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1. Introduction 

1.1 The Problem: Efficient Collection of Aerosols for Rapid Continuous Analysis 

There is a need for instruments that identify airborne infectious agents and other biological 
particles such as allergens and toxins.  Airborne transmission of diseases to humans, other 
animals, and plants is common, and it occurs in places such as hospitals, schools, and 
agricultural facilities.  For many monitoring applications it would be desirable to have 
instruments that can run continuously and provide a rapid response.  Optical detection 
techniques, such as ultraviolet laser-induced fluorescence (UV-LIF) (Pan et al., 2003; Eversole et 
al., 2001), laser induced breakdown spectroscopy (Hybl et al., 2006), and mass spectrometry 
techniques (Murphy et al., 2003) provide a rapid single-particle response, but lack the specificity 
needed for species- or toxin-specific identification.  

For identification of aerosols, biochemical assays such as an antibody (Stopa 2003) or nucleic 
acid assays (Easley et al., 2006) can provide high specificity (Hindson et al., 2005).  However, 
these assays require aqueous solutions and expensive reagents, and often cannot be performed 
quickly in bulk solutions.  Continuous operation of such assays would tend to require significant 
amounts of reagents, can be expensive and can increase the need for operator time.  Microfluidic 
devices (e.g., McClain et al., 2001; Easley et al., 2006) help solve the reagent usage problem by 
drastically reducing the volume of reagents required to perform a bioassay and reducing the time 
required to perform an assay.  However, the problem of efficiently introducing aerosol samples 
into microfluidic devices without wasting both collected samples and liquids remains as a major 
challenge, and is the main focus of this paper. 

1.2 Microfluidic Analysis 

There are large ongoing efforts to develop improved methods for analyzing microorganisms, 
mammalian cells, protein toxins (Kartalov et al., 2006), and other materials in microfluidic 
devices.  On-chip detection of cells labeled with fluorescent dyes or fluorescent-tagged 
antibodies is described by McLain et al., (2001), Dittrich and Schwille (2003), and Sakamoto et 
al., (2005).  An integrated microfluidic genetic analyzer, which accepts whole blood samples and 
does PCR analysis well enough to identify B. anthracis spores in less than 30 minutes in 
asymptomatic mice has been demonstrated (Easley et al., 2006).  Reasons that microfluidic 
systems are replacing many wet-chemistry testing systems is that the volume of reagents 
required and waste generated can be tiny; temperatures can be controlled rapidly, and diffusion 
distances and times can be small.  These characteristics lead to quicker and more efficient assays.   

Whitesides (2006) in his review of microfluidic devices states, “Before . . . samples can be 
analyzed by microfluidic devices, they must be converted to a form that is compatible with the 
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intended analysis, and then introduced into the analytical device.  The procedures required to 
complete these tasks are surprisingly sample–dependent, and not necessarily ‘micro’ in scale.  
He also mentions that the option to introduce the sample as a powder into the microfluidic device 
would be ideal.  Our efforts in this report relate to introducing dilute, airborne powder samples 
efficiently into a microfluidic device. 

1.3 Collection of Particles into Liquid for Analysis 

Collecting particles from air and continuously injecting these particles into a microfluidic device 
with minimal loss of particles and liquid is not a trivial task, especially if one objective is to 
minimize total liquid usage. 

Collecting particles onto a surface or a filter, and then eluting the particles into liquid by washing 
them from the surface or filter and injecting this liquid into a microfluidic device is one 
traditional approach.  However, such an approach may be subject to problems of particles 
remaining attached to the surface or filter; these particles may not be analyzed, or they may 
become resuspended and contaminate later samples.  Also, automating such systems for 
continuous operation and a rapid response may be problematical.  

Samplers which collect airborne particles directly into liquid are typically inertia based. 
Examples are impingers (Crook 1995) and wet cyclones (Birenzvige et al., 1998).  Some 
electrostatic based samplers, for example, the TSI Electrostatic Air Sampler (EAS, Model 3100), 
can collect particles into water (Mainelis et al., 1999).  

