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1 Introduction

At present, designers of real-time systems face a dilemma between expressiveness and au-
tomatic verification. If they can specify some aspects of their system in a more restricted
automaton-based formalism, then automatic verification of system properties may be ob-
tained by specialized model checking decision procedures. But this may be difficult or im-
possible for more complex system components which may be hard or impossible to express
in such decidable formalisms. In that case, simulation offers greater modeling flexibility, but

is typically quite weak in the kinds of formal analyses that can be performed. The main goal

of Real-Time Maude is to provide a way out of this dilemma, while complementing both
decision procedures and simulation tools.

On the one hand, Real-Time Maude can be seen as complementing tools based on timed
and linear hybrid automata, such asrAAL [19,5], HyTech [15], and Kronos [32]. While
the restrictive specification formalism of these tools ensures that interesting properties are
decidable, such finite-control automata do not support well the specification of larger sys-
tems with different communication models and advanced object-oriented features. By con-
trast, Real-Time Maude emphasizes ease and generality of specification, including support
for distributed real-time object-based systems. The price to pay for increased expressive-
ness is that many system properties may no longer be decidable. However, this does not
diminish either the need for analyzing such systems, or the possibility of using decision
procedures when applicable. On the other hand, Real-Time Maude can also be seen as com-
plementing traditional testbeds and simulation tools by providing a wide range of formal
analysis techniques and a more abstract specification formalism in which different forms of
communication can be easily modeled and can be both simulated and formally analyzed.
Finally, some tools geared toward modeling and analyzing larger real-time systems, such as,
e.g., IF [6], extend timed automaton techniques with explicit UML-inspired constructions
for modeling objects, communication, and some notion of data types. Real-Time Maude
complements such tools not only by the full generality of the specification language and the
range of analysis techniques, but, most importantly, by its simplicity and clarity: A simple
and intuitive formalism is used to specify both the data typese(iyation$ and dynamic
and real-time behavior of the system (leyvrite ruleg. Furthermore, the operational seman-
tics of a Real-Time Maude specification is clear and easy to understand.

A key goal of this work is to document the tool’s theoretical foundations, based on a
simplified semantics of real-time rewrite theories [23,28] made possible by some recent de-
velopments in the foundations of rewriting logic [7]; these simplified theoretical foundations
are explained in Section 3. We also give a precise description of the semantics of Real-Time
Maude specifications and of its symbolic execution and formal analysis commands. Such
semantics is given by means of a familytb&ory transformationghat associate to a real-
time rewrite theory and a command a corresponding ordinary rewrite theory (a Maude [9,
10] system module) and a Maude command with the intended semantics (Section 5). Be-
sides thus giving a precise account of the tosésnanticswe also explain and illustrate its
pragmaticsin several ways:

1. We discuss differeritme domaingboth discrete and continuous) provided by the sys-
tem, which also allows the user to define new such time domains in Maude modules.

2. We then explain the general methods by whiick rulesfor advancing time in the
system can be defined.



3. We also explain some general techniques to spedifgct-orientedreal-time systems
in Real-Time Maude; such techniques have been developed through a good number of
substantial case studies and have proved very useful in practice.

4. We give an overview of the tool’s language features, commands, and analysis capabili-
ties (Section 4).

5. We illustrate the tool’s use in practice by means of two examples (Section 6).

Real-Time Maude specifications aegecutabldormal specifications. Our tool offers
various simulation, search, and model checking techniques which can uncover subtle mis-
takes in a specification. Timedwriting can simulateone of the many possible concurrent
behaviors of the system. Timedarchandtime-bounded linear temporal logic model check-
ing can analyzell behaviors—relative to a giveime sampling strategfor dense time as
explained in Section 4.2.1—from a given initial state up to a certain time bound. By restrict-
ing search and model checking to behaviors up to a certain time bound and with a given
time sampling strategy, the set of reachable states is typically restricted to a finite set, which
can be subjected to model checking. Search and model checking are “incomplete” for dense
time, since there is no guarantee that the chosen time sampling strategy covers all interest-
ing behaviors. However, all the large systems we have modeled in Real-Time Maude so far
have had a discrete time domain, and in this case search and model checking can completely
cover all behaviors from the initial state. For further analysis, the user can write his/her own
specific analysis and verification strategies using Real-Time Maude'’s reflective capabilities.

The Real-Time Maude tool described in this paper is a mature and quite efficient tool
available free of charge (with sources, a tool manual, examples, case studies, and papers)
from http://www.ifi.uio.no/RealTimeMaude. The tool has been used in a number of
substantial applications, a subset of which is listed in Section 6.4. Real-Time Maude is
based on earlier theoretical work on the rewriting logic specification of real-time and hy-
brid systems [23, 28], and has benefited from the extensive experience gained with an earlier
tool prototype [27,23], which was applied to specify and analyze a sophisticated multicast
protocol suite [23,26]. As mentioned above, the current tool has simpler foundations based
on more recent theoretical advances. Furthermore, thanks to the efficient support of breadth-
first search and of on-the-fly LTL model checking in the underlying Maude 2 system [10], on
top of which it is implemented, the current tool supports symbolic simulation, search for vi-
olations of safety properties, and model checking of time-bounded temporal logic properties
with good efficiency.

2 Equational Logic, Rewriting Logic, and Maude

Since Real-Time Maude extends Maude and its underlying rewriting logic formalism, we
first present some background on equational logic, rewriting logic, and Maude.

2.1 Equational and Rewriting Logic

Membership equational logiMEL) [22] is a typed equational logic in which data are
first classified bykinds and then further classified bgorts with each kindk having an
associated sef;, of sorts so that a datum having a kind but not a sort is understood as
an error or undefinedelement. Given M EL signatureX, we write Ty , and Ty (X )

to denote, respectively, the set of groutrderms of kindk, and ofX-terms of kindk over



variables inX, whereX = {z; : k1,...,z, : k, } is a set of kinded variablestomic formulas
have either the form = ' (X-equation) ort : s (£-membership) witht, ¢’ € Ty (X); and
s € Sy; and Z-sentencesre universally quantified Horn clauses on such atomic formulas.
A MEL theoryis then a pairf X, E) with E a set ofX-sentences. Each such theory has
an initial algebral'y,r whose elements are equivalence classes of ground terms modulo
provable equality.

In the general version of rewrite theories oWMdEL theories defined in [7], eewrite
theoryis a tupleZ = (X, E, ¢, R) consisting of: (i) aMEL theory (X, E); (ii) a func-
tion ¢: X — Z%(N) assigning to each function symbgilk;---k, — k in X a seto(f) C
{1,...,n} of frozen argument position§ii) a set R of (universally quantified) labeled con-
ditional rewrite rules- having the general form

(VX)) r:it—t' if Njerpi=a A Njeswjisj A Nier, i — ¢

where, for appropriate kindsandk;, ¢,t' € Ty (X ), andt;, t; € Tx(X )y, for i € L.

The functiong specifies which arguments of a function sympalannot be rewritten
which are calledrozen positionsGiven a rewrite theoryZ = (X, E, ¢, R), a sequentof
Z is a pair of (universally quantified) terms of the same kind, denoted(VX) t — ¢/
with X = {z : k1,...,2, : k,, } @ set of kinded variables andt’ € Ty (X); for somek. We
say thatZ entailsthe sequentvXx)t— ¢, and writeZ - (VX) t — ¢/, if the sequent
(VX) t—t' can be obtained by means of the inference rules of reflexivity, transitivity,
congruence, and nested replacement given in [7].

To any rewrite theory? = (X, E, ¢, R) we can associate a Kripke structuéé(%, k) .,
in a natural way provided we: (i) specify a kidn X so that the set oftatesis defined as
Tx/p,k, and (i) define a selll of (possibly parametricatomic proposition®n those states;
such propositions can be defined equationally in a protecting exte(SiodI, FU D) D
(X,E), and give rise to dabeling functionZy; on the set of stat€®y . in the obvious
way. Thetransition relationof 2 (%, k) ., is the one-step rewriting relation &#, to which
a self-loop is added for each deadlocked state. The semantics of linear-time temporal logic
(LTL) formulas is defined for Kripke structures in the well-known way (e.g., [8,10]). In
particular, for any LTL formulay on the atomic propositiond and an initial statét], we
have a satisfaction relatio’t’ (%, k) r,;,[t] = w which can be model checked, provided
the number of states reachable frothis finite. Maude [10] provides an explicit-state LTL
model checker precisely for this purpose.

2.2 Maude and its Formal Analysis Features

A Maude module specifies a rewrite thedy, E U A, ¢, R), with E a set of conditional
equations and memberships, ahd set of equational axioms such as associativity, com-
mutativity, and identity, so that equational deduction is perfornnediulothe axiomsA.
Intuitively, the theory(Z, E U A) specifies the system’s state space as an algebraic data type,
and each rewrite rule in R specifies a (family ofpne-step transition(dyom a substitution
instance oft to the corresponding substitution instance’ofprovidedthat the substitution
satisfies the condition of the rule. The rewrite rules are appfiedulothe equationgf U A.1

1 Operationally, a term is reduced to i&-normal form modulo4 before any rewrite rule is applied in
Maude. Under the coherence assumption [31] this is a complete strategy to achieve the effect of rewriting in
E U A-equivalence classes.



We briefly summarize the syntax of Maudeunctionalmodules andgystenmmodules
are, respective WM EL theories and rewrite theories, and are declared with respective syn-
tax fmod ... endfm andmod ... endm. Object-orientednodules provide special syntax
to specify concurrent object-oriented systems, but are entirely reducible to system modules;
they are declared with the syntésmod ... endom).? Immediately after the module’s key-
word, thenameof the module is given. After this, a list of imported submodules can be
added. One can also declamerts’, subsorts andoperators Operators are introduced with
the op keyword. They can have user-definable syntax, with underbansdrking the argu-
ment positions, and are declared with the sorts of their arguments and the sort of their result.
Some operators can have equatiataiibutes such asssoc, comm, andid, stating, for ex-
ample, that the operator is associative and commutative and has a certain identity element.
Such attributes are then used by the Maude engine to match meochdothe declared ax-
ioms. The operator attributeor declares that the operator is@anstructor as opposed to a
defined functionThis attribute does not have any computational effect in Real-Time Maude.
There are three kinds of logical statemeetguationsintroduced with the keywordsy and,
for conditional equations;eq; membershipdeclaring that a term has a certain sort and in-
troduced with the keywordsb andcmb; andrewrite rules introduced with the keywordsl
andcrl. The mathematical variables in such statements are either explicitly declared with
the keywordsrar andvars, or can be introduced on the fly in a statement without being
declared previously, in which case they must have the farmsort. Finally, a comment is
preceded by#xx' or ‘ ---" and lasts until the end of the line.

