J. W. Wright. “Scheduling of Vehicles from a Central Depot to
a Number of Delivery Points”. Operations Research, 12(4):568–581, 1964.

22. Claus, Caroline and Craig Boutilier. “The Dynamics of Reinforcement Learn-
ing in Cooperative Multiagent Systems”. AAAI-97 Workshop on Multiagent
Learning, 746–752. 1998.

23. Connelly, D. T. “General Purpose Simulated Annealing”. Operations Research,
34(3):495–505, 1992.

24. Couśin, Kevin and Gilbert L. Peterson. “Cooperative Reinforcement Learning
Using An Expert-Measuring Weighted Strategy With WoLF”. IASTED Con-
ference on Artificial Intelligence and Soft Computing, 165–170. 2005.

25. Couśin, Kevin and Gilbert L. Peterson. “A Distributed Approach To Solving
Constrained Multiagent Task Scheduling Problems”. Proc. of the 2007 AAAI
Fall Symposium on Regarding the ”Intelligence” in Distributed Intelligent Sys-
tems, 42–48. November 2007.

26. Couśin, Kevin, Gilbert L. Peterson, Christopher B. Mayer, and Gary B. Lamont.
“WoLF Ant”, 2006. Submit to IEEE Transactions on Evolutionary Computa-
tion.

27. Dang, Viet Dung and Nick R. Jennings. “Generating coalition structures with fi-
nite bound from the optimal guarantees”. Proceedings of the Third International
Conference on Autonomous Agents and Multi-Agent Systems, 564–571, 2004.

28. Dang, Viet Dung and Nick R. Jennings. “Coalition structure generation in task-
based settings”. Proc 17th European Conference on AI, 2006.

199

29. Dorigo, Marco and Thomas Stützle. Handbook of Metaheuristics, volume 57
of International Series in Operations Research and Management Science, chap-
ter The ant colony optimization metaheuristic: Algorithms, applications, and
advances, 251–285. Kluwer Academic Publishers, 2002.

30. Dorigo, Marco and Thomas Stützle. Ant Colony Optimization. The MIT Press,
2004.

31. Dudek, Gregory, Michael R. Jenkin, Evangelos Milios, and David Wilkes. A
Taxonomy for Multi-Agent Robotics, volume 3, 375–397. Kluwer Academic Pub-
lishers, December 1996.

32. Duvivier, D., Ph. Preux, and E-G. Talbi. “Stochastic Algorithms for Optimiza-
tion and Application to Job Shop Scheduling”, 1995.

33. Engelbrecht, Andries P. Fundamentals of Computational Swarm Intelligence.
John Wiley & Sons, 2006.

34. Eshgh, Sahar Mastour and Majid Nili Ahmadabadi. “An Extension of Weighted
Strategy Sharing in Cooperative Q-Learning for Specialized Agents”. 9th Inter-
national Conference on Neural Information Processing (ICONIP’02), volume 1,
106–110. IEEE, 2002.

35. Farinelli, Alessandro, Luca Iocchi, and Daniele Nardi. “Multirobot systems: A
classification focused on coordination”. IEEE Trasactions on Systems, Man and
Cybernetics, 34(5):2015–2028, October 2004.

36. Gage, Aaron. Multi-Robot Task Allocation Using Affect. Ph.D. thesis, University
of South Florida, 2004.

37. Gage, Aaron, Robin Murphy, Kimon Valavanis, and Matt Long. “Affective Task
Allocation for Distributed Multi-Robot Teams”. Nineteenth National Conference
on Artificial Intelligence, 98–999. 2004.

38. Gale, D. and L. S. Shapley. “College Admissions and the Stability of Marriage”.
American Mathematical Monthly, 69:9–14, 1962.

39. Gale, David. The Theory of Linear Economic Models. McGraw Hill, 1960.

40. Galstyan, Aram, Tad Hogg, and Kristina Lerman. “Modeling and Mathematical
Analysis of Swarms of Microscopic Robots”. IEEE Swarm Intelligence Sympo-
sium, 2005.