None of the methods described above are specific for certain types of particles. Instead they 
collect all aerosols which fall within a certain size range.  Samplers that do collect particles 
directly into liquid use volumes of liquid that are also many times larger than the volumes 
required for analysis in a microfluidic cell.  If one were able to collect specific aerosol particles 
into a volume of liquid comparable with the typical sample volume of a microfluidic cell, one 
would be able to substantially increase the efficiency of microfluidic-based identifier. 

1.4 Selection of Airborne Particles that have Specific Optical Characteristics 

In our previous work (Pan et al., 2003; 2004; Davitt et al., 2006) we have shown that airborne 
particles can be selected based upon their UV-LIF spectra and deflected into an area of about 
7 mm2 without, and about 1 mm2 with a particle aerodynamic localizer (Pan et al., 2004; Frain et 
al., 2006) using an air puffer.  Thus, rather then collecting all the airborne particles present for 
analysis, we can selectively collect the potentially interesting particles.  We have surveyed the 
ambient air in Adelphi, MD (Pinnick et al., 2004).  It was found that about 11 % of ambient 
aerosol particles emit significant fluorescence, and can be grouped into 8 subcategories based on 
their UV-LIF spectra.  This suggests that if one is only interested in bioaerosols falling within 
one of these subcategories, then by using UV-LIF as a triggering signal, one could reduce by at 
least an order of magnitude the number of particles the identification system would have to 
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examine.  For example, out of the 11% of ambient aerosols with a significant UV-LIF signal, 
typically less then 1% of the aerosols at Adelphi, MD had a fluorescence spectrum similar to B. 
subtilis.  This ability to select particles could be especially useful when trying to sample large 
volumes of air, because optical detection systems like our LIF detector are capable of measuring 
fluorescence spectra of many tens of thousands of particles per second (90,000 in our case).  By 
making use of this high throughput through the LIF classifier and the ability to select specific 
individual aerosol particles based on its results, the load on a downstream identification system 
could be significantly reduced, even when the total number of particles screened in air could be 
very large.  In the case of a microfluidic-based identifier, this could allow for reduced flow rates, 
reagent usage, and probability of clogging. 

1.5 Objective: Collect Selected Particles Directly into Input Well of Microfluidic Analyzer 

This reports objective is to describe a way of selectively deflecting airborne particles into a small 
volume of liquid for further analysis by biochemical means, specifically the liquid within the 
input well of a microfluidic cell.  We conducted a proof-of-concept experiment where elastically 
scattered light provided a signal that a particle was present and the particle was deposited into the 
open input well of a microfluidic cell (figure 1).  Fluorescein-labeled antibodies to E. coli present 
in the input well bind to any E. coli cells present in the airborne particles, and the cells are 
counted in the microfluidic flow cytometer based on immunofluorescence.  Elastic light 
scattering instead of fluorescence is used in our proof-of-concept experiment because the system 
is easier to assemble, and allows us to focus on the problem of collection of puffed particles into 
an input well.  For more selectivity in triggering the puffer, other rapid discrimination or 
classification methods such as UV-LIF can be used.  
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Figure 1.  Schematic of setup for proof-of-concept experiment: Dry aerosol particles are generated and 
collimated via an inkjet aerosol generator. Light scattering detects when a particle flows past the 
trigger volume, which then triggers the puffer to deflect the particle into the microfluidic cell. Within 
the microfluidic cell fluorescein-labeled antibodies bind to bacteria within the aerosol particle, and 
fluorescence is counted via laser excitation and a photomultiplier tube. 

The concept instrument that we describe and illustrate here can be thought of as the coupling of 
two flow cytometers.  First, the air-flow cytometer (Shapiro, 2003, page 10) classifies particles in 
air according to an optical signal.  The puffer deflects the particles according to that signal.  The 
deflected particles move on a trajectory such that they impinge on the liquid in the sample-input 
well of the second cytometer.  Then, fluorescein-labeled antibodies in the input well bind to 
particles that have the appropriate antigens, and these fluorescein-labeled particles are counted in 
the liquid-flow cytometer.  The puffer serves as the bridging technology between the two flow 
cytometers which are working in different media (first air, then liquid). 

