

Incorporating Security Quality

Requirements Engineering (SQUARE)

into Standard Life-Cycle Models

Nancy R. Mead

Venkatesh Viswanathan

Deepa Padmanabhan

Anusha Raveendran

May 2008

TECHNICAL NOTE

CMU/SEI-2008-TN-006

CERT Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

This work is sponsored by Carnegie Mellon CyLab.

Copyright 2008 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions

and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for

external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site

(http://www.sei.cmu.edu/publications/pubweb.html).

i | CMU/SEI-2008-TN-006

Table of Contents

Abstract vii

1 Introduction 1
1.1 SQUARE in a Nutshell 1

2 Life-Cycle Model: Waterfall 4
2.1 Waterfall with SQUARE 5

3 Life-Cycle Model: Spiral 7
3.1 Concept of Operation Cycle 8
3.2 Requirements Gathering Cycle 8
3.3 Spiral with SQUARE 8

3.3.1 Concept of Operation Cycle 8
3.3.2 Requirements Specification Cycle 9

4 Life-Cycle Model: Rational Unified Process 11
4.1 Rational Unified Process with SQUARE 12

4.1.1 Inception Phase 12
4.1.2 Elaboration Phase 14

5 Agile Methodologies 16
5.1 Agile Methodologies in Use 17

5.1.1 DSDM Wins 17

6 Life-Cycle Model: DSDM 18
6.1 DSDM with SQUARE 19

6.1.1 Business Study 19
6.1.2 Function Model Iteration 20

7 Conclusion 21

References 23

ii | CMU/SEI-2008-TN-006

iii | CMU/SEI-2008-TN-006

List of Figures

Figure 1: Waterfall Model 5

Figure 2: Waterfall Model with SQUARE 6

Figure 3: Spiral Model 7

Figure 4: Spiral with SQUARE 10

iv | CMU/SEI-2008-TN-006

v | CMU/SEI-2008-TN-006

List of Tables

Table 1: SQUARE Steps 2

Table 2: Misuse Case Template 13

Table 3: Categorization of Requirements 14

Table 4: Summary of RUP with SQUARE 15

vi | CMU/SEI-2008-TN-006

vii | CMU/SEI-2008-TN-006

Abstract

SQUARE (Security Quality Requirements Engineering) is a method for eliciting and prioritizing

security requirements in software development projects. This report describes how SQUARE can

be incorporated in standard life-cycle models for security-critical projects. Life-cycle models and

process methods considered for the report are the waterfall model, Rational Unified Process, the

spiral model, and Dynamic Systems Development Method (an agile method).

This report is for information technology managers and security professionals, management per-

sonnel with technical and information security knowledge, and any personnel who manage securi-

ty-critical projects that follow standard life-cycle models.

viii | CMU/SEI-2008-TN-006

1 | CMU/SEI-2008-TN-006

1 Introduction

It is well recognized in the software industry that requirements engineering is critical to the suc-

cess of any major development project. Security requirements are often identified during the sys-

tem life cycle. However, the requirements tend to be general mechanisms such as password pro-

tection, firewalls, and virus detection tools. Often the security requirements are developed

independently of the rest of the requirements engineering activity and hence are not integrated

into the mainstream of the requirements activities. As a result, security requirements that are spe-

cific to the system and that provide for protection of essential services and assets are often neg-

lected. The requirements elicitation and analysis that is needed to get a better set of security re-

quirements seldom takes place.

The CERT Program at the Carnegie Mellon
®
 Software Engineering Institute has developed a me-

thodology to help organizations build security into the early stages of the production life cycle.

The Security Quality Requirements Engineering (SQUARE) methodology consists of nine steps

that generate a final deliverable of categorized and prioritized security requirements. Although the

SQUARE methodology could likely be generalized to any large-scale design project, it was de-

signed for use with information technology systems.

The SQUARE process involves the interaction of a team of requirements engineers and the stake-

holders of an IT project. The requirements engineering team can be thought of as external consul-

tants, though often the team is composed of one or more internal developers of the project. When

SQUARE is applied, the stakeholders can expect it to result in the identification, documentation,

and inspection of relevant security requirements for the system or software that is being devel-

oped. SQUARE may be more suited to a system under development or one undergoing major

modification than one that has already been fielded, although it has been used both ways.

Software life-cycle models describe phases of the software cycle and the order of execution of

those phases. Many models are being adopted by software companies, but most of them have sim-

ilar patterns. Typically each phase produces deliverables required by the next phase in the life

cycle. Requirements are translated into design. Code is produced during the implementation phase

and is driven by the design. Code is finally tested against requirements to ensure quality. This

report focuses on incorporating SQUARE with standard life-cycle models, as SQUARE can be

more effective when it fits into an organization’s existing development process. The most com-

monly adopted life-cycle models and process methodologies, namely, the waterfall model, Ra-

tional Unified Process (iterative and incremental model), spiral model, and Dynamic Systems De-

velopment Method (agile methodology—iterative and incremental model) are considered and

explained in detail.

