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1 Statement of the problem studied

1.1 Approximation of ideal ambiguity surface
The ambiguity function of a waveform u(t), which is assumed to be a function of time with
unit energy, is defined by

χu(τ, ν) =

∞∫

−∞

u
(
t− τ

2

)
u

(
t +

τ

2

)
e−j2πνt dt.

A radar waveform with ideal range-doppler characteristics would produce an ambiguity
surface that is zero everywhere except the origin. However, no finite energy signal gives
rise to such surface [3]. Waveform synthesis has been an important problem in radar design
since the publication of Woodward’s book [20] , but despite numerous attempts to solve
it, the search for practical solutions to the synthesis problem remains open. The elegant
paper of Wilcox [19], presents a mathematically complete solution (using Hilbert space
technique), provided that the desired ambiguity shape is given in analytical form, which is
not the case in any practical radar applications. In practice, engineers have a general idea of
acceptable shape rather than the formulas describing it, thus making Wilcox’s algorithm not
applicable. Moreover, in many situations, it is not even necessary to have a certain shape for
all the values of time and doppler delays (the region where the ambiguity surface is desired
to be small depends on the particular radar application), and Wilcox’s algorithm does not
treat the situations where only part of the ambiguity surface has to be approximated.

We have adapted Wilcox’s method to the case of specified subregion of R2 and have
shown that this generalization enables us to construct many promising new waveforms with
desired ambiguity profiles in the regions surrounding the main lobe.

The optimization over a subregion of R2 generalizes Wilcox’s approach, which opti-
mizes over all of R2. There are new subtleties that appear with this approach, since we
can seek, for example, to make an ambiguity small over some region, which, if successful,
will push the bulk of the function outside the region where we want it to be small. Obvi-
ously, this is not possible if the region is all of R2, because of the volume property of the
ambiguity function.

We should note, that one of the desired features of radar waveforms is the constant am-
plitude (due to some radar hardware limitations). This greatly complicates the design of
waveform with prescribed ambiguity surface. One of the possibilities that allows the con-
sideration of the waveforms with variable amplitude is to work with a pair of waveforms:
the transmitted signal of constant amplitude and the reference signal of arbitrary amplitude
that is used during the signal processing stage at the receiver. Thus we are interested in
cross-ambiguity function

χu(τ, ν) =

∞∫

−∞

utr

(
t− τ

2

)
uref

(
t +

τ

2

)
e−j2πνt dt,

where utr(t) = u0e
jπw(t) is a transmitted frequency modulated signal and uref(t) =

σ(t)ejπw(t) is a reference signal with varying envelope σ(t).
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We have considered the problem of sidelobe suppression of the cross-ambiguity surface
over the given region of interest. We extended our approach to the case of designing a pair
of transmitted/reference waveforms with desired characteristics.

1.2 Stepped-Frequency Waveforms
For purposes of radar, it is desirable to emit waveforms having wide bandwidth in order
to enhance range resolution. If, for whatever reasons, e.g., hardware limitations, such
emitted signals are not practical, the effect of a wide bandwidth signal can nevertheless in
practice be achieved by the method of stringing together, in a suitable manner, narrow-band
signals which collectively approximate a wideband emitted signal. Such narrowband pulse
sequences are said [11, 15, 18] to comprise a ”synthetic wideband waveform” (specific
variants are also known by the names ”stepped-frequency waveform,” ”frequency jump
burst,” and ”frequency jump train”).

These synthetic wideband waveforms were introduced in the 1960’s [18]. As pointed
out in [15], the S-band Tradex radar (located on the U.S. Army’s Kwajelein Missile Range
facility) implemented waveforms of this type in 1974, and experiments using the Aegis
SPY-1 radar, the Patriot radar, and RSTER have been performed since then.

The hardware required to produce these synthetic wideband waveforms is not particu-
larly expensive. In practical implementations of the above approach, good range resolution
is attained by transmitting a sequence of narrowband pulses (called ”bursts”), with the cen-
ter frequencies of the bursts adjusted so that the string of bursts occupies an interval of the
desired bandwidth, with time intervals between bursts adjusted so that a narrowband radar
receiver can be tuned to receive target echoes from each pulse. Then the received pulses
are appropriately combined in a way that effectively duplicates the result that would be
obtained from a corresponding wide bandwidth pulse (see Figure 1).
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Figure 1: Stepped-frequency LFM pulse train.

