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1. Summary 
Computing systems with advanced situational awareness and the ability to use contextual knowledge to 

interpret sensor data have the potential to be instrumental in many contexts. In particular, large-scale content 
addressable memory systems provide a better solution to the knowledge discovery problem than conventional 
general-purpose memory systems. This project developed three systems to query a database with immense 
numbers of objects and rich sets of contextual relationships; (i) a conventional system, (ii) a conventional 
system optimized for online (i.e. real-time) use, and (iii) a novel Deoxyribonucleic Acid, DNA self-assembled 
nanoelectronic system. The project developed tools for DNA self-assembly to provide simulation capabilities 
for evaluating the three systems and the data has shown that significant performance enhancements can be 
achieved by optimization of the memory access pattern. Further, when self-assembling technologies mature 
they will be able to achieve greater performance due to the massive parallelism inherent in the knowledge 
discovery problem. 

The goal of this project was to evenly re-evaluate the methods used by experts in the knowledge discovery 
and context aware application field with respect to emerging nanoscale fabrication capabilities. The 
performance predicted by industry experts for conventional silicon devices (e.g., Complimentary Metal Oxide 
Semiconductor, CMOS) and the anticipated performance we have simulated for DNA self-assembled 
nanoelectronic devices will help put each system on a level footing with respect to each other.  

The major challenge in knowledge discovery and context aware applications is to support the querying of a 
database with immense numbers of objects and rich sets of contextual relationships. The optimal form of this 
process is NP-hard because new information must be considered against all previously encountered information. 
As the database grows, more and more cross-references will be generated and this can potentially (i.e., in the 
worst case) take exponential time in the number of objects contained by database. 

 The emergence of nanoscale architectures and fabrication methods has changed the design space for these 
applications by enabling novel forms of “at-fabrication” computation and massively parallel architectures. 
These developments make a case for the re-evaluation of current best practices in context aware memory system 
design. In particular, large-scale content addressable memory systems, enabled by nanoscale self-assembly, may 
provide a better solution to the knowledge discovery problem than conventional general purpose memory 
systems that use centralized indexing schemes.  

This project evaluated the three memory systems within the design space of context aware and knowledge 
discovery architectures. This evaluation used target CMOS technology from the International Technology 
Roadmap for Semiconductors prediction for 2012 [1, 2], and future DNA self-assembled technology as a 
competitive alternative [3-6]. A variety of metrics were explored from the literature to determine a significant 
figure of merit for each system. 

The first system is a conventional CMOS-based general-purpose architecture that assigns context during 
post-query processing. The second system we studied stores contextual information soon after the sensor or 
input data is stored. That is, the searching required to create the contextual information occurs when new 
information is stored in the memory. This method has the advantage that the query time can be much faster than 
a conventional system but the time to store new information will take just as long as the conventional system’s 
query time (since context assignment occurs during storage.) Therefore, the rate-limiting step for this system is 
still the context assignment. This system is most like a conventional data-mining system where additional fields 
(i.e., tags or hints) are included to facilitate context assignment. 

The third system we studied was a novel system enabled by DNA self-assembly. This system can use self-
assembled systems to perform a distributed context assignment during information storage but incur a much 
smaller penalty than the pre-retrieval system because of the massive parallelism inherent in molecular-scale 
self-assembly. The DNA self-assembled system leverages the short query time of the pre-retrieval system 
against the massive parallelism of self-assembly to reduce storage times. The result is a balanced system with 
equal storage and retrieval times. However, we have found that a significant gap exists between what can be 
built in our laboratory and what is required by a contextual knowledge memory. Thus, we have shown through 
simulation significant performance improvements over a conventional system but significant progress in the 
technology remains untapped. 
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2. Methods, Assumptions, and Procedures 
DNA is an attractive substrate to investigate for applications in molecular-scale computing.  The precise 

binding rules of DNA enable the creation of nanostructures with minimum pitch on the order of a few 
nanometers. Further, these nanostructures can be used to place and interconnect nanoscale components with 
molecular-scale precision. Thus, DNA self-assembly is an enabling technology for new computing paradigms 
[1-19]. 

Double stranded DNA structure is stable when the base pairs are “complementary”, i.e., if A pairs with T and 
G pairs with C. The central theme in the use of self-assembly for nanoscale fabrication is the application of 
external control over an otherwise spontaneous reaction to direct its outcome [20]. This control directs the 
assembly of materials into structures that are interesting and relevant to a target design problem. In the context 
of computer system fabrication, self-assembly is used to direct the formation of switching devices and wires to 
create logic circuitry, memory, and I/O interfaces. We can control the reaction by designing synthetic DNA 
strands to interact at specific temperatures (called melting temperatures) by careful choice of their nucleotide 
sequences. Specification of the strand sequences provides control over the self-assembly process by establishing 
the melting temperature of the strands which determines the formation of structures (through complementarity). 
Sequence design is important because it determines many aspects of the target DNA nanostructure (e.g., 
geometry and stability). 

Complex designs are often created using a relatively small set of common building blocks—called motifs. 
DNA self-assembly can exploit this same design principle to hierarchically create more sophisticated aperiodic 
structures. For DNA there are many possible motifs, however we focus on only a few in the context of our 
resonance energy transfer logic. Motifs include junctions that enable three or more double stranded helices of 
DNA to interact and thus form specific structures (e.g., a triangle, a corner, etc.) Another important motif is a 
single strand of DNA protruding from a double stranded helix—called a sticky-end. 

Two motifs with complementary sequences on their sticky-ends will bind to form a composite motif. These 
composite motifs may also have embedded sticky-end motifs and thus can also bind with other composite 
motifs to form another, larger, composite motif. This results in a hierarchical structure for motifs. Hierarchical 
DNA self-assembly provides the fabrication characteristics (low-cost, nm resolution) necessary for molecular-
scale computation. However, the substrate must be complemented by suitable molecular-scale devices. 

The following section (and its sub-sections) describe in detail the final conclusions and findings of this 
project. 

3. Major Results and Discussion 

3.1 Data Mining and Contextual Knowledge Discovery 
Data mining is the process of extracting or mining interesting knowledge from large amounts of data stored 

in databases or other information stores. A fundamental and essential problem in data mining is to discover 
frequent patterns or itemsets: given a data base of item transactions, find all itemsets that occur in at least a 
user-specified percentage of the total transactions in the database (i.e., has a specified support level). Frequent 
itemset mining is useful for many data mining capabilities such as discovery of association rules [1], strong 
rules, correlations, sequential rules [2], episodes [12], multi-dimensional patterns, partial periodicity [9], and 
many other important discovery tasks. These data mining capabilities are useful for practical applications such 
as market basket analysis, inferring patterns from web access logs, and network intrusion detection among 
others. 

Frequent itemset mining generates a very large number of patterns which may reduce not only the efficiency 
but also effectiveness of mining, since it generates numerous redundant patterns. Furthermore, users must sift 
through a large number of mined patterns to find useful ones. Closed frequent itemset (CFI) mining [14], mines 
only those frequent itemsets having no proper superset with the same support, which can lead to orders of 
magnitude smaller result set than mining frequent itemsets [15]. CFI mining retains all the information of 
frequent itemset mining, as it is straightforward to generate all the frequent itemsets from the closed frequent 
itemsets. 
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In this report we explore the memory hierarchy performance of a state-of-the-art CFI algorithm—called 
FPclose1 [8]—using real world datasets. We use a combination of tools (OProfile [11], VTUNE [16], 
Simplescalar and iostat) to gain insight into FPclose’s memory hierarchy performance for both sparse and dense 
real world datasets on both Pentium III and Pentium 4 systems. The characterization results indicate that cache 
behavior becomes a critical performance bottleneck as the support level decreases. Simulation experiments 
show that gains in the Instructions per cycle, IPC are seen for a system with perfect memory hierarchy. Increase 
in width of the instruction window has almost no effect on the IPC. 

 One specific function CFI_tree::insert(bool*,…) accounts for up to 69% of the L1 data cache misses, 86% 
of the L2 data cache misses, and 69% of the execution time for moderate to low support levels. This function is 
unique to the closed frequent itemset problem. Symbolic profiling and source code inspection reveal that 
CFI_tree::insert(bool*,…) function incurs most of its cache misses while traversing the nodes of a prefix tree 
(or closed frequent pattern tree) at a specific level (right sibling pointer dereferences). This motivates the 
application of well-known data structure modifications to improve cache performance: 1) padding & aligning, 
2) node clustering [4]. Our characterization results also reveal that the average number of nodes accessed during 
the sibling traversal is data dependent. This motivates a final optimization that dynamically increases node 
clustering as more nodes are allocated in a specific level of the prefix tree. 

We evaluate the data structure modifications by measuring execution cycles on Pentium III and Pentium 4 
systems and comparing with execution cycles of base case. Our results show that padding and aligning have no 
significant impact on performance. Node clustering achieves performance gains of up to 79% on Pentium III 
systems and 65% on Pentium 4. Finally, we show that the dynamic allocation technique provides speedups up 
to 81% on Pentium III system and 67% on Pentium 4. The maximum difference in speedup of the best static 
sized node clustering scheme at each data point and the dynamic scheme was 6% on Pentium III and 8% on 
Pentium 4. This difference was in dense datasets, for sparse datasets dynamic scheme performed as well as or 
better than the best static sized node clustering scheme at each data point in many cases for both systems. For 
dense datasets node clustering produces the greatest improvements in performance on both Pentium systems. 

3.1.1 Closed Frequent Item Set Mining 
Let I = (i1, i2 ..., in) be a set of items. An itemset is a non-empty subset of I. A transaction is represented by a 

tuple of the form ( tid, X ), where tid is the transaction identifier and X is an itemset. A transaction database 
(TDB) is a set of transactions. An itemset X is contained in transaction (tid, Y) if X is a subset of Y. Given a 
transaction database TDB, the support of an itemset X is the number of transactions in TDB which contains X. 
An itemset X is called a frequent itemset if its support is no less than the minimum support threshold. Frequent 
itemset mining consists of finding all the frequent itemsets. An itemset X is a closed itemset if there exists no 
itemset X’ such that X’ is a proper superset of X, and every transaction containing X also contains X’. A closed 
itemset X is frequent if its support is greater than or equal to minimum support threshold. Closed frequent 
itemset mining consists of finding all closed frequent itemsets. 

We chose the state-of-the-art FPclose [8] algorithm as our closed frequent itemset implementation. FPclose 
won the FIMI’03 best implementation award [17]. FPclose uses variation of the FP-tree (Frequent Pattern tree, 
also called a prefix tree) structure for checking the closedness of frequent itemsets. The FP-tree itself has been 
shown to be one of the most efficient data structures for mining frequent patterns. A novel technique which 
employs an array, greatly improves the performance of the algorithm while operating on the FP-tree.  

3.1.2 Performance Characterization 
This section describes the tools used, the system configuration, the datasets, the characterization procedure 

and its results. 

3.1.2.1 Datasets 
For this study we use five different datasets that can be categorized into sparse, moderate, and dense. Dense 

datasets have large number of long transactions. Sparse datasets have predominantly short transactions. Long 
transaction means that the average number of items per transaction is high, vice versa for short transactions. We 
consider five real datasets; retail [3] and bmspos [18] are sparse, pumsb and accidents [6] are dense, while we 
consider kosarak moderate. Description about the datasets is provided in Table 1. Characteristics of the dataset 
are shown in Table 2. 
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Table 1: Dataset Description 

Retail Retail market basket data set supplied by a anonymous Belgian retail supermarket 
store 

Bmspos The BMS-POS dataset contains several years’ worth of point-of sale data from a 
large electronics retailer. 

