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Task 1: Simulating Genetic Engineering 
• Goal: To create datasets for testing our detection methods and to share them with the broader 

scientific community 
• No artificially engineered genome is available in GENBANK  
• Approach: Design computer programs to simulate tampering of genomes 
• We used E. coli (K12 strain) genome as the backbone in our simulations 
• Create data by tampering with the host genome 

– Insertion of foreign gene into the host genome. 
– Replacement of host genes with orthologous genes from foreign species. 

• Varied the difficulty level for detection methods 
– Tampered with genes from species at various distances from E. coli.  

 
Task 2: Comparative Genomics Approach 

• Goal: Compare a target genome with related isolates and determine whether it has been 
engineered.  

• Why Comparative Genomics? 
– We can tell more about a genome by comparing it with related genomes rather than by 

looking solely at the genome alone 
– With advent of large scale sequencing, any target genome is likely to have a sequenced 

relative. 
• More than 480 genomes in GENBANK. 

 
We have developed computational pipeline that compares a target genome with related genomes and 
find regions that have been potentially engineered. Our pipeline compares the target genome with 
related genomes and finds “unique” genes that have no homologs. These “unique genes” can then be 
tested for other criteria like DNA composition to narrow down the list of potential engineered genes. 
 
 



 
 
 
 
 
Task 3: DNA Composition Tests 
Can be generalized to K-mers: 
It has been known since the 1960s that different organisms have different “genome signatures”. So 
engineered DNA will have a different “signature” compared to the signature of host DNA. The most 
common DNA-composition metric is the Kmer metrics, where we measure the frequency of length K 
words in a sequence. The figure shows the dimer metric, but we can generalize it for arbitrary K. 
 
 



 
• Use Hexamer Frequencies. 
• Curse of Dimensionality 

–  Exponential growth of feature space with higher K. 
• Use PCA to deal with the curse of dimensionality 

– First few PCs good for detecting outliers. 
We use hexamer frequencies because it can detect biases due to (i) codon bias (ii) restriction enzymes. 
However, the dimensionality of the data-set increases with the size of K. We deal with this problem by 
using Principal Component Analysis. The first few principal components are good enough to detect 
outliers. 
 
Task 4: Comparative Genomics Pipeline 
 



 
 
In this figure, we show the first principal component of the hexamer frequency data of 1K fragments 
taken from the E. coli genome engineered with B. anthracis genes. The host DNA is shown in red, 
whereas the engineered DNA is shown in red. However this test also detects other anomalous DNA such 
as the ones due to recent Lateral Gene Transfer. 
 
Operon Test 

• Assumption: Adversary inserts a group of contiguous genes or operons [e.g. pathogenic islands]. 
• Test: Only look for “unique genes” that occur in clusters. 
• Caveat: Many toxins can be single genes.  

We have also developed an operon test in which we look for clusters of unique genes. This is because 
many “related genes” like pathogenic islands occurs in clusters in prokaryotes. 
 
Testing 

• Use Simulated Data Sets 



– Insert 20 foreign genes from Bacillus anthracis to Escherichia coli K12 genome. 
• Goal: To filter the list of “candidate engineered genes”. 

To test our methods, we simulated engineering of 20 Bacillus anthracis genes into E. coli K12 genome. 
Then we ran our pipeline through our data-set.  
 
Task 4: Comparative Genomics Pipeline 
 

 
 
 
The results of each step of the pipeline are shown in blue. The initial whole genome has 4263 genes of 
which 20 are “engineered”. After comparing with closely related E. coli genomes, our list was narrowed 
to 197 genes, including all 20 engineered genes. Additional tests like the DNA composition and operon 
test further decreased the number of candidate genes. 
 
Task 5: Detect Pathogenic Islands 



 
• We seek to answer the following question: 

 
   Can we learn functional motifs 
associated with pathogenicity?  
 

 
 
 
 
from Ecker et al., “The Microbial Rosetta Stone Database: A compilation of global and emerging 
infectious microorganisms and bioterrorist threat agents,” BMC Microbiology, 2005 
 This is what we know about the “family tree” of pathogenic bacteria to date. We wished to learn 
signatures of pathogenicity both within and across phyla.  
  