1.1 SQUARE IN A NUTSHELL

The SQUARE methodology begins with the requirements engineering team and project stake-

holders agreeing on technical definitions that serve as a baseline for all future communication.

2 | CMU/SEI-2008-TN-006

Next, business and security goals are outlined. Third, artifacts and documentation are created,

which are necessary for a full understanding of the relevant system. A structured risk assessment

determines the likelihood and impact of possible threats to the system. Following this work, the

requirements engineering team determines the best method for eliciting initial security require-

ments from stakeholders, which is dependent on several factors, including the stakeholders in-

volved, the expertise of the requirements engineering team, and the size and complexity of the

project. Once a method has been established, the participants rely on artifacts and risk assessment

results to elicit an initial set of security requirements. Two subsequent stages are spent categoriz-

ing and prioritizing these requirements for management’s use in making tradeoff decisions. Final-

ly, an inspection stage is included to ensure the consistency and accuracy of the security require-

ments that have been generated.

Table 1 summarizes the steps in the SQUARE process. SQUARE is described in detail in Security

Quality Requirements Engineering (SQUARE) Methodology [1].

Table 1: SQUARE Steps

Step 1: Agree on definitions

Input: Candidate definitions from IEEE and other standards

Technique: Structured interviews, focus group

Participant: Stakeholders, requirements team

Output: Agreed-to definitions

Step 2: Identify security goals

Input: Definitions, candidate goals, business drivers, policies and procedures, examples

Technique: Facilitated work session, surveys, interviews

Participant: Stakeholders, requirements engineer

Output: Goals

Step 3: Develop artifacts to support security requirements definition

Input: Potential artifacts (e.g., scenarios, misuse cases, templates, forms)

Technique: Work session

Participant: Requirements engineer

Output: Needed artifacts: scenarios, misuse cases, models, templates, forms

Step 4: Perform risk assessment

Input: Misuse cases, scenarios, security

Technique: Risk assessment method, analysis of anticipated risk against organizational risk tolerance, including

threat analysis

Participant: Requirements engineer, risk expert, stakeholders

Output: Risk assessment results

Step 5: Select elicitation techniques

Input: Goals, definitions, candidate techniques, expertise of stakeholders, organizational style, culture, level of

security needed, cost/benefit analysis, etc.

Technique: Work session

Participant: Requirements engineer

Output: Selected elicitation techniques

3 | CMU/SEI-2008-TN-006

Step 6: Elicit security requirements

Input: Artifacts, risk assessment results, selected techniques

Technique: Joint Application Development (JAD), interviews, surveys, model-based analysis, check-

lists, lists of reusable requirements types, document reviews

Participant: Stakeholders facilitated by requirements engineer

Output: Initial cut at security requirements

Step 7: Categorize requirements as to level (system, software, etc.) and whether they are re-

quirements or other kinds of constraints

Input: Initial requirements, architecture

Technique: Work session using a standard set of categories

Participant: Requirements engineer, other specialists as needed

Output: Categorized requirements

Step 8: Prioritize requirements

Input: Categorized requirements and risk assessment results

Technique: Prioritization methods such as Triage, Win-Win

Participant: Stakeholders facilitated by requirements engineer

Output: Prioritized requirements

Step 9: Requirements inspection

Input: Prioritized requirements, candidate formal inspection technique

Technique: Inspection method such as Fagan, peer reviews

Participant: Inspection team

Output: Initial selected requirements, documentation of decision making process and rationale

4 | CMU/SEI-2008-TN-006

2 Life-Cycle Model: Waterfall

The first process model to be considered is the waterfall approach. It was proposed by Royce in

1970 and is still widely followed in software engineering. The waterfall model is a sequential

software development model that divides the process of software development into these phases:

1. Requirements Analysis and Specification

In this phase, the problem is specified along with the goals and constraints. The output of

this phase is the requirements specification document containing the necessary requirements

and their goals and constraints.

2. Software Design

The system specifications are translated into a software representation. The system architec-

ture is defined, along with the detailed design of the product to be developed. The hardware

requirements are also determined at this stage. By the end of this stage, there should be a

clear relationship between the hardware, software, and the associated interfaces. The output

of this phase is the software design document.

3. Implementation and Unit Testing

The software design is translated into the software domain. The module is unit tested.

4. Integration and System Testing

All the program units are integrated and tested to ensure that the system completely satisfies

the software requirements. After this stage the software is delivered.

5. Operation and Maintenance

In this phase the software is updated to meet the changing customer needs. The overall effi-

ciency of the product is enhanced by correcting errors that were not detected in the testing

phase.

These phases are cascaded as shown in Figure 1. The second phase is started only when the de-

fined set of goals are achieved for the first phase; hence the name ―waterfall model.‖

From the figure, one can see that feedback loops allow for corrections to be incorporated into the

model. For instance, any problem or update in the design phase requires a revisit to the specifica-

tion phase. When changes are made at any phase, the relevant documentation should be updated

to reflect that change.