Maude modules arexecutablaunder reasonable assumptions. The high performance
Maude engine—which can perform up to millions of rewrites per second—provides the
following analysis commands:

— Arewrite (rew) and &‘fair” rewrite (frew) command, which executmerewrite sequence—
out of possibly many—from a given initial state.

— A searchcommand ¢earch) for analyzingall possible rewrite sequences from a given
initial statetp, by performing abreadth-first searctio check whether terms matching
certain patterns can be reached frgniThe search does not terminate if the set of states
reachable fromy is infinite and the desired state(s) are not reachable fgom

— A linear temporal logic model check¢t4], comparable to Spin [17] in performance,
which checks whether each rewrite sequence from a given initial gatatisfies a
certain linear temporal logic (LTL) formula. LTL model checking will normally not
terminate if the state space reachable frigns infinite.

A propositional LTL formula is constructed by the usual LTL operators (see, e.g., [10,
14] and Section 4.2.2) and a d@tof user-defined (possibly parametric) atomic propo-
sitions. Such atomic propositions should be defined as terms of the built-?xsgrtin

a module that includes the built-in Maude modMB®EL-CHECKER. The labeling func-

tion Ly is defined by equations of the forml=p = b if C, for a (possibly) paramet-

ric atomic propositiorp (i.e., for p a term of sortProp), a term¢ of the built-in kind
[Statel, a termb of kind [Bool], and a conditiorC'. It is sufficient to define when a
predicateholds For example, ifp were the only proposition, thebr ([u]) = {co(p) |

o ground substitution. (EU A) F (VD) u |=o(p) = true} [10].

— Finally, the user may define her own specific execution strategies using Maeifiets
tive capabilitieq11,12].

2 In Full Maude, and in its extension Real-Time Maude, module declarations and execution commands
must be enclosed by a pair of parentheses.
3 Kindsare not declared explicitly; the kind to which serbelongs is writter{s].



We refer to the Maude manual [10] for a more thorough description of Maude’s analysis
capabilities.

2.2.1 Object-Oriented Specification in Maude

In object-oriented (Full) Maudemodules one can declactassesandsubclassesA class
declaration

class C | atty : s1, ... , atty, : Sy .

declares an object clagswith attributesatt; to att, of sortss; to s,,. An objectof classC
in a given state is represented as a term

<0:C|atty:val,..., atty, : val, >

of the built-in sortobject, where O is the object’s name or identifier, and wheré; to

val,, are the current values of the attribute$ to att, and have sorts; to s,,. Objects can
interact with each other in a variety of ways, including the sending of messages. A message
is a term of the built-in somtsg, where the declaration

msg m . p1...pn —> Msg .

defines the name of the messagg énd the sorts of its parametejs (.. p,,). In a concur-

rent object-oriented system, the state, which is usually callszhéigurationand is a term

of the built-in sortConfiguration, has typically the structure ofraultisetmade up of ob-

jects and messages. Multiset union for configurations is denoted by a juxtaposition operator
(empty syntax) that is declared associative and commutative and haviagr#enultiset

as its identity element, so that order and parentheses do not matter, and so that rewriting is
multiset rewritingsupported directly in Maude. The dynamic behavior of concurrent object
systems is axiomatized by specifying each of its concurrent transition patterns by a rewrite
rule. For example, the configuration on the left-hand side of the rule

rl [1] : m(O,w) <0 :C | al :x, a2 :y, a3 : z> =>
<0:Cla :x+w,a2:y, a3 :z> m(y,x) .

contains a message with parameter® andw, and an object of classc. The message
m(0,w) does not occur in the right-hand side of this rule, and can be considered to have
beenremovedrom the state by the rule. Likewise, the messagéy,x) only occurs in the
configuration on the right-hand side of the rule, and is therseratedy the rule. The above

rule, therefore, defines a (parameterized family of) transition(s) in which a mes&age

is read, and consumed, by an objedif classc, with the effect of altering the attributet

of the object and of sending a new messagéy,x) . Attributes, such as3 in our example,

whose values do not change and do not affect the next state of other attributes need not
be mentioned in a rule. Attributes, like2, whose values influence the next state of other
attributes or the values in messages, but are themselves unchanged, may be omitted from
right-hand sides of rules. Thus the above rule could also be written

rl [1] : m(@O,w) <0 :C | al : x, a2 :y> =>
<0:Clatl:x+w> m(y,x) .

A subclassnherits all the attributes and rules of its superclagdses

4 Real-Time Maude is built on top of Full Maude [10, Part 1], which extends Maude with support for
object-oriented specification and advanced module operations.

5 The attributes and rules of a class cannot be modified by its subclasses, which may of course have
additional attributes and rules.



3 Real-Time Rewrite Theories Revisited

In [28] we proposed to specify real-time and hybrid systems in rewriting logieagime
rewrite theories and defined an extension of the basic model to include the possibility of
defining eagerandlazy rewrite rules. This section first recalls the definition of real-time
rewrite theories, and then explains why the generalization of rewriting logic given in [7] has
made the partition into eager and lazy rules unnecessary.

3.1 Real-Time Rewrite Theories

A real-time rewrite theory is a rewrite theory where some rules, céitkdules model time
elapse in a system, while “ordinary” rewrite rules model instantaneous change.

Definition 1 A real-time rewrite theory%, . is a tuple(#, ¢, 1), whereZ = (X, E, ¢, R)
is a (generalized) rewrite theory, such that

— ¢ is an equational theory morphistn: TIME — (X, E) from the theoryTIME to
the underlying equational theory ¢, that is, ¢ interpretsTIME in %; the theory
TIME [28] defines time abstractly as an ordered commutative mofibigie, 0, 4, <)
with additional operators such agwherez — y denotes: — y if y < z, and 0 otherwise)
and<;

— (X, F) contains a sorBystem (denoting the state of the system), and a specific sort
GlobalSystem With no subsorts or supersorts and with only one operator

{_} : System — GlobalSystem

which satisfies no non-triviélequations; furthermore, the s@itobalSystem does not
appear in the arity of any function symbolih
— tis an assignment of a term of sort¢ ( Time) to every rewrite rule

U {ty—{t'} if cond

involving terms of sortlobalSysten’; if 7; # ¢ (0) we call the rule dick rule and write

l: {t}L{t'} if cond.

The termt; denoting thedurationof the tick rule may contain variables, including vari-
ables that do not occur ify ¢/, and/orcond. For example, if; is a variablez not oc-
curring in eithert or cond, then time can advance nondeterministicallyamy amount
from a substitution instance gf} where the substitution satisfiesnd.

The global state of the system should have the fguh, in which case the form of the

tick rules ensures that time advances uniformly in all parts of the system. The total time
elapser(a) of a rewritea : {t} — {t'} of sortGlobalSystem is the sum of the times
elapsed in each tick rule application [28]. We wrii . - {t} — {3 if there is a proof

o {ty —{t'Yin %y . with () = r. Furthermore, we writ@'imeg, Oy, . . ., forg (Time),

¢(0), etc.

6 By “trivial” equations we mean equations of the form:= ¢.
7 All rules involving terms of sorélobalSystem are assumed to have different labels.



3.2 Eager and Lazy Rules Revisited

The motivation behind havingagerandlazyrewrite rules was to modelrgencyby letting

the application of instantaneous eager rules take precedence over the application of lazy
tick rules [28]. This feature was supported in version 1 of Real-Time Maude. The ability to
definefrozenoperators in rewriting logic [7] means that it is no longer necessary to explicitly
define eager and lazy rules. Instead, one may define a frozen oferator

eagerEnabled : s — [Bool] [frozen (1)]
for each sork that can be rewritten, introduce an equation
eagerEnabled(t) = true if cond
for each “eager” rule — t' if cond, and add an equation
eagerEnabled (f (z1,...,z,)) = true If eagerEnabled(z;) = true

for each operatof and each positionwhich is not a frozen position ifi. A “lazy” tick rule
should now have the form

Lty =5 4’y if cond A eagerEnabled ({t}) # true.

This technique makes unnecessary any explicit support for eager and lazy rules at the system
definition level to model urgency. In addition, the lazy/eager feature has not been needed in
any Real-Time Maude application we have developed so far. Real-Time Maude 2 therefore
does not provide explicit support for defining eager and lazy rules.

4 Specification and Execution in Real-Time Maude

This section gives an overview of how to specify real-time rewrite theories in Real-Time
Maude agimed modulesand how to execute such modules in the tool. In particular, Sec-
tion 4.1.5 presents some useful techniques for specifying object-oriented real-time systems
in Real-Time Maude. The manual [24] explains our tool in much more detail.

4.1 Specification in Real-Time Maude 2.1

Real-Time Maude extends Full Maude [10] to support the specification of real-time rewrite
theories asimed moduleandobject-oriented timed moduleSuch modules are entered at

the user level by enclosing them in parentheses and including the module body between
the keywordsmod andendtm, and betweeromod andendtom, respectively. To state non-
executable properties, Real-Time Maude allows the user to specify real-time extensions of
abstract Full Maudéheories Since Real-Time Maude extends Full Maude, we can also
define Full Maude modules in the tool. All the usual operations on modules provided by
Full Maude are supported in Real-Time Maude.

8 By ‘[frozen (1)1’ we mean that the first (and in this case only) argument of the corresponding oper-
ator (eagerEnabled) cannot be rewritten (see Section 2.1). That is, evendwrites tou, it is notthe case
thateagerEnabled(t) rewrites toeager Enabled(u).



4.1.1 Specifying the Time Domain

The equational theory morphisgnin a real-time rewrite theory?, - is not given explicitly
at the specification level. Instead, by default, any timed module automatically imports the
following functional moduler IME:

fmod TIME is
sorts Time NzTime . subsort NzTime < Time .
op zero : -> Time .
op _plus_ : Time Time -> Time [assoc comm prec 33 gather (E e)]
op _monus_ : Time Time -> Time [prec 33 gather (E e)]
ops _le_ _lt_ _ge_ _gt_ : Time Time -> Bool [prec 37]
eq zero plus R:Time = R:Time .
eq R:Time le R’:Time = (R:Time 1t R’:Time) or (R:Time == R’:Time) .
eq R:Time ge R’:Time = R’:Time le R:Time .
eq R:Time gt R’:Time = R’:Time 1t R:Time .
endfm

The morphisny implicitly maps Time to Time, 0 tOzero, .+ _t0 _plus_, < _to_le_, etc.

