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Abstract

Recently, many scientists clearly proved on their work that aircraft navigation

information (position, velocity, and attitude) can be determined using optical mea-

surements from imaging sensors combined with an inertial navigation system. This

can be accomplished by tracking the locations of stationary optical features in multiple

images and using the resulting geometry to estimate and remove inertial errors.

The effectiveness of fusing imaging and inertial sensors using an Extended

Kalman Filter (EKF) algorithm has been shown in previous research efforts. In

this approach, the idea was to increase the robustness of the feature tracking algo-

rithm. Thus, image feature correspondence search was aided using the inertial sensor

measurements, resulting in more robust feature tracking. The resulting image-aided

inertial algorithm was tested using both simulation and experimental data. Although

the feature correspondence search is stabilized, the overall problem remained unstable

due to the well-known deleterious effects of the nonlinear measurement model. These

effects caused a divergence in the EKF implementation seen during our long-duration

Monte-Carlo simulations. In other words, the measurement model is highly sensi-

tive to the current parameter estimate, which invalidates the linearized measurement

model assumed by the EKF.

In order to cope with divergence problem, the Unscented (Sigma-Point) Kalman

Filter (UKF) has been proposed in the literature in order to address the large class

of recursive estimation problems. In this research, a variation of the UKF is applied

to the image-aided inertial navigation problem, with the goal of improving upon

the established limitations of our previous EKF implementation. Tightly integrating

optical and inertial sensors for navigation using UKF is rigorously designed from

first principles, yielding a novel hybrid UKF algorithm which increases the sigma-

point density along the axes of highest uncertainty. The UKF is evaluated using a
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combination of simulated and experimental data. The performance of the image-aided

navigation system is analyzed and compared to the baseline EKF from our previous

work.

A combination of simulation and experimental analysis indicates that the UKF

algorithm is superior to the EKF, namely the divergence problem is removed and

overall errors are reduced. The covariance of the UKF algorithm represents well while

the processing time increases such that it requires 410 seconds to process 60 seconds of

simulation where EKF algorithm needs 178 seconds only. Since the processing speed

is a very important design constraint for the application, an efficient modification

using quaternion is applied. Consequently, UKF algorithm is optimized such that it

requires 198 seconds of processing time for 60 seconds of simulation.

v



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . 2
1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . 4

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Quaternion Inverse . . . . . . . . . . . . . . . . 9

2.2.2 Quaternion Product . . . . . . . . . . . . . . . 10

2.2.3 Conversions . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Vector Rotation . . . . . . . . . . . . . . . . . . 11

2.3 Inertial Navigation . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Inertial Sensors . . . . . . . . . . . . . . . . . . 11
2.3.2 Accelerometer Errors . . . . . . . . . . . . . . . 12
2.3.3 Gyroscope Errors . . . . . . . . . . . . . . . . . 13

2.4 Inertial Navigation Error Model . . . . . . . . . . . . . . 14

2.4.1 Inertial Sensor Error Model . . . . . . . . . . . 14
2.4.2 Position And Velocity Error Development . . . 15

2.4.3 Attitude Error Development . . . . . . . . . . . 16

2.5 Measurement Model . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Estimating Location of Landmark Using Binocu-

lar Stereopsis . . . . . . . . . . . . . . . . . . . 18

2.6 Image-Aided Navigation Techniques . . . . . . . . . . . 21

2.6.1 INS Aiding By Tracking An Unknown Ground
Object . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Inertial Navigation Sensor Integrated Motion Anal-
ysis For Obstacle Detection . . . . . . . . . . . 22

2.6.3 Augmenting Inertial Navigation With Image-Based
Motion Estimation . . . . . . . . . . . . . . . . 23

vi



Page

2.6.4 Navigation Using Optical Measurements of Ob-
jects at Unknown Locations . . . . . . . . . . . 24

2.7 Unscented Kalman Filter . . . . . . . . . . . . . . . . . 25
2.7.1 Unscented Transformation . . . . . . . . . . . . 26
2.7.2 Unscented Filter . . . . . . . . . . . . . . . . . 27

2.8 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8.1 Particle Filter Algorithm . . . . . . . . . . . . . 32

2.9 Approach Selection . . . . . . . . . . . . . . . . . . . . . 33

III. Algorithm Development . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 System Definition . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Navigation State Structure . . . . . . . . . . . . . . . . . 36

3.3 Propagation of Navigation State Structure . . . . . . . . 38

3.3.1 Finding Errors from Propagated Navigation State
Structure . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Calculating Statistics of Navigation State . . . . 40

3.4 Update of Navigation State Structure . . . . . . . . . . . 41

3.4.1 The Tracking Algorithm . . . . . . . . . . . . . 41

3.4.2 Prediction of Pixel Location . . . . . . . . . . . 42
3.4.3 Measurement Update . . . . . . . . . . . . . . . 43

3.5 Decreasing The Computational Cost Using Quaternion . 44

IV. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Simulation And Results . . . . . . . . . . . . . . . . . . 46

4.2.1 Simulation Environment . . . . . . . . . . . . . 48
4.2.2 Simulation Test . . . . . . . . . . . . . . . . . . 48

4.3 Experiment And Results . . . . . . . . . . . . . . . . . . 55

4.4 Effect of Quaternion On Algorithm . . . . . . . . . . . . 57

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



List of Figures
Figure Page

2.1. Frames of Reference . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Body Reference Frame . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Camera Frame Illustration. . . . . . . . . . . . . . . . . . . . . 8

2.4. Binocular Imaging Geometry . . . . . . . . . . . . . . . . . . . 19

2.5. Unscented Transformation . . . . . . . . . . . . . . . . . . . . 26

2.6. Particle Filter Algorithm . . . . . . . . . . . . . . . . . . . . . 31

2.7. Resampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 33

3.1. Image-Aided Inertial Navigation Filter Block Diagram. . . . . . 36

3.2. Navigation State Structure . . . . . . . . . . . . . . . . . . . . 37

3.3. Propagation Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4. Stochastic Feature Projection . . . . . . . . . . . . . . . . . . . 42

4.1. Data Collection System . . . . . . . . . . . . . . . . . . . . . . 47

4.2. Indoor Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3. EKF Position Error Results . . . . . . . . . . . . . . . . . . . . 51

4.4. UKF Position Error Results . . . . . . . . . . . . . . . . . . . . 52

4.5. UKF Velocity Error Results . . . . . . . . . . . . . . . . . . . . 53

4.6. UKF Attitude Error Results . . . . . . . . . . . . . . . . . . . 54

4.7. Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



List of Tables
Table Page

3.1. System Parameter Definition . . . . . . . . . . . . . . . . . . . 35

4.1. Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



List of Abbreviations
Abbreviation Page

GPS Global Positioning System . . . . . . . . . . . . . . . . . . 1

ATR Automatic Target Recognition . . . . . . . . . . . . . . . 1

ICBM Inter-Continental Ballistic Missile . . . . . . . . . . . . . . 1

UKF The Unscented Kalman Filter . . . . . . . . . . . . . . . . 5

PF Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . 5

NED North, East and Down . . . . . . . . . . . . . . . . . . . . 7

INS Inertial Navigation Systems . . . . . . . . . . . . . . . . . 11

IMU Inertial Measurement Unit . . . . . . . . . . . . . . . . . . 11

WGN White Gaussian Noise . . . . . . . . . . . . . . . . . . . . 14

EKF Extended Kalman Filter . . . . . . . . . . . . . . . . . . . 25

GRV Gaussian Random Variable . . . . . . . . . . . . . . . . . 25

UKF Unscented Kalman Filter . . . . . . . . . . . . . . . . . . 25

UT Unscented Transform . . . . . . . . . . . . . . . . . . . . . 26

SIS Sequential Importance Sampling . . . . . . . . . . . . . . 30

SIR Sampling Importance Resampling . . . . . . . . . . . . . . 32

DCM Direction Cosine Matrix . . . . . . . . . . . . . . . . . . . 36

x



Tightly Integrating Optical And Inertial Sensors

For Navigation Using The UKF

I. Introduction

1.1 Background

The advent of Global Positioning System (GPS) has changed precision navi-

gation capability for navigators who have utilized mechanical instruments such as

astrolabes, sextants and driftmeters to determine their position, velocity and angle

precisely. The fact that GPS cannot be used in all environments forces people to

find new methods. Obviously, it can be seen that there is a synergy between imaging

and inertial sensors which is already being used by human or other animals. This

synergy is a motivation for using optical measurements to provide perfect navigation

information.

The interpretation of the image has always been the challenging problem for

autonomous navigation. This is also a difficulty shared with Automatic Target Recog-

nition (ATR). Indeed, the ATR problem in this structured environment is tractable

for celestial tracking, and automatic star trackers are widely used for space navigation

and ICBM guidance (see [17], [16], [9]). When ground images are to be used, the dif-

ficulties associated with image interpretation are paramount. At the same time, the

problems associated with the use of optical measurements for navigation are somewhat

simpler than ATR. Moreover, there are improvements motivating the use of inertial

measurements to aid the image interpretation such as recent developments in feature

tracking algorithms, miniaturization, and reduction in cost of inertial sensors and

optical images aided by the continuing improvement in microprocessor technology.

