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ABSTRACT

Graphical models fuse probability theory and graph theory in such a way as to permit efficient rep-
resentation and computation with probability distributions. They intuitively capture statistical relationships
among random variables and provide a succinct formalism that allows for the development of tractable al-
gorithms for statistical inference. In recent years, certain types of graphical models, particularly Bayesian
networks and dynamic Bayesian networks (DBNs), have been applied to various problems in missile defense
that involve decision making under uncertainty and estimation in dynamic systems, such as data association,
multitarget tracking, and classification. While the set of problems addressed in the missile defense arena is
quite diverse, all require mathematically sound machinery for dealing with uncertainty. The graphical model
regime provides a robust, flexible framework for representing and computationally handling uncertainty in
real-world problems. While the graphical model regime is relatively new, it has deep roots in many fields,
as the formalism generalizes many commonly used stochastic models, including Kalman filters and hidden
Markov models.

In this report, we describe the mathematical foundations of graphical models and statistical inference,
focusing on the concepts and techniques that are most useful to the problem of decision making in dynamic
systems under uncertainty. In general, statistical inference on a graphical model is an NP-Hard problem, so
there have been large research efforts that involve developing algorithms for performing inference efficiently
for certain classes of models, or obtaining approximations for quantities of interest using algorithms for
approximate inference. Due to the breadth of problems addressed, a broad class of algorithms has been of
interest to researchers over the past several years. As such, the need arose early on for an extensible and
efficient software library for performing statistical inference on graphical models. The Bayesian Network
Evaluation Tool (BNET), a Java software product spearheaded by MIT Lincoln Laboratory as part of our
research effort program, fills this need. BNET features a rich collection of both exact and approximate
statistical inference algorithms, which we describe in detail in this report.

In general, graphical models and statistical inference are rich subjects, so an exhaustive treatment is
well beyond the scope of this report. We will direct our coverage of these topics according to the particular
algorithms that we have used and those that are currently subjects of ongoing research. Forthcoming reports
will discuss the details of particular algorithms that build upon the mathematical machinery that developed
in this report.
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1. INTRODUCTION

In approaching real-world problems, we often need to deal with uncertainty. Probability and statis-
tics provide a convenient mathematical framework in which to formally represent, and computationally
handle, uncertainty. If uncertainty is properly considered, algorithms become increasingly robust to spuri-
ous measurements and assumptions inherent in the design of algorithms themselves. In many applications
uncertainty arises from a number of sources. The first source is a noisy measurement process. In many sen-
sors, regardless of what frequency regimes they operate at, noise plays an important role in interpreting the
measurements. There are well-known estimation problems where noise is so negligible that measurements
can instead be treated as constraints and the problem could be approached with optimization techniques
such as Newton-Raphson or dynamic programming methods. However, for many sensors of interest, the
signal-to-noise ratio does not allow such a treatment.

Another source of uncertainty arises from incomplete knowledge regarding the objects we observe.
We may have some idea about what particular objects look like, but this knowledge is not certain. Indeed,
there could be many variations that are possible, and this is a crucial source of variability that must be
addressed, so that when decisions are made at a higher level, they will have taken into account the limitations
of what is known with certainty. Much work has been done to understand and model the uncertainty inherent
in inputs to decision makers or decision architectures. This is a problem most naturally handled within the
realm of statistics.

Having agreed upon pursuing a statistical approach to model uncertainty, the question of why a
Bayesian approach is desirable must be examined. This is an important point considering that one of the
main criticisms of the Bayesian approach is its computational complexity, a difficulty that could become
an Achilles heel in the face of time constraints intrinsic to live-time applications. Other questions include
comparing the role of prior distributions in Bayesian analysis as opposed to classical frequentist techniques
such as hypothesis testing and a host of philosophical issues that have been debated for decades.

Let us immediately put to rest issues of a philosophical nature. These debates have been ongoing for
a long time and will most likely remain unresolved as researchers in all fields and disciplines will use both
frequentist and Bayesian techniques to handle a variety of complex problems in interesting ways. Thus,
there is no "religious" flavor to the algorithms discussed herein-pragmatic considerations have guided our
judgment about which techniques are most appropriate. Furthermore, much can be learned by appreciating
the similarity among some of the algorithms coming out of both camps.

Nonetheless, the main approach chosen is Bayesian because it allows for easy modeling of complex
phenomena through the use of hierarchical models. In particular, it allows one to decompose the problem
into reasoning about levels of parameters. For instance, measurements from a sensor would comprise one
level, physical parameters of the object under observation by a sensor complex comprise another level, and
classification based on the parameters of the object comprise the third level. Thus, the hierarchical approach
lends itself naturally to problems confronting the decision-algorithm developer.

A major objective of decision-algorithm developers is to anchor the statistical assumptions used in
developing algorithms to a Bayesian framework of graphical models. This allows for a logically consistent
treatment of any assumptions. It should also capture the statistical dependencies among observed/inferred
object parameters, sensor measurements, and other variables without producing over- or under-confident
results. The graphical models receiving the most attention have been undirected graphical models, Bayesian



networks, and dynamic Bayesian networks. The graphical modeling framework has enabled the develop-
ment of novel fusion and estimation algorithms that currently outperform conventional techniques.

Research on graphical models has exploded in recent years due to their applicability in a wide range of
fields, including machine learning, artificial intelligence, computer vision, signal processing, speech recog-
nition, multitarget tracking, natural language processing, bioinformatics, error correction coding, and others.
However, different fields tend to have their own classical problems and methodologies for solutions to these
problems, so graphical model research in one field may take a very different shape than in another. As a
result, innovations are scattered throughout the literature and it takes considerable effort to develop a cohe-
sive perspective on the graphical model framework as a whole. However, this is precisely why the formalism
is so powerful. Graphical models generalize many commonly used models, including Bayesian networks,
dynamic Bayesian networks (DBNs), state-space models, hidden Markov models, decision networks, and
Markov random fields.

When one examines the various fields that use graphical models, several threads of common experi-
ence are found. Common trends have appeared in terms of both model and computational complexity. The
starting point of a particular field's foray into graphical modeling typically employs a simpler class of mod-
els with the aim for obtaining exact results. With experience and an increase in understanding the problem
at hand, models increase in complexity in terms of the number of random variables as well as the types
of distributions being represented. This often necessitates an upgrade to the algorithms used to perform
calculations on the models, typically evidenced by a move towards approximation techniques. Algorithm
development in the missile defense arena has followed such a trend. Decision-algorithm developers have
experimented with most of the standard "textbook" algorithms that do exact computations using graphical
models, and have more recently investigated approximation techniques that are essential for continuous non-
Gaussian distributions and nonlinear situations. The models and algorithms we describe in this report either
have been used or have an objective of being used in decision-algorithm development.

Due to their flexibility and the soundness of the framework, graphical models have, in several in-
stances, encouraged existing techniques to be generalized and adapted for use in new domains. A few
examples are worth mentioning here. First, the Kalman filter and its many variants have been used exten-
sively in filtering and estimation since being developed in the early 1960s 11, 21 and have more recently
been applied to many new domains, including dynamic topic modeling in computational linguistics. Also,
hidden Markov models (HMMs) were developed in the 1960s and began to be used for speech recognition
applications in the mid-1970s 13,41, but have since been used in a large variety of fields, including several
applications in bioinformatics involving modeling DNA and protein sequences 151.

In addition to describing graphical models and statistical inference, we will discuss how to implement
all of these concepts in software. The algorithms we describe in this report are all sufficiently complex
that it is not immediately obvious how to best implement them. The authors have developed a software
tool which serves as the foundation upon which algorithms using graphical models can be developed for
various problems in data association, feature extraction, discrimination, and resource management. This
software provides a portable development environment, allows for rapid implementation of algorithms, and
proves efficient enough to support both extensive digital testing as well as real-time execution in a cluster
environment during live-time experiments. The tool, implemented using the Java software library, is called
the Bayesian Network Evaluation Tool (BNET). We will refer to it throughout the rest of this report.
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1.1 TWO EXAMPLES

To motivate our discussion, we will first introduce examples of two types of real-world problems that
graphical models are often used to solve. The first consists of building a system to determine the most
appropriate classification of a situation by modeling the interactions among the various quantities involved.
We will consider a graphical model that is a simplification of the types of models that one finds in medical
diagnosis. In this example, we want to determine the diseases a patient may have and their likelihoods given
the reported symptoms. A natural way of approaching this problem is to model probabilistically the impact
of each illness upon its possible symptoms, and then to infer a distribution over the most likely diseases
when given an actual set of symptoms observed in a patient. Figure I shows a Bayesian network for a toy
model consisting of 2 diseases and 3 symptoms. Each node of a Bayesian network corresponds to a random
variable in the probabilistic domain, and the presence of edges between nodes implies dependency informa-
tion between the corresponding variables. In doing so, Bayesian networks provide a concise factorization of
the joint probability distribution for the set of random variables using parameters specified for each node. A
priori knowledge about the relationships among diseases and symptoms is encoded in the model, and seeing
if a person exhibits any of the symptoms allows the computation of the probability that he has a particular
disease. The idea of doing medical diagnosis using graphical models has been used in several real-world
systems, including the decision-theoretic formulation of the Quick Medical Reference database 161, which
includes approximately 600 diseases and approximately 4000 symptoms "caused" by the diseases.

Figure I. An emiple BaYesian network,for medical diagnoWsis (adapted firon 71).

The other type of problem we shall consider is that of estimation in dynamic systems. To approach
this problem, we assume the existence of an underlying stochastic process that we cannot observe directly,
but for which we have a time series of noisy observations. These observations are used to refine an estimate
of the process's hidden state. An example of this type of problem is that of automatic speech recognition,
in which the process being modeled is that of human speech, and the hidden state consists of the phoneme
or word that is currently being spoken. We use the observation sequence, which may be the sequence of
speech signal waveforms produced by the speaker, to obtain an estimate for what the speaker actually said.

Problems such as these can be approached by representing the system being modeled as a joint proba-
bility distribution of all the quantities involved and then encapsulating this distribution in a graphical model.
Frequently, the stncture of the models is sparse due to statistical dependencies among the variables being
modeled. Then, given observations, we can perform statistical inference on the models to obtain distribu-
tions on the desired quantities. The two examples described above use different kinds of graphical models,
both of which we shall discuss in detail in this report. The first is an expert system problem is well-suited
to a Bayesian network, while the dynamic state estimation problem is often approached using a dynamic
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Bayesian network (DBN) model. Many commonly used temporal models, including hidden Markov models
and state-space models, are actually special cases of DBNs.

The purpose of the graphical model framework is to exploit statistical relationships of the quantities
being modeled in order to perform computations more efficiently. The computations we might be interested
in may vary depending on the application, but typically involve computing likelihoods, expectations, en-
tropies, or other statistical quantities of interest. Procedures to obtain these quantities fall under the heading
of statistical iqf'rence algorithms. In the most general case, exact statistical inference in graphical models is
NP-Hard, and the computations required become intractable on a single computer for even moderately-sized
problems 181. As a result, efficient inference algorithms have been developed to compute exact results for
certain subclasses of networks or for particular sets of queries, and there has also been a large focus on the
design and convergence analysis of approximation schemes for general networks that use Monte Carlo sam-
pling techniques or Markov chain-Monte Carlo methods. We will describe several exact and approximate
inference algorithms in this report, including the junction tree algorithm, symbolic probabilistic inference
(SPI), the Boyen-Koller algorithm, particle filtering, and the Gibbs sampler.

The remainder of the report is organized as follows: In Section 2, we provide a stand-alone intro-
duction to graphical models, focusing on the types of models which have been most useful in decision
algorithm development. In Section 3, we introduce statistical inference in graphical models by describing
the various forms it takes on in the models we described in Section 2. Also in Section 3, we discuss the
structure and functionality of the Bayesian Network Evaluation Tool. In Section 4, we describe two algo-
rithms for exact inference for both static and dynamic Bayesian networks-the junction tree algorithm and
symbolic probabilistic inference-and in Section 5, we describe three algorithms for approximate inference:
the Boyen-Koller algorithm, particle filtering, and the Gibbs sampler.
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2. GRAPHICAL MODELS

Using statistical models for solving real-world problems often requires the ability to work with prob-
ability distributions in a computationally efficient way. This is due to the complexity of the models required
for tackling such problems, a complexity which can manifest itself in several ways. The first is in the num-
ber of random variables which must be modeled in order to accurately represent real-world quantities. As
modelers soon discover, there is always more that can be modeled; however, there is a trade-off between
modeling as close to reality as possible and maintaining computational tractability. As the number of vari-
ables grows, the complexity of dealing with the joint distribution increases rapidly. Even just storing the
full joint distribution over a set of discrete random variables can be prohibitively expensive. For example,
storing the joint distribution of n binary random variables requires the storage of a table with 2" entries.
Fundamental computations, such as marginalizing one variable out of the distribution, require us to touch
every entry in this table, thereby requiring 0(2") computations.

The second way in which models can become complex is in the degree of interaction among the quan-
tities being modeled. When several variables possess complicated statistical interdependencies, representing
and performing calculations with the joint distribution of these variables becomes difficult. A third way in
which complexity arises is through the choice of distribution to use to model the quantities in question.
Continuous real-world quantities are often approximated by Gaussian distributions, but this may cause large
errors in cases of multimodal densities; in these cases, we would prefer to use a model which could better
handle the multimodality, though this will often result in increased computational difficulty.

A common approach to the development of tractable algorithms is to represent a distribution efficiently
by exploiting its properties. For instance, if two variables are independent, then less information is required
to store their joint distribution than otherwise. A formalism is required to take advantage of such structure.
A widely used approach to this that uses graph theory to encode probabilistic relationships is a family of
constructs called graphical models. To represent a distribution, a graphical model consists of a graph in
which each node corresponds to a single random variable in the distribution and the presence of edges
between nodes encodes dependency information between them in the probabilistic domain.' There are two
main types, undirected and directed, which differ in the classes of distributions they can represent and in
the ways they represent relationships among variables. As the name suggests, undirected graphical models
are built on undirected graphs and have been used in machine vision 191, error correcting codes 1101, and
statistical physics 1111, while directed graphical models, more commonly called Bayesian networks, are
built on directed graphs and have been used for medical diagnosis [61, software troubleshooting agents, and
many applications in artificial intelligence. Bayesian networks can be extended to model dynamic systems,
for which they are called dynamic Bayesian networks, and have been applied to problems including medical
monitoring 1121, object tracking [ 131, and speech recognition 141.

In Section 2. I, we will introduce the notation we will use in this report and review a few definitions
from probability theory and graph theory essential to our discussion of graphical models. In Section 2.2, we
will introduce the key concepts underlying graphical models by focusing on undirected graphical models.
In Section 2.3, we will discuss Bayesian networks and the types of distributions they can represent. Finally,
in Section 2.4, we will discuss how dynamic Bayesian networks can be used to model dynamic systems.

