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EXECUTIVE SUMMARY 
 
Fatigue from sleep loss and circadian misalignment jeopardizes cognitive performance and 
safety of individuals during sustained Air Force operations and in other around-the-clock 
operational environments. Mathematical models of fatigue and performance provide a useful 
methodology for the prediction of cognitive impairment resulting from sleep loss and circadian 
disruption. However, currently available models do not have the capability to make predictions 
for individuals, which makes them unreliable at the level of persons or small teams. Also, 
currently available models do not accurately predict the effects on performance of chronic sleep 
restriction, which reduces their usefulness in sustained operations. To deal with these problems, 
we implemented and extended a cutting-edge statistical technique called Bayesian forecasting to 
predict performance responses to sleep loss and circadian displacement for individuals. 
Furthermore, we developed a new model for the sleep/wake homeostatic regulation of fatigue to 
improve predictions of performance deficits under conditions of chronic sleep loss. As such, this 
project resulted in significant advances in fatigue and performance modeling, addressing the Air 
Force’s need to understand and help mitigate the effects of fatigue on cognitive capability. 
 
Current mathematical models of fatigue and performance do not accurately predict cognitive 
performance for individuals with a-priori unknown degrees of trait vulnerability to sleep loss; do 
not predict performance reliably when initial conditions are uncertain; and do not yield 
statistically valid estimates of prediction accuracy. These limitations diminish their usefulness 
for predicting the performance of individuals during Air Force missions and in other operational 
environments. To overcome these limitations, we developed a new modeling approach based on 
the extension of a statistical technique called Bayesian forecasting. The extended Bayesian 
forecasting procedure was implemented in the two-process model of sleep regulation, which has 
been used to predict performance on the basis of a sleep homeostatic process and a circadian 
process.  
 
Employing the two-process model with the Bayesian forecasting procedure to predict 
performance for individual subjects in the face of unknown traits and uncertain states entailed 
subject-specific optimization of three trait parameters (homeostatic build-up rate, circadian 
amplitude and basal performance level) and two initial state parameters (initial homeostatic state 
and circadian phase angle). Prior information about the distribution of the trait parameters in the 
population at large was extracted from psychomotor vigilance test (PVT) performance 
measurements in ten subjects who had participated earlier in a laboratory experiment with 88h of 
total sleep deprivation. The PVT performance data of three additional subjects in this experiment 
were set aside beforehand for use in prospective computer simulations.  
 
The simulations involved updating the subject-specific model parameters every time the next 
performance measurement became available, and then predicting performance 24h ahead. 
Comparison of the predictions to the subjects’ actual data revealed that as more data became 
available for the individuals at hand, the performance predictions became increasingly more 
accurate and had progressively smaller 95% confidence intervals, as the model parameters 
converged efficiently to those that best characterized each individual. Even when more 
challenging simulations were run (mimicking a change in the initial homeostatic state; simulating 
the data to be sparse), the predictions were still considerably more accurate than would have 
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been achieved by the two-process model alone. Although the work described in this report is 
limited to periods of consolidated wakefulness with stable circadian rhythms, and follow-up 
translational efforts are needed, the results obtained demonstrate that the Bayesian forecasting 
procedure can successfully overcome some of the major outstanding challenges for mathematical 
prediction of cognitive performance in operational settings. 
 
As a foundation for the development of the Bayesian forecasting procedure, we used the two-
process model of sleep regulation. However, in and of itself, the two-process model does not 
accurately predict the effects on performance of chronic sleep restriction. This diminishes the 
usefulness of the model during sustained Air Force operations and in many other operational 
scenarios. To overcome this limitation, we developed a new sleep/wake homeostatic model of 
fatigue and performance. We showed that the two-process model belongs to a broader, new class 
of models formulated in terms of coupled non-homogeneous first-order ordinary differential 
equations, which have a dynamic repertoire capturing waking cognitive functions across a much 
wider range of wake/sleep schedules.  
 
We selected a specific case of the new model class, and demonstrated the existence of a 
bifurcation: for daily amounts of wakefulness less than a critical threshold, cognitive 
performance (as represented by PVT measurements) is predicted to converge to an 
asymptotically stable fixed point (equilibrium); whereas for daily wakefulness greater than the 
critical threshold, cognitive performance is predicted to diverge from an unstable fixed point. 
Comparison of model simulations to laboratory observations of lapses of attention on the PVT, 
in experiments on the effects of chronic sleep restriction and acute total sleep deprivation, 
indicated that this bifurcation is an essential feature of performance impairment due to sleep loss.  
 
We also considered two new predictions, that may be experimentally verified to validate the 
model. These predictions, if confirmed, challenge conventional notions about the effects of sleep 
and sleep loss on cognitive performance. The new model class implicates a biological system 
analogous to two connected compartments containing interacting compounds with time-varying 
concentrations as being a key mechanism for the regulation of cognitive performance as a 
function of sleep loss. The dynamics of the new model suggests that the adenosinergic 
neuromodulator/receptor system may provide the underlying neurobiology.  
 
This final report covers the work performed from 1 Jan 2005 through 30 Sep 2005 at the 
University of Pennsylvania (AFOSR grant FA9550-05-1-0086), and the subsequent work 
performed from 1 Oct 2005 through 29 Feb 2008 at Washington State University (AFOSR grant 
FA9550-06-1-0055) where the project was transferred when the PI (Van Dongen) moved there. 
The products of this project include the first method for on-line individualization of 
mathematical model prediction of fatigue and performance; and a substantially improved 
mathematical model of fatigue and performance under conditions of chronic sleep restriction. 
The results of the project represent significant advances in fatigue and performance modeling. 
They contribute to accurate, subject-specific prediction of cognitive impairment in Air Force 
operations, and provide useful approaches to help optimize mission safety and success. The 
results of this project are also highly relevant for the many operational settings in today’s 24/7 
society that put individuals at risk of performance deficits due to sleep loss and circadian 
displacement. 
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PREDICTING FATIGUE AND PERFORMANCE IN INDIVIDUALS: ACCOUNTING 
FOR UNKNOWN TRAITS AND UNCERTAIN STATES 
 
Introduction 
 
Increased fatigue and degraded cognitive performance due to sleep loss and night work are a 
concern in Air Force operations and many other operational settings (e.g., transportation, health 
care, emergency response, space flight). Mathematical models of fatigue and performance may 
be useful to help predict performance impairment resulting from sleep loss (Neri, 2004). As 
such, mathematical models may be seen as fatigue management tools, supporting the anticipation 
and prevention of high-risk situations, the implementation of safe and productive work 
schedules, and/or the timely delivery of fatigue countermeasures.  
 