This experiment demonstrates a key technology required to achieve a continuous rapid-response 
identification system for bioaerosols while minimizing reagent usage.  The experiment suggests 
the possibility of a continuously running, low-reagent-usage identifier for airborne bioparticles 
which: selects the particles in air and deposits them directly into the input well of a microfluidic 
single-particle analyzer, and consequently collects and analyzes only those airborne particles that 
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have laser-induced fluorescence consistent with bioparticles of interest, so that clogging and 
reagent usage can be minimized. 

2. Experimental Methods 

2.1 Detection, Collection, and Analysis Apparatus 

The detection collection and analysis apparatus, as illustrated in figure 1, consists of two main 
parts:  (1) a trigger and puffer system, and (2) a microfluidic flow cytometer.  Also illustrated in 
figure 1 is the ink-jet aerosol generator used for testing the setup. 

2.1.1 Trigger and Puffer System 

Rather than using a fluorescence-cued triggering system (Pan et al., 2004), we chose to use a 
much simpler light scattering-based trigger.  The use of elastic light scattering reduces the 
complexity of the overall system and allows us to focus on how effectively the puffer can deposit 
airborne particles into solution within an open microfluidic well.  Any triggering system can be 
used as long as it is capable of determining rapidly (before the aerosol has travelled more than a 
few millimeters) whether or not a particle is of interest. 

The light scattering-based triggering system consists of a 670 nm diode laser focused onto a spot 
in the particle stream, a lens to collect the scattered light, and a photomultiplier tube to measure 
the scattered light.  Whenever a particle passes through the trigger beam, the transient pulse of 
scattered light at a specific angle Θ and Φ is detected by the photomultiplier, which then triggers 
the puffer. 

The puffer used in this experiment is a new version of our air-based deflector used in our 
previous bioaerosol detection system (Pan et al., 2004).  It is a solenoid-based valve from which 
a very small burst of compressed nitrogen is used to redirect particles in the air into the open 
input well of the microfluidic flow cytometer in response to a trigger signal from the 
photomultiplier tube.  

2.1.2 Microfluidic Flow Cytometer 

An Agilent cell fluorescence LabChip was used as the microfluidic cell for our flow cytometer in 
this experiment.  This LabChip is typically used with the Agilent Bioanalyzer 2100 system.  The 
channels have a cross section of 75 μm x 25 μm.  The buffer flow limits the sample flow to 
about half of the channel width.  

A custom-made epifluorescence microscope was set up around the LabChip for fluorescence 
excitation and detection, as illustrated schematically in figure 1.  In order to see significant 
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contrast when a bacterium, 1-2 μm in diameter and tagged with fluorescent-labeled antibodies, 
passes by in the presence of unbound fluorescent-labeled antibodies, the laser and detector were 
focused using a 60x long-working-distance microscope objective (0.70 numerical aperture) into a 
cylinder of about 20 μm in diameter on one side of the channel.  This relatively small diameter 
region reduces the contribution to the background fluorescence from the unbound antibodies.  If 
a bacterium passes through the channel outside of this detection region, it cannot be detected. 

The 496 nm line of an argon-ion laser was used for the fluorescence.  A CCD camera was used 
for alignment and imaging, while a photomultiplier tube was used for the fluorescence 
measurements.  An oscilloscope provided trigger pulses when the photomultiplier output 
exceeded threshold conditions, and a TTL counter kept track of the number of fluorescence 
events detected. 

For the purposes of this experiment, only one fluid channel of the six available channels on the 
Agilent LabChip was used.  All unused channels were sealed.  The buffer flow was fed with a 
phosphate-buffered saline solution, and the sample input well was initially filled with a solution 
containing fluorescent-labeled antibodies to the bacteria (here, E. coli) in the test particles.  A 
syringe pump was used to apply a constant vacuum flow at the waste outlet of the Labchip.  At 
the flow rate used, the antibody solution was consumed at a rate of about 75 μL/hr, which if run 
continuously would result in less than 2 ml/day being consumed. 