Kosarak  Click-stream data of a Hungarian on-line news portal 

pumsb  Census data (from IBM Almaden Research Center) 

Accidents Traffic accident information for the region of Flanders (Belgium) for the period 
1991-2000 

 
Table 2: Dataset Characteristics 

Dataset No. of Items Avg. Transaction 
Length 

No. of 
Transactions 

Retail 16,469 10.3 88,162 

Bmspos 1,657 6.5 515,597 

Kosarak 41,270 8.1 990,002 

Pumsb 2,113 74.0 49,046 

Accidents 468 33.8 340,183 

3.1.2.2 Tools 
We profiled the FPclose algorithm using VTune and OProfile. VTune and OProfile are system-wide 

profilers, capable of profiling all running code at low overhead. They consist of a kernel driver and a daemon 
for collecting sample data, and several post-profiling tools. The hardware performance counters of the CPU are 
leveraged to enable profiling of a wide variety of interesting statistics. All code is profiled: hardware and 
software interrupt handlers, kernel modules, the kernel, shared libraries, and applications. We chose OProfile 
version 0.8.2 and VTune version 7.2. VTune provides more events for Pentium 4 as opposed to Oprofile so we 
chose VTune for profiling workloads on Pentium 4. 

SimpleScalar tool set version 3 was used for analyzing the performance of the memory hierarchy. The 
SimpleScalar tool set is a system software infrastructure used to build modeling applications for program 
performance analysis, detailed micro-architectural modeling, and hardware-software co-verification. Modeling 
applications can simulate real programs running on a range of modern processors and systems. 

We used time command and iostat package to study the I/O characteristics of different workloads. 

3.1.3 System Configuration 
We characterize the performance of FPclose executing on a Pentium III system running Debian Linux with 

2.6.10 kernel and a Pentium 4 system running Red hat Linux with kernel  2.4.21. The hardware configuration of 
these systems is outlined in Tables 3 and 4 respectively. 
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Table 3: Pentium III System configuration 

Processor Intel Pentium III CPU family, 1400 MHz 

L1 data cache 16 KB, 4-way set associative, 32 byte line size 

L1 instruction cache 16 KB, 4-way set associative, 32 byte line size 

L2 unified cache 512 KB, 8-way set associative, 32 byte line size 

Instruction TLB 4 KB pages, 4-way set associative, 32 entries 

Data TLB 4 KB pages, 4-way set associative, 64 entries 

Memory 1 GB 

 
Table 4: Pentium 4 System configuration 

Processor Intel Pentium 4 CPU family, 3 GHz 

L1 data cache 8 KB, 4-way set associative, 64 byte line size 

Trace Cache 12K-micro-op, 4-way set-assoc 

L2 unified cache 1024 KB, 8-way set associative, 64 byte line size 

Instruction TLB 4 KB pages, 64 entries 

Data TLB 4 KB pages, 64 entries 

Memory 1 GB 

3.1.4 Methodology 
FPclose is executed on all the datasets with different minimum support thresholds as input. Minimum 

support thresholds ranged from levels where only a handful of itemsets were generated, to as low a level as 
possible. For accident, pumsb, and kosarak dataset, the lowest support threshold was bounded by the level at 
which the process would abort due to lack of physical memory. For each of the workloads we measure the 
performance for computing all the closed frequent itemsets (CFIs), not for outputting them. We ensure the 
system is lightly loaded during profiling. The FPclose executable and the dataset were stored on the local disk 
to reduce the impact of NFS (Network File Service) traffic on the results. The OProfile or VTune daemon, 
configured to measure different events, runs on the same system to do profiling of the workloads.  

For Oprofile (used to profile on the Pentium III), we measure IPC (Instructions per Cycle) using the events 
CPU_CLK_UNHALTED and INST_RETIRED, L1 data cache miss rates using the events DCU_LINES_IN 
and DATA_MEM_REFS, and global L2 cache miss rates using events L2_LINES_IN and 
DATA_MEM_REFS.  

For VTune (used to profile on the Pentium 4), we measure IPC using the events Clockticks and Instructions 
Retired, L1 load data cache miss rates using the events 1st-Level Cache Load Misses Retired and Loads 
Retired, and global L2 cache load miss rates using events 2nd-level Cache Load Misses Retired and Loads 
Retired, Data Translation Look aside buffer (DTLB) load miss rate using events DTLB Load Misses and Loads 
Retired. VTune does a configuration run before calculating actual statistics. We measured only the load miss 
rates on the Pentium 4 due to limited event counters. Although care must be taken in interpreting the Pentium 4 
miss rates, our results show that the trends are consistent with those from the Pentium III. We perform both 
symbol level and process level profiling for each of the workloads.  
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Symbol level profiling enables mapping performance metrics to program source, specifically to each of the 
functions of the FPclose program. To achieve accurate source mapping, symbolic profiling uses a slightly 
different executable which was compiled without optimization to preserve accurate symbol table information. 

 Different workloads were executed under time command to study their I/O characteristics. Time command 
measures CPU utilization. As the system is lightly loaded, a drop in CPU utilization can be attributed to the fact 
that the CPU is idle as the process is waiting for disk I/O. Page fault statistics provide further validation. iostat 
package helps us in studying the time behavior of the I/O characteristics of a workload. 

In order to measure the impact of memory hierarchy on the overall performance, we simulated some of the 
workloads using SimpleScalar. SimpleScalar can simulate alpha or PISA (Portable Instruction Set Architecture) 
binaries. Using gcc cross compiler and assembler, the PISA binary for the FPclose algorithm was built. A 
system configuration that would resemble as closely as possible the Pentium III system on which we had 
profiled our workloads was chosen. The system configuration chosen is given in Table 5. 

Table 5: SimpleScalar System Description 

Instruction fetch queue size  32 

Extra branch misprediction latency  12 

Branch Predictor bimodal predictor (Branch Target Buffer 
(BTB) w/ 2 bit counters) 

Direct mapped BTB size  4096 

BTB configuration  

 
512 sets, 4-way set associative 

Return address stack size  32 

Decoder bandwidth  4 insts/cycle 

Issue bandwidth  4 insts/cycle 

Permit instruction issue after mis-
speculation 

False 

Instruction commit bandwidth 4 insts/cycle 

Register Update Unit(RUU) size  64 

Load/store queue size  32 

L1 data cache configuration 16 KB, 4-way set associative, 32 byte line 
size, hit latency 3 cycles 

L1 instruction cache 16 KB, 4-way set associative, 32 byte line 
size, hit latency 3 cycles 

L2 unified cache 512 KB, 8-way set associative, 32 byte line 
size, hit latency 25 cycles 

Instruction TLB 4 KB pages, 4-way set associative, 32 
entries, miss latency 30 cycles 

Data TLB 4 KB pages, 4-way set associative, 64 
entries, miss latency 30 cycles 

Memory access latency (first, rest) 150, 30 cycles 
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Width of memory bus 16 bytes 

Number of integer ALUs 4 

Number of integer multiplier/dividers  1 

Number of  first-level cache ports  2 

Number of Floating point ALUs 4 

Number of Floating point multiplier/dividers 1 

For the retail and kosarak datasets we did detailed simulation of the whole run for a particular support level. 
For the accident dataset we fast-forwarded a certain number of instructions and then did detailed simulation 
after that for the next 50 trillion instructions. Only functional simulation is done during fast-forwarding. This 
helps in reducing the simulation time. On the basis of symbol profiling we found a bottleneck function. We fast-
forwarded up to 100 million instructions before the point at which that bottleneck function is invoked for the 
first time. We then started doing detailed simulation in order to warm up the caches before we invoke that 
function for the first time. We followed a similar procedure for pumsb dataset.  

Apart from gathering statistics for the configuration given in Table 5, we also gathered statistics for a system 
having perfect memory hierarchy. We also try to see the effect of a wide instruction window on the 
performance of FPclose algorithm by varying the size of the register update unit in SimpleScalar. We did this 
simulation for the accident dataset. 

3.1.5 Profiling Results 
In this section we present the profiling results for the different workloads. For each dataset we perform 

process level profiling to obtain an overall performance characterization on both Pentium systems and symbolic 
profiling to obtain insight into the cause of performance bottlenecks. 

3.1.6 Performance Characterization 
 
In this section we present process level performance characterization results for all five datasets. Figure 1 

shows the number of closed frequent itemsets (CFIs) present in the retail dataset for various support thresholds. 
Figure 2 shows the cycles required for finding all the CFIs at various support thresholds. Figure 3 shows the 
IPC for the retail dataset at different support thresholds. Figure 4 shows the L1 data cache and L2 unified cache 
global miss rates for the retail dataset at various minimum support thresholds. Figures 5-7 show the 
corresponding measurements for Pentium 4 system. Figure 8 shows the DTLB load miss rates for retail dataset 
on Pentium 4. We report only the load cache and TLB miss rates for the Pentium 4. The TLB miss rate cannot 
be obtained on the Pentium III. 
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Figure 1: Distribution of Closed Frequent Itemsets 

 
Figure 2: Execution cycles (Pentium III) 
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Figure 3: Instruction per Cycle (IPC) (Pentium III) 

 
Figure 4: L1 Data and L2 Cache Miss Rates (Pentium III) 
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Figure 5: Execution cycles (Pentium 4) 

 
Figure 6: Instruction per Cycle (IPC) (Pentium 4) 
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Figure 7: L1 Data and L2 Cache Load Miss Rates (Pentium 4) 

 
Figure 8: Data TLB Load Miss Rates (Pentium 4) 

Figure 9 shows the number of closed frequent itemsets (CFIs) present in the bmspos dataset for various 
support thresholds. Figure 10 shows the cycles required for finding all the CFIs. Figure 11 shows the IPC for 
the bmspos dataset at different support thresholds. Figure 12 shows the corresponding L1 data cache and L2 
unified cache global miss rates for the bmspos dataset. Figures 13-15 show the corresponding measurements for 
Pentium 4 system. Figure 16 shows the DTLB load miss rates for bmspos dataset on Pentium 4. 
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Figure 9: Distribution of Closed Frequent Itemsets 

 
Figure 10: Execution cycles (Pentium III) 
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Figure 11: Instruction per Cycle (IPC) (Pentium III) 

 
Figure 12: L1 Data and L2 Cache Miss Rates (Pentium III) 
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Figure 13: Execution cycles (Pentium 4) 

                                      
Figure 14: Instruction per Cycle (IPC) (Pentium 4) 
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Figure 15: L1 Data and L2 Cache Load Miss Rates (Pentium 4) 

 
Figure 16: Data TLB Load Miss Rates (Pentium 4) 

Figure 17 shows the number of closed frequent itemsets (CFIs) present in the accident dataset for various 
support thresholds. Figure 18 shows the cycles required for finding all the CFIs. Figure 19 shows the IPC for 
the accident dataset at different support thresholds. Figure 20 shows the corresponding L1 data cache and L2 
unified cache global miss rates for the accident dataset. Figures 21-23 show the corresponding measurements 
for Pentium 4 system. Figure 24 shows the DTLB load miss rates for accident dataset on Pentium 4. 
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Figure 17: Distribution of Closed Frequent Itemsets 

 
Figure 18: Execution cycles (Pentium III) 
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Figure 19: Instruction per Cycle (IPC) (Pentium III) 

 
Figure 20: L1 Data and L2 Cache Miss Rates (Pentium III) 
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Figure 21: Execution cycles (Pentium 4) 

 
Figure 22: Instruction per Cycle (IPC) (Pentium 4) 
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Figure 23: L1 Data and L2 Cache Load Miss Rates (Pentium 4) 

 
 Figure 24: Data TLB Load Miss Rates (Pentium 4) 

Figure 25 shows the number of closed frequent itemsets (CFIs) present in the pumsb dataset for various 
support thresholds. Figure 26 shows the cycles required for finding all the CFIs. Figure 27 shows the IPC for 
the pumsb dataset at different support thresholds. Figure 28 shows the corresponding L1 data cache and L2 
unified cache global miss rates for the pumsb dataset. Figures 29-31 show the corresponding measurements for 
Pentium 4 system. Figure 32 shows the DTLB load miss rates for pumsb dataset on Pentium 4. 
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Figure 25: Distribution of Closed Frequent Itemsets 

 
Figure 26: Execution cycles (Pentium III) 
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Figure 27: Instruction per Cycle (IPC) (Pentium III) 

 
Figure 28: L1 Data and L2 Cache Miss Rates (Pentium III) 
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Figure 29: Execution cycles (Pentium 4) 

 
Figure 30: Instruction per Cycle (IPC) (Pentium 4) 
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Figure 31: L1 Data and L2 Cache Load Miss Rates (Pentium 4) 

 
Figure 32: Data TLB Load Miss Rates (Pentium 4) 

Figure 33 shows the number of closed frequent itemsets (CFIs) present in the kosarak dataset for various 
support thresholds. Figure 34 shows the cycles required for finding all the CFIs. Figure 35 shows the IPC for 
the kosarak dataset at different support thresholds. Figure 36 shows the corresponding L1 data cache and L2 
unified cache global miss rates for the kosarak dataset. Figures 37-39 show the corresponding measurements for 
Pentium 4 system. Figure 40 shows the DTLB load miss rates for kosarak dataset on Pentium 4. 
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Figure 33: Distribution of Closed Frequent Itemsets 

 
Figure 34: Execution cycles (Pentium III) 
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Figure 35: Instruction per Cycle (IPC) (Pentium 4) 

 
Figure 36: L1 Data and L2 Cache Miss Rates (Pentium III) 
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Figure 37: Execution cycles (Pentium 4) 

 
Figure 38: Instruction per Cycle (IPC) (Pentium 4) 
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Figure 39: L1 Data and L2 Cache Load Miss Rates (Pentium 4) 

 
Figure 40: Data TLB Load Miss Rates (Pentium 4) 
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approximately 0.75 at 0.57% support to 0.21 at 0.01% support. A similar decrease in IPC exists for all the 
datasets, although the dense datasets experience it at higher support levels. We also note that most datasets 
achieve an IPC close to or above 1 for very high support levels, for example retail achieves IPC of 1.2. 
Therefore, at low support levels instructions can take, on average, up to six times longer to execute than at 
higher support levels. 