In the AFOSR-sponsored “Fatigue and Performance Modeling Workshop” (June 2002; Seattle, 
Washington), a number of mathematical models were discussed and evaluated (Mallis et al., 
2004; Van Dongen, 2004). In the proceedings of that workshop, scientists and stakeholders alike 
pointed out that to be useful and reliable in operational settings, performance models must be 
able to deal with inter-individual differences in performance impairment from sleep loss (Dinges, 
2004; Friedl et al., 2004; Van Dongen, 2004). Laboratory experiments have revealed that these 
inter-individual differences are substantial, and that they represent trait vulnerability (Van 
Dongen et al., 2004a). Thus, inter-individual differences are important determinants of sleep-
deprived performance (Van Dongen et al., 2005b), and should be captured by models deployed 
in operational settings (Dinges and Achermann, 1999). 
 
Performance models can be made to account for inter-individual differences by first assessing 
every subject’s individual response to sleep deprivation, and then adjusting the model parameters 
to match each subject’s specific response. In most operational environments, however, assessing 
everyone’s response to sleep deprivation is unpractical or unfeasible. It is a problem, therefore, 
that none of the currently available mathematical models of performance can handle inter-
individual differences unless the individuals are characterized in advance. 
 
One procedure to overcome this limitation was recently demonstrated by Olofsen et al. (2004): 
Bayes posterior distribution estimation, also known as Bayesian forecasting. This approach is 
grounded in Bayesian statistics, and as such it makes use of the advance characterization of the 
inter-individual variability in the population as well, for instance by studying performance 
changes over time during a sleep deprivation experiment. However, this can be done in a 
representative sample drawn from that population—it is not necessary to include the specific 
individuals for whom the mathematical model will ultimately be used. Modern statistical 
techniques referred to as mixed-effects modeling (Vonesh et al., 1997) allow the data from the 
studied sample to be separated into consistent changes over time, systematic between-subjects 
variance (i.e., trait-like variability), and residual within-subjects variance or error variance 
(Olofsen et al., 1999; Van Dongen et al., 2004b). This yields information about the prior 
probability that any given level of impairment would be observed at a specific time point in a 
person randomly drawn from the population at large. Importantly, it also produces probability 
estimates of the contributions to that impairment level from the person’s trait characteristics on 
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the one hand, and from error variance (e.g., random short-term variations in alertness) on the 
other hand.  
 
To illustrate this with an example, consider a population of Air Force pilots, whose responses to 
sleep loss could be characterized by subjecting a representative sample of them to sleep 
deprivation in a laboratory. By repeatedly measuring each subject’s performance during the 
laboratory sleep deprivation period, and subsequently analyzing the collective measurement data 
with mixed-effects modeling, the pattern of consistent changes over time, the between-subjects 
variance and the within-subjects variance for performance impairment due to sleep loss could be 
assessed for this population. For the sake of argument, let’s assume that the primary performance 
assay in the sleep deprivation experiment was a choice reaction time task. Let’s say that the 
group-average response to sleep loss as measured at midnight, expressed relative to baseline, was 
an increase of 6 in the number of response errors. Because of trait inter-individual differences as 
well as random fluctuations, there may be some individual in the population whose response to 
sleep loss at midnight would show an increase of 11 errors relative to baseline, i.e., 5 additional 
errors compared to the group average. Using the between-subjects variance and within-subjects 
variance as assessed for the representative sample, a statement could be made about the 
probability of observing such a response to sleep loss. Moreover, it could be estimated to what 
extent this would likely be caused by trait vulnerability to sleep loss, and to what extent a 
random fluctuation would likely have contributed. For instance, if the between-subjects variance 
were somewhat larger than the within-subjects variance in this population, then further 
calculations might show that the individual’s trait characteristics most probably led to 3 
additional errors in the response to sleep loss (as compared to the group average), and that 
random variability most probably contributed the remaining 2 additional errors observed at 
midnight.  
 
Thus, even if nothing is a-priori known about a given person, it is possible to acquire probability-
based information regarding that person’s performance during sleep deprivation—owing to first 
having studied the inter-individual differences in a sample of the population to which the person 
belongs. The Bayesian forecasting procedure can use this information to optimize the parameters 
of a mathematical model of performance for any individual of interest. Initially, the model 
parameters would be set to those that would best describe the average person in the population, 
and model predictions for the individual’s performance would be based on this population-
average version of the model. This makes sense, for if nothing is as yet known about the 
individual, the probability is greatest that the individual’s response is approximately average. 
However, if it is possible to take one or more measurements of the individual’s performance, 
then the likely contribution of his or her actual trait characteristics to the observed performance 
could be estimated, as outlined above. Using Bayesian probability statistics, this trait information 
can be utilized to optimize the model parameters for the individual at hand (Olofsen et al., 2004). 
In this manner, Bayesian forecasting allows a mathematical model to account for inter-individual 
differences even when performance predictions are applied to individuals not studied 
beforehand. 
 
This project dealt with implementation of the Bayesian forecasting procedure for mathematical 
modeling of performance, but also extended this effort to simultaneously account for subject-
specific states. The latter issue has been largely overlooked in the published literature, but is no 
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less important in operational settings. For example, the sleep history of personnel reporting for a 
mission is typically undocumented, and therefore individuals’ initial sleep homeostatic state may 
be a-priori unknown. Hence, to be truly useful and reliable in operational settings, performance 
models must also be able to deal with this initial state uncertainty. In this report, it is shown that 
this matter can be approached with the Bayesian forecasting procedure as well.  
 
 
Performance Prediction with the Two-Process Model 
 
To develop a tool for mathematical model prediction of individual subjects’ performance in the 
face of a-priori unknown inter-individual differences in traits as well as uncertain states, the 
seminal two-process model of sleep regulation (Borbély, 1982; Borbély and Achermann, 1999) 
was used as a model platform. The two-process model postulates two primary sleep/wake 
regulatory processes: a sinusoidal circadian process and a saturating exponential homeostatic 
process.  
 