2.2 Test Bacteria and Antibodies  

Heat-killed, lyophyllized E. coli, O157:H7 (KPL, Gaithersburg, MD) was used as the test 
bioaerosol sample.  Fluorescein-labeled antibodies targeted at this strain of E. coli were also 
obtained from KPL. The concentration given in the datasheet (3x109/mL) is used to calculate the 
concentrations in all solutions made.  

2.2.1 Bacterial Aerosol Generation 

An inkjet-aerosol generator (IJAG), made by Edgewood Aerosol Science, was used to produce 
liquid droplets about 50 μm in diameter.  These droplets were air dried by passing them through 
a heated column to form dry aerosol particles.  A nozzle at the end of the drying column then 
collimated the particles to form an aerosol stream (of less than 1 mm diameter). 

Typically, a solution of E. coli with a concentration of 9x1011 cells/L was placed into the 
cartridge of the IJAG and aerosolized, and so within each 50-μm droplet, there were on average 
about 59 E. coli cells.  Thus, each particle deflected was assumed to contain about 59 E. coli 
cells as well as non-bacterial material in the cell suspension that had been lyophylized.   
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2.2.2 Antibodies and No-Wash Fluorescent Antibody Assay for E. coli 

Fluorescein-labeled antibodies to E. coli, O157:H7 were obtained from KPL (Gaithersburg, 
MD).  Because we desired to illustrate our concept for single-aerosol-particle analysis, sorting, 
and deposition into a microfluidic flow cytometer in the simplest manner that is adequate, we 
used an assay in which bacteria are directly deposited into a solution that contains fluorescent-
labeled antibodies that are specific to the bacteria of interest.  No wash steps were used to 
remove the unbound labeled antibodies (discussed in section 4). 

2.3 Validation and Alignment of the Microfluidic Flow Cytometer 

Once the epifluorescence microscope was set up, fluorescent polystyrene microspheres 
suspended in water were deposited into the input well via a micropipette.  Microspheres ranging 
in size from 1 μm to 8 μm were used, and all could be easily detected visually using the CCD 
camera.  The signal level seen by the photomultiplier tube was very high compared with the 
background noise, with a signal-to-noise ratio typically above 10.  

Before each test using the puffer, the alignment of the optics was checked by running 10 μL of a 
dilute fluorescein solution through the microfluidic channel, which allowed the sample flow to 
be visualized under laser illumination with all of the optical filters in place.  Then 40 μL of DI 
water was run through the system to clean out the fluorescein solution before the antibody 
solution was introduced into the microfluidic cell.  The antibody solution was run for at least 5 
minutes to establish the background fluorescence level before any E. coli was introduced, either 
via puffer or micropipette. 

3. Results 

3.1 Use of No-Wash Bacterial Assay in LabChip 

Because our goal is a proof-of-concept experiment for a continuously running identifier, and 
because we are unaware of any commercially available microfluidic flow cytometer that 
performs a wash step to remove unbound antibodies, we first demonstrated that we were able to 
detect E. coli in the LabChip against the background fluorescence of the unbound fluorescent-
labeled antibodies.   

E. coli was mixed with the dilute antibody solution, allowed to incubate for 5 minutes, and then 
introduced into the microfluidic cell.  Signals similar to those from 2-μm fluorescent-doped 
polystyrene microspheres were observed that were above the background fluorescence, which 
was now dominated by the unbound fluorescent-labelled antibodies.  The signal-to-noise ratio 
was lower than that seen with pure fluorescent polystyrene microspheres, because of the 
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fluorescence from unbound antibodies. Example signals detected with the PMT are shown in 
figure 2.   

When B. subtilis was mixed with the same antibody solution, no significant fluorescence signals 
could be seen above the background.  Finally, a mixture of both B. subtilis and E. coli was added 
to the antibody solution, and only certain particles fluoresced when crossing the region 
illuminated by the laser (a backlight was used so that all particles could be seen optically).  