Even though Real-Time Maude assumes a fixed syntax for time operations, the tool does not
build in a fixed model of time. In fact, the user has complete freedom to specify the desired
data type of time values—which can be either discrete or dense and need not be linear—by
specifying the data elements of sarime, and by giving equations interpreting the con-
stantzero and the operatorsplus_, _monus_, and_1t_, so that the axioms of the theory
TIME [28] are satisfied. The predefined Real-Time Maude momlAte TIME-DOMAIN de-

fines the time domain to be the natural numbers as follows:

fmod NAT-TIME-DOMAIN is including LTIME . protecting NAT .
subsort Nat < Time . subsort NzNat < NzTime .
vars N N’ : Nat .
eq zero = 0 .
eq N plus N’ = N + N> .
eq N monus N’ = if N > N’ then sd(N, N’) else O fi .
eq N 1t N’ = N < N’
endfm

To have dense time, the user can import the predefined medak\T-TIME- DOMAIN,

which defines the nonnegative rationals to be the time domain. The set of predefined mod-
ules in Real-Time Maude also includes a modui&ME, which assumes a linear time do-
main and defines the operatags andmin on the time domain, and the modulE®IE-INF,
LTIME-INF, NAT-TIME-DOMAIN- WITH-INF, andPOSRAT-TIME-DOMAIN-WITH-INF which ex-

tend the respective time domains with an “infinity” valigF in a supersorfimeInf of

Time. Detailed specifications for all these time domains can be found in [24, Appendix A].

4.1.2 Tick Rules

A timed module automatically imports the modaBMED-PRELUDE which contains the dec-
larations

sorts System GlobalSystem .
op {_} : System -> GlobalSystem [ctor]

A conditional tick rulel : {¢t} — {t'} if cond is written with syntax

9 The operator attributgsrec andgather deal with parsing; their meaning is explained in [10].
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crl [11 : {t} => {t'} in time 7; if cond .

and with similar syntax for unconditional rules.

We do not require time to advance beyond any time bound, or the specification to be
“non-Zeno.” However, it seems sensible to require that if time can advaneepbys r’
time units from a statét} in one application of a tick rule, then it should also be possible to
advance time by time units from the same state using the same tick rule. Tick rules should
(in particular for dense time) typically have one of the forms

crl [ : {t} => {t'} in time z if cond /\ z le u /\ cond [nonexec] . (1),
crl [11 : {t} => {t'} in time z if cond /\ z 1t u /\ cond' [nonexec] . (%),
crl [11 : {t} => {t'} in time z if cond [nonexec] . (%), or
rl [11 : {t} => {t'} in time z [nonexec] . (8),

wherez is a variable of sorfime (or of a subsort offime) which does not occur ift}
and which is not initialized in the condition. The terdenotes the maximum amount by
which time can advance in one tick step. Each variable should either occur in or
be instantiated irond by matching equationgsee [10]). The (possibly empty) conditions
cond and cond’ should not further constraim (except possibly by adding the condition
z=/= zero). Tick rules in which the duration term contains a variable that does not occur
in the rule’s lefthand side and is not initialized by matching equations in the rule’s condition
are callectime-nondeterministicAll other tick rules are calletime-deterministiand can
be used e.g. in discrete time domains.

Real-Time Maude assumes that tick rule applications in which time advaneesdgo
not change the state of the system. A tick ruladsnissibldf its zero-time applications do
not change the state, and it is either a time-deterministic tick rule or a time-nondeterministic
tick rule of any of the above forms—possibly witke and 1t replaced by<= and < (in
which casele and<=, and1t and<, should be equivalent on the time domain). The exe-
cution of admissible tick rules is supported by the Real-Time Maude tool. However, time-
nondeterministic tick rules are not directly executable by the underlying Maude engine,
since many choices are possible for instantiating the time variafleat is why they are
specified with thevonexec attribute, which tells Maude that these rules are not intended to
be executed before they have been treated by Real-Time Maude). Real-Time Maude exe-
cutes such rules usingtime sampling strategfsee Sections 4.2.1 and 5.2) specified by the
user.

4.1.3 Defining Initial States

For the purpose of conveniently defining initial states, Real-Time Maude allows the user to
introduce operators of so@llobalSystem. Each ground term of sofflobalSystem must
reduce to a term of the fornit} using the equations in the specification. The constant
initState on page 30 is an example of an operator of sbsbalSystem which reduces to

a term of the desired form.

4.1.4 Timed Object-Oriented Modules

Maude’s object model can be extended to the real-time setting by just adding a subsort
declaration

subsort Configuration < System .
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whereConfiguration is the sort whose elements are multisets of messages and objects.
Timed object-oriented modules extend both object-oriented and timed modules to provide
support for object-oriented real-time systems. In contrast to untimed object-oriented sys-
tems, functions such a8 and mte (described below), and the tick rules, will manipu-
late the global configuration. It is therefore useful to have a richer sort structure for con-
figurations. Timed object-oriented modules include subsorts for nonempty configurations
(NEConfiguration), configurations without messagé®f{ectConfiguration) Or without
objects fisgConfiguration), etc. Real-Time Maude automatically adds the subsort decla-
ration Configuration < System to timed object-oriented modules. Section 6.2 gives an
example of a timed object-oriented module.

4.1.5 Useful Techniques for Object-Oriented Specification in Real-Time Maude

In this section we present some techniques for specifying object-oriented systems in Real-
Time Maude that have proved useful in all our larger case studies. These specification tech-
nigues provide a more elegant and natural way of specifying object-oriented systems than
those given in [28]. This improvement is due to the possibility of hafiogenoperators in
version 2 of Maude (and in Real-Time Maude).

In larger object-oriented systems it is usually the case that an unbounded number of
objects could be affected by the elapse of time and/or could affect the maximum time elapse
in a tick step. For such systems, we have found it useful to have functions

op 6 : Configuration Time -> Configuration [frozen (1)]
and
op mte : Configuration -> TimeInf [frozen (1)]

to define, respectively, the effect of passage of time on a configuration, amshiigum
time elapse possible from a configuration, and to let these functions distribute over the ele-
ments in a configuration according to the following equations:

vars NeC NeC’ : NEConfiguration . var R : Time .

eq O(none, R) = none .
eq O6(NeC NeC’, R) = 6(NeC, R) O6(NeC’, R)

eq mte(none) = INF .
eq mte(NeC NeC’) = min(mte(NeC), mte(NeC’))

The functionsd andmte must then be defined dndividual objects and messages, as ex-
emplified in Section 6.29
The tick rule(s)—there is usually just one tick rule—then typically have the form

crl [tick]
{SYSTEM:Configuration}
=>
{6 (SYSTEM:Configuration, R:Time)} in time R:Time
if R:Time <= mte(SYSTEM:Configuration) [nonexec]

Theinstantaneousewrite rules, i.e., all rules except the tick rule(s), are defined exactly as
in untimed rewriting logic.

10 The functionsd andmte arenotpredefined in Real-Time Maude. They must be declared and defined by
the user.
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4.2 Formal Analysis in Real-Time Maude

Our tool translates a timed module into an untimed module which can be executed in Maude.
However, the following reasons indicate that it is useful to go beyond Maude’s standard
rewriting, search, and model checking capabilities to execute and analyze timed modules:

— Tick rules are typically time-nondeterministic and cannot be executed directly in Maude.

— It is often more natural to measure and control the rewriting by the total duration of a
computation than by the number of rewrites performed.

— Search and temporal logic properties often involve the duration of a computation (e.qg.,
is a certain state always reached within tinfeis there a potential deadlock in the time
interval[r, r')?).

— One natural way of reducing the reachable state space from an infinite set to a finite
set for model checking purposes is to consider only all behavpr® a certain time
boundr.

In Section 4.2.1 we describe the todise sampling strategiesvhich guide the appli-
cation of time-nondeterministic tick rules. Section 4.2.2 gives an overview of the analysis
commands available in Real-Time Maude. These commands are timed versions of Maude’s
rewriting, search, and model checking commands. To achieve high performance, our tool
executes Real-Time Maude commands by transforming a timed module and command into
an ordinary Maude module and command which is then executed in Maude as explained in
Section 5.

4.2.1 Time Sampling Strategies

The issue of treating admissible time-nondeterministic tick rules is closely related to the
treatment of dense time. The decidable timed automaton formalism [3] “discretizes” dense
time by defining “clock regions,” so that all states in the same clock region are bisimilar and
satisfy the same properties [3]. The clock region construction is possible due to the restric-
tions in the timed automaton formalism, but in general it cannot be employed in the more
complex systems expressible in Real-Time Maude. Our tool instead deals with admissible
time-nondeterministic tick rules by offering a choice of different “time sampling” strategies,
so that instead of covering the whole time domain, adynemoments are visited.

The Real-Time Maude command

(set tick def r .)

for r a ground term of sotime in the “current” module, sets the time sampling strategy to
thedefaultmode, which means that each application of a time-nondeterministic tick rule will
try to advance time by time units. (If the tick rule has the forift), then the time advance
is the minimum ofu andr.) The commandset tick max .) can be used when all time-
nondeterministic tick rules have the foirh) to set a time sampling strategy which advances
time by the largest possible amount, namelyThe commandset tick max def r .)
sets the time sampling strategy to advance time by the maximum possible time lapse
in rules of the form(t) (unlessu equalsINF), and tries to advance time bytime units
in tick rules having other forms. The time sampling strategy stays unchanged until another
strategy is selected by the user. Initially it is setiiterministic(det) mode, in which case
it is assumed that all tick rules are time-deterministic.

All applications of time-nondeterministic tick rules—be it for rewriting, search, or model
checking—are performed using the current time sampling strategy. This means that some
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behaviors in the system, namely those obtained by applying the tick rules differently, are
not analyzed. The results of Real-Time Maude analysis should be understood as being in
general incomplete: counterexamples are true counterexamples, but (except for the case of
discrete time when all states are visited) satisfaction of a property only shows that it holds for
the states visited. We are currently working on identifying classes of real-time systems and
system properties for which a given time sampling strategy actually preserves the relevant
system properties and therefore provides a complete method of analysis.

4.2.2 Real-Time Maude Analysis
Thetimed rewritecommand
(trew [n] in mod : fp in time <= r .)

simulates (at most rewrite steps ofpne behavior of the system, specified by the timed
modulemod, from initial statety (of sortGlobalSystem) up to a total duration less than
or equal to therime value r. The time bound can also have the forfis time < r and
with no time limit. Thetimed fair rewrite(tfrew) command applies the rules in a position-
fair and rule-fair way. The[n]’ and 'in mod :’ parts of the command are optional. Real-
Time Maude’stracing facilities allow us to trace the steps in a timed rewrite sequence
(see [24] for details).