The equation for the circadian process C is a closed-form equation of the form: 

),/)(2sin()( τϕπ −=∑ tkatC
k

k  (1) 

where t denotes clock time (in hours, relative to midnight), φ is a parameter for the circadian 
phase angle (i.e., the timing of the circadian process relative to clock time), and τ is a parameter 
for the circadian period. Since circadian phase shifts and temporary changes in the circadian 
period are mathematically equivalent (Van Dongen et al., 1998), τ is redundant with φ in most 
operational environments, and is therefore fixed here at τ = 24h. The summation over the index k 
serves to allow for harmonics in the sinusoidal shape of the circadian process. For application of 
the two-process model for alertness prediction, k has been taken to go from 1 to 5, with the 
constants ak being fixed as a1 = 0.97, a2 = 0.22, a3 = 0.07, a4 = 0.03, and a5 = 0.001 (Achermann 
and Borbély, 1994). 
 
The equation for the homeostatic process S during wakefulness is a difference equation of the 
form: 

r/)1(1 τt
ttt eSS Δ−

Δ−−−=  (2) 
(S > 0), where t denotes (cumulative) clock time, Δt denotes the time step (of arbitrary length, 
but typically taken as Δt = 0.5h), and τr represents the time constant for the build-up of the 
homeostatic process during wakefulness. For the present purposes, only consolidated periods of 
wakefulness are considered; the equation for S during sleep is therefore not discussed here. 
 
By replacing time constant τr with an equivalent rate constant ρ, and substituting S with reversed 
sign (i.e., S < 0) for S – 1, Eq.  (2) can be simplified to: 

.t
ttt eSS Δ−

Δ−= ρ  (3) 
Iteratively tracking this difference equation back in time to an arbitrary modeling start time t0, it 
follows that: 

,)( )( 0ttetS −−= ρξ  (4) 
where ξ is the initial homeostatic state (i.e., at time t0). Here, we select t0 to be the time of the 
most recent awakening, and so ξ represents the homeostatic state upon awakening. 
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As conceptualized by Achermann and Borbély (1994), performance may be modeled by 
assuming an additive interaction of the circadian and homeostatic processes. The general 
equation for this would be: 

,)()()( κγβ ++= tCtStP  (5) 
where P is the predicted level of performance, β is a parameter for the relative impact of the 
homeostatic process on performance, and γ is a parameter for the amplitude of the effect of the 
circadian process on performance. The intercept parameter κ offsets the two processes and 
thereby modulates the basal performance level. Substituting Eqs. (1) and (4) into Eq. (5), and 
noting that β is redundant with ξ (i.e., they only occur together as β ξ and may therefore be 
replaced by a single, rescaled parameter ξ), it follows that: 

.)/)(2sin()( )( 0 κτϕπγξ ρ +−+= ∑−− tkaetP
k

k
tt  (6) 

The free parameters in this performance model are ρ, γ, κ, ξ and φ. There is experimental 
evidence that the homeostatic build-up rate ρ (Finelli et al., 2000; Aeschbach et al., 2001), the 
circadian amplitude γ (Van Dongen et al., 2004a, footnote a), and the basal performance level as 
determined by κ (Kane and Engle, 2002) depend on individual subjects’ trait characteristics. 
These parameters are therefore considered trait parameters.  
 
The homeostatic state and the circadian phase cannot normally be considered trait parameters; 
they may change for any given individual depending on the circumstances (e.g., due to recent 
sleep loss and/or circadian phase shifting from a bout of shift work) and are therefore state 
parameters. However, within a consolidated period of wakefulness, the initial homeostatic state 
ξ (i.e., the homeostatic state at the time of the most recent awakening t0) is not subject to change. 
Thus, the initial homeostatic state is an enduring condition. Although the initial homeostatic state 
cannot be inferred from population-based data, its enduring quality makes it otherwise 
indistinguishable from a trait for the purpose of parameter estimation with the Bayesian 
forecasting procedure. When applying that procedure to a consolidated period of wakefulness, 
therefore, the parameter ξ may be treated as equivalent to a trait parameter. This important 
property is implied throughout this report whenever the term initial state parameter is used. 
 
In general, the circadian phase angle cannot be considered an enduring condition—for many 
operational settings, especially those involving shift work or transmeridian travel, this would be 
a poor approximation of reality. However, while it is possible to deal with transitory states in the 
Bayesian forecasting procedure, this goes beyond the scope of the present project. The work 
described here is limited to those circumstances under which circadian phase angle is stable and 
may therefore be assumed to represent an enduring condition. With this qualification, circadian 
phase angle is not distinguishable from a trait for the purpose of parameter estimation with the 
Bayesian forecasting procedure. When applying the procedure, therefore, the parameter φ is also 
an initial state parameter which may be treated as equivalent to a trait parameter. 
 
 
Population Model for the Two-Process Model 
 
As described in the introduction, the Bayesian forecasting procedure makes use of the advance 
characterization of inter-individual variability in the population. In the present context, the 
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procedure depends on the advance estimation of the two-process model parameters and their 
between-subjects variance in a sample of n subjects drawn from the population. It is assumed 
that an appropriate data set is available. For illustration purposes, such a data set is introduced 
later in this report. 
 
The two-process model parameters and their between-subjects variance can be estimated on the 
basis of the available data using the following mixed-effects regression equation: 

,)( ijijiij tPy ε+=  (7) 
where yij represents the data for subjects i (i = 1, ..., n) at time points tij (with j indexing the data 
points), and εij stands for independent, normally distributed residual error with mean zero and 
variance σ2. Pi is the subject-specific version of the performance model in Eq. (6): 

.)/)(2sin()( )( 0
iiij

k
ki

tt
iiji tkaetP iiji κτϕπγξ ρ +−+= ∑−−  (8) 

Here ρi, γi, κi, ξi and φi are the subject-specific model parameters, and ti0 is the subject-specific 
modeling start time.  
 
To estimate between-subjects variance in the trait parameters, it is assumed a priori that ρi and γi 
are lognormally distributed over subjects around ρ0 and γ0, respectively, and that κi is normally 
distributed over subjects around κ0. It is also assumed that there is no covariation over subjects 
among ρi, γi and κi. The assumptions about the distribution types for these “random effects” are 
weak (Olofsen et al., 2004). It is not critical for the shape of the assumed distributions to describe 
the data very precisely, as the effect thereof on the results of the Bayesian forecasting procedure 
is limited. Some statistical and numerical efficiency may be gained by explicitly modeling the 
covariation between pairs of random effects, but that issue is beyond the scope of the project.  
 