Construction of training set: positive examples 
 



 
 
Our SVM method needs training data to learn signatures of pathogenicity. We accomplish this by 
mining literature annotation for key words associated with nasty genes. Some of our classes are less 
specific (class 1-pathogen) and some are more specific (class 8-haemolysin). 
 
Construction of training set: negative examples 
 
Since the function of many genes is unknown, the best way to be sure of having non-pathogenic genes is 
to take a sampling of random genes from nonpathogenic organisms for negative examples for our 
training set.  
 



 
 
 
Method 
We use support vector machines to learn 8 pathogenic classes of genes, using motifs consisting of very 
short amino acid strings (simple string kernel method).  
 
SVMs learn classes in a high dimensional feature space. The features that we use are simply frequencies 
of very short substrings of amino acids (3-4 aa’s long; including a wildcard character). It’s of 
independent interest that such short motifs have a functional signal.  
 
Proteobacteria 
Here are the results when restricted to Proteobacteria in a 10-fold cross validation study. The “Area 
Under the Curve” statistic measures the tradeoff of the true positive/true negative rate as a single value– 
AUC of 1 is perfect classification and 50 percent is random chance. The p-value statistics represent the 
likelihood of seeing that AUC for that class by chance.  
 



 
 
Results: Leave-phylum-out cross-validation 
 
Here are the same statistics for a “leave phylum out” cross validation. This is a much harder problem, 
because we are trying to learn what toxins in Actinobacteria are from, for example, toxins in 
Proteobacteria. We do surprisingly well, with a couple of exceptions– the classes we do badly with are 
marked with “1” – in most cases the reason is too few examples; the only exception is we are not doing 
well at predicting invasins in Proteobacteria when trained only on bacteria outside the Proteobacteria 
phylum. On closer examination of the data, Proteobacteria contain a set of proteins all homologous to 
one protein labeled “invasion-like” which is completely dissimilar to examples found outside the 
phylum. So that’s why we do so poorly on this class.  
 



 
 
Results: MvirDB 
MvirDB is the database of virulence genes compiled at Lawrence Livermore National Labs. We used it 
as an independent test set for our SVM method; seeing which MvirDB genes that were not part of our 
initial training set showed up as positive examples according to the SVM. Results are good.  
 



 
 
What we get is different from BLAST 
 
It would not be interesting if our SVM was identifying the same set of genes that BLAST would. 
Fortunately, we get a very different set of genes. Thus the SVM method adds value to any method based 
on BLAST and identifies a significant number of positive examples BLAST would miss. 
 

 



 
Results: genome profiling 

• By counting the number of genes predicted to be associated with pathogenicity in the top .15% 
of genomes from unknown organisms, we can score their relative pathogenicity. 

Furthermore, our SVM method, when run against a whole genome, can generate a global score for how 
pathogenic a particular bacterial species or strain is. We look at the top .15% scoring genes in the 
genome, and generate a pathogenicity score to compare globally across genomes.  
 
 
 
 
 
Conclusion 

 
 
Conclusion 

• There are short signatures of pathogenicity that have functional implications 
• These methods are orthogonal to BLAST; produce different results 
• Can help with high-throughput annotation of unknown bacterial genomes  
• Can help with Environmental Sampling 
• A list of currently unannotated genes that our method predicts may have pathogenic function is 

available on request. 
 
Our next task is to use this to find pathogenic islands.  
 
Detect Inserted Foreign DNA 

• Goal: Identify when a string of foreign DNA has been artificially inserted into a host 
 



• Approach: Use methods of unsupervised anomaly detection 
 

• Intuition: Foreign DNA should have anomalous codon bias, compared with host organism 
• Methods 

– Distance from Centroid 
– One-class Support Vector Machines 
– Compression-based Methods 

 
• Results: Unsatisfactory.  Host organisms themselves contain large amounts of ‘anomalous’ DNA 

due to horizontal gene transfer 
 
Detecting Phylogenetic Outliers 
 

• Target: a familiar genome with foreign genes inserted 
 

• Rationale: e.g., insertion of pathogenic genes from anthrax in the genome of a common, easily 
spread bacterium.  Also occurs naturally (LGT), but rarely, so would focus attention on a small 
subset of genes including malicious insertions.   

