

AFRL-RI-RS-TR-2008-139
Final Technical Report
May 2008

EVALUATION OF THE IMPLICATIONS OF
NANOSCALE ARCHITECTURES ON
CONTEXTUAL KNOWLEDGE DISCOVERY AND
MEMORY: SELF-ASSEMBLED ARCHITECTURES
AND MEMORY

Duke University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-139 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

THOMAS E. RENZ JAMES A. COLLINS, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAY 08
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Dec 04 – Dec 07
4. TITLE AND SUBTITLE

EVALUATION OF THE IMPLICATIONS OF NANOSCALE
ARCHITECTURES ON CONTEXTUAL KNOWLEDGE DISCOVERY
AND MEMORY: SELF-ASSEMBLED ARCHITECTURES AND
MEMORY

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-05-2-0018

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Chris Dwyer

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
20

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Duke University
334 N. Building Research Dr.
Durham NC 27708-9900

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITC
525 Brooks Rd
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-139

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-3187

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Computing systems with advanced situational awareness and the ability to use contextual knowledge to interpret sensor data have the
potential to be instrumental in many contexts. This project developed three systems to query a database with immense numbers of
objects and rich sets of contextual relationships. In particular, large-scale content addressable memory systems provide a better
solution to the knowledge discovery problem than conventional general-purpose memory systems. This project studied three
systems: 1) a conventional system, 2) a conventional system optimized for online (i.e. real-time) use, and 3) a novel DNA self-
assembled nanoelectronic system. The project developed tools for DNA self-assembly to provide simulation capabilities for
evaluating the three systems and the data has shown that significant performance enhancements can be achieved by optimization.
Further, when self-assembling technologies mature they will be able to achieve greater performance due to the massive parallelism
inherent in the knowledge discovery problem.
15. SUBJECT TERMS
Associative Memory, Content Addressable Memory, Nanoelectronics, DNA Self-Assembly

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

82

19a. NAME OF RESPONSIBLE PERSON
Thomas Renz

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 i

Table of Contents
 List of Figures ... ii
 List of Tables ... v
1. Summary ... 1
2. Methods, Assumptions, and Procedures ... 2
3. Major Results and Discussion ... 2

3.1 Data Mining and Contextual Knowledge Discovery .. 2
3.1.1 Closed Frequent Item Set Mining ... 3
3.1.2 Performance Characterization ... 3
3.1.3 System Configuration ... 4
3.1.4 Methodology ... 5
3.1.5 Profiling Results.. 7
3.1.6 Performance Characterization ... 7
3.1.7 Symbolic Profiling .. 28
3.1.8 Data Structure Modifications .. 38
3.1.9 Dynamic Cluster Sizing .. 42
3.1.10 Summary ... 50
3.1.11 References ... 50

3.2 A Defect Tolerant Self-organizing Nanoscale SIMD Architecture 52
3.2.1 DNA-based Self-Assembled Nanoscale Systems and the Arch. Implications 53
3.2.2 System Overview .. 54
3.2.3 Node Microarchitecture .. 54
3.2.4 System Configuration ... 56
3.2.5 System Architecture .. 57
3.2.6 Evaluation ... 58
3.2.7 Conclusions ... 64
3.2.8 References ... 64

4. Final Conclusions.. 67
4.1 Substrate Stabilization and Analysis ... 67
4.2 Scientific Computing on Self-Organized Substrates .. 68
4.3 Defect Tolerant Computer Architecture Results ... 69
4.4 Advances in DNA Nanogrid Synthesis ... 70
4.5 DNA Self-assembly CAD Results .. 70
4.6 Computer Architecture Survey Results .. 71
4.7 Data Mining Results ... 72
4.8 References ... 73

 ii

List of Figures
Figure 1: Distribution of Closed Frequent Itemsets .. 8
Figure 2: Execution cycles (Pentium III) .. 8
Figure 3: Instruction per Cycle (IPC) (Pentium III) ... 9
Figure 4: L1 Data and L2 Cache Miss Rates (Pentium III) .. 9
Figure 5: Execution cycles (Pentium 4) .. 10
Figure 6: Instruction per Cycle (IPC) (Pentium 4) ... 10
Figure 7: L1 Data and L2 Cache Load Miss Rates (Pentium 4) ... 11
Figure 8: Data TLB Load Miss Rates (Pentium 4) ... 11
Figure 9: Distribution of Closed Frequent Itemsets .. 12
Figure 10: Execution cycles (Pentium III) .. 12
Figure 11: Instruction per Cycle (IPC) (Pentium III) ... 13
Figure 12: L1 Data and L2 Cache Miss Rates (Pentium III) .. 13
Figure 13: Execution cycles (Pentium 4) .. 14
Figure 14: Instruction per Cycle (IPC) (Pentium 4) ... 14
Figure 15: L1 Data and L2 Cache Load Miss Rates (Pentium 4) ... 15
Figure 16: Data TLB Load Miss Rates (Pentium 4) ... 15
Figure 17: Distribution of Closed Frequent Itemsets .. 16
Figure 18: Execution cycles (Pentium III) .. 16
Figure 19: Instruction per Cycle (IPC) (Pentium III) ... 17
Figure 20: L1 Data and L2 Cache Miss Rates (Pentium III) .. 17
Figure 21: Execution cycles (Pentium 4) .. 18
Figure 22: Instruction per Cycle (IPC) (Pentium 4) ... 18
Figure 23: L1 Data and L2 Cache Load Miss Rates (Pentium 4) ... 19
Figure 24: Data TLB Load Miss Rates (Pentium 4) ... 19
Figure 25: Distribution of Closed Frequent Itemsets .. 20
Figure 26: Execution cycles (Pentium III) .. 20
Figure 27: Instruction per Cycle (IPC) (Pentium III) ... 21
Figure 28: L1 Data and L2 Cache Miss Rates (Pentium III) .. 21
Figure 29: Execution cycles (Pentium 4) .. 22
Figure 30: Instruction per Cycle (IPC) (Pentium 4) ... 22
Figure 31: L1 Data and L2 Cache Load Miss Rates (Pentium 4) ... 23
Figure 32: Data TLB Load Miss Rates (Pentium 4) ... 23
Figure 33: Distribution of Closed Frequent Itemsets .. 24
Figure 34: Execution cycles (Pentium III) .. 24
Figure 35: Instruction per Cycle (IPC) (Pentium 4) ... 25
Figure 36: L1 Data and L2 Cache Miss Rates (Pentium III) .. 25
Figure 37: Execution cycles (Pentium 4) .. 26
Figure 38: Instruction per Cycle (IPC) (Pentium 4) ... 26
Figure 39: L1 Data and L2 Cache Load Miss Rates (Pentium 4) ... 27
Figure 40: Data TLB Load Miss Rates (Pentium 4) ... 27
Figure 41: Execution Cycles Symbol Profile .. 28
Figure 42: L1 Data Cache Misses Symbol Profile .. 29
Figure 43: L2 Cache Misses Symbol Profile .. 29
Figure 44: Execution Cycles Symbol Profile .. 30
Figure 45: L1 Data Cache Misses Symbol Profile .. 30

 iii

Figure 46: L2 Cache Misses Symbol Profile .. 31
Figure 47: Execution Cycles Symbol Profile .. 31
Figure 48: L1 Data Cache Misses Symbol Profile .. 32
Figure 49: L2 Cache Misses Symbol Profile .. 32
Figure 50: IPC comparison between insert() and rest of the functions ... 33
Figure 51: Miss Rate comparison between insert() and rest of the functions 33
Figure 52: IPC comparison between insert() and rest of the functions ... 34
Figure 53: Miss Rate comparison between insert() and rest of the functions 34
Figure 54: IPC comparison between insert() and rest of the functions ... 35
Figure 55: Miss Rate comparison between insert() and rest of the functions 35
Figure 56: Proportion of cycles and misses in the search within insert for retail dataset 36
Figure 57: Proportion of cycles and misses in the search within insert for pumsb dataset 36
Figure 58: Proportion of cycles and misses in the search within insert for accident dataset 37
Figure 59: Performance Improvement for different composite node sizes for retail dataset 39
Figure 60: Performance Improvement for different composite node sizes for bmspos dataset 39
Figure 61: Performance Improvement for different composite node sizes for accident dataset .. 40
Figure 62: Performance Improvement for different composite node sizes for kosarak dataset ... 40
Figure 63: Performance Improvement for different composite node sizes for retail dataset 41
Figure 64: Performance Improvement for different composite node sizes for bmspos dataset 41
Figure 65: Performance Improvement for different composite node sizes for accident dataset .. 42
Figure 66: Performance Improvement for different composite node sizes for kosarak dataset. .. 42
Figure 67: Performance Improvement of dynamic scheme for retail dataset on Pentium III 43
Figure 68: Performance Improvement of dynamic scheme for bmspos dataset on Pentium III ... 43
Figure 69: Performance Improvement of dynamic scheme for kosarak dataset on Pentium III .. 44
Figure 70: Performance Improvement of dynamic scheme for accident dataset on Pentium III . 44
Figure 71: Performance Improvement of dynamic scheme for retail dataset on Pentium 4 44
Figure 72: Performance Improvement of dynamic scheme for bmspos dataset on Pentium 4 45
Figure 73: Performance Improvement of dynamic scheme for kosarak dataset on Pentium 4 45
Figure 74: Performance Improvement of dynamic scheme for accident dataset on Pentium 4 ... 46
Figure 75: Performance Comparison for retail dataset on Pentium III ... 46
Figure 76: Performance Comparison for bmspos dataset on Pentium III 47
Figure 77: Performance Comparison for kosarak dataset on Pentium III 47
Figure 78: Performance Comparison for accident dataset on Pentium III 48
Figure 79: Performance Comparison for retail dataset on Pentium 4 ... 48
Figure 80: Performance Comparison for bmspos dataset on Pentium 4 49
Figure 81: Performance Comparison for kosarak dataset on Pentium 4 49
Figure 82: Performance Comparison for accident dataset on Pentium 4 50
Figure 83. Self-assembled network of nodes. ... 53
Figure 84. Node floorplan. .. 55
Figure 85: Matrix multiply: assembly code w/o loop unrolling. .. 61
Figure 86: Single Cell Program Runtimes: (a) Matrix Multiplication, (b) Gaussian Filter, (c)
Median Filter and (d) Sort. The vertical line denotes the input size beyond which SOSA does
better than the Pentium 4. ... 61
Figure 87: TEA/XTea: Graceful degradation of throughput with increasing node defect rate. ... 63
Figure 88: Matrix multiply: The effect of defects on execution time ... 63

 iv

Figure 89: Results from denaturation experiment. The insets above each bar are a section of the
AFM image from each sample. ... 67
Figure 90: (a), (b) Two individual 8x8 DNA grids. Each grid is 140nm x 140nm. (c) An un-
optimized 8x16 DNA grid built using two 8x8 grids. .. 70
Figure 91: Four patterned DNA grids. Each image represents a wire-like motif that can be found
in typical logic circuitry. ... 70

List of Tables

Table 1: Dataset Description ... 4
Table 2: Dataset Characteristics .. 4
Table 3: Pentium III System configuration ... 5
Table 4: Pentium 4 System configuration ... 5
Table 5: SimpleScalar System Description... 6
Table 6: SimpleScalar Simulation Results for a Perfect and Real Memory Hierarchy 37
Table 7: SimpleScalar Simulation Results depicting the effect of Instruction Window Width ... 37
Table 8. Instruction set architecture. ... 58
Table 9. SOSA system parameters. ... 59
Table 10. Ideal superscalar parameters. .. 59
Table 11. Benchmark descriptions .. 60
Table 12. TEA throughput for various architectures .. 62
Table 13. High-radix floating point operation execution time ... 68

 1

1. Summary
Computing systems with advanced situational awareness and the ability to use contextual knowledge to

interpret sensor data have the potential to be instrumental in many contexts. In particular, large-scale content
addressable memory systems provide a better solution to the knowledge discovery problem than conventional
general-purpose memory systems. This project developed three systems to query a database with immense
numbers of objects and rich sets of contextual relationships; (i) a conventional system, (ii) a conventional
system optimized for online (i.e. real-time) use, and (iii) a novel Deoxyribonucleic Acid, DNA self-assembled
nanoelectronic system. The project developed tools for DNA self-assembly to provide simulation capabilities
for evaluating the three systems and the data has shown that significant performance enhancements can be
achieved by optimization of the memory access pattern. Further, when self-assembling technologies mature
they will be able to achieve greater performance due to the massive parallelism inherent in the knowledge
discovery problem.

The goal of this project was to evenly re-evaluate the methods used by experts in the knowledge discovery
and context aware application field with respect to emerging nanoscale fabrication capabilities. The
performance predicted by industry experts for conventional silicon devices (e.g., Complimentary Metal Oxide
Semiconductor, CMOS) and the anticipated performance we have simulated for DNA self-assembled
nanoelectronic devices will help put each system on a level footing with respect to each other.

The major challenge in knowledge discovery and context aware applications is to support the querying of a
database with immense numbers of objects and rich sets of contextual relationships. The optimal form of this
process is NP-hard because new information must be considered against all previously encountered information.
As the database grows, more and more cross-references will be generated and this can potentially (i.e., in the
worst case) take exponential time in the number of objects contained by database.

 The emergence of nanoscale architectures and fabrication methods has changed the design space for these
applications by enabling novel forms of “at-fabrication” computation and massively parallel architectures.
These developments make a case for the re-evaluation of current best practices in context aware memory system
design. In particular, large-scale content addressable memory systems, enabled by nanoscale self-assembly, may
provide a better solution to the knowledge discovery problem than conventional general purpose memory
systems that use centralized indexing schemes.

This project evaluated the three memory systems within the design space of context aware and knowledge
discovery architectures. This evaluation used target CMOS technology from the International Technology
Roadmap for Semiconductors prediction for 2012 [1, 2], and future DNA self-assembled technology as a
competitive alternative [3-6]. A variety of metrics were explored from the literature to determine a significant
figure of merit for each system.

The first system is a conventional CMOS-based general-purpose architecture that assigns context during
post-query processing. The second system we studied stores contextual information soon after the sensor or
input data is stored. That is, the searching required to create the contextual information occurs when new
information is stored in the memory. This method has the advantage that the query time can be much faster than
a conventional system but the time to store new information will take just as long as the conventional system’s
query time (since context assignment occurs during storage.) Therefore, the rate-limiting step for this system is
still the context assignment. This system is most like a conventional data-mining system where additional fields
(i.e., tags or hints) are included to facilitate context assignment.

The third system we studied was a novel system enabled by DNA self-assembly. This system can use self-
assembled systems to perform a distributed context assignment during information storage but incur a much
smaller penalty than the pre-retrieval system because of the massive parallelism inherent in molecular-scale
self-assembly. The DNA self-assembled system leverages the short query time of the pre-retrieval system
against the massive parallelism of self-assembly to reduce storage times. The result is a balanced system with
equal storage and retrieval times. However, we have found that a significant gap exists between what can be
built in our laboratory and what is required by a contextual knowledge memory. Thus, we have shown through
simulation significant performance improvements over a conventional system but significant progress in the
technology remains untapped.

 2

2. Methods, Assumptions, and Procedures
DNA is an attractive substrate to investigate for applications in molecular-scale computing. The precise

binding rules of DNA enable the creation of nanostructures with minimum pitch on the order of a few
nanometers. Further, these nanostructures can be used to place and interconnect nanoscale components with
molecular-scale precision. Thus, DNA self-assembly is an enabling technology for new computing paradigms
[1-19].

Double stranded DNA structure is stable when the base pairs are “complementary”, i.e., if A pairs with T and
G pairs with C. The central theme in the use of self-assembly for nanoscale fabrication is the application of
external control over an otherwise spontaneous reaction to direct its outcome [20]. This control directs the
assembly of materials into structures that are interesting and relevant to a target design problem. In the context
of computer system fabrication, self-assembly is used to direct the formation of switching devices and wires to
create logic circuitry, memory, and I/O interfaces. We can control the reaction by designing synthetic DNA
strands to interact at specific temperatures (called melting temperatures) by careful choice of their nucleotide
sequences. Specification of the strand sequences provides control over the self-assembly process by establishing
the melting temperature of the strands which determines the formation of structures (through complementarity).
Sequence design is important because it determines many aspects of the target DNA nanostructure (e.g.,
geometry and stability).

Complex designs are often created using a relatively small set of common building blocks—called motifs.
DNA self-assembly can exploit this same design principle to hierarchically create more sophisticated aperiodic
structures. For DNA there are many possible motifs, however we focus on only a few in the context of our
resonance energy transfer logic. Motifs include junctions that enable three or more double stranded helices of
DNA to interact and thus form specific structures (e.g., a triangle, a corner, etc.) Another important motif is a
single strand of DNA protruding from a double stranded helix—called a sticky-end.

Two motifs with complementary sequences on their sticky-ends will bind to form a composite motif. These
composite motifs may also have embedded sticky-end motifs and thus can also bind with other composite
motifs to form another, larger, composite motif. This results in a hierarchical structure for motifs. Hierarchical
DNA self-assembly provides the fabrication characteristics (low-cost, nm resolution) necessary for molecular-
scale computation. However, the substrate must be complemented by suitable molecular-scale devices.

The following section (and its sub-sections) describe in detail the final conclusions and findings of this
project.

3. Major Results and Discussion

3.1 Data Mining and Contextual Knowledge Discovery
Data mining is the process of extracting or mining interesting knowledge from large amounts of data stored

in databases or other information stores. A fundamental and essential problem in data mining is to discover
frequent patterns or itemsets: given a data base of item transactions, find all itemsets that occur in at least a
user-specified percentage of the total transactions in the database (i.e., has a specified support level). Frequent
itemset mining is useful for many data mining capabilities such as discovery of association rules [1], strong
rules, correlations, sequential rules [2], episodes [12], multi-dimensional patterns, partial periodicity [9], and
many other important discovery tasks. These data mining capabilities are useful for practical applications such
as market basket analysis, inferring patterns from web access logs, and network intrusion detection among
others.