The waterfall model, being a disciplined approach and documentation-driven method, has been

criticized. There is a high probability that the client is not aware of all the requirements up front.

The client might require a prototype with which to explicate exactly what is required for the

project. In waterfall, however, transition to the next phase occurs only when the previous phase is

completed, so the client might see the product only at the end. The notion of iterative develop-

ment and prototyping is not followed in this model.

5 | CMU/SEI-2008-TN-006

Figure 1: Waterfall Model

2.1 WATERFALL WITH SQUARE

Since waterfall is a sequential model, incorporating SQUARE into it is straightforward. All nine

steps of SQUARE fall under the requirements analysis and specification phase. The software re-

quirements specification (SRS) should accommodate the outcome of the first eight SQUARE

steps. The SRS must clearly specify the security definitions agreed on (Step 1). It is necessary to

document security goals (Step 2) along with the project goals and constraints. Develop artifacts

(Step 3) such as misuse cases and scenarios to support security requirements definition. Risk as-

sessment (Step 4) is not prescribed in the waterfall model, so the fourth step of SQUARE is an

addition to the model. However, risk assessment can be restricted to security-related threats. Once

the elicitation technique (Step 5) is identified, elicit (Step 6) and document the security require-

ments along with the functional requirements. Categorize the security requirements (Step 7) and

prioritize them (Step 8) along with documented functional requirements. (For clarity, it is prefera-

ble to separate security requirements from functional requirements.) Finally, requirements inspec-

tion (Step 9) is carried out to ensure completeness of all steps of SQUARE. This is an exit crite-

rion for the phase, and only when it is satisfied is the next step carried out. Any update in the

design phase may result in revisiting the requirements analysis and specification phase.

Figure 2 summarizes the use of the waterfall model with SQUARE.

Requirements Analysis

and Specification

Software Design

Implementation and

Unit Testing

Integration and System

Testing

Maintenance

Product Deliverable

6 | CMU/SEI-2008-TN-006

Figure 2: Waterfall Model with SQUARE

Requirements

Inspection (Includes

SQUARE Step 9)

Requirements Analysis and

Specification

- First 8 steps of SQUARE

Software Design

Implementation and

Unit Testing

Integration and System

Testing

Maintenance

7 | CMU/SEI-2008-TN-006

3 Life-Cycle Model: Spiral

The spiral model, as depicted in Figure 3, combines the iterative nature of prototyping (a rework

scheduling strategy in which time is set aside to revise and improve parts of the system [2]) with

the controlled and systematic aspects of the waterfall model [3]. Software is therefore developed

in incremental releases, which could range from paper prototypes in the initial phases to more

complex versions of the product towards the end of the project. The spiral model helps to identify

and achieve quality objectives during development.

Figure 3: Spiral Model

The spiral model consists of four phases of development: planning, risk analysis, engineering, and

evaluation. Each cycle of the spiral typically begins with identification of objectives, alternatives,

and constraints. This is followed by identifying areas of uncertainty that are sources of project

risks and evaluating and resolving them. Prototypes are generated as a means of reducing risks.

8 | CMU/SEI-2008-TN-006

Next, the appropriate model is chosen for the next phase of development. Finally, the project is

reviewed and plans are drawn for the next round of the spiral.

3.1 CONCEPT OF OPERATION CYCLE

This cycle is to establish the product line approach that the organization wishes to take. During

this spiral, the organization focuses on determining the organization’s project scope and objec-

tives, operational concept, environmental parameters and assumptions, life-cycle responsibilities,

etc. Very large or complex software projects will frequently precede the concept of operation

round of the spiral with one or more smaller rounds to establish feasibility and to reduce the range

of alternative solutions quickly and inexpensively [4].

3.2 REQUIREMENTS GATHERING CYCLE

Project requirements are gathered during the planning phase. Requirements are validated by gene-

rating prototypes that are reviewed. The review feedback of the prototype is used to revise the

requirements, and modified prototypes are generated and again presented for second review. The

process of obtaining feedback and producing modified prototypes continues until the require-

ments, scope, and related risks are clearly stated and specified. From this point forward, the phas-

es of coding, testing, and implementing are not fundamentally different from the waterfall ap-

proach. The scope of the requirements gathering using the spiral approach generally varies

depending on the clarity of the requirements elicited. Multiple cycles may be involved while eli-

citing requirements, which may extend beyond the time allotted for completion. The spiral model

gives more emphasis to risk analysis. In the risk analysis phase, a process is undertaken to identify

risk and alternate solutions. When a risk is identified, a prototype is generated to evaluate and

handle the risk.