Since each node corresponds to exactly one variable, we will use the terms node and variable interchangeably.
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2.1 NOTATION AND PRELIMINARY DEFINITIONS

We will use letters (X) to denote random variables and boldface (X) for vectors of variables. Indi-
vidual variables in X will be subscripted by integers (e.g., where s = 1, X, denotes the single variable
XI), and sets of variables will be subscripted by integer sets (e.g., where A = { 1, 2. 3}, X.i denotes the
set {X 1, X 2, X:j}). We will occasionally refer to a set of variables solely by its integer subscript or by its
integer index set, so we will refer to X, by s or X,. by A. We will assume the reader has familiarity with
basic concepts of probability theory and graph theory. However, the authors feel it helpful to review a few
definitions that will be vital to the discussion herein.

Definition 2.1. Independence. Two random variables X and Y are independent if their joint pdf can be
factored in the following way: px,y(r, y) = px(x)pY(y) for all values of xr and y.2 We denote this by
X i Y.

Definition 2.2. Conditional Independence. Two random variables X and Y are conditional' independent
given the random variable Z if p(r, 'y I ) = p(:r I z)p(y I=) or, equivalently, if p(x I !., z) = p(x I y), for
all values of x, y, and z. We denote this by X 11 Y I Z.

Intuitively, if X and Y are conditionally independent given Z, the distribution of X gives no informa-
tion about Y if the value of Z is known. Independence does not generally imply conditional independence
and the converse is also not generally true (see A. I for counterexamples).

Definition 2.3. Graph. A graph is an ordered pair (V, E) in which V {t }h- I is the set of vertices or
nodes in the graph, and E is the set of edges in the graph, each represented as an ordered pairs of vertices.
In an undirected graph, the order of the vertices in an edge is immaterial, whereas in a directed graph, the
order indicates the source and destination vertices, respectively, of a directed edge. If an edge connects two
vertices in a graph, they are called adjacent vertices.

Definition 2.4. Path. A path in a graph is a sequence of vertices in which neighboring vertices in the
sequence are adjacent vertices in the graph.

Definition 2.5. Cycle. A cycle (or loop) in a graph is a path in which the first and last vertices are the same.
A graph with no cycles is called an acYclic graph.

2.2 UNDIRECTED GRAPHICAL MODELS

As stated above, a graphical model consists of a graph in which each node corresponds to a single
random variable and the presence of an edge between two nodes implies that the variables represented by
the nodes are statistically dependent. In particular, variable dependencies are associated with the notion
of graph separation, which is defined differently for directed and undirected graphs. Since an undirected
graphical model (Figure 2) represents a distribution using an undirected graph, it makes use of the undirected
form of graph separation, which is called u-separation, and is defined in Definition 2.6.

Definition 2.6. u-separation (undirected graph separation). Given three sets of nodes A, B, and C in
an undirected graph, B is said to separate A and C if every path between A and C passes through B (see
Figure 3).
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Figure 2. An undirected graphical model with.ife nodes.

A C

Fi,ure 3. u-separation. Since all paths between 4 and C must pass through B, B separates A and C. Therefiwe. by
the global Markov /Jro/)ert., X I _L X(, I X/".

Dependency relationships are derived from graph separation according to the global Markov propertY
and its corollary, the local Markov propertY, which both hold for all types of graphical models. The former
is defined as follows:

Definition 2.7. Global Markov property. Given three sets of nodes A, B, and C' in a graphical model, if
B separates A and C, then XA _L X(, I Xl0 (see Figure 3).

The global Markov property is identical for both undirected graphical models and Bayesian networks,
provided the term separates assumes the appropriate definition of either u-separation for undirected graph-
ical models or d-separation (Definition 2.10) for Bayesian networks. From the global Markov property, we
can begin to see how graphical models intuitively capture independence among variables: connected vari-
ables are related in some way that involves those variables along the paths between them, while disconnected
variables are clearly independent. The relationship between graph structure and variable independence will
become more concrete after we define the local Markov property.

Definition 2.8. Local Markov property. A node X in a graphical model is conditionally independent of
all other nodes in the model given its Markov blanket, where the Markov blanket of a node is defined as
below for undirected graphs.

Definition 2.9. Markov blanket (for undirected graphs). The Marko' blanket of a node X in an undi-
rected graph is the set of nodes adjacent to X.

Therefore, a node in an undirected graphical model is conditionally independent of its non-neighbors
given its neighbors, i.e., p(X, I Xv\,) = p(X, I XN(,)), where V is the set of nodes in the graph and

2We use py,, (x. y) as shorthand for p(X -k V =y).
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N(s) = {t I (s, t) E S$} is the set of neighbors of X. For example, applying the Markov properties to the

network in Figure 2 gives us

1)(X\ XJ,X2,X3, X5 ) =p(Xl I A,X ,_,).

Along with its graphical structure, a graphical model contains a set of potential fitnctions, nonnegative

functions defined on subsets of its variables. For undirected graphical models, these functions are defined

on completely connected subgraphs (cliques) of the undirected graph. Intuitively, it can be helpful to think

of a potential as an "energy" function of its variables. In effect, the presence of a clique in an undirected
graphical model implies that some association exists among its variables, and the clique potential can be

thought of as concretizing this association. In particular, for each clique C, we define a potential function

c,(,(X(,) which maps each possible instantiation of X(, to a nonnegative real number such that the joint
distribution p(X) represented by the graphical model factorizes into the normalized product of these clique

potentials:
1 1X

CEC

where C is the set of cliques in the graph and Z is the normalization constant

Z H o(()
X (EC

to ensure that Y,,, p(X) = 1. For example, we can factorize the undirected graphical model in Figure 2 as

1
p(X 1, X.,, X3 , X 1,-X5) = I-('1 2,3(X , X.2, XOO)U',I (XI -X,,- X1)(,'3,5(X3, X5-

If the graph is acyclic, we can actually define the clique potentials explicitly in terms of probability

distributions over nodes in the model. To do so, we decompose the joint into a product of conditional
distributions while making use of conditional independencies in the model to do so as concisely as possible.

It can be easily shown (see Appendix A.2) that this procedure gives rise to the following factorization for
the joint distribution p(X) for any acyclic undirected graphical model.

1X H J.(X., XXH (2)

Equation 2 shows that the distribution of an acyclic undirected graphical model can be factorized according

to Equation I using only pairwise clique potentials defined on edges of the graph:
1

J)(X) = I- H ,e,(X.,X,). (3)

For example, consider the acyclic undirected graphical model in Figure 4. By (2), we have:

1)(ABCDEF) = p(A.p(CB) p(DB) p(EB) 1)(FE) 4

pjE)p(A )(B) p(B) p(B) p(E)

- 1)(AB)p(C I B)p(D I B)p(E IB)p(F I E) (5)

8



Figure 4. An acYclic undirected graphical model.

This formulation is useful because thinking of things in terms of probability distributions is more
familiar than working with potentials over cliques. We began our discussion of graphical models by starting
with undirected graphical models because graph separation is simpler on undirected graphs, but directed
graphical models are actually more approachable due to their feature of using probability distributions within
the factorization of the joint distribution of the model. We will now describe Bayesian networks and the types
of distributions that they can represent.

2.3 BAYESIAN NETWORKS

A Bayesian network (Figure 5) is a graphical model that represents a joint probability distribution of
a set of random variables using an acyclic directed graph. Bayesian networks are appealing due to their
intuitive graphical representation. When constructing a Bayesian network, the edges are drawn according
to the following intuition: if a variable X[ exerts a direct or causal influence on a variable X. in the
probabilistic domain, we draw a directed edge from X, to X 2 in the Bayesian network. In this case, X, is
said to be a parent of X, and V) is in turn a child of X 1.

There has been a great deal of discussion in the Bayesian network community regarding ways of
properly representing causation and correlation among real-world quantities. We will restrict our discussion
here to the ways in which the structure of a graphical model encodes statistical relationships among its

Figure 5. A Bayesian network with five nodes.
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variables. In particular, as with undirected graphical models, we describe how the presence and directionality
of edges between nodes implies certain conditional independence statements involving the variables in the
model. When constructing a Bayesian network, the edges are drawn according to the following intuition:
if a variable Xj exerts a direct or causal influence on a variable X. in the probabilistic domain, we draw a
directed edge from X, to X2 in the Bayesian network. In this case, X1 is said to be a parent of X,, and X 2
is in turn a child of XI.

Similar to undirected graphical models, Bayesian networks describe statistical relationships among
random variables using graph structure intuitions about causal variable relationships into statistical rela-
tionships by associating them with graph separation via the Markov properties (Def. 2.7, 2.8). However,
the definition of graph separation is more sophisticated on directed graphs. We will define d-separation,
or directed graph separation, through the use of the Bayes ball algorithm 1141. This algorithm determines
whether two variables in a graph are d-separated by using the image of a ball moving through the graph
to represent the spread of influence among variables. To test if two variables are d-separated, we place the
ball on one and see if it can reach the other according to the rules defined below for the three types of node
connections in directed graphs. The variables are d-separated if and only if the ball cannot reach the other
variable.

Before we can go any further, however, we must introduce the notion of evidence. Evidence refers
to any specification of the likelihood of the states of random variables. Suppose the variable weather had
states: hot, warm, cold, and freezing. If it is known with certainty that the weather is warm, then this
evidence implies that the probability of weather being in state warm is 1 and the likelihood of other states
is 0. Evidence that assigns all the probability mass to any one state is called hard; otherwise, it is referred
to as soft. An example of soft evidence in this case is if we were to know that it will be hot with probability
1/2 and warm with probability 1/2, leaving 0 probability for the other states. Continuous random variables
allow only soft evidence to be applied. Summarizing, evidence is any quantifiable observation of a random
variable in a graphical model.

Returning to our discussion of the Bayes ball rules, we note that they are different depending on the
types of nodes involved. We summarize the rules for each type of node connection in a directed graph and
the boundary conditions in Figures 6 through 9. Using these rules as an illustration, we can now formally
define d-separation.

Definition 2.10. d-separation (directed graph separation). Given three sets of nodes A, B, and C' in a
directed graph, B is said to separate A and C if, for all paths between .4 and C, either ( I ) a serial or diverging
connection exists on the path through an intermediate variable X E B, or (2) a converging connection exists
on the path, and neither the node at the bottom of the "v-structure" nor any of its descendants is in B. If
either of these conditions holds, A and C are said to be "d-separated given B."

To check for d-separation, we can shade all nodes in B and then apply the Bayes ball rules. If no ball
starting at any node in A can reach any node in C, or vice-versa, then A and C are d-separated given B.
Figure 10 shows an example execution of the Bayes ball algorithm which determines that X. and X, are
d-separated given X:.

Now that we have a definition for graph separation on directed graphs, we can apply the global Markov
property (Def. 2.7) to Bayesian networks: X.A iL X(. I X13 whenever B separates A and C (e.g. Figure
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(a) (b)

Figure 6. Serial connection. (a) If X is unknown, the ball moves freely between V and Z. (b) If X has been
instantiated, the connection is blocked. The ball bounces back in the directionfom which it came.

x

i (a)(b

Figure 7. Diverg,ing connection. (a) If'.V is unknown, the ballfreelY moves between X's children. (b) lf X has been
instantiated, the ball is blocked.

ysk 6  z Y

x x

(a) (b)

Figure 8. Converging connection. (a) If neither X nor any' of its descendants has received anyN evidence, the ball is
blocked between X's parent nodes. (b) if X or anY of its descendants has received either soft or hard evidence, the
ball moves between X 's parets.

(a) (b)

Figure 9. BRoundati, conditions. (a) If Y is unobserved, the ball leaves the graph. (b) If" Y is observed, the ball
bounces back to X.

Figure 10. Baves ball algorithm example run to check I'X: d-separates X 2 and X 5 .The arrows are drawn to reflect
the movement of the ball if it is placed on either X, or X5 at the start. ClearlY, the ball camnot reach one from the
other; NO X., and Xr, are d-separated given X:j.
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10 implies that X 2 IL X 5 I X:j). The local Markov property (Def. 2.8) also holds for Bayesian networks,
provided we define the Markov blanket for a node in a directed graph.

Definition 2.11. Markov blanket (for directed graphs). The Markov blanket of a node X in a directed
graph is the set of nodes containing the parents of X, the children of X, and the parents of the children of
X (see Fig. II).

Thus, a node in a Bayesian network is conditionally independent of all other nodes given those in its

Markov blanket. For example, in Figure 5, X) I X 5 I X 1 , X:3 , X 1.An equivalent way of specifying the

conditional independence statements implied by the local Markov property is shown in Figure 12: a node is
conditionally independent of its non-descendants given its parents.

The purpose of the Markov properties is to allow us to form a compact factorization of the joint

distribution represented by a graphical model using potential functions. Unlike undirected graphical models,
in which the potential functions are clique potentials, we define a potential function at each node in a
Bayesian network to be the conditional probability of that node given its parents. Where pa(X,) denotes

the set of parents of a node X, the potential associated with X, is p(X, I pa(X,)). If X, has no parents,
its potential is simply the prior probability p(X,). The joint distribution p(X) factorizes into the product of

the potentials at each of the nodes:

M(x) = f IP(XM). (6)

For example, the distribution represented by the network in Figure 5 factorizes as follows:

(x) = MAI )1(-2 X I1)(X 3 I NI)p(x I x 2, N>0)p(NI N:0). (7)

For an example of how the graphical model machinery allows for efficient representation of a distri-

bution, consider a distribution with n binary variables. We would have to specify 2"-1 parameters for this
distribution's joint probability table.3 However, for a Bayesian network representing this same distribution,

'The table would actually have 2" entries, but since probabilities must sum to one, only half of the entries must be specilied 1if
all variables are binary).

Figure ii. The shaded area is the Markov blanket of X (adapted from [151).
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Figure 12. Equivalent way of spec ifing the local Markoi propertyfor Bayesian networks. A node is conditionally
independent of its non-descendants given its parents (adapted froin 15).

we only need to specify O(n24) parameters, where A- is the maximum number of parents ("fan-in") of any
node. This number comes from the fact that there is one conditional probability density (CPD) to specify
for each node and each CPD has O( 2 4*) entries.

2.3.1 Distributions

Bayesian networks can have both discrete and continuous variables, even within the same network,
in which case they are called hybrid Bayesian networks. Some problems can be solved using purely dis-
crete networks, such as the simplified medical diagnosis problem described in Section 1. Using discrete
quantities simplifies inference algorithms by allowing potential functions to be represented simply by con-
ditional probability tables, but real-world systems often include continuous quantities, so applicability of
purely discrete networks is limited. A common practice is to discretize continuous variables through bin-
ning, which involves dividing the range of values in a continuous distribution into a finite number of bins,
each representing a range of continuous values. This allows continuous quantities to be treated as discrete
variables, but results in very large CPDs when several connected variables all must be binned finely enough
to minimize accuracy loss. More precisely, the CPD of a variable with t parents has O(Am 4 l) entries, where
A- is the maximum number of states of any variable. We will often wish to retain the continuous distribution
representation of a variable, and fortunately there are many possibilities for conveniently specifying CPDs
in continuous and hybrid networks.