Typically, there are two image-aiding methods depending on how the image cor-

respondence problem is addressed. These are optic flow methods and feature-based

methods. Optic flow methods are generally used for elementary motion detection, fo-
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cusing on determining relative velocity, angular rates, or obstacle avoidance (see [7]).

Also, these methods determine correspondence for a whole portion of the image be-

tween frames. On the contrary, feature-based methods determine correspondence for

“landmarks” in the scene over multiple frames.

A rigorous, stochastic projection algorithm is presented in [29], which incorpo-

rates inertial measurements into a predictive feature transformation, effectively con-

straining the resulting correspondence search space. The algorithm was incorporated

into an extended Kalman filter and tested experimentally in [27] using both tactical

and consumer grade inertial sensors. The integrated system demonstrated at least

two orders of magnitude improvement over the inertial-only navigation solution.

One nonlinear filtering approach is investigated in this thesis. In order to im-

prove the sub-optimal performance of the extended Kalman filter, the unscented

Kalman filter will be used. In the EKF, the state distribution is approximated by a

jointly Gaussian random vector and propagated through a linearized approximation

of the nonlinear dynamics and measurement model. Our analysis indicated this is

the reason for sub-optimal performance and divergence of previous work. The UKF

addresses this issue by representing the state distribution as a collection of sigma

points, which are directly transformed using the nonlinear dynamics and measure-

ment models. This has been shown in the literature to preserve additional moments

of the state distribution and, as such, is more resilient to the deleterious effects of

linearization errors.

1.2 Problem Definition

The fact that GPS signals are not available in all locations causes a weakness in

navigation and requires the development of non-GPS based navigation reference which

can aid an inertial navigation system. Thus, one of the motivations of this research

is to address the benefits of tightly integrating navigation sensors, such as inertial

measurement units (IMU) and global positioning system measurements. The com-

plimentary characteristics of the two sensors allow the integrated system to perform
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at levels which are much better than the levels attained by using either sensor alone

(see [3]). Consequently, integrated systems have become more popular, especially in

military-grade navigation systems.

The weakness in GPS-based navigation can be handled by a non-GPS navigation

approach which is coupling of the imaging and inertial sensors at a deep level (see [22],

[18], [2]). This technique has some important advantages. The sensors can operate in

all environments while GPS signal can not be received everywhere (e.g., indoors, under

trees, underwater, etc.). Secondly, passive signals are used, so they do not require the

transmission (or reception) of radio signals. As a result, optical and inertial sensors

are immune to disruptions in the radio spectrum.

Beside all the reasons, the most valuable motivation of this work is to improve

the efficiency of previous work. In previous work, a method using extended Kalman

filter is developed to integrate optical and inertial sensors at a deep level. The lin-

earization errors of the extended Kalman filter remains uncorrected, especially at the

presence of large attitude errors. This thesis describes an estimator which doesn’t

suffer from the linearization errors of the extended Kalman filter. The estimator

should overcome the divergence problem of EKF during long-duration Monte Carlo

simulations. Hopefully, this research gives better results for long-term autonomous

navigation.

1.3 Assumptions

This research is made under a number of assumptions listed below.

• A strapdown inertial measurement unit (IMU) is rigidly attached to one or more

cameras. Synchronized raw measurements are available from both sensors.

• The camera images areas in the environment which contain some stationary

objects.

• Binocular measurements are available which provide an indication of range to

objects in the environment.
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• The inertial and optical sensors’ relative position and orientation is known

(see [26]) for a discussion of boresight calibration procedures).

1.4 Thesis Overview

The thesis is divided into five chapters. Currently, a brief background and

motivation are presented in Chapter One. Chapter Two provides required background

information for the optical and inertial integration problem. It also prepares the

reader for the following chapter by explaining reference frames, error analysis etc.

The navigation algorithm is presented in Chapter Three in details. This is followed

by a description of simulation and experimental results in Chapter Four. Finally,

Chapter Five is reserved for conclusion and future work.
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II. Background

This chapter describes some issues required to understand the fusion of imaging

and inertial sensors. This chapter begins by providing an overview of reference

frames and inertial navigation. Next, the image-aided navigation techniques are de-

fined. In previous work section, the reason why there is a need for a better approach

is explained. Depending on the need for a better estimation algorithm, the unscented

Kalman filter (UKF) and particle filter (PF) are presented at the end of chapter.

2.1 Reference Frames

The process of inertial navigation is defined according to a number of Cartesian

co-ordinate reference frames. Since they are Cartesian, it simplifies computations in

navigation. These frames are right-handed coordinate frames consisting of mutually

perpendicular x, y and z axes. Position, velocity and orientation of a body are

expressed in reference frames. For this research, the following reference frames are

defined based on that presented in [4] and [24]:

• True inertial frame (I-frame)

• Earth-fixed inertial frame (i-frame)

• Earth-centered Earth-fixed frame (e-frame)

• Navigation frame (n’-frame)

• Earth-fixed navigation frame (n-frame)

• Body frame (b-frame)

• Camera frame (c-frame)

True inertial frame (I-frame) is the reference frame in which Newton’s laws of

motion apply. This frame is determined by fixed stars in ℜ3. Due to the relative

nature of universe, it doesn’t have a predefined origin.

The Earth-centered inertial frame (i-frame) has its origin at the center of Earth

and aligned with respect to the fixed stars. This non-rotating frame’s z axis is aligned
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Figure 2.1: Frames of Reference. In this figure inertial, Earth
and vehicle-fixed frames are illustrated as given in [24]. Vehicle-
fixed frame originate at local meridian while inertial and Earth
frames originate at Earth’s center of mass.

with the Earth spin axis that is assumed to be invariant. The x and y axes are

located on the equatorial plane. Since the frame moves with Earth, although it is not

rotating, it does accelerate with respect to true inertial frame. However, Newton’s

laws are approximately correct in this frame and it can be considered as an inertial

frame for navigational purposes.

Like the Earth-centered frame, the Earth-centered Earth-fixed frame (ECEF)

(e-frame) has its origin at the Earth’s center and it is an orthonormal basis in ℜ3.

Its z axis is aligned with the Earth’s spin axis while x axis is on the equatorial plane

pointing toward the Greenwich meridian. The y axis is also on the equatorial plane

pointing toward 90 degrees east longitude. This frame is fixed to the Earth and

rotates with Earth. Hence, the Earth-centered and ECEF frames coincide once each

24 hours.

The vehicle-fixed navigation frame (n’ -frame) is an orthonormal basis in ℜ3,

with origin located at a predefined point on a vehicle. The vehicle-fixed navigation

6



Figure 2.2: Body Reference Frame is located at a fixed point
on the aircraft [24].

frame’s x, y and z axes point in the north, east and down directions, respectively.

This is called (NED) convention. For the purposes of this research, down is defined

using the gravity vector. The n’ -frame rotates with respect to the e-frame due to

translational motion of the vehicle. The i, e and n’ -frames are illustrated in Figure 2.1.

The Earth-fixed navigation frame (n-frame) is an orthonormal basis in ℜ3, with

origin located at a predefined location on the Earth, typically on the surface. The

NED convention is current relative to the origin. As in the previous case, down

is defined as the direction of the gravity vector. This frame remains fixed to the

Earth. Thus, the turn rate of the navigation frame is governed by the motion of the

frame’s origin with respect to Earth. This frame is not useful for very-long distance

navigation, but it can simplify equations for local navigation routes.

The body frame (b-frame) is rigidly fixed to the vehicle. The origin is located

at a fixed point on the aircraft. The axes of the frame are aligned with the roll, pitch

and yaw axes of the vehicle. The positive x axis points out the nose, the positive y

axis points out right wing and the z axis points out the bottom of vehicle. The body

frame is illustrated in Figure 2.2.

The camera frame (c-frame) is an orthonormal basis in ℜ3, rigidly attached to

a camera and the origin is at the camera’s optical center. The x and y axes point

up and to the right, respectively, and are parallel to the image plane of the camera.

The z axis points out of the camera perpendicular to the image plane. The c-frame

is shown in Figure 2.3.
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Figure 2.3: Camera frame illustration. The camera reference
frame originates at the optical center of the lens [29].

2.2 Quaternions

In three dimensional space, rotations can be applied to a vector using a DCM

matrix that is also used in previous work. Another possible way to represent three-

dimensional rotation is quaternion algebra (see [6], [11], [24]). Actually, quaternion

concept is related to rotation vector. Quaternion is a four parameter coordinate

transformation (one real dimension and 3 imaginary dimensions):

Q = φ + îx + ĵy + k̂z (2.1)

There is a physical explanation for quaternion when quaternion is used to rep-

resent the rotation between two coordinate frames. This is called axis angle represen-

tation which is the closest physical explanation:

• φ = angle of rotation

• v̂(x, y, z) = unit vector representing axis of rotation
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These four components are also called ”Euler’s Symmetric Parameters”. The

formula to convert axis representation to quaternion form is:

Q = cos(
φ

2
) + î(xsin(

φ

2
)) + ĵ(ysin(

φ

2
)) + k̂(zsin(

φ

2
)) (2.2)

In this case, quaternion can be represented as:

Q =

















q1

q2

q3

q4

















=

















cos(φ

2
)

xsin(φ

2
)

ysin(φ

2
)

zsin(φ

2
)

















(2.3)

where the relationship between parameters is based on orthonormal vector as shown

in the following section.

