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1. RESEARCH PROGRESS 

 
The natural auditory environment typically contains multiple simultaneous events.  A 

remarkable feat of auditory perception is the ability to disentangle the acoustic mixture 
and group the components of the same event into a stream.  This aspect of human 
audition is called auditory scene analysis (ASA), which has a primitive (bottom-up) 
process and a schema-based (top-down) process.  A major task of auditory scene analysis 
is monaural segregation of speech from interfering sounds.  This project seeks to develop 
an auditory scene analysis approach to monaural speech segregation. 

Consistent with the stated objectives of the project, the project has made considerable 
progress along the following four directions. First, we have proposed a schema-based 
model for phonemic restoration, which refers to the perceptual synthesis of the phonemes 
that are masked by appropriate replacement sounds by utilizing lexical context. Second, 
we have developed an approach to address the problem of sequential organization, which 
is based on trained speaker models. Third, we have proposed an approach for 
segmentation of auditory scenes based on event detection, in an attempt to address the 
segregation of unvoiced speech. Fourth, we have developed a comprehensive system for 
segregating unvoiced speech, a long standing challenge in computational auditory scene 
analysis (CASA). In addition, encouraging progress has been made on enhancing 
reverberant speech and modeling of multitalker speech perception.  

The major findings along the above directions are described in more detail in the 
following five subsections. 
 
 
1.1 A Schema-based Model for Phonemic Restoration 

 
In 1970, R. Warren discovered that, when a masking sound (cough) fully replaced the 

first “s” of the word “legislatures” in the sentence “The state governors met with their 
respective legislatures convening in the capital city,” listeners reported the hearing of the 
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masked phoneme. When phonemic restoration happens, subjects were unable to localize 
the masking sound within a sentence accurately; that is, they could not identify the 
position of the masker in the sentence. When “s” was replaced with silence instead, 
phonemic restoration was not observed.  Subsequent perceptual studies have shown that 
phonemic restoration is dependent on the linguistic skills of listeners, the characteristics 
of the masking sound, and temporal continuity of speech. 

Existing models for phonemic restoration, however, use only temporal continuity. 
These models poorly restore unvoiced phonemes and are also limited in their ability to 
restore voiced phonemes. We have proposed a schema-based model for phonemic 
restoration. Our model employs lexical knowledge in the form of a speech recognizer and 
a sub-lexical representation in word templates realizing the role of speech schemas. The 
model corresponds to a multi-stage system, where the input is utterances with words 
containing masked phonemes. The maskers used in our experiments are broadband sound 
sources. Phonemes are masked by adding a noise source to the signal waveform. In the 
first stage input waveform with masked phonemes is converted into a spectrogram by 
Fourier analysis. A binary mask for the spectrogram is generated in this stage to identify 
reliable and unreliable parts. If a time-frequency (T-F) unit in the spectrogram contains 
predominantly speech energy, it is labeled reliable; it is labeled unreliable otherwise. We 
then identify the spectro-temporal regions which predominantly contain energy from 
speech in a two step process.  In the first step, two features are calculated at each frame, 
spectral flatness and normalized energy. Masked, unvoiced and silent frames, all have 
high spectral flatness, but the energy in masked frames is higher than that in unvoiced 
and silent frames. These  features are then fed to a perceptron classifier which labels each 
frame as being either clean (reliable) or noisy (unreliable). In the second step, the 
frequency units in a noisy frame are further analyzed for possible temporal continuity 
with neighboring clean frames using a Kalman filter. Spectral regions in the noisy frames 
which exhibit strong continuity with the spectral regions of the neighboring clean frames 
are also labeled clean. 

The second stage is missing data automatic speech recognition (ASR) based on 
hidden Markov model (HMM), which provides word level recognition of the input signal 
by utilizing only the reliable spectro-temporal regions. Thus, the input to the missing data 
ASR is the spectrogram of the input signal along with a corresponding binary mask. As 
for restoration, template-based speech recognizers use spectral templates to model each 
word. These templates could be used as a base for restoration. We train a word-level 
template corresponding to each HMM model in missing data ASR. During training, 
signals are converted into a cepstral representation and then time normalized by dynamic 
time warping (DTW). We then compute their average. Two sets of templates are 
considered, speaker-independent and speaker-dependent. In certain applications, it may 
be possible to identify the target speaker for enhancement. In such applications, these 
speaker-dependent templates could be applied.  

Based on the results of recognition, word templates corresponding to the noisy words 
are selected. A template thus activated is warped to be of the same duration as the noisy 
word using DTW. The T-F units of the template corresponding to the unreliable T-F units 
then replace the unreliable units of the noisy word.  