 
• Traditional approach (e.g., Lerat et al., PLoS Biol., 2003) relies on phylogenetic tree 

construction, which can be done in many different ways, each with its own limitations.   
Our goal is to identify genes whose evolutionary history appears different from the rest of the genes in a 
genome.  This will serve to focus our attention on genes that might have been maliciously inserted from 
another organism, as well as on genes whose history is different due to natural causes (lateral gene 
transfer, or LGT).  Thus, our algorithm may be of independent interest as a complementary way to 
detect LGT.  In conjunction with our predictor for pathogenicity, this method may identify malicious 
engineered sequences.   
  

• Idea:  if a gene is inserted from a foreign organism, its position in the tree will appear to have 
moved significantly. 

• Our approach:  use distance rather than trees to find these outliers    
• In this example, pairwise distances from gene 3 in species E to gene 3 in species A-D will all be 

unusual.  
• Tested on E. coli genome with simulated horizontal gene transfer (swapping genes in from other 

proteobacteria). 
 
Often, LGT is currently detected using tree-based methods.  The problem is that constructing 
phylogenetic trees is slow (not suitable for scanning whole genomes, generally) and sometimes 
incorrect.  We can solve our problem using the distance data used for tree construction, but without 
actually building the trees.  This makes our approach faster and avoids some of the errors that tree 
reconstruction methods can make.   
 
Results 



• Overall sensitivity: 46%.  Specificity:  hard to assess because right answer unknown, but we 
predict a comparable rate of LGT to previous methods.  

• Our accuracy is very high in two crucial cases:    
• Species not too close to E. coli 
• Rapidly-evolving species  
• where tree methods fail 
• 95% sensitivity finding insertions from species with up to 60% sequence identity of the original 

genome. 
 
To test our methods, we created a data set where we swapped genes into E. coli from related organisms 
and attempt to detect them using our distance-based approach.  Our method is strong at detecting 
swapped genes in two crucial cases:  where the swapped sequences are reasonably distant from the 
original ones, and when they are swapped in from species that are rapidly evolving – in which case tree 
construction methods don’t do very well.  Overall, we are able to detect about 46% of the swapped 
genes, while predicting 8-10% of the genome as having non-standard evolution.  (We can’t assess the 
specificity this way, though, because most of these are probably not false-positives; published estimates 
of the rate of LGT in bacterial genomes range up to 15%, though we think that’s a little high, so we’re 
very happy with 8-10% predicted positives.)   

• We succeed especially well when traditional tree-based methods fail.   
 

• Our method is fast enough to be used on entire genomes (unlike tree-based methods). 
 

• Only other genome-wide LGT-detection method (DarkHorse) uses BLAST.  Comparison on  E. 
coli genome (without inserted outliers): 

– Very different results, but some evidence we are right. 
– We predict 27 outliers in E. coli that they missed, including selB, thyA, hscC: literature 

calls these examples of HGT. 
We compare our method to tree-based methods and find that we find complementary things, plus tree 
methods are too slow to use on whole genomes.  The only existing whole-genome method that we’ve 
found (for LGT) is DarkHorse, based on BLAST.  We again find that our results are complementary.  In 
particular, we predict 27 E. coli genes have non-standard evolution that they fail to find.  We haven’t 
manually verified all of these yet, but so far we know that at least three of them have independent 
published evidence for being true examples of LGT.   

• Our distance-based method for detecting inserted genes (and LGT) works well in cases where 
tree- and BLAST- based methods fail. 

 
• Our approach should be used in combination with these other methods to identify potential 

malicious insertions. 
Our approach finds real LGT that other methods miss, and are fast enough to use on whole genomes.  
They should be used in conjunction with predictors for pathogenicity and other LGT approaches to 
identify candidate malicious insertions.   
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