2.2.1 Quaternion Inverse. The inverse of a normalized quaternion is simply

the conjugate:

‖Q‖ =
√

q2
1 + q2

2 + q2
3 + q2

4 = 1 (2.4)

Q−1 =
q1 − îq2 − ĵq3 − k̂q4

‖Q‖2
(2.5)

Simply Q−1 is:

Q−1 =

















q1

−q2

−q3

−q4

















= q1 − îq2 − ĵq3 − k̂q4 (2.6)
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Using Equations 2.1 and 2.6 orthogonality of quaternion can be shown as:

QQ−1 = (q1 + îq2 + ĵq3 + k̂q4)
(q1 − îq2 − ĵq3 − k̂q4)

‖Q‖2

= q2
1 + q2

2 + q2
3 + q2

4 (2.7)

= ‖Q‖2 = 1

2.2.2 Quaternion Product. Quaternion multiplication is not commutative,

but associative. Quaternion product is given in matrix notation below:

Q̃1

⊗

Q2 =

















q̃1 −q̃2 −q̃3 −q̃4

q̃2 q̃1 −q̃4 q̃3

q̃3 q̃4 q̃1 −q̃2

q̃4 −q̃3 q̃2 q̃1

































q1

q2

q3

q4

















(2.8)

Two successive DCM rotations can be operated as D3 = D2D1 where initial

rotation D1 is followed by D2. In quaternion, rotations are combined as Q3 = Q̃1

⊗

Q2

where initial rotation Q̃1 is followed by Q2.

2.2.3 Conversions. Conversions between direction cosine matrices and

quaternions can be easily made using the following conversions.

2.2.3.1 Quaternion to DCM. DCM matrix can be easily attained as

shown below:

D =











(q2
1 + q2

2 − q2
3 − q2

4) 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) (q2
1 − q2

2 + q2
3 − q2

4) 2(q1q2 + q3q4)

2(q1q3 + q2q4) 2(q3q4 − q1q2) (q2
1 − q2

2 − q2
3 + q2

4)











(2.9)
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2.2.3.2 DCM to quaternion. One way of computing quaternion from

a rotation matrix D is as follows:

Q =

















q1

q2

q3

q4

















=

















1
4q4

(D23 − D32)

1
4q4

(D31 − D13)

1
4q4

(D12 − D21)

1
2

√
1 + D11 + D22 + D33

















(2.10)

2.2.4 Vector Rotation. A vector can be rotated using quaternion in three-

dimensional space. While the form of quaternion is given in Equation (2.3), the form

of vector is:

~v = îv1 + ĵv2 + k̂v3 (2.11)

using these parameters the rotated vector has the form of:

~v′ =











v′
1

v′
2

v′
3











=











(q2
1 + q2

2 − q2
3 − q2

4) 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) (q2
1 − q2

2 + q2
3 − q2

4) 2(q1q2 + q3q4)

2(q1q3 + q2q4) 2(q3q4 − q1q2) (q2
1 − q2

2 − q2
3 + q2

4)





















v1

v2

v3











2.3 Inertial Navigation

The inertial navigation systems (INS) is a universal application which has been

used for estimating the position and orientation of vehicles. The operation of inertial

navigation highly depends on Newton’s laws of classical mechanics. According to

Newton’s laws, the motion of a body should continue straightly unless disturbed by

an external force. In this section, basic concepts of inertial navigation are presented.

The following inertial navigation basics are explained based on those presented in [13]

and [24].

2.3.1 Inertial Sensors. Most of the inertial measurement units (IMU) which

are the core of INS are comprised of 3-axial accelerometers and gyroscopes. But the

primary sensor is the accelerometer which produces the output that is proportional to
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acceleration applied along the input axis. In fact, this output is not the acceleration

of the vehicle. It is the measurement of specific force f which is the difference between

inertial acceleration and gravity:

f = G − R̈ (2.12)

where G stands for gravitational field vector and R̈ is inertial acceleration. Specific

force is the only measurement which contains information about the vehicle motion

and can be measured inside a moving vehicle without using external signals.

The gyroscopes which are other sensors of IMU are sensitive to angular velocity

relative to inertial space. They are used to accomplish the orientation control of the

accelerometers since gyroscopes can measure rotation relative to inertial space. Either

three single-degree-of-freedom gyros or two two-degree-of-freedom gyros can be used

to obtain three-axis reference.

In general, the gyroscopes and accelerometers are mounted in a cluster arrange-

ment which is gimballed or strapdown. In this research, strapdown system is used.

2.3.2 Accelerometer Errors. Besides their benefits, both accelerometers and

gyroscopes have errors which decreases the accuracy of either applied specific force or

angle of rotation. These corruptions that cause accelerometer errors are mainly listed

below [24]:

• Bias: A bias is the quantity which accelerometer reads when the specific force

is zero. It is either a constant or slowly-varying additive error. It is possible

to measure some bias components and correct them through factory calibration

techniques. Unfortunately, some bias components remain uncorrected.

• Scale Factor: The accelerometer scale factor error is a multiplicative error. It

can be either constant or slowly-varying. As with bias errors, some scale factor

effects can be corrected through calibration.
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• Sensor Misalignment: These are the result of mechanical fabrication and

installation errors.

• Cross Coupling: A cross coupling error will occur in a system which assumes

a fixed accelerometer input axis. If input axis is assumed fixed then it causes

accelerometer to sense one of the components of acceleration along the axis

which is normal to input axis:

A = axcosθ − aysinθ (2.13)

In this equation aysinθ is the cross-coupling error.

• Vibro-pendulosity: This is a dynamic cross-coupling error. When the ac-

celerometer is operated in a vibratory environment, the vibrational acceleration

effects both the input axis and other axis which is perpendicular to the input

axis. This event causes a torque that effects the output of accelerometer.

• Measurement Noise: When high-bandwidth power spectral density is present,

measurement noise is observed as an additive error component with high-bandwidth

power spectral density. This noise component is the theoretical result of many

high-bandwidth sources.

• Gravity Model Errors: The accelerometer measures specific force. Thus, the

acceleration due to local gravity must be added to the accelerometer output to

produce an estimate of acceleration in the inertial frame. Errors of this local

gravity model causes additive errors in accelerometer.

2.3.3 Gyroscope Errors. Strapdown navigation systems use gyroscopes to

measure angular rate relative to inertial space, ωb
ib.

The corruptions which cause the gyroscope errors are mainly listed below [24]:

• Bias: This bias is an either constant or slowly-varying additive error that is

independent of acceleration.
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• Acceleration-dependent Bias: This is the bias that is a function of applied

acceleration.

• Anisoelastic Bias: This bias is proportional to the product of acceleration

along pairs of axes that are normal to each other.

• Scale Factor: A scale factor error is a constant or slowly-varying multiplicative

error which is the ratio of output signal change to the input rate change.

• Sensor Misalignment: As in accelerometer errors, sensor misalignment errors

are also a result of mechanical fabrication and installation errors.

• Measurement Noise: This is an additive error component with high-bandwidth

power spectral density which is the theoretical result of many high-bandwidth

sources such as electrical noise, thermal noise, etc.

2.4 Inertial Navigation Error Model

Inertial navigation error model is developed based on the inertial navigation

dynamics [24]. The error models, described in this section, are the same models

presented in [25].

2.4.1 Inertial Sensor Error Model. Both the accelerometer and gyroscopic

error models consist of a bias and a random noise where the random noises are modeled

as an additive white Gaussian noise (WGN) process and the biases are modeled as

first-order Gauss-Markov processes [10] based on the specification for the IMU:

f b
m = f b + ab + wb

a (2.14)

ωb
ibm

= ωb
ib + bb + wb

b (2.15)

where ab and bb are the accelerometer and gyroscopic biases, wb
a and wb

b are ac-

celerometer and gyroscope additive white Gaussian noise processes, respectively.
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The bias differential equations for a first-order Gauss-Markov process model for

both accelerometer and gyroscope are expressed as:

ȧb = − 1

τa

ab + vb
a (2.16)

ḃb = − 1

τb

bb + vb
b (2.17)

where τa and τb are the time constants, wb
a and wb

b are the WGN terms for the

accelerometer and gyroscopic biases, respectively.

2.4.2 Position And Velocity Error Development. The position and veloc-

ity errors are modeled as a stochastic process based on the Pinson navigation error

model [24]. The position and velocity error models are the same models presented

in [25]. These errors are:

δpn = p̄n − pn (2.18)

δvn = v̄n − vn (2.19)

The position error can be explained using the kinematic relationship between

position and velocity:

δṗn = δvn (2.20)

and the acceleration error vector is:

δv̇n = ˙̄vn − v̇n (2.21)

where v̇n is the acceleration dynamics equation and ˙̄vn is the calculated velocity

vector differential equation.
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In order to derive the dynamics of velocity error, the acceleration dynamics

equation, in which the gravity function is substituted, is used [25]:

v̇n = Cn
b f

b − 2Cn
eΩ

e
ieC

e
nv

n + Cn
eg

e (pe
0 + Ce

np
n) (2.22)

This equation consists of specific force, Coriolis effects and the gravity vec-

tor, ge(pe). The calculated velocity vector differential equation is corrupted by the

accelerometer measurement errors and the attitude errors [25]. Combining the cal-

culated velocity vector differential equation with the position, velocity, attitude and

accelerometer measurement error equations results in:

˙̄vn = (I − (ψ×))Cn
b

(

f b + ab + wb
a

)

− 2Cn
eΩ

e
ieC

e
n (vn + δvn) (2.23)

+Cn
eg

e (pe
0 + Ce

np
n + Ce

nδp
n)

Rewriting the Equation (2.21) using the Equations (2.22), (2.23) and eliminating

second-order terms yields:

δv̇n = Cn
b a

b − (ψ×)Cn
b f

b − 2Cn
eΩ

e
ieC

e
nδv

n + Cn
eGCe

nδp
n + Cn

b w
b
a (2.24)

where G is the gradient of the gravity vector, ge(pe
0 + Ce

np
n) (see [25] for details).