Frequent itemset mining generates a very large number of patterns which may reduce not only the efficiency
but also effectiveness of mining, since it generates numerous redundant patterns. Furthermore, users must sift
through a large number of mined patterns to find useful ones. Closed frequent itemset (CFI) mining [14], mines
only those frequent itemsets having no proper superset with the same support, which can lead to orders of
magnitude smaller result set than mining frequent itemsets [15]. CFI mining retains all the information of
frequent itemset mining, as it is straightforward to generate all the frequent itemsets from the closed frequent
itemsets.

 3

In this report we explore the memory hierarchy performance of a state-of-the-art CFI algorithm—called
FPclose1 [8]—using real world datasets. We use a combination of tools (OProfile [11], VTUNE [16],
Simplescalar and iostat) to gain insight into FPclose’s memory hierarchy performance for both sparse and dense
real world datasets on both Pentium III and Pentium 4 systems. The characterization results indicate that cache
behavior becomes a critical performance bottleneck as the support level decreases. Simulation experiments
show that gains in the Instructions per cycle, IPC are seen for a system with perfect memory hierarchy. Increase
in width of the instruction window has almost no effect on the IPC.

 One specific function CFI_tree::insert(bool*,…) accounts for up to 69% of the L1 data cache misses, 86%
of the L2 data cache misses, and 69% of the execution time for moderate to low support levels. This function is
unique to the closed frequent itemset problem. Symbolic profiling and source code inspection reveal that
CFI_tree::insert(bool*,…) function incurs most of its cache misses while traversing the nodes of a prefix tree
(or closed frequent pattern tree) at a specific level (right sibling pointer dereferences). This motivates the
application of well-known data structure modifications to improve cache performance: 1) padding & aligning,
2) node clustering [4]. Our characterization results also reveal that the average number of nodes accessed during
the sibling traversal is data dependent. This motivates a final optimization that dynamically increases node
clustering as more nodes are allocated in a specific level of the prefix tree.

We evaluate the data structure modifications by measuring execution cycles on Pentium III and Pentium 4
systems and comparing with execution cycles of base case. Our results show that padding and aligning have no
significant impact on performance. Node clustering achieves performance gains of up to 79% on Pentium III
systems and 65% on Pentium 4. Finally, we show that the dynamic allocation technique provides speedups up
to 81% on Pentium III system and 67% on Pentium 4. The maximum difference in speedup of the best static
sized node clustering scheme at each data point and the dynamic scheme was 6% on Pentium III and 8% on
Pentium 4. This difference was in dense datasets, for sparse datasets dynamic scheme performed as well as or
better than the best static sized node clustering scheme at each data point in many cases for both systems. For
dense datasets node clustering produces the greatest improvements in performance on both Pentium systems.

3.1.1 Closed Frequent Item Set Mining
Let I = (i1, i2 ..., in) be a set of items. An itemset is a non-empty subset of I. A transaction is represented by a

tuple of the form (tid, X), where tid is the transaction identifier and X is an itemset. A transaction database
(TDB) is a set of transactions. An itemset X is contained in transaction (tid, Y) if X is a subset of Y. Given a
transaction database TDB, the support of an itemset X is the number of transactions in TDB which contains X.
An itemset X is called a frequent itemset if its support is no less than the minimum support threshold. Frequent
itemset mining consists of finding all the frequent itemsets. An itemset X is a closed itemset if there exists no
itemset X’ such that X’ is a proper superset of X, and every transaction containing X also contains X’. A closed
itemset X is frequent if its support is greater than or equal to minimum support threshold. Closed frequent
itemset mining consists of finding all closed frequent itemsets.

We chose the state-of-the-art FPclose [8] algorithm as our closed frequent itemset implementation. FPclose
won the FIMI’03 best implementation award [17]. FPclose uses variation of the FP-tree (Frequent Pattern tree,
also called a prefix tree) structure for checking the closedness of frequent itemsets. The FP-tree itself has been
shown to be one of the most efficient data structures for mining frequent patterns. A novel technique which
employs an array, greatly improves the performance of the algorithm while operating on the FP-tree.

3.1.2 Performance Characterization
This section describes the tools used, the system configuration, the datasets, the characterization procedure

and its results.

3.1.2.1 Datasets
For this study we use five different datasets that can be categorized into sparse, moderate, and dense. Dense

datasets have large number of long transactions. Sparse datasets have predominantly short transactions. Long
transaction means that the average number of items per transaction is high, vice versa for short transactions. We
consider five real datasets; retail [3] and bmspos [18] are sparse, pumsb and accidents [6] are dense, while we
consider kosarak moderate. Description about the datasets is provided in Table 1. Characteristics of the dataset
are shown in Table 2.

 4

Table 1: Dataset Description

Retail Retail market basket data set supplied by a anonymous Belgian retail supermarket
store

Bmspos The BMS-POS dataset contains several years’ worth of point-of sale data from a
large electronics retailer.

Kosarak Click-stream data of a Hungarian on-line news portal

pumsb Census data (from IBM Almaden Research Center)

Accidents Traffic accident information for the region of Flanders (Belgium) for the period
1991-2000

Table 2: Dataset Characteristics

Dataset No. of Items Avg. Transaction
Length

No. of
Transactions

Retail 16,469 10.3 88,162

Bmspos 1,657 6.5 515,597

Kosarak 41,270 8.1 990,002

Pumsb 2,113 74.0 49,046

Accidents 468 33.8 340,183

3.1.2.2 Tools
We profiled the FPclose algorithm using VTune and OProfile. VTune and OProfile are system-wide

profilers, capable of profiling all running code at low overhead. They consist of a kernel driver and a daemon
for collecting sample data, and several post-profiling tools. The hardware performance counters of the CPU are
leveraged to enable profiling of a wide variety of interesting statistics. All code is profiled: hardware and
software interrupt handlers, kernel modules, the kernel, shared libraries, and applications. We chose OProfile
version 0.8.2 and VTune version 7.2. VTune provides more events for Pentium 4 as opposed to Oprofile so we
chose VTune for profiling workloads on Pentium 4.

SimpleScalar tool set version 3 was used for analyzing the performance of the memory hierarchy. The
SimpleScalar tool set is a system software infrastructure used to build modeling applications for program
performance analysis, detailed micro-architectural modeling, and hardware-software co-verification. Modeling
applications can simulate real programs running on a range of modern processors and systems.

We used time command and iostat package to study the I/O characteristics of different workloads.

3.1.3 System Configuration
We characterize the performance of FPclose executing on a Pentium III system running Debian Linux with

2.6.10 kernel and a Pentium 4 system running Red hat Linux with kernel 2.4.21. The hardware configuration of
these systems is outlined in Tables 3 and 4 respectively.

 5

Table 3: Pentium III System configuration

Processor Intel Pentium III CPU family, 1400 MHz

L1 data cache 16 KB, 4-way set associative, 32 byte line size

L1 instruction cache 16 KB, 4-way set associative, 32 byte line size

L2 unified cache 512 KB, 8-way set associative, 32 byte line size

Instruction TLB 4 KB pages, 4-way set associative, 32 entries

Data TLB 4 KB pages, 4-way set associative, 64 entries

Memory 1 GB

Table 4: Pentium 4 System configuration

Processor Intel Pentium 4 CPU family, 3 GHz

L1 data cache 8 KB, 4-way set associative, 64 byte line size

Trace Cache 12K-micro-op, 4-way set-assoc

L2 unified cache 1024 KB, 8-way set associative, 64 byte line size

Instruction TLB 4 KB pages, 64 entries

Data TLB 4 KB pages, 64 entries

Memory 1 GB

3.1.4 Methodology
FPclose is executed on all the datasets with different minimum support thresholds as input. Minimum

support thresholds ranged from levels where only a handful of itemsets were generated, to as low a level as
possible. For accident, pumsb, and kosarak dataset, the lowest support threshold was bounded by the level at
which the process would abort due to lack of physical memory. For each of the workloads we measure the
performance for computing all the closed frequent itemsets (CFIs), not for outputting them. We ensure the
system is lightly loaded during profiling. The FPclose executable and the dataset were stored on the local disk
to reduce the impact of NFS (Network File Service) traffic on the results. The OProfile or VTune daemon,
configured to measure different events, runs on the same system to do profiling of the workloads.

For Oprofile (used to profile on the Pentium III), we measure IPC (Instructions per Cycle) using the events
CPU_CLK_UNHALTED and INST_RETIRED, L1 data cache miss rates using the events DCU_LINES_IN
and DATA_MEM_REFS, and global L2 cache miss rates using events L2_LINES_IN and
DATA_MEM_REFS.

For VTune (used to profile on the Pentium 4), we measure IPC using the events Clockticks and Instructions
Retired, L1 load data cache miss rates using the events 1st-Level Cache Load Misses Retired and Loads
Retired, and global L2 cache load miss rates using events 2nd-level Cache Load Misses Retired and Loads
Retired, Data Translation Look aside buffer (DTLB) load miss rate using events DTLB Load Misses and Loads
Retired. VTune does a configuration run before calculating actual statistics. We measured only the load miss
rates on the Pentium 4 due to limited event counters. Although care must be taken in interpreting the Pentium 4
miss rates, our results show that the trends are consistent with those from the Pentium III. We perform both
symbol level and process level profiling for each of the workloads.

 6

Symbol level profiling enables mapping performance metrics to program source, specifically to each of the
functions of the FPclose program. To achieve accurate source mapping, symbolic profiling uses a slightly
different executable which was compiled without optimization to preserve accurate symbol table information.

 Different workloads were executed under time command to study their I/O characteristics. Time command
measures CPU utilization. As the system is lightly loaded, a drop in CPU utilization can be attributed to the fact
that the CPU is idle as the process is waiting for disk I/O. Page fault statistics provide further validation. iostat
package helps us in studying the time behavior of the I/O characteristics of a workload.

In order to measure the impact of memory hierarchy on the overall performance, we simulated some of the
workloads using SimpleScalar. SimpleScalar can simulate alpha or PISA (Portable Instruction Set Architecture)
binaries. Using gcc cross compiler and assembler, the PISA binary for the FPclose algorithm was built. A
system configuration that would resemble as closely as possible the Pentium III system on which we had
profiled our workloads was chosen. The system configuration chosen is given in Table 5.

Table 5: SimpleScalar System Description

Instruction fetch queue size 32

Extra branch misprediction latency 12

Branch Predictor bimodal predictor (Branch Target Buffer
(BTB) w/ 2 bit counters)

Direct mapped BTB size 4096

BTB configuration

512 sets, 4-way set associative

Return address stack size 32

Decoder bandwidth 4 insts/cycle

Issue bandwidth 4 insts/cycle

Permit instruction issue after mis-
speculation

False

Instruction commit bandwidth 4 insts/cycle

Register Update Unit(RUU) size 64

Load/store queue size 32

L1 data cache configuration 16 KB, 4-way set associative, 32 byte line
size, hit latency 3 cycles

L1 instruction cache 16 KB, 4-way set associative, 32 byte line
size, hit latency 3 cycles

L2 unified cache 512 KB, 8-way set associative, 32 byte line
size, hit latency 25 cycles

Instruction TLB 4 KB pages, 4-way set associative, 32
entries, miss latency 30 cycles

Data TLB 4 KB pages, 4-way set associative, 64
entries, miss latency 30 cycles

Memory access latency (first, rest) 150, 30 cycles

 7

Width of memory bus 16 bytes

Number of integer ALUs 4

Number of integer multiplier/dividers 1

Number of first-level cache ports 2

Number of Floating point ALUs 4

Number of Floating point multiplier/dividers 1

For the retail and kosarak datasets we did detailed simulation of the whole run for a particular support level.
For the accident dataset we fast-forwarded a certain number of instructions and then did detailed simulation
after that for the next 50 trillion instructions. Only functional simulation is done during fast-forwarding. This
helps in reducing the simulation time. On the basis of symbol profiling we found a bottleneck function. We fast-
forwarded up to 100 million instructions before the point at which that bottleneck function is invoked for the
first time. We then started doing detailed simulation in order to warm up the caches before we invoke that
function for the first time. We followed a similar procedure for pumsb dataset.

Apart from gathering statistics for the configuration given in Table 5, we also gathered statistics for a system
having perfect memory hierarchy. We also try to see the effect of a wide instruction window on the
performance of FPclose algorithm by varying the size of the register update unit in SimpleScalar. We did this
simulation for the accident dataset.

3.1.5 Profiling Results
In this section we present the profiling results for the different workloads. For each dataset we perform

process level profiling to obtain an overall performance characterization on both Pentium systems and symbolic
profiling to obtain insight into the cause of performance bottlenecks.

3.1.6 Performance Characterization

In this section we present process level performance characterization results for all five datasets. Figure 1

shows the number of closed frequent itemsets (CFIs) present in the retail dataset for various support thresholds.
Figure 2 shows the cycles required for finding all the CFIs at various support thresholds. Figure 3 shows the
IPC for the retail dataset at different support thresholds. Figure 4 shows the L1 data cache and L2 unified cache
global miss rates for the retail dataset at various minimum support thresholds. Figures 5-7 show the
corresponding measurements for Pentium 4 system. Figure 8 shows the DTLB load miss rates for retail dataset
on Pentium 4. We report only the load cache and TLB miss rates for the Pentium 4. The TLB miss rate cannot
be obtained on the Pentium III.

 8

Figure 1: Distribution of Closed Frequent Itemsets

Figure 2: Execution cycles (Pentium III)

retail

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

45.3722.6911.345.671.130.570.110.060.030.01

Support %

No
. o

f C
FI

FPclose retail

0

5000

10000

15000

20000

25000

30000

45.3722.6911.345.671.130.570.110.060.030.01

Support %

C
yc

le
s

(M
)

 9

Figure 3: Instruction per Cycle (IPC) (Pentium III)

Figure 4: L1 Data and L2 Cache Miss Rates (Pentium III)

FPclose retail

0

0.2

0.4

0.6

0.8

1

1.2

1.4

45.3722.6911.345.671.130.570.110.060.030.01

Support %

IP
C

FPclose retail

0

2

4

6

8

10

12

14

16

45.3722.6911.345.671.130.570.110.060.030.01

Support %

M
is

s
Ra

te
 %

L1D Cache Miss Rate
Global L2 Cache Miss Rate

 10

Figure 5: Execution cycles (Pentium 4)

Figure 6: Instruction per Cycle (IPC) (Pentium 4)

fpclose retail

0

10000

20000

30000

40000

50000

60000

70000

68.0645.3722.6911.345.671.130.570.110.060.030.01

Support %

E
xe

cu
tio

n
C

yc
le

 (M
ill

io
n)

fpclose retail

0

0.2

0.4

0.6

0.8

1

1.2

68.0645.3722.6911.345.671.130.570.110.060.030.01

Support %

IP
C

 11

Figure 7: L1 Data and L2 Cache Load Miss Rates (Pentium 4)

Figure 8: Data TLB Load Miss Rates (Pentium 4)

Figure 9 shows the number of closed frequent itemsets (CFIs) present in the bmspos dataset for various
support thresholds. Figure 10 shows the cycles required for finding all the CFIs. Figure 11 shows the IPC for
the bmspos dataset at different support thresholds. Figure 12 shows the corresponding L1 data cache and L2
unified cache global miss rates for the bmspos dataset. Figures 13-15 show the corresponding measurements for
Pentium 4 system. Figure 16 shows the DTLB load miss rates for bmspos dataset on Pentium 4.

fpclose retail

0

5

10

15

20

25

30

35

40

68.0645.3722.6911.345.671.130.570.110.060.030.01

Support %

Lo
ad

 M
is

s
R

at
e

%
L1D
Global L2

fpclose retail P4

0

5

10

15

20

25

30

35

90.7468.0645.3722.6911.345.671.130.570.110.060.030.01

Support %

Lo
ad

 T
LB

 M
is

s
R

at
e

 12

Figure 9: Distribution of Closed Frequent Itemsets

Figure 10: Execution cycles (Pentium III)

fpclose bmspos

0

5000000

10000000

15000000

20000000

25000000

77.5819.49.71.940.970.190.10.050.020.01

Support %

No
. o

f C
FI

fpclose bmspos P3

0

100000

200000

300000

400000

500000

600000

700000

77.5819.49.71.940.970.190.10.080.050.020.01

Support %

Cy
cl

es
 (M

ill
io

n)

 13

Figure 11: Instruction per Cycle (IPC) (Pentium III)

Figure 12: L1 Data and L2 Cache Miss Rates (Pentium III)

fpclose bmspos P3

0

0.2

0.4

0.6

0.8

1

1.2

77.5819.49.71.940.970.190.10.080.050.020.01

Support %

IP
C

fpclose bmspos P3

0

2

4

6

8

10

12

14

77.5819.49.71.940.970.190.10.080.050.020.01

Support %

M
is

s
R

at
es

L1D
Global L2

 14

Figure 13: Execution cycles (Pentium 4)

Figure 14: Instruction per Cycle (IPC) (Pentium 4)

fpclose bmspos

0

500000

1000000

1500000

2000000

2500000

77.5819.49.71.940.970.190.10.80.050.020.01

Support %

C
yc

le
s

(M
ill

io
n)

fpclose bmspos

0

0.2

0.4

0.6

0.8

1

1.2

77.5819.49.71.940.970.190.10.050.020.01

Support %

IP
C

 15

Figure 15: L1 Data and L2 Cache Load Miss Rates (Pentium 4)

Figure 16: Data TLB Load Miss Rates (Pentium 4)

Figure 17 shows the number of closed frequent itemsets (CFIs) present in the accident dataset for various
support thresholds. Figure 18 shows the cycles required for finding all the CFIs. Figure 19 shows the IPC for
the accident dataset at different support thresholds. Figure 20 shows the corresponding L1 data cache and L2
unified cache global miss rates for the accident dataset. Figures 21-23 show the corresponding measurements
for Pentium 4 system. Figure 24 shows the DTLB load miss rates for accident dataset on Pentium 4.

fpclose bmspos

0

5

10

15

20

25

30

77.5819.49.71.940.970.190.10.050.020.01

Support %

Lo
ad

 M
is

s
R

at
e

%
L1D
Global L2

fpclose bmspos P4

0

5

10

15

20

25

30

77.5819.49.71.940.970.190.10.80.050.020.01

Support %

Lo
ad

 T
LB

 M
is

s
Ra

te

 16

Figure 17: Distribution of Closed Frequent Itemsets

Figure 18: Execution cycles (Pentium III)

accident

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

94.0788.1958.7944.0929.422.0514.77.355.88

Support %

N
o.