A template is an average representation of each word. Thus, the restored phoneme 
may not be in consonance with the speaking style of the remaining utterance. In order to 
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maintain the overall naturalness of the utterance, we perform pitch based smoothing.  The 
last stage of the model is the overlap-and-add method of resynthesis. Resynthesized 
waveforms are used for informal listening and performance evaluation. 

Figure 1 shows an example of phonemic restoration by our model. Figure 1a shows 
the spectrogram of the word “eight”. Figure 1b shows the spectrogram of the word mixed 
with a burst of white noise that masks the phoneme /t/ in the word. Figure 1c shows the 
result of our model where the masked phoneme is largely restored. For comparison, 
Figure 1d shows the result from a previously proposed restoration model that is based on 
Kalman filtering. 
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Figure 1. Illustration of phonemic restoration. (a). The spectrogram of the word 
“eight”. (b). The spectrogram obtained from (a) with the phoneme /t/ masked by a 
burst of white noise. (c). The restoration of the masked phoneme from the 
proposed model. (d). The retoration of the masked phoneme from a Kalman filter 
model.  
 
The proposed model is able to restore both voiced and unvoiced phonemes with a 

high degree of naturalness. Systematic testing shows that our model outperforms a 
previous model that employs Kalman filtering for synthesizing or extrapolating the 
masked sound.  The model is described in a 2005 paper by S. Srinivasan and D.L. Wang, 
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entitled“A schema-based model for phonemic restoration,”published in Speech 
Communication (see Sect. 2.4 for detailed reference). 

 
 

1.2 Sequential Organization Based on Speaker Models 
 
A human listener has the ability to follow a speaker’s voice while others are talking 

simultaneously. This aspect of ASA is referred to as sequential organization, which 
integrates sound components across time into the same perceptual stream. Our study on 
sequential organization focuses on cochannel speech, or mixtures of two voices. In the 
study, we have explored speaker characteristics, particularly speaker models, for 
grouping the T-F energy of the same speaker into a single stream in cochannel speech. As 
a result of successful sequential organization, speaker recognition from cochannel 
mixtures should also improve. That is, robust speaker identification in cochannel 
conditions is a major benefit of performing sequential organization.   

Our proposed system consists of three stages. First, a multipitch tracking algorithm is 
adapted and applied to cochannel speech and pitch contours for both speakers are 
produced. The algorithm filters the mixture signal into multiple frequency channels 
through an auditory filterbank; it then selects “clean” channels and peaks within each 
clean channel as pitch candidates at each time frame. Multiple pitch hypotheses are 
formed; the hypotheses are further integrated across the frequency channels. Afterwards, 
pitch contours are decoded as a sequence of most likely pitch hypotheses using an HMM 
framework.  

The second stage is used to extract usable speech from a cochannel mixture based on 
pitch information. Due to the nature of human voice, a speech utterance contains voiced 
portions, unvoiced portions and silence. Therefore, there are some portions (segments) of 
cochannel speech that contain only one speaker’s voiced part or one speaker’s voiced 
part plus another speaker’s unvoiced part, the latter usually having much lower energy. 
The voiced spectra of these frames are minimally corrupted, and can be used to derive 
speaker features for speaker identification. So they form usable speech and are retained, 
while the portions with overlapping pitch contours as well as silent portions are removed, 
resulting in a set of usable speech segments.  

For any two segments in the usable speech set, whether they are from the same 
speaker is unknown. In the third stage, our model-based sequential grouping algorithm 
groups the segments into two speaker streams by searching for the optimal hypothesis in 
the joint speaker and grouping space. Our formulation is extended from the traditional 
SID (speaker identification) probabilistic framework. Exhaustive search in the space is 
computationally prohibitive with increasing number of segments. Thus we propose a 
hypothesis pruning algorithm to remove hypotheses of low likelihoods, which drastically 
reduces computation time while resulting in comparable performance with exhaustive 
search. As a byproduct, speaker identities are also determined. 

Our model-based approach for sequential organization assigns the extracted usable 
speech segments into speaker streams. Our usable speech extraction method produces 
segments useful for cochannel SID across various target-to-interferer ratios. Evaluation 
results show that the proposed hypothesis pruning algorithm achieves SID performance 
close to the ceiling performance with prior pitch information or exhaustive search, and it 
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performs significantly better than alternative approaches to speaker assignment. Our 
sequential grouping algorithm can also handle the situation where only one speaker is 
present in a cochannel mixture. A paper describing our approach was published in a 2006 
paper by Y. Shao and D.L. Wang, entitled “Model-based sequential organization in 
cochannel speech,” in IEEE Transactions on Audio, Speech and Language Processing.  

