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1 Foreword

The stated goal of the research program in “Relativistic quantum information theory”
was to explore and develop the theory of information into realms that were previously
untouched: the realm of moving and accelerated observers. It might at first sight seem
odd that this step had not yet been taken: after all the special and general theory of
relativity are now respectively a hundred and eighty years old. However, Shannon’s theory
of information was developed by an engineer and not a physicist, and has, by and large,
not enjoyed the attention of physicists until the advent of quantum computation, which
necessitated the extension of Shannon’s theory to the quantum regime. Still, while some
isolated efforts to extend Shannon’s theory to moving and accelerated observers occurred
(see for example the calculation of the capacity of an information transmission channel
including relativistic effects from 1981 [1]), the general subject remained mostly unexplored.
This state of affair began to change when the first papers appeared that examined the
concept of quantum (that is, von Neumann) entropy with respect to moving detectors.
The pioneering work of Peres and students [2, 3] started the quest to understand the
concept of information from the much more general point of view of the relative state of
detectors.

2 Statement of the problem

Many of the novel applications of quantum information require particles in an entangled
state to be shared over long distances, or to be sent from one party to another one in
a different location. This requires a deep understanding of the behavior of entanglement
under any kind of motion to which the physical system is subjected, which can be provided
by a rigorous application of relativistic quantum mechanics. Even in the non-relativistic
case, entanglement has proven to be a delicate property, that can be decreased and even
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destroyed by the uncontrollable interactions of the system with its environment. Therefore,
a clear understanding of entanglement in a relativistic setting might prove crucial to the
viability of many applications of quantum information theory.

Quantum effects also play a role when accelerated observers, or equivalently gravita-
tional effects, come into play. That something interesting must happen to entropies in
non-inertial frames is immediately clear from the Unruh effect [4, 5, 6]. The Unruh effect
is perhaps the most important clue to our understanding of quantum field theory in curved
space time, which is still quite incomplete. Accelerated observers perceive a vacuum quite
different from that apparent to a non-accelerated observer: they find themselves surrounded
by thermal photons of temperature TU = ~a

2πc (the Davies-Unruh temperature), where a is
the observer’s acceleration, and c is the speed of light. If we were to calculate the entropy
of a particle in the inertial vs. the non-inertial frame, the absence or presence of the Unruh
radiation implies that they would be different. In other words, standard thermodynamic
or von Neumann entropies do not transform covariantly under general co-ordinate trans-
formations, that is, they are not scalars. A consistent analysis of quantum information in
accelerated observes and curved space time should allow us to resolve paradoxes that have
plagued physics for over thirty years.

3 Summary of the most important results

The step we took towards the goal of a fully relativistic theory of quantum information
under the present grant built on earlier work by our group, where we studied the entan-
glement of two massive spin-1/2 particles under Lorentz boosts [7]. Under this grant,
we began by applying this theory to massless spin-1 particles, that is, photons, because
these are easier to manipulate, and are more likely to be used in a quantum communi-
cation setting [8]. We found the transformation law for helicity states and showed that,
while that law is frequency independent, a Lorentz transformation on a momentum-helicity
eigenstate produces a momentum-dependent phase. This phase leads to changes in the re-
duced polarization density matrix, such that entanglement is either decreased or increased,
depending on the boost direction, the rapidity, and the spread of the beam. Boosting
a detector–even at an angle–towards the beams increases this entanglement because the
momentum distribution is shrunk by the boost. The type of entangled beams that we
have investigated are idealizations of realistic states that can be created using parametric
down-conversion. In principle, therefore, the effects discussed here should become relevant
as soon as linear-optics based quantum technology is created that is placed on systems
that move with respect to a detector (or when the detector moves with respect to such a
system).