2.4.3 Attitude Error Development. The attitude errors are modeled as a

stochastic process based on the Pinson navigation error model [24]. According to the

Pinson navigation error model, small angular errors about nominal orientation can

be represented by a simple rotation error vector. However, this is not true for general

orientation. The attitude error model is the same model presented in [25].
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The attitude error vector is modeled as below:

ψ =











ψn

ψe

ψd











(2.25)

The skew-symmetric form of attitude error vector (ψ×) is used to express the

computed body-to-Earth-fixed navigation frame DCM [24]:

C̄n
b ≈ (I − (ψ×))Cn

b (2.26)

Taking the derivative of Equation 2.26:

˙̄Cn
b = −(ψ̇×)Cn

b + (I − (ψ×)) Ċn
b (2.27)

The derivative of a DCM is:

Ċn
b = Cn

bΩ
b
nb (2.28)

Combining Equations 2.27, 2.28 and solving for (ψ̇×) results in:

(ψ̇×) = [(I − (ψ×))Cn
b Ω

b
nb − C̄n

b Ω̄
b

nb]C
b
n (2.29)

Since perfect measurements are not available, the calculated body-to-earth ro-

tation rate vector can be expressed as:

ω̄b
nb = ωb

ibm
− C̄b

nC
n
e ωe

ie (2.30)
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Combining Equations 2.15, 2.26, 2.29 and 2.30 results in:

(ψ̇×) = (I − (ψ×))Cn
b Ω

b
nbC

b
n

− (I − (ψ×))Cn
b

[

Ωb
nb +

(

bb×
)

−
[(

Cb
n [ψ×]Cn

e ω
e
ie

)

×
]

+
(

wb
b×

)]

Cb
n (2.31)

After eliminating common terms, second-order terms and collapsing the skew-

symmetric form, Equation 2.31 yields the linearized angular error equation:

ψ̇ = − ((Cn
e ω

e
ie)×) ψ − Cn

b b
b − Cn

b w
b
b (2.32)

2.5 Measurement Model

The measurement model is the same model presented in [25]. The model is

based on the landmark of opportunity which are modeled as stationary. In order to

incorporate landmarks into navigation filter, initial landmark location is determined.

Then, the measurement errors are calculated. Although there are different methods

to determine the initial location of landmark, the method of binocular stereopsis with

no terrain model is addressed and used in this research to estimate landmark location.

2.5.1 Estimating Location of Landmark Using Binocular Stereopsis. It is

possible to determine the distance of an object within an image utilizing binocular

measurements. In order to estimate the landmark location, a binocular disparity

reference frame is located between the optical centers of two cameras (see Figure 2.4).

This method is completely same as the one presented in [25].

Determining the landmark location requires three steps:

• Select the feature and match between image pairs,

• Calculate the relative line of sight vector (sc0
0 ),

• Estimate the location of landmark.
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Figure 2.4: Binocular imaging geometry. The line of sight
vector, sc0

0 , is a function of the landmark location, yn, sensor
platform location, pn, the lever arm from the inertial sensor to
the binocular reference point to camera a and camera b, pc0

ca
and

pc0

cb
, respectively [25].
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Initially, a candidate feature is chosen from image a and statistically projected

into the feature space of image b with corresponding mean and uncertainty. The

description of the pixel location of the feature in the b frame is:

zb = Tp
cb

s̆cb (2.33)

scb = Ccb

c0

(

ξCc0

ca
Tca

p za + pc0

ca
− pc0

cb

)

(2.34)

where s̆cb is the normalized form of scb about z axis. Tca

p , Tp
cb

are camera projection

matrices and Cc0

ca
, Ccb

c0
are the orientation direction cosine matrices for camera a and

camera b, respectively. As seen on Figure 2.4, pc0

ca
and pc0

cb
are the location vectors

from the c0 frame for camera a and camera b, respectively. ξ is the distance parameter

that is modeled as a Gaussian distribution (see [25] for details).

After calculating the predicted pixel location mean (ẑb) and error covariance

matrix (Pzbzb
) [25] on image b, the feature that minimizes the comparative feature

description distance is chosen.

The second step of determining the landmark location is to estimate the relative

line of sight vector (sc0

0 ). It is possible to estimate the relative line of sight vector

using nonlinear regression techniques, since the pixel locations of the feature in both

camera a and camera b frame are function of sc0

0 :

za = f
[

sc0

0 ,Cca

c0
,pc0

ca
,Tp

ca

]

(2.35)

zb = f
[

sc0

0 ,Ccb

c0
,pc0

cb
,Tp

cb

]

(2.36)

Expanding these equations yields:

za = Tp
ca

s̆ca

a (2.37)

zb = Tp
cb

s̆cb

b (2.38)
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where

sca

a = Cca

c0

(

sc0

0 − pc0

ca

)

(2.39)

scb

b = Ccb

c0

(

sc0

0 − pc0

cb

)

(2.40)

The final step is the estimation of the landmark location. The landmark location

can be calculated using the line of sight vector, sc0

0 , and the navigation state estimate

(see Figure 2.4):

yn = pn + Cn
b

(

pb
0 + Cb

c0
sc0

0

)

(2.41)

The landmark location estimation might result in negative distance estimate

due to the pixel measurement noise if the landmark is a large distance away [25].

However, this condition can be easily detected before applying regression method and

the binocular feature can be changed.

2.6 Image-Aided Navigation Techniques

In this section, some of the image-aided inertial navigation techniques are pre-

sented.

2.6.1 INS Aiding By Tracking An Unknown Ground Object. As presented

in [15], this theory is developed to increase the accuracy of INS, which has a degra-

dation in accuracy over time, by updating periodically. In this approach, a precision

telescope is used in an aircraft. This telescope is remained pointed to the ground

object with a gimbal where the telescope is mounted on.

The main idea is to find the aircraft’s angular navigation variables. These

variables consist of 3 positional variables which are ψ (heading), θ (pitch), φ (roll)

and 2 angular variables which are H (the regressor) and γ (the angle between the line

of sight and the velocity vector). In order to find these variables, a plane is formed

by the aircraft’s velocity vector. Local frame of reference and aircraft’s body axes are
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collocated initially. The direction to the ground object is called Line of Sight (LOS)

which is measured relative to the aircraft’s body axes. Then, it is possible to estimate

the angles between the aircraft’s inertial velocity vector and aircraft’s body axes:

α′ = arctan(
w

u
) (2.42)

β′ = arctan(
v

u
) (2.43)

where u, v and w are the North, East and Down components of the inertial velocity

vector and α′ and β′ angles are related to the aircraft’s attitude, heading and flight

path. After finding α′ and β′, these angles can be related to the aircraft’s angular

navigation variables.

In the first phase mentioned above, the necessary measurements are obtained.

Next, these measurements are used to update INS-provided estimates. The results of

Phase 1, which give information about the drift of aircraft, are used in update cycle

in Phase 2.

This technique reveals that the LOS measurements are conducive to a stand

alone estimate of the angles α′ and β′ included between the aircrafts inertial velocity

vector and the aircraft body axes. The measured α′ and β′ angles are related to the

aircrafts attitude, heading, and flight path angle angular navigation variables. As a

result, accurate position estimation is possible using prior ground object position and

altitude information. Since this method is based on a stationary ground object, it

can be called as an INS aiding using a modern driftmeter.

2.6.2 Inertial Navigation Sensor Integrated Motion Analysis For Obstacle De-

tection. This technique, which is presented in [1], is developed to obtain a desired

obstacle detection system that should work in all-weather conditions in day or night.

Also, it should be minimizing the threat to the vehicle with a graceful degradation.

This system is a passive approach and uses inertial measurements by calculating the
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translation and rotation between images to estimate obstacle distance. The algorithm

presented in the article consists of seven steps:

1. Reading of the input frames, which will be compared, along with their associated

inertial data,

2. Selection of interest points from each input frame,

3. Computation of the location of FOE (focus of expansion) using the INS derived

velocity vector in each frame,

4. Projection of FOE and interest points (in frame B) onto image plane parallel to

image A,

5. Matching of interest points,

6. Computation of range to each interest points,

7. Creation of a dense range map using context.

The interest points are computed by passing an operator over each frame among a

set of distinguishable points. Before matching process, these selected interest points

are derotated into a plane that is parallel to frame A. A projection matrix P is used

to derotate and the angles of the P matrix are obtained from inertial sensors.

Matching of interest points is performed as one-to-one match between frames

after identifying three candidate matches for each interest point in frame B. Range

can be calculated after matching process. This technique is a good example for INS

integrated motion analysis. It also gives the idea of combining inertial sensors with

image sensors since it is proved that image transformations are useful for navigation.