 
 

1.3 Auditory Segmentation 
 
Perceptual theories of auditory scene analysis suggest that ASA takes place in two 

conceptual stages: Segmentation and grouping. The first stage decomposes an auditory 
scene into a collection of auditory elements (segments), each of which should originate 
from the same sound source. The second stage selectively groups the segments into 
distinct streams, corresponding to different auditory events.  We believe that auditory 
segmentation is a key computational stage in speech segregation. 

We have investigated auditory segmentation by analyzing onsets and offsets of 
auditory events. Onsets and offsets are important ASA cues, and there is strong evidence 
for onset detection by auditory neurons. Onsets and offsets, corresponding to sudden 
intensity changes, tend to delineate auditory events. Quantitatively speaking, onsets and 
offsets correspond to the peaks and valleys of the time derivative of the intensity. 
However, because of intensity fluctuations within individual events, many peaks and 
valleys of the derivative do not correspond to real onsets and offsets. Therefore, we 
smooth the intensity over time to reduce the fluctuations in the smoothing stage. The 
degree of smoothing is called the scale – the larger the scale is, the smoother the intensity 
becomes. In the stage of onset/offset detection and matching, the system detects onsets 
and offsets in each filter channel and merges detected onsets and offsets into onset and 
offset fronts if they occur at close times. It then matches individual onset and offset fronts 
to form segments.  

As a result of smoothing, event onsets and offsets of small T-F regions may be 
blurred at a larger (coarser) scale. Consequently, the system may miss small events or 
generate segments combining different events, a case of under-segmentation. On the 
other hand, at a smaller (finer) scale, the system may be sensitive to insignificant 
intensity fluctuations within individual events. Consequently, the system tends to 
separate a continuous event into several segments, a case of over-segmentation. 
Therefore, it is difficult to obtain satisfactory segmentation with a single scale. Our 
system handles this issue by integrating onset/offset information across different scales in 
an orderly manner in the stage of multiscale integration, which yields the final set of 
segments. 

Figure 2 illustrates the performance of our multiscale analysis system for 
segmentation. The bounding contours of obtained segments for the mixture in Figure 2(f) 
are shown in Figure 2(a)-(d) for four scales of analysis. The background is represented by 
blue. Compared with the ideal binary mask in Figure 2(e), which labels all T-F regions 
where target has stronger energy than interference, the obtained segments capture a 
majority of target speech. Some segments for the interference are also formed. Note that 
the segmentation stage does not distinguish segments corresponding to target and those 
corresponding to interference, which is the task of grouping. 
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Figure 2. Auditory segmentation. Obtained segments correspond to white regions 
with black bounding contours, and the background is indicated by blue. (a)-(d) 
Results of segmentation at four different scales for the input shown in (f). (e). The 
ideal binary mask for the input. (f). The cochleagram of an input mixture which 
corresponds to a speech utterance mixed with a crowd noise at 0-dB SNR. 
 
Extensive evaluation shows that much target speech, including unvoiced speech, is 

correctly segmented, and target speech and interference are well separated into different 
segments. This work was published in a 2007 paper by G. Hu and D.L. Wang, entitled 
“Auditory segmentation based on onset and offset analysis,” in IEEE Transactions on 
Audio, Speech and Language Processing. 

 
 

1.4. Unvoiced Speech Segregation 
 

In English, unvoiced speech is composed of a subset of stops, fricatives, and 
affricates. With the exception of the fricative /h/, stops, fricatives, and affricates are 
called obstruents in phonetics. To simplify terminology, we refer to all of them as 
expanded obstruents. Unvoiced speech segregation is a great deal more difficult than 
voiced speech segregation because of two reasons. First, unvoiced speech lacks the 
harmonic cue and is often noise-like acoustically. Second, sound energy of unvoiced 
speech is usually much weaker than that of voiced speech; as a result, unvoiced speech is 
more susceptible to interference. Our approach to unvoiced speech segregation first 
segments an input mixture using the onset/offset based method (see Sect. 1.3), which is 
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applicable to both unvoiced and voiced speech, and then groups segments dominated by 
unvoiced speech. Due to the lack of an effective technique for sequential grouping, our 
study focuses on segregating unvoiced speech from non-speech interference.  

A segment may be dominated by voiced target, unvoiced target, or interference. Our 
goal is to group segments dominated by unvoiced target. As voiced speech is expected to 
be easier to segregate, we first employ voiced speech segregation and use its results to 
identify the segments dominated by voiced speech. We consider a segment to be 
dominated by voiced target if more than half of its total energy is included in the voiced 
time frames of the segment, and more than half of its energy in the voiced frames is 
included in segregated voiced speech. All the segments dominated by voiced target are 
grouped into a voiced stream. Note that the voiced stream may include some unvoiced 
speech because an unvoiced consonant is often coarticulated with a neighboring voiced 
phoneme, hence included in a segment dominated by voiced target.  