 o
f C

FI

FPclose accident

0

100000

200000

300000

400000

500000

600000

700000

94.0788.1958.7944.0929.422.0514.77.355.88

Support %

C
yc

le
s

(M
)

 17

Figure 19: Instruction per Cycle (IPC) (Pentium III)

Figure 20: L1 Data and L2 Cache Miss Rates (Pentium III)

FPclose accident

0

0.2

0.4

0.6

0.8

1

1.2

94.0788.1958.7944.0929.422.0514.77.355.88

Support %

IP
C

FPclose accident

0

1

2

3

4

5

6

7

8

9

94.0788.1958.7944.0929.422.0514.77.355.88

Support %

M
is

s
Ra

te
 %

L1D Cache Miss Rate
Global L2 Cache Miss Rate

 18

Figure 21: Execution cycles (Pentium 4)

Figure 22: Instruction per Cycle (IPC) (Pentium 4)

fpclose accident P4

0

200000

400000

600000

800000

1000000

1200000

1400000

94.0788.1958.7944.0922.0514.77.35

Support %

Cy
cl

es
 (M

ill
io

n)

fpclose accident P4

0

0.2

0.4

0.6

0.8

1

1.2

94.0788.1958.7944.0922.0514.77.35

Support %

IP
C

 19

Figure 23: L1 Data and L2 Cache Load Miss Rates (Pentium 4)

 Figure 24: Data TLB Load Miss Rates (Pentium 4)

Figure 25 shows the number of closed frequent itemsets (CFIs) present in the pumsb dataset for various
support thresholds. Figure 26 shows the cycles required for finding all the CFIs. Figure 27 shows the IPC for
the pumsb dataset at different support thresholds. Figure 28 shows the corresponding L1 data cache and L2
unified cache global miss rates for the pumsb dataset. Figures 29-31 show the corresponding measurements for
Pentium 4 system. Figure 32 shows the DTLB load miss rates for pumsb dataset on Pentium 4.

fpclose accident P4

0

2

4

6

8

10

12

14

16

94.0788.1958.7944.0922.0514.77.35

Support %

Lo
ad

 M
is

s
R

at
e

L1D
Global L2

fpclose accident P4

0

2

4

6

8

10

12

14

94.0788.1958.7944.0922.0514.77.35

Support %

Lo
ad

 T
LB

 M
is

s
Ra

te

 20

Figure 25: Distribution of Closed Frequent Itemsets

Figure 26: Execution cycles (Pentium III)

pumsb

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

97.8793.7989.7181.5677.4871.3661.1750.9745.86

Support %

No
. o

f C
FI

FPclose pumsb

0

50000

100000

150000

200000

250000

300000

97.8793.7989.7181.5677.4871.3661.1750.9745.86

Support %

C
yc

le
s

(M
)

 21

Figure 27: Instruction per Cycle (IPC) (Pentium III)

Figure 28: L1 Data and L2 Cache Miss Rates (Pentium III)

FPclose pumsb

0

0.2

0.4

0.6

0.8

1

1.2

1.4

97.8793.7989.7181.5677.4871.3661.1750.9745.86

Support %

IP
C

FPclose pumsb

0

1

2

3

4

5

6

7

8

97.8793.7989.7181.5677.4871.3661.1750.9745.86

Support %

M
is

s
Ra

te
s

%

L1D Cache Miss Rate
Global L2 Cache Miss Rate

 22

Figure 29: Execution cycles (Pentium 4)

Figure 30: Instruction per Cycle (IPC) (Pentium 4)

fpclose pumsb P4

0

200000

400000

600000

800000

1000000

1200000

97.8795.8391.6783.3372.9262.552.0846.88

Support %

Ex
ec

ut
io

n
C

yc
le

s
(M

ill
io

n)

fpclose pumsb P4

0

0.2

0.4

0.6

0.8

1

1.2

97.8795.8391.6783.3372.9262.552.0846.88

Support %

IP
C

 23

Figure 31: L1 Data and L2 Cache Load Miss Rates (Pentium 4)

Figure 32: Data TLB Load Miss Rates (Pentium 4)

Figure 33 shows the number of closed frequent itemsets (CFIs) present in the kosarak dataset for various
support thresholds. Figure 34 shows the cycles required for finding all the CFIs. Figure 35 shows the IPC for
the kosarak dataset at different support thresholds. Figure 36 shows the corresponding L1 data cache and L2
unified cache global miss rates for the kosarak dataset. Figures 37-39 show the corresponding measurements for
Pentium 4 system. Figure 40 shows the DTLB load miss rates for kosarak dataset on Pentium 4.

fpclose pumsb P4

0

2

4

6

8

10

12

14

97.8795.8391.6783.3372.9262.552.0846.88

Support %

Lo
ad

 M
is

s
R

at
e

%
L1D
Global L2

fpclose pumsb P4

0

2

4

6

8

10

12

97.8795.8391.6783.3372.9262.552.0846.88

Support %

Lo
ad

 T
LB

 M
is

s
R

at
e

 24

Figure 33: Distribution of Closed Frequent Itemsets

Figure 34: Execution cycles (Pentium III)

fpclose kosarak

0

100000

200000

300000

400000

500000

600000

40.410.15.051.010.510.30.20.1

Support %

N
o.

 o
f C

FI

fpclose kosarak P3

0

5000

10000

15000

20000

25000

30000

50.5140.410.15.051.010.510.30.20.15

Support %

Cy
cl

es
 (M

ill
io

n)

 25

Figure 35: Instruction per Cycle (IPC) (Pentium 4)

Figure 36: L1 Data and L2 Cache Miss Rates (Pentium III)

fpclose kosarak P3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50.5140.410.15.051.010.510.30.20.15

Support %

IP
C

fpclose kosarak P3

0

1

2

3

4

5

6

7

8

9

10

50.5140.410.15.051.010.510.30.20.15

Support %

M
is

s
R

at
es

L1D
L2

 26

Figure 37: Execution cycles (Pentium 4)

Figure 38: Instruction per Cycle (IPC) (Pentium 4)

fpclose kosarak P4

0

10000

20000

30000

40000

50000

60000

70000

80000

40.410.15.051.010.510.30.20.1

Support %

E
xe

cu
tio

n
C

yc
le

s
(M

ill
io

n)

fpclose kosarak P4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40.410.15.051.010.510.30.20.1

Support %

IP
C

 27

Figure 39: L1 Data and L2 Cache Load Miss Rates (Pentium 4)

Figure 40: Data TLB Load Miss Rates (Pentium 4)

From the performance characterization we observe that execution time is proportional to the number of
closed frequent itemsets (CFIs) and that the number of CFIs increases exponentially with decreasing support
level. This is consistent with known algorithmic analysis of CFI mining [19]. These results clearly show that the
number of CFIs is the primary determinant of execution time for FPclose. However, we also observe that IPC
decreases with decreasing support level, hence IPC decreases with an increase in the number of CFIs. This
reveals that as support levels decrease, the number of instructions increases exponentially and that, on average,
each of these instructions takes longer to execute. For example, the IPC for the retail dataset decreases from

fpclose kosarak P4

0

2

4

6

8

10

12

14

16

40.410.15.051.010.510.30.20.1

Support %

Lo
ad

 M
is

s
R

at
e

%

L1 Data
Global L2

fpclose kosarak P4

0

2

4

6

8

10

12

14

16

40.410.15.051.010.510.30.20.1

Support %

Lo
ad

 T
LB

 M
is

s
R

at
e

 28

approximately 0.75 at 0.57% support to 0.21 at 0.01% support. A similar decrease in IPC exists for all the
datasets, although the dense datasets experience it at higher support levels. We also note that most datasets
achieve an IPC close to or above 1 for very high support levels, for example retail achieves IPC of 1.2.
Therefore, at low support levels instructions can take, on average, up to six times longer to execute than at
higher support levels.

The decrease in IPC is explained by examining the memory hierarchy performance of FPclose. By
examining the cache and TLB miss rates, we see that memory hierarchy performance is decreasing (miss rate
increases) as support level decreases. We also note that from profiling on the Pentium 4, the data TLB misses
are almost proportional to the L1 data cache misses. The large number of CFIs generated at low support levels
is placing more stress on the memory hierarchy, thus the average memory access time is increasing along with
the total number of instructions. Furthermore, we observe that the cache and TLB miss rates start increasing at
the same point as the most significant drop in the IPC (support = 0.57% for retail and 58% for accidents). To
ensure that the system is not paging, we use the iostat and time utility to track page faults. For the range of
support levels we examined page faults are not a performance bottleneck.

3.1.7 Symbolic Profiling
The above results indicate that FPclose’s performance might be improved at low support levels by improving

the memory hierarchy performance. To gain insight into the cause of increased miss rates, we enabled symbolic
profiling so that we can map execution time and cache misses to specific functions in the source code [10, 13].
Figure 41 shows the cycles spent in various functions versus support thresholds for the retail dataset. For all
datasets we display only functions that account for at least 5% of the cycles for any support level, all other
cycles are categorized under ‘‘other’’. Figures 42 and 43 shows the fraction of cache misses. Here also for all
datasets we display only functions that account for at least 5% of the misses for any support level. All the
results are for a Pentium III system.

Figure 41: Execution Cycles Symbol Profile

FPclose retail

0%

20%

40%

60%

80%

100%

45.37 22.69 11.34 5.67 1.13 0.57 0.11 0.06 0.03 0.01

Support %

Cy
cl

es
 %

other

CFI_tree::insert(int*,

CFI_tree::insert(bool*,

FI_tree::init(int,

FI_tree::scan2_DB(FI_tree*,

FI_tree::insert(int*,

FI_tree::fill_count(int*,

FI_tree::scan2_DB(Data*)

anonymous

FI_tree::scan1_DB(Data*)

Data::getNextTransaction(Trans
action*)

 29

Figure 42: L1 Data Cache Misses Symbol Profile

Figure 43: L2 Cache Misses Symbol Profile

Figure 44 shows the cycles spent in various functions versus support thresholds for the pumsb dataset.

Figures 45 and 46 show the fraction of cache misses.

FPclose retail

0%

20%

40%

60%

80%

100%

45.4 22.7 11.3 5.67 1.13 0.57 0.11 0.06 0.03 0.01

Support %

L1
D

 M
is

se
s

%

other

CFI_tree::insert(int*,

CFI_tree::insert(bool*,

FI_tree::init(int,

FI_tree::insert(int*,

FI_tree::fill_count(int*,

FI_tree::scan2_DB(Data*)

FI_tree::scan1_DB(Data*)

Data::getNextTransaction(Transac
tion*)

FPclose retail

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

45.37 22.69 11.34 5.67 1.13 0.57 0.11 0.06 0.03 0.01

Support %

L2
 M

is
s

%

other
CFI_tree::insert(int*,
CFI_tree::insert(bool*,
FI_tree::init(int,
FI_tree::scan2_DB(FI_tree*,
FI_tree::insert(int*,
FI_tree::fill_count(int*,
FI_tree::scan2_DB(Data*)
FI_tree::scan1_DB(Data*)

 30

Figure 44: Execution Cycles Symbol Profile

Figure 45: L1 Data Cache Misses Symbol Profile

FPclose pumsb

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

97.87 93.79 89.71 81.56 77.48 71.36 61.17 50.97 45.88

Support %

Cy
cl

es
 %

other

update_cfi_trees(int,

CFI_tree::init(memory*,

memory::newbuf(unsigned

CFI_tree::insert(bool*,

FI_tree::fill_count(int*,

FI_tree::scan2_DB(Data*)

anonymous

FI_tree::scan1_DB(Data*)

Data::getNextTransaction(Transacti
on*)

FPclose pumsb

0%

20%

40%

60%

80%

100%

97.87 93.79 89.71 81.56 77.48 71.36 61.17 50.97 45.88

Support %

L1
D

m
is

se
s

%

other

update_cfi_trees(int,

CFI_tree::init(memory*,

CFI_tree::insert(bool*,

FI_tree::fill_count(int*,

FI_tree::scan2_DB(Data*)

FI_tree::scan1_DB(Data*)

Data::getNextTransaction(Transacti
on*)

 31

Figure 46: L2 Cache Misses Symbol Profile

Figure 47 shows the cycles spent in various functions versus support thresholds for the accident dataset.
Figure 48 and 49 shows the fraction of cache misses.

Figure 47: Execution Cycles Symbol Profile

FPclose pumsb

0%

20%

40%

60%

80%

100%

97.87 93.79 89.71 81.56 77.48 71.36 61.17 50.97 45.88

Support %

L2
 M

is
se

s
% other

CFI_tree::init(memory*,
CFI_tree::insert(bool*,
FI_tree::scan2_DB(Data*)
FI_tree::scan1_DB(Data*)

FPclose accident

0%

20%

40%

60%

80%

100%

94.07 88.19 58.79 44.09 22.05 14.70 7.35 5.88

Support %

Cy
cl

es
 %

other

update_cfi_trees(int,

CFI_tree::init(memory*,

CFI_tree::insert(bool*,

FI_tree::scan2_DB(FI_tree*,

FI_tree::insert(int*,

FI_tree::fill_count(int*,

FI_tree::scan2_DB(Data*)

anonymous

FI_tree::scan1_DB(Data*)

Data::getNextTransaction(Transacti
on*)

 32

Figure 48: L1 Data Cache Misses Symbol Profile

Figure 49: L2 Cache Misses Symbol Profile

These results reveal that at low support levels most of the execution time is spent in the function
CFI::insert(bool*,…). A significant number of L1 data cache misses, L2 cache misses, and TLB misses also
take place in this function at low support levels. All datasets reveal this same behavior: poor memory hierarchy
performance leads to decreased performance in the CFI::insert(bool*,…) function.

We now analyze the performance characteristics of the insert() function in more depth. Figure 50 shows the
IPC for insert() function, and compares it with the combined IPC for rest of the functions for retail dataset. We
consider only those support levels at which the insert() function dominates in terms of execution cycles.
Although the performance of the insert() and rest of the functions are dependent on each other to some extent,
but still this differentiation gives us some idea about the relative performances. The IPC of the insert() function
is lower than of rest. This brings down the IPC of the whole process. The total IPC number may be a bit
different from that reported in process level profiling section, as symbolic profiling uses a slightly different

FPclose accident

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

94.07 88.19 58.79 44.09 22.05 14.70 7.35 5.88

Support %

L1
D

m
is

se
s

%

other

update_cfi_trees(int,

CFI_tree::insert(bool*,

FI_tree::scan2_DB(FI_tree*,

FI_tree::insert(int*,

FI_tree::fill_count(int*,

FI_tree::scan2_DB(Data*)

anonymous

FI_tree::scan1_DB(Data*)

Data::getNextTransaction(Transacti
on*)

FPclose accident

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

94.07 88.19 58.79 44.09 22.05 14.70 7.35 5.88

Support %

L2
 M

is
se

s
%

other

CFI_tree::init(memory*,

CFI_tree::insert(bool*,

FI_tree::scan2_DB(FI_tree*,

FI_tree::insert(int*,

FI_tree::fill_count(int*,

FI_tree::scan2_DB(Data*)

FI_tree::scan1_DB(Data*)

Data::getNextTransaction(Trans
action*)

 33

executable which was compiled without optimization to preserve accurate symbol table information. Figure 51
shows the corresponding cache miss rates. L2 cache miss rates are local. Large number of misses, along with
higher miss rates in most of the categories for insert() function, contributes to this difference in IPC. We ran
these experiments on a Pentium III system.

Figure 50: IPC comparison between insert() and rest of the functions

Figure 51: Miss Rate comparison between insert() and rest of the functions

insert() retail

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.03 0.01

Support %

IP
C IPC (rest)

IPC (insert)

insert() retail

0

5

10

15

20

25

30

35

40

45

0.03 0.01

Support %

M
is

s
Ra

te
 % L1D Miss Rate (rest)

L1D Miss Rate (insert)
L2 Miss Rate (rest)
L2 Miss Rate (insert)

 34

Figure 52 shows the IPC comparison for pumsb dataset. Figure 53 shows the corresponding miss rate
comparison. The IPC of insert() function is lower than that of the rest of the symbols primarily due to higher
cache miss rates and the large number of misses.

Figure 52: IPC comparison between insert() and rest of the functions

Figure 53: Miss Rate comparison between insert() and rest of the functions

From Figure 54 and Figure 55 we see a similar trend for accident dataset, though the difference between the
two L2 cache miss rates seem to be much higher.

insert() pumsb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

71.36 61.17 50.97 45.88

Support %

IP
C IPC (insert)

IPC (rest)

insert() pumsb

0

5

10

15

20

25

30

71.36 61.17 50.97 45.88

Support %

M
is

s
R

at
e

% L1D Miss Rate (insert)
L1D Miss Rate (rest)
L2 Miss Rate (insert)
L2 Miss Rate (rest)

 35

Figure 54: IPC comparison between insert() and rest of the functions

Figure 55: Miss Rate comparison between insert() and rest of the functions

CFI::insert(bool*,…) function is used for inserting itemsets in a prefix tree based data structure called the
CFI-tree (Closed Frequent Itemset tree). The CFI-tree is a compact representation of all relevant frequency
information in a database. Every branch of the tree represents a closed frequent itemset, and the nodes along the
branches are stored in decreasing order of frequency of the corresponding items, with leaves representing the
least frequent items. Compression is achieved by building the tree in such a way that overlapping itemsets share
prefixes of the corresponding branches. Each node has a left child and right sibling pointer. This function is
responsible for first determining if an itemset exists in the CFI tree and if not, to insert the itemset. The insertion
process starts at the root. The right-sibling pointer is continuously accessed till we find a node which contains
the same item as the first item in the itemset to be inserted. If there is no match, then the itemset is appended to
the root. If there is a match we continue with the same procedure on the next level, appending the rest of the
itemset in case of a miss. The left child pointer of the root is followed to reach the next level. Thus in order to
determine if the item already exists in the CFI tree, all the items already present at the specific level of tree are

insert() accident

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

22.05 14.70 7.35 5.88

Support %

IP
C IPC (rest)

IPC (insert)

insert() accident

0

5

10

15

20

25

30

35

22.05 14.70 7.35 5.88

Support

M
is

s
Ra

te L1D Mss Rate (insert)
L1D Miss Rate (insert)
L2 Miss Rate (rest)
L2 Miss Rate (insert)

 36

examined. Since each item is its own node in the tree, the search requires extensive pointer dereferences, to
access sibling nodes, that frequently result in cache and TLB misses.