The distributions of the initial state parameters ξi and φi depend on the conditions under which 
the available data were collected. Specifically, for the data set introduced in the next section of 
this report, by design the initial homeostatic state ξ and the circadian phase angle φ should be 
approximately the same for all subjects—say, ξ0 and φ0, respectively. (Later, however, for 
simulation purposes we consider ξ and φ as uncertain.) 
 
Taken together, these assumptions, or prior distributions, can be translated into the following 
mathematical equations: 

,0
iei

νρρ =  (9a) 

,0
iei

ηγγ =  (9b) 
,0 ii λκκ +=  (9c) 

,0ξξ =i  (9d) 
,0ϕϕ =i  (9e) 

where νi, ηi and λi are independent, normally distributed with means of zero and variances ψ2, ω2 
and χ2, respectively. Characterization of the trait inter-individual variability in the population in 
the framework of the two-process model thus entails the assessment of the normal distributions 
for νi, ηi, and λi by estimating the parameters ψ2, ω2 and χ2. For reference purposes, the relevant 
model parameters are recapitulated in Table 1. 
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Table 1: Summary descriptions of the trait parameters (distinguishing their fixed effects, the associated subject-
specific random effects, and the variances thereof across the population) and other model parameters (initial state 
parameters, residual error) involved in the Bayesian forecasting procedure. 
 

Homeostatic build-up rate 
 

ρ (fixed effect) 
ν (random effect) 
ψ2 (population variance) 

Circadian amplitude 
 

γ (fixed effect) 
η (random effect) 
ω2 (population variance) 

Trait Parameters 

Basal performance level 
 

κ (fixed effect) 
λ (random effect) 
χ2 (population variance) 

Initial homeostatic state ξ (subject-specific) State Parameters 
Circadian phase angle φ (subject-specific) 

Residual Error Error variance σ2 (population variance) 
 
Substitution of Eqs.  (8) and Error! Reference source not found. into Eq. (7) leads to the 
following formulation of the mixed-effects regression equation: 

.)/)(2sin( 000
)(

0
00
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 (9) 

The parameters of this regression equation can be estimated by means of maximum likelihood 
estimation. Let the probability density function (pdf) of a normal distribution with mean m and 
variance s2 for a variable x be denoted as p[x; m, s2]. The likelihood li of observing the data yij for 
a given subject i can be expressed as a function of the regression parameters, as follows: 

],,)/)(2sin(;[
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00000
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where σ2 is the variance of the residual error, and c is an (irrelevant) normalization constant.  
  
Integration over the assumed normal distributions for νi, ηi and λi to account for the relative 
probabilities of all possible values of these parameters yields the marginal likelihood Li: 

∫ ∫ ∫
=

i i i

iiiiiiiiii

i

dddppplC

L

ν η λ

ληνχλωηψνσληνϕξκγρ

σχωψϕξκγρ

,],0;[],0;[],0;[),,,,,,,,(

),,,,,,,,(
2222

00000

2222
00000

 

where the integrals each run from –∞ to ∞, and C is an (irrelevant) normalization constant. It 
follows that the likelihood L of observing the entire data set, for all subjects collectively, can be 
expressed as a function of the regression parameters, as follows: 

.),,,,,,,,(),,,,,,,,( 2222
00000

2222
00000 ∏=

i
iLL σχωψϕξκγρσχωψϕξκγρ  (11) 

 
Maximum likelihood estimation entails assessment of those parameter values that would make it 
maximally likely for the data to be observed as they were, i.e., those parameters that maximize L. 
This is typically done by minimizing –2 log L, which is equivalent to maximizing L but is easier 
to perform numerically. The ensuing parameter estimates establish what is called the population 
model. Here, the population model characterizes the consistent changes in performance over time 
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according to the two-process model, the systematic between-subjects variance (i.e., trait-like 
variability) in the parameters of the two-process model, and the residual within-subjects variance 
(i.e., error variance) in the sample representing the population. 
 
 
Bayesian Forecasting with Unknown Traits and Uncertain States 
 
Once the population model has been established, it can be used in the Bayesian forecasting 
procedure to optimize the parameters of the two-process model and to make subject-specific 
predictions of future performance for an individual not studied beforehand. Let’s indicate this 
individual with index “a”. The subject’s trait parameters are thus represented by νa, ηa and λa, and 
the subject’s initial state parameters are ξa and φa. Recasting Eq. (9) yields:  
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Fixing ρ0, γ0, κ0, ψ2, ω2, χ2 and σ2 at their established population values, the subject-specific 
parameter optimization task focuses on estimating νa, ηa, λa, ξa and φa.  
  
At first, when no performance data are as yet available for the subject, the most likely estimates 
for the subject’s traits are those that correspond to the “average” subject in the population—i.e., 
νa = 0, ηa = 0 and λa = 0. Such reasoning would not normally be valid for the subject’s initial 
homeostatic state ξa and circadian phase angle φa. With νa, ηa and λa fixed at zero, however, Eq. 
(12) would reduce to: 
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in which only ξa and φa are free parameters. With three performance measurements for the 
individual at hand, first estimates for the initial state parameters ξa and φa can generally be 
obtained from this equation. This suggests that, as a rule of thumb, Bayesian forecasting 
estimates for the subject’s model parameters may begin to be reliable when the third 
performance measurement becomes available (and with every measurement thereafter).  
  
Let the pdf of a uniform distribution over the interval from a to b for a variable x be denoted as 
u[x; a, b]. Assuming that the distributions represented by the parameters νa, ηa, λa, ξa and φa in 
Eq. (12) are independent of each other and of the noise term εaj, a-posteriori estimates for the 
state and trait parameters are obtained by maximizing the Bayesian expression: 
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given the subject’s available data yaj (j = 1, 2, 3, ...). Here la is the likelihood function taken from 
Eq.  (10) with ρ0, γ0, κ0 and σ2 fixed; and La is defined analogous to the marginal likelihood in Eq. 
Error! Reference source not found.: 
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Here the integrals for νa, ηa and λa run from –∞ to ∞; and the integrals for ξa and φa run from –∞ 
to 0 and from 0 to τ, respectively.  
 