Once segments dominated by voiced speech are grouped, the remaining segments will 
be dominated by either unvoiced speech or interference. Consequently, we formulate 
unvoiced speech segregation as a classification problem. Let s denote a remaining 
segment, which lasts from frame m1 to m2, and Xs = [Xs(m1), Xs(m1+1), …, Xs(m2)] its 
corresponding T-F region on the cochleagram. H0(m1, m2) denotes the hypothesis that s is 
dominated by speech and H1(m1, m2) the hypothesis that it is dominated by interference. 
Furthermore, let H0,a(m1, m2) be the hypothesis that this region is dominated by an 
expanded obstruent and H0,b(m1, m2) by any other speech sound. We classify s as 
dominated by unvoiced speech if: 

 
           (1) )|),(()|),(( 21121,0 ssa mmHPmmHP XX >

 
Because the durations of segments are varied, direct evaluation of the probabilities in 

the above inequality is unfeasible computationally. Therefore, we assume that each time 
frame is statistically independent. With this frame independence assumption, (1) 
becomes, 
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By applying the Bayes rule and a further assumption that the prior and the posterior 
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have, 
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The prior probability ratio of P(H0,a) and P(H1) obviously depends on the SNR of the 
acoustic mixture, and this relationship can be approximated by a linear function. 
Moreover, one can estimate mixture SNR from segregated voiced speech.  

In (3), the likelihood ratio between p(Xs(m)|H0,a) and p(Xs(m)|H1) is estimated by 
training a multilayer perceptron (MLP) whose desired output is 1 if the corresponding 
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frame is dominated by an expanded obstruent and 0 otherwise. Note that the trained MLP 
gives a good estimate of the probability. With the MLP estimate of the likelihood ratio 
and the SNR-based estimate of the prior probability ratio, (3) is used to label a segment 
as either expanded obstruent or interference. All the segments labeled as unvoiced speech 
are grouped to the voiced stream to produce the final segregated speech stream.  

We have systematically evaluated segregation performance in terms of an SNR metric. 
The evaluation uses a test corpus containing 20 target utterances randomly selected from 
the test part of the TIMIT database mixed with 15 nonspeech intrusions. The intrusions 
have not been used during training, and represent a broad range of nonspeech sounds 
encountered in typical acoustic environments. Each speech utterance is mixed with every 
intrusion at the SNR levels of -5 dB, 0 dB, 5 dB, 10 dB, and 15 dB. Hence the test corpus 
contains 300 mixtures at each SNR level and 1500 mixtures in total. Figure 3 shows the 
systematic results at different SNRs. Figure 3(a) and 3(b) display the average SNR of 
segregated target and the corresponding SNR gain. Figures 3(c) and 3(d) display the 
results at unvoiced frames separately. The figure clearly shows that our system produces 
significant SNR improvements. To put our performance in perspective, Figure 3 also 
shows the SNR results of a spectral subtraction method. It is clear from the figure that 
our system performs substantially better for both voiced and unvoiced speech than 
spectral subtraction, with the only exception that occurs for unvoiced speech segregation 
at the input SNR of 15 dB. The amount of improvement increases with decreasing 
mixture SNR. 

Our study on unvoiced speech segregation represents the first systematic effort on 
addressing this challenge. The results have been published in a series of ICASSP papers 
by G. Hu and D.L. Wang, and an extensive paper describing this work, authored by G. 
Hu and D.L. Wang, has been accepted by the Journal of the Acoustical Society of 
America.  
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Figure 3. SNR results of the proposed system and spectral subtraction. (a) SNRs 
of segregated speech at different mixture SNR levels. (b) SNR gains of segregated 
targets. (c) SNRs of segregated targets at unvoiced frames. (d) SNR gains of 
segregated targets at unvoiced frames.  