If a node X has continuous parents Zj .  ZA., its CPD can be modeled as a linear Gaussian distri-
bution: for parent values _- ..... . ., this amounts to p(X I ..... .. )= Ar(ao + a1z1 I .. .+ 2),

where the a) .... i and (72 are fixed parameters of the CPD. It is well known that a Bayesian network in
which every CPD is a linear Gaussian represents a multivariate Gaussian distribution, and that every multi-
variate Gaussian can be represented by a Bayesian network with all linear Gaussian CPDs 1161. The CPD
of a continuous node X with discrete parents Z can be specified as a conditional Gaussian distribution;
that is, each possible instantiation z of the parent variables specifies the mean pz and covariance a-z of a
Gaussian for X, making the CPD p(X I z) = ,k(pz: z). If X has both discrete and continuous parents,
we can specify a separate linear Gaussian as a function of the continuous parents for each instantiation :
of the discrete parents. This is known as the conditional linear Gaussian distribution. We can allow dis-
crete nodes to have continuous parents by using a softinax CPD [ 171 or a Mixture of Truncated Evponentials
distribution 118, 19.

13



Naturally, many of these ideas can be applied to any type of distribution for X, including mixture

models. In practice, Gaussians are often used because many inference algorithms can handle them with-
out difficulty. Other distributions, including mixture models and nonparametric models, can be supported
by Bayesian networks, but typically require inference algorithms that use Monte Carlo sampling, such as
particle filtering, which will be discussed in Section 5.2, or Markov chain-Monte Carlo (MCMC) methods.

2.4 DYNAMIC BAYESIAN NETWORKS

Many applications in science and engineering require the ability to work with data that arrive sequen-

tially, e.g., speech recognition, multitarget tracking, biosequence analysis, medical monitoring, and highway
surveillance. In each of these applications, the observed data are used to determine properties of an under-
lying hidden process that is executing and producing the observable phenomena. This is the well-known

filtering problem, which is often modeled using a state-space model approach. A state-space model main-
tains a hidden state vector which changes according to the parameters of some underlying process and of
which observations are made at each timestep. State-space models contain two components: the d*namic

model, which describes how the state changes over time, and the observation model, which describes how
observations arise from the hidden state.

We shall use X, to represent the hidden state vector of a process at a particular time t. We shall
also find it useful to represent sequences of state vectors corresponding to blocks of time; for example, we
shall denote a sequence of state vectors from the start of the process up to time t as X 0 :t. The dynamic
model specifies how the state of the process evolves over time. In BMDS scenarios, the types of processes
being modeled often involve well-understood physical dynamics and therefore the dynamic model can be
specified explicitly with a known function of the previous state vector, perhaps with additive process noise.
For generality, we will think of the dynamic model as a conditional probability distribution of the new
state given all preceding states: p(XI I Xo:t-,). However, we will restrict our attention to processes
that satisfy the Markov propert., which states that the current state depends on the preceding state alone
and no earlier states, i.e., p(Xt I X0:t- ) = p(XI I X(_ ). A parallel can be drawn to the local Markov

propertv for graphical models (Def. 2.8), by defining the Markov blanket of the current state to be simply the
previous state. Thus, the current state is conditionally independent of earlier states given the one immediately
preceding it. Since this definition of the dynamic model is a recursive definition, we also need to define the
value of the state vector at the start of the process, which again we specify as a distribution for purposes of
generality. Thus, this initial state distribution, which we call the prior, is p(X0). Therefore, the dynamic
model can be fully encapsulated by p(Xi I Xt_ 1) and p(Xo).

We will use Y1,1 to represent the sequence of observation vectors containing observations of phe-
nomena arising from the state vectors at the corresponding times. As with the dynamic model, while the
observations may arise from a linear or otherwise functional relationship with the state, we will use dis-
tributions to represent the observation model. However, we will pose the constraint that the observations
at a particular time depend only on the state at that time and on no previous states or observations, i.e.,
p(Yj X 0 :j. Y:t- 1 ) = I(Yt I X1). Thus, the observation model can be characterized by the distribution
p)(Yt Xt). In addition, we assume that the process being modeled is stationar,, meaning, among other
things, that the dynamic and observation models do not depend on t. Our goal is to estimate the state se-
quence of the process given all the observations that have occurred up to the present, a quantity called the
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1)osterior distribution and given by p(Xo:t I Y :j). In particular, we are often interested in the current state
given all observations up to the present, i.e., the quantity p(Xt I Y 1:t). Since this distribution represents our
current beliefs about the hidden state, it is commonly called the beliefstate of the process, and also referred
to as the marginal orfiltering distribution.

A DBN is a formalism for efficiently representing such a process. More precisely, since graphical
models represent distributions, a DBN provides a compact factorization for the posterior distribution of a
process. Since we only consider processes that are stationary and Markovian, and since the observations at
a given time are only dependent on the state at that time, two consecutive timeslices are sufficient to graph-
ically depict the dynamic model and observation models using the Bayesian network machinery discussed
in Section 2.3. In doing so, we use an auxiliary structure called a 2-timeslice Bayesian network (2-TBN), a
directed acyclic graph containing two static Bayesian networks modeling the state of a process at consecu-
tive timeslices with directed edges linking the first to the second. These directed edges are called temporal
edges, since they span timeslices of a process. Figure 13 shows an example of a 2-TBN for a simple process
with three state variables and one observation variable. The Markov blanket for a node in a 2-TBN is simply
its set of parent variables: i.e., a variable is conditionally independent of all other variables in the past given
values for its parents. Therefore, a 2-TBN gives the following factorization for the dynamic model:

=1

Given this definition, we can now formally define a DBN:

Definition 2.12. Dynamic Bayesian Network (DBN). A dynamic Bayesian network is an ordered pair
(BO. Bt), where BO is a Bayesian network representing the prior distribution p(Xo) of a process and Bt is
a 2-timeslice Bayesian network (2-TBN) which defines the dynamic model p(Xj I Xj- 1) of the process.
Using these models, a DBN provides a compact factorization for the posterior distribution p(X:,,T) for any
T:

'

J(Xo:,) = 1(X)(1 I 1). (9)
I=1

timeslice t- I timeslice t

Figure 13. A 2-timeslice Bayesian network (2-TBN), which shows the dynamic and observation models using two
consecutive tuneslices of a process.
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In Equations (8) and (9), we have ignored the observation variables and only focused on how the state
variables and the dynamic model are represented by the Bayesian network formalism. In effect, the observa-
tion variables can be "swallowed" up into the state variables in the 2-TBN and thus become embedded in the
dynamic model factorization, making the DBN construct more general than traditional state-space models.
It is merely a subclass (albeit a rich and useful one) of DBNs that use explicitly-represented observation
variables. Two members of this subclass are worth mentioning. HMMs 131 are DBNs in which X is a
discrete vector and Y may be discrete or continuous. Kalman filters I II are DBNs in which all variables
are continuous and all CPDs are linear Gaussian. In addition, these two types of models have a simple
graphical structure which makes no assumptions about the relationship information among the components
of X. This structure is depicted as a 2-TBN in Figure 14. Any DBN with only discrete state variables can be
represented as an HMM by collecting all of the state variables into a single discrete state vector X. though
any independency assumptions implicit in the (lack of) edges in the 2-TBN will be lost in the process. These
models are widely used due to their simplicity and tractability; this report, however, is concerned with in-
ference in general models-specifically Bayesian networks and DBNs-which is a much wider and more
interesting problem.

x x
t- I ft

Figure 14. The 2-TBNftr a Hidden Markov' Model.
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3. STATISTICAL INFERENCE

We have described in detail how graphical models offer a more efficient framework for computing
with probability distributions by attributing probabilistic semantics to a graphical structure. In particular,
this allows us write a factorization of the full joint probability distribution in terms of functions on subsets
of nodes. Thus far we have discussed only what types of distributions graphical models aid in representing.
We have not yet discussed how to do any of the computations that involve the distributions we are modeling.
What are the types of computations that we might be interested in? To make our discussion explicit, we will
return to the medical diagnosis network from Section 1. Suppose that equipped with this model, we also
learn that a patient has a sore throat. A natural question is to ask whether or not some of the diseases are now
more likely or less likely in light of this new observation. In particular, we might ask what is the probability
that a patient has angina? That is, we are interested in the marginal distribution P (atigii = Triw). How
do we obtain this distribution'?

This is basically the question to which we devote the remainder of the report. We refer to any algorithm
which specifies how to go about computing some distribution of interest on any of the random variables in
a graphical model as a statistical inference algorithm. We will see, that these algorithms can be efficiently
implemented using the structure provided by the graphical model. Therefore, a major theme is that graphical
models not only allow one to represent distributions in an efficient manner, but also allow computations
involving these distributions to be carried out efficiently.

In the context of graphical models, statistical inference is generally the computation of a particular
distribution associated with one of the variables in the model given evidence. For static Bayesian networks,
this distribution could be either the marginal probability of a node (one variable), the joint probability of a set
of nodes (many variables), or the conditional probability of one set of nodes given another. We will see that
the computations required can sometimes be carried out exactly, but other times due to either computation
constraints or lack of analytic solutions can only be carried out approximately.

The general recipe for calculating distributions of variables we want is to compute the joint probability
of the entire graphical model given the evidence and then marginalize out the variables in which we are not
interested.4 However, one can choose multiple orders in which to marginalize out unwanted variables and the
different orders do not, in general, require the same numbers of computations. Exact inference algorithms
describe efficient ways of performing this marginalization while handling the intermediate terms that arise
as efficiently as possible. We will discuss two exact inference algorithms in detail in Section 4. However,
exact inference is NP-Hard in general, implying the existence of cases for which no exact algorithm will
be able to efficiently perform inference. Furthermore, sometimes analytic solutions are not available for
integrating out certain variables. Therefore, there have been many efforts in recent years aimed at the design
and convergence analysis of algorithms for approximate inference, which we will discuss in Section 5.

We have already mentioned that algorithms we describe can be either exact or approximate. Another
grouping of algorithms that we will find important is whether they are suited to working with static or
dynamic Bayesian networks. This is important because, for dynamic Bayesian networks, there are more

'Joints and marginals are obtained directly through marginalization of the full joint, and since conditional distributions are
nothing more than quotients of joint distributions, a conditional can be obtained through two executions of this inference algorithm
followed by a divide operation.
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possibilities to consider in terms of applying evidence and querying distributions. This is shown in the
variety of nomenclature for these different situations, which includefiltering, the various types of smoothing,

and Viterbi decoding. These computations can all be performed by doing inference on a graphical model.
Many of the same approaches and techniques from inference with static Bayesian networks can be applied

to the dynamic setting. For example, the canonical junction tree algorithm has a direct extension to the
dynamic setting, which we describe in Section 4.1.3.

The purpose of this section is to introduce the various problems and fundamental challenges associated

with statistical inference in order to make the descriptions of exact and approximate inference algorithms
in Sections 4 and 5 more approachable. In Section 3.1, we will start with the simplest exact algorithm for
computing a single distribution, variable elimination. In Section 3.2, we will show how variable elimination

can be extended to an algorithm which computes the marginal distributions of all variables in a graphical
model simultaneously. This algorithm, known as belief propagation or the sum-product algorithm, forms
the basis of several inference algorithms for graphical models, including the junction tree algorithm (which
will be discussed in Section 4. 1 ). In Section 3.3, we will discuss the various dynamic inference problems in

the setting of dynamic Bayesian networks. In Section 3.4, we will describe BNET, a software package for
computing with graphical models.

3.1 VARIABLE ELIMINATION

To describe the variable elimination algorithm, we proceed by example. Suppose we want to compute
the marginal distribution p(A) from a joint distribution p(ABCDEF). We can do so by marginalizing out
all other variables from the full joint.

)(A)= p(ABCDEF). (10)
B I) EF

Assuming all variables are discrete for simplicity, this algorithm requires storing a table of size exponential
in the number of variables in the distribution. However, suppose that the distribution is represented by the
undirected graphical model in Figure 15. We shall use the factorization afforded by the graphical model
semantics to reduce the time and space complexity of this computation. In particular, noting the absence
of cycles in the model in Figure 15, we can make use of the pairwise factorization formula for acyclic
undirected graphical models (Equation 2) to obtain an expression for the joint probability of the nodes in
the model explicitly in terms of probability distributions. Applying this formula to the undirected graphical
model in Figure 15, we obtain: 5

p(ABCDEF) = p(AB)p(C I B)p(D I B)p(E I B)p(F I E). (II)

'There are multiple ways of using (2) to factorize p(A I3CDEF): we chose the one in ( I I ) because it seemed reasonable given
the graph.
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Figure 15. An acvclic undirected graphical model.

Returning to the computation of the marginal p(A), we can use the factorization from (I1) and then
"push" sums inside of products to reduce the number of required computations:

1)(A) = Z j(AB)p(C B)p(D I B)v(E I B)p(F IE) (12)

SZp(AB) Z (C IB) Zp(D B) Zp(E IB) Z 1(FI E). (13)
B C I) E V

In Equation 13, we have pushed the summations to the right as far as possible in order to reduce
the number of computations needed. If all variables are binary, Equation 12 requires 120 multiplications
and 62 additions while Equation 13 requires only 16 multiplications and 10 additions. Proceeding with the
computation, we can show how the terms in Equation 13 correspond to a type of local message passing
between nodes in the graph. Beginning with the rightmost term, when we marginalize out F from p(F I E),
we obtain a function over E which we will denote asnq,-j,,,(E):6

p()= p(AB) E p(C IB) p(D I B) - p(E I B),m ,-,(E). (14)
B C 1) /

The notation comes from the observation that the term tF E(E) can be viewed as a "message" from
the summation over F to the summation over E since it implicitly contains all the information needed about
F to do the desired inference but only depends explicitly on E. This message has the graphical interpretation
of being sent from node F to node E, as shown in Figure 16. Therefore, once E receives this message from
F, E encapsulates all information about the variable F that is needed to compute the desired marginal. The
variable F is eliminated from the summations.

6 Actually, P( F I V) = 1, but we will avoid simplifying for purposes of generality.
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rMI-, (E)

Figure 16. A message passed ftom node F to node E.

Continuing in the same way, we have

p(A) = p(AB) Z p(C I B) E1p(D I B),n p,_(B) (15)

13 C 1)

= >- p(AB)tt, m (B) >- p(C IB) 13) ( D I B) (16)
/3 C' /)

> _,(AB)t,1,_j;(B) Y_ 1,(C I B),mj)._1j(B) (17)

13 C

= >_ p(AB),m /,,-_ 3(B),m1)-; 3 (B) 1-p(C I B) (18)

= >- I)(AB),to ,_ 13(B),mI p (B),m ,p, (B) (19)
13

= 'mj3,A(A). (20)

Note that we specified the term mt, 1 3 (B) as being a message from E to B since it only depends
on B; in general, we will try to push messages as far to the left as possible in the product of summations
for reasons of efficiency. Note that for the same reason we move the term 111P-1 3 (B) to the left of the
summation over C. The procedure we followed above is generally referred to as the variable elimination
algorithm, and the series of message passes for our example run is depicted graphically in Figure 17.