This search for a sibling node which contains the required item is the bottleneck within the insert() function.
Figure 56, Figure 57, and Figure 58 show that the major proportion of execution cycles, L1 data cache misses
and L2 misses take place in this search for all the datasets.

Figure 56: Proportion of cycles and misses in the search within insert for retail dataset

Figure 57: Proportion of cycles and misses in the search within insert for pumsb dataset

0

10

20

30

40

50

60

70

80

90

100

0.03 0.01

Support %

Pr
op

or
tio

n
%

Cycles
L1 Data Cache Miss
L2 Cache Miss

0

10

20

30

40

50

60

70

80

90

100

22.05 14.70 7.35 5.88

Support %

P
ro

po
rti

on
 %

Cycles
L1 Data Cache Miss
L2 Cache Miss

 37

Figure 58: Proportion of cycles and misses in the search within insert for accident dataset

3.1.7.1 Simulation Analysis
In this section we present simulation results for the performance of the FPclose algorithm on a Pentium III

like system with perfect memory hierarchy. Perfect memory hierarchy means that there are no cache misses. We
compare it with its performance on a Pentium III like system having real memory hierarchy. We do this
simulation to verify our conjecture that the drop in IPC is primarily due to large cache miss rates. Results for
retail, pumsb and accident dataset are shown in Table 6. We see that large gains in performance are possible for
both sparse and dense datasets if we can get the effect of a perfect memory hierarchy. This shows that IPC
degrades primarily due to large cache miss rates. This result is the best case scenario for any scheme hoping to
improve the performance of the memory hierarchy for the FPclose algorithm.

Table 6: SimpleScalar Simulation Results for a Perfect and Real Memory Hierarchy

Dataset

Type of
Dataset

 IPC
(Perfect)

 IPC
(Real)

 Support
%

Retail Sparse 2.0990 0.6236 0.03

accidents Dense 1.1490 0.5405 14.7

We next show the impact of a wide instruction window on the performance of the algorithm. Table 7 shows
the effect of instruction window with increasing widths on the performance of the algorithm for accident dataset
at support of 14.7 %. RUU size of 64 was used in the default configuration. We see that instruction window
width has almost no impact on IPC. Thus it is not possible to enhance the IPC by increasing the instruction
window width.

Table 7: SimpleScalar Simulation Results depicting the effect of Instruction Window
Width

RUU size IPC

64 0.5405

128 0.5412

256 0.5412

512 0.5412

1024 0.5412

0

10

20

30

40

50

60

70

80

90

100

22.05 14.70 7.35 5.88

Support %

P
ro

po
rti

on
 %

Cycles
L1 Data Cache Miss
L2 Cache Miss

 38

3.1.8 Data Structure Modifications
This section explores several techniques for improving the memory hierarchy performance of FPclose,

specifically the CFI::insert(bool*,…) function. The performance characterization from the previous section
clearly identifies the insert routine’s memory hierarchy behavior as a performance bottleneck for these real
world datasets. In this section we present various data structure modifications that attempt to improve cache
performance. The support levels at which we measure the speedups obtained by different modifications are
unique for each dataset. We include five different support levels for each dataset such that execution time for
the base implementation of FPClose is greater than 1 second at these levels. We compare the execution cycles
of each scheme with that of the original implementation to obtain speedups.

3.1.8.1 Padding and Aligning
A simple approach that can improve cache performance is to align and pad the data structure to ensure that

only integer multiples of the structure can fit into a cache line [10]. This can be achieved by padding the
structure with sufficient space. The benefit of this approach is that an access to the data structure, after any miss
penalty, guarantees that the entire structure is now resident in the cache. If many of the fields within the data
structure are “hot” then this approach can lead to higher performance because it limits the cache misses to 1 for
all subsequent accesses to the data structure. Unfortunately, this technique did not produce any noticeable
change in execution time.

3.1.8.2 Node Clustering
The next approach adopts a composite approach to improve cache performance by combining sub-tree

clustering and pointer elimination [4]. The approach nestles frequently accessed fields from many instances of
the data structure into a composite structure that can then be accessed using an implicit address calculation.
Children of a CFI tree node are clustered into a composite node by grouping their unique attributes (e.g., item,
left-child, etc.) in to large arrays. The attribute arrays are indexed according to the most commonly chased
pointer, right-sibling, thus eliminating the use of dereferenced pointers in favor of an incremental offset
calculation. Composite nodes are allocated to hold either a static or dynamic number of nodes and can be
chained together to accommodate dynamic trees in either case. This approach improves performance because
frequent right-sibling chases are reduced to incremental address calculations and item comparisons. Implicit
prefetching occurs because the arrays are contiguous in memory and any dedicated prefetch hardware will bring
prescient portions of the arrays into the cache prior to their access.

Figure 59 shows the performance improvement for each benchmark with various composite node sizes (i.e.
number of nodes combined into a single composite) for retail dataset. Figure 60 shows the same for bmspos,
Figure 61 for accident and Figure 62 for kosarak. These improvements are on a Pentium III system. Figures 63-
66 show the corresponding results for a Pentium 4 system.

We achieve performance gains of up to 79% on Pentium III systems and 65% on Pentium 4.
We observe that on a Pentium III system we get speedups for all the datasets across most of the support

levels. The gains are lesser for dense datasets as compared to sparse ones. This is mainly due to smaller right
sibling chains for dense datasets compared to sparser ones. Larger composite node sizes in such cases cause
wastage of memory and cache pollution. For Pentium 4 the gains are lesser for sparser datasets compared to
Pentium III results and we incur losses in majority of the cases for dense datasets. This is primarily because of
larger caches in Pentium 4 which improves the performance of the base case by reducing miss rates.

 39

Figure 59: Performance Improvement for different composite node sizes for retail dataset

Figure 60: Performance Improvement for different composite node sizes for bmspos dataset

retail

0

10

20

30

40

50

60

70

80

90

0.090.060.050.030.01

Support %

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
16
20
24
28
32

bmspos

0

10

20

30

40

50

60

70

0.160.10.080.050.02

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
16
20
24
28
32

 40

Figure 61: Performance Improvement for different composite node sizes for accident dataset

Figure 62: Performance Improvement for different composite node sizes for kosarak dataset

accident

-10

-5

0

5

10

15

20

25

44.0929.422.0514.711.76

Support %

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12

kosarak

-2

0

2

4

6

8

10

12

0.510.30.20.150.1

Support %

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12

 41

Figure 63: Performance Improvement for different composite node sizes for retail dataset

Figure 64: Performance Improvement for different composite node sizes for bmspos dataset

retail Pentium 4

0

10

20

30

40

50

60

70

0.01 0.03 0.05 0.06 0.09

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
16
20
24
28
32

bmspos Pentium 4

0

5

10

15

20

25

30

35

40

45

50

0.02 0.05 0.08 0.1 0.16

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
16
20
24
28

 42

Figure 65: Performance Improvement for different composite node sizes for accident dataset

Figure 66: Performance Improvement for different composite node sizes for kosarak dataset.

These results reveal that for any single dataset one particular node cluster size does not give the maximum
gains across all support levels. Also different datasets require different node clustering sizes to achieve highest
gains across a range of support levels, say lower support levels.

3.1.9 Dynamic Cluster Sizing
The above results clearly show that node clustering can improve CFI mining. Unfortunately, they also reveal

that each dataset requires a different cluster size to achieve maximum performance improvement. We did some
characterization tests to learn that the average number of nodes accessed during the sibling traversal is data
dependent. Therefore, we develop a dynamic node clustering algorithm that automatically adjusts the number of
nodes clustered during allocation to be as close as possible to the length of the right sibling chain. With this
scheme we try to capture the variation in the length of the right sibling chain.

accident Pentium 4

-16

-14

-12

-10

-8

-6

-4

-2

0

2

11.76 14.7 22.05 44.09 58.79

Support %

Pe
rf

ro
m

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12

kosarak Pentium 4

-2

0

2

4

6

8

10

0.1 0.2 0.3 0.51 1.01

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12

 43

The scheme we developed chooses the size of the node to be allocated to be double the size of the last node
in that right sibling chain. The newly allocated node becomes the new last node in the right sibling chain and is
added to the end of the chain. This has an effect of increasing the size of the composite nodes at levels in the
tree where more nodes are being allocated. Figures 67-70 show the performance improvement of the dynamic
scheme for retail, bmspos, kosarak, and accident dataset respectively on a Pentium III system. Figures 71-74
show the corresponding gains on a Pentium 4 system. We obtain speedups up to 81% on Pentium III system and
67% on Pentium 4. We observe the same trend as was visible for the static scheme; gains are higher on a
Pentium III system as compared to Pentium 4 and gains are larger for sparse datasets. On Pentium 4 we do not
observe any gains for dense datasets. This is due to the combined effect of smaller right sibling chains for dense
datasets along with larger caches in Pentium 4.

Figure 67: Performance Improvement of dynamic scheme for retail dataset on Pentium III

Figure 68: Performance Improvement of dynamic scheme for bmspos dataset on Pentium III

retail Pentium III dynamic

0

10

20

30

40

50

60

70

80

90

0.090.060.050.030.01

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

bmspos Pentium III dynamic

0

10

20

30

40

50

60

70

0.160.10.080.050.02

Support %

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

 44

Figure 69: Performance Improvement of dynamic scheme for kosarak dataset on Pentium III

Figure 70: Performance Improvement of dynamic scheme for accident dataset on Pentium III

Figure 71: Performance Improvement of dynamic scheme for retail dataset on Pentium 4

kosarak Pentium III dynamic

0

1

2

3

4

5

6

7

8

9

10

0.510.30.20.150.1

Support %

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

accident Pentium III dynamic

-2

0

2

4

6

8

10

12

14

16

44.0929.422.0514.711.76

Support %

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

retail Pentium 4 dynamic

0

10

20

30

40

50

60

70

80

0.01 0.03 0.05 0.06 0.09

Support %

P
er

fr
om

an
ce

 Im
pr

ov
em

en
t %

 45

Figure 72: Performance Improvement of dynamic scheme for bmspos dataset on Pentium 4

Figure 73: Performance Improvement of dynamic scheme for kosarak dataset on Pentium 4

bmspos Pentium 4 dynamic

0

5

10

15

20

25

30

35

40

45

50

0.02 0.05 0.08 0.1 0.16

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

kosarak Pentium 4 dynamic

-2

0

2

4

6

8

10

0.1 0.2 0.3 0.51 1.01

Support %

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t %

 46

Figure 74: Performance Improvement of dynamic scheme for accident dataset on Pentium 4

Figures 75-78 compare the performance of different static sized node schemes and the dynamic scheme for a
Pentium III system. Figures 79-82 present this comparison for Pentium 4 system.

Figure 75: Performance Comparison for retail dataset on Pentium III

accident Pentium 4 dynamic

-12

-10

-8

-6

-4

-2

0

2
11.76 14.7 22.05 44.09 58.79

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

retail

0

10

20

30

40

50

60

70

80

90

0.090.060.050.030.01

Support %

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

4
5
6
8
12
16
20
24
28
32
dyn

 47

Figure 76: Performance Comparison for bmspos dataset on Pentium III

Figure 77: Performance Comparison for kosarak dataset on Pentium III

bmspos

0

10

20

30

40

50

60

70

0.160.10.080.050.02

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
16
20
24
28
32
dyn

kosarak

-2

0

2

4

6

8

10

12

0.510.30.20.150.1

Support %

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
dyn

 48

Figure 78: Performance Comparison for accident dataset on Pentium III

Figure 79: Performance Comparison for retail dataset on Pentium 4

accident

-10

-5

0

5

10

15

20

25

44.0929.422.0514.711.76

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
dyn

retail Pentium 4

0

10

20

30

40

50

60

70

80

0.01 0.03 0.05 0.06 0.09

Support %

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

4
5
6
8
12
16
20
24
28
32
dyn

 49

Figure 80: Performance Comparison for bmspos dataset on Pentium 4

Figure 81: Performance Comparison for kosarak dataset on Pentium 4

bmspos Pentium 4

0

5

10

15

20

25

30

35

40

45

50

0.02 0.05 0.08 0.1 0.16

Support %

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
16
20
24
28
dyn

kosarak Pentium 4

-2

0

2

4

6

8

10

0.1 0.2 0.3 0.51 1.01

Support %

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

4
5
6
8
12
dyn

 50

Figure 82: Performance Comparison for accident dataset on Pentium 4

From these figures we can see that the dynamic scheme performs consistently well across all datasets and
support levels when compared with any single static scheme. Also the maximum difference in speedup of the
best static sized node clustering scheme at each data point and the dynamic scheme was 6% on Pentium III and
8% on Pentium 4. More complex dynamic schemes can be tried to get further improvement.

3.1.10 Summary
We explored the memory hierarchy performance of a state-of-the-art CFI algorithm using real world datasets

and a combination of tools such as OProfile, VTUNE, Simplescalar and iostat on both Pentium III and Pentium
4 systems. Profiling results show that cache performance becomes the bottleneck as the support level decreases.
We used symbolic profiling to identify a bottleneck function that accounts for up to 69% of the L1 data cache
misses, 86% of the L2 data cache misses, and 69% of the execution cycles. These cache misses occur due to
traversal of the nodes of a prefix tree at a specific level through right sibling pointer dereferences. We then
applied data structure modifications such as padding & aligning and static and dynamic node clustering to
improve cache performance. Our results show that padding and aligning have no significant impact on
performance. Static node clustering achieves performance gains of up to 79% on Pentium III systems and 65%
on Pentium 4. Finally, we show that the dynamic allocation technique provides speedups up to 81% on Pentium
III system and 67% on Pentium 4. The maximum difference in speedup of the best static sized node clustering
scheme at each data point and the dynamic scheme was 6% on Pentium III and 8% on Pentium 4. This
difference was for dense datasets, for sparse datasets dynamic scheme performed as well as or better than the
best static sized node clustering scheme at each data point in a majority of the cases for both systems. The
dynamic scheme we implemented is a simple one and there is room for getting further improvements using
more complex schemes.

3.1.11 References
[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th

International Conference on Very Large Data Bases, pages 487–499, September 1994.
[2] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of the 1995 International

Conference on Data Engineering, pages 3–14, March 1995.
[3] T. Brijs, G. Swinnen, K Vanhoof, and G. Wets. The Use of Association Rules for Product Assortment

Decisions: A Case Study. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 254–260, August 1999.

accident Pentium 4

-16

-14

-12

-10

-8

-6

-4

-2

0

2

11.76 14.7 22.05 44.09 58.79

Support %

P
er

fr
om

an
ce

 Im
pr

ov
em

en
t %

4
5
6
8
12
dyn

 51

[4] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Making Pointer-Based Data Structures Cache
Conscious. IEEE Computer, 33(12):67–74, December 2000.

[5] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang. Finding
Interesting Associations without Support Pruning. In Proceedings of the 2000 International Conference on Data
Engineering, pages 489–499, February 2000.

[6] K. Geurts, G. Wets, T. Brijs, and K. Vanhoof. Profiling High Frequency Accident Locations Using
Association Rules, January 2003.

[7] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathyand Daehyun Kim, Anthony Nguyen, Yen-
Kuang Chen, and Pradeep Dubey. Cache-conscious Frequent Pattern Mining on a Modern Processor. In
Proceedings of the 31st International Conference on Very Large Data Bases, page to appear, September 2005.

[8] G. Grahne and J. Zhu. Efficiently Using Prefix-Trees in Mining Frequent Itemsets. In Proceedings of the
1st IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI), November 2003.

[9] J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series Database. In
Proceedings of the 1999 International Conference on Data Engineering, pages 106–115, April 1999.

[10] Alvin R. Lebeck and David A. Wood. Cache Profiling and the SPEC Benchmarks: A Case Study. IEEE
Computer, 27(10):15–26, October 1994.

[11] J. Levon et al. Oprofile.
[12] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent Episodes in Event Sequences.

Data Mining and Knowledge Discovery, 1(3):259–28, March 1997.
[13] M. Martonosi, A. Gupta, and T. Anderson. MemSpy: Analyzing Memory System Bottlenecks in

Programs. In Proceedings of the 1992 ACM Sigmetrics Conference on Measurement and Modeling of Computer
Systems, pages 1–12, June 1992.

[14] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering Frequent Closed Itemsets for
Association Rules. In Proceedings of the 7th International Conference on Database Theory, pages 398–416,
January 1999.

[15] M. Zaki. Generating Non-Redundant Association Rules. In Proceedings of the 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 34–43, August 2000.

[16] Intel Inc. Intel VTune Performance Analyzers. http://www.intel.com/software/products/vtune/ .
[17] http://fimi.cs.helsinki.fi/
[18] Ron Kohavi, Carla Brodley, Brian Frasca, Llew Mason, and Zijian Zheng. KDD-Cup 2000 organizers'

report: Peeling the onion. SIGKDD Explorations, 2(2):86-98, 2000.
[19] The Complexity of Mining Maximal Frequent Itemsets and Maximal Frequent Patterns. Guizhen Yang,

Proc. of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 344-
353, 2004.

http://www.intel.com/software/products/vtune/
http://fimi.cs.helsinki.fi/

 52

3.2 A Defect Tolerant Self-organizing Nanoscale SIMD Architecture
The continual decrease in transistor size (through either scaled CMOS or emerging nano-technologies)

promises to usher in an era of tera to peta-scale integration. However, this decrease in size is also likely to
increase defect densities, contributing to the exponentially increasing cost of top-down lithography. Bottom-up
manufacturing techniques, like self-assembly, may provide a viable lower-cost alternative to top-down
lithography, but may also be prone to higher defects. Therefore, regardless of fabrication methodology, defect
tolerant architectures are necessary to exploit the full potential of future increased device densities.