 

 

Figure 2.  (a) Photomultiplier signal from 2 μm fluorescent polystyrene microspheres.  (b) Photomulti plier 
signal from E. coli in a solution of fluorescent antibodies. 
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3.2 Efficiency of Detection of Labeled E. coli Placed Directly in the LabChip 

To determine the detection efficiency of the microfluidic flow cytometer with our setup and E. 
coli, we mixed a solution of E. coli with the solution that contained the fluorescent-labeled 
antibodies.  Then the resulting solution, containing about 3390 E. coli cells, was deposited 
directly into the input well using a micropipette.  The fluorescence events were counted, with all 
other conditions kept the same as when aerosolized bacteria were analyzed.  When the fluid well 
had completely emptied, 263 fluorescence events were counted, which is an efficiency of 7.75%.  

Sakamoto et al., (2005) have done experiments where E. coli cells were counted using the cell 
fluorescence Labchip within the Bioanalyzer 2100 system, and their calibration curves using 
fluorescent microspheres shows that even within the Bioanalyzer 2100 system, one only sees 
fluorescence events for approximately 5% of all fluorescent particles present.  Thus, we feel our 
custom setup compares favourably with the Bioanalyzer 2100 system for which the Labchip was 
designed. 

3.3 Collection and Analysis of Puffed Particles in the Labchip 

In our experiments we typically filled the input well with 40 μL of fluorescent-labeled antibody 
solution, so that the fluid level is slightly above the level of the rim in the input well.  We then 
aerosolized E. coli cells using the methods described in section 2.1.  In our experiments, 
typically each particle generated is a clump of approximately 59 cells.  Typically some set 
number of particles were puffed and then the particle generator and puffer were turned off, 
typically within less then 5 minutes.  The liquid level has not changed significantly during this 
time because the flow rate into the cytometer is small.  Usually, within minutes of the first puffer 
activity, fluorescence events were seen in the channel of the flow cytometer.  We counted 
fluorescence events until the sample well was emptied, which took approximately 35 minutes.  
The control experiment described in section 3.2 is then performed immediately afterwards by 
pipetting the solution directly into the microfluidic well without moving anything, and with no 
cleaning step in between.   

We measured the percentage of puffed bacteria that were detected in the flow cytometer.  Then, 
the ratio of this efficiency of detection in the LabChip of puffed bacteria to the efficiency of 
detection of bacteria in the LabChip (from section 3.2), is the collection efficiency, or percentage 
of puffed particles that were collected in the input well.  Since the control experiment is done 
immediately afterwards, the conditions are as similar as possible, and if any E. coli remain in the 
well this would only overestimate the efficiency calculated in section 3.2 so that the overall 
collection efficiency would be underestimated. 

We found that the collection efficiency depends sensitively on several parameters, such as 
position of puffer relative to the light-scattering detectors, timing of the pulse to the puffer, 
puffer nozzle alignment and distance from well, and pressure of gas.  The sensitivity of the 
collection efficiency to these parameters, and the need to reposition various components in order 
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to refill the input well, etc., resulted in more variation in collection efficiency than might 
otherwise be obtained if fewer realignments were required, as would be the case if we had been 
able to obtain a microfluidic flow cytometer designed for continuous input of liquid into the 
input well.  Here we describe in detail one specific case and calculate the overall efficiency and 
collection efficiency for this case. 

To estimate the collection efficiency, we aerosolized E. coli cells using the methods described in 
section 2.1 where each particle generated is a clump of approximately 59 cells.  After 50 
scattering events (2950 E. coli cells, based on the calculated average), the IJAG was turned off. 
A total of 62 fluorescence events were counted by the time the microfluidic well emptied, to give 
a 2.1% efficiency.  This is a combined collection-detection efficiency. 

The control experiment described in section 3.2 was performed immediately following the 
experiment, yielding a 7.75% efficiency.  Using these two efficiencies we estimate that the 
collection efficiency for puffing the bacteria into the input well is about 2.1 / 7.75, or 27%. That 
is, 27% of the puffed particles were deposited into the input well. 

4. Discussion 

We have demonstrated that bacteria-containing particles can be selected rapidly in air according 
to a single-particle optical signal (in our demonstration, light scattering intensity), and then 
deposited into a microfluidic bioanalyzer (in our demonstration a flow cytometer), and then 
analyzed using biorecognition molecules (in our demonstration, fluorescent-labeled antibodies). 