The decrease in IPC is explained by examining the memory hierarchy performance of FPclose. By 
examining the cache and TLB miss rates, we see that memory hierarchy performance is decreasing (miss rate 
increases) as support level decreases. We also note that from profiling on the Pentium 4, the data TLB misses 
are almost proportional to the L1 data cache misses. The large number of CFIs generated at low support levels 
is placing more stress on the memory hierarchy, thus the average memory access time is increasing along with 
the total number of instructions. Furthermore, we observe that the cache and TLB miss rates start increasing at 
the same point as the most significant drop in the IPC (support = 0.57% for retail and 58% for accidents). To 
ensure that the system is not paging, we use the iostat and time utility to track page faults. For the range of 
support levels we examined page faults are not a performance bottleneck.  

3.1.7 Symbolic Profiling 
The above results indicate that FPclose’s performance might be improved at low support levels by improving 

the memory hierarchy performance. To gain insight into the cause of increased miss rates, we enabled symbolic 
profiling so that we can map execution time and cache misses to specific functions in the source code [10, 13]. 
Figure 41 shows the cycles spent in various functions versus support thresholds for the retail dataset. For all 
datasets we display only functions that account for at least 5% of the cycles for any support level, all other 
cycles are categorized under ‘‘other’’. Figures 42 and 43 shows the fraction of cache misses. Here also for all 
datasets we display only functions that account for at least 5% of the misses for any support level. All the 
results are for a Pentium III system. 

 
Figure 41: Execution Cycles Symbol Profile 
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Figure 42: L1 Data Cache Misses Symbol Profile 

 
Figure 43: L2 Cache Misses Symbol Profile 

 
Figure 44 shows the cycles spent in various functions versus support thresholds for the pumsb dataset. 

Figures 45 and 46 show the fraction of cache misses.  
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Figure 44: Execution Cycles Symbol Profile 

 
Figure 45: L1 Data Cache Misses Symbol Profile 
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Figure 46: L2 Cache Misses Symbol Profile 

Figure 47 shows the cycles spent in various functions versus support thresholds for the accident dataset. 
Figure 48 and 49 shows the fraction of cache misses.  

 
Figure 47: Execution Cycles Symbol Profile 
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Figure 48: L1 Data Cache Misses Symbol Profile 

 
Figure 49: L2 Cache Misses Symbol Profile 
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executable which was compiled without optimization to preserve accurate symbol table information. Figure 51 
shows the corresponding cache miss rates. L2 cache miss rates are local. Large number of misses, along with 
higher miss rates in most of the categories for insert() function, contributes to this difference in IPC. We ran 
these experiments on a Pentium III system. 

 
 

 
Figure 50: IPC comparison between insert() and rest of the functions 

 
Figure 51: Miss Rate comparison between insert() and rest of the functions 
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Figure 52 shows the IPC comparison for pumsb dataset. Figure 53 shows the corresponding miss rate 
comparison. The IPC of insert() function is lower than that of the rest of the symbols primarily due to higher 
cache miss rates and the large number of misses. 

 
 

 
Figure 52: IPC comparison between insert() and rest of the functions 

 

 
Figure 53: Miss Rate comparison between insert() and rest of the functions 
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Figure 54: IPC comparison between insert() and rest of the functions 

 
Figure 55: Miss Rate comparison between insert() and rest of the functions 
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examined. Since each item is its own node in the tree, the search requires extensive pointer dereferences, to 
access sibling nodes, that frequently result in cache and TLB misses.  

This search for a sibling node which contains the required item is the bottleneck within the insert() function. 
Figure 56, Figure 57, and Figure 58 show that the major proportion of execution cycles, L1 data cache misses 
and L2 misses take place in this search for all the datasets. 

 
Figure 56: Proportion of cycles and misses in the search within insert for retail dataset 

 
Figure 57: Proportion of cycles and misses in the search within insert for pumsb dataset 
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Figure 58: Proportion of cycles and misses in the search within insert for accident dataset 

3.1.7.1 Simulation Analysis 
In this section we present simulation results for the performance of the FPclose algorithm on a Pentium III 

like system with perfect memory hierarchy. Perfect memory hierarchy means that there are no cache misses. We 
compare it with its performance on a Pentium III like system having real memory hierarchy. We do this 
simulation to verify our conjecture that the drop in IPC is primarily due to large cache miss rates. Results for 
retail, pumsb and accident dataset are shown in Table 6. We see that large gains in performance are possible for 
both sparse and dense datasets if we can get the effect of a perfect memory hierarchy. This shows that IPC 
degrades primarily due to large cache miss rates. This result is the best case scenario for any scheme hoping to 
improve the performance of the memory hierarchy for the FPclose algorithm.  

Table 6: SimpleScalar Simulation Results for a Perfect and Real Memory Hierarchy 

Dataset 
  

Type of 
Dataset 

      IPC 
(Perfect) 

        IPC 
(Real) 

      Support 
% 

Retail  Sparse  2.0990  0.6236  0.03 

accidents  Dense  1.1490  0.5405  14.7 

We next show the impact of a wide instruction window on the performance of the algorithm. Table 7 shows 
the effect of instruction window with increasing widths on the performance of the algorithm for accident dataset 
at support of 14.7 %. RUU size of 64 was used in the default configuration. We see that instruction window 
width has almost no impact on IPC. Thus it is not possible to enhance the IPC by increasing the instruction 
window width.  

Table 7: SimpleScalar Simulation Results depicting the effect of Instruction Window 
Width 

RUU size IPC 
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3.1.8 Data Structure Modifications 
This section explores several techniques for improving the memory hierarchy performance of FPclose, 

specifically the CFI::insert(bool*,…) function. The performance characterization from the previous section 
clearly identifies the insert routine’s memory hierarchy behavior as a performance bottleneck for these real 
world datasets. In this section we present various data structure modifications that attempt to improve cache 
performance. The support levels at which we measure the speedups obtained by different modifications are 
unique for each dataset. We include five different support levels for each dataset such that execution time for 
the base implementation of FPClose is greater than 1 second at these levels. We compare the execution cycles 
of each scheme with that of the original implementation to obtain speedups. 

3.1.8.1 Padding and Aligning 
A simple approach that can improve cache performance is to align and pad the data structure to ensure that 

only integer multiples of the structure can fit into a cache line [10]. This can be achieved by padding the 
structure with sufficient space. The benefit of this approach is that an access to the data structure, after any miss 
penalty, guarantees that the entire structure is now resident in the cache. If many of the fields within the data 
structure are “hot” then this approach can lead to higher performance because it limits the cache misses to 1 for 
all subsequent accesses to the data structure. Unfortunately, this technique did not produce any noticeable 
change in execution time. 

3.1.8.2 Node Clustering 
The next approach adopts a composite approach to improve cache performance by combining sub-tree 

clustering and pointer elimination [4]. The approach nestles frequently accessed fields from many instances of 
the data structure into a composite structure that can then be accessed using an implicit address calculation. 
Children of a CFI tree node are clustered into a composite node by grouping their unique attributes (e.g., item, 
left-child, etc.) in to large arrays. The attribute arrays are indexed according to the most commonly chased 
pointer, right-sibling, thus eliminating the use of dereferenced pointers in favor of an incremental offset 
calculation. Composite nodes are allocated to hold either a static or dynamic number of nodes and can be 
chained together to accommodate dynamic trees in either case. This approach improves performance because 
frequent right-sibling chases are reduced to incremental address calculations and item comparisons. Implicit 
prefetching occurs because the arrays are contiguous in memory and any dedicated prefetch hardware will bring 
prescient portions of the arrays into the cache prior to their access. 

Figure 59 shows the performance improvement for each benchmark with various composite node sizes (i.e. 
number of nodes combined into a single composite) for retail dataset. Figure 60 shows the same for bmspos, 
Figure 61 for accident and Figure 62 for kosarak. These improvements are on a Pentium III system. Figures 63-
66 show the corresponding results for a Pentium 4 system. 

We achieve performance gains of up to 79% on Pentium III systems and 65% on Pentium 4. 
We observe that on a Pentium III system we get speedups for all the datasets across most of the support 

levels. The gains are lesser for dense datasets as compared to sparse ones. This is mainly due to smaller right 
sibling chains for dense datasets compared to sparser ones. Larger composite node sizes in such cases cause 
wastage of memory and cache pollution. For Pentium 4 the gains are lesser for sparser datasets compared to 
Pentium III results and we incur losses in majority of the cases for dense datasets. This is primarily because of 
larger caches in Pentium 4 which improves the performance of the base case by reducing miss rates. 
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Figure 59: Performance Improvement for different composite node sizes for retail dataset 

 
Figure 60: Performance Improvement for different composite node sizes for bmspos dataset 
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Figure 61: Performance Improvement for different composite node sizes for accident dataset 

 
Figure 62: Performance Improvement for different composite node sizes for kosarak dataset 
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Figure 63: Performance Improvement for different composite node sizes for retail dataset 

 
Figure 64: Performance Improvement for different composite node sizes for bmspos dataset 
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Figure 65: Performance Improvement for different composite node sizes for accident dataset 

 
Figure 66: Performance Improvement for different composite node sizes for kosarak dataset. 
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The scheme we developed chooses the size of the node to be allocated to be double the size of the last node 
in that right sibling chain. The newly allocated node becomes the new last node in the right sibling chain and is 
added to the end of the chain. This has an effect of increasing the size of the composite nodes at levels in the 
tree where more nodes are being allocated. Figures 67-70 show the performance improvement of the dynamic 
scheme for retail, bmspos, kosarak, and accident dataset respectively on a Pentium III system.  Figures 71-74 
show the corresponding gains on a Pentium 4 system. We obtain speedups up to 81% on Pentium III system and 
67% on Pentium 4. We observe the same trend as was visible for the static scheme; gains are higher on a 
Pentium III system as compared to Pentium 4 and gains are larger for sparse datasets. On Pentium 4 we do not 
observe any gains for dense datasets. This is due to the combined effect of smaller right sibling chains for dense 
datasets along with larger caches in Pentium 4.  

 
Figure 67: Performance Improvement of dynamic scheme for retail dataset on Pentium III 

 
Figure 68: Performance Improvement of dynamic scheme for bmspos dataset on Pentium III 
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Figure 69: Performance Improvement of dynamic scheme for kosarak dataset on Pentium III 

 
Figure 70: Performance Improvement of dynamic scheme for accident dataset on Pentium III 

 
Figure 71: Performance Improvement of dynamic scheme for retail dataset on Pentium 4 
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Figure 72: Performance Improvement of dynamic scheme for bmspos dataset on Pentium 4 

 
Figure 73: Performance Improvement of dynamic scheme for kosarak dataset on Pentium 4 
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Figure 74: Performance Improvement of dynamic scheme for accident dataset on Pentium 4 

Figures 75-78 compare the performance of different static sized node schemes and the dynamic scheme for a 
Pentium III system. Figures 79-82 present this comparison for Pentium 4 system. 