FA9550-06-1-0055 Individualized Biomathematical Modeling of Fatigue and Performance 

Final Report PI: Van Dongen 12

The normal distribution factors in Eq.  (14) represent the prior probability information about the 
trait parameters, as engendered in the population model. No such prior information is available 
for the initial state parameters, which is why they are assigned uniform distributions across the 
ranges of their possible values. For the purpose of maximization, the uniform distributions for ξa 
and φa cancel out; and the denominator La, being invariant to the free parameters (ξa, φa, νa, ηa 
and λa) also cancels out. As such, for maximization, Eq.  (14) may be simplified to 

].,0;[],0;[],0;[),,,,( 2
a

2
a

2
aaaaaaa χλωηψνληνϕξ pppl  (16) 

 
Maximization of Eq. (16), using all the available performance data yaj for the subject at hand, 
yields the most likely estimates for the parameters ξa, φa, νa, ηa and λa. By repeating this 
maximization (iteratively) each time additional performance data become available, the 
parameter estimates improve with every such update, converging rapidly to those that 
statistically optimally represent the individual. Consequently, the accuracy of predictions for 
future performance, based on the updated parameter estimates, increases progressively. Due to 
first having characterized a sample of the population at large, this improvement in prediction 
accuracy for a previously unstudied individual occurs much more efficiently than would be 
possible if the individualized predictions were attempted without the use of population 
information (Olofsen et al., 2004). 
  
As an additional advantage, Eq. (16) allows estimation of how accurate the subject-specific 
parameter estimates and performance predictions actually are, via assessment of (95%) 
confidence intervals. How this is best approached depends on the numerical procedure used to 
deal with Eq. (16), and a detailed discussion is beyond the scope of this report (but see Smith et 
al., 2007). One approach currently implemented is described below. 
 
 
Numerical Implementation 
 
A computer program was developed for the numerical maximization of Eq. (16) to estimate the 
parameters, and for the assessment of 95% confidence intervals for the parameter estimates and 
performance predictions. The computer program was written in Matlab version 7.0 (The 
MathWorks, Inc., Natick, Massachusetts), and was run under the Microsoft Windows XP 
operating system on a 1.7GHz Intel Pentium desktop computer.  
 
Eq. (16) was maximized through a 5-dimensional grid search, which involved calculating the 
outcome across many combinations of possible parameter values and recording the largest 
outcome encountered. The parameter grid was made up of νa ranging from –3 to 3 in intervals of 
0.5; ηa ranging from –2 to 2 in intervals of 0.25; λa ranging from –30 to 30 in intervals of 3; ξa 
ranging from –120 to 0 in intervals of 15; and φa ranging from 0 to 21 in intervals of 3 (due to 
the 24h circularity of φa there was no need to evaluate φa at 24). The grid ranges for the (non-
circular) parameters νa, ηa, λa and ξa were selected such that the probability density represented 
by Eq. (16) vanished toward the boundaries. To increase the computational efficiency, 
calculation of Eq.  (10) as embedded in Eq. (16) was done recursively, and the irrelevant constant 
c in the formula was ignored (i.e., set to 1). To enhance the numerical resolution of the parameter 
estimates, the parameter grid was interpolated by a factor 4 in each dimension using piecewise 
cubic splines. The parameter values corresponding to the interpolated maximum were entered 
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into Eq. (12) (minus the error term εaj) to yield the most probable prediction of future 
performance (for given time t). 
 
For each performance prediction, a 95% confidence interval was calculated by first identifying 
the smallest contiguous portion of the (interpolated) parameter grid that captured 95% of the total 
area under the curve given by Eq. (18). All combinations of parameter values included in this 
portion of the grid were then entered into Eq. (12) to compute the corresponding predictions of 
future performance (for given time t). The minimum and maximum of the performance 
predictions encountered in this process were taken as estimates of the boundaries of the 95% 
confidence interval (which was thereby allowed to be asymmetrical). 
 
Bayesian 95% confidence intervals for the parameter estimates proper were derived by 
constructing the marginal pdfs. These are the pdfs for every parameter considered individually 
while accounting for the probability densities of the other parameters. The marginal pdf for each 
parameter was computed by integrating over the other four parameters across the parameter grid. 
All marginal pdfs thus obtained were interpolated by a factor 30 using piecewise cubic splines. 
Their maxima were identified in order to obtain more precise estimates for the individual model 
parameters. Lastly, 95% confidence intervals for the parameter estimates were computed by 
assessing the shortest contiguous interval capturing 95% of the area under the curve of each 
marginal pdf (Sivia, 1996). 
 
Average prediction bias (i.e., systematic under- or over-prediction) was quantified by calculating 
the average difference between predictions and actual observations. Furthermore, average 
prediction error (i.e., point by point deviation) was quantified by computing the square root of 
the average squared difference between predictions and actual observations (i.e., the root mean 
square error).  
 
 
Experimental Data and Corresponding Population Model 
 
To illustrate the potential of the Bayesian forecasting approach, a previously established data set 
was employed to run simulations. The data were collected during a laboratory study involving 
88h of total sleep deprivation, as described by Van Dongen and Dinges (2005). During the sleep 
deprivation period, a range of cognitive performance outcomes was measured every 2h, from 
07:30 until 23:30 three days later. Performance on the psychomotor vigilance test (PVT) was 
selected as the outcome measure to model, because of demonstrated validity and sensitivity to 
the homeostatic and circadian processes (Dorrian et al., 2005). The number of lapses (reaction 
times ≥ 500ms) on the PVT was recorded as the primary outcome variable y. 
 
Data from n = 10 subjects in the study, drawn from a population of healthy males aged 21 to 50, 
were used to derive a population model based on the two-process model, as per Eq. (9). Fig. 1 
displays the data from this sample, averaged over subjects. As discussed in Van Dongen and 
Dinges (2005), performance deteriorated across days of sleep deprivation in accordance with the 
homeostatic process, Eq. (4), and varied rhythmically within each day in accordance with the 
circadian process, Eq. (1). The average level of performance impairment reached after multiple 
days of total sleep deprivation was considerable—it appeared to exceed the average level of 
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performance impairment resulting from being legally intoxicated by alcohol (Dawson and Reid, 
1997). However, there were substantial inter-individual differences in the effects of sleep 
deprivation on psychomotor vigilance performance, as illustrated by the inset in Fig. 1. The bar 
shows the interval of ±1 standard deviation for systematic between-subjects variability, 
determined by mixed-effects analysis of variance (Van Dongen et al., 2004c). 
 