 
 

1.5. Other Advances 
 

A main cause of speech degradation in practically all listening situations is room 
reverberation. Although human listening is, to a considerable degree, little affected by 
room reverberation – indeed increased loudness as a result of reverberation may even 
enhance speech intelligibility – reverberation causes major performance degradation for 
machine listening. Consequently, an effective reverberant speech enhancement system is 
essential for many speech technology applications including speech and speaker 
recognition. Also, hearing-impaired listeners suffer from reverberation effects to a much 
greater extent than normal-hearing listeners. Hence a system that enhances reverberant 
speech could contribute to the design of more effective hearing aids. Under noise-free 
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conditions, the perceived quality of reverberant speech is determined by two distinct 
perceptual attributes: coloration and long-term reverberation. They correspond to two 
physical variables: signal-to-reverberant energy ratio (SRR) and reverberation time, 
respectively. Based on this analysis, we have proposed a two-stage approach to enhance 
reverberant speech recorded monaurally. In the first stage, an inverse filter is estimated in 
order to reduce coloration effects or increase SRR. The second stage employs spectral 
subtraction to minimize the influence of long-term reverberation. Our two-stage 
algorithm has been systematically evaluated, and the evaluation results show that the 
algorithm achieves substantial enhancement of reverberant speech. We have also carried 
out a quantitative comparison with a recent enhancement algorithm on a corpus of 
reverberant speech and our algorithm yields significantly better performance. A paper 
describing the two-stage algorithm, by M. Wu and D.L. Wang, was published by IEEE 
Transactions on Audio, Speech and Language Processing in 2006. 

In everyday listening, both background noise and reverberation degrade the speech 
signal. Psychoacoustic research suggests that human speech perception under reverberant 
conditions relies mostly on monaural processing. While speech segregation based on 
periodicity has achieved considerable progress in handling additive noise, little research 
in monaural segregation has been devoted to reverberant scenarios. Reverberation smears 
the harmonic structure of speech signals, and our evaluations using a pitch-based 
segregation algorithm show that an increase in the room reverberation time causes 
degraded performance due to weakened periodicity in the target signal. We have 
developed a two-stage monaural separation system that combines the inverse filtering of 
the room impulse response corresponding to target location and pitch-based speech 
segregation. The key idea in the first stage is to estimate a filter that inverts the room 
impulse response corresponding to the target source. The effect of applying this inverse 
filter on the reverberant mixture is two-fold: It improves the harmonic structure of the 
target signal while smearing those signals originating at other locations. We have found 
that this effect provides a better input signal for the pitch-based segregation stage. The 
second stage adapts a voiced speech segregation system. A systematic evaluation of this 
two-stage system shows that it results in considerable SNR gains across different 
conditions. To our knowledge, this is the first study that addresses monaural speech 
segregation with room reverberation. A paper describing this algorithm, by N. Roman 
and D.L. Wang, was published by the Journal of the Acoustical Society of America in 
2006. 

Listeners’ ability to understand a target speaker in the presence of one or more 
simultaneous competing speakers is subject to two types of masking: Energetic and 
informational. Energetic masking occurs when target and interfering signals overlap in 
time and frequency resulting in portions of the target becoming inaudible. Informational 
masking occurs when the listener is unable to segregate the target from interference, 
while both are audible. We have proposed a novel model of multitalker speech perception 
that accounts for both of the above types of masking. Human perception in the presence 
of energetic masking is modeled using a speech recognizer that treats the masked time-
frequency (T-F) units of target as missing data. Specifically, when target speech is 
presented together with interference, some T-F regions will contain predominantly target 
energy (reliable) and the rest are subject to energetic masking by interference. We use a 
missing data recognition method that treats the latter T-F regions as unreliable during 
recognition. To apply missing data recognition requires a binary T-F mask that provides 
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information about which T-F regions, of the mixture signal, are reliable and which are 
unreliable. The task of generating such a mask is essentially the task of segregating the 
target from the mixture. Therefore to model informational masking, we employ a voiced 
speech segregation system in order to estimate a binary mask that selects the T-F regions 
of the mixture where target dominates interference. The similarities between target and 
interference characteristics affect the performance of speech segregation and hence 
contribute to informational masking in our model. Using this model we have 
quantitatively simulated several aspects of listeners’ performance in multitalker 
conditions, including the differential effects of energetic and informational masking on 
multitalker perception. The performance of our model is in broad agreement with 
perceptual results. A preliminary report on this work, by S. Srinivasan and D.L. Wang, 
was published in the Proceedings of 2005 INTERSPEECH, and a comprehensive version 
has been conditionally accepted by the Journal of the Acoustical Society of America. 
 

 
2. OTHER INFORMATION 
 
2.1 Development of Human Resources 

 
The project in various stages has supported four doctoral students as graduate 

research assistants: Nicoleta Roman, Guoning Hu, Soundar Srinivasan, and Yang Shao.  
The support has enabled them to complete their doctoral studies.  

Roman’s work on location-based speech segregation and pitch-based segregation of 
reverberant speech, led to a Ph.D. dissertation completed in August 2005.  Her 
dissertation, entitled “Auditory-based algorithms for sound segregation in multisource 
and reverberant environments”, is posted on the PI’s laboratory webpage at 
http://www.cse.ohio-state.edu/pnl/theses.html.  An executive summary of the dissertation 
is given in Appendix 1. 