The timed searclcommand can be used to analyze not jsé behavior, but to ana-
lyze all behaviors from a given initial state, relative to the chosen time sampling strategy.
This command extends Maude’s search command to search for states which sedotha
patternand which are reachable in a given time interval. The syntax variations of the timed
search command are:

(tsearch fp arrow pattern with no time limit .)
(tsearch o arrow pattern in time ~ r .)
(tsearch tg arrow pattern in time-interval between ~' r and ~" ¢/ .)

wheretp is a ground term of sodlobalSystem, pattern is eithert or has the fornt such
that cond for a ground irreducible term¢ of sortGlobalSystem and a semantic condition
cond on the variables occurring ity ~ is either<, <=, >, or >=, ~' is either>= or >, ~" is
either<= or <, andr and+’ are ground terms of sartime. Thearrow is the same as in Maude,
where=>1, =>x, and=>+ search for states reachable fragnin, respectively, one, zero or
more, and one or more rewrite steps. The areow is used to search for “deadlocked”
states, i.e., states which cannot be further rewritten. The timed search command can be
parameterized by the number of solutions sought and/or by the module to be analyzed.

Real-Time Maude also has commands which search foedhigesttime and thdatest
time at which a state satisfying the desiredtern can be reached. These commands are
written with syntax

(find earliest tg =>* pattern .)
(find latest fg =>* pattern timeBound .)

11 A term ¢ is ground irreducibleif and only if for all ground substitutions such that, for each variable
z, the ground terno () is irreducible (using the equations in the specification), then the ¢ditis itself
irreducible.



14

We can also analyze dbehaviorsof a system from a given initial state, relative to the
chosen time sampling strategy, using Real-Time Mautleie-bounded explicit-state lin-
ear temporal logic model checke3uch model checking extends Maude'’s high performance
model checker [14] by analyzing the rewrite sequences only up to a given time bound. Tem-
poral formulas are formed exactly as in Maude, that is, as terms dfsattla constructed
by user-defined atomic propositions and operators such dsonjunction),\/ (disjunc-
tion), -> (implication), ~ (negation),[1 (“always”), <> (“eventually”), U (“until’), => (“al-
ways implies”), etc. Atomic propositions, possibly parameterized, are terms of=sgrt
and their semantics is defined by stating for which states a property holds. Propositions may
be clocked in that they also take the elapsed time into account. That is, whether a clocked
proposition holds for a certain state depends not only on the state, but also on the total du-
ration of the rewrite sequence leading up to the state. The propositistkEqualsTime
on page 27 shows an example of a clocked proposition. A module defining the propositions
should import the predefined modul&MED-MODEL-CHECKER and the timed module to be
analyzed. A formula represents an untimed linear temporal logic formulanibtia for-
mula inmetric temporal logi@or some other real-time temporal logic [4]. The syntax of the
time-bounded model checking command is

(mc to |=t formula in time <= r .)

or with time bounds of the forre r orwith no time limit. The model checker in gen-

eral cannoprovea formula correct in the presence of time-nondeterministic tick rules, since
it then only analyzes a subset of all possible behaviors. However, if the tool finds a coun-
terexample, it is a valid counterexample which proves that the formula does noThoé.
boundedmodel checking is guaranteed to terminate for discrete time domains when the
instantaneous rules terminate.

The set of states reachable from an initial state in a timed module may well be finite,
in which case search and model checking should terminate. However, the internal repre-
sentation of a timed module described in Section 5 adds a clock component to each state,
which makes the reachable “clocked state” space infinite, unless the specification is ter-
minating. Real-Time Maude therefore also provideimed searclisyntax (utsearch fy
arrow pattern .)) anduntimed model checkingyntax(mc ty |=u formula .)) where the
internal representation used for the execution does not add a clock, and therefore preserves
the finiteness of the reachable state space.

Real-Time Maude also has commands for checking “until” properties (syiataxk o
|= patterng until patterny timeBound .)) and “until/stable” properties (syntaxheck
to |= pattern; untilStable patternp timeBound .)). While the properties that can be
expressed by these commands are a restricted (but often useful) subset of those expressible
in temporal logic, thecheck commands are implemented using breadth-first search tech-
nigues, and can therefore sometimes decide properties—without restricting the duration of
the behaviors—for which temporal logic model checking does not terminate.

Finally, the user can define his/her own specific analysis and verification strategies using
Real-Time Maude’s reflective capabilities to further analyze a timed module. The predefined
module TIMED-META-LEVEL extends Maude'$lETA-LEVEL module with the functionality
needed to execute timed modules and can be used for these purposes.

4.3 Expressiveness and Limitations of Real-Time Maude

As mentioned in the introduction, our tool emphasizes ease and generality of specification,
so that large and complex systems involving, e.g., different data types and forms of commu-
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nication, can be modeled without having to resort to tricky encodings or imposing limitations
on the system to be modeled. To support this claim, we showed in [28] that a wide range of
models of real-time and hybrid systems, including timed [3] and hybrid automata [2], timed
Petri nets [1], and timed and phase transition systems [21], can all be naturally expressed as
real-time rewrite theories. In addition, Real-Time Maude supports the definition of any com-
putable data type, as well as advanced object-oriented specification features such as multiple
inheritance and creation/deletion of objects and messages. Real-Time Maude does not come
with built-in communication primitives; instead, the user can define her own form(s) of com-
munication at the desired level of abstraction, without having to encode them using a given
set of basic primitives. This has allowed us to model unicast message passing with different
transmission times (see, e.g., Section 6.2) and more advanced communication forms such
as multicast (with appropriate transmission times) through links [29] and geographically
bounded broadcast in wireless sensor network systems [30]. In terms of expressiveness,
Real-Time Maude stands in stark contrast not only to the timed and hybrid automata, but
also to other formalisms and tools, such as the real-time models mentioned above, network
simulation tools, and the IF toolset [6]. Despite this flexibility, our formalism—consisting

of equations and term rewrite rules—is simple and intuitive and has a well-defined and easy
to understand semantics [28].

Given the expressiveness of Real-Time Maude, it is no surprise that most system proper-
ties are in general undecidable. This is different from, e.g., timed automata, whose formalism
is restricted so that crucial properties remain decidable. Nevertheless, for discrete time—
all our larger Real-Time Maude applications have had discrete time domain—Real-Time
Maude search and LTL model checking can often be used to analyze all possible behav-
iors up to a given duration from a given initial state, thus becoming decision procedures. For
dense time, however, our tool only offers a set of time sampling strategies, and, as mentioned
in Section 4.2.1, there is no guarantee that Real-Time Maude search and model checking are
“complete” in these cases. Such analyses cannot be used to prove that some property holds
for all behaviors. They should instead be seen as analyzing a number of behaviors for the
purpose of finding errors or to strengthen our confidence in the specification.

We can summarize the differences between Real-Time Maude and well-known timed
automaton-based tools, such asR4AL [19,5] and Kronos [32], as follows: Many large
and complex systems can be naturally modeled in Real-Time Maude but netrial or
Kronos. This applies to the Real-Time Maude applications listed in Section 6.4, but also
to the smaller examples in Sections 6.2 and 6.3. In Section 6.2, there is no bound on the
number of messages that can appear in the state, so this simple system cannot be modeled
by a timed or a hybrid automaton. The example in Section 6.3 can be modeled by a hybrid
automaton, but due to the uninitialized “stopwatch,” it cannot be modeled withideitie-
able fragments of hybrid automata [16]. Howevamhentimed automaton-based tools can
be applied, they provide the following advantages over Real-Time Maude:

— Model checking? of timed automata is guaranteed to terminate, while the corresponding
Maude analysis may fail to do so.

— UPPAAL, in particular, is a very efficient model checking tool for timed automata, where
sets of clock valuations are represented symbolically. Real-Time Maude, which is not
optimized for the special case of timed automata, uses explicit-state search and model
checking.

12 yppaAL's query language is only a limited subset of (untimed) CTL [5] while Real-Time Maude al-
lows us to define any propositional linear temporal logic formula. Kronos’ query langudieeid CTL
(TCTL) [4].
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— Model checking of timed automata is complete also for dense time.

5 Semantics of Real-Time Maude’s Analysis Commands

Real-Time Maude is designed to take maximum advantage of the high performance of the
Maude engine. Most Real-Time Maude analysis commands are therefore executed by first
transforming the current timed module into a Maude module, followed by the execution of
a corresponding Maude command (at the Mannd¢a-levél. The actual transformation of a
timed module depends on the Real-Time Maude command to execute. This section defines
the semantics of Real-Time Maude’s analysis commands in two ways by providing:

— an “abstract” semantics, which specifies requirements for each command; and
— aconcrete “Maude semantics,” which defines the semantics of a Real-Time Maude com-
mand as the theory transformation and Maude command used to execute it.

In what follows we show how the concrete semantics satisfies the abstract one. The concrete
“Maude semantics” adoptsraductionisticapproach based on semantics-preserving theory
transformations. As explained in Section 5.1, any real-time rewrite theory can be trans-
formed into a semantically equivalent ordinary rewrite theory. This fact is systematically
exploited in our concrete “Maude semantics,” to internally transform real-time commands
into ordinary Maude commands. The subtle point, however, is that, as we explain for each
command, the Real-Time Maude module and command must be transftogetiderinto a
corresponding Maude module and command. This is because the command itself places ad-
ditional constraints, due to, e.g., the specified time bound or the time sampling strategy, that
must be reflected in the transformed theory. For example, the transformed tick rule should
not tick the time beyond the time bound specified in the command.

Section 5.1 describes the “default” transformation of a real-time rewrite theory into an
ordinary rewrite theory, and therefore of Real-Time Maude modules into Maude modules.
Section 5.2 gives the semantics of the time sampling strategies. Sections 5.4 to 5.6 present
the semantics of, respectively, the timed rewrite commands, timed search and related com-
mands, and time-bounded linear temporal logic model checking. Section 5.7 treats Real-
Time Maude’suntimedanalysis commands.

5.1 The Clocked Transformation

Definition 2 Theclocked transformatiorwhich maps a real-time rewrite thea# ; with
% = (Z,E,¢,R) to an ordinary rewrite theory%, ;)¢ = (£¢,E¢,¢“ RY), adds the
declarations

sorts ClockedSystem .

subsort GlobalSystem < ClockedSystem .

op _in time_ : GlobalSystem Timey -> ClockedSystem [ctor]

eq (CLS:ClockedSystem in time R:Tumey) in time R’:Timey =
CLS:ClockedSystem in time (R:Timey —+¢ R’:Timey) .

to (X, E, ), and definesk© to be the union of the instantaneous rulegiand a rule
1 {ty—{t'} in time 7;if cond

for each corresponding tick rule {t} — {¢'} if cond in R.
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This clocked transformation adds a clock component to each state and resembles the
transformatior(_) © described in [28], but is simpler, since it is essentially the identity. It is
worth noticing that the reachable state space from a §tate (%, )¢ is normally infinite,
even when the reachable state space f{omis finite in %, .. The arguments in [28] can
easily be adapted to show:

Fact 1 For all termst¢, ¢’ of sortGlobalSystem and all termsr # Oy, r’ of sort Timeg in
‘%qJ.Tv

® ‘%)¢77FtL>t/ — (=@¢‘,r)ckt—>t/ in time r
— (%(p,r)c Ft¢ in time ' — ¢ in time r/ +4 7, and

0,
(] %¢77Ft—¢>t' <~ (g%’qm)ckt in time ' — ¢ in time 1’

0
In addition, % . - t —- ' <= (%) I t — ¢’ holds whenZ, . contains only admis-
sible tick rules. Moreover, these equivalences hold#fatep rewrites for all.