3.3 SPIRAL WITH SQUARE

Incorporating SQUARE with the spiral model involves identifying the cycles of the spiral model

where requirements are being handled and then appropriately fitting the various steps of

SQUARE into it to identify security requirements early during the life cycle. The number of

cycles is determined based on the project size and need. The cycles or spirals where the steps of

SQUARE should be carried out are

 concept of operation

 requirements specification

3.3.1 Concept of Operation Cycle

During this cycle, as the feasibility of the project is studied, certain initial steps of SQUARE are

also carried out. While determining the project objectives, alternatives, and constraints during this

cycle, the requirements team presents the customers with a set of definitions of security terms to

discuss and reach agreement on. This facilitates common understanding between the customer and

the requirements team about security needs. Once definitions are agreed on, the security goals for

the project are identified and documented. Facilitated work sessions, surveys, or interviews may

9 | CMU/SEI-2008-TN-006

be used to identify the goals, as suggested by the SQUARE methodology. The first two steps are

carried out during the first phase (i.e., when the objectives are determined) of the concept of oper-

ation cycle.

During the risk analysis phase of the concept of operation cycle, SQUARE Steps 3 and 4 are car-

ried out. The risk analysis phase of spiral emphasizes identifying, evaluating, and resolving risks.

Prototypes are generally generated as a method to resolve these risks. Step 4 in SQUARE pre-

scribes this. Before performing this step, artifacts that support the security requirements definition

are generated. The output of Step 3 of SQUARE may be scenarios, misuse cases, models, etc.

These artifacts act as input for assessing the risks, which is done by a requirements engineer, a

risk expert, and the stakeholders.

Once the risks are assessed, the security requirements elicitation technique is selected. This cor-

responds to Step 5 of SQUARE. This step is carried out during the phase where plans for the next

cycle are identified. Elicitation techniques followed for the project may not be suitable for elicit-

ing security requirements. Techniques provided in SQUARE should be followed.

At this point, the concept of operation cycle and SQUARE Steps 1 through 5 are completed. De-

pending on the complexity of the project, the cycle may be repeated, along with some or all of the

SQUARE steps.

3.3.2 Requirements Specification Cycle

Steps 6 through 9 of SQUARE are carried out during this cycle of the spiral model. Functional

and other non-functional requirements are elicited for the project, and security requirements are

gathered using the technique identified in Step 5. This generates an initial set of requirements, the

input for which is the risk assessment results.

Next, the collected requirements are categorized as to level (software, system, etc.) and whether

they are real requirements or some other kind of constraint. Work sessions are carried out for this

step. At the end of this step, a categorized set of requirements is obtained. Step 7 is carried out

during the verification phase of the spiral cycle.

Upon categorizing the requirements, priorities are generated. Step 8 of SQUARE suggests priori-

tizing the requirements using methods such as Triage and Win-Win. This step is also carried out

during the phase where the next level product is developed and verified. The step generates a pri-

oritized requirements list.

To mark the completion of each cycle in spiral, reviews are carried out, as marked on the x axis of

Figure 4. Step 9 of SQUARE suggests requirements inspection, which is carried out by the in-

spection team through inspection methods such as Fagan and peer reviews. This step provides

initial selected requirements.

Multiple requirements specification cycles may be carried out until clear understanding of the

requirements is achieved and the specification is completely documented. Feedback received at

the end of review determines whether another requirements cycle would be required.

10 | CMU/SEI-2008-TN-006

Figure 4: Spiral with SQUARE

11 | CMU/SEI-2008-TN-006

4 Life-Cycle Model: Rational Unified Process

This section deals with Rational Unified Process, a framework for software development. The

best practices of RUP, its phases of development, and outcomes of the phases that are necessary

for incorporating SQUARE are described.

RUP is a generic process framework that prescribes the following best practices of software engi-

neering [5, 6]:

 Develop software iteratively.

 Manage requirements.

 Use component-based architectures.

 Visually model software.

 Verify software quality.

 Control changes to software.

Rational Unified Process supports risk-driven development [7]. It advocates developing the software

iteratively to mitigate high risks in each stage and provides for frequent releases and continuous in-

volvement of the end user. RUP prescribes ways to elicit, analyze, and manage requirements. It sup-

ports the use of the Unified Modeling Language (UML) as a means for communicating require-

ments, architecture, and design. Quality assurance is integrated into the process.

Rational Unified Process divides the development cycle into four consecutive phases [6]:

 Inception phase

 Elaboration phase

 Construction phase

 Transition phase

The Inception phase primarily involves identification of a business case. A basic use case model,

project plan, initial risk assessment, and project description in terms of core project requirements,

constraints, and key features are also generated. In the Elaboration phase, the architecture of the

project is identified. The risks and requirements identified in the Inception phase are revised and

prioritized in this phase. The Construction phase involves development of the designed compo-

nents. In the Transition phase, the product has moved to the end user. This phase includes end

user training and beta testing of the system to validate it against the end users’ expectations. Dis-

cussion of the Construction and Transition phases is beyond the scope of this paper, as our focus

is on requirements engineering. Hence discussion is restricted to outcomes of the Inception and

Elaboration phases [6].