Hu’s work on segregation of both voiced and unvoiced speech led to a Ph.D. 
dissertation entitled “Monaural speech organization and segregation” completed in June 
2006. His dissertation will be soon posted on the same website, pending provisional 
patent filing. An executive summary of the dissertation is given in Appendix 2. 

Srinivasan’s work on integrating CASA and robust speech recognition led to a Ph.D. 
dissertation entitled “Integrating computational auditory scene analysis and automatic 
speech recognition,” completed in September 2006. His dissertation has been posted on 
the above website, and an executive summary is given in Appendix 3. 

Shao’s work on model-based sequential grouping and robust speaker recognition led 
to a Ph.D. dissertation entitled “Sequential organization in computational auditory scene 
analysis,” completed in September 2007. His dissertation will soon be posted on the 
above website, and an executive summary is given in Appendix 4. 

This grant has helped the PI to update a graduate-level course entitled 
"Computational audition", and enhance the existing graduate-level courses “Survey of 
Artificial Intelligence”, “Introduction to Neural Networks" and "Brain Theory and Neural 
Networks".  Additionally, the PI has participated in a great deal of curriculum and 
seminar activity for training undergraduate students.  
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2.2 Honors/Awards 

 
The PI was elected in 2004 to IEEE Fellow “For contributions to advancing 

oscillatory correlation theory and its application to auditory and visual scene analysis.”  
IEEE, standing for the Institute of Electrical and Electronics Engineers, is the largest 
professional organization in the world. 

The PI received the 2005 Lumley Research Award from the OSU College of 
Engineering. This is the third consecutive time the PI received this recognition (over a 
period of 13 years). 

Guoning Hu received a Student Research Award from the OSU Biophysics Graduate 
Program in 2005.  

The PI received the Outstanding Paper Award from IEEE Computational Intelligence 
Society in 2007 for his paper entitled “The time dimension for scene analysis,” published 
in IEEE Transactions on Neural Networks in 2005.  
 
 
2.3 Transition or Collaborative Activities 

 
The PI has collaborated with Dr. Douglas Brungart of AFRL (Dayton OH) on 

psychoacoustic evaluation of computational multitalker analysis systems. The 
collaboration has led to a number of results concerning energetic and informational 
masking as well as the effectiveness of ideal binary masking, a notion developed in the 
PI’s laboratory. A paper summarizing the results was published by the Journal of the 
Acoustical Society of America in 2006, and a second paper is currently under revision for 
the Journal of the Acoustical Society of America. 

Aetion Technologies, a small-business company located in Columbus, Ohio, has 
partnered with the PI in a Phase I STTR project funded by AFOSR.  This Phase I project 
conducted a feasibility study to determine what improvements were needed in order to 
apply the speech segregation algorithms developed in the PI’s laboratory in practical 
situations. 

The PI had a 2-year project from AFRL/IF in Rome, New York, to study speaker 
recognition in co-channel conditions (ended in June 2006).  For the project, we have 
applied the results from this AFOSR project to perform speech segregation as a 
preprocessing step in order to solve the robust speaker recognition problem. The PI 
visited the Rome Lab in May 2005 (hosted by Drs. Stanley Wenndt and John Grieco) and 
presented a 2-day tutorial on computational auditory scene analysis, and again in June 
2006 (hosted by Dr. Stanley Wenndt) to present the results achieved in the speaker 
recognition project. 

From October 2006 to June 2007, the PI visited Oticon A/S, a major hearing aid 
manufacturer located in Copenhagen, Denmark. He has collaborated with the Oticon 
signal processing group as well as the Oticon Eriksholm Research Center in an effort to 
evaluate the potential benefits of speech separation algorithms in improving speech 
intelligibility of hearing impaired listeners.  
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Report of Inventions and Subcontracts 
 

DeLiang Wang 
(Principal Investigator) 

 
March 2008 

 
Department of Computer Science & Engineering and Center for Cognitive Science 

The Ohio State University 
 
 

The project, entitled “Monaural Speech Segregation by Integrating Primitive and 
Schema-based Analysis” (FA9550-04-1-0117), was funded by the Air Force Office of 
Scientific Research from February 2004 to December 2007.   