This sub-section describes our defect tolerant Single Instruction Multiple Data, SIMD architecture. A key
feature of our design is the ability of a large number of limited capability nodes with high defect rates (up to
30%) to self-organize into a set of SIMD processing elements. Despite node simplicity and high defect rates, we
show that by supporting the familiar data parallel programming model the architecture can execute a variety of
programs. The architecture efficiently exploits a large number of nodes and higher device densities to keep
device switching speeds and power density low. On a medium sized system (~1cm2 area), the performance of
the proposed architecture on our data parallel programs matches or exceeds the performance of an aggressively
scaled out-of-order processor (128-wide, 8k reorder buffer, perfect memory system). For larger systems
(>1cm2), the proposed architecture can match the performance of a chip multiprocessor with 16 aggressively
scaled out-of-order cores.

Manufacturing defects, power density, process variability, transient faults, bulk silicon limits, rising test
costs and multibillion dollar fabrication facilities are some of the challenges facing the continued scaling of
CMOS. While architectural modifications (e.g., multicore) can provide some short-term relief, the
semiconductor industry recognizes the importance of these issues and the need to explore long term alternatives
to CMOS devices and fabrication techniques [17].

One promising alternative is DNA-based self-assembly of nanoscale components using inexpensive
laboratory equipment to achieve tera to peta-scale integration. Although much of this technology is in its
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing
systems, architects can gain a deeper understanding of its limitations and opportunities while providing
important feedback to the scientists developing the new technologies.

DNA-based fabrication produces precise control within a small area (e.g., 9 µm2) enabling the construction
of a large number (~109-1012) of small nodes (computational circuits with ~104 transistors) that can be linked
together using self-assembly. This produces a random network of nodes, due to the lack of control over
placement and orientation of nodes, which contain defective nodes and links. While our work is motivated by
DNA-based self-assembly, it is applicable to any technology with similar characteristics (e.g., scaled CMOS
with high process variability, high defect rates and point-to-point links between relatively small compute
nodes). The challenge for computer architects is to efficiently exploit the computational power of the large
number of nodes while overcoming two primary challenges: 1) loss of precise control over the entire fabrication
process, and 2) high defect rates.

This sub-section presents a SIMD architecture designed to address these challenges. The fundamental
building block in our architecture is a relatively small node (e.g., 1-bit Arithmetic Logic Unit, ALU with 32 bits
of storage and communication support for four neighbors) that operates asynchronously. A configuration phase
at startup isolates defective nodes and allows groups of nodes to self-organize into SIMD processing elements
(PEs) which are connected in a logical ring, thus simplifying the programmer’s view of the system.

Simulations using conservative estimates for node size and device speed show that the proposed design can
match the performance of aggressively scaled architectures for 8 out of 9 benchmarks tested. Furthermore, this
performance is achieved with a very low power density of 6.5 W/cm2 (vs. >75 W/cm2 for modern cores) while
conservatively assuming that about 90% of the devices in the system switch every nanosecond. Finally, we
show that our system can tolerate up to 30% defective nodes. Our results demonstrate the potential of this
technology for building high performance architectures despite high defect rates and loss of precise control
during fabrication. Further improvements are possible as the technology scales to allow more complex nodes,
better inter-node connectivity, and faster devices. Our main contributions are:

1. Adapting self-organization methods to computer architectures.
2. Designing a node that balances fabrication constraints with functionality needed to communicate,

compute, and self-organize.

 53

3. Demonstrating the above capabilities by composing a high-performance, defect tolerant SIMD
architecture from a random network of nodes.

3.2.1 DNA-based Self-Assembled Nanoscale Systems and the Architectural
Implications

Self-assembly of nano-electronic devices has the potential to emerge as a lower cost alternative to top-down
manufacturing. DNA-based self-assembly [32] uses the precise binding rules of DNA with nanoscale devices to
build computing systems. We assume a proposed assembly process [26] to place electronic circuits on a DNA
grid [38, 39]. The basic principle is to replicate a simple unit cell on a large scale to build a circuit. The unit cell
consists of a transistor placed in the cavity of a DNA-lattice. A key requirement of this process is the ability to
control the placement of electronic devices (e.g., carbon nanotubes [3, 9] or silicon nanowires [15]) at specific
points on the DNA scaffold to form a circuit. Recently, two critical steps towards this goal were demonstrated:
1) aperiodic patterns, with a 20nm pitch, on a DNA grid [25] and 2) DNA-guided self-assembly of nanowire
transistors [35]. We currently assume only two layers of metal interconnect within a lattice, which limits our
ability to place and route circuits. We propose the use of conducting metallic planes separated by insulating
layers to provide power and ground to the circuit. Figure 83 depicts a cross-sectional view of the lattice, with
two layers of interconnect and the power and ground planes.

Current self-assembly processes produce limited size DNA grids and thus limit circuit size. However, the
parallel nature of self-assembly enables constructing many nodes (~109-1012) that may be linked together by
self-assembled conducting nanowires [39]. The proposed self-assembly method does not control the placement
and orientation of nodes as they are interconnected, resulting in a random network of nodes that contains
defective nodes and links. Communication with external CMOS circuitry occurs through a metal junction
(“via”) that overlaps several nodes but interfaces with the network of nodes through a single “anchor node”.
There may be several via/anchor node pairs in large networks. Figure 83 shows a small network of nodes,
including regions with defective links, and a via/anchor. In the rest of the sub-section we use the term “anchor”
to refer to an anchor node/via pair.

Figure 83. Self-assembled network of nodes.

A computing system built from this random network must: a) tolerate node and interconnect defects, b) not
rely on underlying network structure, c) compose more powerful computational blocks from simple nodes, d)
minimize communication overheads, and e) achieve performance that is at least comparable to future CMOS
based systems. Several research projects examine building computing systems with a subset of these goals,
including self-organization [1, 34], routing and resiliency in the face of defects [1, 16] and the ability to
compose complex computational units from simpler blocks [23], but we face added challenges because of the
extremely limited computational capabilities available in nodes. Our previous work, the nanoscale active
network architecture (NANA) [29] is a general purpose architecture designed with a similar set of goals,
assuming similar underlying technology. However, it fails to match the performance of conventional CMOS
systems since it is unable to efficiently utilize the computational capabilities of the nodes at the same time. The
design of the SIMD architecture presented in this sub-section is guided by the lessons learned through the
design and evaluation of NANA.

 54

3.2.2 System Overview
The goal of this work is to build a defect tolerant computing system with a random network of nodes using a

mix of new solutions and adaptations of known techniques and achieve performance comparable to future
CMOS based systems. To efficiently utilize large numbers (>109-1012) of nodes we implement a SIMD
architecture and focus on data parallel workloads. Our proposed system - called the “Self-Organizing SIMD
Architecture” (SOSA) - supports a three operand register-based Instruction Set Architecture, ISA with
predicated execution and explicit Processing Element-Shift (PE-Shift) instructions to move data between PEs
and communicate with an external controller. We assume that the external controller has access to a
conventional memory system.

Each self-assembled node is a fully asynchronous circuit and there is no global clock to synchronize data
transfers between or within nodes. Each node has a 1-bit ALU with a small register file and connects to other
nodes with (up to four) single wire links. Each link supports low bandwidth asynchronous communication that
transfers 1 data bit per handshake. To support deadlock-free routing, we add support for three virtual channels
(1 bit each). The random network of nodes is organized at two levels during a configuration phase. First, since a
node is too small to hold a PE, we group sets of nodes to form a PE. Second, PEs are linked in a logical ring
providing programmers a simplified system view to reason about inter-PE communication.

The configuration process, initiated from an anchor, maps out defective nodes and connects functional nodes
in a broadcast tree. The system can be configured in two ways: a) as a monolithic system, all nodes on one
logical ring (one “cell”), or b) as multiple, independent logical rings (multiple “cells”). For a monolithic system,
anchors can be used to speed up PE configuration and data input/output by serving as “taps” into the logical
ring. The only constraint enforced during configuration is that an anchor cannot partition a PE. In case (b), we
achieve space partitioning by running the configuration algorithm from multiple anchors to create independent
cells. Space partitioning is a common technique used in highly parallel systems to increase resource utilization
by enabling the execution of multiple instances of one workload, or running multiple workloads.

3.2.3 Node Microarchitecture
Careful node design is critical in maximizing system performance. Due to limited node size, designing the

node architecture involves a trade-off between maximizing functionality (compute, communicate, and self-
organize) and performance while minimizing circuit size. To avoid the area and power overhead of routing
clock signals and to mitigate the effects of device parameter variation, instruction execution and sequencing
within a node are asynchronous.

3.2.3.1 Data Path
Each node has a simple data path that consists of a 1-bit ALU, a 32-bit register file, and a data buffer that

stores incoming and outgoing data. The register file and data buffer can act as sources and/or sinks for the ALU.
The data buffer cannot be written to unless the current instruction is waiting for data, and once written, cannot
be overwritten until the data is used by the ALU. All internal node communication occurs on dedicated point to
point links. Where possible, we overlap the latency of moving a bit between two parts of the node with other
operations.

Nodes can be designed to partition the 32-bit register file into N-bit wide registers that require an N-bit ALU
or repeated use of a single-bit ALU. For example, a 32-bit PE could be created with 32 1-bit registers, requiring
32 nodes for the PE, or with 16 2-bit registers, requiring 16 nodes to form the PE. Increasing register width
increases the work done per instruction in a node, reduces the number of nodes required to form a PE, and
reduces inter-PE communication overheads (since PE length reduces). However, for a fixed sized node, wider
registers reduce the number of registers available to a programmer. Simulations reveal that 2-bit wide registers
achieve the best trade-off in terms of maximizing the benefit of wider registers and the number of registers
available to programmers. We also find that program performance is not sensitive to ALU execution latencies
shorter than the time taken to send/receive a bit between nodes.

3.2.3.2 Control
The control logic in the node can be divided into two parts. The first part (configuration logic) is used only

during configuration and has control registers for defect testing/isolation (main control register), and PE

 55

configuration (PE control register). Figure 84 shows a floorplan of the node with the configuration logic
demarcated by a dashed rectangle within the control and data block.

Figure 84. Node floorplan.

The second part is the run-time control logic used to decode and execute instructions. To reduce design
complexity we sacrifice latency and use microcoded control logic with each instruction divided into multiple
microinstructions. The run-time control logic has three control registers to hold each of three micro-instructions
that comprise an instruction: a) opcode, b) register specifier and c) synchronization (synch). The synch
microinstruction holds an optional counter value (“repeat counter”) to enable the repeated execution of one
instruction and avoid broadcasting the same instruction consecutively. The register specifier includes fields that
allow simple increment/decrement operations on register specifiers in conjunction with their reuse (for striding
through registers). We add a shared circuit that is used to increment/decrement register specifiers and the repeat
counter. Because of high instruction execution latencies, the increment/decrement operations can be overlapped
with other operations, effectively hiding their latency.

All arriving microinstructions are first sent to an instruction buffer before they are moved to the control
registers, creating a simple two-stage pipeline (buffer, execute). Each entry in the instruction buffer can hold all
three micro-instructions that form a full instruction. The instruction opcode is fully decoded and copying the
instruction into the control registers enables all control signals required to execute the instruction and detect its
completion so that the next instruction can begin to execute. Increasing the instruction buffer size can improve
performance by overlapping instruction broadcast with execution, but can also cause greater contention (and
reduce performance) on the network since instructions and data must share link bandwidth. Simulations reveal
that a single entry instruction buffer offers the best trade-off between improving performance and minimizing
design complexity.

3.2.3.3 Inter-Node Communication
Nodes communicate with each other on single-bit asynchronous links. Each end of a link terminates in a

transceiver that can handle three virtual channels (using 1-bit buffers per virtual channel). The transceiver can
route each virtual channel (VC) independently and requires three bits of state per VC to store the destination
address. To support self-organization, nodes include logic to configure static routes. Virtual channel 0 (VC0) is
used to broadcast instructions. Virtual channel 1 (VC1) and virtual channel 2 (VC2) are used to route data in
opposite directions on the logical ring. Each asynchronous transaction on a link is controlled through a four-
phase handshake. The links support bidirectional full-duplex transfers. To simplify transceiver circuit size and
complexity we transfer 1 bit per handshake (which severely limits link bandwidth).

3.2.3.4 Circuit Size and Power Estimates
We have completed the circuit design for all node components. We use this design in conjunction with

layouts of simple logic blocks to estimate node size and power consumption. Our simulator models the system
in sufficient detail to make it relatively easy to extract a circuit model for most components. Figure 84 shows a

 56

floorplan of a node, showing the approximate position (not to scale) of the datapath, control and transceivers.
We estimate that the entire node will require 10,000 transistors. Since the proposed fabrication technology
currently imposes limitations on the number of metal layers, we estimate the final area of the node to be the
equivalent of 22,000 transistors (based on our experience in laying out circuits) which translates to a 3µm x
3µm node. Recent work [39] has shown that it should be possible to manufacture DNA grids of this size.

To estimate system power consumption, we use the energy xdelay product for carbon nanotube field effect
transistor (CNFET) circuits [11]. Based on a switching speed of 1 ns, and estimated node gate and latch counts,
we calculate an upper bound on the per node power consumption. During execution, the configuration logic and
a large part of the register file are inactive (at most 3 registers can be active). Accounting for these inactive
elements yields a node activity factor of 0.88, which corresponds to a power consumption of 0.775µW per node.
To obtain an upper bound on the power density of this system, we assume that nodes are packed with no space
between them. Using our estimated node area (9µm2) and power (0.775µW), we get a maximum power density
of 6.5W/cm2, with a node activity factor of 0.88. This is much less than the power densities of current
processors, which are greater than 75 W/cm2. This estimate is pessimistic since the activity factor is a
conservative estimate, we cannot pack nodes perfectly, and defective nodes will further reduce power density.

3.2.3.5 Summary
Each node in SOSA is a small circuit that can communicate with up to four neighbors, store small amounts

of state and perform simple computation. To minimize area and power overheads the nodes use asynchronous
logic, however like current processors we still dedicate significant area to control and communication circuitry.
The challenge is to coordinate the operation of these nodes connected through an unstructured network to
execute programs.

3.2.4 System Configuration
To use the random network of nodes to perform useful computation we use a configuration mechanism to

impose logical structure on the network and isolate defective nodes and links from the rest of the system. This
allows nodes to self-organize and avoids the need for an external defect map, which would be impractical to
obtain given the scale and bandwidth limitations of the system. Once defective nodes are isolated, the functional
nodes are grouped to form PEs. We now describe this configuration in detail.

3.2.4.1 Logical Structure and Defect Isolation
We use a variant of the “reverse path forwarding” (RPF) algorithm [7,27] to impose a logical tree structure

on the network and isolate defects. When the system is powered up or reset, all nodes enter a “configuration
mode”, steer incoming packets to the configuration control registers and execute the distributed RPF algorithm.
A small packet is inserted through an anchor and is broadcast on all of its active links (the transceiver analog
control circuitry tests the liveness of its physical link).

The RPF algorithm states that any node receiving the broadcast propagates it on all links except the receiving
link if and only if the node has not seen the broadcast before. The node also stores the direction (“gradient”)
from which it received the broadcast and sets up internal routing information based on this direction. Following
the gradient through a set of nodes leads to the broadcast source—the tree root. A depth first traversal is
established by nodes locally selecting links in a predefined order relative to their gradient link. Opposite
orderings are used for forward (VC1) and reverse (VC2) traversals. This method can be used to have all nodes
in the system self-organize into a tree or it can be used to create multiple trees by initiating the broadcast
through multiple anchors. For example, we could self-assemble the random network of nodes on a silicon wafer
with a grid of vias to create a system with multiple anchors.

Defect isolation is achieved by 1) augmenting each node with built-in-self-test and assuming fail-stop
behavior [28], and 2) including a simple test vector in each broadcast packet that each node must successfully
execute before propagating the broadcast. Nodes failing the test are isolated since there is no path through the
node. Simulations show that the gradient can reach a very large fraction of functional nodes (i.e., achieve good
coverage) for node defect rates up to 30%. Handling more complex defects like Byzantine failures is beyond the
scope of this work.

 57

3.2.4.2 Configuring Processing Elements
A node is too small to hold an entire PE, so we logically group a set of nodes to form a PE. To create PEs

with N bits (we assume N=32), we traverse the broadcast tree in depth-first order (on VC1) and group N+2
consecutive unconfigured nodes. We use one configuration packet per PE. An unconfigured node receiving a
configuration packet examines it to determine what node in the PE is to be configured next. The first node holds
auxiliary control bits for the PE and is called the “head” node. The next N nodes serve as compute nodes that
form the N-bit PE. The last node (“tail”) serves as the terminating point of the PE and is used to store the status
bits (carry/borrow) resulting from an arithmetic operation. A newly configured tail node sinks the configuration
packet. To minimize PE setup time in large networks (>109 nodes), we could distribute configuration by
exploiting multiple anchors.

If the broadcast tree does not have sufficient nodes to form an integral number of PEs, the “incomplete” PE
is deconfigured before execution begins by performing a reverse depth first traversal on VC2. PE
deconfiguration uses a simple packet and starts with the last configured node of the partial PE (i.e., PEs with no
tail), and deconfigures all intermediate nodes until it reaches (and terminates at) the head node.

We extend PE configuration to optimize PE length (hops from head to tail). Very long PEs (e.g., a PE that
spans the broadcast tree root) may reduce performance due to longer intra-PE communication latencies. Since
the post-configuration step deconfigures partial PEs, a PE that crosses a length threshold can be rejected by
starting a new PE without creating a tail node. We empirically find that a threshold of 4 times the minimum PE
length (compute nodes + head + tail) achieves a good balance between extra nodes required and performance
gained by reducing PE length.

Once PEs are configured, all nodes set a “run” mode bit. Packets are no longer routed to the configuration
control registers, unless the node receives a global reset instruction. Each PE waits for instructions to execute.
In the next section, we describe how SOSA uses the configured PEs to execute instructions.

3.2.5 System Architecture
In this section, we describe the architecture of SOSA. Careful node design coupled with the self-organizing

capability of each node enables us to map a data parallel architecture onto the random network of nodes. We
begin by describing the instruction set and execution model. Then, we present an example illustrating the
execution of an instruction in the system.