Looking back at Equations 12 and 13, it becomes clear that there can be multiple orderings in which
sums can be pushed inside of products. In general, these different elimination orderings result in different
numbers of required computations. Unfortunately, finding the optimal elimination ordering-the ordering
which results in the least required computations-is NP-Hard 1201. Consequently, a family of inference

algorithms has arisen which focuses solely on obtaining as near-optimal an elimination ordering for a par-
ticular query as possible. Such algorithms are query-driven and include algorithms such as variable elim-
ination, SPI 121,221, and bucket elimination 1231. BNET contains an implementation of an SPI algorithm
called set factoring that will be discussed in Section 4.2. Set factoring essentially frames the problem of
choosing an elimination ordering as a combinatorial optimization problem, thereby providing a framework
for algorithms which use heuristics to come up with orderings that approach the minimum of computations
required.
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Figure 7. Messag,e passes,fom an examp le rlUn f the variable elimination algorithm to compute /(A). A node .r

can on/y scnd a message 10 a neighbor !t after a1 has received a messai,e,ron1 each 01! its neighbors (besides !I). Th1e

nlu1)cers asso,ciated with each message indicate the order in which the message rst/be ompted. If two nmess aiges

have the same nunubem; mhy a be computted at the same time in parallel.

The idea of pushing sums inside of products is not new: the idea can be applied to any commutative

semiring, yielding some very well-known algorithms in diverse fields depending on the semiring, including

the Hadamard and fast Fourier transforms, the Baum-Welch algorithm, and turbo decoding, among others

1241I. As an example that will be useful in the graphical model framework, one can obtain Viterbi's algorithm

for finding the most likely configuration of states for the variables in a graphical model by simply changing

"'sum" to "'max" in the equations above. Interestingly, the algorithms that we will describe for performing

exact inference in a graphical model can be suitably molded to perform any of these tasks as well.

3.2 BELIEF PROPAGATION

Having computed p(A) via variable elimination, now suppose that we wish to compute the marginal

1(D). We can use variable elimination again, but we will find that we are recomputing messages. In particu-

lar, the terms mmm,: 1(E), mnum:L;3(B), and mc .(B) will be recomputed. Since variable elimination takes

0(u;) time, where ti is the number of nodes in the graph, calling it to compute each marginal will take 0(1/)

time altogether. Caching schemes can be implemented to store intermediate results for future queries, but

we would prefer to develop a single algorithm to compute all marginals of a model simultaneously. In fact,

we can use dynamic programming to essentially run variable elimination for all variables simultaneously to

compute all ii marginals in only 0(n) time. The algorithm that we will develop is called belief propagation

or the .stum-product algorithm.

To do so, we formalize the operations we used above in Equations 14-20 by observing the following

formula for computing a message from a node 1' to a neighboring node AX:

Y zeA,(Y) \.

where '(X\Y) is apotential function over X and V andN./'(Y') is the set of neighbors of node Y. The reader

can verify that each step in the computation of p(A) above fits this formula. The formula for the marginal

distribution of a node AX then becomes
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p)(X) CX H Mz_x(X). (22)
ZCeV( N)

Equations 21 and 22 comprise the beliefpropagation or sun-product algorithm. 7 At this point, we
have merely formalized the operation of the variable elimination algorithm. However, as Equation 21 sug-
gests, a node can only send a message to a particular neighbor once it has received messages from all other
neighbors. This suggests a "divide-and-conquer" strategy of computing messages to ensure that no messages
are computed twice. In particular, dynamic programming can be used as a mechanism for storing results of
computations in subsequent queries. In fact, we can compute all marginal distributions of the model in only
two stages of message passing, called COLLECT-TO-ROOT and DISTRIBUTE-FROM-ROOT as shown in Fig-
Lire 18(a) and (b), respectively. Each stage takes 0(n) time, making the entire belief propagation algorithm
0(n). One node is arbitrarily chosen as the root node and, in the first stage, all other nodes send messages to
their neighbors towards the root, starting with the leaf nodes. A node only computes and sends its message
after receiving messages from all but one of its neighbors, and then sends its message to this neighbor. In
the second stage, the root begins the process by sending messages to all of its neighbors, which in turn send
messages to each of their neighbors, etc. When message passing is completed, the marginals of all nodes in
the network have been computed. For simplicity, we have not considered cases in which evidence is applied
to one or more of the nodes in the model. In Appendix A.3, we include a derivation following 1251 that
handles evidence.

We have developed the belief propagation algorithm for exact inference on acyclic undirected graphi-
cal models with discrete nodes, but the same basic algorithm can be applied to many other types of graphical
models. For instance, with straightforward modifications, the algorithm can handle Gaussian distributions
in acyclic undirected graphical models 1251. In addition, belief propagation can be adapted with minimal
change to singly-connected Bayesian networks, that is, Bayesian networks without any undirected cycles.
This well-known exact inference algorithm is attributed to Pearl 1261.

For models with cycles, belief propagation can still be applied-in which case it is called loopy belief
propagation-but only as an approximate algorithm. For certain models, loopy belief propagation does not
converge and produces endless oscillation, but in many cases the algorithm provides excellent results 1271.
To perform exact inference in models with cycles, some variant of the junction tree algorithm is commonly
used 1281. This algorithm, which we discuss in Section 4.1, converts a Bayesian network into an acyclic
undirected graphical model called a junction tree and then executes a modified version of belief propagation
on it. Also, the junction tree algorithm has been extended to perform exact inference in Bayesian networks
which contain both discrete variables and continuous variables from the exponential family 1291. Finally,
belief propagation has been extended for approximate inference in graphical models with continuous, non-
Gaussian distributions, with or without cycles. This algorithm, called nonparametric belief propagation
(NBP) 1301, combines techniques from the standard belief propagation algorithm developed above along
with sampling techniques similar to those we will discuss in Section 5.

7Tie nomenclature stin-produci comes from Equation 2 I.
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Figuire 18. (a) COLLFCT-TO-ROOT, the. twt series o f message passes,. where A is designated (arbitrarily) as the rYOt
rode. Thre numbers' inrdicate tihe order of message passes. If/two have the same nmbe,: it means that they can occur
at the same time. (h) l)ISTRIBUTE-FROM-ROOT, the second series of message passing.

3.3 INFERENCE IN DYNAMIC BAYESIAN NETWORKS

Since DBNs model dynamic systems, inference can take on several forms, as shown in Figure 19
fr'om [311. We describe each of these problems in the sections below.

3.3.1 Filtering

In many applications, we want to estimate the belief state of a process at each timestep during its
execution. This task is called filtering and can be solved exactly through a recursion that we shall describe
below. This will give us the exact solution but we must keep i min nd that the integrals are not tractable in
general but can only be computed if certain assumptions can be made.

Given the belief state c(X,- s Y 1t,) at time t - 1, we can obtain the belief state at time by

proceeding for a single iteration through two stages: prediction and update. From the belief state at time
- 1, the prediction phase uses the dynamic model to predict the next state of the process at time t using the

Chapman -Kolmogorov equation:

,)(X/ I Y1t -t) Ip(X/ Xt-1)p(X1-1 I Y 1:1-,)dX1-t. (23)

In this step, we have made use of the assumption that the process is first order Markov. From the predicted

state, the update phase uses the measurement model to refine the prediction and obtain the belief state at
time t using Bayes' rule:

p(X ) (y, I x)p(x I YI: 1 ()
'I)MYt I X,)p( , I Y1 t)dXt (24)

Recursive filtering using these formulas will obtain the exact posterior density of the belief state of

the process at any desired time. However, it is not tractable in general, only in certain cases can we be
sure that the optimal solution is computable, such as when the state-space model equations are known linear
functions and the densities are Gaussian. That is, if p(Xt,- I Yjj_-) is Gaussian, it can be shown that
1)(XI I Yj_ 1) is also Gaussian so long as the dynamic and measurement models are known linear functions
with additive Gaussian noise. That is, the models are given respectively by the following two equations:

X, = FXj_j + vi-I
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Figure 19. The Inain t1pes of ilference for DBNs. The shaded portions show the amount of tine fir which we have
data. All iniference t pes except,fixed-interval smoothing are online. The arrows indicate the tines at which we inter
the state vecto: The current time is t, and T is the ending time of the process. The prediction horizon is h and the
smoothing lag is / (adapted from 131/).

Yt = HjXj + ni,

where F and H, are known matrices which define the linear functions, and v 1 _1 and nt are independent and
identically-distributed (iid) samples from Gaussian distributions with known parameters. In this case, the
Kalman filter I I I provides the optimal solution. When the system does not satisfy such constraints, however,
exact inference is often intractable, so we must resort to approximate algorithms, such as the Extended
Kalman Filter (EKF) or sequential Monte Carlo sampling techniques.

Prediction and Viterbi Decoding. We have overloaded the term prediction by using it to refer both to the
inference problem of prediction (shown in Figure 19) and to the first stage of the filtering recursion above.
However, this nomenclature turns out to be quite reasonable, since the inference problem of prediction can
be solved through repeated application of the Chapman-Kolmogorov equation until the belief state at the
desired horizon h is obtained. Viterbi decoding determines the most likely sequence of states for the given
observations, i.e.,

arg laxp(XI:t I Y l:1)xli

This computation is closely linked with filtering, and indeed it is well-known that any filtering algorithm
can be converted to a Viterbi algorithm essentially by replacing integration or summation with a "max"
operation.
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3.3.2 Smoothing

Smoothing is a family of operations that estimate the state at some point in the past in light of sub-
sequent observations. Formulas can be derived for computing smoothing distributions in a fashion similar
to the derivation of the filtering equations above; again, the integrals may not be computable unless cer-
tain assumptions are made. In particular, there are analogous equations to the Kalman filter for smoothing,
generally called Kalman smoothing equations. There are several special types of smoothing which may be
particularly appropriate for one case or another, but the algorithms to perform the computations are very
similar. Fixed-lag smoothing consists of estimating the state vector at some varying point in the past given
observations up to the present. This requires computing the distribution p(Xt-I I Yjj), where I > 0 is
some time lag back into the past in which we are interested and t is the current time. Fixed-l7oint smoothing
is estimation of the state vector at a particular time in the past with a varying range of subsequent observa-
tions to consider, i.e., computing the distribution p(XI I Yj,t+,,), where h > 0 is the observation horizon.
Fixed-inferval smoothing is a special case of fixed-point smoothing which is performed off-line with a full
set of observations. That is, the computation of p(Xj I Y I:,') where the horizon is taken to be T, the final
time of the process.

3.4 THE BAYESIAN NETWORK EVALUATION TOOL

The Bayesian Network Evaluation Tool (BNET) is a Java software library containing functionality for
creation, representation, and computation with static and dynamic Bayesian networks. Begun in the fall of
2002, BNET was intended to be the software facilitating the development and test phases of algorithms uti-
lizing Bayesian networks. By developing the software internally, algorithm developers and implementation
teams had full choice over language, platform, and functionality, in addition to full access to the source code
that enabled them to add to and modify as desired.

In developing BNET, the goal was to implement the most useful Bayesian network functionality in a
clean and efficient way. The goal was to allow rapid implementation and efficient testing of decision algo-
rithms as they were developed. As a result, development on BNET has been driven primarily by the needs
of decision-algorithm development teams. Most algorithms developed during BNET's early stages were
designed with the idea of performing exact inference in discrete Bayesian networks. Over time, however,
new approaches necessitated support for continuous and nonparametric distributions and new techniques
for approximate inference. As a result, while BNET was never intended to be a fully-featured graphical
model toolkit, it does contain the most popular network constructions and representatives from the most
popular inference algorithms found in the literature. This gives modelers the ability to compare inference
algorithms and structured inference frameworks rapidly while avoiding the need to account for differences
in programming language or platform. In addition, it is well-known that the performance of a generic infer-
ence algorithm can be improved by tailoring it to the particular problem at hand. To support this, the BNET
source code is made accessible so that algorithm developers can extend BNET classes and write their own
in order to achieve the desired functionality for their algorithms; extensive documentation is included with
BNET to support modelers in such efforts. In addition, BNET developers were able to work with model-
ers to explain the code and implementation details or even to assist in implementing an algorithm. Such
opportunities are generally not available from other graphical model toolkits.
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Java was chosen to be the programming language for BNET as it lends itself towards relatively rapid
implementation of algorithms and architectures and provides sufficient execution efficiency for digital test-
ing. There was also a need for speed and portability sufficient enough to execute BNET in several control
center environments in response to live data streams received during flight tests. Java's portability allows
code compiled on one system to be executed on any other system that has a Java virtual machine installed.
This is becoming increasingly common among high-performance computing systems that are in use by
elements and C2BMC control centers. Recent live-time experiments during flight tests have shown the
effectiveness of BNET in several challenging real-time scenarios.

Development of BNET began in 2002, and Version 1.0 was released 5/1/04 with standard implemen-
tations of all algorithms currently present, except for Gibbs sampling. Version 2.0 of BNET was released
11/14/05 and included memory and speed improvements to the junction tree and set factoring algorithms,
the addition of the Gibbs sampling algorithm for static Bayesian networks, and additional documentation
including a quick-start guide 1321.

In the next section, we provide a description of BNET's core functionality, including network repre-
sentation, inference algorithms, and additional features, and Section 3.4.2 discusses other software libraries
for computing with graphical models.

3.4.1 Functionality

An overview of BNET's functionality is given in Figure 20. Below we will briefly describe each of the
major components of BNET, but we will keep our discussion at a high level. For a more detailed discussion,
including a step-by-step guide for getting started with BNET, please see 132 1.

BNET features a graphical user interface (GUI) for building Bayesian networks and specifying condi-
tional probability tables. To represent networks, BNET uses an extensible markup language (XML) format;
an example is shown in Figure 21. In addition, BNET provides conversion utilities to import networks
created using other graphical model toolkits, including Netica 1331, a modeling tool for Bayesian networks
developed by Norsys Software Corporation.

The majority of the code in BNET consists of implementations of probabilistic inference algorithms.
BNET contains representatives from each of the most popular inference algorithm families for both exact
and approximate inference. The exact algorithms supported are the junction tree algorithm and set fac-
toring, both of which are implemented for inference in both static and dynamic Bayesian networks. The
approximate algorithms include Gibbs sampling for static Bayesian networks and particle filtering and the
Boyen-Koller algorithm for dynamic Bayesian networks. The exact algorithms are described in detail be-
low in Section 4, and the approximate algorithms are described in Section 5. The library is designed to be
modular, with as few assumptions made as possible about inference algorithms or the form of conditional
probability distributions. For example, algorithms for static networks extend the InferenceAlgorithm
class, which contains methods for specifying observations on certain variables in the network and for issuing
queries for variable distributions. Algorithms for dynamic Bayesian networks contain the same function-
ality as static algorithms as well as code for advancing the algorithm forward one timestep; they extend
the DynamicInferenceAlgorithm class. This modularity allows different algorithms to be easily
compared on the same network with simple changes to a properties file or command-line argument.
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Figure 20. Overview of BNET

In addition to inference algorithms, BNET contains structured inference frameworks for increased
computational efficiency and organizational convenience with large Bayesian networks, including Multiply
Sectioned Bayesian Networks (MSBNs) [34] and Object-Oriented Bayesian Networks (OOBNs) [35]. The
former were designed to break down a large network into smaller pieces (with minimal overlapping nodes),
perform junction tree inference on each of the pieces, and then pass messages among them to obtain exact
results globally. OOBNs introduced object-oiented principles, such as inheritance and code reusability.
to Bayesian network design in order to reduce the amount of time required to build and modify Bayesian
networks in large and complex domains. In addition, OOBNs take advantage of the natural partitioning
induced by these class boundaries to offer increased efficiency of inference, whether by an MSBN scheme
or otherwise.