41. Gardiol, Natalia H. and Leslie Pack Kaelbling. “Envelope-based Planning in
Relational MDPs”. Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf
(editors), Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.

42. Gerkey, Brian P. On Multi-robot Task Allocation. Ph.D. thesis, University of
Southern California, 2003.

200

43. Gerkey, Brian P. and Maja J. Matarić. “MURDOCH: Publish/Subscribe Task
Allocation for Heterogeneous Agents”. Autonomous Agents 2000, 203–204.
Barcelona, Spain, June 3 - 7 2000.

44. Gerkey, Brian P. and Maja J. Matarić. “A framework for studying multirobot
task allocation”. A. C. Schultz et al. (editor), Proceedings of the 2nd Inter-
national Naval Research Laboratory Workshop on Multi-Robot Systems. NRL,
Washington D.C., March 17 - 19 2003.

45. Gerkey, Brian P. and Maja J. Matarić. “A formal analysis and taxonomy of task
allocation in multi-robot systems”. International Journal of Robotics Research,
23(9):939–954, 2004.

46. Gerkey, Brian P. and Maja J. Matarić. “Sold!: Auction methods for multi-robot
coordination”. IEEE Transactions on Robotics and Automation, Special Issue
on Multi-robot Systems, 18(5):758–768, October 2004.

47. Glover, Fred and M. Laguna. “Tabu Search”. C. Reeves (editor), Modern Heuris-
tic Techniques for Combinatorial Problems, 70–141. Blackwell Scientific Publish-
ing, Oxford, England, 1993.

48. Gmytrasiewicz, Piotr J. and Prashant Doshi. “Framework for Sequential Plan-
ning in Multi-Agent Settings”. Journal of AI Research, 2005.

49. Goldberg, Dani and Maja J. Matarić. Design and Evaluation of Robust Behavior-
Based Controllers for Distributed Multi-Robot Collection Tasks, 315–244. AK
Peters, Ltd., 2001.

50. Gong, Tao and Andrew L. Tusonć. “Particle Swarm Optimization For Quadratic
Assignment Problems”. International Journal of Computational Intelligence Re-
search, 2, 2006.

51. Hartmann, S. and Rainer Kolisch. “Experimental evaluation of state-of-the-art
heuristics for resource constrained project scheduling”. European Journal of
Operation Research, 127(2):394–407, 2000.

52. Hayes, A.T. and P. Dormiani-Tabatabaei. “Self-organized flocking with agent
failure: Off-line optimization and demonstration with real robots”. IEEE Con-
ference on Robotics and Automation, 4:3900–3905, 2002.

53. University of Heidelberg, Department of Computer Science.
“TSPLIB”, 2006. Available on-line at: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95.

54. Hertz, Alain and Marino Widmer. “An Improved Tabu Search Approach for
Solving the Job Shop Scheduling Problem with Tooling Constraints.” Discrete
Applied Mathematics, 65(1-3):319–345, 1996.

55. Hoey, Jesse, Robert St-Aubin, Alan Hu, and Craig Boutilier. “SPUDD: Stochas-
tic planning using decision diagrams”. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, 279–288. 1999.

201

56. Hollander, M. and D. A. Wolfe. Nonparametric Statistical Methods. Wiley, 2nd
edition, 1999.

57. Hoos, Holger H. and Thomas Stützle. Stochastic Local Search: Foundations
and Application. Morgan Kaufmann Series in Artificial Intelligence. Morgan
Kaufmann/Elsevier, 2004.

58. Jäger, M. and B. Nebel. “Decentralized collision avoidance, deadlock detection,
and deadlock resolution for multiple mobile robots”. Int. Conf. on Intelligent
Robots and Systems (IROS). Maui, Hawaii, 2001.

59. Jose B. Cruz, Jr, Genshe Chen, Dongxu Li, and Xu Wang. “Particle Swarm
Optimization for Resource Allocation in UAV Cooperative Control”. AIAA
Guidance, Navigation, and Control Conference and Exhibit, 1–11, 2004.