 
Figure 75: Performance Comparison for retail dataset on Pentium III 
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Figure 76: Performance Comparison for bmspos dataset on Pentium III 

 
Figure 77: Performance Comparison for kosarak dataset on Pentium III 
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Figure 78: Performance Comparison for accident dataset on Pentium III 

 
Figure 79: Performance Comparison for retail dataset on Pentium 4 
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Figure 80: Performance Comparison for bmspos dataset on Pentium 4 

 
Figure 81: Performance Comparison for kosarak dataset on Pentium 4 
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Figure 82: Performance Comparison for accident dataset on Pentium 4 

From these figures we can see that the dynamic scheme performs consistently well across all datasets and 
support levels when compared with any single static scheme. Also the maximum difference in speedup of the 
best static sized node clustering scheme at each data point and the dynamic scheme was 6% on Pentium III and 
8% on Pentium 4. More complex dynamic schemes can be tried to get further improvement. 

3.1.10 Summary 
We explored the memory hierarchy performance of a state-of-the-art CFI algorithm using real world datasets 

and a combination of tools such as OProfile, VTUNE, Simplescalar and iostat on both Pentium III and Pentium 
4 systems. Profiling results show that cache performance becomes the bottleneck as the support level decreases. 
We used symbolic profiling to identify a bottleneck function that accounts for up to 69% of the L1 data cache 
misses, 86% of the L2 data cache misses, and 69% of the execution cycles.  These cache misses occur due to 
traversal of the nodes of a prefix tree at a specific level through right sibling pointer dereferences. We then 
applied data structure modifications such as padding & aligning and static and dynamic node clustering to 
improve cache performance. Our results show that padding and aligning have no significant impact on 
performance. Static node clustering achieves performance gains of up to 79% on Pentium III systems and 65% 
on Pentium 4. Finally, we show that the dynamic allocation technique provides speedups up to 81% on Pentium 
III system and 67% on Pentium 4. The maximum difference in speedup of the best static sized node clustering 
scheme at each data point and the dynamic scheme was 6% on Pentium III and 8% on Pentium 4. This 
difference was for dense datasets, for sparse datasets dynamic scheme performed as well as or better than the 
best static sized node clustering scheme at each data point in a majority of the cases for both systems. The 
dynamic scheme we implemented is a simple one and there is room for getting further improvements using 
more complex schemes. 
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3.2 A Defect Tolerant Self-organizing Nanoscale SIMD Architecture 
The continual decrease in transistor size (through either scaled CMOS or emerging nano-technologies) 

promises to usher in an era of tera to peta-scale integration. However, this decrease in size is also likely to 
increase defect densities, contributing to the exponentially increasing cost of top-down lithography. Bottom-up 
manufacturing techniques, like self-assembly, may provide a viable lower-cost alternative to top-down 
lithography, but may also be prone to higher defects. Therefore, regardless of fabrication methodology, defect 
tolerant architectures are necessary to exploit the full potential of future increased device densities. 

This sub-section describes our defect tolerant Single Instruction Multiple Data, SIMD architecture. A key 
feature of our design is the ability of a large number of limited capability nodes with high defect rates (up to 
30%) to self-organize into a set of SIMD processing elements. Despite node simplicity and high defect rates, we 
show that by supporting the familiar data parallel programming model the architecture can execute a variety of 
programs. The architecture efficiently exploits a large number of nodes and higher device densities to keep 
device switching speeds and power density low. On a medium sized system (~1cm2 area), the performance of 
the proposed architecture on our data parallel programs matches or exceeds the performance of an aggressively 
scaled out-of-order processor (128-wide, 8k reorder buffer, perfect memory system). For larger systems 
(>1cm2), the proposed architecture can match the performance of a chip multiprocessor with 16 aggressively 
scaled out-of-order cores. 

Manufacturing defects, power density, process variability, transient faults, bulk silicon limits, rising test 
costs and multibillion dollar fabrication facilities are some of the challenges facing the continued scaling of 
CMOS. While architectural modifications (e.g., multicore) can provide some short-term relief, the 
semiconductor industry recognizes the importance of these issues and the need to explore long term alternatives 
to CMOS devices and fabrication techniques [17].  

One promising alternative is DNA-based self-assembly of nanoscale components using inexpensive 
laboratory equipment to achieve tera to peta-scale integration. Although much of this technology is in its 
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing 
systems, architects can gain a deeper understanding of its limitations and opportunities while providing 
important feedback to the scientists developing the new technologies. 

DNA-based fabrication produces precise control within a small area (e.g., 9 µm2) enabling the construction 
of a large number (~109-1012) of small nodes (computational circuits with ~104 transistors) that can be linked 
together using self-assembly. This produces a random network of nodes, due to the lack of control over 
placement and orientation of nodes, which contain defective nodes and links. While our work is motivated by 
DNA-based self-assembly, it is applicable to any technology with similar characteristics (e.g., scaled CMOS 
with high process variability, high defect rates and point-to-point links between relatively small compute 
nodes). The challenge for computer architects is to efficiently exploit the computational power of the large 
number of nodes while overcoming two primary challenges: 1) loss of precise control over the entire fabrication 
process, and 2) high defect rates.  

This sub-section presents a SIMD architecture designed to address these challenges. The fundamental 
building block in our architecture is a relatively small node (e.g., 1-bit Arithmetic Logic Unit, ALU with 32 bits 
of storage and communication support for four neighbors) that operates asynchronously. A configuration phase 
at startup isolates defective nodes and allows groups of nodes to self-organize into SIMD processing elements 
(PEs) which are connected in a logical ring, thus simplifying the programmer’s view of the system. 

Simulations using conservative estimates for node size and device speed show that the proposed design can 
match the performance of aggressively scaled architectures for 8 out of 9 benchmarks tested. Furthermore, this 
performance is achieved with a very low power density of 6.5 W/cm2 (vs. >75 W/cm2 for modern cores) while 
conservatively assuming that about 90% of the devices in the system switch every nanosecond. Finally, we 
show that our system can tolerate up to 30% defective nodes. Our results demonstrate the potential of this 
technology for building high performance architectures despite high defect rates and loss of precise control 
during fabrication. Further improvements are possible as the technology scales to allow more complex nodes, 
better inter-node connectivity, and faster devices. Our main contributions are: 

1. Adapting self-organization methods to computer architectures. 
2. Designing a node that balances fabrication constraints with functionality needed to communicate, 

compute, and self-organize. 
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3. Demonstrating the above capabilities by composing a high-performance, defect tolerant SIMD 
architecture from a random network of nodes. 

3.2.1 DNA-based Self-Assembled Nanoscale Systems and the Architectural 
Implications 

Self-assembly of nano-electronic devices has the potential to emerge as a lower cost alternative to top-down 
manufacturing. DNA-based self-assembly [32] uses the precise binding rules of DNA with nanoscale devices to 
build computing systems. We assume a proposed assembly process [26] to place electronic circuits on a DNA 
grid [38, 39]. The basic principle is to replicate a simple unit cell on a large scale to build a circuit. The unit cell 
consists of a transistor placed in the cavity of a DNA-lattice. A key requirement of this process is the ability to 
control the placement of electronic devices (e.g., carbon nanotubes [3, 9] or silicon nanowires [15]) at specific 
points on the DNA scaffold to form a circuit. Recently, two critical steps towards this goal were demonstrated: 
1) aperiodic patterns, with a 20nm pitch, on a DNA grid [25] and 2) DNA-guided self-assembly of nanowire 
transistors [35]. We currently assume only two layers of metal interconnect within a lattice, which limits our 
ability to place and route circuits. We propose the use of conducting metallic planes separated by insulating 
layers to provide power and ground to the circuit. Figure 83 depicts a cross-sectional view of the lattice, with 
two layers of interconnect and the power and ground planes. 

Current self-assembly processes produce limited size DNA grids and thus limit circuit size. However, the 
parallel nature of self-assembly enables constructing many nodes (~109-1012) that may be linked together by 
self-assembled conducting nanowires [39]. The proposed self-assembly method does not control the placement 
and orientation of nodes as they are interconnected, resulting in a random network of nodes that contains 
defective nodes and links. Communication with external CMOS circuitry occurs through a metal junction 
(“via”) that overlaps several nodes but interfaces with the network of nodes through a single “anchor node”. 
There may be several via/anchor node pairs in large networks. Figure 83 shows a small network of nodes, 
including regions with defective links, and a via/anchor. In the rest of the sub-section we use the term “anchor” 
to refer to an anchor node/via pair. 

 
Figure 83. Self-assembled network of nodes. 

A computing system built from this random network must: a) tolerate node and interconnect defects, b) not 
rely on underlying network structure, c) compose more powerful computational blocks from simple nodes, d) 
minimize communication overheads, and e) achieve performance that is at least comparable to future CMOS 
based systems. Several research projects examine building computing systems with a subset of these goals, 
including self-organization [1, 34], routing and resiliency in the face of defects [1, 16] and the ability to 
compose complex computational units from simpler blocks [23], but we face added challenges because of the 
extremely limited computational capabilities available in nodes. Our previous work, the nanoscale active 
network architecture (NANA) [29] is a general purpose architecture designed with a similar set of goals, 
assuming similar underlying technology. However, it fails to match the performance of conventional CMOS 
systems since it is unable to efficiently utilize the computational capabilities of the nodes at the same time. The 
design of the SIMD architecture presented in this sub-section is guided by the lessons learned through the 
design and evaluation of NANA.  
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3.2.2 System Overview 
The goal of this work is to build a defect tolerant computing system with a random network of nodes using a 

mix of new solutions and adaptations of known techniques and achieve performance comparable to future 
CMOS based systems. To efficiently utilize large numbers (>109-1012) of nodes we implement a SIMD 
architecture and focus on data parallel workloads. Our proposed system - called the “Self-Organizing SIMD 
Architecture” (SOSA) - supports a three operand register-based Instruction Set Architecture, ISA with 
predicated execution and explicit Processing Element-Shift (PE-Shift) instructions to move data between PEs 
and communicate with an external controller. We assume that the external controller has access to a 
conventional memory system. 

Each self-assembled node is a fully asynchronous circuit and there is no global clock to synchronize data 
transfers between or within nodes. Each node has a 1-bit ALU with a small register file and connects to other 
nodes with (up to four) single wire links. Each link supports low bandwidth asynchronous communication that 
transfers 1 data bit per handshake. To support deadlock-free routing, we add support for three virtual channels 
(1 bit each). The random network of nodes is organized at two levels during a configuration phase. First, since a 
node is too small to hold a PE, we group sets of nodes to form a PE. Second, PEs are linked in a logical ring 
providing programmers a simplified system view to reason about inter-PE communication. 

The configuration process, initiated from an anchor, maps out defective nodes and connects functional nodes 
in a broadcast tree. The system can be configured in two ways: a) as a monolithic system, all nodes on one 
logical ring (one “cell”), or b) as multiple, independent logical rings (multiple “cells”). For a monolithic system, 
anchors can be used to speed up PE configuration and data input/output by serving as “taps” into the logical 
ring. The only constraint enforced during configuration is that an anchor cannot partition a PE. In case (b), we 
achieve space partitioning by running the configuration algorithm from multiple anchors to create independent 
cells. Space partitioning is a common technique used in highly parallel systems to increase resource utilization 
by enabling the execution of multiple instances of one workload, or running multiple workloads. 

3.2.3 Node Microarchitecture 
Careful node design is critical in maximizing system performance. Due to limited node size, designing the 

node architecture involves a trade-off between maximizing functionality (compute, communicate, and self-
organize) and performance while minimizing circuit size. To avoid the area and power overhead of routing 
clock signals and to mitigate the effects of device parameter variation, instruction execution and sequencing 
within a node are asynchronous. 