BNET includes several additional features for modeling and algorithm development. In addition to
discrete random variables whose probability distributions are specified in tabular form, BNET supports
continuous nodes by providing Gaussian and Gaussian mixture model distributions. Additional continuous
distributions can be implemented straightforwardly. Scenario support is provided, in which sequences of
observations can be described in an XML tile and applied to specified nodes at specified times. BNET also
provides tools to efficiently monitor and record values for specific variables over time or over the course of a
scenario. In addition, system resource monitors and timing tools are provided to measure performance both
in terms of time and memory.

3.4.2 Other Software for Graphical Models

In recent years, there has been a flurry of activity in software development for Bayesian networks,
making a comprehensive discussion of the topic beyond the scope of this report. We will restrict our discus-
sion here to the more well-known software packages available.
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<hercules>

<beliefNetwork>

<staticProperties>

<title>SimpleBayesianNetwork</title>

</staticProperties>
<node discrete='true" relation="probabili stic" type="nature">

<stat name="re>

<state name="Tarse"/>

<conditionalProbabilityTable type='SimpleDiscrete4">

<table>

<cptEntry probs="0.4,0.6"/>

P(A) P(B) </table>

T F T F </conditionalProbabilityTable>
</node>

0.4 0.6 0.75 0.25 <node discrete="true" relation="probablistic" type='nature">

<id name="B"/>

A B <state name="Trruev'/>
<state name="False"/>

<conditionalProbabilityTable type="SimpleDiscrete4">

C <table>
v <cptEntry probs="0.75,0.25'/>

P(CIA,B) </table>
</conditional2robabilityTable>

A B T F </node>

T T 0.37 0.63 <node discrete='true" relation="probabilistic" type="nature">

T F .55 .45<id name="C"/>
T F .55 .45<state name="True"/>

F T 0.29 0.71 <state name="False"/>

F F 0.11 0.89 <conditionalProbablityTable type="SimpleDiscrete4">
<Parent name="A" time="O"/>
<Parent name="B" time="O"/>

<table>

<cptEntry probs="0.37,0.63,

0.55,0.45,

0.29, 0.71,

0. 11, 0 .89"/I>

</table>
</conditijonalProbabil1ityTable>

</node>

</beliefNetwork>

</ hercules>

Figure 2 1. BNET XML encoding of a Bayesian Network.
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The most complete package is Kevin Murphy's Bayes Net Toolbox (BNT), an open-source MATLAB
library which provides comprehensive functionality for modeling, inference, and learning for undirected
graphical models, Bayesian networks, and dynamic Bayesian networks. Since 2002, researchers at Intel
have been converting BNT to an open-source C++ library called the Probabilistic Network Library (PNL).
While not fully mature, PNL does provide the most commonly-used algorithms for inference and learning
with the efficiency of C++, and also offers interfaces for calling the library from MATLAB and R 1361.
Notably, both BNT and PNL provide learning and inference algorithms for undirected graphical models,
also called Markov random fields, which are rarely supported by Bayesian network software packages.
While BNT is mature and has been used for research purposes for several years, it is written in MATLAB
and thus is not suitable to be used in real-time settings. PNL offers the efficiency of C++, but is still under
development, and a recent study has concluded that it is not as user-friendly as BNET 1321.

Netica, a commercial product by Norsys Software Corp., offers a GUI for creating Bayesian networks
and applying evidence, and uses an optimized form of the junction tree algorithm for inference. It also
features an Application Programming Interface (API) for calling from Java and C. It contains very lim-
ited support for dynamic Bayesian networks and no support for continuous distributions, but is useful for
visualizing and designing the structure of networks for importing into BNET.
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4. EXACT INFERENCE ALGORITHMS

In this section, we discuss exact inference algorithms. Before we begin detailing specific implementa-
tion we must mention a few generalities. First, it is not always possible to implement exact inference for any
graphical model. In particular, exact inference is only possible when the variables in the Bayesian network
are distributed in such a way that computations using these distributions (various integrals that arise) are
analytically tractable. This essentially means that if the random variables are discrete, exact inference is
possible, and if they are continuous and their distribution is in the exponential family of distributions, then
exact inference is possible as well. Furthermore, relationships among any two variables, one of which is
continuous, must be linear. If a model being considered does not fall into one of the cases above, then exact
inference is impossible.

V Most exact inference algorithms for Bayesian networks fall into one of two categories. The first
type consists of query-driven algorithms which retain a symbolic representation of the computation to be
performed and then use several techniques to simplify it, including pruning nodes that are not of interest and
approximating an optimal ordering to marginalize out unwanted variables from the given joint distribution
for the query. The efficiency of any such algorithm will strongly depend on how sparse the graph of the
model is. Suppose that the graph contains it nodes, then we would like to use algorithms whose running
time is 0(ii) given a query for a particular distribution. Thus, computing all n marginal distributions of
a graphical model requires 0(, 2 ) time, but caching schemes may be used in practice to allow sequential
queries to reuse computations. This category of algorithms includes variable elimination (described in
Section 3. 1), bucket elimination [23], and SPI [21,221 algorithms, and an SPI algorithm called set factoring
is implemented in BNET and is described in Section 4.2.

The other major category of exact inference algorithms is composed of clustering algorithms 1371
which compute all marginals simultaneously using a series of local message passes, taking 0(ii) time to do
so. Such algorithms (e.g., junction tree) are based on the belief propagation algorithm for acyclic undirected
graphical models, which we described in Section 3.2. In addition, both categories of algorithms have been
adapted to perform inference on DBNs 1311. BNET contains implementations of each of these algorithms
for both static and dynamic Bayesian networks, the details of which we will describe in this section.

In Section 4. 1, we will describe the junction tree algorithm for static Bayesian networks, and in Section
4.1.3, we will show how it can be extended for inference in DBNs. In Section 4.2, we will introduce SPI for
static networks as we discuss one set factoring algorithm in detail.

4.1 THE JUNCTION TREE ALGORITHM

The junction tree algorithm [281 is based on the belief propagation algorithm for inference in acyclic
undirected graphical models, but is designed for Bayesian networks with or without undirected cycles. To
perform inference, the algorithm converts the Bayesian network into an acyclic secondary structure (called a
junction tree) which encapsulates the statistical relationships of the original network in an acyclic, undirected
graph. Inference is then performed through message-passing on the junction tree according to the belief
propagation scheme. Several forms of the junction tree algorithm have appeared in the literature, but the
algorithm implemented in BNET and described below is the Hugin architecture and most closely follows
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the notation of 1371. This architecture is for discrete networks, but extensions of the junction tree algorithm
have been developed for exponential families and other well-behaved distributions 1381.

In Section 4. 1. 1, we will discuss the creation of a junction tree from a Bayesian network. While
we will not describe each algorithm in the process, we will outline each step and provide references for

the algorithms implemented in BNET. In Section 4.1.2, we will describe the message-passing scheme of
the algorithm and show how it follows the belief propagation algorithm derived in Section 3.2. Finally, in
Section 4.1.3, we will adapt the junction tree algorithm for inference in dynamic Bayesian networks.

4.1.1 Creating a Junction Tree

In building an undirected secondary structure for inference, we need to ensure that we preserve the
statistical relationships implicated by the original Bayesian network. The first step in junction tree con-
struction consists of connecting nodes in the Bayesian network that share a child and dropping directional
arrows off all edges, resulting in the so-called moral graph [Figure 22(b)]. This process, called moralization,

A A A

B C B--C B C

D E D E D -- -- -- -- E

F D ''F > ' F

(a) G(b) G(c) G

Figure 22. (a) A Bayesian network. (b) The moral graph. Dotted edges were created during moralization. (c) The
triangulated moral graph. The dotted edge was created during triangulation. Note that adding an edge perpendicular
to the dotted one above would have resulted in a different triangulated graph.

ensures that the Markov blanket for a given node in the original Bayesian network is identical to its Markov
blanket in the moral graph (see Definitions 2.9 and 2.11). Thus, by the local Markov property, conditional
independencies in the original network are preserved during moralization.

We then modify the moral graph by adding edges to it so as to make it triangulated [Figure 22(c)],
that is, so that every cycle of length greater than three contains an edge between two nonadjacent nodes in
the cycle. Intuitively, every cycle in a triangulated graph is either a triangle or encloses a triangle. In general,
there may be multiple ways to triangulate a graph [Figure 22(c)]. The optimal triangulation minimizes the
sum of the state space sizes of the cliques ; however, obtaining an optimal triangulation is NP-complete
[20,391. BNET uses a greedy, polynomial-time approximation algorithm adapted from Kjaerulff 1401. The
purpose of triangulation is so that we can create a junction tree from the triangulated graph: it can be shown
that every triangulated graph has a junction tree associated with it, but this is not true of undirected graphs
in general. Given a triangulated graph, we are now ready to build the junction tree.

32



A junction tree is an acyclic undirected graph in which every node corresponds to a nonempty set of
variables and is called a cluster. Each edge, named by the nonempty set of variables in common between
the two clusters at its endpoints, is called a separator set, or sepset for short. So, each sepset is a subset of
both of its endpoint clusters, and two clusters connected by an edge must have a nonempty intersection. In
fact, we go further to require that the clusters satisfy the following running intersection property:

Definition 4.1. Running intersection property (RIP). For any two clusters Rl and B,2 in a junction tree.
all clusters on the path from R 1 to R2 contain R, n R.2.

Intuitively, this means that a variable cannot disappear and then reappear along a path in the junction
tree. Figure 23 shows a junction tree constructed from the triangulated graph in Figure 22(c). The cliques
from the triangulated graph have become the clusters of the junction tree. In BNET, an algorithm from
Golumbic 1411 identifies cliques in the triangulated graph and an algorithm from 1421 is used to connect the
cliques together in such a way as to satisfy the junction tree property and with consideration for optimality.
The links (sepsets) created to connect cliques are labeled by the overlapping nodes.

A junction tree also contains a potential d) associated with each cluster and with each sepset that satisfy
the following constraints:

" For each cluster R and each sepset S,
Z = 0., (25)

When the above holds for a cluster R and a neighboring sepset S, os is consistent with 0??. When
every cluster-sepset pair is consistent, the junction tree is locally consistent.

" Where @;/, and are cluster and sepset potentials, respectively,

)(X) i t?, (26)H(x - - 0os,,

To initialize cluster and sepset potentials in the junction tree, we begin by setting each to the identity
element (all I s in the discrete case). Then, for each variable X in the original Bayesian network, we choose
a cluster R in the junction tree which contains X and X's parents and multiply p(X I pa(X)) onto ,/?.
After initialization, Equation 25 is not satisfied for all pairs and thus the junction tree is inconsistent, but
Equation 26 is satisfied since it evaluates to the factorization for Bayesian networks (Equation 6), as shown
below:

-~ ' _I~J)~AII(V) = i)(X).

4.1.2 Inference Using the Junction Tree

Now that we have a junction tree constructed from the original network, we can perform inference
through a series of message passes. Similar to belief propagation (Section 3.2), this is done in two phases,
COLLECT-TO-ROOT and DISTRIBUTE-FROM-ROOT, as shown in Figure 24. The purpose of message pass-
ing is to achieve local consistency (25) in the junction tree while preserving the validity of (26). Once
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Figure 23. Junction tree created from the triangulated graph in Figure 22(c). Ovals are clusters and are labeled
with cliques in the triangulated graph, and rectangles are sepsets, labeled by the intersection of the clusters at their
endpoints. 4 BECD CD CD

4-E

DEF
DF

DFG

Figure 24. Message passing in the junction tree. The root is the cluster ABC.
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completed, a variable's marginal can be obtained from any cluster containing that variable through simple
marginalization of the cluster potential.

A message pass from one cluster to its neighbor proceeds as follows, where R is the sender, T the
receiver, and S the sepset between them.

I. Save the current sepset potential and assign a new value for it by marginalizing down from IR.

2. Update , using ,,, 0,, and 44.

o, , o ,

Equation 26 remains satisfied, as shown below:

f1I OS, T)T07' Hj 0S, OSo' _0(x

This message-passing procedure is known as the Hugin architecture and is the scheme implemented in
BNET. It essentially stores the product of all messages at each clique and accommodates a new message by
multiplying it onto the product and dividing out the "old" version of the message. Another popular variant is
Shafkr-Shenov message passing, which does not use a division operation (though fine for some continuous
distributions, like Gaussians, division is problematic for Gaussian mixtures) and requires less space since
it does not store a product, but takes longer since it repeatedly remultiplies messages. While Hugin is
the scheme currently implemented in BNET, the junction tree algorithm is written in a modular style to
allow additional variants to be implemented easily, including Shafer-Shenoy [431, Lazy Propagation 1441,
and MSBN inference. Extensions to support inference in Bayesian networks with conditional Gaussian
distributions can also be implemented straightforwardly 1381.

4.1.3 Junction Tree Algorithms for Dynamic Bayesian Networks

There are several ways to use junction trees for implementing inference in DBNs. The naive approach
is to "unroll" the DBN for the desired number of timeslices and then perform inference on the resulting
model as if it were a static Bayesian network. However, this will obviously be too time-consuming or
memory-intensive, particularly in an application such as filtering or online smoothing. Intuitively, we should
be able to improve upon this by making use of the assumption that all processes being modeled are stationary
and Markovian. BNET uses the interftce algorithm from Murphy 1311 which essentially runs the static
junction tree algorithm on the 2-TBN for a single timeslice pair, then "advances" the algorithm one timestep,
saving all information about the process up to that point needed to do inference in the next timeslice.
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To show why we can do this, we need to introduce some definitions: X, is the set of nodes in
timeslice t, the set of temporal edges between timeslices t - 1 and t is denoted SUP(t) and given by
SIW(t) = {(u, v) E E I v, G Xt-l,, E X1}. The outgoing interface It-, of timeslice t - 1 is the set of
nodes with children in timeslice t and given by

Il-I = {'u E V,- 1 I ( ) S C'""(t), cC Vt}

Figure 25 shows an example of this definition. Murphy showed that the outgoing interface It d-separates
the past from the future and therefore is a sufficient statistic of the past for performing inference in future
timesteps [311. Here, "past" refers to the nodes in timeslices before t along with the noninterface nodes in
timeslice t, while "future" refers to all nodes in timeslices after t. From this result, it is easy to see that
we only need to maintain the distribution over the outgoing interface at a given timestep in order to fully
represent what happened in the past. In the context of junction trees, this translates to maintaining the clique
potential on the clique containing the outgoing interface from timestep to timestep.

