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RESPONSE OF A BEAM ON A HIGHLY ELASTIC FOUNDATION

1. INTRODUCTION

The response of beams subjected to various loading conditions is an ongoing field of

study.' Over the years, the effects of stiffeners modeled as springs has been added to the various

models of strings,2'3 beams,4'5 shells,6'7 and plates.8'9"10 The modeled stiffener is typically a rib-

like attachment to the structure whose thickness is small enough that the rib behavior can be
approximated by a model of a discrete spring. There are structures, however, like tall bridges,

where the length of the stiffener is long, and the dynamic effects cannot be accurately modeled

as a discrete spring. In this report, the dynamics of a beam on an elastic foundation is formulated

and analyzed. The horizontal beam is modeled as an Euler-Bernoulli beam in the transverse

direction. The stiffeners are modeled as Euler-Bernoulli beams in their transverse direction and

modeled using the wave equation in their axial direction so that wave propagation effects are
present in the analysis. The two models are joined using appropriate boundary conditions and

then the systems' corresponding displacements are calculated. Three different loading

conditions are analyzed and the results are discussed.

2. SYSTEM MODEL

The system model consists of an infinite horizontal Euler-Bernoulli beam on a foundation

of finite length equally-spaced vertical beams. The vertical beams are governed by the Euler-

Bernoulli equation in their transverse direction and the wave equation in their axial direction.

The system configuration is shown in figure 1. The model uses the following assumptions:

(1) the forcing function acting on the system is at a definite frequency, (2) the motion of the
horizontal beam is in the transverse direction, (3) the horizontal beam has infinite spatial extent

in the x-direction, (4) the motion of the vertical beams is in the transverse and axial directions,

(5) there is no coupling between the transverse and axial motion of the vertical beams, (6) the

particle motion is linear, and (7) the horizontal beam is rigidly connected to the vertical beams.
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Figure 1. Beam on Elastic Foundation

The horizontal Euler-Bernoulli beam is governed by the equation

a4 w(x,t) + aw(t) ) + a[=+o )
alI 4 +p a t2 n=--oo49 n=o I

where w(x, t) is the transverse displacement of the horizontal beam (m), E is Young's modulus

(N/M2), I is the moment of inertia (m4), p is density (kg/m3), A is the area (m2), F,n is the

force exerted by each vertical beam (N), M n is the moment exerted by each vertical beam (Nm),

L1 is the spacing of the vertical beams (m), iis the Dirac delta function (1/m), x is the spatial

position (m), t is time (s), f(x, t) is the external forcing function per unit length acting on the

beam (N/m), and the subscript 1 denotes the properties of the horizontal beam. The vertical

beams are governed by the equations

E 1 U(Z2t) a un(Z,t)0 - , (2)
az 4  + p 2 A 2

and

2 t2

where un (x, t) is the transverse displacement (m) of the nth vertical beam, vn (x, t) is the axial

displacement (m) of the nth vertical beam, and the subscript 2 denotes the properties of the

vertical supports.
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The boundary conditions on the vertical beams at the base of the structure (z = 0) are zero

displacement in the axial direction, zero displacement in the transverse direction, and zero slope

in the transverse direction. Mathematically, these are written as

v n (0,t) = 0, (4)

un(O,t) = 0, (5)

and

aun (0, t)
az 0, (6)

respectively. The first boundary condition at the interface of the horizontal and vertical beams

requires that they have the same displacement in the vertical direction, and this is written as

vn (L 2 , t) = w(x - nL1, t). (7)

The second boundary condition at the interface of the beams requires that the transverse

displacement of the vertical beam equal zero because the horizontal beam does not have a degree

of freedom in the horizontal direction, i.e.,

un (L2 ,t) = 0, (8)

and the third is that the slope of the horizontal beam is negative of the slope of the vertical beam

because their attachment point is modeled as a rigid connection. This boundary condition is

a3un (L 2 , t) O w (x - n L, t)(9

az ex

The above nine expressions represent a mathematical model of the system with external forcing

on the horizontal beam.
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3. ANALYTICAL SOLUTION

The problem is first solved for excitation of the horizontal beam. For a spatially infinite

system periodic on [0, L1 ], the horizontal beam displacement can be written in series form equal

to a sum of unknown coefficients multiplied by a spatially-indexed harmonic exponential

function in the x-direction multiplied by an exponential harmonic function in time. The

horizontal beam displacement becomes

m=+00
w(x,t) = EWm exp(ikmx)exp(-icat), (10)

m =--0

where Wm are the unknown coefficients and

km=+2mnkm =k+-, (11)
L,

where k is wavenumber (rad/m) and co is frequency (rad/s). Once the analytical form of the

beam displacement has been determined (equation (10)), the axial displacement of the vertical

beams at some location x can be determined using equations (3), (4), and (7), which gives

sin (hz) m=+
v n (z,t) ZW n exp(ikmx)exp(-iat), (12)

where

h=o) . (13)



Each individual force at the top end of the vertical beam is given by

Fn = A2E2 0vn (L 2 , t) A 2 E 2 h cot(hL2 ) [ Wm exp(ikmx) exp(-icot). (14)
OZ cM =-00