2.6.3 Augmenting Inertial Navigation With Image-Based Motion Estimation.

This is another way of augmenting inertial navigation with image-based motion

estimation. In this application as presented in [21], the idea is to help the problem

of landing on hazardous terrain by producing estimates of spacecraft relative motion.

The main contribution of current work is using Kalman filter for these estimates.
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The algorithm used in this approach is two-frame feature-based motion esti-

mation. Due to the fact that most INS require absolute position and orientation

information in order to reduce tracking errors, especially in cases where the relative

pose measurements are available at a lower rate than the IMU signals, a variant of

Kalman filter (called 6DOF Kalman filter) is developed. This filter is capabled of op-

timally integrating the inertial measurements with displacement estimates provided

by a vision-based feature tracking algorithm.

In the first step, two images and laser altimeter readings are recorded in a

short period. The features are selected randomly. The motion between these pairs of

measurements are estimated by selecting distinct features on first image and tracking

them on second image. The motion state and the covariance are computed given

the feature matches. Finally, altimetry is combined with the motion in order to

compute the magnetude of translation. A variant of Kalman filter is used to estimate

the errors in the estimated states which are derived from sensors. Relative position

measurement, attitude measurement and pose measurement errors are estimated in

the filter and applied to estimated states via update equations.

As a result, Kalman filter methodology has been applied successfully. Image-

based motion estimation can be used as measurements in inertial navigation which

is degrading over time and needs to be updated with measurements. This research

provides advantages over using each method separately by increasing state estimation

accuracy. It also reveals that the fusion of IMU measurements with motion estimates

from the Image-based Motion Estimation increases the robustness of the Kalman

filter estimator due to the fact that these two sensing modalities have complimentary

operating conditions and noise characteristics.

2.6.4 Navigation Using Optical Measurements of Objects at Unknown Loca-

tions. In this approach, presented in [19], the idea is to navigate via optical mea-

surements using some advantages of cameras such that they are passive and difficult
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to jam which makes them useful for military operations. What is more, this approach

does not require prior knowledge of the location of the objects being tracked.

While dealing with the error estimates to find true trajectory, this research is

based on some assumptions as followed:

• An INS is available for navigation,

• There is a working target registration algorithm to identify a target in multiple

images,

• These targets are stationary objects.

For the algorithm, an extended Kalman filter is used to integrate the inertial mea-

surements with the optical measurements. It also makes use of GPS measurements

to initialize the filter. While the measurement model is different, the Kalman filter

state model is very similar to the approach presented in this research.

A flight test is generated to validate that the algorithm works properly and

different test cases (GPS only, optical only, no update etc.) are evaluated. Results

obviously proves that optical measurement update reduced the position error by 70

percent. This is a very encouraging test result to incorporate optical and inertial

sensors for autonomous navigation.

2.7 Unscented Kalman Filter

In highly non-linear equations the extended Kalman filter (EKF) has a poor

performance, since only the mean is propagated through the non-linear function. The

state distribution is propagated through the first-order linearization of non-linear

system. This might cause large errors in the mean and covariance of transformed

Gaussian random variable (GRV). In this section, the unscented transformation and

the filter algorithm is explained in details as presented in [5].

While having the same approximation issues of EKF (e.g., GRV), the unscented

Kalman filter (UKF) uses a deterministic sampling approach (unscented transform
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Figure 2.5: Unscented Transformation. UKF uses a determin-
istic sampling approach, unscented transform (UT) in which the
state distribution is represented using a minimal set of carefully
chosen sigma points [5].

(UT)) in which the state distribution is represented using a minimal set of carefully

chosen sigma points around the mean. Besides the mean, the sigma points are also

transformed using the non-linear function. As seen on Figure 2.5, transformed sigma

points are used in calculating UT mean and UT covariance. Consequently, the non-

linear function is applied to every single point to yield a set of transformed sigma

points without losing the true mean and covariance.

2.7.1 Unscented Transformation. This method is used to calculate the

statistics of a GRV through a nonlinear transformation, y = h(x). The random vari-

able x (dimension L) with mean x̄ and covariance Px is used to generate a matrix χ

of 2L + 1 sigma points as follows:

χ0 = x̄

χi = x̄ + (
√

(L+λ)Px)i i = 1, ..., L (2.44)

χi = x̄ − (
√

(L+λ)Px)i−L i = L + 1, ..., 2L

where
√

(L + λ)Px is the ith column of the matrix square root and λ is the scaling

parameter defined by:

λ = α2(L+K) − L (2.45)
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where α is the constant value usually set to 1 ≤ α ≤ 10−4 (α = 10−2 is used for the

algorithm) and used to determine the spread of sigma points and K is the secondary

scaling parameter (usually K = 3 − L [5]). Once χ is computed, each column of

χ is propagated to the next time step through the non-linear function to yield the

set of transformed sigma points (see Figure 2.5). The mean and covariance of y is

approximated using the weighted average and weighted outer product of transformed

sigma points Y, respectively.

ȳ ≈
2L
∑

i=0

W
(m)
i Yi (2.46)

Py ≈
2L
∑

i=0

W
(c)
i (Yi − ȳ)(Yi − ȳ)T (2.47)

where the weights are:

W
(m)
0 =

λ

L + λ

W
(c)
0 =

λ

L + λ
+ 1 − α2 + β (2.48)

W
(m)
i = W

(c)
i =

1

2(L + λ)
, i = 1, ....,2L

where β is used to incorporate prior knowledge of distribution of x (β = 2 is optimal

for Gaussian [5]).

2.7.2 Unscented Filter. The unscented Kalman filter is the straight for-

ward extension of the UT. Ultimately, we seek stochastic difference equations of the

following form [5]:

xk+1 = F(xk,uk,vk) (2.49)

yk = H(xk,nk) (2.50)

where xk represents error state vector, uk is a known input, vk is the process noise

that drives the dynamic system, yk is the observed measurement and the observation
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noise is given by nk. For an additive (zero mean) noise case, the UKF consists of the

following steps:

1. Initialization in UKF is in the same way as EKF,

x̂0 = E[x0] (2.51)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T] (2.52)

2. Generate matrix χ of sigma points,

χk−1 = [x̂k−1 X̂k−1 + γ
√

Pk−1 X̂k−1 − γ
√

Pk−1] (2.53)

where X̂k−1 is:

X̂k−1 = [x̂k−1 x̂k−1 ...]LxL (2.54)

3. Transform each point through the process model for time-update,

χ∗
k|k−1 = F(χk−1,uk−1) (2.55)

x̂−
k =

2L
∑

i=0

W
(m)
i χ∗

i,k|k−1 (2.56)

P−
k =

2L
∑

i=0

W
(c)
i (χ∗

i,k|k−1 − x̂−
k )(χ∗

i,k|k−1 − x̂−
k )T + Rv (2.57)

4. Instantiate each of the prediction points using augmented sigma points through

the observation model,

χk|k−1 = [χ∗
k|k−1 χ∗

0,k|k−1 + γ
√

Rv χ∗
0,k|k−1 − γ

√
Rv] (2.58)

Yk|k−1 = H(χk|k−1) (2.59)

ŷ−
k =

2L
∑

i=0

W
(m)
i Yi,k|k−1 (2.60)
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5. Apply measurement-update using measurement covariance and cross correlation

matrices.

Pȳkȳk
=

2L
∑

i=0

W
(c)
i (Yi,k|k−1 − ŷ−

k )(Yi,k|k−1 − ŷ−
k )T + Rn (2.61)

Pxkyk
=

2L
∑

i=0

W
(c)
i (χi,k|k−1 − x̂−

k )(Yi,k|k−1 − ŷ−
k )T (2.62)

Kk = Pxkyk
P−1

ȳkȳk
(2.63)

x̂+
k = x̂−

k + Kk(yk − ŷ−
k ) (2.64)

Pk = P−
k − KkPȳkȳk

KT
k (2.65)

where γ =
√

L + λ, Rv is the process-noise covariance and Rn is the measurement-

noise covariance. As shown in the algorithm, it is very easy to implement correlated

noises. The parameters γ, α, β and K are empirically determined. Hence, various

modifications are also possible.

2.8 Particle Filter

The particle filter is a recursive, non-linear estimation algorithm based on a

sequential Monte Carlo method. The particle filter can be considered as an extension

to the Kalman filter, since they both can be used for the same kinds of engineering

problems (e.g., recursive estimation). However, particle filters can be more accurate

than EKF and UKF if the choice of particles represents the pdf well. The particle

filter uses Bayesian approach and allows us to represent the posterior density by a set

of randomly chosen particles. If we can find the posterior distribution with sufficient

number of weighted particles, then the Bayesian optimal estimate can be computed

easily. Such that:

E(g(xk)) =

∫

g(xk)p̂(xk|Yk
0)dxk (2.66)
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where p(xk|Yk
0) is the posterior distribution which is used in Equation 2.67. There

are two cases where the particle filter can offer improved performance:

• Non-Gaussianity

• Non-Linearity

In contrast to the EKF and UKF, the particle filter does not require a Gaussian

assumption. In this section, a brief view to the fundamentals of particle filters will be

described as presented in [5] and [12].