The outcome of the Inception phase is

 a vision document: a general vision of the core project’s requirements, key features, and

main constraints

12 | CMU/SEI-2008-TN-006

 an initial use case model (10%-20% complete)

 an initial project glossary (may optionally be partially expressed as a domain model)

 an initial business case, which includes business context, success criteria (revenue projec-

tion, market recognition, and so on), and financial forecast

 an initial risk assessment

 a project plan, showing phases and iterations

 a business model, if necessary

 one or several prototypes

The outcome of the Elaboration phase is

 a use case model (at least 80% complete) — all use cases and actors have been identified,

and most use case descriptions have been developed

 supplementary requirements capturing the non-functional requirements and any requirements

that are not associated with a specific use case

 a software architecture description

 an executable architectural prototype

 a revised risk list and a revised business case

 a development plan for the overall project, including the coarse-grained project plan, show-

ing iterations and evaluation criteria for each iteration

 an updated development case specifying the process to be used

 a preliminary user manual (optional)

4.1 RATIONAL UNIFIED PROCESS WITH SQUARE

Rational Unified Process captures non-functional requirements as a supplementary specification

during the Elaboration phase. A project for which security is critical requires more details to be

captured early in the life cycle, such as during RUP’s Inception phase, to successfully address

security concerns. This section describes how SQUARE can be used in RUP’s Inception and Ela-

boration phases to develop security requirements.

4.1.1 Inception Phase

The business case of the system and the scope of the project are decided during the Inception

phase. The external interfaces, nature of interaction, success criteria, risk assessment, and phase

plan should be identified to accomplish the business case. Prior to capturing the significant inte-

ractions, the security definitions best suited for the organization should be identified and agreed

on. After agreement on the definitions is reached, security goals are identified, along with the

high-level project goals to be achieved for the successful completion of the project. Without over-

all security goals for the project, it is impossible to identify the priority and relevance of any secu-

rity requirements that are generated.

13 | CMU/SEI-2008-TN-006

Artifacts necessary for a full understanding of the relevant system are developed, such as the

following:

 system architecture diagrams

 use case scenarios/diagrams

 misuse case scenarios/diagrams

 attack trees

 standardized templates and forms

One of the main aspects of RUP is that it is risk driven and risk is identified in every phase.

SQUARE also emphasizes identification of risks pertaining to security. The purpose of this step in

the SQUARE process is to identify the vulnerabilities and threats to the system, the likelihood that

the threats will materialize as real attacks, and any potential consequences of such attacks. After

the threats are identified by the risk assessment method, they must be classified according to like-

lihood. This aids in prioritizing the security requirements that are generated at a later stage. A tra-

ceability matrix can also be developed indicating a clear mapping between threats and security

requirements. This mapping might result in identifying additional security requirements.

The next step is to elicit requirements. The interaction of the entities with the system are captured

and modeled by the requirements team. One of the best practices suggested by RUP is to identify

requirements using use cases, as is obvious from the fact that RUP recommends using UML for

communicating requirements. The external interfaces interacting with the system are identified and

the functional use case is established. Also, an appropriate elicitation technique is chosen and securi-

ty requirements are gathered in terms of misuse cases that support the goals and security definitions

already collected. The details that can be captured in misuse cases are shown in Table 2.

Table 2: Misuse Case Template

Misuse case ID

Name

Priority Low or Medium or High

Scope

Development Environment

Mis-actors:

Access Right Levels: Low-Level System Users or/and

Medium-Level System Users or/and

High-Level System Users or/and

Sys Admin or/and

Other Network User

Point of Entry:

Security Attributes Affected: Confidentiality or/and

Integrity or/and

Availability

Description:

Sophistication: Low or Medium or High

Pre-conditions:

14 | CMU/SEI-2008-TN-006

Assumptions:

Post-conditions:

Potential Mis-actor Profiles:

Stakeholders and Threats:

Related Use Cases:

Related Threats:

Architectural Recommendation:

Outcomes

Along with the outcomes suggested by the Inception phase of RUP, SQUARE results in the fol-

lowing outcomes:

 agreement on definitions

 security goals

 initial risk assessment, including security risk

 initial use case model, including security misuse cases (20–30% complete)

The review process of the first milestone in RUP (life-cycle objective) should include these outcomes.

4.1.2 Elaboration Phase

Most of the security requirements should be incorporated into the misuse case model and de-

scribed in this phase. The security requirements are refined and categorized based on level (soft-

ware, system, etc.). The purpose of this step is to allow the requirements engineer and stakehold-

ers to classify the requirements as essential, non-essential, system level, software level, or as

architectural constraints.

At a minimum, the requirements engineering team can provide to the stakeholders a matrix as

shown in Table 3 [1].