Figure 1: Performance measurements during a 
laboratory study involving 88h of total sleep deprivation, 
and population model of performance based on the two-
process model. The solid boxes show the number of 
lapses (reaction times ≥ 500ms) on a psychomotor 
vigilance test administered every 2h, averaged over 
subjects (n = 10). Upwards in the graph corresponds to 
greater performance impairment. The thin curve shows 
the population model as plotted for the “average” 
subject. The averaged data are captured well by this 
curve. However, the averaged data do not show the 
considerable inter-individual differences throughout the 
sleep deprivation period. The bar in the inset depicts the 
interval of ±1 standard deviation for between-subjects 
variability in the data. Although difficult to illustrate 
graphically, these inter-individual differences are 
captured well by the population model also. 

 
The population model was assessed using Eqs. Error! Reference source not found. through 
(11), as evaluated with the computer software NONMEM version V (GloboMax LLC, Hanover, 
Maryland). Time t was expressed as cumulative clock time (in hours) with time 0 defined as the 
midnight preceding the total sleep deprivation period. The sleep deprivation began at 07:30, and 
this time point was used to define the modeling start time, so that t0 = 7.5 for all subjects. Subject 
selection criteria and experimental controls (Van Dongen and Dinges, 2005) standardized the 
initial homeostatic state ξ and circadian phase angle φ at the beginning of sleep deprivation. For 
the purpose of assessing the population model, therefore, these two parameters were considered 
the same for all 10 subjects in the sample. The circadian phase angle was relatively stable during 
the 88h of total sleep deprivation (Van Dongen et al., 1998), indicating that the initial state 
parameter φ represented an enduring condition under these circumstances.  
  
The parameter estimates (± standard errors) for the population model were found to be as 
follows: ρ0 = 0.0350 (± 0.0156), γ0 = 4.30 (± 1.05), κ0 = 29.7 (± 3.7), ξ0 = –28.0 (± 4.4), φ0 = 0.6 
(± 0.2), ψ2 = 1.15 (± 0.41), ω2 = 0.294 (± 0.191), χ2 = 36.2 (± 26.2), and σ2 = 77.6 (± 7.3). Fig. 1 
shows that the population model closely matched the data as averaged over subjects. Not readily 
observed in Fig. 1 is that the population model also matched the data of the individual subjects 
well, since the parameters of the population model were optimized relative to the data of the 
whole sample of n = 10 subjects without averaging out the considerable inter-individual 
differences. Compared to the same model without inter-individual differences, the population 
model reduced the residual error variance by a factor 1.64.  
  
The population model described here characterized the changes in performance during total sleep 
deprivation in accordance with the two-process model, as well as the inter-individual differences 
in the model parameters, and the residual error, in a population of healthy males aged 21 to 50. 
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This provided all the information necessary to run simulations for the Bayesian forecasting 
procedure, in order to demonstrate the predictability of individual subjects’ performance in the 
face of a-priori unknown traits and uncertain states. 
 
 
Bayesian Forecasting Simulations 
 
Besides the ten subjects used to establish the population model, three additional subjects drawn 
from the same population participated in the total sleep deprivation study described above. These 
three subjects were selected to represent considerable inter-individual differences in performance 
impairment during sleep deprivation, and their data were set aside prospectively to run 
simulations with the Bayesian forecasting procedure. The trait parameters νa, ηa and λa for these 
subjects were not known a priori. Furthermore, even though the initial state parameters ξa and φa 
were approximately the same for all subjects due to the design of the study (Van Dongen and 
Dinges, 2005), for the purposes of simulations these parameters were considered uncertain. 
  
The objective of the first of our simulations was to make predictions of the three subjects’ 
performance during total sleep deprivation, at 1h intervals for up to 24h in the future (i.e., 24h-
ahead predictions); and to update the predictions using Bayesian forecasting each time the next 
performance measurement became available. The population model parameters ρ0, γ0, κ0, ψ2, ω2, 
χ2 and σ2 remained fixed at their previously established population averages (see the previous 
section). Modeling start time ta0 was fixed at 7.5 (i.e., 07:30, the scheduled time of awakening). 
Time taj was incremented in 2h steps beginning at ta0, so as to coincide with the time points for 
data collection in the sleep deprivation experiment. At each increment, parameter estimates were 
updated by maximizing Eq. (16) using the numerical approach outlined previously. With the 
updated parameter estimates, Eq. (12) (minus the error term εaj) was evaluated at 1h intervals 
from taj to taj + 24 in order to predict performance up to a 24h prediction horizon. 
   