3.2.3.1 Data Path 
Each node has a simple data path that consists of a 1-bit ALU, a 32-bit register file, and a data buffer that 

stores incoming and outgoing data. The register file and data buffer can act as sources and/or sinks for the ALU. 
The data buffer cannot be written to unless the current instruction is waiting for data, and once written, cannot 
be overwritten until the data is used by the ALU. All internal node communication occurs on dedicated point to 
point links. Where possible, we overlap the latency of moving a bit between two parts of the node with other 
operations. 

Nodes can be designed to partition the 32-bit register file into N-bit wide registers that require an N-bit ALU 
or repeated use of a single-bit ALU. For example, a 32-bit PE could be created with 32 1-bit registers, requiring 
32 nodes for the PE, or with 16 2-bit registers, requiring 16 nodes to form the PE. Increasing register width 
increases the work done per instruction in a node, reduces the number of nodes required to form a PE, and 
reduces inter-PE communication overheads (since PE length reduces). However, for a fixed sized node, wider 
registers reduce the number of registers available to a programmer. Simulations reveal that 2-bit wide registers 
achieve the best trade-off in terms of maximizing the benefit of wider registers and the number of registers 
available to programmers. We also find that program performance is not sensitive to ALU execution latencies 
shorter than the time taken to send/receive a bit between nodes. 

3.2.3.2 Control 
The control logic in the node can be divided into two parts. The first part (configuration logic) is used only 

during configuration and has control registers for defect testing/isolation (main control register), and PE 
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configuration (PE control register). Figure 84 shows a floorplan of the node with the configuration logic 
demarcated by a dashed rectangle within the control and data block. 

 
Figure 84. Node floorplan. 

The second part is the run-time control logic used to decode and execute instructions. To reduce design 
complexity we sacrifice latency and use microcoded control logic with each instruction divided into multiple 
microinstructions. The run-time control logic has three control registers to hold each of three micro-instructions 
that comprise an instruction: a) opcode, b) register specifier and c) synchronization (synch). The synch 
microinstruction holds an optional counter value (“repeat counter”) to enable the repeated execution of one 
instruction and avoid broadcasting the same instruction consecutively. The register specifier includes fields that 
allow simple increment/decrement operations on register specifiers in conjunction with their reuse (for striding 
through registers). We add a shared circuit that is used to increment/decrement register specifiers and the repeat 
counter. Because of high instruction execution latencies, the increment/decrement operations can be overlapped 
with other operations, effectively hiding their latency.  

All arriving microinstructions are first sent to an instruction buffer before they are moved to the control 
registers, creating a simple two-stage pipeline (buffer, execute). Each entry in the instruction buffer can hold all 
three micro-instructions that form a full instruction. The instruction opcode is fully decoded and copying the 
instruction into the control registers enables all control signals required to execute the instruction and detect its 
completion so that the next instruction can begin to execute. Increasing the instruction buffer size can improve 
performance by overlapping instruction broadcast with execution, but can also cause greater contention (and 
reduce performance) on the network since instructions and data must share link bandwidth. Simulations reveal 
that a single entry instruction buffer offers the best trade-off between improving performance and minimizing 
design complexity. 

3.2.3.3 Inter-Node Communication 
Nodes communicate with each other on single-bit asynchronous links. Each end of a link terminates in a 

transceiver that can handle three virtual channels (using 1-bit buffers per virtual channel). The transceiver can 
route each virtual channel (VC) independently and requires three bits of state per VC to store the destination 
address. To support self-organization, nodes include logic to configure static routes. Virtual channel 0 (VC0) is 
used to broadcast instructions. Virtual channel 1 (VC1) and virtual channel 2 (VC2) are used to route data in 
opposite directions on the logical ring. Each asynchronous transaction on a link is controlled through a four-
phase handshake. The links support bidirectional full-duplex transfers. To simplify transceiver circuit size and 
complexity we transfer 1 bit per handshake (which severely limits link bandwidth). 

3.2.3.4 Circuit Size and Power Estimates 
We have completed the circuit design for all node components. We use this design in conjunction with 

layouts of simple logic blocks to estimate node size and power consumption. Our simulator models the system 
in sufficient detail to make it relatively easy to extract a circuit model for most components. Figure 84 shows a 
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floorplan of a node, showing the approximate position (not to scale) of the datapath, control and transceivers. 
We estimate that the entire node will require 10,000 transistors. Since the proposed fabrication technology 
currently imposes limitations on the number of metal layers, we estimate the final area of the node to be the 
equivalent of 22,000 transistors (based on our experience in laying out circuits) which translates to a 3µm x 
3µm node. Recent work [39] has shown that it should be possible to manufacture DNA grids of this size. 

To estimate system power consumption, we use the energy xdelay product for carbon nanotube field effect 
transistor (CNFET) circuits [11]. Based on a switching speed of 1 ns, and estimated node gate and latch counts, 
we calculate an upper bound on the per node power consumption. During execution, the configuration logic and 
a large part of the register file are inactive (at most 3 registers can be active). Accounting for these inactive 
elements yields a node activity factor of 0.88, which corresponds to a power consumption of 0.775µW per node. 
To obtain an upper bound on the power density of this system, we assume that nodes are packed with no space 
between them. Using our estimated node area (9µm2) and power (0.775µW), we get a maximum power density 
of 6.5W/cm2, with a node activity factor of 0.88. This is much less than the power densities of current 
processors, which are greater than 75 W/cm2. This estimate is pessimistic since the activity factor is a 
conservative estimate, we cannot pack nodes perfectly, and defective nodes will further reduce power density. 

3.2.3.5 Summary 
Each node in SOSA is a small circuit that can communicate with up to four neighbors, store small amounts 

of state and perform simple computation. To minimize area and power overheads the nodes use asynchronous 
logic, however like current processors we still dedicate significant area to control and communication circuitry. 
The challenge is to coordinate the operation of these nodes connected through an unstructured network to 
execute programs. 

3.2.4 System Configuration 
To use the random network of nodes to perform useful computation we use a configuration mechanism to 

impose logical structure on the network and isolate defective nodes and links from the rest of the system. This 
allows nodes to self-organize and avoids the need for an external defect map, which would be impractical to 
obtain given the scale and bandwidth limitations of the system. Once defective nodes are isolated, the functional 
nodes are grouped to form PEs. We now describe this configuration in detail. 

3.2.4.1 Logical Structure and Defect Isolation 
We use a variant of the “reverse path forwarding” (RPF) algorithm [7,27] to impose a logical tree structure 

on the network and isolate defects. When the system is powered up or reset, all nodes enter a “configuration 
mode”, steer incoming packets to the configuration control registers and execute the distributed RPF algorithm. 
A small packet is inserted through an anchor and is broadcast on all of its active links (the transceiver analog 
control circuitry tests the liveness of its physical link). 

The RPF algorithm states that any node receiving the broadcast propagates it on all links except the receiving 
link if and only if the node has not seen the broadcast before. The node also stores the direction (“gradient”) 
from which it received the broadcast and sets up internal routing information based on this direction. Following 
the gradient through a set of nodes leads to the broadcast source—the tree root. A depth first traversal is 
established by nodes locally selecting links in a predefined order relative to their gradient link. Opposite 
orderings are used for forward (VC1) and reverse (VC2) traversals. This method can be used to have all nodes 
in the system self-organize into a tree or it can be used to create multiple trees by initiating the broadcast 
through multiple anchors. For example, we could self-assemble the random network of nodes on a silicon wafer 
with a grid of vias to create a system with multiple anchors. 

Defect isolation is achieved by 1) augmenting each node with built-in-self-test and assuming fail-stop 
behavior [28], and 2) including a simple test vector in each broadcast packet that each node must successfully 
execute before propagating the broadcast. Nodes failing the test are isolated since there is no path through the 
node. Simulations show that the gradient can reach a very large fraction of functional nodes (i.e., achieve good 
coverage) for node defect rates up to 30%. Handling more complex defects like Byzantine failures is beyond the 
scope of this work. 
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3.2.4.2 Configuring Processing Elements 
A node is too small to hold an entire PE, so we logically group a set of nodes to form a PE. To create PEs 

with N bits (we assume N=32), we traverse the broadcast tree in depth-first order (on VC1) and group N+2 
consecutive unconfigured nodes. We use one configuration packet per PE. An unconfigured node receiving a 
configuration packet examines it to determine what node in the PE is to be configured next. The first node holds 
auxiliary control bits for the PE and is called the “head” node. The next N nodes serve as compute nodes that 
form the N-bit PE. The last node (“tail”) serves as the terminating point of the PE and is used to store the status 
bits (carry/borrow) resulting from an arithmetic operation. A newly configured tail node sinks the configuration 
packet. To minimize PE setup time in large networks (>109 nodes), we could distribute configuration by 
exploiting multiple anchors. 

If the broadcast tree does not have sufficient nodes to form an integral number of PEs, the “incomplete” PE 
is deconfigured before execution begins by performing a reverse depth first traversal on VC2. PE 
deconfiguration uses a simple packet and starts with the last configured node of the partial PE (i.e., PEs with no 
tail), and deconfigures all intermediate nodes until it reaches (and terminates at) the head node. 

We extend PE configuration to optimize PE length (hops from head to tail). Very long PEs (e.g., a PE that 
spans the broadcast tree root) may reduce performance due to longer intra-PE communication latencies. Since 
the post-configuration step deconfigures partial PEs, a PE that crosses a length threshold can be rejected by 
starting a new PE without creating a tail node. We empirically find that a threshold of 4 times the minimum PE 
length (compute nodes + head + tail) achieves a good balance between extra nodes required and performance 
gained by reducing PE length.  

Once PEs are configured, all nodes set a “run” mode bit. Packets are no longer routed to the configuration 
control registers, unless the node receives a global reset instruction. Each PE waits for instructions to execute. 
In the next section, we describe how SOSA uses the configured PEs to execute instructions. 

3.2.5 System Architecture 
In this section, we describe the architecture of SOSA. Careful node design coupled with the self-organizing 

capability of each node enables us to map a data parallel architecture onto the random network of nodes. We 
begin by describing the instruction set and execution model. Then, we present an example illustrating the 
execution of an instruction in the system.  

3.2.5.1 Instruction Set Architecture 
SOSA uses a three register operand ISA, with microcoded instructions (Table 8 shows a subset of the 

instruction set). A full instruction has between 39 and 44 bits and contains: a) a 16-bit fully-decoded opcode 
microinstruction, b) a 20-bit register specifier microinstruction (4 bits per register specifier for a 16-entry 
register file, and 2 extra bits per register specifier to allow increment/decrement/no change operations), and c) a 
3-bit “synch” microinstruction with an optional 5-bit synch repeat counter. Each microinstruction can be 
independently broadcast and includes 2 bits of control overhead to select a control register as a 
destination.Since opcodes are fully decoded, it is relatively straightforward to support fused instructions that 
include combinations of operations to increase the work done per instruction. For example, a Copy-Shift first 
copies the source to the destination register, and then performs a shift operation on the destination register. 
SOSA also supports predicated instruction execution (all instructions can be predicated) and has three types of 
instructions that can modify predicate bits: a) conditional instructions, b) unconditional predicate modifying 
instructions and c) predicate-shift instructions. 
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Table 8. Instruction set architecture. 

 
Data exchange with the external controller and between PEs is handled through PE-Shift instructions. When 

PEs in a cell execute a PE-Shift instruction, each PE sends the contents of the specified register to a neighbor 
(left or right), and receives a new value for the register from the other neighbor (right or left). Since these 
instructions are critical for data communication, it is important to minimize their latency. We optimize PE-
Shifts using the following observation: for a N-bit PE, each bit moves exactly (N+2) positions to the left or 
right, and a node only needs to store the (N+2)th bit in its register file and can “forward” the remaining bits 
without register access. We use the synch repeat counter to track the bits being forwarded by the node. The 
node stops forwarding when it receives the (N+2)th bit. When a node is “forwarding” data, it copies the data bit 
directly from its input buffer to its output buffer. This reduces the critical path of a bit through the node.  

3.2.5.2 Execution Model 
Instructions are broadcast on VC0 to all nodes, thus PEs, in a cell. Nodes first place instructions in the 

instruction buffer and then forward them down the broadcast tree. Instruction broadcast stalls when the 
instruction buffer is full. The arrival of the synchronization micro-instruction is a signal to the node that all parts 
of the instruction have been received. An instruction moves from the instruction buffer to the node’s internal 
control registers only when the previous instruction finishes execution. Since nodes are bandwidth limited, we 
allow the partial broadcast of instructions to reduce the number of bits broadcast. If an instruction broadcast 
skips a microinstruction (except synch), we reuse the previously latched value from the corresponding control 
register. The synch repeat counter also helps reduce the number of bits broadcast. 