3.2.5.1 Instruction Set Architecture
SOSA uses a three register operand ISA, with microcoded instructions (Table 8 shows a subset of the

instruction set). A full instruction has between 39 and 44 bits and contains: a) a 16-bit fully-decoded opcode
microinstruction, b) a 20-bit register specifier microinstruction (4 bits per register specifier for a 16-entry
register file, and 2 extra bits per register specifier to allow increment/decrement/no change operations), and c) a
3-bit “synch” microinstruction with an optional 5-bit synch repeat counter. Each microinstruction can be
independently broadcast and includes 2 bits of control overhead to select a control register as a
destination.Since opcodes are fully decoded, it is relatively straightforward to support fused instructions that
include combinations of operations to increase the work done per instruction. For example, a Copy-Shift first
copies the source to the destination register, and then performs a shift operation on the destination register.
SOSA also supports predicated instruction execution (all instructions can be predicated) and has three types of
instructions that can modify predicate bits: a) conditional instructions, b) unconditional predicate modifying
instructions and c) predicate-shift instructions.

 58

Table 8. Instruction set architecture.

Data exchange with the external controller and between PEs is handled through PE-Shift instructions. When

PEs in a cell execute a PE-Shift instruction, each PE sends the contents of the specified register to a neighbor
(left or right), and receives a new value for the register from the other neighbor (right or left). Since these
instructions are critical for data communication, it is important to minimize their latency. We optimize PE-
Shifts using the following observation: for a N-bit PE, each bit moves exactly (N+2) positions to the left or
right, and a node only needs to store the (N+2)th bit in its register file and can “forward” the remaining bits
without register access. We use the synch repeat counter to track the bits being forwarded by the node. The
node stops forwarding when it receives the (N+2)th bit. When a node is “forwarding” data, it copies the data bit
directly from its input buffer to its output buffer. This reduces the critical path of a bit through the node.

3.2.5.2 Execution Model
Instructions are broadcast on VC0 to all nodes, thus PEs, in a cell. Nodes first place instructions in the

instruction buffer and then forward them down the broadcast tree. Instruction broadcast stalls when the
instruction buffer is full. The arrival of the synchronization micro-instruction is a signal to the node that all parts
of the instruction have been received. An instruction moves from the instruction buffer to the node’s internal
control registers only when the previous instruction finishes execution. Since nodes are bandwidth limited, we
allow the partial broadcast of instructions to reduce the number of bits broadcast. If an instruction broadcast
skips a microinstruction (except synch), we reuse the previously latched value from the corresponding control
register. The synch repeat counter also helps reduce the number of bits broadcast.

Non-predicated instructions can be executed independently by nodes of a PE, if there are no inter-bit data
dependencies (e.g., for an OR instruction). The head and tail nodes act as PE delimiters, and ensure that intra-
PE data packets do not cross PE boundaries. The tail node also stores the carry/borrow out from arithmetic
operations. The head node stores predicate bits (one per physical register) that are used to conditionally execute
predicated instructions. The head node reads the specified predicate bit and informs the remaining nodes in the
PE whether the predicated instruction is to be executed or squashed by sending a synch microinstruction on
VC1. Since each node in a PE must wait for the extra synchronization microinstruction (which is consumed by
the tail), execution of predicated instructions is serialized through a PE.

3.2.6 Evaluation
This section describes our evaluation methodology, simulation infrastructure and workloads, then compares

SOSA performance to four other architectures. We find that SOSA achieves good performance on benchmarks
that have data parallelism. For a configuration with more than 64K PEs, SOSA matches the performance of an
ideal 16-way Chip-level MultiProcessor, CMP. Thus, despite SOSA’s severe limits on node computational
power, network bandwidth and connectivity, and low control over the fabrication process, it matches the
performance of idealized conventional architectures, with lower device switching speeds and a lower power
density. We then show that SOSA can tolerate high node defect rates. For the encryption benchmarks,
performance gracefully degrades as the fraction of defective nodes increases to 30%. For the other benchmarks,
by over-provisioning the system, SOSA tolerates up to 20% defective nodes with a small (<10%) degradation in
performance. We also find that the instruction buffer and microinstruction reuse optimizations improve

 59

performance. Increasing ALU execution latency does not impact performance so long as it is lower than
communication latencies.

3.2.6.1 Methodology
We evaluate SOSA using a custom, event-driven simulator and use results from simulating smaller systems

to extrapolate the behavior of larger systems. Since the nodes do not use a clock, we define the time taken to
perform one part of the inter-node asynchronous communication handshake as one “time quantum”. The latency
of all activity in the node is a multiple of this time quantum. Experimental devices are expected to operate at
frequencies exceeding 100 GHz [4] with demonstrated frequencies over 10GHz [33] (time quantum of 0.1 ns),
and asynchronous handshakes at high speeds have been demonstrated for high bandwidth crossbar networks
[21]. We expect SOSA’s performance to scale with device performance, but assume a conservative time
quantum of 1 nanosecond to avoid over-estimating performance due to aggressive technological parameters. We
list our default simulation parameters in Table 9. We use a custom tool that models the growth of DNA
nanotubes between nodes to generate network topologies.

Table 9. SOSA system parameters.

We compare the performance of SOSA to a Pentium 4 (P4) (3 GHz, 1MB L2, 1 GB RAM), an ideal out-of-

order superscalar (I-SS) (128-wide, 8k ROB, 1-cycle memory latency), an ideal 16-way CMP (16-CMP)
(obtained by linearly scaling performance of the I-SS) and an ideal implementation of SOSA (I-SOSA) that uses
the same instruction set, but assumes unit instruction execution latencies, and no communication overhead.
Table 10 lists the parameters used to simulate the I-SS with SimpleScalar [2].

Table 10. Ideal superscalar parameters.

Table 11 contains brief descriptions of the test programs, the broad application classes they fall under, and

the number of PEs required by SOSA to run one instance of a program. For all programs other than the
encryption algorithms, we configure the system as a single cell with the necessary PEs. For the encryption
algorithms, we configure the system as a collection of cells, each of which operates as a pipelined encryption
unit. We use GNU Complier Collection, gcc to generate PISA binaries for simple scalar (flags: -O3) and Intel’s
C Compiler (icc, flags: -O3 -fast -tpp7) for the P4 since optimized icc binaries outperform optimized gcc
binaries. We test several versions of matrix multiplication from [31] and identify the best version for the P4
(naïve version with three nested loops, since icc vectorizes loops for the Streaming SIMD Extension (SSE)
units) and I-SS (static loop unrolling). For sorting, we use an implementation of quicksort. For SOSA each
program is hand-optimized (e.g., loop unrolling, code re-organization). The SOSA code for matrix
multiplication and the image filters assumes data is in place before execution begins. However, this overhead
forms only a small fraction of total execution time and can be reduced by exploiting multiple anchors in the
system. The other workloads explicitly account for I/O overheads. The running times of programs do not
include system configuration time (which is proportional to the number of nodes in the system). To estimate
SOSA performance for configurations with more than 16K PEs, we use simple linear extrapolation (simulating
a 256x256 matrix multiplication on a 3 GHz P4 with 32 GB RAM takes ~50 days, which is impractical for data
collection purposes). To validate the extrapolations we compare extrapolated run times to simulated run times
for large configurations (8K-16K PEs).

 60

Table 11. Benchmark descriptions

3.2.6.2 Results
We now examine the performance of applications on SOSA with no defects. SOSA provides users the

flexibility to configure the system to minimize program running time (single cell, single program instance), or
to maximize throughput (multiple cells, one program instance each). We divide our evaluation in two parts
based on the performance metric being used (execution time or throughput).

Execution Time. For many workloads (image filters, matrix multiplication, sorting), system performance is
determined by program execution time since we are solving a single instance of each problem. To evaluate the
performance of these programs on SOSA, we configure the system to create one cell with the required number
of PEs. The latency of an individual instruction in SOSA is high due to the overheads caused by limited node
capabilities. However, SOSA can amortize this overhead by executing the same instruction in all PEs at the
same time. Hence, we expect SOSA to perform poorly for small input sizes, where each instruction is executed
in a small number of PEs. However, SOSA performance should improve as input size increases and eventually
match (or exceed) the performance of the P4, I-SS and 16-CMP. The input size at which SOSA outperforms a
particular architecture is application dependent.

Inspecting the main loop body for matrix multiplication in Figure 85 (optimizations are omitted to keep the
code compact and readable), we see that the primary advantage for SOSA is the simultaneous computation of
all products in the N2 PEs. This allows SOSA to convert the O(N3) algorithm to O(N2). Image filters and sorting
are reduced from O(N2) algorithms to O(N).

 61

Figure 85: Matrix multiply: assembly code w/o loop unrolling.

Figure 86: Single Cell Program Runtimes: (a) Matrix Multiplication, (b) Gaussian Filter, (c)
Median Filter and (d) Sort. The vertical line denotes the input size beyond which SOSA does better

than the Pentium 4.

 62

We plot the running time of matrix multiplication, Gaussian filters, median filters and sorting on different

architectures in Figure 86, marking the input size beyond which SOSA outperforms the P4 with a vertical line
(results for the generic 3x3 filter are qualitatively similar to the Gaussian filter, and are skipped due to space
constraints). As expected, SOSA does worse than the conventional architectures for small input sizes, but
matches and overtakes them as input size increases (except for median filter and sort). The P4 matches the I-SS
on matrix multiplication for two reasons: a) the P4 makes use of its SSE units, and b) I-SS only achieves an IPC
of 9. The P4 performs much worse without the SSE units.

The performance of the median filter and sort algorithms is limited by their dependence on predicated
instructions which serialize execution in a PE. While the number of predicated instructions in the median filter
is fixed (independent of input size), for sort it scales with input size. For the median filter, SOSA is able to
match the performance of the uniprocessors, but not the ideal 16-CMP (for image sizes up to 16Kx16K). For
sort, the potential speedup on SOSA over quicksort on a single processor (average case) is O(log(N)). However,
the overhead introduced by predicated instructions makes it impossible for SOSA to match the performance of
the I-SS or P4. Exploring techniques to reduce this overhead is future work. Note that even I-SOSA cannot
outperform the I-SS at sorting. This highlights one key limitation of SOSA: it is not a general purpose
architecture and cannot match the performance of conventional processors on general purpose workloads.

Throughput. There are a large number of workloads where high system throughput is desirable. The parallel
computational capabilities of SOSA can be used to achieve high system throughput by dividing the system into
multiple cells, each having a set of PEs. While there are multiple ways to improve throughput, we focus on
using multiple instances of a single application (operating on different data) running on different cells. For
example, if we assume an area of 100mm2 (approximately the area of a P4 in 90nm CMOS), we can configure
over 5,000 cells (assuming an average inter-node gap of 1µm) that each perform an 8x8 matrix multiplication
and achieve much higher throughput than the P4 or the I-SS.

TEA [37] and XTEA [24] are two simple encryption algorithms developed at the University of Cambridge
that use a combination of shift, add and xor operations to encrypt 64 bit blocks of data with a 128-bit key, with
XTEA requiring more operations per iteration to achieve better cryptographic security. We implement pipelined
versions of both algorithms that require 64 PEs (corresponding to 64 encryption iterations) in a cell. Due to their
requirement of fixed sized cells, these algorithms are well suited for the high-throughput, multiple cell
configuration.

Since each cell operates independently and can handle multiple data blocks in parallel, TEA and XTEA
achieve better throughput on SOSA than on the I-SS or P4. A single cell can perform 175,000 TEA encryptions
per second and 170,000 XTEA encryptions per second. Table 12 compares the performance of TEA on different
architectures. The table shows that SOSA can achieve 79% of the throughput of the ideal 16-CMP, while using
about the same area as a single core with devices switching at a tenth of the speed (1ns vs. 0.1ns). The
comparison with I-SOSA highlights the overheads due to simple nodes and limited bandwidth in SOSA.

Table 12. TEA throughput for various architectures

We have implemented pipelined versions of searching and bin-packing algorithms in SOSA to maximize

throughput. Our implementation of search achieves about 10 billion comparisons per second on SOSA while
using the same area as a P4 (the P4, I-SS and 16-CMP achieve about 0.5, 2 and 32 billion comparisons per
second respectively). We see qualitatively (not quantitatively) similar results for bin-packing. SOSA’s ability to
exploit data parallelism in these workloads helps it outperform conventional architectures.

 63

Defect Tolerance— The ability to tolerate defects is one of the primary features of SOSA. To test the defect
tolerance and to measure the effect of defects on performance, we run a number of experiments varying the
node defect rate. Our generated topologies include link defects but these only have an indirect (and minor)
effect on performance. Performance is affected if the average number of links per node is less than 2. We find
that nodes have 3.2 active links on average. First, we examine the effect of defects on the throughput of a
system configured into multiple cells. If we keep the total system area constant (100mm2), as node defect rates
increase we are able to configure fewer cells, resulting in reduced throughput. Figure 87 plots the throughput for
TEA and XTEA, as node defect rates increase from 0% to 30% revealing a graceful degradation in
performance. The connectivity of the random network of nodes is severely affected by node defect rates greater
than 30%. This results in network partitions with insufficient functioning nodes in each partition to configure a
64 PE cell.

Figure 87: TEA/XTea: Graceful degradation of throughput with increasing node defect rate.

For single cell applications, the entire system must be over-provisioned to ensure that a sufficient number of
PEs can be configured. Thus defects indirectly impact performance by reducing network connectivity and
bandwidth. In all experiments, SOSA has 30% more nodes (24,000 total nodes) than the minimum needed for a
32x32 matrix multiply. Figure 88 shows the running time for 32x32 matrix multiplication as we increase the
number of defective nodes from 0% to 20%. We see that the running time increases by about 8% (compared to
a case with no defects), primarily because the average length of PEs increases. We do not present results for the
other workloads since they are qualitatively similar. If the system cannot configure sufficient PEs, the problem
could potentially be divided into parts that can be solved with the available PEs. Such partitioning, if possible,
is beyond the scope of this work. Though the defect tolerance capabilities of the RPF algorithm have been
demonstrated before, our experiments show that the ability to tolerate high defect rates incurs only a small
performance penalty (~8% for N=32, 32-bit PEs), a characteristic of increasing importance for future systems.

Figure 88: Matrix multiply: The effect of defects on execution time

 64

3.2.6.3 Result Summary
The results in this section show that a system built using a random network of simple nodes can outperform a

Pentium 4 (P4) and an ideal superscalar processor (I-SS), despite being severely bandwidth limited and
operating devices at a lower switching speed. A scaled up version of the system can outperform an ideal 16-way
CMP. The results also highlight SOSA’s flexibility in configuring independent cells to improve system
utilization and throughput. SOSA provides higher throughput than the P4 and I-SS while using the same area.
Coupled with the ability to tolerate a significant defect rate, SOSA shows potential in harnessing the higher
device densities that emerging technologies promise to deliver.

3.2.7 Conclusions
With the expected rise in defect rates as device sizes shrink, defect tolerance will be a critical requirement

for future system architectures. These increasing defect rates will contribute directly to the exponentially
increasing cost of top-down manufacturing. The use of bottom-up techniques like self-assembly will help lower
costs but may also result in higher defect rates and a loss of precise control over the manufacturing process.
This makes it imperative for architects to develop defect tolerant architectures to exploit the full potential of
future nanoscale devices. This report presents SOSA, a self-organizing SIMD architecture built from a random
network of simple computational nodes. Despite high defect rates, low bandwidth and lack of underlying
physical structure we show that, for data parallel workloads, SOSA is able to perform better than conventional
superscalar processors, while operating at a lower speed and consuming much less power. A scaled version of
SOSA can perform better than an ideal 16-way CMP. As the underlying technology matures, SOSA’s
performance can be further improved as fabrication limitations are removed. While SOSA does not solve all
problems encountered with self-assembled architectures, it is a step towards realizing defect tolerant computing
systems built using emerging technologies that may provide inexpensive terascale integration.

3.2.8 References
[1] H. Abelson et al. Amorphous Computing. Communications of the ACM, 43(5):74–82, 2000.
[2] T. Austin et al. SimpleScalar: An Infrastructure for Computer System Modeling. IEEE Computer,

35(2):59–67, Feb. 2002.
[3] A. Bachtold et al. Logic Circuits with Carbon Nanotube Transistors. Science, 294:1317–1320, Nov.

2001.
[4] P. J. Burke. Carbon Nanotube Devices for GHz to THz Applications. Proc. of SPIE, 5593:52–61, 2004.
[5] S. Ciricescu et al. The Reconfigurable Streaming Vector Processor (RSVP). In Proc. of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture, Dec. 2003.
[6] W. B. Culbertson et al. The Teramac Custom Computer: Extending the Limits with Defect Tolerance. In

Proc. of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Nov. 1996.
[7] Y. K. Dalal and R. M. Metcalfe. Reverse Path Forwarding of Broadcast Packets. Communications of the

ACM, 21(12):1040–1048, 1978.
[8] A. DeHon. Array-Based Architecture for Molecular Electronics. In Proc. of the First Workshop on Non-

Silicon Computation (NSC-1), Feb. 2002.
[9] C. Dwyer et al. DNA Functionalized Single-Walled Carbon Nanotubes. Nanotechnology, 13:601–604,

2002.
[10] C. Dwyer. Self-Assembled Computer Architecture: Design and Fabrication Theory. PhD thesis,

University of North Carolina, May 2003.
[11] C.et al. Semi-empirical SPICE Models for Carbon Nanotube FET Logic. In Proc. of the Fourth IEEE

Conference on Nanotechnology, Aug. 2004.
[12] R. Espasa et al. Tarantula: A Vector Extension to the Alpha Architecture. In Proc. of the 29th Annual

International Symposium on Computer Architecture, May 2002.
[13] S. C. Goldstein and M. Budiu. NanoFabrics: Spatial Computing Using Molecular Electronics. In Proc.

of the 28th Annual International Symposium on Computer Architecture, July 2001.

 65

[14] H. Hofstee. Power Efficient Processor Architecture and the Cell Processor. In Proc. of the 11th
International Symposium on High-Performance Computer Architecture, pages 258–262, Feb. 2005.

[15] Y. Huang et al. Logic Gates and Computation from Assembled Nanowire Building Blocks. Science,
294:1313–1317, Nov. 2001.

[16] C. Intanagonwiwat et al. Directed Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks. In Mobile Computing and Networking, pages 56–67, 2000.