The transverse displacement of the vertical beams at some location x can be determined using

equations (2), (5), (6), (8), and (9), which gives

u(z,t) cosh(fiL2 ) sin(flz) + cos(flL2 D sinh(f8z) - sin(lL2 ) cosh(8z) +
L 2fl cos(P3L 2 ) cosh(fiL2 )
sinh(flL2 ) cos(Oz) - sin[,8(z - L2 )] - sinh[f8(z - L2 )] (1

2 ,8 cos(,OL2 ) cosh(fiL2 ) }
| [rnj7Wm exp(ikmx ) exp(-icot),
1x[M=--0

where

[P8 E212] . (16)

Each individual moment at the top end of the vertical beam is given by

Mn = E212 V (L 2 ,t)

E212,8[sin(fL2) cosh(fL2 ) - sinh(flL2 ) cos(fiL2A [ mm (
- 1 -os(/L 2 )csh(/L 2 ) 1 ,EWm exp(ikmx)jexp(-ico)t). (17)I - cos(,8L2 ) cosh(fiL2 )  ax [M=--0

Then equations of the unknown wave propagation coefficients are now determined by

inserting equations (10), (14), and (17) into equation (1). Also, the assumption that the forcing

function is harmonic in time allows it to be written as

6



f (x, t) = g(x) exp(-ia) (18)

and inserted into equation (1). After some manipulation and orthogonalization, the m-indexed

equations for the wave propagation coefficients are

[E,I,kA A A 1 ]W A2E2hc(h )Wf

L1 n=--o

+ E2 12 [sin(8L2 ) cosh(/3L2 ) - sinh(flL2 ) cos(8L2 )]km n=+(1+ EW,,kn (19)
L1 [1 - cos(flL2 ) cosh(f3L2 )] n=--

1L1

1 g(x) exp(-ikmx)dx.

0

Equation (19) can be written as a system of equations in matrix form as

[A] {W} + [B] {W} + [C] {W} = {D}. (20)

where A, B, and C are matrices that represent the dynamics of the horizontal beam, the force of

the vertical beams acting on the horizontal beam, and the moment of the vertical beams acting on
the horizontal beam, respectively, W is the vector of unknown wave propagation coefficients,

and D is a vector that models the excitation on the structure. The entries of equation (20) are

given by

a- 1  0 0

[A]... 0 ao  0 . (21)

0 0 a1

with

am = EjIk 4 - PA o 2 "  (22)

7



bbb

[B] b b b (23)

bbb

with

b- A2E2h cot(hL2 ); (24)L,

ck-lk-l ck-lk 0 ck-k 1

[C]= ... ckok- 1  ckok 0  ckok 1  (25)

cklk-l ck,k 0  cklk 1

with

_ E2 12 ,6[sin(flL2 ) cosh(flL2 ) - sinh(,6L2 ) cos(/lL2 )I (26)
L1 [1- cos(,lL2 ) cosh(flL2 )]

W-1

{W}= Wo  ; (27)

W

and
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LI

f Jg(x)exp(-ik-lx)dx

10Ll

{D}= f g(x)exp(-ikox)dx  (28)
10
L1

L fg(x)exp(-iklx)dx
L10

Three specific loading cases are examined: (1) a point load applied to the horizontal beam,

(2) a moment load applied to the horizontal beam, and (3) a single axial displacement driven

vertical beam. If the forcing function is an applied point load on the horizontal beam at x = a

with magnitude F, then

g(x) = F5(x - a), (29)

and the load vector (equation (28)) becomes

exp(ik-la)

{D} = (F/L 1 ) exp(ik 0 a) (30)

exp(ik,a)

If the forcing function is an applied point moment on the horizontal beam at x = a with

magnitude M, then

g(x) = -[M.5(x - a)], (31)
ax

and the load vector (equation (28)) becomes

9



k- 1 exp(ik-lIa)

{D} = i(M/Lj) k0 exp(ik0 a) (32)

k, exp(ik,a)

If the forcing function is axial motion of the vertical beam at x = 0 with magnitude V, then

equation (4) is replaced with

Vn (0,t) = V exp(-i cot) n=O0
0n# O' (33)

then the forcing function becomes

g(x) = VA 2E 2hcsc(hL2 )1(x) (34)

and the load vector (equation (28)) becomes

1

{D} = (V / L1 )A2 E2 hcsc(hL2 ) 1 (35)

1

Once the load vector has been defined, the solution to the wave propagation coefficients can be

determined by

{W} = [A + B + C]-1{ID)}. (36)

10



The solutions in the subsequent sections will be examined in the wavenumber-frequency

domain. For a function that is periodic on the interval [0, L1], the Fourier transform into the

wavenumber domain is

LI

1 fw(x,t) exp(-ikx)dx = W0 exp(-iwt), (37)
0

where the caret denotes a function in the wavenumber domain.
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4. MODEL VALIDATION