Non-predicated instructions can be executed independently by nodes of a PE, if there are no inter-bit data 
dependencies (e.g., for an OR instruction). The head and tail nodes act as PE delimiters, and ensure that intra-
PE data packets do not cross PE boundaries. The tail node also stores the carry/borrow out from arithmetic 
operations. The head node stores predicate bits (one per physical register) that are used to conditionally execute 
predicated instructions. The head node reads the specified predicate bit and informs the remaining nodes in the 
PE whether the predicated instruction is to be executed or squashed by sending a synch microinstruction on 
VC1. Since each node in a PE must wait for the extra synchronization microinstruction (which is consumed by 
the tail), execution of predicated instructions is serialized through a PE. 

3.2.6 Evaluation 
This section describes our evaluation methodology, simulation infrastructure and workloads, then compares 

SOSA performance to four other architectures. We find that SOSA achieves good performance on benchmarks 
that have data parallelism. For a configuration with more than 64K PEs, SOSA matches the performance of an 
ideal 16-way Chip-level MultiProcessor, CMP. Thus, despite SOSA’s severe limits on node computational 
power, network bandwidth and connectivity, and low control over the fabrication process, it matches the 
performance of idealized conventional architectures, with lower device switching speeds and a lower power 
density. We then show that SOSA can tolerate high node defect rates. For the encryption benchmarks, 
performance gracefully degrades as the fraction of defective nodes increases to 30%. For the other benchmarks, 
by over-provisioning the system, SOSA tolerates up to 20% defective nodes with a small (<10%) degradation in 
performance. We also find that the instruction buffer and microinstruction reuse optimizations improve 
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performance. Increasing ALU execution latency does not impact performance so long as it is lower than 
communication latencies.  

3.2.6.1 Methodology 
We evaluate SOSA using a custom, event-driven simulator and use results from simulating smaller systems 

to extrapolate the behavior of larger systems. Since the nodes do not use a clock, we define the time taken to 
perform one part of the inter-node asynchronous communication handshake as one “time quantum”. The latency 
of all activity in the node is a multiple of this time quantum. Experimental devices are expected to operate at 
frequencies exceeding 100 GHz [4] with demonstrated frequencies over 10GHz [33] (time quantum of 0.1 ns), 
and asynchronous handshakes at high speeds have been demonstrated for high bandwidth crossbar networks 
[21]. We expect SOSA’s performance to scale with device performance, but assume a conservative time 
quantum of 1 nanosecond to avoid over-estimating performance due to aggressive technological parameters. We 
list our default simulation parameters in Table 9. We use a custom tool that models the growth of DNA 
nanotubes between nodes to generate network topologies.  

Table 9. SOSA system parameters. 

 
We compare the performance of SOSA to a Pentium 4 (P4) (3 GHz, 1MB L2, 1 GB RAM), an ideal out-of-

order superscalar (I-SS) (128-wide, 8k ROB, 1-cycle memory latency), an ideal 16-way CMP (16-CMP) 
(obtained by linearly scaling performance of the I-SS) and an ideal implementation of SOSA (I-SOSA) that uses 
the same instruction set, but assumes unit instruction execution latencies, and no communication overhead. 
Table 10 lists the parameters used to simulate the I-SS with SimpleScalar [2]. 

Table 10. Ideal superscalar parameters. 

 
Table 11 contains brief descriptions of the test programs, the broad application classes they fall under, and 

the number of PEs required by SOSA to run one instance of a program. For all programs other than the 
encryption algorithms, we configure the system as a single cell with the necessary PEs. For the encryption 
algorithms, we configure the system as a collection of cells, each of which operates as a pipelined encryption 
unit. We use GNU Complier Collection, gcc to generate PISA binaries for simple scalar (flags: -O3) and Intel’s 
C Compiler (icc, flags: -O3 -fast -tpp7) for the P4 since optimized icc binaries outperform optimized gcc 
binaries. We test several versions of matrix multiplication from [31] and identify the best version for the P4 
(naïve version with three nested loops, since icc vectorizes loops for the Streaming SIMD Extension (SSE) 
units) and I-SS (static loop unrolling). For sorting, we use an implementation of quicksort. For SOSA each 
program is hand-optimized (e.g., loop unrolling, code re-organization). The SOSA code for matrix 
multiplication and the image filters assumes data is in place before execution begins. However, this overhead 
forms only a small fraction of total execution time and can be reduced by exploiting multiple anchors in the 
system. The other workloads explicitly account for I/O overheads. The running times of programs do not 
include system configuration time (which is proportional to the number of nodes in the system). To estimate 
SOSA performance for configurations with more than 16K PEs, we use simple linear extrapolation (simulating 
a 256x256 matrix multiplication on a 3 GHz P4 with 32 GB RAM takes ~50 days, which is impractical for data 
collection purposes). To validate the extrapolations we compare extrapolated run times to simulated run times 
for large configurations (8K-16K PEs). 
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Table 11. Benchmark descriptions 

 

3.2.6.2 Results 
We now examine the performance of applications on SOSA with no defects. SOSA provides users the 

flexibility to configure the system to minimize program running time (single cell, single program instance), or 
to maximize throughput (multiple cells, one program instance each). We divide our evaluation in two parts 
based on the performance metric being used (execution time or throughput). 

Execution Time. For many workloads (image filters, matrix multiplication, sorting), system performance is 
determined by program execution time since we are solving a single instance of each problem. To evaluate the 
performance of these programs on SOSA, we configure the system to create one cell with the required number 
of PEs. The latency of an individual instruction in SOSA is high due to the overheads caused by limited node 
capabilities. However, SOSA can amortize this overhead by executing the same instruction in all PEs at the 
same time. Hence, we expect SOSA to perform poorly for small input sizes, where each instruction is executed 
in a small number of PEs. However, SOSA performance should improve as input size increases and eventually 
match (or exceed) the performance of the P4, I-SS and 16-CMP. The input size at which SOSA outperforms a 
particular architecture is application dependent. 

Inspecting the main loop body for matrix multiplication in Figure 85 (optimizations are omitted to keep the 
code compact and readable), we see that the primary advantage for SOSA is the simultaneous computation of 
all products in the N2 PEs. This allows SOSA to convert the O(N3) algorithm to O(N2). Image filters and sorting 
are reduced from O(N2) algorithms to O(N). 
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Figure 85: Matrix multiply: assembly code w/o loop unrolling. 

 

Figure 86: Single Cell Program Runtimes: (a) Matrix Multiplication, (b) Gaussian Filter, (c) 
Median Filter and (d) Sort. The vertical line denotes the input size beyond which SOSA does better 

than the Pentium 4. 
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We plot the running time of matrix multiplication, Gaussian filters, median filters and sorting on different 

architectures in Figure 86, marking the input size beyond which SOSA outperforms the P4 with a vertical line 
(results for the generic 3x3 filter are qualitatively similar to the Gaussian filter, and are skipped due to space 
constraints). As expected, SOSA does worse than the conventional architectures for small input sizes, but 
matches and overtakes them as input size increases (except for median filter and sort). The P4 matches the I-SS 
on matrix multiplication for two reasons: a) the P4 makes use of its SSE units, and b) I-SS only achieves an IPC 
of 9. The P4 performs much worse without the SSE units. 

The performance of the median filter and sort algorithms is limited by their dependence on predicated 
instructions which serialize execution in a PE. While the number of predicated instructions in the median filter 
is fixed (independent of input size), for sort it scales with input size. For the median filter, SOSA is able to 
match the performance of the uniprocessors, but not the ideal 16-CMP (for image sizes up to 16Kx16K). For 
sort, the potential speedup on SOSA over quicksort on a single processor (average case) is O(log(N)). However, 
the overhead introduced by predicated instructions makes it impossible for SOSA to match the performance of 
the I-SS or P4. Exploring techniques to reduce this overhead is future work. Note that even I-SOSA cannot 
outperform the I-SS at sorting. This highlights one key limitation of SOSA: it is not a general purpose 
architecture and cannot match the performance of conventional processors on general purpose workloads. 

Throughput. There are a large number of workloads where high system throughput is desirable. The parallel 
computational capabilities of SOSA can be used to achieve high system throughput by dividing the system into 
multiple cells, each having a set of PEs. While there are multiple ways to improve throughput, we focus on 
using multiple instances of a single application (operating on different data) running on different cells. For 
example, if we assume an area of 100mm2 (approximately the area of a P4 in 90nm CMOS), we can configure 
over 5,000 cells (assuming an average inter-node gap of 1µm) that each perform an 8x8 matrix multiplication 
and achieve much higher throughput than the P4 or the I-SS. 

TEA [37] and XTEA [24] are two simple encryption algorithms developed at the University of Cambridge 
that use a combination of shift, add and xor operations to encrypt 64 bit blocks of data with a 128-bit key, with 
XTEA requiring more operations per iteration to achieve better cryptographic security. We implement pipelined 
versions of both algorithms that require 64 PEs (corresponding to 64 encryption iterations) in a cell. Due to their 
requirement of fixed sized cells, these algorithms are well suited for the high-throughput, multiple cell 
configuration. 

Since each cell operates independently and can handle multiple data blocks in parallel, TEA and XTEA 
achieve better throughput on SOSA than on the I-SS or P4. A single cell can perform 175,000 TEA encryptions 
per second and 170,000 XTEA encryptions per second. Table 12 compares the performance of TEA on different 
architectures. The table shows that SOSA can achieve 79% of the throughput of the ideal 16-CMP, while using 
about the same area as a single core with devices switching at a tenth of the speed (1ns vs. 0.1ns). The 
comparison with I-SOSA highlights the overheads due to simple nodes and limited bandwidth in SOSA. 

Table 12. TEA throughput for various architectures 

 
We have implemented pipelined versions of searching and bin-packing algorithms in SOSA to maximize 

throughput. Our implementation of search achieves about 10 billion comparisons per second on SOSA while 
using the same area as a P4 (the P4, I-SS and 16-CMP achieve about 0.5, 2 and 32 billion comparisons per 
second respectively). We see qualitatively (not quantitatively) similar results for bin-packing. SOSA’s ability to 
exploit data parallelism in these workloads helps it outperform conventional architectures. 
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Defect Tolerance— The ability to tolerate defects is one of the primary features of SOSA. To test the defect 
tolerance and to measure the effect of defects on performance, we run a number of experiments varying the 
node defect rate. Our generated topologies include link defects but these only have an indirect (and minor) 
effect on performance. Performance is affected if the average number of links per node is less than 2. We find 
that nodes have 3.2 active links on average. First, we examine the effect of defects on the throughput of a 
system configured into multiple cells. If we keep the total system area constant (100mm2), as node defect rates 
increase we are able to configure fewer cells, resulting in reduced throughput. Figure 87 plots the throughput for 
TEA and XTEA, as node defect rates increase from 0% to 30% revealing a graceful degradation in 
performance. The connectivity of the random network of nodes is severely affected by node defect rates greater 
than 30%. This results in network partitions with insufficient functioning nodes in each partition to configure a 
64 PE cell. 

 
Figure 87: TEA/XTea: Graceful degradation of throughput with increasing node defect rate. 

For single cell applications, the entire system must be over-provisioned to ensure that a sufficient number of 
PEs can be configured. Thus defects indirectly impact performance by reducing network connectivity and 
bandwidth. In all experiments, SOSA has 30% more nodes (24,000 total nodes) than the minimum needed for a 
32x32 matrix multiply. Figure 88 shows the running time for 32x32 matrix multiplication as we increase the 
number of defective nodes from 0% to 20%. We see that the running time increases by about 8% (compared to 
a case with no defects), primarily because the average length of PEs increases. We do not present results for the 
other workloads since they are qualitatively similar. If the system cannot configure sufficient PEs, the problem 
could potentially be divided into parts that can be solved with the available PEs. Such partitioning, if possible, 
is beyond the scope of this work. Though the defect tolerance capabilities of the RPF algorithm have been 
demonstrated before, our experiments show that the ability to tolerate high defect rates incurs only a small 
performance penalty (~8% for N=32, 32-bit PEs), a characteristic of increasing importance for future systems. 