4.1 No-Wash Assay 

An antibody assay without a wash step avoids both the time and complexity an off-chip wash 
step would entail.  This is important for the design of a rapid bioaerosol identifier, since an off-
chip wash step would increase cost and response time. Stopa (2000) has shown that a fluorescent 
antibody assay (with no wash step) for Bacillus anthracis spores in a flow cytometer has a 
detection limit of approximately one organism per microliter.  While other assays, such as 
sandwich assays, or nucleic-acid based assays typically have even higher specificity for a target, 
Stopa’s results suggests that a no-wash antibody assay may be adequate for some purposes, 
especially if more than one antibody is used for each analyte in the assay. 

Because of advances in on-chip cell- and bead-manipulation technology, the approach of using 
no off-chip wash step does not mean that no wash steps can be used.  For example, even in a 
system no more complex than the LabChip we used, because the fluorescent labelled antibodies 
diffuse faster than the bacteria, once the sample flow meets the buffer flow, the concentration of 
fluorescent-tagged antibodies near the cells should begin to decline. Microfluidic devices can be 
designed to optimize this diffusion away from the cells before the fluorescence is measured.  
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Alternatively, dielectrophoresis (Lagally et al., 2005) may be used to pull the cells from the 
antibody-laden flow into a cleaner buffer flow before measurement.   

4.2 Detection Efficiency 

The goal of the experiment was not to find the optimal assay for identification of bioaerosols, but 
to demonstrate a method to perform an in-solution, biochemical assay on particles that are 
initially dry and airborne, and where this method can be rapid and can require little reagent 
usage.  Thus, we paired a commercially available microfluidic chip with a commercially 
available fluorescent-antibody assay.  If one wishes to develop a bioaerosol identifier, one would 
optimize both the microfluidic cell and the assay to match the target bioaerosol and the expected 
environment.  Such a microfluidic system would probably incorporate features which were not 
on the Labchip we used, such as a continuous feed system with a feedback loop which maintains 
a constant liquid level at the input well.  Such a continuous feed system could strongly reduce the 
need to realign the optics every time additional liquid was added to the input well.  The flow 
channels would be designed to be the optimal size for the size of particles one would like to 
detect, and methods such as those mentioned in section 4.1 for separating unbound antibodies 
may be incorporated to increase the signal-to-noise ratio. 

4.3 Collection Efficiency 

We stress in this experiment that we are demonstrating our ability to collect select particles into a 
microfluidic cell and perform an antibody assay on them.  Since this experiment represents a 
proof-of-concept rather then a thorough exploration of how parameters such as pulse width, 
airspeed, and gap distance affect deposition efficiency into solution, we expect to be able to 
increase the collection efficiency by optimizing these conditions.  

We have also shown that for deposition onto a surface, a regrouper, which is like a funnel that 
refocuses the puff of air carrying the selected particle, can increase the collection efficiency into 
a small area (Frain et al., 2006).  A properly designed system which employs a regrouper should 
increase the collection efficiency of particles into the liquid in an input well of a microfluidic 
analyzer.  However, designing and assembling a system that uses the regrouper well, where the 
end of the regrouper nozzle is close to the liquid surface, will require time and funds, and 
probably only makes sense to do when it is combined with a microfluidic analyzer that is 
designed for a continuous feed of liquid into the input well. All of these optimizations are very 
doable but not trivial or inexpensive. 
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5. Conclusion 

This experiment demonstrates the concept of using an air-flow cytometer to detect and select 
particles in air according to some optical property, and to deflect certain of these particles 
directly into the sample-input well of a microfluidic flow cytometer.  This technique of 
aerodynamically deflecting specific particles into an input well of a microfluidic cell is a 
promising technology for low-reagent-usage bioaerosol analyzers.  Incorporation of a UV-LIF-
spectrum-based discriminator rather than the elastic scattering signal used in the demonstration 
here would provide a way to select for further analysis in the microfluidic device only aerosols 
with LIF spectra similar to particles of interest.  The types of assay which can be performed and 
the types of aerosol which can be identified are only limited by the capabilities of microfluidic 
analysis systems. 
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