While depending on Monte Carlo-based statistics to determine the location of a

collection of particles, the particle filter utilize sequential importance sampling (SIS)

to represent the desired p.d.f. accurately. The overall goal is to estimate unknown

state xk given a sequence of observations Yk
0 :

p̂(xk|Yk
0) =

1

N

N
∑

i=1

δ(xk − x
(i)
k ) (2.67)

where δ is the Dirac delta function, x
(i)
k is a random sample drawn from p(xk|Yk

0)

which is a marginal of the full posterior density p(Xk
0|Yk

0) where Xk
0 is sets of states

that can be attained given the observations Yk
0 . N is the number of weighted particles

which are set to 1
N

initially and remains the same during state propagation. During

an update, the weights are modified using Equation 2.68 under the assumption that

the states correspond to Markov process and observations are independent.

wk = wk−1
p(yk|xk)p(xk|xk−1)

q(xk|Xk−1
0 ,Yk

0)
(2.68)

In Equation (2.68), p(xk|xk−1) is the transition probability, p(yk|xk) is the

likelihood of making observations given the states and q(xk|Xk−1
0 ,Yk

0) is the proposal

distribution where Xk−1
0 and Yk

0 are the previous state history and all observations,

respectively. This is the most critical design issue for successful particle filter. Taking

samples from this density is impractical. Hence, the transition prior is the most
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Figure 2.6: Particle Filter Algorithm. N number of parti-
cles are chosen with initial weights. Then, they are propagated
through a non-linear function. Weights are modified during time
update. Finally, particles are rearranged and weights are set to
initial during resampling [12].
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popular choice of proposal distribution:

q(xk|Xk−1
0 ,Yk

0) = p(xk|xk−1) (2.69)

This makes the weighting update equation depend on the p(yk|xk) density such

that wk = wk−1p(yk|xk). However, a particle starvation problem occurs here after a

few iterations, since there will be numerically insignificant weights. This problem can

be handled by using a resampling step. Otherwise, almost all of the particles’ weights

tend to zero. One resampling technique is called sampling importance resampling

(SIR) and the steps are:

• Randomly replicate N number of particles proportional to their weights and

generate a new set of x0(i
∗),

• Replace current particle set with x0(i
∗).

2.8.1 Particle Filter Algorithm. The implementation of particle filter algo-

rithm has five steps as presented below:

1. Initialize particles ,

Generate N random samples of particles x
(i)
0 from the prior p(x0)

2. Compute the weights ,

Use Equation 2.68 to evaluate the importance weights. p(yk|xk) is crucial

in modifying the weights

Normalize the weights.

w̃
(i)
k = w

(i)
k

(

N
∑

j=1

w
(j)
k

)−1

(2.70)

3. Apply SIR steps for resampling ,
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Figure 2.7: Resampling Algorithm. A new set of particles are
generated randomly with respect to their weights [5].

This is to generate a new particle set to prevent particle starvation as shown

in Figure 2.7

Reset weights to N−1

4. Compute the estimate,

x̂k = E(xk|Yk
0) ≃ 1

N

N
∑

i=1

x
(i)
k (2.71)

5. Redo from step 2 for next time intervals .

More effective results can be achieved using true posterior density which is

impractical to be used. Thus, proposal density should resemble the true posterior

density as closely as possible for more effective results.

2.9 Approach Selection

There are a number of possible approaches to improve the robustness of previous

research. In addition to the UKF, both particle filters (as mentioned) and neural
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networks are also useful. For some reasons listed below, the unscented Kalman filter

is considered as a better approach for current situation:

• it is easier to implement,

• uses same approximation issues as extended Kalman filter,

• contrary to extended Kalman filter, the unscented Kalman filter uses more than

one point (sigma points) for estimation,

• sigma points allow better estimation of covariance,

• it allows us to propagate through at least second order linearization of nonlinear

function.
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III. Algorithm Development

The unscented Kalman filter algorithm is used in this research to recursively es-

timate the navigation state and associated errors. As in previous work, this

method tracks the pixel location of stationary objects in an image-aided inertial sys-

tem under a number of assumptions given in Chapter 1.

3.1 System Definition

While having the same approximation issues of the extended Kalman filter (e.g.,

Gaussian random variable), the unscented Kalman filter (UKF) uses a deterministic

sampling approach (see Section 2.5.1) in which the state distribution is represented

using a minimal set of carefully chosen sigma points around the mean. The main idea

is to approximate the Gaussian distribution instead of an arbitrary nonlinear function.

The nonlinear function is applied in propagation without losing the true mean and

covariance of GRV. As seen in the block diagram of the system in Figure 3.1, an

unscented Kalman filter is designed to estimate the errors in the calculated system

parameters (see Table 3.1).

Table 3.1: System Parameter Definition

Parameter Description
pn Vehicle position in navigation frame

(northing, easting, and down)
vn Vehicle velocity in navigation frame

(north, east, down)
Cn

b Vehicle body to navigation frame DCM
ab Accelerometer bias vector
bb Gyroscope bias vector
tn
m Location of landmark m in the

navigation frame (one for each landmark
currently tracked)
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Figure 3.1: Image-aided inertial navigation filter block diagram. In this filter, the
location of stationary objects are tracked and used to estimate and update the errors
in an inertial navigation system. The inertial navigation system is, in turn, used to
support the feature tracking loop [28].

3.2 Navigation State Structure

For the algorithm, a predefined structure is created to define current system

parameters. Some of the parameters are listed below:

• tgps: is the GPS time

• Cn
b: a Direction Cosine Matrix (DCM) used for transformation from body frame

to navigation frame.

• Ce
n: a DCM matrix used for transformation from navigation frame to Earth

frame

• pn: current position of navigation structure based on n-frame

• vn: current velocity of navigation structure based on n-frame

• Px: covariance matrix of errors

• δx: this is the current errors of navigation structure. It is a 15-state matrix

including position error, velocity error, angular error, accelerometer bias and

gyro bias errors in three dimensions, respectively.
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Figure 3.2: For the algorithm, the navigation state structure is
created to define current system parameters. It also includes δx

which is the vector form of all errors. Sigma points are generated
using δx vector.
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After each propagation and update cycle, a correction is applied to navigation

state structure by subtracting δx from current system parameters.

3.3 Propagation of Navigation State Structure

After creating the navigation state structure, the whole valued states of naviga-

tion state structure can be propagated through strapdown mechanization equations as

seen in block diagram (see Figure 3.1). It is desired to find expected δx in propagation

cycle while calculating the whole valued states through mechanization.

3.3.1 Finding Errors from Propagated Navigation State Structure. The

strapdown mechanization equations are nonlinear equations [24]. Thus, the unscented

transformation is used to calculate the statistics of navigation state structure through

nonlinear transformation. Before using a nonlinear function, navigation state struc-

ture state errors (dimension L) and covariance matrix are used to generate a matrix

χ of 2L+1 sigma points (see Section 2.5.1).

Figure 3.3: Whole-valued navigation state structures are generated using sigma
points. These whole-valued states are then propagated through the strapdown mech-
anization algorithm. Finally, the differences between each predicted navigation state
are found by comparing to the nominal, whole-valued navigation state.

While the spread of the sigma points is a function of the error distribution, the

strapdown mechanization function propagates the whole-valued navigation state, not
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the errors (see [20]). Hence, once the collection of sigma points χ is computed about

the nominal, each sigma point is transformed to and from whole-valued navigation

state sigma points, Ni, using a generalized differencing operator:

Ni = N0

⊕

χi (3.2)

χi = Ni

[

⊕

]−1

N0 (3.3)

Despite the fact that for most of navigation state structure parameters (e.g., po-

sition, velocity, etc.) the differencing operator is simply the standard vector addition

operator, it uses a different approach to calculate small angular errors. Differencing

orientation states, namely the Cb
n direction cosine matrix, are based on the notion

that small angular changes can be appropriately represented by a simple rotation error

vector (ψ in the above equations), whereas this is not true for general orientations.

This property is exploited in many navigation state error models such as the well-

known Pinson error model, which represents angular errors as a three-dimensional

error vector about some nominal orientation DCM or quaternion. This method is

both elegant and efficient.

The relative navigation state to error model equations are:

δpn
i = pn

i − pn
0 (3.4)

δvn
i = vn

i − vn
0 (3.5)

Cni

b = (I − ψi×)Cn0

b (3.6)

δan
i = an

i − an
0 (3.7)

δbn
i = bn

i − bn
0 (3.8)

δtni = tni − tn0 (3.9)
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where ψi is the angular error:

ψi =











ψni

ψei

ψdi











(3.10)

which corresponds to the i-th sigma point.

Thus, given a collection of angular difference sigma points, the whole-valued

body-to-navigation frame DCMs can be calculated using the following steps:

• Convert the angular errors to the equivalent direction cosine matrix [24]. This

represents the orientation error from the estimated navigation frame to the

nominal navigation frame.

• Multiply this DCM with the nominal body-to-navigation frame DCM.

Applying these steps results in the whole-valued body-to-navigation frame DCM

sigma points, represented by Cni

b .

Up to now, the equivalent whole-valued states are calculated using sigma points

and navigation state structures are generated. Next, these navigation state structures

are propagated through the dynamics model, which is in this case the strapdown

mechanization equation:

Ni(tk) = f [Ni(tk−1), ũk,wk] (3.11)

where ũk are the inertial measurements and wk is the dynamics noise vector. This

function generates a collection of propagated navigation state structures at the time

of the next image (see Figure 3.3).