Table 3: Categorization of Requirements

 System

Level

Software

Level

Architectural

Constraint

Essential

Non-essential

The risk list is revisited and revised and assessed again. The security requirements are then priori-

tized and validated with the stakeholders, along with the other requirements. These requirements

act as an important input when making architecture decisions, hence the security requirements

have to be categorized, prioritized, and validated before deciding on the architecture. Other non-

functional requirements are captured as usual in a supplementary specification document. The

elaboration phase activities ensure that the architecture, requirements, and project plans are stable

enough and risks are sufficiently mitigated, which will ultimately help to determine the cost and

schedule for the completion of development.

15 | CMU/SEI-2008-TN-006

Outcomes

Along with the outcomes suggested by the Elaboration phase of RUP, SQUARE results in the

following outcomes:

 use case model (functional requirements + security requirements described in misuse cases,

80% complete)

 revised risk list

 categorized and prioritized security requirements

The review process of the second milestone in RUP (life-cycle architecture) should include these

outcomes.

Table 4 summarizes integration of the SQUARE methodology into RUP.

Table 4: Summary of RUP with SQUARE

RUP Phase SQUARE Steps

Inception Agree on definitions (Step 1)

The requirements engineering team and project stakeholders agree on technical

definitions that serve as a baseline for all future communication.

Identify security goals (Step 2)

Security goals for the project are clearly outlined along with business goals.

Develop artifacts to support security requirements definition (Step 3)

Create artifacts necessary for full understanding of the system.

Perform risk assessment (Step 4)

The initial risk assessment of RUP should also include security risk. The identified

security risk should then be prioritized.

Select elicitation techniques (Step 5)

Select the elicitation technique best suited for the project.

Elicit security requirements (Step 6)

Gather initial security requirements in terms of misuse cases that support the goals

and security definitions already collected.

Requirements inspection (Step 9)

The first milestone review process of RUP should include requirements inspection

on gathered security requirements.

Elaboration Perform risk assessment (Step 4)

This step is revisited to develop a revised risk list. Additional security risks are cap-

tured and risks are prioritized.

Elicit security requirements (Step 6)

This step is revisited to capture additional security requirements.

Categorize requirements as to level (system, software, etc.) and whether they

are requirements or other kinds of constraints (Step 7)

Categorize the elicited security requirements.

Prioritize security requirements (Step 8)

The categorized security requirements are prioritized. Prioritizing techniques such

as Analytical Hierarchical Process (AHP) can be used.

Requirements inspection (Step 9)

The second milestone review process of RUP should include inspection of the

security requirements.

Construction Not Applicable

Transition Not Applicable

16 | CMU/SEI-2008-TN-006

5 Agile Methodologies

This section introduces agile development methodology and its best practices in terms of require-

ments handling. Some of the agile methodologies are introduced here, and those that best fit with

SQUARE have been identified and elaborated.

Agile methodologies have gained a lot of importance in recent years, and many organizations now

follow agile principles. Agile methodologies minimize risk through development of software in a

short amount of time.

Working software is the primary measure of progress in agile. The Agile Alliance declares the

following as the core principles of agile development [8]:

Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter time scale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity—the art of maximizing the amount of work not done—is essential.

The best architectures, requirements, and designs emerge from self-organizing

teams.

At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Requirements are handled very differently in agile as compared to standard life-cycle methodolo-

gies such as waterfall, spiral, and RUP. Agile requirements modeling is built on the fact that re-

quirements keep changing regardless of the time spent to elicit the specifications. Developers cla-

rify the requirements directly from the customer rather than from the requirements specification

document. Hence agile requirements modeling focuses on collecting barely enough requirements

17 | CMU/SEI-2008-TN-006

to start with and then undergoing a change management process as new requirements emerge.

Some of the important principles of agile requirements are

 continuous customer interaction

 modeling requirements in iterations

 prioritizing requirements

 converting requirements to test cases

 validating with prototypes and review meetings

 managing change in requirements

5.1 AGILE METHODOLOGIES IN USE

There are a number of methodologies that follow agile principles. Scrum [7] provides a project

management framework that focuses development into 30-day ―Sprint‖ cycles, the outcome of

which is a specified set of ―Backlog‖ features. The core best practice in Scrum is the adoption of

daily 15-minute team meetings for coordination and integration.

The Dynamic Systems Development Method [7, 9], which was developed in the U.K., is an ex-

tension to rapid application development (RAD) practices. It follows a phase-wise development

approach, uses iterative development, and has a strong focus on developing software that meets

users’ needs.

Extreme programming [10] focuses on delivering the software the customer needs when it is

needed. XP encourages developers to respond to varying customer requirements even late in the

development life cycle. Risky projects with dynamic requirements are suitable for XP.

Lean development, feature-driven development, and adaptive software development are other me-

thodologies that follow agile principles.

5.1.1 DSDM Wins

The SQUARE team researched these different agile methodologies and identified the Dynamic

System Development Method (DSDM) as the most appropriate one to fit with SQUARE. DSDM

was chosen because it is a traditional agile model that has explicit phases into which SQUARE

steps can fit appropriately. Methodologies like Scrum and XP that recommend performing activi-

ties based only on need are not a good match because to reap the full benefit of SQUARE all of its

steps should be followed. Hence a traditional phase-wise development framework is more suitable

for SQUARE. The next section describes how DSDM and SQUARE can be combined to address

security requirements.