Recall that a DBN is an ordered pair (BO, B,), where BO is a Bayesian network representing the prior
distribution p(Xo) of a process and B, is a 2-TBN which defines the dynamic model p(XJ I Xt- ). The
interface algorithm begins with some initialization steps which build the junction trees that will be used
for inference. In particular, a junction tree ,1) is built from B) according to the process specified above
in Section 4. 1.1 with some modifications that we will describe below, and another junction tree ,Jt is built
from B1, also with several key modifications. To do filtering, we only need to perform static junction tree
inference on the current timestep, using the clique potential from the outgoing interface from the previous
timestep to encapsulate all required information of the process up to the present. Thus, we need to ensure
that the outgoing interface is fully contained within at least one clique of each junction tree. The steps in the
creation of O, and ,t include modifications to enforce this constraint.

The steps for creating O, from B0 are shown in Figure 26, with B0 shown in Figure 26(a) along with
its outgoing interface labeled. First, B0 is moralized, producing the moral graph in Figure 26(b). Then,
in a departure from the procedure outlined in Section 4.1. 1, edges are added so that the outgoing interface
becomes a clique, as shown in Figure 26(c). As mentioned above, the reason for this is so that, when
we advance timesteps, the potential on the outgoing interface nodes will be fully contained in at least one

clique. Finally, triangulation, junction tree formation, and clique potential initialization proceed as before,

Figure 25. A 2-TBN showing thneslices t - 1 amnd t. The outgoing interface for timeslice t - 1 is It- { A. B, C}.
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B B B, ut-clique
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d Figure 26. Steps to construct a junction tree from the prior B0. (a) B0 for the DBNfroin Figure 25. with outgoing
interface labeled. (b) The moral graph fir B0 . (c) All nodes in I, must be in a single clique in the junction tree,
so we add edges to connect them. (d) Finally, we triangulate, Jorm the junction tree, and initialize clique potentials
according to the procedure in Section 4.1.1. The clique containing the outgoing interlace nodes is labeled as the
out-clique.

producing the junction tree in Figure 26(d). The clique containing the outgoing interface is labeled as the
out-clique.

The steps for creating a junction tree Jt from the 2-TBN BI are shown in Figure 27. The 2-TBN must
first be changed into a 1.5DBN, which contains all nodes in the second timeslice of the 2-TBN but only those
nodes from the first slice which have children in the second, that is, nodes in the outgoing interface I, - 1. The
resulting 1.5DBN for the 2-TBN from Figure 25 is shown in Figure 27(a). Then, we moralize the 1.5DBN,
as shown in Figure 27(b). Again, we must ensure that the outgoing interface is fully contained within a
clique of the junction tree; however, there are two instances of the outgoing interface, one in timeslice t - 1
and one in timeslice t, and we want each of them fully contained within a clique (not necessarily the same
clique). So, we connect together all nodes in I,-I and do the same for the nodes in I; the result is shown in
Figure 27(c). Then we triangulate as before, resulting in the model in Figure 27(d). The junction tree is then
created as before, but clique potential initialization proceeds slightly different from the static case. When
initializing clique potentials, only CPTs of nodes in timeslice 2 of the original 2-TBN are multiplied onto
cliques in the junction tree.

Once the junction trees have been constructed and initialized, inference is performed through two
stages of message-passing, as before. The cluster containing the outgoing interface in timeslice t - 1 is
called the in-clique, while the cluster containing the outgoing interface in slice t is called the out-clique.
Once inference has been completed on the junction tree for timeslices (t - 1, t) and the algorithm is ready
to advance, the out-clique potential is marginalized down to the outgoing interface potential (v, the 2-TBN is
"advanced" to timeslices (t, t + 1), and a is multiplied onto the in-clique potential in the new 2-TBN. This
procedure is shown in Figure 28. Since we would be repeating the same junction tree construction steps for
each timestep, we can simply build the junction tree once and use it for all timesteps for which inference is
performed. Thus, when time is incremented in the advance step above, the junction tree is reinitialized to its
initial clique potentials.
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Figure 27. Steps to construct a junction tree J, from the 2-TBN Bl. (a) Nonoutgoing interace nodes (and their edges)
have been removed from timeslice t - 1 to create a .5DBN. (b) The moral graph fttr the 1.5DBN. (c) All nodes in
I,- I must be in a single clique in the junction tree, so we add edges to connect them and do the same fbr It. (d) Next,
we triangulate as before. (e) FinallY, a junction tree can be created and inference can be performed as with the static
junction tree algorithm.
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Figure 28. Procedurejbr advancing thnesteps. The potential on the out-clique is marginalized down to the potential
on the outgoing interface (which we call o), the 2-TBN is advanced and clique potentials are reinitialized, and (o is
multiplied onto the potentialfor the in-clique in the new 2-TBN.

As stated above, the reason why we only need the out-clique potential for filtering (and no other
potentials in the 1.5DBN junction tree) is because the outgoing interface d-separates the past from the
future. Clearly, this algorithm will run into difficulty when the outgoing interface contains many discrete
nodes. This will require that we perform marginalization and multiplication operations with large potentials
whenever time is advanced, which could easily occur at up to 500 Hz given the data rates in real-world
applications using high data rate sensors as is the case in ballistic missile defense. So, approximation
schemes have been developed to perform faster inference for DBNs. The Boven-Koller algorithm, which we
discuss in Section 5. 1, assumes independence among subsets of the outgoing interface in order to factorize
the outgoing interface potential into a product of smaller potentials.

4.2 SYMBOLIC PROBABILISTIC INFERENCE

SPI 121,221 algorithms employ various techniques to pare down the inference problem in response to
a particular query, while keeping the problem in symbolic terms as long as possible to avoid unnecessary
computations. In Section 3, we stated that any statistical inference computation on a graphical model can
be performed by computing the joint probability distribution of the model and then marginalizing out irrel-
evant variables. We showed in Section 3.1 how different elimination orderings-also called fiactorings-for
marginalizing out the variables can result in different numbers of required computations. Since finding the
optimal factoring is NP-Hard 1201, a fundamental part of typical SPI algorithms involves finding as near-
optimal a factoring as possible. Set fictoring 1221 is an algorithm which frames this task as a combinatorial
optimization problem called the optimalfactoring problem.

In Section 4.2. 1, we will introduce the optimal factoring problem and define the notation we will use.
In Section 4.2.2, we shall present the set factoring algorithm implemented in BNET from 1221.
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4.2.1 Optimal Factoring Problem

The optimal factoring problem (OFP) uses the following definitions.

Given:

I. X, a set of m, random variables

2. S = {S{1}, S{2}, -- S{n}}, a set of n subsets of X

3. Q C X, a set of query variables

We define the following:

I. Where I, J C {1, 2, ..., n}, i n J 0, we define the combination Sjuj of two subsets S and S, as
follows:

Siuj = Si U Sj - {x: X S. for K n I= 0, K n J = 0. .r Q}

That is, Sju.i consists of all variables shared by the subsets except those which are not in any of the
other subsets nor among the query variables, i.e., if a variable is only in S, U Sj (and not a query
variable), then remove it from S/ U Sj when creating the combination SluJ. These variables can be
dropped out because they will not show up in any other subsets, and since they are not query variables,
we don't ultimately care about them anyway.

2. We define the cost function p, of combining the two subsets:

p(Slij) = 0, for 1 < i < n, mt

11(SiuJ) = p(SI) + p(Sj) + 2 I";'U 's ,J

The base in the exponential expression above is the number of possible states in each variable, which
we assume to be 2 without loss of generality.

This definition of the cost function is not complete. Suppose III > 2. Then li(Sl) can have multiple
breakdowns into its composite subsets, each potentially producing a different cost. So, we have to include an
indication of how the subsets in a term are joined together in order to properly evaluate its cost. We denote
this combining, or ftictoring, by a subscript a; therefore, li.,(Sl) gives the cost of evaluating S1 using the
factoring a. The optimal factoring problem is to find a factoring a such that p,(S{1.2 ...... }) is minimized.

4.2.2 The Set Factoring Algorithm

Efficient factoring algorithms have been found for certain types of Bayesian networks [221, but we will
present an approximation algorithm that can be used for any arbitrary discrete Bayesian network. Below,
we will use the term factor to refer to a set of variables in a Bayesian network and a marginal factor for a
set containing a single variable. On each iteration of the algorithm, a heuristic is used which combines the
pair of factors which will produce the smallest-dimensional CPT as a result. We do this by testing different
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combinations to find the number of multiplications needed for each, then pick the one which requires the
fewest.

The algorithm proceeds as follows:

I. Initialize two sets A and B for the algorithm. The set A is called the ftctor set and is initially filled
with factors corresponding to all relevant network distributions, each represented as a set of variables.
Throughout the algorithm, A will always contain the set of factors that can be chosen for the next
combination. B is called the combination candidate set and is initially empty.

2. Add all pairwise combinations of factors in A to B (as long as they are not already in B), except the
combinations in which each factor is marginal and the two factors have no common child. Compute
a = (,r U y) and irm(v) of each pair, where x and q are factors in A and sum(u) is the number of
variables in a which can be summed over when the product which includes the combined factors is
computed. When .r and y are combined, the number of multiplications needed is 2 I"L)/"

3. Build a new set C from B such that C = { E B : miitwumll(lal - svi(a))j. Here, Itil is
the size of i with observed nodes removed. This operation favors combinations which have few
variables in their union and also contain many variables which can be summed out, i.e.. variables
which do not appear in any other factors. If C only contains one element, then choose .r and y as
the factors for the next combination; otherwise, build a new set D from C such that D = { a (' :

'.-i'm 111',(P. I + I -) j E }. If D contains only one element,._r and q are the terms for the next
multiplication; otherwise, choose any one in D. If multiple potential combinations appear in C. we
favor those that have the larger number of variables being summed over; it is typically preferred to
sum over variables as early as possible.

4. Create a new factor by combining the two factors chosen above in step 3, calling it the candidate pair.
Delete the two chosen factors from the factor set A and add the candidate pair to A.

5. Delete any factor pair in B that has a nonempty intersection with the candidate pair.

6. Repeat steps 2 to 5 until only one element is left in A; this element is the factoring.

2 3

4

Figure 29. A simple Bayesian network for illustrating Set Factoring.
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We will now present an example to illustrate this algorithm. Consider the network in Figure 29. We
assume that each variable is binary and we want to compute p(X 1). Initially, we fill A with the elements
{1,2.3.4} and B is empty 8

First loop iteration:

After step 2: A = {1,2,3,4}, B = {(1,2), (1,3), (1,4), (2, 3), (2, 4), (3, 4)}.

After step 3: Multiple combinations appear in C, so we choose the combination (1, 2) arbitrarily.

After step 4: A = {(1,2),3,4}, B = {(3,4)}.

Second loop iteration: After step 2: A {(1, 2), 3, 4}, B = {((1, 2), 3), ((1,2), 4), (3. 4)}.

After step 3: We pick ((1, 2), 3).

After step 4: A= {(1.2.3),4}, B= {}

Third loop iteration: After step 2: A= {(1. 2,3), 4}, B = {((1.2,3). 4)}.

After step 3: We pick ((1,2, 3), 4).

After step 4: A = {(1,2,3,4)}, B {}
A has only one element, so we have reached our answer, the factoring (1, 2, 3, 4).

The set factoring algorithm outperforms the simple heuristic of finding the pair with the minimum
amount of multiplication required at each step. It is not optimal, however, because it only takes one step in
the future into account, whereas the optimal algorithm must consider the entire process.

8We will abbreviate a variable Xj by naming it by its index i.
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5. ALGORITHMS FOR APPROXIMATE INFERENCE

For many graphical models used in real-world applications, performing exact statistical inference is
infeasible. This could be the case for a variety of reasons. First, it often happens that exact inference on a
particular model can not be performed quickly enough to keep up with the data rates in real-world scenar-
ios. This is frequently the case in BMDS applications, in which streams of data can be received in real time
from multiple sensors with high data rates. In addition, the need to accurately model physical dynamics
necessitates a certain minimum number of nodes and edges in a graphical model. Combining large, densely
connected models with high update rates poses severe challenges to any exact inference algorithm. Con-
sequently, algorithms that obtain approximately correct results have been developed to address such cases.
One class of approximate algorithms consists of those which make certain approximations within the frame-
work of exact inference algorithms in order to perform inference tractably while sacrificing some accuracy.
For example, recall that the belief propagation algorithm discussed in Section 3.2 is an exact inference al-
gorithm for acyclic undirected graphical models. The same algorithm has been applied to graphical models
with cycles, for which it only obtains approximate results. This algorithm is called loopy belief'prolmga-
tion 1271. Another example, the BoYen-Koller algorithm, is a modification to the junction tree algorithm for
dynamic Bayesian networks described in Section 4.1 .3 and will be discussed in Section 5. I.

In addition to the constraints imposed by real-time scenarios, there are other situations which require
the use of approximate inference algorithms. For example, the presence of particular distributions in a model
may prevent the ability to perform the calculations required by any exact inference algorithm even if an
unlimited amount of time was available. In particular, models containing continuous, non-Gaussian random
variables or nonlinear statistical relationships among variables may cause the integrals that arise in belief
propagation to be impossible to compute. In these situations, one is forced to make use of approximations
in order to perform any calculations of interest. One possibility is to use an approximation for problematic
distributions of continuous quantities such that an exact inference algorithm can be used. For example,
any continuous random variable can be made discrete through the use of binning or can be approximated
by a Gaussian or other continuous distribution that an exact inference algorithm can handle. This sort of
approximation will introduce error, especially in cases of multimodal distributions, but it will allow us to
apply the exact inference algorithms discussed in Section 4 to compute results. If one desires to preserve
the continuous densities as modeled, there are a variety of algorithms for dealing with arbitrary continuous
distributions in graphical models. An important class of such algorithms includes particle filters, a family
of sequential Monte Carlo sampling methods which we discuss in Section 5.2. Another important class of
approximate algorithms is the family of MCMC methods. We will discuss one MCMC algorithm, the Gibbs
sampler, in Section 5.3.