[17] International Technology Roadmap for Semiconductors, 2005.
[18] U. Kapasi et al. The Imagine Stream Processor. In Proc. 2002 IEEE International Conference on

Computer Design, pages 282–288, Sept. 2002.
[19] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.
[20] C.Leiserson et al. The Network Architecture of the Connection Machine CM-5. In Proc. of the 4th

ACM Symposium on Parallel Algorithms and Architectures, pages 272–285, June 1992.
[21] A. Lines. Asynchronous interconnect for synchronous SoC design. IEEE Micro, 24:32–41, Jan/Feb

2004.
[22] R. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy to Improve Computer

Reliability. IBM Journal, pages 200–209, 1962.
[23] K. Mai et al. Smart Memories: A Modular Reconfigurable Architecture. In Proc. of the 27th Annual

International Symposium on Computer Architecture, June 2000.
[24] R. Needham and D. Wheeler. Tea Extensions. Technical report, Computer Laboratory, University of

Cambridge, Oct. 1997.
[25] S. H. Park et al. Finite-size, Fully-Addressable DNA Tile Lattices Formed by Hierarchical Assembly

Procedures. Angewandte Chemie, 45:735–739, Jan. 2006.
[26] J. P. Patwardhan et al. Circuit and System Architecture for DNA-Guided Self-Assembly of

Nanoelectronics. In Foundations of Nanoscience: Self-Assembled Architectures and Devices, pages 344–358,
Apr. 2004.

[27] J.Patwardhan et al. Evaluating the Connectivity of Self-Assembled Networks of Nano-scale Processing
Elements. In IEEE International Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures
(NANOARCH ’05), pages 2.1–2.8, May 2005.

[28] J.Patwardhan et al. Design and Evaluation of Fail-Stop Self-Assembled Nanoscale Processing Elements.
In IEEE International Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures
(NANOARCH ’06), June 2006.

[29] J.Patwardhan et al. NANA: A Nano-scale Active Network Architecture. ACM Journal on Emerging
Technologies in Computing Systems, 2(1):1–30, 2006.

[30] J.Patwardhan et al. Self-Assembled Networks: Control vs. Complexity. In 1st International Conference
on Nano-Networks, Sept. 2006.

[31] Performance Database Server. http://www.netlib.org/performance/html/PDStop.html.
[32] B.Robinson and N.Seeman. The design of a biochop: a self-assembling molecular-scale memory device.

Protein Engineering, 1:295–300, Aug. 1987.
[33] S. Rosenblatt et al. Mixing at 50GHz using a Single-Walled Carbon Nanotube Transistor. Applied

Physics Letters, 87:153111, Oct. 2005.
[34] M. D. Schroeder et al. Autonet: A High-speed, Self-Configuring Local Area Network Using Point to

Point Links. IEEE Journal on Selected Areas in Communications, 9(8), Oct. 1991.
[35] K. Skinner et al. Nanowire Transistors, Gate Electrodes, and Their Directed Self-Assembly. In The

72nd Southeastern Section of the American Physical Society (SESAPS), Nov. 2005.
[36] J. von Neumann. Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable

Components. In C.Shannon and J. McCarthy, editors, Automata Studies, pages 43–98. Princeton University
Press, Princeton, NJ, 1956.

http://www.netlib.org/performance/html/PDStop.html

 66

[37] D. Wheeler and R. Needham. TEA: A Tiny Encryption Algorithm. In Fast Software Encryption: Second
International Workshop, Dec. 1994.

[38] E. Winfree et al. Design and Self-Assembly of Two-Dimensional DNA Crystals. Nature, 394:539, 1998.
[39] H. Yan et al. DNA Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires.

Science, 301(5641):1882–1884, Sept. 2003.

 67

4. Final Conclusions
The following sub-sections describe the conclusion and summary-of-results for each component of the

project. Each sub-section is a digest of the important findings that resulted from the support of this project.

4.1 Substrate Stabilization and Analysis
DNA nanostructures are the key to building high performance systems beyond photolithography. However,

DNA is more reactive than most of the materials used in conventional silicon processing. To achieve the
ultimate goal of contextual knowledge mining, DNA nanostructures must be hardened for downstream
processing, e.g., functionalization with nanoelectronic or photonic devices.

Psoralen is a molecule that is capable of intercalating into the DNA double helix structure and subsequently
cross linking to two bases upon exposure to 365 nm ultraviolet light[49]. Exposure of DNA at lower
wavelengths such as 254 nm is known to directly damage the typical helical structure. Studies have also
indicated that preferential cross linking occurs more with alternating and adjacent A-T pairs[50]. Although
mainly used in the medical field for treatments of skin diseases such as psoriasis and vitiligo, it is also
extensively used in biological research concerning the physical properties of DNA helices. Psoralen is a means
to improve the integrity of the DNA structures in different environments including a range of temperatures, pH
ranges, and chemical environments.

 Trioxsalen, or TMP, is a psoralen derivative that is most commonly in medical treatments. As a result, it is
one of the more well-studied compounds in its interaction with DNA. It is known that trioxsalen has generally
low solubility but is capable of both absorbing wavelengths of light ranging from 250 nm to 350 nm
consistently[51]. It is further known that free trioxsalen is capable of fluorescing at 427 nm. Using this
information, a range of studies concerning its interaction with addressable DNA grids is being conducted. As
this report is only on recent progress, only procedures and results will be presented here.

 The solubility of trioxsalen in a set of solvents has been investigated. Literature indicates that standard
media for the psoralen derivative include water, buffer, and alcohols. However, previous studies have been
demonstrated both in literature and by our group that prolonged exposure to alcohol such as ethanol or
isopropanol can destabilize the DNA grid structures[52]. Such data has been quantitatively verified through an
experiment in which DNA lattice was exposed to increasing volumes of ethanol ranging from 10% additional
volume to 100% additional volume. AFM images were taken and analyzed using image analysis macros
developed using ImageJ software. The macros compare the raw image to an ideal DNA lattice image of the
same dimensions as well as calculate the percent coverage of DNA material over the image. The two values are
used as an index to indicate the extent to which the DNA present is part of the expected structure or how “well-
formed” the DNA structures are in the image. Figure 89 presents the results of this experiment.

Figure 89: Results from denaturation experiment. The insets above each bar are a section of the

AFM image from each sample.

EtOH Experiment Image Analysis

0

5

10

15

20

25

30

35

Ctl 10 20 50 100

Images

%
 M

et
ri

c

EtOH Samples

 68

4.2 Scientific Computing on Self-Organized Substrates
The current support for floating point operations on self-organized substrates (SOSA, NANA, etc.) is

restricted to software emulation due to physical resource constraints on each node. However, there are a variety
of methods to use when implementing a software floating point library and we have begun to investigate these
various tradeoffs for SOSA. Our current work has identified floating point renormalization as a severe
bottleneck in system performance. For example, SOSA integer-only execution time of a mixture of 50
multiplications and 50 additions approaches 360μs while an identical set of floating point operations takes
nearly 13ms, or almost 40-times longer for the floating point operations.

Clearly, for SOSA to find practical application to any scientific domain either (i) fixed-point (integer-only)
operations must suffice, or (ii) floating point operation performance must be improved.

The identification of the renormalization step in the software floating point operations focused our efforts on
reducing this cost. In fact, renormalization has a long history of optimizations and prior to the adoption of the
IEEE floating point standard was largely customizable per application. The approach we adopt here is to use a
high-radix exponent to help reduce the time spent renormalizing operands. Since a floating point number can be
represented as N = Mantissa * (Base ^ Exponent) we are free to choose a value for the Base. The IEEE standard
defines the base as 2 which requires O(n) shifts to normalize a number where ‘n’ is the number of bits in the
mantissa. For our SOSA implementation we have evaluated several bases, as shown in Table 13, to find an
optimal design point at base 16.

Table 13. High-radix floating point operation execution time

Base Exe. time (μs)

2 13027.850

4 2864.058

8 1784.806

16 1459.502

32 2797.878

Integer-only 352.817

The improvement of base-16 exponents over base-2 is primarily due to the reduction in time for

renormalization on each addition. This yields a 9X improvement for base-16 over base-2 which brings the
SOSA floating point performance within a factor of 4X of integer-only performance (vs. ~50X previously.) We
have also begun to study the impact of the size of processing elements and the number of nodes per element to
understand how this might be used to further improve floating point performance. We are also investigating two
new architectural innovations focused on reducing shift-by-operand latency and improvements in the methods
used to self-organize the interconnect.

The SOSA system is built using a random network of simple nodes can outperform a Pentium 4 (P4) and an
ideal superscalar processor (I-SS), despite being severely bandwidth limited and operating devices at a lower
switching speed. We have shown that floating point performance can be improved by 9X over the IEEE
standard implementation and comes within 4X of integer-only performance. With the expected rise in defect
rates as device sizes shrink, defect tolerance will be a critical requirement for future system architectures. These
increasing defect rates will contribute directly to the exponentially increasing cost of top-down manufacturing.
The use of bottom-up techniques like self-assembly will help lower costs but may also result in higher defect
rates and a loss of precise control over the manufacturing process. This makes it imperative for architects to
develop defect tolerant architectures to exploit the full potential of future nanoscale devices.

 69

4.3 Defect Tolerant Computer Architecture Results
The continual decrease in transistor size (through either scaled CMOS or emerging nano-technologies)

promises to usher in an era of tera to peta-scale integration. However, this decrease in size is also likely to
increase defect densities, contributing to the exponentially increasing cost of top-down lithography. Bottom-up
manufacturing techniques, like self-assembly, may provide a viable lower-cost alternative to top-down
lithography, but may also be prone to higher defects. Therefore, regardless of fabrication methodology, defect
tolerant architectures are necessary to exploit the full potential of future increased device densities.

This report explores a defect tolerant SIMD architecture. A key feature of our design is the ability of a large
number of limited capability nodes with high defect rates (up to 30%) to self-organize into a set of SIMD
processing elements. Despite node simplicity and high defect rates, we show that by supporting the familiar data
parallel programming model the architecture can execute a variety of programs. The architecture efficiently
exploits a large number of nodes and higher device densities to keep device switching speeds and power density
low. On a medium sized system (~1cm2 area), the performance of the proposed architecture on our data parallel
programs matches or exceeds the performance of an aggressively scaled out-of-order processor (128-wide, 8k
reorder buffer, perfect memory system). For larger systems (>1cm2), the proposed architecture can match the
performance of a chip multiprocessor with 16 aggressively scaled out-of-order cores.

Manufacturing defects, power density, process variability, transient faults, bulk silicon limits, rising test
costs and multibillion dollar fabrication facilities are some of the challenges facing the continued scaling of
CMOS. While architectural modifications (e.g., multicore) can provide some short-term relief, the
semiconductor industry recognizes the importance of these issues and the need to explore long term alternatives
to CMOS devices and fabrication techniques [17].

One promising alternative is DNA-based self-assembly of nanoscale components using inexpensive
laboratory equipment to achieve tera to peta-scale integration. Although much of this technology is in its
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing
systems, architects can gain a deeper understanding of its limitations and opportunities while providing
important feedback to the scientists developing the new technologies.

DNA-based fabrication produces precise control within a small area (e.g., 9 µm2) enabling the construction
of a large number (~109-1012) of small nodes (computational circuits with ~104 transistors) that can be linked
together using self-assembly. This produces a random network of nodes, due to the lack of control over
placement and orientation of nodes, which contain defective nodes and links. While our work is motivated by
DNA-based self-assembly, it is applicable to any technology with similar characteristics (e.g., scaled CMOS
with high process variability, high defect rates and point-to-point links between relatively small compute
nodes). The challenge for computer architects is to efficiently exploit the computational power of the large
number of nodes while overcoming two primary challenges: 1) loss of precise control over the entire fabrication
process, and 2) high defect rates.

This report presents a SIMD architecture designed to address these challenges. The fundamental building
block in our architecture is a relatively small node (e.g., 1-bit ALU with 32 bits of storage and communication
support for four neighbors) that operates asynchronously. A configuration phase at startup isolates defective
nodes and allows groups of nodes to self-organize into SIMD processing elements (PEs) which are connected in
a logical ring, thus simplifying the programmer’s view of the system.

Simulations using conservative estimates for node size and device speed show that the proposed design can
match the performance of aggressively scaled architectures for 8 out of 9 benchmarks tested. Furthermore, this
performance is achieved with a very low power density of 6.5 W/cm2 (vs. >75 W/cm2 for modern cores) while
conservatively assuming that about 90% of the devices in the system switch every nanosecond. Finally, we
show that our system can tolerate up to 30% defective nodes. Our results demonstrate the potential of this
technology for building high performance architectures despite high defect rates and loss of precise control
during fabrication. Further improvements are possible as the technology scales to allow more complex nodes,
better inter-node connectivity, and faster devices. Our main contributions are:

• adapting self-organization methods to computer architectures,
• designing a node that balances fabrication constraints with functionality needed to communicate,

compute, and self-organize, and,

 70

• demonstrating the above capabilities by composing a high-performance, defect tolerant SIMD
architecture from a random network of nodes.

4.4 Advances in DNA Nanogrid Synthesis
The hierarchical construction of DNA nanostructures has enabled larger and more complex designs than

previous demonstrations. Coupled with good thermodynamic design and thermal ordering, hierarchies of
interactions can be used to assemble complex chemical patterns. We have recently demonstrated that our
original hierarchy can be extended to build 8x8 (and 8x16) grids of DNA as shown in Figure 90.

(a) (b) (c)

Figure 90: (a), (b) Two individual 8x8 DNA grids. Each grid is 140nm x 140nm. (c) An un-
optimized 8x16 DNA grid built using two 8x8 grids.

These methods have enabled large structures with aperiodic chemical patterns. Currently, we have biotin-
streptavidin patterns (i.e., protein patterns) and preliminary demonstrations of Ag nanoparticle patterns. Our
strategy to nucleate Ag nanoparticles has been to use a templating protein (e.g., streptavidin) that has been
chemically pre-charged with precursor reagents. After lengthy optimization, we have found an operating point
where the protein retains a strong binding affinity to the biotin-patterned DNA grids, yet should nucleate Ag
nanoparticles. The benefit of this approach is that the surfaces of the patterned metallic particles are unfettered
by solubilization or stabilization groups (e.g., citrate). That is, protein nucleated Ag nanoparticles may yield
“cleaner” particle structures than otherwise possible.

Toward this end we have synthesized several wire-like structures from protein-biotin-grid interactions that
appear in typical logic and memory structures. Figure 91 shows fours AFM images of the wire structures and
this demonstrates that it is possible to synthesize, in quantities approaching 1012, particle patterns with useful
aperiodicity.

Figure 91: Four patterned DNA grids. Each image represents a wire-like motif that can be found in

typical logic circuitry.

This work is on-going and will further study the nucleation of Ag (and semiconductor) nanoparticles on the
grids as well as the controlled fusion of core-shell particles on the grids to form nanoelectronic junctions by
shell over-growth. We will also continue to investigate the opportunity of optical resonance energy transfer
mediated by DNA grid nanostructures. We have preliminary data that suggests it is possible to form near-field
conduits for optical excitons.

4.5 DNA Self-assembly CAD Results
The continued scaling of CMOS and the emergence of alternative nano-electronic devices promises to

deliver increased device densities and higher operating frequencies. However, small devices are more
vulnerable to defects, contributing directly to the exponentially increasing costs of top-down lithography. DNA-
based self-assembly of nano-electronic devices is one approach that has potential as a lower-cost long-term

 71

replacement of conventional top-down fabrication techniques. Although much of this technology is in its
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing
systems architects can gain a deeper understanding of its limitations and opportunities while providing
important feedback to the scientists developing the new technologies. The precise binding rules of DNA enable
creation of nanostructures with minimum pitch on the order of a few nanometers. These nanostructures can be
used to place and interconnect nanoscale components (e.g., crossed carbon nanotube FETs, ring-gated FETs,
nanowires).

The challenge in creating DNA nanostructures is to specify the appropriate DNA sequences such that the
desired structure (geometry) forms and is thermodynamically stable. To meet this challenge, DNA self-
assembly can exploit the common technique of composing a small set of relatively simple motifs to create more
sophisticated structures. Many parts of this design process can benefit from design automation. However, in
this work we focus on the key aspect of designing the DNA sequences that control how motifs can bind with
each other. Specifically, we seek to find DNA sequences that minimize the strength of unintentional interactions
with the other motifs in the set while maximizing the strength of intentional interactions.

Our approach is to evaluate the sequence design space to create a fixed size 60nm X 60nm grid with 20nm
pitch. This structure is composed through a hierarchical assembly of motifs. We focus on the design of the
final assembly step that combines 16 cruciform motifs (arranged 4x4) to form the final grid structure. For this
structure, we must determine the best 96 sequences that satisfy the structural and stability metrics. To
accomplish this we implemented an optimization algorithm that is aware of both intentional and unintentional
interactions and exploits parallelism to rapidly evaluate the large sequence design space.

We have experimentally verified our method by designing, synthesizing, and assembling the target
nanostructure and characterizing it with atomic force microscopy (AFM). We also show that our optimization
algorithm produces superior sequences for a 2x2 grid than sequences produced using conventional text-based
sequence comparison or random sequence selection.

4.6 Computer Architecture Survey Results
The continued scaling of CMOS and the emergence of alternative nano-electronic devices promises to

deliver increased device densities and higher operating frequencies. However, small devices are more
vulnerable to defects, contributing directly to the exponentially increasing costs of top-down lithography. DNA-
based self-assembly of nano-electronic devices is one approach that has potential as a lower-cost long-term
replacement of conventional top-down fabrication techniques. Although much of this technology is in its
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing
systems architects can gain a deeper understanding of its limitations and opportunities while providing
important feedback to the scientists developing the new technologies. This fabrication approach produces
precise control within a small area (e.g., 9 µm2) enabling the construction of a large number of (~109-1012) small
computational circuits (nodes) that can be linked to each other using self-assembly. This results in a random
network of nodes that contains defective nodes and links, due to the lack of control over placement and
orientation of the nodes. While our work is motivated by DNA-based self-assembly, it is applicable to any
technology with similar characteristics (e.g., scaled CMOS with high process variability, high defect rates and
point-to-point links between relatively small compute nodes). The challenge for computer architects is to
efficiently exploit the computational power of this random network while overcoming two primary challenges:
1) loss of precise control over the entire fabrication process, and 2) high defect rates.