3.3.2 Calculating Statistics of Navigation State. Given this collection of

whole-valued navigation state sigma points, the representative statistics (i.e., mean

and covariance) can be calculated. Before this step, the error sigma points must be

calculated.
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The error sigma points can be calculated by subtracting each navigation state

structure about the nominal navigation state structure, which is in this case the one

that is propagated using the initial sigma point (the first vector of χ). Finding the

difference between each predicted whole-valued navigation state sigma point about

the nominal navigation state sigma point is shown in the approach outlined in Equa-

tions (3.3) and (3.4). Once the representative error sigma points are determined, the

error state mean and covariance are approximated using the weighted average and

weighted outer product

x̂−
k =

2L
∑

i=0

W
(m)
i χ∗

i,k|k−1 (3.12)

P−
k =

2L
∑

i=0

W
(c)
i (χ∗

i,k|k−1 − x̂−
k )(χ∗

i,k|k−1 − x̂−
k )T + Qd (3.13)

where Qd is the process noise. The weights are used as given in Chapter 2.

3.4 Update of Navigation State Structure

As in propagation cycle, update equations are also nonlinear functions. In

this case, unscented transformation is required to be used for update cycle as well.

Initially, new navigation states, following new sigma points, are calculated depending

on propagated navigation state structure and error covariance matrix. Then, these

structures are used in update cycle as described in following sections.

3.4.1 The Tracking Algorithm. The general concept for the track algorithm

is to find landmark tracks which can provide the best navigation information to the

filter.

There are three issues related to this algorithm:

• Track selection: The idea is to find landmarks that can be easily and accurately

tracked for a long period of time. This implies choosing features that are strong
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and well separated in image space. Due to computer restrictions, limited number

of landmarks can be tracked. Thus, stale landmarks are pruned by replacing

with new tracks.

• Track addition: After identifying the new track, track addition is made with an

estimate of location and uncertainty.

• Track deletion: Tracks which have not been successfully updated are identified

for replacement.

As described above, the tracking algorithm predicts pixel locations and uncer-

tainty for each navigation state including correction for optical distortion. These are

the measurements to be used.

Figure 3.4: Stochastic feature projection. Optical features of interest are projected
into future images using inertial measurements and stochastic projections [27].

3.4.2 Prediction of Pixel Location. The propagated whole-valued navigation

state sigma points can now be used to predict the measurement sigma points using
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the measurement equation:

zi(tk) = h[Ni(tk),vk] (3.14)

where zi(tk) is the collection of predicted feature space locations corresponding to the

currently tracked landmarks. An illustration of this prediction is shown in Figure 3.4.

New collection of navigation state structures are used to predict pixel locations

by using tracking algorithm including correction for optical distortion [27]. The means

of predictions are optical measurements. Calculating the statistics of the prediction is

accomplished in a similar manner as with the navigation errors. The relevant statistics

are calculated using the following weighted sum:

ẑk =
2L
∑

i=0

W
(m)
i zi(tk) (3.15)

Pẑkẑk
=

2L
∑

i=0

W
(c)
i (zi(tk) − ẑ−k )(zi(tk) − ẑ−k )T + Rn (3.16)

where zi(tk) is the matrix of predicted feature locations at time tk and Rn is the

measurement noise.

3.4.3 Measurement Update. The navigation state is updated after calcu-

lating the statistics of measurements. The measurement-update is applied using the

measurement covariance and cross correlation matrices.

Pxk,zk
=

2L
∑

i=0

W
(c)
i (χi,k|k−1 − x̂−

k )(zi(tk) − ẑ−k )T (3.17)

Kk = Pxk,zk
P−1

ẑkẑk
(3.18)

x̂+
k = x̂−

k + Kk(z̃(tk) − ẑ−k ) (3.19)

Pk = P−
k − KkPẑkẑk

KT
k (3.20)
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Finally, the estimated error is removed from the nominal navigation state and

the update is completed.

A conceptual summary of the propagation and measurement cycles for the un-

scented Kalman filter is as follows:

• Based on the current nominal navigation state estimate, calculate a collection

of whole-valued navigation states corresponding to the calculated sigma points.

• Propagate the set of whole-valued navigation state sigma points through the

nonlinear strapdown mechanization function.

• Calculate the pre-measurement statistics using the weighted sum of the differ-

ences between whole-valued navigation states.

• Predict the feature locations of the current landmark tracks.

• Determine a statistical correspondence between the predicted and measured

feature locations.

• Calculate the statistics of the predicted feature location errors. Use the mea-

surement residual and Kalman gain to correct the nominal navigation state.

• Repeat as necessary.

3.5 Decreasing The Computational Cost Using Quaternion

Although the developed algorithm works as expected, the need for a better

performance is inevitable due to the complexity and slowness. The main reason for

the complexity and slowness is definitely due to the direction cosine matrices, since

it is difficult to propagate and update all sigma points at once as explained below.

In the EKF algorithm, euler angles are to be calculated from DCM matrices in

each propagation and update cycle. Contrary to UKF algorithm, there was only one

point (the mean) to be propagated and updated in recent work. Hence, there was

no need to replace DCM. In the UKF algorithm, using the same technique requires

repeating propagation and update cycle for each sigma point to move next time step.
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One way to make UKF algorithm faster is to propagate and update all sigma

points at once. This requires using matrices for all whole state valued vectors since

the strapdown mechanization algorithm uses whole state values as mentioned previ-

ously. All whole state valued vectors of navigation state structure can be converted

to matrices using sigma points in order to propagate every point at once. But, the

DCM will continue to increase complexity due to the fact that it is already a matrix

and generating an array of DCM matrices will not help much. The computational

cost remains as long as DCM is used in new algorithm.

Quaternions are very concise way of applying rotation compared to direction

cosine matrices. The following properties are the reasons for its popularity:

• It is only a vector, thus compactly supporting multiple particles,

• It is more compact than the DCM representation and less susceptible to round-

off errors,

• Expression of the DCM in terms of quaternion parameters involves no trigono-

metric functions,

• Using a quaternion product, two individual rotation can be simply combined.

In order to make sure that they correspond to valid rotations, quaternions should

be normalized due to rounding errors, as well. However, the computational cost of

normalizing a quaternion, is much less than normalizing a 3x3 DCM [8].
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IV. Results

As in the previous work, the UKF-based imaging and inertial fusion navigation

algorithm is evaluated using both simulated and experimental ground profiles.

The profiles are designed to provide a range of image types in order to exercise the

feature tracking algorithm. The data collection, simulation and experiment results

are presented in the next section.

4.1 Data Collection

This research is based on the principles of previous one. Hence, the data collec-

tion system that consisted of a consumer grade MEMS IMU and two digital cameras

(see Figure 4.1) and all data used for simulation and experiment are same as used in

EKF based work. That makes for easy comparison of results.

In order to validate the development, both simulation and experiments are used

for evaluation of the algorithm. Initially, this research is evaluated using a simulation.

The simulation is an artificial environment which does not include any unknown errors,

which makes it easier for the algorithm to succeed. In the experimental results, the

algorithm is evaluated in a real environment where we might encounter unknown

errors. The simulation and results are presented in the next section.

4.2 Simulation And Results

The algorithm was tested using a Monte Carlo simulation of a standard indoor

profile. The profile consisted of a straight corridor, designed to be similar to the

indoor experimental data collection.

An accurate simulation of the navigation environment requires simulating the

performance of the sensors in response to a true motion trajectory. The trajectory was

generated using ProfGen version 8.19 software package [14]. For each Monte Carlo

navigation simulation run, the inertial sensor measurements are regenerated using the

true trajectory and an inertial sensor error model.
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Figure 4.1: Data collection system. The data collec-
tion system consisted of a consumer-grade MEMS IMU and
monochrome digital cameras. Although not used in this re-
search, a tactical-grade IMU was co-mounted on the platform
in order to provide a performance comparison between different
grades of inertial sensors.
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4.2.1 Simulation Environment. Due to the inherent complexity of the op-

tical environment, it is beyond the scope of this thesis to generate simulated images.

Instead, a simulated feature set was created by randomly distributing features along

a corridor surrounding the true trajectory. The features are each given random de-

scriptor vectors in order to exercise the feature tracking algorithm. While this optical

simulation method is appropriate for testing the image and inertial fusion algorithm,

the results are not directly comparable to the real system performance, because imag-

ing issues such as lighting conditions, motion blur, and affine changes in the feature

descriptor due to pose changes are not modelled. The simulation model is generated

to verify that the algorithm is working properly. It is expected that these results will

be optimistic with respect to position error. Nonetheless, the error divergence trends

should be observable. Once simulation gives good results, then the algorithm will be

ready to be evaluated using real data.

The simulated corridor was 3 meters wide, 3 meters high, and approximately

300 meters long. Features were randomly generated on the walls, floor and ceiling of

the corridor with an average spacing of 0.25 features per square meter. Each feature

was given a random primary length and orientation, which, combined with the true

pose of the sensor, resulted in accurately simulated scale and orientation parameters

in feature space.

Before accelerating the platform, an initial 60-second stationary alignment is

made. Then, the sensor platform accelerated to 0.5 meters per second and maintained

this velocity until the end of the corridor. Finally, it is decelerated to a stop at the

end. The platform remained stationary for 60 seconds after coming to a stop. This

resulted in a 660-second image and inertial navigation profile. Simulated images are

collected at 2 Hz.