Fig. 2 shows the results of the simulation, in snapshots taken at 8h intervals. The three subjects 
are indicated as “A”, “B” and “C”. The first snapshot (top row panels in Fig. 2) occurred at 
11:30, at 4h awake, when the third performance measurement was taken. Based on the rule of 
thumb suggested by Eq. (13), this is the first occasion when there may have been enough data 
points (black circles) to reasonably estimate the initial state parameters ξa and φa. Even at this 
early stage, the 24h predictions for the three subjects (solid curves) were already notably 
different, accounting with remarkable accuracy for the different performance profiles that would 
subsequently be observed in the actual measurements (gray circles). However, the 95% 
confidence intervals for the performance predictions were still large. The last snapshot (bottom 
row panels in Fig. 2) was taken 40h later, well before the end of the 88h sleep deprivation period, 
but sufficiently far along for the present purposes. By this time (i.e., at 44h awake), the 24h 
predictions had diverged substantially among the three subjects, as had the actual observations. 
Also, the 95% confidence intervals for the performance predictions were much narrower. There 
was no overlap between the 95% confidence intervals for subjects B and C at any of the 
evaluated time points (at 1h intervals) across the 24h prediction horizon (center and right bottom 
panels in Fig. 2). This implies that at 44h awake, the predictions for these two individuals were 
statistically distinct with a type I error of much less (Payton et al., 2003) than 0.05 for every 
prediction time point. 
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Figure 2: Simulation using the Bayesian forecasting procedure to predict performance over time for three 
individuals exposed to acute total sleep deprivation. Each column of panels represents a different individual. Subject 
“A” exhibited a fairly average response to sleep deprivation (cf. Fig. 1); subject “B” displayed considerable 
resistance to the effects of sleep deprivation; and subject “C” had relatively high vulnerability to performance 
impairment due to sleep deprivation. However, these subject-specific characteristics were not clear in advance—in 
this simulation, the trait parameters ν, η and λ were assumed a-priori unknown, and the initial state parameters ξ and 
φ were considered a-priori uncertain as well. The first row of panels shows the performance predictions for each of 
the three individuals upon acquisition of the third performance measurement, at 4h awake (11:30 clock time). The 
black circles show the number of lapses (reaction times ≥ 500ms) on a psychomotor vigilance test administered 
every 2h up to that time point. The thick curve shows the psychomotor vigilance performance predictions for the 
subsequent 24h period. The thin vertical lines display the corresponding 95% confidence intervals (in 1h steps). For 
comparison, the gray circles show the actual performance measurements during the 24h prediction period. (Since 
this was a simulation based on data acquired previously, these observations were already known, even though they 
were not yet made available to the Bayesian forecasting procedure.) Note that any data points that visually seem to 
be missing have the prediction curve right on top of them. The second row of panels shows the situation 8h later, 
when four additional performance measurements were available and the model parameters had been updated 
accordingly by the Bayesian forecasting procedure. The third through sixth rows show the situation in further 8h 
increments. 
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Since the sleep deprivation study took place in the past and all the data were already available, 
the simulation predictions could be compared directly to actual observations of performance 
impairment. Looking at all the snapshots in succession (from top to bottom through Fig. 2), the 
performance responses to sleep deprivation varied systematically among the three individuals. 
The model predictions were progressively tailored to these subject-specific responses, and the 
95% confidence intervals consistently reduced in size, revealing a steady increase in model 
precision. Of course, this does not mean that the predictions were highly accurate throughout. 
Occasionally, performance at specific time points was considerably under- or over-predicted. 
However, the observations at those time points typically stood out from the surrounding data 
points, and did not fit the expected profile of gradual change over time in accordance with the 
homeostatic and circadian processes. Whether these data points represent outliers or whether 
they may reflect systematic aspects of performance regulation not captured by the two-process 
model is difficult to establish. Ultimately, the Bayesian forecasting procedure can only predict 
performance as accurately as allowed by the comprehensiveness of the mathematical model in 
which it is implemented, and the quality of the data it uses to update the model parameters. 
Given these caveats, the simulation demonstrated a high degree of success in predicting 
performance 24h ahead during laboratory sleep deprivation. 
 
Fig. 3 shows the evolution of the model parameter estimates with every step in the simulation, 
from 4h awake up to 70h awake, for subject “A”. The figure illustrates that the three trait 
parameters as well as the two initial state parameters could be estimated with increasing 
precision as more data became available over time. However, this “sharpening up” of the 
parameter estimates did not always occur in a gradual fashion. Occasional abrupt changes 
reflected variability in how informative the newly acquired performance data were for the 
parameters in question. After about 50h of wakefulness, there was hardly any new information in 
the performance data, and the parameters converged on their best estimable values. The 
estimates of the trait and initial state parameters for each of the three subjects at the end of the 
simulation, after 88h of total sleep deprivation, are shown in Table 2. For comparison, the 
population averages of the trait parameters were zero by definition, and the population averages 
of the initial state parameters were ξ0 = –28.0 and φ0 = 0.6. 
 
Table 2: Estimates of the trait and initial state parameters for the three individual subjects, as converged on after 
88h of total sleep deprivation in computer simulations starting at awakening.   
 

 Trait Parameters State Parameters 
Individual ν η λ ξ φ 

  0.12   0.75   2.8 –44.5      0.0 A 
B –2.37 –0.44 –3.1 –30.0      3.3  
C   0.88 –0.13   3.5 –39.5  –2.8* 

*Even though circadian phase angle φ was estimated in the range from 0 to 24, it is shown here on a scale from –12 
to 12 to facilitate comparison among individuals. 
 
It is instructive to assess the performance prediction accuracy of the Bayesian forecasting 
procedure relative to that of the population average model (i.e., with the traits and initial states 
fixed at the estimates obtained when establishing the population model). The latter is illustrated 
in Fig. 4 for a snapshot taken at 44h of wakefulness. A visual comparison of this simulation with 
the one in Fig. 2 (last row panels) suggests that using the population average model had limited 
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consequences for subject “A” (because this subject’s response to sleep deprivation turned out to 
be approximately average), but resulted in substantial over-prediction of performance 
impairment for subject “B” and under-prediction of performance impairment for subject “C”. 
The average prediction bias at 44h awake for the three subjects combined was –4.4 lapses, and 
the average prediction error was 16.3 lapses. In contrast, for the simulation with the Bayesian 
forecasting procedure (Fig. 2), the average prediction bias at 44h awake was only –0.2 lapses, 
and the average prediction error was 8.0 lapses. These numbers demonstrate the improvement 
achieved by using the Bayesian forecasting procedure to predict performance under conditions of 
unknown traits and uncertain states. 
 
Because the three subjects set aside for simulations were taken from the same study as the ten 
subjects used to establish the population model, their initial homeostatic and circadian state 
parameters may have been relatively close to the population averages. Indeed, the parameter 
values at the end of the simulation (Table 2) confirmed this. To rule out that our evaluation of the 
Bayesian forecasting procedure under conditions of state uncertainty constituted a poor test 
because of this, another simulation was run similar to the first one (Fig. 2), but starting at a 
different homeostatic state. This was accomplished by ignoring the first 24h of sleep deprivation 
and the performance data collected during this period, and beginning the simulation at ta0 = 31.5 
(i.e., 07:30 on the second day of sleep deprivation). All other aspects of the simulation were kept 
the same.  
 