60. Kaelbling, Leslie P., Michael L. Littman, and Anthony R. Cassandra. “Planning
and Acting in Partially Observable Domains”. Artificial Intelligence, 101:99 –
134, 1998.

61. Kennedy, J. and R. C. Eberhart. “Particle Swarm Optimization”. IEEE Inter-
national Conference on Neural Networks, 1942–1948, 1995.

62. Kitano, H., S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and
S.ć Shimada. “RoboCup Rescue: Search and Rescue in Large-Scale Disasters
as a Domain for Autonomout Agents Research”. IEEE Systems, Man, and
Cybernetics, 6:739–743, 1999.

63. Klusch, Matthias and Andreas Gerber. “Dynamic coalition formation among
rational agents”. IEEE Intelligent Systems, 17(3):42–47, 2002.

64. Koes, Mary, Illah Nourbakhsh, and Katia Sycara. “Communication Efficiency
in Multi-agent Systems”. Proceedings of ICRA 2004. May 2004.

65. Kok, Jelle R., Pieter Jan’t Hoen, Bram Bakker, and Nikos A. Vlassis. “Utile
Coordination: Learning Interdependencies Among Cooperative Agents”. CIG.
IEEE, 2005.

66. Kolisch, Rainer and S. Hartmann. Heuristic algorithms for solving the resource-
constrained project scheduling problem - Classification and computational anal-
ysis, 147–178. Kluwer, 1999.

67. Kolisch, Rainer and S. Hartmann. “Experimental Investigation of Heuristics for
Resource-Constrained Project Scheduling: An Update”. European Journal of
Operation Research, 174(1):23–27, 2005.

68. Kolisch, Rainer, C. Schwindt, and Arno Sprecher. Benchmark instances for
project scheduling problems, 197–212. Kluwer, 1999.

69. Kolisch, Rainer and Arno Sprecher. “PSPLIB - A Project Scheduling Problem
Library”. European Journal of Operation Research, 96:205–216, 1996.

202

70. Kolling, Andreas and Stefano Carpin. “Multirobot Cooperation for Surveillance
of Multiple Moving Targets - A New Behavioral Approach”. IEEE International
Conference on Robotics and Automation, 1311–1316, 2006.

71. Kraus, S., O. Shehory, and G. Taase. “Coalition formation with uncertain het-
erogeneous information”. Proceedings of AAMAS, 1–8. 2003.

72. Krishna, K Madhava, Henry Hexmoor, and Shravan Soganić. “A T-Step Ahead
Optimal Target Detection Algorithm for a Multi Sensor Surveillance System”.
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1840–
1845, 2005.

73. Kuhn, Harold W. “”The Hungarian Method for the assignment problem””.
Naval Research Logistic Quarterly, 2:83–97, 1955.

74. Kumar, Vipin. “Algorithms for Constraint-Satisfaction Problems: A Survey”.
AI Magazine, 13(1):32–44, 1992.

75. Lau, Hoong Chuin and Lei Zhang. “Task Allocation via Multi-Agent Coalition
Formation: Taxonomy, Algorithms and Complexity”. 15th IEEE International
Conference on Tools with Artificial Intelligence, 346, 2003.

76. LaValle, Steven M. Planning Algorithms. Cambridge University Press, 2006.

77. Lawrence, S. “Resource constrained project scheduling: an experimental inves-
tigation of heuristic scheduling techniques (Supplement)”, 1984.

78. Lecoutre, Christophe. “Benchmarks 2.0. XML representa-
tion of CSP instances”, 2007. Online. http://www.cril.univ-
artois.fr/ lecoutre/research/benchmarks/benchmarks.html.

79. Lerman, Kristina, Chris Jones, Aram Galstyan, and Maja J. Matarić. “Analysis
of Dynamic Task Allocation in Multi-Robot Systems”. International Journal of
Robotics Research, 25(3):225–241, 2006.

80. Li, Cuihong and Katia Sycara. “Algorithms for Combinatorial Coalition Forma-
tion and Payoff Division in an Electronic Marketplace”. First International Joint
Conference on Autonomous Agents and Multiagent Systems(AAMAS), 120–127.
2001.