 
Figure 88: Matrix multiply: The effect of defects on execution time 
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3.2.6.3 Result Summary 
The results in this section show that a system built using a random network of simple nodes can outperform a 

Pentium 4 (P4) and an ideal superscalar processor (I-SS), despite being severely bandwidth limited and 
operating devices at a lower switching speed. A scaled up version of the system can outperform an ideal 16-way 
CMP. The results also highlight SOSA’s flexibility in configuring independent cells to improve system 
utilization and throughput. SOSA provides higher throughput than the P4 and I-SS while using the same area. 
Coupled with the ability to tolerate a significant defect rate, SOSA shows potential in harnessing the higher 
device densities that emerging technologies promise to deliver. 

3.2.7 Conclusions 
With the expected rise in defect rates as device sizes shrink, defect tolerance will be a critical requirement 

for future system architectures. These increasing defect rates will contribute directly to the exponentially 
increasing cost of top-down manufacturing. The use of bottom-up techniques like self-assembly will help lower 
costs but may also result in higher defect rates and a loss of precise control over the manufacturing process. 
This makes it imperative for architects to develop defect tolerant architectures to exploit the full potential of 
future nanoscale devices. This report presents SOSA, a self-organizing SIMD architecture built from a random 
network of simple computational nodes. Despite high defect rates, low bandwidth and lack of underlying 
physical structure we show that, for data parallel workloads, SOSA is able to perform better than conventional 
superscalar processors, while operating at a lower speed and consuming much less power. A scaled version of 
SOSA can perform better than an ideal 16-way CMP. As the underlying technology matures, SOSA’s 
performance can be further improved as fabrication limitations are removed. While SOSA does not solve all 
problems encountered with self-assembled architectures, it is a step towards realizing defect tolerant computing 
systems built using emerging technologies that may provide inexpensive terascale integration. 
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4. Final Conclusions 
The following sub-sections describe the conclusion and summary-of-results for each component of the 

project. Each sub-section is a digest of the important findings that resulted from the support of this project. 

4.1 Substrate Stabilization and Analysis 
DNA nanostructures are the key to building high performance systems beyond photolithography. However, 

DNA is more reactive than most of the materials used in conventional silicon processing. To achieve the 
ultimate goal of contextual knowledge mining, DNA nanostructures must be hardened for downstream 
processing, e.g., functionalization with nanoelectronic or photonic devices. 

Psoralen is a molecule that is capable of intercalating into the DNA double helix structure and subsequently 
cross linking to two bases upon exposure to 365 nm ultraviolet light[49].  Exposure of DNA at lower 
wavelengths such as 254 nm is known to directly damage the typical helical structure.  Studies have also 
indicated that preferential cross linking occurs more with alternating and adjacent A-T pairs[50].  Although 
mainly used in the medical field for treatments of skin diseases such as psoriasis and vitiligo, it is also 
extensively used in biological research concerning the physical properties of DNA helices.  Psoralen is a means 
to improve the integrity of the DNA structures in different environments including a range of temperatures, pH 
ranges, and chemical environments. 

 Trioxsalen, or TMP, is a psoralen derivative that is most commonly in medical treatments.  As a result, it is 
one of the more well-studied compounds in its interaction with DNA.  It is known that trioxsalen has generally 
low solubility but is capable of both absorbing wavelengths of light ranging from 250 nm to 350 nm 
consistently[51]. It is further known that free trioxsalen is capable of fluorescing at 427 nm. Using this 
information, a range of studies concerning its interaction with addressable DNA grids is being conducted. As 
this report is only on recent progress, only procedures and results will be presented here. 

 The solubility of trioxsalen in a set of solvents has been investigated. Literature indicates that standard 
media for the psoralen derivative include water, buffer, and alcohols. However, previous studies have been 
demonstrated both in literature and by our group that prolonged exposure to alcohol such as ethanol or 
isopropanol can destabilize the DNA grid structures[52].  Such data has been quantitatively verified through an 
experiment in which DNA lattice was exposed to increasing volumes of ethanol ranging from 10% additional 
volume to 100% additional volume. AFM images were taken and analyzed using image analysis macros 
developed using ImageJ software. The macros compare the raw image to an ideal DNA lattice image of the 
same dimensions as well as calculate the percent coverage of DNA material over the image.  The two values are 
used as an index to indicate the extent to which the DNA present is part of the expected structure or how “well-
formed” the DNA structures are in the image.  Figure 89 presents the results of this experiment.  

 
Figure 89:  Results from denaturation experiment.   The insets above each bar are a section of the 

AFM image from each sample. 
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4.2 Scientific Computing on Self-Organized Substrates 
The current support for floating point operations on self-organized substrates (SOSA, NANA, etc.) is 

restricted to software emulation due to physical resource constraints on each node. However, there are a variety 
of methods to use when implementing a software floating point library and we have begun to investigate these 
various tradeoffs for SOSA. Our current work has identified floating point renormalization as a severe 
bottleneck in system performance. For example, SOSA integer-only execution time of a mixture of 50 
multiplications and 50 additions approaches 360μs while an identical set of floating point operations takes 
nearly 13ms, or almost 40-times longer for the floating point operations.  

Clearly, for SOSA to find practical application to any scientific domain either (i) fixed-point (integer-only) 
operations must suffice, or (ii) floating point operation performance must be improved. 

The identification of the renormalization step in the software floating point operations focused our efforts on 
reducing this cost. In fact, renormalization has a long history of optimizations and prior to the adoption of the 
IEEE floating point standard was largely customizable per application. The approach we adopt here is to use a 
high-radix exponent to help reduce the time spent renormalizing operands. Since a floating point number can be 
represented as N = Mantissa * (Base ^ Exponent) we are free to choose a value for the Base. The IEEE standard 
defines the base as 2 which requires O(n) shifts to normalize a number where ‘n’ is the number of bits in the 
mantissa. For our SOSA implementation we have evaluated several bases, as shown in Table 13, to find an 
optimal design point at base 16. 

Table 13. High-radix floating point operation execution time 

Base Exe. time (μs) 

2 13027.850 

4 2864.058 

8 1784.806 

16 1459.502 

32 2797.878 

Integer-only 352.817 

 
The improvement of base-16 exponents over base-2 is primarily due to the reduction in time for 

renormalization on each addition. This yields a 9X improvement for base-16 over base-2 which brings the 
SOSA floating point performance within a factor of 4X of integer-only performance (vs. ~50X previously.) We 
have also begun to study the impact of the size of processing elements and the number of nodes per element to 
understand how this might be used to further improve floating point performance. We are also investigating two 
new architectural innovations focused on reducing shift-by-operand latency and improvements in the methods 
used to self-organize the interconnect. 

The SOSA system is built using a random network of simple nodes can outperform a Pentium 4 (P4) and an 
ideal superscalar processor (I-SS), despite being severely bandwidth limited and operating devices at a lower 
switching speed. We have shown that floating point performance can be improved by 9X over the IEEE 
standard implementation and comes within 4X of integer-only performance. With the expected rise in defect 
rates as device sizes shrink, defect tolerance will be a critical requirement for future system architectures. These 
increasing defect rates will contribute directly to the exponentially increasing cost of top-down manufacturing. 
The use of bottom-up techniques like self-assembly will help lower costs but may also result in higher defect 
rates and a loss of precise control over the manufacturing process. This makes it imperative for architects to 
develop defect tolerant architectures to exploit the full potential of future nanoscale devices.  
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4.3 Defect Tolerant Computer Architecture Results 
The continual decrease in transistor size (through either scaled CMOS or emerging nano-technologies) 

promises to usher in an era of tera to peta-scale integration. However, this decrease in size is also likely to 
increase defect densities, contributing to the exponentially increasing cost of top-down lithography. Bottom-up 
manufacturing techniques, like self-assembly, may provide a viable lower-cost alternative to top-down 
lithography, but may also be prone to higher defects. Therefore, regardless of fabrication methodology, defect 
tolerant architectures are necessary to exploit the full potential of future increased device densities. 

This report explores a defect tolerant SIMD architecture. A key feature of our design is the ability of a large 
number of limited capability nodes with high defect rates (up to 30%) to self-organize into a set of SIMD 
processing elements. Despite node simplicity and high defect rates, we show that by supporting the familiar data 
parallel programming model the architecture can execute a variety of programs. The architecture efficiently 
exploits a large number of nodes and higher device densities to keep device switching speeds and power density 
low. On a medium sized system (~1cm2 area), the performance of the proposed architecture on our data parallel 
programs matches or exceeds the performance of an aggressively scaled out-of-order processor (128-wide, 8k 
reorder buffer, perfect memory system). For larger systems (>1cm2), the proposed architecture can match the 
performance of a chip multiprocessor with 16 aggressively scaled out-of-order cores. 

Manufacturing defects, power density, process variability, transient faults, bulk silicon limits, rising test 
costs and multibillion dollar fabrication facilities are some of the challenges facing the continued scaling of 
CMOS. While architectural modifications (e.g., multicore) can provide some short-term relief, the 
semiconductor industry recognizes the importance of these issues and the need to explore long term alternatives 
to CMOS devices and fabrication techniques [17].  

One promising alternative is DNA-based self-assembly of nanoscale components using inexpensive 
laboratory equipment to achieve tera to peta-scale integration. Although much of this technology is in its 
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing 
systems, architects can gain a deeper understanding of its limitations and opportunities while providing 
important feedback to the scientists developing the new technologies. 

DNA-based fabrication produces precise control within a small area (e.g., 9 µm2) enabling the construction 
of a large number (~109-1012) of small nodes (computational circuits with ~104 transistors) that can be linked 
together using self-assembly. This produces a random network of nodes, due to the lack of control over 
placement and orientation of nodes, which contain defective nodes and links. While our work is motivated by 
DNA-based self-assembly, it is applicable to any technology with similar characteristics (e.g., scaled CMOS 
with high process variability, high defect rates and point-to-point links between relatively small compute 
nodes). The challenge for computer architects is to efficiently exploit the computational power of the large 
number of nodes while overcoming two primary challenges: 1) loss of precise control over the entire fabrication 
process, and 2) high defect rates.  

This report presents a SIMD architecture designed to address these challenges. The fundamental building 
block in our architecture is a relatively small node (e.g., 1-bit ALU with 32 bits of storage and communication 
support for four neighbors) that operates asynchronously. A configuration phase at startup isolates defective 
nodes and allows groups of nodes to self-organize into SIMD processing elements (PEs) which are connected in 
a logical ring, thus simplifying the programmer’s view of the system. 

Simulations using conservative estimates for node size and device speed show that the proposed design can 
match the performance of aggressively scaled architectures for 8 out of 9 benchmarks tested. Furthermore, this 
performance is achieved with a very low power density of 6.5 W/cm2 (vs. >75 W/cm2 for modern cores) while 
conservatively assuming that about 90% of the devices in the system switch every nanosecond. Finally, we 
show that our system can tolerate up to 30% defective nodes. Our results demonstrate the potential of this 
technology for building high performance architectures despite high defect rates and loss of precise control 
during fabrication. Further improvements are possible as the technology scales to allow more complex nodes, 
better inter-node connectivity, and faster devices. Our main contributions are: 

• adapting self-organization methods to computer architectures, 
• designing a node that balances fabrication constraints with functionality needed to communicate, 

compute, and self-organize, and,  
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• demonstrating the above capabilities by composing a high-performance, defect tolerant SIMD 
architecture from a random network of nodes. 

4.4 Advances in DNA Nanogrid Synthesis 
The hierarchical construction of DNA nanostructures has enabled larger and more complex designs than 

previous demonstrations. Coupled with good thermodynamic design and thermal ordering, hierarchies of 
interactions can be used to assemble complex chemical patterns. We have recently demonstrated that our 
original hierarchy can be extended to build 8x8 (and 8x16) grids of DNA as shown in Figure 90. 

(a)  (b)  (c)  

Figure 90: (a), (b) Two individual 8x8 DNA grids. Each grid is 140nm x 140nm. (c) An un-
optimized 8x16 DNA grid built using two 8x8 grids. 