In Real-Time Maude, thanks to its syntax, this transformation is performed by importing
the moduleTIMED-PRELUDE, which contains the above declarations (Witime for Timey,
etc.), and byleaving the rest of the specification unchangReal-Time Maude internally
stores a timed module by means of its clocked representation. All Full Maude commands
extend to Real-Time Maude and execute this clocked representation of the current timed
module. Fact 1 justifies this choice of execution.

5.2 Time Sampling Strategies

Definition 3 The settss(%y ;) of time sampling strategieassociated with the real-time
rewrite theory% . with # = (X, E, ¢, R) is defined by

tss(Zo,c) = {def (1) | 1 € Ty, Time, } U{maz} U{mazDef (r) | r € Tx, Time, } U{det}.

In Real-Time Maude, these time sampling strategies are “set” with the respective com-
mands(set tick def r .), (set tick max .), (set tick max def r .), and
(set tick det .).

Definition 4 For eachs € tss(%.:), the mapping which takes the real-time rewrite theory
Zy.,7 to the real-time rewrite theoryZs ., in which the admissible time-nondeterministic
tick rules are applied according to the time sampling stratedggydefined as follows:

- %gif(") equalsZ, ;, with the admissible time-nondeterministic tick rules of the forms
(1), (£), (), and(8) in Section 4.1.2 replaced by, respectively, the following tick rtites
— 12t} {t'} if cond A z:=if (u<yr)thenuelserfi Az <y uA cond
ULty {t'yifz:=r A cond Az <¢ u A cond’
-1ty -5 Y if =7 A cond
Lty S {t'y if o =1

13 The Real-Time Maude tool assumes the modified tick rules to be executable, and therefore “removes”
their nonexec attributes. The syntax := w is that of Maude for “matching equations” [10], where the
ground-irreducible patterm (in the above rules is just the variabler) is matched against the result of
evaluatingw.
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If the time domain is linear, so that can be extended to the theocky'IMFE [28], the
first of the above rules can be given in the simpler form

Lty 54t} if cond A @ = ming (u,r) A cond'.

— R3¢ is Xy - with each rule of the forntt) replaced by the rule

{5 ('Y if cond A z:=u A cond’

(and with the other tick rules left unchanged). Notice that the condition does not hold if
u evaluates to the infinity value.

- %’;’f”mﬂ” equals%’gif(” with each()-rule replaced by the rule
1 {1y -ty if cond A z:=if u: Timey then u else r fi Az <y u A cond’.
— R = By .

Real-Time Maude implements these transformations, wéttior <4, etc. We do not
assume that the time domain is linear. By therenttime sampling strategy we mean the
time sampling strategy defined by tlast set tick command given, and we assume that
any time value used in the lasét tick command is a time value in the “current” module.

The set of rewrites using a particular time sampling strategy is a subset of all possible
rewrites:

Fact 2 For eachs € tss(%y.c), #j . - t — t' implies%, - + t — 1’ for all termst, ¢’ of
SortGlobalSystem, and all ground terms of sort Timey . Furthermore, this property holds
for all n-step rewrites.

5.3 Tick Rules withzero Time Advance

Real-Time Maude does not apply a tick rule when time would advance by an amount equal
to zero. This is a pragmatic choice based on the fact that advancing timeiwy using
admissible tick rules does not change the state, but leads to unnecessary looping during
executions. We denote [ the real-time rewrite theory obtained fro; - by adding

the conditiont; # 0, to each tick rule. We write7,':* for (% ;)"

Fact3 2;% - t - t' implies%, . - t — t'. The implication extends to rewrites of length
n for anyn, and is an equivalence for specificatio# . with only admissible tick rules.

5.4 Timed Rewriting

The timed rewrite command
(trew [n] in Hy; : t with no time limit .),

for ¢ a term of sorlobalSystem, returns a ternt’ such that

— %y F t—t' is arewrite in at most steps, and

s,nz

— t' cannot be further rewritten L@W (for s the current time sampling strategy) unless
t — t' is a rewrite in exactly: steps.
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This command is executed at the Maude meta-level by (a call to a built-in function
equivalent to) executing the Maude command

rewrite [n] in (z%’;’:z)c t ot

for s the current time sampling strategy. The correctness of executing the timed command
in this way follows from the fact that if the result is a tetfin time r, then(%, ;") CF

t—t in time r, and we have(,%‘;:ﬁz)c Ft—t in time r = %(;;w Ft—¢

= Ky t—t'. All implications preserve the number of rewrite steps. Finally, it also
follows from Fact 1 that’ cannot be rewritten further i, 7” if ¢’ in time r cannot be
rewritten in (%;:?Z)C. The correctness argument is analogous if the result of the rewrite
command is @lobalSystem termt’.

Let ~ stand for eithex= or <, and let<=4 and<, stand for<, and <,. The time-
bounded rewrite command

(trew [n] in %y : t in time ~ 7 .),
again fort a term of sorttlobalSystem, returns a termt’ such that

- Ry t——t', for ' ~4 r, is a rewrite in at mosk steps, and

/
— either ¢ —— ¢’ is an n-step rewrite, or there is ng’ such thatz,7* - ¢ = " for
r! +¢ r’ ~g T

To execute time-bounded rewrite commands we use a different transformation of a real-
time rewrite theory which ensures that the clocks associated to the states never go beyond
the time limit.

Definition 5 Let Z . be a real-time rewrite theory witt? = (X, E, ¢, R), and letr €
Tx, Time, - The Mapping which take® - to the rewrite theory#, ;)<" = (27, EZ, ¢ R=")
is defined as follows:

- 2B =x%U{[.]:ClockedSystem — ClockedSystem }14,

— EB-EgC

— @B extendsp so thatp”([_1) = 0, and

— R=T"is the union of the instantaneous rules#y . and a rule

11 [{t} in time y] — [{¢'} in time T, +¢ y] if cond A Tj+9y <p 7

for each tick rulel : {1} — {¢'} if cond in Ry 2, Wherey is a variable of sorlimey
which does not occur in the original tick rule.

Fact 4

— Forall v/, 7" with 7" +4 v’ <4 r, we have thatZy . - £ ¢/ if and only if (% :)=" +
[t in time "1 — [¢' in time r” 44 ']. In addition, the number of rewrite steps
are the same in both sides of the equivalence.

= (% 1)=" F [t in time '] —¢" andr’ <, r implies thatt” is a term of the form
[t in time r”] with r” <4 r. That is, it is not possible to rewrite beyond the time
limit.

14 The operator _] is calledglobal in the current implementation of the tool.
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Real-Time Maude executes the time-bounded rewrite command
(trew [n] in %y : t in time <= r .)

by executing the commangwrite [n] in (%#,7°)=" : [t in time Oy] .in Maude.
For the correctness argument, it follows from Fact 4 that the res@i isn time r']
for somer’ <y r since § <, r. By the first part of that fact, it follows that (sincé =

s,nz

Op +¢7') Zyr 1t . #/, which implies%y . -t N Finally, it also follows from Fact 4

that there is no nontrivial rewrite -~ 1 with 1’ o <o rinZy7 i [t in time 1]
cannot be further rewritten iz, 7*)="".

The execution of a timed rewrite command with a time bound of the forris entirely
analogous, with each occurrence of the symboeplaced by the symbat.

5.5 Timed Search

The timed search command

(tsearch [n] in %q,,r : lp =>* t such that cond
in time-interval between ~ r and ~' 7' .)
1
should return at most substitutionso satisfying cond such that%y . + to’"—w(t) for
"~y randr” ~4 r'. Itis executed as the Maude command

search [n] in (%;:?Z)“/T/ :
[to in time Oy] =>* [t in time TIME-ELAPSED]
such that cond /\ TIME-ELAPSED ~o T

for s the current time sampling strategy, artME-ELAPSED a variable of sortlimey which
does not occur in (otherwise a variabl@IME-ELAPSED#1 is used).

For correctness, it is a solution, thetZZ;7*)~""" + [ty in time 0p] —
[6(t) in time o(TIME-ELAPSED)]. By Fact4,5(TIME-ELAPSED) ~ rand

L@;:?z L tocs(TIME‘.—_EL)APSED)G (£), and thereforezy - - toc(TIME—_EL)APSED)G
thesuch that condition implies thats (TIME-ELAPSED) ~ 7.

Real-Time Maude allows the tertiin the search pattern to have the fotfimin time t”,
which is useful for searching for states matching patterns su¢kzasin time z. Such
patterns are treated by replacifiME-ELAPSED with ¢”.

Since all the facts used in the argumentation preserve the number of rewrite steps, the
same translation can be used with the arremssand=>+ instead o&>x*.

It is worth remarking that

(t). Finally,

— the search will return (at most)substitutions on the domairrs(¢) U{TIME-ELAPSED},
which do not necessarily corresponditdistinctsubstitutions when restricted tars(¢);

— the search will terminate if the time domain is discrete (or the time sampling strategy
makesZ,’;” “non-Zeno”), and the instantaneous rules terminate;

— solutionsc with % . - tor—//m(t) can be missed because it may be L@fz W
to " 6 (t).
The time-bounded search command for deadlocks
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(tsearch [n] in %y : to =>! ¢t such that cond

in time-interval between ~ r and ~' 7' .)

searches for substitutions satisfying cond such that%, . - to— o (t) for ~¢ rand
r"" ~4 7', and such thats(¢) cannot be further rewritten i, ;“. The translatiof %’ ey
cannot be used since it would give deadlocks at all states which cannot be further rewritten
within the time bound

The following translation is used instead for searching for deadlocks. It adds a self-loop
whenever a tick rule could advance the total time elapse of a computation beyond the time
limit.
Definition 6 Let % . be a real-time rewrite theory witt¢ = (Z, F ', F R), and letr €
Tx Times - The mapping which take; . to the rewrite theory %, T)<* is defined by
(%p,,)@ = (ZB,EB, @B, R=T), whereR=" is the union of the instantaneous rules#y
and arule

I: [{t} in time y]l — if (T;+¢y <¢ r) then [{¢'} in time T;+¢ y]
else [{t} in time y] fi if cond

for each tick rulel : {3 — {¢'} if cond in ., Wherey is a variable of soriimey which
does not occur in the original tick rule.