81. Li, Cuihong and Katia Sycara. A stable and efficient scheme for task allocation
via agent coalition formation, 193–211. World Scientific, 2004.

82. Littman, M. L. “Markov games as a framework for multi-agent reinforcement
learning”. 11th International Conference on Machine Learning, 157–163. Morgan
Kaufmann, 1994.

83. Liu, C. L. and James W. Layland. “Scheduling algorithms for multiprogramming
in a hard-real-time environment”. Journal of the ACM, 20(1):46–61, 1973.

84. Luke, Sean, Keith Sullivan, Gabriel Catalin Balan, and Liviu Panait. Tunably
Decentralized Algorithms for Cooperative Target Observation. Technical report,

203

Department of Computer Science, George Mason University, 4400 University
Drive MS 4A5, Fairfax, VA 22030-4444 USA, 2004.

85. Mailler, Roger and Victor Lesser. “Asynchronous Partial Overlay: A New Al-
gorithm for Solving Distributed Constraint Satisfaction Problems”. Journal of
Artificial Intelligence Research, 25:529–576, April 2006.

86. Maniezzo, V., A. Colorni, and Marco Dorigo. The Ant System applied to the
Quadratic Assignment Problem. Technical report, Université Libre de Bruxelles,
1994.

87. Merkle, Daniel, Martin Middendorf, and Hartmut Schmeck. “Ant Colony Opti-
mization for Resource-Constrained Project Scheduling”. Darrell Whitley, David
Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer
(editors), Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2000), 893–900. Morgan Kaufmann, Las Vegas, Nevada, USA, 10-12
2000.

88. “Marriam-Webster’s Online Dictionary”. Http://www.merriam-
webster.com/dictionary/framework.

89. Michalewicz, Zbigniew and David B. Fogel. How to Solve It: Modern Heuristics.
Springer, 2nd edition, 2004.

90. Mitrovic-Minic, Snezana and Ramesh Krishnamurti. “The multiple traveling
salesman problem with time windows: vehicle bounds based on precedence
graphs”. Operations Research Letters, 34(1):111–120, 2006.

91. Miyata, Natsuki, Jun Ota, Tamio Arai, and Hajime Asama. “Cooperative Trans-
port by Multiple Mobile Robots in Unknown Static Environments Associated
With Real-Time Task Assignment”. IEEE Trans. on Robotics and Automation,
18(5):769–780, 2002.

92. Modi, Pragnesh Jay, Hyuckchul Jung, Milind Tambe, Wei-Min Shen, and Shrini-
was Kulkarni. “Dynamic Distributed Resource Allocation: A Distributed Con-
straint Satisfaction Approach”. John-Jules Meyer and Milind Tambe (editors),
Pre-proceedings of the Eighth International Workshop on Agent Theories, Archi-
tectures, and Languages, 181–193. 2001.

93. Modi, Pragnesh Jay, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. “Solv-
ing Distributed Constraint Optimization Problems Optimally, Efficiently and
Asynchronously”. Proceedings of AAMAS. 2003.

94. Murphy, Robin Roberson, Christine Laetitia Lisetti, Russell Tardif, Liam Irish,
and Aaron Gage. “Emotion-Based Control of Cooperating Heterogeneous Mobile
Robots”. IEEE Trans. on Robotics and Automation, 18(5):744–757, 2002.

95. Nair, Ranjit, Pradeep Varakantham, Milind Tambe, and Makoto Yokoo. “Net-
worked Distributed POMDPs: A Synthesis of Distributed Constraint Optimiza-
tion and POMDPs”. Proceedings of AAAI. 2005.

204

96. Parker, Lynne E. “ALLIANCE: An architecture for fault-tolerant multi-robot
cooperation”. IEEE Transactions on Robotics and Automation, 14(2):220–240,
1998.

97. Parker, Lynne E. “Cooperative robotics for multi-target observation”. Intelligent
automation and soft computing, 5:5–19, 1999.