After this work, we set our eyes on understanding the problem of classical and quan-
tum information in curved space time, that is, an extension of the concepts of entropy
and information towards general relativity. Historically, there appeared to be an enormous
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need for such an analysis, as it was generally believed that information is destroyed by
black holes [9], in a process that cannot be accounted for with our known physical laws
(because probability would not be conserved in such a process). From our point of view,
this conclusion had to be based on an erroneous understanding of information in curved
space, and we set out to understand the information transmission capacity of a black hole
channel, by studying how elementary particles that were used to encode information fared
when being absorbed by a black hole. What we found was nothing short of astonishing:
even though the elementary particles (fermions or bosons) indeed disappear forever behind
the event horizon, the information does not disappear with it. Rather, an age-old physical
process, namely the stimulated emission of radiation [10], ensures that the information is
stripped from the particles and remains outside of the event horizon before the particles
are absorbed [11]. A plot of the capacity χ of the quantum black hole channel to transmit
classical information (Fig. 1) reveals how this channel is just an ordinary noisy quantum
channel, with the noise provided by the famous Hawking radiation. Thus, we show that
while the information that is incident on the black hole does not reappear in Hawking
radiation–as this radiation is just noise–it does reappear in the form of stimulated radia-
tion. This should have been clear from the outset: Einstein taught us that black bodies
absorb radiation, and emit stimulated radiation in response to the absorption as well as
spontaneously. And it is known that black holes are in fact black bodies [12].

We subsequently analyzed this problem from the point of view of quantum cloning,
because the process of stimulated emission (which was ignored by Hawking and almost all
of the authors after) appears to make copies of the quantum information outside of the
event horizon before absorption [13]. However, it turns out that these are only approximate
copies, because the process of spontaneous emission of radiation is unavoidable. This
spontaneous emission was not ignored by Hawking: in fact it is just what is known as
Hawking radiation. We were able to calculate the fidelity of cloning of one quantum state
to M approximate clones: F1→M , for black holes with arbitrary reflectivity. For perfectly
reflecting black holes (mirrors), the cloning fidelity is that of th optimal cloning machine,
whereas the cloning fidleity tends toward the level achievable by optimal state estimation
in the limit of perfectly absorbing black holes. Intermediate cases are shown in Fig. 2.

Even though these developments should have galvanized the community of black hole
physicists, the opposite happened. The referees of these papers, which we submitted to
Physical Review Letters (and the first one later also to Nature Physics), were incredulous.
Even though they could not point to any mistakes in the arguments or calculations, they
simply stated that the solution to the black hole problem could not be so easy. However,
none of the referees turned out to be an expert in both quantum gravity and quantum
information at the same time, by their own admission. After a particularly vitriolic report
by a senior editor of Physical Review that revealed open hostility and contempt to the
authors that “do not have a track record in quantum gravity”, we decided to abandon our
efforts to get these papers published for the time being, and took an alternative approach,
namely to demonstrate that the stimulated emission effect that lies behind the solution to
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Figure 1: Capacity of the black hole channel to transmit classical information, as a function
of the ratio of the frequency of the radiation ω and the temperature of the black hole T ,
for black holes with three different absorption probabilities: Γ0 = 1 refers to a black hole
with perfect absorption, while Γ0 < 1 refers to black holes that are a little gray. Such gray
holes have a higher channel capacity. But the capacity is non-zero throughout, showing
that information is not lost in black hole evaporation.

2 4 6 8 10
M

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
i

d
e

l
i

t
y Optimal cloning

Ω�T�4.0

�0�1

Optimal state estimation

�0�0.95

Figure 2: Cloning fidelity F1→M of the quantum black hole as a function of the number
of copies M , for different values of the quantum absorption probability Γ0 and a fixed
ω/T = 4.
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the black hole information paradox also occurs in the absence of gravity, for the case of
accelerated observers. Our thinking was that if you could show that the effect exists also
in flat space time, it would be so much easier for the community to accept the effect, as ac-
celerated observers are usually seen as dual to the curved-space application. A manuscript
outlining this approach is in development but has not yet been submitted [14]. We have
also another unfinished manuscript that summarizes the physics of information as a theory
of the relative state of classical and quantum detectors, that we plan to submit to Reports
on Progress in Physics when time allows.

Very recently, we started a research program to understand the physics of consecutive
quantum measurements from a general point of view, because it is obvious that a covariant
description of quantum measurement cannot use a time variable to determine the order
of quantum measurements on a physical system. Instead, so-called entropic chains can be
used that reflect the causal relationship between detectors, and that reproduce all known
quantum results without reference to a time variable. This work is not yet completed, but
a preliminary manuscript is available [15].

In summary, we believe that we have made considerable strides towards a fully rela-
tivistic theory of classical and quantum information, but that more research is necessary.
We hope that additional funding in the future will allow us to finish the work we started.
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