18 | CMU/SEI-2008-TN-006

6 Life-Cycle Model: DSDM

DSDM provides a flexible yet controlled process that can be used to deliver new systems. It com-

bines effective use of people’s knowledge with tools and techniques such as prototyping to

achieve tight project delivery timescales [9]. DSDM is based on the premise that most software

projects fail due to people issues rather than technology issues. Hence it directs people to work

more effectively to achieve business goals. DSDM is based on the following nine principles:

1. Active user involvement is imperative.

2. DSDM teams must be empowered to make decisions.

3. The focus is on frequent delivery of products.

4. Fitness for business purpose is the essential criterion for acceptance of deliverables.

5. Iterative and incremental development is necessary to converge on an accurate business solu-

tion.

6. All changes during development are reversible.

7. Requirements are baselined at a high level.

8. Testing is integrated throughout the life cycle.

9. A collaborative and co-operative approach between all stakeholders is essential.

The DSDM process divides the software development life cycle into seven phases. The pre-

project phase ensures that the project is set up properly. Once the project is approved to go ahead,

the feasibility study begins. Assessments on whether DSDM is a right approach for the project,

likely costs, and technical feasibility are some of the factors evaluated in this phase. After the

project is deemed to be feasible, the business study phase commences, which focuses on under-

standing the business requirements and technical constraints associated with the project. The next

phase, functional model iteration, involves the creation of a functional model and prototypes in

order to build on requirements identified during the business study. The design and build iteration

phase aims to refine and test the functional prototype created during the previous phase. However,

both the functional model iteration and the design and build iteration consist of cycles of four ac-

tivities [9]:

1. Identify what is to be produced.

2. Agree how and when to do it.

3. Create the product.

4. Check that it has been produced correctly (by reviewing documents, demonstrating a proto-

type, or testing part of the software).

The objectives of the implementation phase are to operate the tested system in the users’ working

environment and to provide required training to the end user. The final post-project phase ensures

effective maintenance of the delivered solution.

19 | CMU/SEI-2008-TN-006

6.1 DSDM WITH SQUARE

After completion of DSDM’s pre-project phase and feasibility study, SQUARE can be performed

starting with the business study. The outcome of the feasibility study would be a feasibility report,

an outline plan, and a risk log. The feasibility study should also identify whether the project has

criticality in terms of security. This will indicate whether it is appropriate to adopt a method such

as SQUARE into the project life cycle. The initial risk log contains only high-level project risks

such as budget risk.

The business study and functional model iteration phases are next described in detail, showing

how SQUARE can be incorporated into them.

6.1.1 Business Study

The first step of SQUARE, “Agree on definitions,” is carried out immediately after scoping the

business process to be supported. The stakeholders and the requirements team agree on a set of

security definitions pertaining to the project in order to have a common understanding. This set of

definitions is included in the business area definition, which is an important work product of this

phase.

After identifying the high-level candidate goals and business drivers, the stakeholders and the re-

quirements engineering team determine the high-level security goals. These are added to the busi-

ness area definition. The requirements team then identifies scenarios, misuse cases, and other arti-

facts necessary to support security definition. Again, these are documented in the business area

definition.

In DSDM, risk management is an ongoing process throughout the project. Hence the risk log is

opened at the start of the project. The risk assessment checkpoint is provided at the end of func-

tional model iteration because appropriate risk mitigation measures are feasible only until that

point. However, they are captured throughout the project life cycle. Perform risk assessment,

SQUARE Step 4, is also done, and the risks are captured in the risk log.

DSDM does not recommend any specific requirements elicitation technique. The team decides

which technique is appropriate to the project. The elicitation technique used for functional re-

quirements may not be suitable for the security requirements elicitation. Hence, an appropriate

security requirements elicitation technique that suits the client organization and the project as

suggested by SQUARE in Step 5 is chosen. For instance, the Accelerated Requirements Method

(ARM) has been successful in eliciting security requirements.

After high-level and low-level functional requirements have been gathered, security requirements

are elicited using the chosen technique and documented. Hence there is a slight modification in

the process because separate techniques for gathering functional and non-functional requirements

are not usually followed. The security requirements are refined and categorized based on essen-

tial, non-essential, system level, software level, and architectural constraints.

A prioritized requirements list is another key product for this phase. This list should include pri-

oritized security requirements. DSDM recommends prioritizing requirements using MoSCoW

20 | CMU/SEI-2008-TN-006

rules [11]. Some of the methods used with SQUARE to prioritize security requirements are Win-

Win, Triage, and Analytical Hierarchy Process (AHP).

After the security requirements are prioritized, requirements inspection is performed to generate a

set of accurate and verifiable security requirements.