98. Parr, Ronald and Stuart Russell. “Reinforcement Learning with Hierarchies of
Machines”. Michael I. Jordan, Michael J. Kearns, and Sara A. Solla (editors),
Advances in Neural Information Processing Systems, volume 10. The MIT Press,
1997.

99. Pineau, Joelle, Geoffrey Gordon, and Sebastian Thrun. “Point-based value iter-
ation: An anytime algorithm for POMDPs”. International Joint Conference on
Artificial Intelligence (IJCAI), 1025–1032. August 2003.

100. “Princeton WordNet Search”. Http://wordnet.princeton.edu/perl/webwn.

101. Pugh, Jim and Alcherioć Martinoli. “MultiRobot Learning with Particle Swarm
Optimization”. International Conference on Autonomous Agents and Multiagent
Systems, 441–448, 2006.

102. Rainer Kolischa, Sonke Hartmannbć. “Experimental investigation of heuristics
for resource-constrained project scheduling: An update”. European Journal of
Operational Research, 174:23–37, 2006.

103. Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

104. Salman, Ayed, Imtiaz Ahmad, and Sabah Al-Madani. “Particle swarm op-
timization for task assignment problem”. Microprocessors and Microsystems,
26(8):363–371, 2002.

105. Sandholm, Tuomas W. and Victor R. Lesser. “Coalitions Among Computation-
ally Bounded Agents”. Artificial Intelligence, 94(1-2):99–137, 1997.

106. Sannon, C. E. “Programming a Computer for Playing Chess”. Philosophical
Magazine, 41:256–275, 1950.

107. Shehory, Onn and Sarit Kraus. “Methods for Task Allocation via Agent Coalition
Formation”. Artificial Intelligence, 101(1–2):165–200, 1998.

108. Sigdel, K, K.L.M. Bertels, B Pourebrahimi, S. Vassiliadis, and L.S Shuai. “A
framework for Adaptive Matchmaking in Distributed Computing”. proceeding
of GRID Workshop Cracow-04. December 2004.

109. Sinnen, Oliver, Leonel Augusto Sousa, and Frode Eika Sandnes. “Toward a Re-
alistic Task Scheduling Model”. IEEE Transactions on Parallel and Distributed
Systems, 17(3):263–275, 2006.

110. Sondik, Edward J. The Optimal Control of Partially Observable Markov Pro-
cesses. Ph.D. thesis, Stanford University, 1971.

205

111. Stone, Peter and Richard S. Sutton. “Scaling Reinforcement Learning toward
RoboCup Soccer”. Proceedings of the Eighteenth International Conference on
Machine Learning, 537–544. Morgan Kaufmann, San Francisco, CA, 2001.

112. Sutton, Richard S. and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

113. Sycara, K., J. A. Giampapa, B.K. Langley, and M. Paolucci. The RETSINA
MAS, a Case Study, volume LNCS 2603, 232–250. Springer-Verlag, July 2003.

114. Taillard, E. “Benchmarks for basic scheduling problems”. European Journal of
Operations Research, 64:278–285, 1993.

115. Torbjørn S. Dahl, Maja J Matarić and Gaurav S. Sukhatme. Complex Engineer-
ing Systems, chapter A machine learning method for improving task allocation
in distributed multi-robot transportation. Perseus Books, 2004.

116. Toth, P. and D. Vigo. The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications, 2002.

117. Verma, Deepak and Rajesh Rao. Graphical Models for Planning and Imitation
in Uncertain Environments. Technical Report 2005-02-01, Department of CSE,
University of Washington, 2005.

118. Vidal, René, Omid Shakernia, H. Jim Kim, Hyunchul Shim, and Shankar Sastry.
“Multi-Agent Probabilistic Pursuit-Evasion Games with Unmanned Ground and
Aerial Vehicles”. IEEE Trans. on Robotics and Automation, 18(5):662–669, 2002.