It is well-known that the autocorrelation function of a stepped-frequency pulse train
suffers from grating lobes that appear due to the presence of the constant frequency step
∆f . These high spikes essentially reduce the waveform’s resolution capabilities and, hence,
they are undesirable (see figure 2). Recently, publications [8, 12, 13, 15] have discussed
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different approaches leading to either acceptable suppression or complete elimination of
the grating lobes. A new approach to generate nonlinear synthetic wideband waveforms
is formulated in [15]. These waveforms distribute energy nonuniformly over the desired
frequency band (that is, have nonconstant frequency step between consecutive pulses) and
are shown to offer improved performance (i.e., lower range sidelobes, higher range reso-
lution, and/or reduced grating lobes). In [12, 13] grating lobes are reduced by varying the
pulsewidths, thus destroying periodicity. [8] contains an analysis that provides very sim-
ple relationships between the pulse bandwidth B, its time duration tp and the frequency
step ∆f , that allows one to nullify several (or, sometimes, even all) grating lobes of an
LFM pulse train. One of the conclusions that can be drawn from the relationship between
tpB and tp∆f obtained in [8] is that the overlap ratio B/∆f is large for large values of
tpB. Therefore, in order to increase the bandwidth significantly (under the restriction that
the first two grating lobes are nullified), the number of pulses N has to be large, i.e. the
obtained relationship can only be applied to ”Slow Burst” waveforms.
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Figure 2: Stepped-frequency train of LFM pulses. Bottom: the first term |R1| (dashed line) and the
second term |R2| (solid line). Top and Middle: Partial auto-correlation function.

We have developed a modified method for suppressing grating lobes in stepped-frequency
pulse trains which allows ”Quick Burst” (i.e when N is small) waveforms to be considered.
Our modification of the grating lobes suppression problem leads to a significantly different
relationship between tpB and tp∆f than in [8] which allows us to find waveforms with
large tpB, small ratio B/∆f , and small (rather then zero) grating lobes.

Another issue related to a stepped-frequency LFM pulse train is the high sidelobes of
its autocorrelation function appearing in the close vicinity of the main lobe. It is known
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that within the chosen construction of the stepped-frequency waveform with constant time
duration tp, constant bandwidth B, constant step ∆f , and small ratio B/∆f , it is not
possible to suppress these few sidelobes. We have considered non-linear FM pulses as well
as linear FM pulses, in order to suppress the sidelobes near the main lobe as well as the
grating lobes.

2 Summary of the most important results

Approximation of ideal ambiguity surface

1. We have considered a problem of constructing a waveform with globally optimal
ambiguity surface properties in a circular region of an arbitrary size surrounding the
main lobe. We have shown that under some, rather general assumption, Hermite
waveform of certain order is a solution for this problem.

2. We have considered various aspects of our new formulation of the synthesis prob-
lem and have found examples of waveforms with the desired ”clear area” under the
ambiguity surface. In the considered examples, the height of the sidelobe peaks in
substantial neighborhoods of the origin appears to be less than -35dB, whereas the
nearest sidelobes outside of the area of interest attain the level of -15dB.

3. We have extended Wilcox’s classical results to the case of subregions of R2. This
generalization enables us to construct many promising new waveforms with desired
ambiguity profiles in the regions being considered.

4. We have developed algorithms and software that allows numerical simulations needed
in our waveform design work. In, particular, we obtained a method of computing
Hermite waveform of significantly large order. This algorithm is new and have de-
sired features such as robustness and fast convergence.

Figure 3: Partial ambiguity surface of Hermite waveform.
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Figure 4: Partial ambiguity surface with suppressed sidelobes in the circular ring.
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Figure 5: Partial ambiguity surface with suppressed sidelobes in the circular ring over Hermite
basis

Stepped-Frequency Waveforms

5. We have developed an approach, which allows us to suppress grating lobes below a
desired threshold level in the case of appropriately chosen, stepped frequency wave-
forms, i.e., sequences of narrowband pulses that span the desired bandwidth. We
have developed methodology that allows to choose relevant parameters in order to
produce such waveforms with small grating lobes, and give examples of waveforms
with small overlap ratio.

6. We have considered the issue of high sidelobes in the vicinity of the main lobe,
which are inevitable in a train of LFM waveforms, and have show that it is possible
to suppress these, as well as the grating lobes, by means of phase modulation.
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7. We have introduced a multiparametric generalization of a stepped frequency train,
and by exploiting a factorization of the autocorrelation function, will be able to effect
a useful tradeoff between competing properties of the factors by careful choices of
relevant parameters. We have developed an appropriate software and applied our
method to a representative data set.

8. We have considered several designs that allow us to construct a variety of stepped-
frequency waveforms with non-uniform frequency steps producing an autocorrela-
tion function whose sidelobes are suppressed below some predetermined level, and
perform complete analysis of the set of parameter values that provide the desired
sidelobe suppression. Such analysis allows us to perform a systematic search for
stepped-frequency waveforms with desired characteristics.
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