All nine steps of SQUARE are performed in the business study phase. The key products that re-

sult after applying SQUARE are

1. business area definition

 agreed-to security definitions

 security goals document

 security scenarios and misuse cases to support security requirements definition

 high- and low-level security requirements along with functional requirements

2. Updated risk log

 security risks added to high-level project risks

3. Development plan

4. System architecture definition

5. Prioritized requirements list

 categorized and prioritized security requirements

6.1.2 Function Model Iteration

In the functional model iteration phase, the risk log is revisited to accommodate new risks for the

project. If any new security risks are added, SQUARE Steps 6, 7, 8, and 9 are revisited. The pri-

oritized security requirements are updated to reflect changes. In the case of additional security

requirements, Steps 7, 8, and 9 are carried out again. This phase acts as a checkpoint to risk as-

sessment because risk mitigation measures are feasible to incorporate only up to this point. Risks

identified later on will have to be handled reactively. The same steps can be followed even if re-

quirements change in later phases of the project life cycle.

The following are the key products in this phase:

 functional model and functional prototype

 non-functional requirements list (apart from security requirements)

 functional model review records

 implementation plan

 time box plan

 updated risk log

21 | CMU/SEI-2008-TN-006

7 Conclusion

Security requirements are of paramount importance, as they directly reflect the quality of the

product. Current processes support capturing requirements like security, but doing so is often an

afterthought relative to functional (end user) requirements. Detailed scenarios for quality

attributes are not captured during the requirements phase. For instance, financial projects have

critical security issues that need to be elaborated in security requirements. SQUARE provides an

efficient way to capture such security requirements.

The SQUARE team identified commonly used software development methodologies and incorpo-

rated SQUARE steps at appropriate phases of their life cycles. This report can help any organiza-

tion to use SQUARE to elicit security requirements in security-critical projects within the devel-

opment process they already follow.

22 | CMU/SEI-2008-TN-006

23 | CMU/SEI-2008-TN-006

References

URLs are valid as of the publication date of this document.

[1] N. R. Mead, E. Hough, and T. Stehney, ―Security Quality Requirements Engineering

(SQUARE) Methodology, Software Engineering Institute, Carnegie Mellon Univ., Pitts-

burgh, PA, Tech. Rep. CMU/SEI-2005-TR-009, 2005.

http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html

[2] ―Iterative and incremental development,‖ Wikipedia.

http://en.wikipedia.org/wiki/Iterative_development

[3] ―Waterfall model,‖ Wikipedia. http://en.wikipedia.org/wiki/Waterfall_Model

[4] B. Boehm, ―A Spiral Model of Software Development and Enhancement,‖ IEEE Comput-

er, vol. 21, no. 5, pp. 61-72, May 1988.

[5] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed. Boston: Addison-

Wesley, 2003.

[6] Rational Software, ―Rational Unified Process: Best Practices for Software Development

Teams,‖ Rational Software, White Paper TP026B, Rev 11/01, 2001.

http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_best

practices_TP026B.pdf

[7] S. W. Ambler, ―A Manager’s Introduction to Rational Unified Process,‖ 2005.

http://www.ambysoft.com/downloads/managersIntroToRUP.pdf

[8] ―Principles behind the Agile Manifesto,‖ 2001. http://agilemanifesto.org/principles.html

[9] DSDM Public Version 4.2. http://www.dsdm.com/version4/2/public/default.asp

[10] ―Extreme programming: A gentle introduction,‖ 2006.

http://www.extremeprogramming.org

[11] ―MoSCoW,‖ Wikipedia. http://en.wikipedia.org/wiki/DSDM#moscow

http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ambysoft.com/downloads/managersIntroToRUP.pdf

24 | CMU/SEI-2008-TN-006

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

May 2008

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Incorporating Security Quality Requirements Engineering (SQUARE) into Standard Life-Cycle

Models

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Nancy R. Mead, Venkatesh Viswanathan, Deepa Padmanabhan, Anusha Raveendran

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2008-TN-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

SQUARE (Security Quality Requirements Engineering) is a method for eliciting and prioritizing security requirements in software devel-

opment projects. This report describes how SQUARE can be incorporated in standard life-cycle models for security-critical projects. Life-

cycle models and process methods considered for the report are the waterfall model, Rational Unified Process, the spiral model, and

Dynamic Systems Development Method (an agile method).

This report is for information technology managers and security professionals, management personnel with technical and information

security knowledge, and any personnel who manage security-critical projects that follow standard life-cycle models.

14. SUBJECT TERMS

SQUARE, requirements engineering, life-cycle models, security requirements, spiral model,

waterfall model, RUP, DSDM

15. NUMBER OF PAGES

35

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Incorporating Security Quality Requirements Engineering (SQUARE) into Standard Life-Cycle Models
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Life-Cycle Model: Waterfall
	3 Life-Cycle Model: Spiral
	4 Life-Cycle Model: Rational Unified Process
	5 Agile Methodologies
	6 Life-Cycle Model: DSDM
	7 Conclusion
	References