This is to report that a provisional patent application entitled “A method for accurate 
pitch estimation and voice separation,” has been filed as a result of this AFOSR grant. 
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Appendix 1. Executive Summary of Nicoleta Roman’s Ph.D. 
Dissertation 

 
At a cocktail party, listeners can selectively attend to a single voice and filter out 

other interferences. This perceptual ability has motivated a new field of study known as 
computational auditory scene analysis (CASA) which aims to build speech separation 
systems that incorporate auditory principles. The psychological process of figure-ground 
segregation suggests that the target signal should be segregated as foreground while the 
remaining stimuli are treated as background. Accordingly, the computational goal of 
CASA should be to estimate an ideal time-frequency (T-F) binary mask, which selects 
the target if it is stronger than the interference in a local T-F unit. This dissertation 
investigates four aspects of CASA processing: location-based speech segregation, 
binaural tracking of multiple moving sources, binaural sound segregation in 
reverberation, and monaural segregation of reverberant speech. For localization, the 
auditory system utilizes the interaural time difference (ITD) and interaural intensity 
difference (IID) between the ears. It is observed that within a narrow frequency band, 
modifications to the relative strength of the target source with respect to the interference 
trigger systematic changes for ITD and IID resulting in a characteristic clustering. 
Consequently, this dissertation proposes a supervised learning approach to estimate the 
ideal binary mask. A systematic evaluation shows that the resulting system produces 
masks very close to the ideal binary ones and large speech intelligibility improvements.  

In realistic environments, source motion requires consideration. Binaural cues are 
strongly correlated with locations in T-F units dominated by one source resulting in 
channel-dependent conditional probabilities. Consequently, the dissertation proposes a 
multi-channel integration method of these probabilities in order to compute the likelihood 
function in a target space. Finally, a hidden Markov model is employed for forming 
continuous tracks and automatically detecting the number of active sources. 
Reverberation affects the ITD and IID cues. A binaural segregation system is therefore 
proposed that combines target cancellation through adaptive filtering and a binary 
decision rule to estimate the ideal binary mask. A major advantage of the proposed 
system is that it imposes no restrictions on the interfering sources. Quantitative 
evaluations show that our system outperforms related beamforming approaches.  

Psychoacoustic evidence suggests that monaural processing play a vital role in 
segregation. It is known that reverberation smears the harmonicity of speech signals. This 
dissertation therefore proposes a two-stage separation system that combines inverse 
filtering of target room impulse response with pitch-based segregation. As a result of the 
first stage, the harmonicity of a signal arriving from target direction is partially restored 
while signals arriving from other locations are further smeared, and this leads to 
improved segregation and considerable signal-to-noise ratio gains.  
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Appendix 2. Executive Summary of Guoning Hu’s Ph.D. Dissertation 
 

In a natural environment, speech often occurs simultaneously with acoustic 
interference. Many applications, such as automatic speech recognition and 
telecommunication, require an effective system that segregates speech from interference 
in the monaural (one-microphone) situation. While this task of monaural speech 
segregation has proven to be very challenging, human listeners show a remarkable ability 
to segregate an acoustic mixture and attend to a target sound, even with one ear. This 
perceptual process is called auditory scene analysis (ASA). Research in ASA has inspired 
considerable effort in constructing computational ASA (CASA) based on ASA 
principles. Current CASA systems, however, face a number of challenges in monaural 
speech segregation.  

This dissertation presents a systematic and extensive effort in developing a CASA 
system for monaural speech segregation that addresses several major challenges. The 
proposed system consists of four stages: Peripheral analysis, feature extraction, 
segmentation, and grouping. In the first stage, the system decomposes the auditory scene 
into a time-frequency representation via bandpass filtering and time windowing. The 
second stage extracts auditory features corresponding to ASA cues, such as periodicity, 
amplitude modulation, onset and offset. In the third stage, the system segments an 
auditory scene based on a multiscale analysis of onset and offset. The last stage includes 
an iterative algorithm that simultaneously estimates the pitch of a target utterance and 
segregates the voiced target based on a pitch estimate. Finally, our system sequentially 
groups voiced and unvoiced portions of the target speech for non-speech interference, 
and this grouping task is performed using feature-based classification.  

Systematic evaluation shows that the proposed system extracts a majority of target 
speech without including much interference. Extensive comparisons demonstrate that the 
system has substantially advanced the state-of-the-art performance in voiced speech 
segregation, and represents the first systematic study of unvoiced speech segregation. 
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Appendix 3. Executive Summary of Soundararajan Srinivasan’s Ph.D. 
Dissertation 

 
Speech perception studies indicate that robustness of human speech recognition is 

primarily due to our ability to segregate a target sound source from other interferences. 
This perceptual process of auditory scene analysis (ASA) is of two types, primitive and 
schema-driven. This dissertation investigates several aspects of integrating computational 
ASA (CASA) and automatic speech recognition (ASR). While bottom-up CASA are used 
as front-end for ASR to improve its robustness, ASR is used to provide top-down 
information to enhance primitive segregation.  