In this section, we will describe three approximate inference algorithms that have been implemented
in BNET. We will discuss the Boyen-Koller algorithm in Section 5.1 and show how it can be used within the
context of the junction tree algorithm for DBNs described in Section 4.1.3. In Section 5.2, we will discuss

* the canonical particle filtering algorithm for inference in dynamic systems. Finally, in Section 5.3, we
introduce the MCMC method and describe a popular algorithm in the MCMC family-the Gibbs sampler.
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5.1 THE BOYEN-KOLLER ALGORITHM

The Boyen-Koller (BK) algorithm is method for approximate statistical inference in the context of
dynamic processes. We will describe the algorithm by only considering processes that can be modeled
by DBNs. As discussed in Section 2.4, a DBN provides an efficient representation of the belief state (or
filtering distribution) of a process, which is written as p(xt I YI:,). The BK algorithm approximately com-
putes the belief state at each time by assuming that the process being modeled is composed of independent
subprocesses. These independence assumptions allow a reduced number of computations at each timestep
and provide some impressive bounds for the induced error from truth in the belief state. We will begin by
discussing, in the realm of stochastic processes, the intuition behind the BK algorithm and the situations to
which it is well-suited. Then, we will describe the algorithm itself by showing specifically how its ideas can
be applied in the junction tree algorithm.

Boyen and Koller 1451 showed that it is possible to use an approximation for the belief state of a
stochastic process such that the belief state's deviation from truth remains bounded indefinitely over time. In
particular, they showed that the rate at which divergence from truth increases actually contracts exponentially
over time due to the stochastic nature of the process dynamics and the informative nature of the observations.
So, this approximation scheme works best when the dynamic model is structured such that the current state
depends as little as possible on previous states. The extreme case occurs when the current state does not
depend at all on the state history, i.e., if p(xi I xl- 1 ) = p(xt). Intuitively, it makes sense that performance
would be best on such a model, since the magnitude of the error incurred in the belief state at one timestep
will be dampened or removed entirely by a dynamic model that largely or entirely ignores the previous
state. Along the same vein, the approximation error is greatest in situations in which the dynamic model
is a deterministic function of the preceding state. With regards to the observation model, the BK algorithm
works best when the observations are produced by a noiseless, deterministic function of the state, but has
more trouble in situations in which observations are either absent or uninformative. Boyen and Koller also
showed how to use their approximation scheme for inference in DBNs in the context of the junction tree
algorithm (Section 4.1.3), and it is this technique that has been implemented in BNET as an approximate
inference algorithm for DBNs.

The BK algorithm for DBNs approximates the outgoing interface potential at each timestep by break-
ing up the outgoing interface into sets of nodes and assuming that these sets of variables are independent.
The breakdown of these sets, which are called BK clusters, is specified as an input to the algorithm. With
these independence assumptions, the joint distribution on the outgoing interface can be decomposed into
the product of the joint distributions on the BK clusters. The clusters must be disjoint sets and their union
must form the original outgoing interface, i.e., together they must form a partition of the outgoing interface.
Also, for best results, no cluster should "affect" any other cluster within the same timeslice. That is, within
a timeslice, no node in any one cluster should have as parent a node in a different cluster. For example, the
outgoing interface in the 2-TBN in Figure 30 can be factored using two BK clusters: {A, C} and {B}. If
the BK clusters are all singleton sets, we obtain the fully factorized approximation, the most aggressive ap-
proximation possible. Conversely, if we use just one BK cluster which contains all the nodes in the outgoing
interface, we will obtain the same results as the junction tree algorithm for DBNs from Section 4.1.3. So,
the junction tree algorithm is simply a special case of the BK algorithm with the choice of BK clusters that
gives the exact solution, i.e., with no extra independence assumptions made.
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Figure 30. The 2-TBN we used to demonstrate execution of the junction tree algorithm f6r DBNs. The outgoing
interfacefor timeslice t - 1 is It, = {A, B, C}, and a possible set of BK clusters is {{A, C}, {B} }.

Inference within a timeslice remains unchanged, but junction tree creation and the procedure for
advancing timesteps have small modifications from the standard dynamic junction tree algorithm described
in Section 4.1.3. Previously while creating junction trees, we added edges to ensure that the outgoing
interfaces in each timeslice were cliques. With the BK algorithm, we effectively have multiple outgoing
interfaces in the form of the separate BK clusters, so we must add edges to ensure that each BK cluster
is a clique. When advancing timesteps, we follow the procedure shown in Figure 31. In a departure from
standard dynamic junction tree inference, we now have multiple out-cliques (one for each BK cluster), so the
out-clique potentials are marginalized down to their respective BK cluster potentials, stored in a vector o',
the 2-TBN is "advanced" to timeslices (t, t + 1) and potentials are reinitialized as before, and the elements
of o" are multiplied onto the appropriate in-clique potentials in the new 2-TBN.

5.2 PARTICLE FILTERING

Particle filtering is a Monte Carlo sampling scheme for working with a distribution for which it is not
possible to exactly compute expectations, normalizing constants and other statistical quantities of interest.
This situation arises frequently in the context of Bayesian statistics, and many of the motivating examples for
the approximation algorithms we are about to describe include graphical models such as DBNs within which
inference is hard due to the presence of such distributions. The basic form of a sample-based approximation
of some density p(x) utilizes N samples {x(t), 1 < i < N} to provide a point mass estimate:

N

p(x) 6 X (i ) )

i=1I

We base the rest of the presentation of particle filtering on [461. For the rest of this subsection, we will
restrict ourselves to dealing with state-space models, which are a class of graphical models used for modeling
dynamic systems. Suppose the state sequence {xk : A7 G N} is an unobserved Markov process with initial
distribution p(xo) and transition density p(xklxkl). The observations are denoted by {y4 : k E N} and
are independent when conditioned on the process. That is: P(YkIXk,Y1:A,-1) = P(YklXk). Therefore, the
observation at time A- is distributed according to p(yk 1xk). This is not only a state space model but can also
be seen as an HMM or a DBN where k is the time index. Typically, the aim is to recursively estimate the
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Figure 31. Time evolution in the BoYen-Koller algorithm. The potentials on the out-cliques are marginalized down to
the potentials on the BK clusters (we call this potential vector a), the 2-TBN is advanced, and the elements ofor are
mnultiplied onto their respective in-cliques in the new 2-TBN.

posterior distribution of all of the states conditioned on all of the measurements p(xO:,, YO:) as well as its
marginal distribution 1)(X,tlyO:,,) commonly referred to as the filtering distribution. In fact, the reason that
we call the algorithm we are about to describe particle filtering is because we use a Monte Carlo method in
which samples are referred to as particles to provide an estimate of the filtering distribution.

The recursive nature of the algorithm will be based on the following Bayesian recursion:

1)(Xo:ll+ I yo:l+ 1) = P( IYo:tl) A"11+- xtl+ ))(Xli+ I Xl))
Myll+ I IYo:n )

and the quantity that we are most directly interested in is expectations of functions under the posterior
distribution written as:

I,(J;, ) = Ep(f(xo:,,)) f (xO,,)p(xO:jj IyO:,,)dxO,

In many applications, it is not only impossible to do exact calculations with the posterior p(X(:, iYo:,)'
but also sometimes difficult to sample directly from this distribution as well. The particle filtering method
uses importance sampling to achieve this goal. The basic idea is that the samples txo:),: 1 < i < N}
are drawn from a proposal distribution 7r(xO:,lYO:n,) termed the importance density. This will allow us to
approximation I, with il as follows:
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N

i=1

where u, =1,(y,):,, Ix,,:,,)I(xo:,, )17r(xo:,, JyO: and the weights ,&') are just the normalized weights:

We do not provide further background on importance sampling; for more information consult 1471.
Let us move on now to the description of the particle filtering algorithm. The key idea is to adapt importance
sampling to the setting of filtering by picking a proposal distribution that can be recursively factored. The
form of the importance function that is used is:

7(XO:,, IY:,, ) = 7t(XO Yo) 7 W(Xk IxA7o:A- I, Yo:k)
k=1

We are now immediately able to write down a sequential importance sampling algorithm for sampling
from 1)(xo:t ly,:i). Due to the factorization of the importance density, we can compute the likelihood of each
data point yk, and update the importance weights recursively as observations become available. Let Al be

(i)the number of total observations and N the number of particles. Initialize the importance weights w = 1.

Sequential Importance Sampling (SIS)

* For each iteration A- = 0, 1.2 .... Al:

" For i N, sample x. ) 
-7XkIX (1) YOk) and x() XM 1i xMk - 0: - :k. O: -

" For = I ..... N update the importance weights.

~1 k-7r(XklXO:k- , ~'YO:k)

* Normalize the importance weights

Mi Wk
47A YN
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It is evident that the complexity of the algorithm increases linearly with the number of particles. In
order to implement the algorithm above, it remains to specify the proposal distribution. It is well known that
the optimal choice, the choice that minimizes the variance of the importance weights is given by:

7(XkIx:k-1, Y0:0 = P(XkIXki YA,)

However, the integral in the above expression cannot be evaluated other than in very special cases
(such as linear-Gaussian when the particle filter is not used anyway). Thus, a variety of suboptimal choices
have been proposed in the literature. Many can be found in [461, but a particularly simple and popular choice
is just the transition density:

7rXk )

This leads to a simple form for the importance weights

= Wk X P(Yk1Xk

However, even in the case that it is possible to choose the optimal importance density, the variance of
the weights will increase over time. From a practical perspective, this means that after a few iterations, if one
were to normalize the weights, there will be one particle with weight close to 1 and the rest of the particles
will have weights very close to 0. This method will then yield a one-sample estimate of the overall density.
For this reason, the sequential importance sampling algorithm is degenerate. There are two techniques for
avoiding degeneracy. The first is to add a resampling step. At every point, once the variance of the weights
has increased to be too large, the weights are normalized and the particles are resampled in proportion to the
weights. A popular way to measure if there is a large disparity in the weights of the particles is the number

of effective particles (Neff) measure first proposed in 1481: N

So if the number of effective particles is smaller than a preset fraction of N, we will add a resampling
step to the algorithm. While resampling will increase the number of particles that represent the posterior
distribution, many of the particles will be identical since they are replicated in the resampling procedure.
Thus, it is important to increase the particle diversity. Once again there are a number of statistically well-
founded techniques for this task of which we describe just one that was first proposed in 1491 which we
call regularization. The idea is simply to perturb the state of each particle by a random walk move from its
current position. One strategy is to always accept the perturbation and another is to accept-reject according
to the Metropolis-Hastings acceptance rule. We adopt the former strategy for simplicity; the latter strategy
results in a popular category of algorithms termed Resample-Move particle filters 1501. The algorithm
resulting from adding the resampling and regularization steps to the Sequential Importance Sampler is called

a particle filter.

We have, at this point, described a basic recipe for building a particle filtering algorithm. There are a
number of parameters to set, perhaps the most important of which is to select a good proposal distribution.
Also one should carefully select the regularization technique in order to ensure the diversity of the particle
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population. The literature is full of variations on this basic scheme, and for those interested in further details,
we suggest consulting 1461 and references contained therein.

We end the section with a few words about the flavor of the particle filtering algorithm implemented
in BNET. The algorithm follows the bootstrap.filter described most succinctly in Chapter I of 1461. The
sequence of steps in the bootstrap filter are shown in Figure 32. While particular choices were made for the
proposal distribution and regularization method, the design of the software is modular allowing alternative
algorithms to be easily plugged in for these tasks as well as others. We leave this section with a step-by-step
description of the algorithm and a graphical representation.

Particle Filtering

" For each iterationA, = 0. 1, 2,..Al :

" For i 1... N, sample xk 7 r(xA.IXOJI ,k) and xj:k - )

" For i = 1 ... N, update the importance weights.

(i) _ I(YAXA.))p(XA. X(. )

" Normalize the importance weights

0) MA.)

" Compute number of effective particles

" If (Neff < N)

- Selection: Resample the particles according to weights

- Regularization: xk) A'(.JV , (C7)

5.3 GIBBS SAMPLING

The last approximate inference method we discuss in this section is a popular type of MCMC method
known as Gibbs sampling. While MCMC methods enjoy a wide variety of applications and include among
them other well-known algorithms including the Metropolis-Hastings method 1471, the Gibbs sampling al-
gorithm takes on a particularly simple form when applied to graphical models. This, of course, is the reason
why we single this algorithm out in this report. In this section, we will first provide a general description
of the Gibbs sampling algorithm together with pointers for further reading. Second, we will discuss how

49



Unweighted 0 0 0 0V0
Proposal 

Ar\jX,

Unweighted
Prediction 0 00 0 0 000

Update
(Weighting) A(I,

Weighted
Posterior • P (

Resampling

Unweighted 0 0 0 0
Posterior 0 0 0 P Y1:1

Regularization ©

Unweighted A \

Posterior 0 0 0 00 0 00 P (IYO:,

Figure 32. The steps in particle filtering.

to apply the Gibbs sampler to graphical models and describe the algorithm that has been implemented in
BNET.

MCMC methods are algorithms that can be used to generate samples from a probability distribution
of interest which we denote by 7r(.x). In most problems, we are interested in computing the expectation of
some function under this distribution or E,(.f(x)). Suppose that N samples are generated from 7r(r), then
we have the following approximation: E,(f(r)) - _1 .f(._= ).

If the samples generated are independent and identically distributed, then the strong law of large
numbers guarantees convergence of the empirical mean of f to the actual mean of f almost everywhere as
N /oc. Moreover, the central limit theorem gives the rate of convergence as O(N'/2 ). Furthermore, the
independence assumption can be relaxed, and the ergodic theorem implies the same convergence rates under
mild correlations among the samples. It remains to specify the way in which these samples are generated,
and this is the defining aspect of all MCMC techniques. The main idea is to produce samples by using an
ergodic (irreducible, positive-recurrent) Markov Chain whose stationary distribution is 7(x). Since the chain
is ergodic, then after simulating it long enough, the samples will eventually be drawn from the stationary
distribution or 7r(:r). An excellent reference on a large variety of Monte Carlo and MCMC methods can be
found in 1471.

The Gibbs sampler is one of the most popular MCMC algorithms. We first describe a two-dimensional
example where it can be applied. Suppose that it is difficult to sample from a distribution 7(.r, y) so that
we would like to use a Monte Carlo method. On the other hand, suppose that it is easy to sample from the

conditional distributions 7r(xlqy) and 7r(ylx). The Gibbs sampler then proceeds as follows for Al iterations:
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" Initialize 1 0 according to a noninformative prior.

" Forj = 1... AIl

- l,(1: II )

" End

This algorithm clearly produces Al pairs of samples (x, y), and it can be shown that eventually these
samples are drawn from the distribution 7r(x, y). While we will not rigorously prove this fact, we will present
two arguments that should elucidate the point and perhaps provide some intuition as to what is going on.

First, we will argue by using Bayes rule that there is enough information in the conditional distribu-
tions to recover the joint. Consider the following:

7(x. = (iyIx)7(x) = -(yIx 7r(Y JX T(JX
7F(.r) .1 d. d I ( )

If the integral in the denominator can be computed (a regularity condition), then the above derivation
shows that the information contained in the joint density can be recovered from the conditional distributions.

Second, we take an in-depth look at the Markov chains embedded in the algorithm. There are a total
of three which we list below. It is easy to see what their transition kernels are defined by the steps of the
algorithm which we have described.