These methods have enabled large structures with aperiodic chemical patterns. Currently, we have biotin-
streptavidin patterns (i.e., protein patterns) and preliminary demonstrations of Ag nanoparticle patterns. Our 
strategy to nucleate Ag nanoparticles has been to use a templating protein (e.g., streptavidin) that has been 
chemically pre-charged with precursor reagents. After lengthy optimization, we have found an operating point 
where the protein retains a strong binding affinity to the biotin-patterned DNA grids, yet should nucleate Ag 
nanoparticles. The benefit of this approach is that the surfaces of the patterned metallic particles are unfettered 
by solubilization or stabilization groups (e.g., citrate). That is, protein nucleated Ag nanoparticles may yield 
“cleaner” particle structures than otherwise possible. 

Toward this end we have synthesized several wire-like structures from protein-biotin-grid interactions that 
appear in typical logic and memory structures. Figure 91 shows fours AFM images of the wire structures and 
this demonstrates that it is possible to synthesize, in quantities approaching 1012, particle patterns with useful 
aperiodicity.  

 
Figure 91: Four patterned DNA grids. Each image represents a wire-like motif that can be found in 

typical logic circuitry. 

This work is on-going and will further study the nucleation of Ag (and semiconductor) nanoparticles on the 
grids as well as the controlled fusion of core-shell particles on the grids to form nanoelectronic junctions by 
shell over-growth. We will also continue to investigate the opportunity of optical resonance energy transfer 
mediated by DNA grid nanostructures. We have preliminary data that suggests it is possible to form near-field 
conduits for optical excitons. 

4.5 DNA Self-assembly CAD Results 
The continued scaling of CMOS and the emergence of alternative nano-electronic devices promises to 

deliver increased device densities and higher operating frequencies. However, small devices are more 
vulnerable to defects, contributing directly to the exponentially increasing costs of top-down lithography. DNA-
based self-assembly of nano-electronic devices is one approach that has potential as a lower-cost long-term 
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replacement of conventional top-down fabrication techniques. Although much of this technology is in its 
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing 
systems architects can gain a deeper understanding of its limitations and opportunities while providing 
important feedback to the scientists developing the new technologies. The precise binding rules of DNA enable 
creation of nanostructures with minimum pitch on the order of a few nanometers.  These nanostructures can be 
used to place and interconnect nanoscale components (e.g., crossed carbon nanotube FETs, ring-gated FETs, 
nanowires). 

The challenge in creating DNA nanostructures is to specify the appropriate DNA sequences such that the 
desired structure (geometry) forms and is thermodynamically stable.  To meet this challenge, DNA self-
assembly can exploit the common technique of composing a small set of relatively simple motifs to create more 
sophisticated structures.  Many parts of this design process can benefit from design automation.  However, in 
this work we focus on the key aspect of designing the DNA sequences that control how motifs can bind with 
each other. Specifically, we seek to find DNA sequences that minimize the strength of unintentional interactions 
with the other motifs in the set while maximizing the strength of intentional interactions. 

Our approach is to evaluate the sequence design space to create a fixed size 60nm X 60nm grid with 20nm 
pitch.  This structure is composed through a hierarchical assembly of motifs.  We focus on the design of the 
final assembly step that combines 16 cruciform motifs (arranged 4x4) to form the final grid structure.  For this 
structure, we must determine the best 96 sequences that satisfy the structural and stability metrics. To 
accomplish this we implemented an optimization algorithm that is aware of both intentional and unintentional 
interactions and exploits parallelism to rapidly evaluate the large sequence design space. 

We have experimentally verified our method by designing, synthesizing, and assembling the target 
nanostructure and characterizing it with atomic force microscopy (AFM).  We also show that our optimization 
algorithm produces superior sequences for a 2x2 grid than sequences produced using conventional text-based 
sequence comparison or random sequence selection. 

4.6 Computer Architecture Survey Results 
The continued scaling of CMOS and the emergence of alternative nano-electronic devices promises to 

deliver increased device densities and higher operating frequencies. However, small devices are more 
vulnerable to defects, contributing directly to the exponentially increasing costs of top-down lithography. DNA-
based self-assembly of nano-electronic devices is one approach that has potential as a lower-cost long-term 
replacement of conventional top-down fabrication techniques. Although much of this technology is in its 
infancy (i.e., demonstrated in research lab experiments), by studying its potential uses for building computing 
systems architects can gain a deeper understanding of its limitations and opportunities while providing 
important feedback to the scientists developing the new technologies. This fabrication approach produces 
precise control within a small area (e.g., 9 µm2) enabling the construction of a large number of (~109-1012) small 
computational circuits (nodes) that can be linked to each other using self-assembly. This results in a random 
network of nodes that contains defective nodes and links, due to the lack of control over placement and 
orientation of the nodes. While our work is motivated by DNA-based self-assembly, it is applicable to any 
technology with similar characteristics (e.g., scaled CMOS with high process variability, high defect rates and 
point-to-point links between relatively small compute nodes). The challenge for computer architects is to 
efficiently exploit the computational power of this random network while overcoming two primary challenges: 
1) loss of precise control over the entire fabrication process, and 2) high defect rates. 

Self-assembly of nano-electronic devices has the potential to emerge as a lower cost alternative to top-down 
manufacturing. DNA-based self-assembly, is a bottom-up manufacturing process that uses the precise binding 
rules of DNA with nanoscale devices to build computing systems. We assume a proposed assembly process to 
place electronic circuits on a DNA lattice. A key requirement of this process is the ability to control the 
placement of electronic devices (e.g., carbon nanotubes or silicon nanowires) at specific points on the 60nm X 
20nm circuit. Recently, we have taken two critical steps towards this goal by demonstrating the placement of 
aperiodic patterns, with a 20nm pitch, on a DNA lattice and the DNA-guided self-assembly of nanowire 
transistors.  

Current self-assembly processes produce limited size DNA lattices thus limiting circuit size. However, the 
parallel nature of self-assembly enables the construction of a large number (~109-1012) of nodes that may be 
linked together by self-assembled conducting nanowires. Self-assembly does not control the placement and 
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orientation of nodes as they are interconnected resulting in the formation of a random network of nodes that 
contains defective nodes and links. Communication with external CMOS circuitry occurs through a metal 
junction (“via”) that overlaps several nodes but interfaces with the network of nodes through a single “anchor 
node”. There may be several via/anchor node pairs in large networks.  

A computing system built from a random network must: a) tolerate node and interconnect defects, b) not rely 
on underlying network structure, c) compose more powerful computational blocks from simple nodes, d) 
minimize communication overheads, and e) achieve performance that is at least comparable to future CMOS 
based systems. Several research projects examined building computing systems with a subset of these goals, 
including self configuration, routing and resiliency in the face of defects and the ability to compose complex 
computational units from simpler blocks, but we face added challenges because of the extremely limited 
computational capabilities available in nodes.  

 The results from this work are a defect tolerant computing system using a random network of nodes that 
achieves performance comparable to future CMOS based systems. To efficiently utilize large numbers (>109-
1012) of nodes we implement a SIMD architecture and focus on data parallel workloads. Our proposed system - 
called the “Self-assembled SIMD Architecture” (SSA) - supports a three operand register-based ISA with 
predicated execution and explicit PE-Shift instructions to move data between PEs and communicate with an 
external controller. We assume that the external controller has access to a conventional memory system.  Each 
self-assembled node is a fully asynchronous circuit and there is no global clock to synchronize data transfers 
between or within nodes. Each node has a 1-bit ALU with a small register file, and nodes are connected to each 
other by single wire links. Each link supports very low bandwidth asynchronous communication that transfers 1 
bit of data per handshake. To support deadlock-free routing, we add support for three virtual channels (1 bit 
each). The random network of nodes is organized at two levels during a configuration phase. First, since a node 
is too small to hold a PE, we group sets of nodes to form a PE. Second, PEs are linked in a logical ring 
providing programmers a simplified system view to reason about inter-PE communication. Configuration, 
initiated from an anchor, maps out defective nodes and connects functional nodes in a broadcast tree. The 
system can be configured in two ways: a) as a monolithic system, all nodes on one logical ring (one “cell”), or 
b) as multiple, independent logical rings (multiple “cells”). For a monolithic system, anchors can be used to 
speed up PE configuration and data input/output by serving as “taps” into the logical ring. The only constraint 
enforced during configuration is that an anchor cannot partition a PE. In case (b), we achieve space partitioning 
by running the configuration algorithm from multiple anchors to create independent cells. Space partitioning is 
a common technique used in highly parallel systems to increase resource utilization by enabling the execution 
of multiple instances of one workload, or running multiple workloads. 

4.7 Data Mining Results 
Data mining is the process of extracting or mining interesting knowledge from large amounts of data stored 

in databases or other information stores. A fundamental and essential problem in data mining is to discover 
frequent patterns or itemsets: given a data base of item transactions, find all itemsets that occur in at least a 
user-specified percentage of the total transactions in the database (i.e., has a specified support level). Frequent 
itemset mining is useful for many data mining capabilities such as discovery of association rules [1], strong 
rules, correlations, sequential rules [2], episodes [12], multi-dimensional patterns, partial periodicity [9], and 
many other important discovery tasks. These data mining capabilities are useful for practical applications such 
as market basket analysis, inferring patterns from web access logs, and network intrusion detection among 
others. 

Frequent itemset mining generates a very large number of patterns which may reduce not only the efficiency 
but also effectiveness of mining, since it generates numerous redundant patterns. Furthermore, users must sift 
through a large number of mined patterns to find useful ones. Closed frequent itemset (CFI) mining [14], mines 
only those frequent itemsets having no proper superset with the same support, which can lead to orders of 
magnitude smaller result set than mining frequent itemsets [15]. CFI mining retains all the information of 
frequent itemset mining, as it is straightforward to generate all the frequent itemsets from the closed frequent 
itemsets. 

We have explored the memory hierarchy performance of a state-of-the-art CFI algorithm—called FPclose1 
[8]—using real world datasets. We used a combination of tools (OProfile [11], VTUNE [16], Simplescalar and 
iostat) to gain insight into FPclose’s memory hierarchy performance for both sparse and dense real world 
datasets on both Pentium III and Pentium 4 systems. The characterization results indicate that cache behavior 
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becomes a critical performance bottleneck as the support level decreases. Simulation experiments show that we 
achieve gains in the IPC (Instructions per cycle) for a system with perfect memory hierarchy, thus the algorithm 
is memory bound. However, an increase in the width of the instruction window has almost no effect on the IPC. 

 One specific function CFI_tree::insert(bool*,…) accounts for up to 69% of the L1 data cache misses, 86% 
of the L2 data cache misses, and 69% of the execution time for moderate to low support levels. This function is 
unique to the closed frequent itemset problem. Symbolic profiling and source code inspection reveal that 
CFI_tree::insert(bool*,…) function incurs most of its cache misses while traversing the nodes of a prefix tree 
(or closed frequent pattern tree) at a specific level (right sibling pointer dereferences). This motivates the 
application of well-known data structure modifications to improve cache performance: 1) padding & aligning, 
and 2) node clustering [4]. Our characterization results also reveal that the average number of nodes accessed 
during the sibling traversal is data dependent. This motivates a final optimization that dynamically increases 
node clustering as more nodes are allocated in a specific level of the prefix tree. 

We evaluated the data structure modifications by measuring execution cycles on Pentium III and Pentium 4 
systems and compared with execution cycles of our base case. Our results show that padding and aligning have 
no significant impact on performance. Node clustering achieves performance gains of up to 79% on Pentium III 
systems and 65% on Pentium 4. Finally, we show that the dynamic allocation technique provides speedups up 
to 81% on Pentium III system and 67% on Pentium 4. The maximum difference in speedup of the best static 
sized node clustering scheme at each data point and the dynamic scheme was 6% on Pentium III and 8% on 
Pentium 4. This difference was in dense datasets, for sparse datasets dynamic scheme performed as well as or 
better than the best static sized node clustering scheme at each data point in many cases for both systems. For 
dense datasets node clustering produces the greatest improvements in performance on both Pentium systems.  
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