The transformatior(l%p‘r)a is defined in the same way.

Since(%’q),yr)@ only modifies(%, )=" by adding trivial rewrites, most of Fact 4 also
holds in (e%’(z,,f)@. Moreover, since the instantaneous rules are unchanged, and since for
each tick rule which can be applied i, ., the corresponding rule can be applied to a
corresponding state i@ﬁw)@, it follows that a term can be rewritten i, . if and only
if it can be rewritten ir(ﬁm)gr

Fact 5

— Forall ¢/, 7" with " +4 1 < r itis the case thatz, ; - t -~ t' it and only if(% <)=" -

[t in time 7] — [¢' in time 7”44 /1. In addition, the number of rewrite steps
can be preserved by the translation.

— (% )="+ [t in time r']1 —t" andr’ <, r imply thatt” is (equivalent to) a term
of the form[¢' in time r”] with " <4 r. Thatis, it is not possible to rewrite beyond
the time Iimi;.

— If Zy - - t —— ' is a one-step rewrite, and’ <¢ rand—(r"+4 ' <4 r), then there is
a one-step “identity” rewrite(%y ;)=" - [t in time r”] — [t in time 7”].

The above timed search command for deadlocks is interpreted by the Maude command

search [n] in (@s m) :
[tp in tlme 0p] =>! [t in time TIME-ELAPSED]
such that cond /\ TIME-ELAPSED ~y 71 .

To see that each solutianis really a deadlock ig,'7*, assume tha#, ;“ - o (t )=t
in one step. It follows from Fact 5 that, dependlng on whetties r/ <¢ r, the term
[G( ) in time 7] rewrites eithertdt¢ in time 7’ +¢ '] orto [G(t) in time 7”]in

one step i %, 7*)~"
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It is worth noticing that a deadlock i#; ;* does not necessarily correspond to a dead-
lock in % -, and that a deadlock i%% . may not necessarily be reached@ﬁjfz.

For search commands with simpler time bounds, a comm@edarch #y arrow t
such that cond in time ~ r .) iS equivalentto(tsearch {#p arrow ¢ such that
cond in time-interval between >= 0¢ and ~ r.) for ~ either<=or<. If ~is either
>= 0or >, the above search command is interpreted by the Maude command

search [n] in (%;ZZ)C : to arrow t in time TIME-ELAPSED
such that cond /\ TIME-ELAPSED ~y 7 .

Atimed search command with boundith no time limit’isthe same asthe correspond-
ing search command with time bournd 0.

5.6 Time-Bounded Temporal Logic Model Checking

What is the meaning of the time-bounded liveness property ¢thek value will always
reach the value4 within time 24” in the following specification?

(tmod CLOCK is protecting POSRAT-TIME-DOMAIN .

op clock : Time -> System [ctor]

vars R R’ : Time .

rl [tick] : {clock(R)} => {clock(R + R’)} in time R’ [nonexec]
endtm)

Real-Time Maude doesot assume that time4 must be “visited” when model checking a
property “within time24.” Such an assumption would make the above property hold within
time 24 but not within time25, and an ordinary simulation would not necessarily reach the
desired state, which is counterintuitive if we have proved that the desired state is always
reached within time4. Instead, time-bounded linear temporal logic formulas will be inter-
preted over all possible paths, “chopped off” at the time limit:

Definition 7 Given a real-time rewrite theor, ., a term¢ of sortGlobalSystem, and a
ground termr of sort Timey, the setPaths(,%@vr)?OT is the set ofll infinite sequences

T = ([to in time 7“0] —>[t1 in time 7’1] — e —>[t7; in time 7"7;] — )
of (%y.c) ¢ -states, withrg = 0y, such that either

— forall i, r; <y rand%y - t; - ti+1 is a one-step sequential rewrite fQr+4 ' =
Ti+1, OF
— there exists & such that )
— either there is a one-step rewri#, - - t;, — t' with r, <4 r and
Tk+o 1 Lo T, OF
— there is no one-step rewrite frotp in % 4,
andZy . - t; 7—'/> ti+1iS @ one-step sequential rewrite with+ 7' = r; 41 for all i < k;
andr; = r, andt; =t forall j > k.

We denote byz(7) theith element of pattx.
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That is, we add a self-loop for each deadlocked state reachable withim tesevell as
for each state whickouldtick beyond timer in one step, even when it coutdso rewrite
to something else within the time limit.

The temporal logic properties are given as ordinary LTL formulas over a set of atomic
propositions. We find it useful to allow bo#tate propositionswhich are defined on terms
of sortGlobalSystem, andclocked propositionswhich can also take the time stamps into
account. To allow clocked propositions, propositions are defined w.rtldlokedrepresen-
tation (%W)C of a real-time rewrite theory?, .. The satisfaction of atateproposition
p € I is independent of the time stamps, so the labeling funcligris extended to a la-
beling LS which is the “smallest” function satisfyingr([t]) C LS ([t]) and Lz ([t']) C
LS([t" in time 7])forall ¢, ¢, andr.

In Real-Time Maude, we declare the atomic (state and clocked) propodiligsterms
of sortProp), and define their semanticgr, in a module which imports the module to be an-
alyzed (represented by its clocked version) and the predefined miiie-MODEL-CHECKER.
The latter extends MaudeDEL-CHECKER module with the subsort declaration

subsort ClockedSystem < State .

Real-Time Maude transforms a modulg,, definingIT andLy into a moduIeMLg defining
the labeling functiorLg by adding the conditional equation

ceq GS:GlobalSystem in time R:Time |= P:Prop = true
if GS:GlobalSystem |= P:Prop .

The definition of the satisfaction relation of time-bounded temporal logic is given as follows:

Definition 8 Given a real-time rewrite theor, -, a protecting extensionyy of (% ;)¢
defining the atomic state and clocked propositibign initial stateg of SortGlobalSystem,
a Timey valuer, and an LTL formula®, we define the time-bounded satisfaction relation

%Sr by
Rpz, Li,lo =<, @ ifandonlyif x, LG =@ for all pathsr € Paths(%w)f}fv

wherel= is the usual definition of temporal satisfaction on infinite paths.

A time-bounded property which holds when a time sampling strategy is taken into ac-
count does not necessarily hold in the original theory. But a counterexample to a time-
bounded formula when the time sampling strategy is taken into account, is also a valid
counterexample in the original system if the time sampling strategy is different deam
and all time-nondeterministic tick rules have the farh:

Fact 6 LetZ, . be an admissible real-time rewrite theory where each time-nondeterministic
tick rule has the form(f) with » a term of sortTimey. Then, for anyTime, value r,
term¢ of sortGlobalSystem, ands € tss(%y ;) With s # det, we havePaths(,%’;j?Z)fr C

Paths(%y )7
Corollary 1 For %z, s, v, andt as in Fact 6,

Ry oLt <, @ implies Xy o, Lt <, .
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Let %, . be the current moduld,; a protecting extension %, )¢ which defines
the propositiondT, and lets be the current time sampling strategy. Furthermorel fgbe
the protecting extension ¢, ;)=" which extends. by adding the equation

[z in time y] |= P =true if z in time y|=P
for variablesz, y, and P. The time-bounded model checking command
(mc tg |=t @ in time <= r .)

is interpreted by checking the ordinary LTL satisfaction

f((%;,?z)§7 [ClockedSystem]) [tp in time Oyl] = @

LG [
using Maude’s model checker. The correctness of this choice is given by the following fact:
Fact 7

Ry 1, L, to =< € ifand only if

H ((%#4,2)=", [ClockedSysteml) ¢, [[{p in time 0y1] = D.

LG’
The validity of this fact is based on the following observations:

— For each pattitp in time rg]—[t1 in time 73] — ---in Paths(%}bﬁ)%r there is
acorresponding patito in time r9]] — [[#1 in time r{]]— ---in
H ((%4,2)=", [ClockedSysten]) , ¢, and vice versa.
7

- LY([t in time 7)) :Lg([[t in time r]]) for all termst andr.

The case where the time bound in a model checking command has the ferm
treated in an entirely similar way. The case with bowadtime 1imit is model checked

by checking whether theS -property® holds in the rewrite theoryZ, ;) c,

5.7 Untimed Search and Model Checking

Real-Time Maude also provides commands datimedsearch and temporal logic model
checking, which are particularly useful when the reachable state space from &tjeisn
finite in %, . but is infinite in(%‘w)c due to the time stamps. The untimed commands use
the transformation which takes a real-time rewrite the@yy, = (X, E, ¢, R) to the rewrite
theory (% )V = (£,E,9,RY), whereRY is the union of the instantaneous ruleszin

and a rulel : {t} —s {t'} if cond for each tick rule of the formi : {t} —% {t'} if cond in
R. Since(%,.:) Y just ignores the durations of tick rules, it follows that the one-step rewrite
relations in(%,.)V and in%, . are the same.

Real-Time Maude’s untimed search command, with syrfieesearch [n] { arrow
pattern .), and the untimed model checking command, with syax #5 |=u @ .), are
executed by the corresponding commands in Maude on the rewrite th@g&) U for s
the current time sampling strategy. The formdiahould not contain clocked propositions.
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5.8 Other Analysis Commands

The execution offind earliest fp =>* t such that cond .) in a module%, ., relative
to a chosen time sampling strategyuses Maude’s search capabilities to return a tefm)

s,nz

in time r, such thatz,;* - to— o (t) for o satisfyingcond, and such that there is no

s,nz

o’ satisfying cond andr’ with ' <4 r and %y 7" - toiwr’(t). The execution of this
command may loop if there is no such match

The (find latest fy =>* t such that cond timeBound .) command (whereéme-
Bound is either with no time limit, in time < 7, Or in time <= r for some time
value r) analyzes all behaviors iw; 7* and finds the longest time needed, in the worst
case, to reach &state fromty. That is, for timeBound of the form<= r, the command
looks for a(% ) “-termo(t) in time 7/, with o satisfyingcond, such that

— for eachr € Paths(%sz’;z)f{ there existo’ (satisfyingcond), i, andr” such thatr (i)
equalgo’(t) in time r’'[;

— there exists a (worst) path ¢ Paths(%;:?z)%r and a numbet such thatr (i) equals
[6(t) in time '] and such that there are rio< i, o’ satisfying cond, andr” with
n(k) = [G/(t) in time r”]; and

— for each pathr € Paths(,%(‘;jfz)fg, if #(:) equals[o’(t) in time ] for somes, o’
satisfyingcond, andr” with v <4 r/, then there exists &< i such thatt(k) = [0” ()

in time 7"’ for somec” satisfyingcond andr”’.