Listeners are able to restore masked phonemes by utilizing lexical context. We 
present a schema-based model for phonemic restoration. The model employs missing-
data ASR to decode masked speech and activates word templates via dynamic time 
warping. A systematic evaluation shows that the model restores both voiced and 
unvoiced phonemes with a high spectral quality.  

Missing-data ASR requires a binary mask from bottom-up CASA that identifies 
speech-dominant time-frequency regions of a noisy mixture. We propose a two-pass 
system that performs segregation and recognition in tandem. First, an n-best lattice, 
consistent with bottom-up speech separation, is generated. Second, the lattice is re-scored 
using a model-based hypothesis test to improve mask estimation and recognition 
accuracy concurrently.  

By combining CASA and ASR, we present a model that simulates listeners' ability to 
attend to a target speaker when degraded by energetic and informational masking. 
Missing-data ASR is used to account for energetic masking and the output degradation of 
CASA is used to model informational masking. The model successfully simulates several 
quantitative aspects of listener performance.  

The degradation in the output of CASA-based front-ends leads to uncertain ASR 
inputs. We estimate feature uncertainties in the spectral domain and transform them into 
the cepstral domain via nonlinear regression. The estimated uncertainty substantially 
improves recognition accuracy.  

We also investigate the effect of vocabulary size on conventional and missing-data 
ASRs. Based on binaural cues, for conventional ASR, we extract the speech signal using 
a Wiener filter and for missing-data ASR, we estimate a binary mask. We find that while 
missing-data ASR outperforms conventional ASR on a small vocabulary task, the relative 
performance reverses on a larger vocabulary task. 
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Appendix 4. Executive Summary of Yang Shao’s Ph.D. Dissertation 
 

A human listener has the ability to follow a speaker’s voice while others are speaking 
simultaneously. In particular, the listener can organize the time-frequency (T-F) energy 
of the same speaker into a single stream. This aspect of auditory perception is termed 
auditory scene analysis (ASA). ASA comprises two organization processes: segmentation 
and grouping. Segmentation decomposes the auditory scene into T-F segments. Grouping 
combines the segments from the same source into a single perceptual stream. Within the 
grouping process, simultaneous organization integrates segments that overlap in time, 
and sequential organization groups segments across time.  

Inspired by ASA research, computational auditory scene analysis (CASA) aims to 
organize sound based on ASA principles. CASA systems seek to segregate target speech 
from a complex auditory scene. However, almost all the existing systems focus on 
simultaneous organization. This dissertation presents a systematic effort on sequential 
organization. The goal is to organize T-F segments from the same speaker that are 
separated in time into a single stream. This study proposes to employ speaker 
characteristics for sequential organization.  

This study first explores bottom-up methods for sequential grouping. Subsequently, a 
speaker-model-based sequential organization framework is proposed and shown to yield 
better grouping performance than feature-based methods. Specifically, a computational 
objective is derived for sequential grouping in the context of cochannel speaker 
recognition. Cochannel speech occurs when two utterances are transmitted in a single 
communication channel. This formulation leads to a grouping system that searches for 
the optimal grouping of separated speech segments. To reduce search space and 
computation time, a hypothesis pruning method is then proposed and it achieves 
performance close to that of exhaustive search. Systematic evaluations show that the 
proposed system improves not only grouping performance but also speech recognition 
accuracy. 

The model-based grouping system is then extended to handle multi-talker as well as 
non-speech intrusions using generic models. This generalization is shown to function 
well regardless of interference types and the number of interfering sources. The grouping 
system is further extended to deal with noisy inputs from unknown speakers. 
Specifically, it employs a speaker quantization method that extracts representative 
speakers from a large speaker space and performs sequential grouping using obtained 
generic models. The resulting grouping performance is only moderately lower than that 
with known speaker models. 

In addition to sequential grouping, this dissertation presents a systematic effort in 
robust speaker recognition. A novel usable speech extraction method is proposed that 
significantly improves recognition performance. Then, missing-data recognition is 
combined with the use of CASA as a front-end processor. Substantial performance 
improvements are achieved in speaker recognition evaluations under various noisy 
conditions. Finally, a general solution is proposed for robust speaker recognition in the 
presence of additive noise. Novel speaker features are derived from auditory filtering and 
cepstral analysis, and are used in conjunction with an uncertainty decoder that accounts 
for mismatch introduced in front-end processing. Systematic evaluations show that the 
proposed system achieves significant performance improvement over the use of typical 
speaker features and a state-of-the-art robust front-end processor for noisy speech.
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