119. Watkins, Christopher J.C.H. and Peter Dayan. “Q-learning”. Machine Learning,
8:279–292, 1992.

120. Wegner, Peter. “Why interaction is more powerful than algorithms”. Commun.
ACM, 40(5):80–91, 1997.

121. Werger, Barry B. and Maja J. Matarić. Broadcast of local eligibility for multi-
target observation, volume 4, 347–356. New York: Springer-Verlag, 2000.

122. Wolpert, David H. and William G. Macready. “No Free Lunch Theorems for
Optimization”. IEEE Transactions on Evolutionary Computation, 1(1):67–82,
April 1997.

123. Wu, Ke, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. “A Sim-
ple Model to Generate Hard Satisfiable Instances”. Proc. of 19th International
Joint Conference on Artificial Intelligence, 337–342, 2005.

124. Wu, Ke, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. “Ran-
dom Constraint Satisfaction: Easy Generation of Hard (Satisfiable) Instances”.
Artificial Intelligence, 171:514–534, 2007.

125. Yakoo, Makoto. Distributed Constraint Satisfaction: Foundations of Cooperation
in Multi-agent Systems. Springer Series on Agent Technology, 1st edition, 2001.

206

126. Yang, Erfu and Dongbing Gu. “Multiagent Reinforcement Learning for Multi-
Robot Systems: A Survey”. IEEE Symposium on Computational Intelligence
and Games, 292–299, 2005.

127. Yin, Peng-Yeng, Shiuh-Sheng Yu, Pei-Pei Wang, and Yi-Te Wangć. “A hybrid
particle swarm optimization algorithm for optimal task assignment in distributed
systems”. Computer Standards and Interfaces, 28:441450, 2005.

128. Yin, Peng-Yeng, Shiuh-Sheng Yu, Pei-Pei Wang, and Yi-Te Wangć. “Task al-
location for maximizing reliability of a distributed system using hybrid particle
swarm optimization”. Journal of Systems and Software, 80(5):724–735, 2007.

129. Yokoo, Makoto, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. “The
Distributed Constraint Satisfaction Problem: Formalization and Algorithms”.
Knowledge and Data Engineering, 10(5):673–685, 1998.

130. Zlot, Robert Michael and Anthony (Tony) Stentz. “Complex Task Allocation
For Multiple Robots”. Proceedings of the International Conference on Robotics
and Automation. IEEE, April 2005.

207

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

18–12–2007 Doctoral Dissertation Sept 2004 — Dec 2007

A Unified Framework For Solving
Multiagent Task Assignment Problems

Couśin, Kevin, Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/DCS/ENG/08-01

1) AFRL/SN, Attn: Mr. Jacob Campbell, 2241 Avionicx Circle,
Wright-Patterson Air Force Base, OH 45433, DSN 785-6127 x4154
(jacob.campbell@wpafb.af.mil)
2) DAGSI, Attn: Dr. Elizabeth Downie, 3155 Research Blvd., Ste. 205,
Kettering, Ohio 45420; Comm 937-781-4000 (edownie@dagsi.org)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This research presents a unified approach to representing and solving the multiagent task assignment
problem for complex problem domains using ideas central to multiagent task allocation, project scheduling, constraint
satisfaction, and coalition formation, forming the basis of the constrained multiagent task scheduling (CMTS) problem.
The CMTS descriptor represents a wide range of classical and modern problems, such as job shop scheduling, the
traveling salesman problem, vehicle routing, and cooperative multi-object tracking. Problems using the CMTS
representation are solvable by a suite of algorithms ranging from simple random scheduling to state-of-the-art biologically
inspired approaches incorporating evolutionary algorithms, dynamic coalition formation, auctioning, and behavior-based
robotics to highlight different solution generation strategies. The framework includes a distributed process to show how
to scale adapted algorithms to solve increasingly larger domain problems. This approach introduces several methods for
problem decomposition and recomposition without significantly compromising solution quality. Decomposition techniques
show methods to reduce the search space by several orders of magnitude allowing for improved search efficiency.

artificial intelligence, multiagent systems, distributed data processing, learning machines

U U U UU 232

Dr. Gilbert L. Peterson

(937) 255–6565, ext 4281 (gpeterson@afit.edu)