The cases withtimeBound of the forms< r andwith no time limit are defined in a
similar way.

For thecheck commands, lep; be a patterrt; such that cond;, fori € {1,2}, where
t; is a ground irreducible term of satlLobalSystem Or SOrtClockedSystem. We can view
eachp; as a proposition and can define the labeling funcfigp ,,; on (Ry.7)“-states by
pi € Ly, py} ([t]) if and only if there exist &’ € [¢t] and a substitutior satisfying cond;
such that’ = o(p;). The commandcheck #p |= pj until py in time <=r .) checks the
until property

%;:?27[’{121.1)2}7 to ':Sr p1Up2,

and the commandcheck #y |= p; untilStable py in time <= r .) checks whether the
propertyp, is in addition stable, i.e., it checks the “until/stable” temporal property

Ry'x"  Lipy poyto E<r (p1Up2) /\ (p2=> 11 p2).

The treatment of time bounds of the formg andwith no time limit iS analogous.
Notice that thefind 1atest command implicitly contains a check of the liveness property
<> pattern.

Thefind latest andcheck commands are implemented by breadth-first search strate-
gies, and can therefore sometimes decide properties for which the temporal logic model
checker fails. In addition, the user does not need to explicitly define temporal logic proposi-
tions for these commands. On the minus side, performance may be affected by the fact that
these commands do not use Maude’s efficient search or model checking facilities.

6 Using Real-Time Maude

In this section we first illustrate specification and analysis in Real-Time Maude with a very
simple example (Section 6.1), followed by a more interesting example illustrating object-
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oriented specification (Section 6.2) and by a srhalhrid system example (Section 6.3).
Finally, Section 6.4 mentions some larger Real-Time Maude applications.

6.1 A Clock Example

The following timed module models a “clock” which may be running (in which case the
system is in statéclock (r) } for r the time shown by the clock) or which may have stopped
(in which case the system is in stafgtopped-clock(r)} for r the clock value when it
stopped). When the clock shows it must be reset to immediately:

(tmod DENSE-CLOCK is protecting POSRAT-TIME-DOMAIN .
ops clock stopped-clock : Time -> System [ctor]
vars R R’ : Time .
crl [tickWhenRunning] : {clock(R)} => {clock(R + R’)} in time R’
if R’ <= 24 - R [nonexec]
rl [tickWhenStopped]
{stopped-clock(R)} => {stopped-clock(R)} in time R’ [nonexec]

rl [reset] : clock(24) => clock(0)
rl [batteryDies] :  clock(R) => stopped-clock(R)
endtm)

The two tick rules model the effect of time elapse on a system by increasing the clock
value of a running clock according to the time elapsed, and by leaving a stopped clock un-
changed. Time may elapse Ggyamount of time less thazt - r from a state{clock(r)},

and by any amount of time from a stafetopped-clock(r)}. To execute the specifica-

tion we should first specify a time sampling strategy, for example by giving the command

(set tick def 1 .).The commantP

(trew {clock(0)} in time <= 99 .)

Result ClockedSystem : {stopped-clock(24)} in time 99
then simulates one behavior of the system up to total duratioithe command

(tsearch [1] {clock(0)} =>* {clock(X:Time)} such that X:Time > 24
in time <= 99 .)

No solution

checks whether some stditelock (7) }, with r > 24, can be reached from stafelock (0)}
in time less than or equal . Not surprisingly, thesarliesttime the clock can showo is
after time10 has elapsed in the system:

(find earliest {clock(0)} =>* {clock(10)} .)

Result: {clock(10)} in time 10

A correspondingind latest search for statéclock(10)} will find that there are paths
in which the desired state is never encountered:

15 For each command we also present—in italics—the result of executing the command in Real-Time
Maude.
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(find latest {clock(0)} =>* {clock(10)} in time <= 24 .)

Result: there is a path in which the pattern is not reachable
in time <= 24

Since the reachable state space is finite when we take the time sampling into account, we
can check whether a stafelock(r)}, with r > 24, can be reached from staelock(0)}
by giving theuntimedsearch command

(utsearch {clock(0)} =>* {clock(X:Time)} such that X:Time > 24 .)

No solution
The command

(utsearch [1] {clock(0)} =>! G:GlobalSystem .)

No solution
shows that there is no deadlock reachable ff@rock (0) }. Finally, the command

(utsearch [1] {clock(0)} =>* {clock(1/2)} .)

No solution

will not find the sought-after state, since it is not reachable with the current time sampling
strategy.

We are now ready for some temporal logic model checking. The following module de-
fines thestatepropositionslock-dead (which holds for all stopped clocks) aatlock-is (1)
(which holds if arunning clock showsr), and theclockedpropositionclockEqualsTime
(which holds if the running clock shows the time elapsed in the system):

(tmod MODEL-CHECK-DENSE-CLOCK is including TIMED-MODEL-CHECKER .
protecting DENSE-CLOCK .
ops clock-dead clockEqualsTime : -> Prop [ctor]
op clock-is : Time -> Prop [ctor]
vars R R’ : Time .

eq {stopped-clock(R)} = clock-dead = true .

eq {clock(R)} = clock-is(R’) = (R == R’)

eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’)
endtm)

The model checking commatfi

(mc clock(0) |=u [] ~ clock-is(25) .)

Result Bool : true

checks whether the clock is always different framin each computation (relative to the
chosen time sampling strategy). The command

16 Recall that 1=u’ stands foruntimedmodel checking, where the total duration is not taken into account
in the analysis.
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(mc {clock(0)} |=t clockEqualsTime U (clock-is(24) \/ clock-dead)
in time <= 1000 .)

Result Bool : true

checks whether the clock always shows the correct time, when started{ ek (0) },
until it shows24 or is stopped. (Since this latter property involves clocked propositions, we
must use théimedmodel checking command.)

Finally, Real-Time Maude’s model checker provides a counterexample if the tempo-
ral logic property does not hold. For example, it is not always the case that starting from
{clock(0)} one will always reach a state where the clock shaws

(mc clock(0) |=u <> clock-is(3) .)

Result ModelCheckResult :
counterexample ({{clock(0)}, ’tickWhenRunning}
{{clock(1)}, ’tickWhenRunningl
{{clock(2)}, ’batteryDies} ,
{{stopped-clock(2)}, ’tickWhenStopped})

In this counterexample, the clock ticks (using redekWhenRunning) t0 {clock(2)}, when
the rulebatteryDies is applied, leading to the stafetopped-clock(2)}, from which the
system will self-loop forever using rukei ckWhenStopped.

6.2 An Object-Based Network Protocol Example

We illustrate real-time object-oriented specification with a protocol for computingd

trip times(i.e., the time it takes for a message to travel from an initiator node to a responder
node, and back) between pairs of nodes in a network. The setting is simplified to illustrate
key features of object-oriented real-time specifications—such as timers and the functions
delta andmte—without drowning the reader in details. A Real-Time Maude specification
of a “real” protocol for estimating round trip times is given as part of the specification of the
AER/NCA protocol suite [29].

The setting is simple: each node is interested in finding the round trip time to exactly
one other node. Communication is modeled very generally by “ordinary” message passing,
where it may take a messagryamount of time to travel from one node to another.

The protocol is equally simple: An initiator objegthas a local clock and starts a run of
the protocol by sending arttReq message to its neighbef with its current time stamp
(rule startSession). When the neighbos’ receives thettReq message, it replies with an
rttResp message, to which it attaches the received time stafnde rttResponse). When
the initiator noder reads therttResp with its original time stamp:, the rtt value is just its
current clock value minus the original time stamfrule treatRttResp).

One problem with this version of the protocol is that it may happen that the response
message is not received within reasonable time. In such cases it is appropriate to assume that
there is a problem with the message delivery. Therefore, only round trip times less than a
time valueMAX-DELAY are considered (rulegnore01ldResp ignores responses which are too
old). If the initiator does not receive a response in time lessMA&ADELAY, it has to initiate
another round of the protocol exactly tim&X-DELAY after its first attempt (ruléryAgain).
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The process is repeated until an rtt value less the+DELAY is found. A findRtt (o)
message “kicks off” a run of the protocol for object

In the following specification, eadbde object uses aimer attribute to ensure that a
new attempt is initiated at eveMAX-DELAY time units, until an rtt value is found. If the
timer has valuer, it must “ring” in time r from the current time. The timer is turned off
when its value iSNF. The classiode has the attributesbr, which denotes the node whose
rtt value it is interested in, and @ ock attribute denoting the value of its local clock. The
rtt attribute stores the rtt to its preferred neighbor:

(tomod RTT is protecting NAT-TIME-DOMAIN-WITH-INF .
op MAX-DELAY : -> Time . eq MAX-DELAY = 4 .

class Node | clock : Time, rtt : TimeInf,
nbr : 0id, timer : TimeInf

msgs rttReq rttResp : 0id 0id Time -> Msg .
msg findRtt : 0id -> Msg . --- start a run

vars 0 0’ : 0id . vars R R’ : Time . var TI : TimeInf .

—--- start a session, and set timer:
rl [startSession]
findRtt(0) < 0 : Node | clock : R, nbr : 0’ > =>
< 0 : Node | timer : MAX-DELAY > rttReq(0’, 0, R)

--- respond to request:
rl [rttResponse]

rttReq(0, 0, R) < 0 : Node | > =>
< 0 : Node | > rttResp(0’, 0, R)
--- received resp within time MAX-DELAY;
- record rtt value and turn off timer:
crl [treatRttResp]

rttResp(0, 0°, R) < 0 : Node | clock : R’ > =>

< 0 : Node | rtt : (R’ monus R), timer : INF >
if (R’ monus R) < MAX-DELAY .

--- ignore and discard too old message:

crl [ignoreOldResp]
rttResp(0, 0°, R) < 0 : Node | clock : R> > => < 0 : Node | >
if (R’ monus R) >= MAX-DELAY .