4.2.2 Simulation Test. A Monte Carlo simulation was conducted using

an inertial sensor model representing the Crista consumer-grade IMU [23]. Each

simulation consisted of 60 runs, each with randomly generated inertial measurement
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Figure 4.2: Sample image from indoor data collection. The
indoor data collection presents the filter with man-made features
in an office environment. The crosses and ellipses indicate the
locations and uncertainty of currently tracked landmarks [28].
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errors due to random walks and sensor bias. In order to mitigate any potential effects

due to the location of the features in the simulated environment, the feature locations

and descriptors were randomly generated every 20 runs.

Previously, consistent divergence during our long-duration Monte-Carlo simu-

lations occurred since the state distribution was propagated through a first order

linearization. The simulated position errors for the EKF and UKF are shown in Fig-

ures 4.3 and 4.4, respectively. Deleterious effects of EKF can be seen in Figure 4.3

compared to UKF.

Significant excursions in position are noted in the EKF-based algorithm, which

is evidence of the effects of increased attitude errors resulting in destabilizing lineariza-

tion errors. In contrast, the UKF-based estimator appears to eliminate the departures

and is reasonably consistent with the estimated uncertainty. The UKF estimate does,

however, appear to be biased. A tuning is applied to the algorithm by changing the

α parameter (see Section 2.5.1) in a range of 1 to 10−4. But, the bias remained

unchanged. This is not completely unexpected, as the unscented transformation can

be shown to produce a biased estimate under non-symmetric nonlinearities. In either

case, the effects are relatively small and should be in the noise when processing real

data sets.

The reason for biased estimate will be more clear by investigating the velocity

and attitude error plots that are given in Figures 4.5 and 4.6, respectively. In the

first plot, the velocity errors appear to be very consistent and stable. But, that is

not same for following plot. The attitude errors show a different story, especially in

heading error. The obvious heading error bias explains the resulting position error

bias. Unfortunately, the cause for this heading error bias is unknown and will require

further investigation. As mentioned previously, the apparent stability of the UKF-

based algorithm should outweigh the effects of small heading bias for real data set.

In the next section, the experimental data collection profile and results are

presented and a comparable figure between the EKF and UKF algorithms is shown.
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Figure 4.3: Simulated 60-run Monte Carlo position error re-
sults for indoor profile with a consumer-grade inertial sensor
using an EKF-based image aiding algorithm. The extended
Kalman filter algorithm displays a tendency toward divergence
due to the cumulative effects of linearization errors.
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Figure 4.4: Simulated 60-run Monte Carlo position error re-
sults for indoor profile with a consumer-grade inertial sensor
using a UKF-based image aiding algorithm. The UKF based
algorithm shows no indication of rapid divergence, although the
estimate appears to contain a bias.
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Figure 4.5: Simulated 60-run Monte Carlo velocity error re-
sults for indoor profile with a consumer-grade inertial sensor
using a UKF-based image aiding algorithm. As expected, the
velocity estimates appear consistent and stable.
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Figure 4.6: Simulated 60-run Monte Carlo attitude error re-
sults for indoor profile with a consumer-grade inertial sensor
using a UKF-based image aiding algorithm. The UKF-based
attitude estimates appear to be relatively stable and consistent.
The source of the heading bias is unknown, however this is most
likely the root cause of the position error bias.
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4.3 Experiment And Results

The evaluation of the simulation results validated the algorithm. Next, a real

data set is to be used to verify that the algorithm works properly in the experiment

also. As used previously, the algorithm was tested experimentally using a closed-loop

ground navigation profile designed to examine the operation of the feature track-

ing system in a real-world environment and compare the performance between the

EKF and UKF implementations. The profile consisted of a closed path in an indoor

environment. The path began and ended at the same location.

Similar to the simulation, the data collection began with a 10-minute stationary

alignment period. After the alignment period, the sensor was moved in a 10- minute

loop around the hallways of the building. No prior knowledge was provided to the

algorithm regarding the location of features or structure of the environment. A sample

image from the indoor profile is shown in Figure 4.2.

The indoor profile presents the algorithm with different challenges from a fea-

ture tracking perspective. The indoor environment consists of repetitive, visually

identical features (e.g., floor tiles, lights, etc.), which can easily cause confusion for

the feature tracking algorithm. In addition, reflections from windows and other shiny

surfaces might not be interpreted properly by the filter and could potentially result

in navigation errors. Finally, the lower light intensity levels and large areas with poor

contrast (e.g., smooth, featureless walls) presents a relatively stark feature space.

Both filters’ estimates of the trajectories are overlayed on a floor plan of the

building in Figure 4.7 for the EKF and UKF algorithms. Clearly, the EKF and UKF

filters perform well within a range of 3 meter. For both EKF and UKF algorithms,

the estimated trajectory generally corresponds to the buildings hallways. While addi-

tional testing is required to fully characterize the performance of the algorithms, the

navigation accuracy achieved in a real-world environment indicates promise for the

UKF based image-aided inertial navigation system.

55



Figure 4.7: Estimated trajectory for the extended Kalman fil-
ter (blue) and unscented Kalman filter (red) image-aided inertial
algorithm. Both algorithms demonstrate similar performance,
within the expected uncertainty of the position state estimate.
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4.4 Effect of Quaternion On Algorithm

As discussed in Section 3.5, the purpose of quaternion is to replace DCM with

a simple vector. Hence, it leads to use all sigma points for propagation and update

cycles at once, consequently, decrease the computational cost of the algorithm. Since

it has less round-off errors, it is also desired to have less error than that caused by a

DCM rotation.

Although not given in Table 4.1, propagating and updating all sigma points at

once using an array of DCM (see Section 3.5) were also applied to the algorithm. The

timing results were little faster compared to DCM-Based UKF Algorithm results.

But, applying non-linear function to a set of DCM matrices at once was still too

slow and required further improvement on the algorithm. That is why it is replaced

with quaternion to get rid of arrays. The results are generated using a Windows XP

operating system with 2 GB DDR2 RAM and Matlab 2007b software. The type

of computer processor was Intel Centrino Duo and the speed of the processor was

1.83 Ghz. It is also noted that Matlab software works faster using matrices while it

might not be same for all other programming languages. The following results are

attained:

Table 4.1: Time Comparison

Simulation EKF Algorithm DCM-Based Quaternion-Based
Time UKF Algorithm UKF Algorithm
10 sec. 30 sec. 75 sec. 34 sec.
30 sec. 93 sec. 210 sec. 105 sec.
60 sec. 178 sec. 410 sec. 198 sec.
100 sec. 302 sec. 697 sec. 334 sec.
650 sec. 1895 sec. Almost 7200 sec. 2250 sec.

As expected, quaternion allowed more elegant way to represent sigma points and

that decreased the computational cost and spending time for both simulation and ex-

periments (see Table 4.1). The fact that EKF algorithm is propagating and updating

only the mean through the nonlinear function while UKF algorithm propagates a set
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of sigma points (almost 100 sigma points propagated and updated) causes EKF algo-

rithm the fastest one. The results of quaternion-based UKF algorithm are also similar

to EKF results while DCM based UKF algorithm shows a very slow performance.
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V. Conclusions

In this research, a new approach is presented for fusing optical and inertial sensors

to be used in environments where GPS signals are not available. Previous research

presented a statistically rigorous method to tightly couple imaging and inertial sen-

sors using an extended Kalman filter. Unfortunately, the estimator demonstrated

divergent characteristics during longer-term navigation profile which was attributed

to the cumulative destabilizing effects of linearization errors. To address this known

weakness of the extended Kalman filter, an image-aided navigation algorithm based

on the unscented Kalman filter was designed.

The most significant conclusion for this work was reducing the level of diver-

gence. The filter was evaluated and compared using a combination of simulated and

experimental data. During the evaluations, the stability of the unscented Kalman

filter was shown to significantly outperform the extended Kalman filter. In addition,

the unscented Kalman filter maintained an accurate and consistent position error

estimate.

Besides reducing the level of divergence, it was also desired to maintain the

efficiency of the EKF. Unfortunately, the unscented Kalman filter was not efficient.

Thus, a change was needed to make the algorithm faster. The UKF propagates and

updates all sigma points to move next image time while the EKF makes it only for

one point (the mean). Instead using one sigma point each time, it was intended to

use all sigma points at once. The only obstacle was DCM which was replaced with

quaternion to represent rotation with a single vector. Consequently, the optimized

UKF algorithm’s speed was comparable to the standard EKF algorithm.

5.1 Future Work

In addition to this research, there other issues to exploit the synergy of imaging

and inertial sensors. Besides, there is a potential drawback of the UKF for this

application to be investigated. The presence of a systematic bias in the position and
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attitude estimates is a matter to be solved. Unfortunately, the cause for this heading

error bias is unknown and will require further investigation.

There are potential research areas to explore in a deeper level. One potential

research area is the particle filter. The particle filter is another technique to exploit

the synergy of imaging and inertial sensors. As described in Chapter 2, it is also a

non-linear estimation algorithm based on a sequential Monte Carlo method. What is

more, there is no need to make a Gaussian assumption.

Once a particle filter is completed, an unscented particle filter, which is a com-

bination of both particle and unscented filters, will be a good approach to explore a

deeper level.
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