The problem is first examined from a model validation standpoint. A low-frequency

solution to this problem has been previously derived 12 using an energy method, and their set of

indexed equations for the wave propagation coefficients are

[E+o4 2]W=o+ KR n=+( L

[EI I,k -. _Wn +-R IWnknkm 1 Jg(x)exp(-ikmx)dx, (38)1 0LI n=- L1 n =--,, 01

where KT is the translational spring constant and KR is the rotational spring constant. For low-

frequency behavior, the following approximate expressions for the spring constants can be used:

KT - A 2 E 2  (39)L2 
(9

and

K R = 4E 2 1 2L2 (40)

If the forcing function is an applied point load on the horizontal beam at x = a with

magnitude F, then equations (29) and (30) define the loading vector on the right-hand side of the

equation. If the forcing function is an applied point moment on the horizontal beam at x = a with

magnitude M, then equations (31) and (32) define the loading vector. If the forcing function is

axial motion of the vertical spring at x = 0 with magnitude V, then the loading vector becomes

I

(D) = (VIL1)(A2E 2/L2) 1 . (41)

13



A comparative model is now assembled and analyzed at low frequency. The following

parameters are used for the horizontal beam: width a1 of 0.0508 m, thickness b1 of 0.0254 m,

moment of inertia I, of 6.93 x 10-11 m4 , Young's modulus E1 of 7.2 x 1010 N/m 2 , density p,

of 2700 kg/m 3 , area A1 of 1.29 x 10- 4 m 2 , and length L1 of 1 m. The following parameters

are used for each vertical beam: width a2 of 0.0508 m, thickness b2 of 0.0127 m, moment of
12 4 9 2inertia 12 of 8.67 x 10-  m4 , Young's modulus E2 of 1 x 10 N/m, density P2 of 1000

kg/m 3 , area A2 of 6.45 x 10- 5 M 2 , and length L 2 of 3.0 m. Figure 2 is a plot of the transfer

function of horizontal beam displacement divided by input force for an external force applied to

the horizontal beam at a = 0.8 m. The solid line is the dynamic foundation model developed in

equations (1)-(30) and the dot symbol is the discrete foundation model given by equations (38)-

(40). The models are compared at a frequency of 11 Hz, a low value where the dynamic beam

responses of the foundation approach the model using the constant spring values in equations

(39) and (40). At these low frequencies, the result is that both models obtain the same values for

the transfer function between 0 and 10 rad/m.

14
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5. NUMERICAL EXAMPLE

A numerical example is now formulated with the three different loading cases derived in

section 3. Using the parameters of the validation example (section 4), the model is now analyzed

from a frequency range of 0 to 500 Hz, which is a range where the vertical beams behavior has to

be modeled as a continuous medium to accurately represent the dynamics of the system. The

first analysis is a comparison of system pole locations, which is not dependent on the forcing

function. These are determined where

det[A + B + C] = 0 (42)

is the wavenumber-frequency plane, and correspond to locations where the system's response

goes to infinity. Figure 3 is a plot of the system poles determined using equation (42). The top

plot is the system model with dynamic response of the vertical beams and was calculated using

equations (19) and (30), and the bottom plot is the system model with discrete response of the

vertical beams and was calculated using equations (38) through (40). Note that the traditional

checkerboard pattern of the discrete model becomes more rounded using the dynamic model and

that there are additional poles that appear in the dynamic model and correspond to dynamic

behavior of the vertical beams.

The first loading case is that of a point force on the horizontal beam where the load vector

is given by equation (30). Figure 4 is a plot of the magnitude of the horizontal beam

displacement divided by a force F applied to the horizontal beam at x = 0.8 m. This response is

shown in the wavenumber-frequency plane and the units are dB ref m/N. The top plot is the

system model with dynamic response of the vertical beams and corresponds to equations (19)

and (30), and the bottom plot is the system model with discrete response of the vertical beams

and corresponds to equations (38) through (40). The second loading case is that of a point

moment on the horizontal beam where the load vector is given by equation (32). Figure 5 is a

plot of the magnitude of the horizontal beam displacement divided by a moment M applied to the

horizontal beam at x = 0.8 m. This response is shown in the wavenumber-frequency plane and

the units are dB ref N - 1. The top plot is the system model with dynamic response of the vertical

beams and corresponds to equations (19) and (32), and the bottom plot is the system model with

discrete response of the vertical beams and corresponds to equations (38) through (40). The third

17



loading case is that of an axial displacement on the vertical beam where the load vector is given

by equation (35). Figure 6 is a plot of the magnitude of the horizontal beam displacement

divided by the magnitude of the applied axial displacement Von the lower end of a single

vertical beam located at x = 0.0 m. This response is shown in the wavenumber-frequency plane

and the units are dB (dimensionless). The top plot is the system model with dynamic response of

the vertical beams and corresponds to equations (19) and (35), and the bottom plot is the system
model with discrete response of the vertical beams and corresponds to equations (38) through

(41).

18
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6. CONCLUSIONS

The equations of motion for a beam supported by a set of periodic support beams have

been derived, and the displacements have been calculated in the wavenumber-frequency domain.

This solution has been compared to a previously developed system where the beams were

modeled as discrete springs, illustrating the effects of the dynamic response of the support

beams. It was shown that at higher frequencies this response changes dramatically when the

support models admit wave propagation.
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