--- start new round and reset timer when timer expires:
rl [tryAgain] :

< 0 : Node | timer : 0, clock : R, nbr : 0’ > =>

< 0 : Node | timer : MAX-DELAY > rttReq(0’, O, R)

--- tick rule should not advance time beyond expiration of a timer:
crl [tick]
{C:Configuration} => {delta(C:Configuration, R)} in time R
if R <= mte(C:Configuration) [nonexec]

--- the functions mte and delta:
op delta : Configuration Time -> Configuration [frozen (1)]
eq delta(none, R) = none .
eq delta(NEC:NEConfiguration NEC’:NEConfiguration, R) =
delta(NEC:NEConfiguration, R) delta(NEC’:NEConfiguration, R)
eq delta(< 0 : Node | clock : R, timer : TI >, R’) =
< 0 : Node | clock : R + R’, timer : TI monus R’ > .
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eq delta(M:Msg, R) = M:Msg .

op mte : Configuration -> TimeInf [frozen (1)]
eq mte(none) = INF .
eq mte(NEC:NEConfiguration NEC’:NEConfiguration) =
min(mte (NEC:NEConfiguration), mte(NEC’:NEConfiguration))
eq mte(< 0 : Node | timer : TI >) = TI .
eq mte(M:Msg) = INF .
endtom)

This use of timers, clocks, and the functiafise and delta is fairly typical for object-
oriented real-time specifications. Notice that the tick rule may advance time when the con-
figuration contains messages. The following timed module defines an initial state with three
nodesni, n2, andn3:
(tomod RTT-I is including RTT .
ops nl n2 n3 : -> 0id .
op initState : -> GlobalSystem .
eq initState =
{findRtt(n1) findRtt(n2) findRtt(n3)
< nl : Node | clock : O, timer : INF, nbr : n2, rtt : INF >
< n2 : Node | clock : O, timer : INF, nbr : n3, rtt : INF >

< n3 : Node | clock : O, timer : INF, nbr : nl, rtt : INF >} .
endtom)

The reachable state space frafiitState is infinite, since the time stamps and clock values
may grow beyond any bound and the state may contain any number of old messages. Search
and model checking should be time-bounded to ensure termination. We set the time sampling
strategy with the comman¢set tick def 1 .) to cover the discrete time domain.

The command

(tsearch [1]
initState =>* {C:Configuration
< 0:0id : Node | rtt : X:Time,
ATTS:AttributeSet >}
such that X:Time >= 4
in time <= 10 .)

No solution

checks whether a state with an undesired value> 4 can be reached within time. The
command

(tsearch [1]
initState =>* {C:Configuration
< nl : Node | rtt : 2, ATTS:AttributeSet >
< n2 : Node | rtt : 3, ATTS’:AttributeSet >}
in time <=5 .)

Solution 1
ATTS’ :AttributeSet <- clock : 3, nbr : n3, timer : INF ;
ATTS:AttributeSet <- clock : 3, nbr : n2, timer : INF ;
C:Configuration <-
findRtt (n3)
< n3 : Node | clock : 3, nbr : nl, rtt : INF, timer : INF >
TIME_ELAPSED:Time <- 3

s
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checks whether a state withit values2 and3 can be reached.

We illustrate temporal logic model checking by proving that there arsuperfluous
messages being sent around in the system aftertarvalue has been found. That is, if
an objecto has found arrtt value, then there is nettReq(o’, o, ) or rttResp(o, o, 7)
message with +MAX-DELAY > ¢, for ¢ the value of’s clock. The following module defines
the propositiorsuperfluousMsg:

(tomod MC-RTT is including TIMED-MODEL-CHECKER . protecting RTT-I .
op superfluousMsg : -> Prop [ctor]
vars REST : Configuration . vars 0 0’ : 0id . vars R R’ R’’ : Time .

ceq {REST < 0 : Node | rtt : R, clock : R’ > rttReq(0’, 0, R’’)}

|= superfluousMsg = true if R’’ + MAX-DELAY > R’
ceq {REST < 0 : Node | rtt : R, clock : R’ > rttResp(0, 0°, R*’)}
|= superfluousMsg = true if R’’ + MAX-DELAY > R’

endtom)

The command

(mc initState |=t [] ~ superfluousMsg in time <= 10 .)

Result Bool : true

proves that there are no superfluous messages in the system withirotiMere interesting
temporal properties about similar specifications are given in [24]; examples of sophisticated
Real-Time Maude model checking are provided in [29].

6.2.1 Modeling Different Message Transmission Delays

In the above model, the transmission of a message caratakemount of time> 0. The
equation

eq mte(M:Msg) = INF .

implies that time progress is not impeded by the presence of messages in the configuration,
thus allowing a message to remain “forever” in the configuration without being read. As for
the lower bound, we see that, e.g.,tReq message created in the rulesartSession
andtryAgain can be read in the rulec tResponse without the tick rule having been applied
in-between.

In this section we show how to modify the modalIer to model the settings where:

1. ittakes a message leasttime MIN-TRANS-TIME to travel from its source to its destina-
tion; and
2. it takes a messagmactlytime MIN-TRANS-TIME to travel from source to destination.

In addition, we will briefly indicate how to model message transmission times in more detalil
by considering the physical properties of thks through which the messages travel.

To model “delay” in message transmission, we add a delay operagasf a supersort
D1lyMsg. The meaning odly(m,r) is that the message will be “ripe” in time r. That s, it
will becomem in time r. It is obvious that we wantly(m,0) = m, so the delay operator
is declared to haveght identityo:

sort DlyMsg . subsorts Msg < DlyMsg < NEConfiguration .
op dly : Msg Time -> DlyMsg [ctor right id: 0]
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To send a message which will take at least tim®IN-TRANS-TIME to reach its destina-
tion, the messagély(m, MIN-TRANS-TIME) should be sent. For example, thight-hand
side of the rulesryAgain andstartSession should in this case be

< 0 : Node | timer : MAX-DELAY >
dly(rttReq(0’, 0, R), MIN-TRANS-TIME)

Theleft-handsides of the message-consuming rules should not change: only ripe messages
should be read. The equation defining the functiebta on single messages must be re-
placed by the equation

eq delta(dly(M:Msg, R), R’) = dly(M:Msg, R monus R’) .

(This equation also applies to ripe messages, sineadly (m, 0) follows fromdly being
declared to have right identity.) This technique modelsinimumtransmission delay in
message passing communication.

To model setting (i), where th@maximunmpossible message transmission is unbounded,
we use the equation

eq mte(DM:D1lyMsg) = INF .

For setting (ii), where thexactmessage transmission time equals the smallest possible
transmission time, we replace the above equationferby

eq mte(dly(M:Msg, R)) = R .

so that thente Of a ripe message i3 (again, due to the right identity @afLy). With the last
equation, time cannot advance when a ripe message is present in the configuration, forcing
ripe messages to be treated without delay.

The manual [24] presents these versions—as well as more sophisticated ones—of our
RTT example in detail.

Links. An alternative way of modeling communication is to use explick objects inside

which packets travel from source to destination. Such a more detailed model of links—
where the delay of a packet is given as a function of the propagation delay and the speed of
the link, the delays of the other packets in the link, and the size of the packet—was needed
in the AER/NCA case study, and is described in [29, Section 4.6.1].

6.3 A Hybrid System Example: A Thermostat

We finish our collection of examples with a smhlfbrid system example: A thermostat
works by turning on and off a heater in order to maintain a temperature between 62 and 74
degrees. When the heater is turned off, the temperature decreasas biggreeer time

unit, and when the heater is turned on the temperature increaseslegreegper time

unit.t” In addition, the thermostat is equipped with a “stopwatch” which keeps track of the
total time that the heater has been turoedso that the local energy company can charge
the correct amount to the user.

Assuming that the time and temperature domains can be modeled by the nonnegative ra-
tional numbers, a Real-Time Maude specification of the thermostat can be given as follows,
wherel, z, d denotes the state of the system, witlthe current temperaturé the current
control state (eithesn or off), andd the total duration that the heater has been on.

17 For simplicity, we use linear functions to describe temperature increases or decreases. More complex
dynamics can also be modeled in Real-Time Maude by defining the necessary functions.
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(tmod THERMOSTAT is
protecting POSRAT-TIME-DOMAIN . --- Dense time domain
sort ThermoState .
ops on off : -> ThermoState [ctor]

op _¢,_“,_ : ThermoState PosRat PosRat -> System [ctor]
vars R R’ R’’ : Time .

rl [turn-on] : off, 62, R => on, 62, R .
rl [turn-off] : om, 74, R => off, 74, R .

crl [tick-on]
{on, R, R°} => A{on, R+ (2 *x R’’), R> + R’} in time R’’
if R’’> <= ((74 - R) / 2) [nonexec]

crl [tick-off]
{off, R, R’} => A{off, R - R’’, R’} in time R’’
if R’’ <= (R - 62) [nonexec]
endtm)

This system, with its uninitialized “stopwatch,” cannot be expressed by timed automata or
by decidable classes of hybrid automata [16].

6.4 Some Real-Time Maude Applications

Real-Time Maude is particularly suitable for specifying distributed systems in an object-
oriented style. All our larger Real-Time Maude applications have, as mentioned above, been
so specified. They include the formal specification and analysis of:

— The new and sophisticated AER/NCA suite of protocols [18] that intend to achieve re-
liable, scalable, and TCP-friendly multicast in active networks. Real-Time Maude anal-
ysis uncovered subtle design errors which could not be found by traditional testing by
the protocol developers, while independently finding all bugs discovered by such test-
ing [29].

— The NORM multicast protocol developed by the Internet Engineering Task Force [20].

— A series of new scheduling algorithms, with advanced capacity sharing facilities, for
real-time systems [25].

— Advanced wireless sensor network protocols [30].

In addition, we showed in [28] that real-time rewrite theories can be seen as a semantic
framework in which a wide range of models of real-time and hybrid systems can be nat-
urally represented. Therefore, Real-Time Maude has the potential to serve as an execution
and analysis environment for other real-time formalisms not having tools of their own. Thus
far, an execution environment for a real-time extension of the Actor model has been devel-
oped [13].
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7 Concluding Remarks

We have presented Real-Time Maude, have described and illustrated its features, and have
documented the tool's semantic foundations. Perhaps the most important lesson learned is
that formal specification and analysis of real-time systems—including distributed object-
based systems with real-time features—can be supported with good expressiveness and with
reasonable efficiency in important application areas outside the scope of current decision
procedures. What seems desirable for system design purposes is tospaetranof anal-
ysis methods that spans automated verification on one side and simulation and testbeds on
the other. We view Real-Time Maude as addressing the middle area of this spectrum, and
providing a good semantic basis for integrating other methods on the spectrum’s edges in
the future.

Several research directions should be investigated in the near future:

1. the current incomplete analyses due to choices in the time sampling strategies should
be made complete by identifying useful system classes for which such strategies are
complete, and by developing new abstraction techniques;

2. the use of Real-Time Maude specifications to generate code meeting desired real-time
requirements should be investigated; and

3. symbolic reasoning and deductive techniques complementing the current analysis capa-
bilities should be developed.

Of course, all these future developments should be driven by new applications and case stud-
ies. We hope that the current tool will stimulate users to contribute their ideas and experience
in advancing the research areas mentioned above and many others.
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