* (XI ..... X .X) with the transition kernel: K(x. r') = f 7r(.r'q)Tr(yJx)dyj

* (Y1 . . . , YA) with the transition kernel: K(y, q') = f7r(y'J;r)r(xJ)dx

* ((XI- YO .... (XA, YA)) with the transition kernel: K((x, ), (r' , y')) =T(!/x')7(x'Jy)

To further advance intuition, we show that 7r(x) is an invariant distribution of the first Markov chain.

7r(.r') = .7ri( 'ly )7T (y )dy= .7 (.'y). 7r (yJ.r) 7r (r)d txdy

= ..f ./ r(.t'Iy)7r(Jl'r)Tr(r)dy!d.r

J K(..r')7r(.r)dx

Similar arguments can show that 7r(y) and 7r(.r, y) are the invariant distributions of the second and
third chains. Since these Markov chains are ergodic (something we don't show here), then they must con-
verge to an invariant distribution that is unique, and as we have shown above, the stationary distributions
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are the desired ones. It is therefore possible to use ergodic averaging to estimate expectations of functions
according to the distributions 7r(x), 7r(y), 7r(,r, y). This provides further intuition for the correctness of the
Gibbs sampler. For a detailed and rigorous proof, consult 1471. We end our discussion of the Gibbs sampler
by providing a specific example in which no analytic or alternative solution that performs better is known.
Suppose X and Y have conditional distributions that are exponential distributions restricted to the interval
(0, B), that is:

f(rly) o( yc - !", 0 < a, < B < c; f(yl:x) CX 3 - ' Y. 0 < y < B < OC

The restriction of the densities to a bounded interval is required because otherwise the two conditional
densities would not have a corresponding joint density, and the Gibbs sampler would fail to converge. Now
we move on to discuss how to generalize the Gibbs sampler beyond the 2-D case. The extension is relatively 4

straightforward.

Suppose we are interested in drawing a sample from an N-dimensional density 7r(:r., . -N) and
we have the conditional densities, 7r(;ri.L_), then the algorithm takes the following form in each of the A
iterations that it is executed:

" Initialize Y according to a noninformative prior.

" For.j= 1...AI

- X 1 "- P IX2 ..... x N)

- X 2  - p(:r ,Jr1, :r; .......I'N)

- XN -" p(rN[JrI ..... I-N-1)

• End

It is precisely the multidimensional version of the Gibbs sampler that is very easy to apply to graphical
models. Suppose that a large Bayesian network contains N random variables: ,r, ..... I'N. Then according
to the above algorithm, the full conditional densities can be written as p(xri.L-), which will frequently
be expensive (computation and storage) to calculate. However, in Bayesian networks, these conditional
distributions can be simplified because of the independence structure inherent in the Bayesian network
structure. In particular, every node in a Bayesian network has a set of nodes associated with it (Markov
Blanket). This includes the children of the node, its parents, and its parents' children. We denote the Markov
Blanket of a node xi by AIB(xi). The important thing is that the node ,ri is conditionally independent of
all other nodes in the network given the nodes AB(ri). An example of a Markov Blanket can be found in
Section 2, Figure 11. Therefore, we get the following simplification:

A Gibbs sampler has been implemented in BNET for working with large discrete networks and is a
placeholder for models that will have a mixture of continuous and discrete nodes.
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6. CONCLUSION

Graphical models provide a solid statistical foundation for algorithms that may find application in
the missile defense decision making function. The goal of this report is to present a guide to some of the
most relevant models, and corresponding statistical algorithms for implementing inferential procedures. We
focussed on three types of graphical models that we feel are most relevant for missile defense problems-
undirected graphical models, static Bayesian networks, and dynamic Bayesian networks. We then defined
the statistical inference methodology we employed together with a variety of existing software tools, includ-
ing BNET, that efficiently implements the corresponding algorithms. Specifically, we described a number of
different algorithms both for exact as well as approximate inference. These included Variable Elimination,
Junction Tree, Belief Propagation, Particle Filtering, and Gibbs sampling. We also discussed the trade-offs
involved in using various algorithms for specific problems. Our goal was not to provide the most exhaustive
or rigorous treatment of the subject, but rather to provide the interested reader a starting place in the theory
and application of graphical models.

Perhaps the most important intuition that the reader should come away with is that statistical mod-
els cannot be developed without considering the computational complexity of the required statistical in-
ference procedures. It might be tempting, in the early stages, to construct nonlinear, non-Gaussian and
high-dimensional models due to their faithful representation of real-world complexities: however, the no-
tion of guaranteed eventuality of finding an algorithm to work with such a model is misguided. Developers
of statistical decision algorithms must take this into account.

5
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APPENDIX A: GRAPHICAL MODELS MISCELLANY

A.1 INDEPENDENCE / CONDITIONAL INDEPENDENCE

A.1.1 Independence -/-- Conditional Independence

Independence does not generally imply conditional independence, as shown by the following counter-
example.

Example A.I. Let X and Y be independent Bernoulli random variables 9 with parameters 4 and , respec-
tively. By independence, PV(1. 1) = Px(1)Py(1) = .We introduce a third Bernoulli random variable
Z with parameter p =) , and we let P(X= I Z=1) P(X=l I Z=O) = P(Y=l I Z=I) and
P(I"=1 I Z=o) = 8. It can easily be verified that these conditional probabilities are consistent with our
initial point-mass function definitions for X and Y. Furthermore, we define P(X=I, Y=1 I Z=I) = and
I)(X=, Y=1 IZ=O) =, which are consistent with our original Pxy(1 1). Now, when we test to see if
X _ L Z, we find that X and Y are not conditionally independent given Z:

5 3 3
P(X=I,Y=1IZ=1) = -: - P(X=lIZ=)P(I=lIZ=).

A.1.2 Conditional Independence -,* Independence

Conditional independence does not necessarily imply independence, as the following counter-example
shows.

Example A.2. Let X, Y, and Z be Bernoulli random variables such that X _L Y I Z. We define Z with the
parameter P, and we let P(X=lI Z=I) = ., P(X=l Z=O) = 1, P(Y=1 I Z=1) = 4, and P()Y=l I Z=
0) = 4. By conditional independence, P(X=l. Y=1 Z=1) = P(X=l I Z=I)P(Y= IZ=1) = and,
similarly, I'(X=I, Y=1 I Z=0) = {. Given these probabilities, we can derive that Px (1) = Py (1) = as
well as P(X=l I Y=I) = P(X=I, Y=1 I Z=I)Pz(1) + P(X=I, Y=1 Z=O)Pz(0) = {. So, we have

1 5 5
P(X=1,Y=I) = - - X = JX(I)PY(0.

6 12 12

and, therefore, X and Y are not independent.

A.2 DERIVATION OF PAIRWISE FACTORIZATION FOR ACYCLIC UNDIRECTED
GRAPHICAL MODELS

If the undirected graph associated with an undirected graphical model is connected and acyclic, we can
derive a general form for the factorization of the joint probability explicitly in terms of joints and marginals
of the nodes in the model. This factorization provides us with the vocabulary to specify the clique potentials

)A Bernoulli random variable X takes values from {0, 1} and has a parameter p which equals Ic (1). Since PN (0) = 1 -
PX (I), ) is sufficient to define the point-mass function of '.
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in an acyclic model entirely in terms of probability distributions. To do so, we shall decompose the joint
distribution into a product of conditional distributions, making use of conditional independencies in the
model to do so in as compact a way as possible.

We begin by initializing our decomposition 7 to 1 and initializing copies V and E' of the vertex and
edge sets, respectively, as follows: V' = V and E' = E.

Then, we repeat the following two steps until E' = 0:

I. Choose a node s E V' that has only one neighbor t and set 7F = 7r * P(s I t), then remove s from the
graph along with its only edge (s, t) (i.e., set V' = V - {s} and E' = S' - I (s, t) 1). 10

2. Add the removed edge as an ordered pair (s, t) to a set Fo, so named because it is a set of undirected
edges in which the order of the two vertices in each edge matters. a

Since the number of vertices in a connected, acyclic graph is 1 + q, where q is the number of edges,
there will now be exactly one node left in V, which we call 'u. We then multiply this marginal P(u) onto r,
i.e., 7r = T * P(1).

Now, 7 is the product of P(a) and q conditional probabilities, one for each edge in the graph. Rewrit-
ing the conditionals as quotients of joints and marginals, we obtain

P(X,, X0,(-1
7=P(X) 1 P(X) (A-I)

(s,tI) P(X

Note that this form depends on the edges being represented as ordered pairs, which is not the case for
undirected graphs, where the nodes in an edge can be written in either order. Furthermore, we know that
there is one term in the above product for each node in the graph, since a term is multiplied onto 7 for each
node that is eliminated from the graph in step (1) above. So, if we multiply by HIEv P(X)/11ev P(X,).
we will be able to move the denominator of this identity into the product from equation A-I, giving us the
following factorization for the joint distribution P(X):

P(X,., Xt), (Y) A2
P(X)= H P(X,)P(Xt)"

,EV

A.3 DERIVATION OF BELIEF PROPAGATION FOR CONTINUOUS NODES WITH
EVIDENCE APPLIED

Belief propagation (BP) is the general term for a family of message-passing algorithms for inference in
graphical models. In Section 3.2, we showed heuristically how belief propagation arises from the ordinary
action of pushing sums over products in variable elimination. However, we only considered the case of

"'in general, decomposition of a joint distribution into conditionals would involve multiplying 7r by 1(.s 1 V' \ s) on each
iteration instead of I/(,s I t). In our case, I'(.4 V \ s) = P(s I 1) due to the Markov properties and the fact that I is the only
neighbor of s. Since the graph is acyclic and removing an edge on each iteration will never cause it to become cyclic, we will
always be able to choose a node s with only one neighbor.
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performing inference in the case of no evidence being applied and all nodes being discrete. Below, while
we still only consider acyclic graphical models, we show how to explicitly handle evidence and additionally
allow all nodes to be either continuous or discrete (essentially just by changing sums to integrals). BP
computes all N marginal distributions of a graphical model in O(N) time, using a series of local, recursive
message passes between nodes.

Where X is the set of variables in the network, we let Y denote the set of observed values for the
corresponding variables, i.e., Yi is the observed value for Xi. Our goal is to compute P(X, I Y) for all
s E V. For the purposes of describing the BP algorithm, we will include the observation nodes graphically
when drawing an undirected graphical model, as shown in Figure A-I. We assume that the observations are
pairwise conditionally independent given X and that, conditioned on Xi, an observation Ii is independent
of the rest of the nodes in X , giving us P (Y I X ) = I EP(I' I X ,). For any s - V and any t E N (S ),
we define Y,\, to be the set of all observation nodes in the tree rooted at node s, excluding those in the
subtree rooted at node t. (Figure A-I shows examples of this definition.)

Our derivation of the belief propagation algorithm will follow Sudderth 1251. We begin with the
quantity in which we are interested, P(X, I Y) for some s E V. Using Bayes' rule and the fact that the
observations Y are conditionally independent given Xs, we obtain

P(XP(y) = (IPX,)P(Y IX) P(Y,\. I X.,). (A-3)
Y P(Y I A(s)

From equation A-3 we can begin to see how inference can be reduced to a series of message passes by
noting that, for each neighbor t of s, P(Yt\, I X,) encapsulates all the necessary information about t
and its subtree to compute the marginal P(X, I Y). The quantity P(Y\, I X,) can be interpreted as
a "message" that effectively gets "sent" from Xt to X. We will now show how these messages can be
expressed in terms of their neighboring nodes, and in doing so, show that this message passing can be a
local, recursive series of operations:

P(Yt\ X.,) =I' P(X, XL) P(X)P(Yt I Xt) U P(Y"1 \t Xt)dX,. (A-4)
. t -(X )P (x t) uEN ( ,)\s

X4, I !-X-

4, 

X

Y 4 11I

X-3-- Y3111

Figure A-I. An undirected graphical model with observation nodes.
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We can see from this equation the appearance of the terms that form the factorization of an acyclic undirected
graphical model (Equation 2). If we use A-4 repeatedly to "unroll" A-3, we obtain

P(X,, I Y) = (I H P(x )P(X,) H P(XS)P(Y. I Xs)dXV\",. (A-5)

Using Equation 2, we can see that this decomposition of the marginal P(X,, I Y) is equivalent
to computing the joint distribution of the network given the observations and then marginalizing out all
variables except X,. Reproducing A-5 below:

f(, I )P(x, , xJ)
XI,I Y) = J H H P(X,)P(X1 ) fJ P(X,)P(Y I X,)dXv\,,

V\" (s,I)EEE sCV

- .!'Xi H ,< ,X,,x,) H P(Y.lX,s)dXv\,

S P(X)P(Y I X)dX , P(X Y )dXv\t = P(X,I Y).
• XAV\,, .1 V

Thus, through equations A-3 and A-4, we have worked out a scheme of local, recursive message-
passing from the ordinary approach of marginalizing out unwanted variables from the joint distribution
represented by the model. We can generalize A-5 to the potential function factorization by using Equation
3 and through some straightforward manipulation obtain the following two equations which comprise the
belief propagation algorithm:

P(X. Y) = nP(Y, I H 'mt, (X,) (A-6)

'tnt, (x,) = (V / (A ,,, Xt)P PY/ I.Xt) H ,,t(XA,)d,X (A-7)
Jxt uGN(t)\s

In these equations, we have replaced the probabilistic term P(Yt\., I X,) with m1l,(X,) to show that this
quantity is the message that gets passed from X, to X,.

As suggested by the equivalence to computation of the full joint followed by marginalization, BP will
not provide us any gain in efficiency if we perform the message passing in an inefficient manner. Instead,
we use dynamic programming to obtain all N marginals through only two stages of message passing, called
COLLECT-TO-ROOT and DISTRIBUTE-FROM-ROOT as shown in Figure A-2(a) and (b), respectively. Each
stage takes O(N) time, making the entire belief propagation algorithm O(N). One node is arbitrarily
chosen as the root node and, in the first stage, all other nodes send messages to their neighbors toward the
root, starting with the leaf nodes. A node only computes and sends its message after receiving messages
from all but one of its neighbors, and then sends its message to this neighbor. In the second stage, the root
begins the process by sending messages to all of its neighbors, which in turn send messages to each of their
neighbors, etc. When message passing is completed, the marginals of all nodes in the network have been
computed.
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GLOSSARY

2-TBN 2-timeslice Bayesian Network

BK Boyen-Koller

BMDS Ballistic Missile Defense System

BN Bayesian Network

BNET Bayesian Network Evaluation Tool

BNT Bayesian Network Toolkit

BP Belief Propagation

C2BMC Command, Control, Battle Management and Communication

DBN Dynamic Bayesian Network

EKF Extended Kalman Filter

GUI Graphical User Interface

HMM Hidden Markov Model

MCMC Markov Chain Monte Carlo

MSBN Multiply-Sectioned Bayesian Network

NBP Nonparametric Belief Propagation

OOBN Object-Oriented Bayesian Network

PNL Probabilistic Networking Library

RIP Running Intersection Property

SF Set Factoring

SPI Symbolic Probabilistic Inference

XML Extensible Markup Language
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