Self-assembly of nano-electronic devices has the potential to emerge as a lower cost alternative to top-down
manufacturing. DNA-based self-assembly, is a bottom-up manufacturing process that uses the precise binding
rules of DNA with nanoscale devices to build computing systems. We assume a proposed assembly process to
place electronic circuits on a DNA lattice. A key requirement of this process is the ability to control the
placement of electronic devices (e.g., carbon nanotubes or silicon nanowires) at specific points on the 60nm X
20nm circuit. Recently, we have taken two critical steps towards this goal by demonstrating the placement of
aperiodic patterns, with a 20nm pitch, on a DNA lattice and the DNA-guided self-assembly of nanowire
transistors.

Current self-assembly processes produce limited size DNA lattices thus limiting circuit size. However, the
parallel nature of self-assembly enables the construction of a large number (~109-1012) of nodes that may be
linked together by self-assembled conducting nanowires. Self-assembly does not control the placement and

 72

orientation of nodes as they are interconnected resulting in the formation of a random network of nodes that
contains defective nodes and links. Communication with external CMOS circuitry occurs through a metal
junction (“via”) that overlaps several nodes but interfaces with the network of nodes through a single “anchor
node”. There may be several via/anchor node pairs in large networks.

A computing system built from a random network must: a) tolerate node and interconnect defects, b) not rely
on underlying network structure, c) compose more powerful computational blocks from simple nodes, d)
minimize communication overheads, and e) achieve performance that is at least comparable to future CMOS
based systems. Several research projects examined building computing systems with a subset of these goals,
including self configuration, routing and resiliency in the face of defects and the ability to compose complex
computational units from simpler blocks, but we face added challenges because of the extremely limited
computational capabilities available in nodes.

 The results from this work are a defect tolerant computing system using a random network of nodes that
achieves performance comparable to future CMOS based systems. To efficiently utilize large numbers (>109-
1012) of nodes we implement a SIMD architecture and focus on data parallel workloads. Our proposed system -
called the “Self-assembled SIMD Architecture” (SSA) - supports a three operand register-based ISA with
predicated execution and explicit PE-Shift instructions to move data between PEs and communicate with an
external controller. We assume that the external controller has access to a conventional memory system. Each
self-assembled node is a fully asynchronous circuit and there is no global clock to synchronize data transfers
between or within nodes. Each node has a 1-bit ALU with a small register file, and nodes are connected to each
other by single wire links. Each link supports very low bandwidth asynchronous communication that transfers 1
bit of data per handshake. To support deadlock-free routing, we add support for three virtual channels (1 bit
each). The random network of nodes is organized at two levels during a configuration phase. First, since a node
is too small to hold a PE, we group sets of nodes to form a PE. Second, PEs are linked in a logical ring
providing programmers a simplified system view to reason about inter-PE communication. Configuration,
initiated from an anchor, maps out defective nodes and connects functional nodes in a broadcast tree. The
system can be configured in two ways: a) as a monolithic system, all nodes on one logical ring (one “cell”), or
b) as multiple, independent logical rings (multiple “cells”). For a monolithic system, anchors can be used to
speed up PE configuration and data input/output by serving as “taps” into the logical ring. The only constraint
enforced during configuration is that an anchor cannot partition a PE. In case (b), we achieve space partitioning
by running the configuration algorithm from multiple anchors to create independent cells. Space partitioning is
a common technique used in highly parallel systems to increase resource utilization by enabling the execution
of multiple instances of one workload, or running multiple workloads.

4.7 Data Mining Results
Data mining is the process of extracting or mining interesting knowledge from large amounts of data stored

in databases or other information stores. A fundamental and essential problem in data mining is to discover
frequent patterns or itemsets: given a data base of item transactions, find all itemsets that occur in at least a
user-specified percentage of the total transactions in the database (i.e., has a specified support level). Frequent
itemset mining is useful for many data mining capabilities such as discovery of association rules [1], strong
rules, correlations, sequential rules [2], episodes [12], multi-dimensional patterns, partial periodicity [9], and
many other important discovery tasks. These data mining capabilities are useful for practical applications such
as market basket analysis, inferring patterns from web access logs, and network intrusion detection among
others.

Frequent itemset mining generates a very large number of patterns which may reduce not only the efficiency
but also effectiveness of mining, since it generates numerous redundant patterns. Furthermore, users must sift
through a large number of mined patterns to find useful ones. Closed frequent itemset (CFI) mining [14], mines
only those frequent itemsets having no proper superset with the same support, which can lead to orders of
magnitude smaller result set than mining frequent itemsets [15]. CFI mining retains all the information of
frequent itemset mining, as it is straightforward to generate all the frequent itemsets from the closed frequent
itemsets.

We have explored the memory hierarchy performance of a state-of-the-art CFI algorithm—called FPclose1
[8]—using real world datasets. We used a combination of tools (OProfile [11], VTUNE [16], Simplescalar and
iostat) to gain insight into FPclose’s memory hierarchy performance for both sparse and dense real world
datasets on both Pentium III and Pentium 4 systems. The characterization results indicate that cache behavior

 73

becomes a critical performance bottleneck as the support level decreases. Simulation experiments show that we
achieve gains in the IPC (Instructions per cycle) for a system with perfect memory hierarchy, thus the algorithm
is memory bound. However, an increase in the width of the instruction window has almost no effect on the IPC.

 One specific function CFI_tree::insert(bool*,…) accounts for up to 69% of the L1 data cache misses, 86%
of the L2 data cache misses, and 69% of the execution time for moderate to low support levels. This function is
unique to the closed frequent itemset problem. Symbolic profiling and source code inspection reveal that
CFI_tree::insert(bool*,…) function incurs most of its cache misses while traversing the nodes of a prefix tree
(or closed frequent pattern tree) at a specific level (right sibling pointer dereferences). This motivates the
application of well-known data structure modifications to improve cache performance: 1) padding & aligning,
and 2) node clustering [4]. Our characterization results also reveal that the average number of nodes accessed
during the sibling traversal is data dependent. This motivates a final optimization that dynamically increases
node clustering as more nodes are allocated in a specific level of the prefix tree.

We evaluated the data structure modifications by measuring execution cycles on Pentium III and Pentium 4
systems and compared with execution cycles of our base case. Our results show that padding and aligning have
no significant impact on performance. Node clustering achieves performance gains of up to 79% on Pentium III
systems and 65% on Pentium 4. Finally, we show that the dynamic allocation technique provides speedups up
to 81% on Pentium III system and 67% on Pentium 4. The maximum difference in speedup of the best static
sized node clustering scheme at each data point and the dynamic scheme was 6% on Pentium III and 8% on
Pentium 4. This difference was in dense datasets, for sparse datasets dynamic scheme performed as well as or
better than the best static sized node clustering scheme at each data point in many cases for both systems. For
dense datasets node clustering produces the greatest improvements in performance on both Pentium systems.

4.8 References
[1] A. Chworos, I. Severcan, A. Y. Koyfman, P. Weinkam, E. Oroudjev, H. G. Hansma, and L.

Jaeger, "Building programmable jigsaw puzzles with RNA," Science, vol. 306 (5704), 2004.
[2] A. Y. Koyfman, G. Braun, S. Magonov, A. Chworos, N. O. Reich, and L. Jaeger, "Controlled

Spacing of Cationic Gold Nanoparticles by Nanocrown RNA," Journal of the American Chemical Society, vol.
127 (34), pp. 11886-11887, 2005.

[3] C. Dwyer, S. H. Park, T. H. LaBean, and A. R. Lebeck, "The Design and Fabrication of a Fully
Addressable 8-tile DNA Lattice," Proceedings of the Foundations of Nanoscience: Self-Assembled
Architectures and Devices, 2005.

[4] S. H. Park, C. Pistol, S. J. Ahn, J. H. Reif, A. R. Lebeck, C. Dwyer, and T. H. LaBean, "Finite-
size, Fully-Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures," Angewandte
Chemie, vol. 45, pp. 735-739, 2006.

[5] C. Pistol, A. R. Lebeck, and C. Dwyer, "Design Automation for DNA Self-Assembled
Nanostructures," Proceedings of the 43rd Design Automation Conference (DAC), 2006.

[6] P. W. K. Rothemund, "Folding DNA to create nanoscale shapes and patterns," Nature, vol. 440
(7082), pp. 297-302, 2006.

[7] N. C. Seeman, "Nucleic Acid Junctions and Lattices," Journal of Theoretical Biology, vol. 99, pp.
237-247, 1982.

[8] N. C. Seeman, "DNA Engineering and its Application to Nanotechnology," Trends in
Biotechnology, vol. 17, pp. 437-443, 1999.

[9] R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F. Schmidt, and A. J.
Turberfield, "Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular anofabrication," Science,
vol. 310 (5754), pp. 1661-1665, 2005.

[10] N. C. Seeman, H. Wang, B. Liu, J. Qi, X. Li, X. Yang, F. Liu, W. Sun, Z. Shen, R. Sha, C. Mao,
Y. Wang, S. Zhang, T. J. Fu, S. Du, J. E. Mueller, Y. Zhang, and J. Chen, "The Perils of Polynucleotides: The
Experimental gap Between the Design and Assembly of Unusual DNA Structures," Proceedings of the Second
International Meeting on DNA Based Computers (DNA2), 1996.

 74

[11] C. Mao, W. Sun, and N. C. Seeman, "Designed Two-Dimensional DNA Holliday Junction Arrays
Visualized by Atomic Force Microscopy," Journal of the American Chemical Society, vol. 121, pp. 5437-5443,
1999.

[12] J. Sharma, R. Chhabra, Y. Liu, Y. G. Ke, and H. Yan, "DNA-templated Self-assembly of Two-
dimensional and Periodical Gold," Angewandte Chemie-international Edition, vol. 45 (5), pp. 730-735, 2006.

[13] D. Reishus, B. Shaw, Y. Brun, N. Chelyapov, and L. Adleman, "Self-assembly of DNA Double-
double Crossover Complexes into Hiigh-density, Doubly Connected, Planar Structures," Journal of the
American Chemical Society, vol. 127 (50), pp. 17590-17591, 2005.

[14] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, "DNA Templated Self-Assembly
of Protein Arrays and Highly Conductive Nanowires," Science, vol. 301, pp. 1882-1884, 2003.

[15] Y. He, Y. Chen, H. P. Liu, A. E. Ribbe, and C. D. Mao, "Self-assembly of Hexagonal DNA Two-
dimensional (2D) Arrays," Journal of the American Chemical Society, vol. 127 (35), pp. 12202-12203, 2005.

[16] J. W. Zheng, P. E. Constantinou, C. Micheel, A. P. Alivisatos, R. A. Kiehl, and N. C. Seeman,
"Two-dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs," Nano Letters,
vol. 6 (7), pp. 1502-1504, 2006.

[17] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, "Design and Self-Assembly of Two-
Dimensional DNA Crystals," Nature, vol. 394, pp. 539-544, 1998.

[18] R. D. Barish, P. W. K. Rothemund, and E. Winfree, "Two computational primitives for
algorithmic self-assembly: Copying and counting," Nano Letters, vol. 5 (12), pp. 2586-2592, 2005.

[19] C. Pistol and C. Dwyer, "Scalable, low-cost, hierarchical assembly of programmable DNA
nanostructures," Nanotechnology, vol. 18, pp. 125305-9, 2007.

[20] G. M. Whitesides and B. A. Grzybowski, "Self-Assembly at All Scales," Science, vol. 295, pp.
2418-2421, 2002.

[21] B. Valeur, Molecular Fluorescence: Principles and Applications. Weinheim: Wiley-VCH, 2002.
[22] Y. Ohya, K. Yabuki, M. Hashimoto, A. Nakajima, and T. Ouchi, "Multistep Fluorescence

Resonance Energy Transfer in Sequential Chromophore Array Constructed on Oligo-DNA Assemblies,"
Bioconjugate Chemistry, vol. 14, pp. 1057-1066, 2003.

[23] L. R. Dalton, A. W. Harper, and B. H. Robinson, "The role of London forces in defining
noncentrosymmetric order of high dipole moment*high hyperpolarizability chromophores in electrically poled
polymeric thin films," Proceedings of the National Academy of Sciences, vol. 94, pp. 4842-4847, 1997.

[24] A. W. Harper, S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H.
Robinson, "Translating Microscopic Optical Nonlinearity into Macroscopic Optical Nonlinearity: the Role of
Chromophore-chromophore Electrostatic Interactions," Journal of the Optical Society of America B-optical
Physics, vol. 15 (1), pp. 329-337, 1998.

[25] J. Shi and D. E. Bergstrom, "Assembly of Novel DNA Cycles with Rigid Tetrahedral Linkers,"
Angewandte Chemie International Edition, vol. 36 (1-2), pp. 111-113, 1997.

[26] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. New York: Kluwer Academic / Plenum
Publishers, 1999.

[27] D. W. Brousmiche, J. M. Serin, J. M. J. Fre©*chet, G. S. He, T.-C. Lin, S. J. Chung, and P. N.
Prasad, "Fluorescence Resonance Energy Transfer in a Novel Two-Photon Absorbing System," in Journal of
the American Chemical Society, vol. 125, 2003, pp. 1448-1449.

[28] J. P. Patwardhan, C. Dwyer, A. R. Lebeck, and D. J. Sorin, "NANA: a Nano-scale Active Network
Architecture," J. Emerg. Technol. Comput. Syst., vol. 2 (1), pp. 1-30, 2006.

[29] J. P. Patwardhan, V. Johri, C. Dwyer, and A. R. Lebeck, "A Defect Tolerant Self-organizing
Nanoscale SIMD Architecture," Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2006.

[30] Stmicroelectronics, "ST6200C/ST6201C/ST6203C Datasheet," 2007.
[31] S. Freescale, "MC9RS08KA2, MC9RS08KA2 Datasheet," 2007.
[32] D. Endy, "Foundations for Engineering Biology," Nature, vol. 438 (7067), pp. 449-453, 2005.

 75

[33] A. P. Arkin and D. A. Fletcher, "Fast, Cheap and Somewhat in Control," Genome Biology, vol. 7
(8), pp. 114.1-114.6, 2006.

[34] I. Tinoco, K. Sauer, and J. C. Wang, Physical Chemisty: Principles and Applications in Biological
Science. Upper Saddle River, NJ: Prentice Hall, 762 pgs., 1995.

[35] C. Berney and G. Danuser, "FRET or No FRET: A Quantitative Comparison," Biophysical
Journal, vol. 84, pp. 3992-4010, 2003.

[36] C. Dwyer, J. Poulton, R. M. Taylor, and L. Vicci, "DNA Self-assembled Parallel Computer
Architectures," Nanotechnology, vol. 15, pp. 1688-1694, 2004.

[37] M. T. Niemier and P. M. Kogge, "Exploring and Exploiting Wire-Level Pipelining in Emerging
Technologies," Proceedings of the 28th Annual International Symposium on Computer Architecture (ISCA '01),
2001.

[38] S. C. Goldstein and M. Budiu, "NanoFabrics: Spatial Computing Using Molecular Electronics,"
Proceedings of the 28th Annual International Symposium on Computer Architecture (ISCA), 2001.

[39] M. G. Ancona, "Systolic Processor Designs Using Single-Electron Digital Circuits," in
Superlattices and Microstructures, vol. 20, 1996, pp. 461-472.

[40] P. Beckett and A. Jennings, "Toward Nanocomputer Architecture," in Seventh Asia-Pacific
Computer Systems Architecture Conference, 2002, pp. 141-150.

[41] T. J. Fountain, M. J. B. Duff, D. G. Crawley, C. D. Tomlinson, and C. D. Moffat, "The Use of
Nanoelectronic Devices in Highly-Parallel Computing Systems," in IEEE Transactions on VLSI Systems, vol. 6,
1998, pp. 31-38.

[42] A. DeHon, "Array-based Architecture for Fet-based, Nanoscale Electronics," IEEE Transactions
on Nanotechnology, vol. 2 (1), pp. 23 - 32, 2003.

[43] D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. T. Chong, I. L. Chuang, and J.
Kubiatowicz, "Toward a Scalable, Silicon-based Quantum Computing Architecture," IEEE Journal of Selected
Topics in Quantum Electronics, vol. 9 (6), pp. 1552-1569, 2003.

[44] N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz, "Interconnection Networks for Scalable
Quantum Computers," Proceedings of the 33rd Annual International Symposium on Computer Architecture,
2006.

[45] M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz, "Building Quantum Wires: the Long
and the Short of It," Proceedings of the 30th Annual International Symposium on Computer Architecture, 2003.

[46] A. Huang, "Optical Digital Computers," Proceedings of the 1989 Acm/ieee Conference on
Supercomputing, 1989.

[47] V. P. Heuring, H. F. Jordan, and P. Pratt, "Bit Serial Optical Computer Design," Proceedings of
the Spie, 1988.

[48] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, R. Nagpal, E. Rauch, G. J.
Sussman, and R. Weiss, "Amorphous Computing," in Cacm, vol. 43, 2000, pp. 74-82.

[49] C. V. Hanson, C.-k. J. Shen, and J. E. Hearst, "Cross-Linking of DNA in situ as a Probe for
Chromatin Structure," Science, vol. 193 (4247), pp. 62-64, 1976.

[50] M. Ramaswamy and A. T. Yeung, "The Reactivity of 4,5',8-trimethylpsoralen with
Oligonucleotides Containing AT Sites," Biochemistry, vol. 33 (18), pp. 5411-5413, 1994.

[51] A. Losi, R. Bedotti, and C. Viappiani, "Time-Resolved Photoacoustics Determination of
Intersystem Crossing and Singlet Oxygen Photosensitization Quantum Yields for 4,5',8-Trimethylpsoralen,"
Journal of Physical Chemistry, vol. 99 (43), pp. 16162-16167, 1995.

[52] J. Piskur and A. Rupprecht, "Aggregated DNA in Ethanol Solution," Febs Letters, vol. 375 (3),
pp. 174-178, 1995.

	1. Summary
	2. Methods, Assumptions, and Procedures
	3. Major Results and Discussion
	4. Final Conclusions