Fig. 5 shows the results of this new simulation for subject “A”, in snapshots taken at 8h intervals. 
In terms of time spent awake, the top panel in Fig. 5 corresponds to the fourth panel in the left 
column of Fig. 2—both represent the situation at 28h awake. Since the performance data 
acquired during the first 24h of wakefulness were ignored in the new simulation, however, the 
24h performance predictions made at 28h awake were slightly different, and the 95% confidence 
intervals were much larger. Still, over time (from top to bottom through Fig. 5), the Bayesian 
forecasting procedure displayed the same behavior, progressively tailoring the predictions to the 
subject-specific responses with the 95% confidence intervals consistently reducing in size. At 
44h of wakefulness (i.e., the third snapshot), the average prediction bias across all three subjects 
was –1.5 lapses, and the average prediction error was 8.9 lapses—not much different from the 
first simulation (Fig. 2) and still much better than the population average model simulation (Fig. 
4). The estimates of the trait and initial state parameters for each of the three subjects at the end 
of the simulation, after 88h of total sleep deprivation, are shown in Table 3. By and large, these 
estimates are close to those obtained in the first simulation (Table 2). These results confirm that 
the Bayesian forecasting procedure, as extended by us from the trait-only procedure presented by 
Olofsen et al. (2004), can handle the a-priori uncertainty of initial states well. 
 
Table 3: Estimates of the trait and initial state parameters for the three individual subjects, as converged on after 
88h of total sleep deprivation in computer simulations starting 24h after awakening. 
 

 Trait Parameters State Parameters 
Individual ν η λ ξ φ 

A   0.47   0.76   0.0 –44.5       0.0 
B –2.05 –0.32 –3.9 –31.0       3.2  
C   1.38   0.11   3.4   —*   –3.0 

*ξ could not be estimated from subject C’s data after 24h of wakefulness, as this parameter no longer had a 
noticeable effect on the subject’s performance predictions. 



FA9550-06-1-0055 Individualized Biomathematical Modeling of Fatigue and Performance 

Final Report PI: Van Dongen 19

 
 
 
 
 
 
 
Figure 3: Bayesian forecasting estimates of the trait and initial state parameters 
for subject “A”. This figure illustrates the optimization process for the estimates 
of trait parameters ν, η and λ and initial state parameters ξ and φ during the 
simulation shown in Fig. 2. The panels display the parameter estimates 
(diamonds) with 95% confidence intervals (vertical bars), as updated upon the 
availability of new performance measurements at 2h intervals (beginning with 
the third measurement at 4h of wakefulness). Note that even though circadian 
phase angle φ was estimated in the range from 0 to 24, it is plotted here (last 
panel) on a scale from –12 to 12 to facilitate visual interpretation. The 
confidence intervals for the first two estimates of φ extend below the bottom of 
the panel, and are continued at the top of the panel because of the circular 
nature of this parameter. For reference purposes, the open diamonds mark the 
parameter estimates that were underlying the performance predictions for 
subject “A” as shown successively in the six panels in the left column of Fig. 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4: Simulation using the population model based on the two-process model to predict performance over time, 
without employing the Bayesian forecasting procedure. Details are the same as for the last row of panels (awake 
44h) in Fig. 2, except that the state and trait parameters of the performance prediction model remained fixed at their 
population averages and were not updated based on subject-specific performance information acquired during the 
sleep deprivation period. As a consequence, the performance predictions were equal for each individual, and there 
was no flexibility in the level or shape of the 24h predictions curves. Note also that no suitable equivalent was 
available for the 95% confidence intervals.
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Figure 5: Simulation using the Bayesian forecasting procedure to 
predict performance over time for subject “A”, starting at a later 
time during the sleep deprivation period. Details are the same as for 
Fig. 2 (left column panels), except that here the initial homeostatic 
state was different because the simulation was started at 24h awake 
(but for the purpose of the simulation the amount of prior 
wakefulness was considered not known). Timewise, the top panel in 
this figure corresponds to the fourth panel in the left column of Fig. 
2. The second through sixth panels display the updated 24h 
performance predictions as time passed, shown in 8h increments. 
Note that there were only nine actual observations (gray circles) to 
compare to in the last panel, because data acquisition stopped at 88h 
awake in the laboratory experiment.  
 
 
 
 
 
 
 
 
 
 
 

Critical for the usefulness of the Bayesian forecasting procedure in operational settings is its 
ability to deal with sparse data, collected infrequently at intervals of potentially unequal duration. 
To examine this property, another simulation was conducted, similar again to the first one (and 
starting at ta0 = 7.5), but using only the performance measurements of 8 (instead of 23) randomly 
selected time points to updated the model parameters. Fig. 6 shows the results of this simulation 
for subject “A”, again in snapshots taken at 8h intervals. In terms of time spent awake, the top 
panel in Fig. 6 corresponds to the second panel in the left column of Fig. 2—both represent the 
situation at 12h awake (at 4h awake there were not enough data points yet to expect reasonable 
estimates for the initial state parameters).  
 
The scarcity of data in the simulation of Fig. 6 caused the 24h-ahead prediction curve at 12h 
awake to be notably different than in the first simulation (Fig. 2). The 95% confidence intervals 
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were larger as well. However, as the simulation progressed (from top to bottom through Fig. 6), 
the 24h predictions became very similar to those seen in the first simulation. At 44h awake, the 
average prediction bias across all three subjects was –0.5 lapses, and the average prediction error 
was 8.5 lapses—again similar to what was found in the first simulation (Fig. 2). The estimates of 
the trait and initial state parameters for each of the three subjects at the end of the simulation, 
after 88h of total sleep deprivation, are shown in Table 4. These are also close to the estimates 
obtained in the first simulation (Table 2). Thus, the main effect of the data being sparse appeared 
to be that the 95% confidence intervals reduced in size less rapidly, but the Bayesian forecasting 
procedure did not lose its ability to predict. 
 
Table 4: Estimates of the trait and initial state parameters for the three individual subjects, as converged on after 
88h of total sleep deprivation in computer simulations with sparse data.   
 

 Trait Parameters State Parameters 
Individual ν η λ ξ φ 

A   0.48   0.58   2.6 –48.0      0.0 
B –1.97 –0.25 –4.1 –30.5      5.6  
C   0.35 –0.17   0.4 –26.0 2.6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Simulation using the Bayesian forecasting procedure to 
predict performance over time for subject “A”, under conditions of 
sparse data availability. A large portion of the original data set (see 
Fig. 2, left column panels) was discarded here, so as to simulate that 
the available performance measurements occurred infrequently—at 
random, unequally spaced intervals. Other details are the same as for 
Fig. 2, except that the first panel in that figure (awake 4h) is not 
repeated because only one data point was available during the first 4h 
of wakefulness in this simulation.  
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Repeated Use of Bayesian Forecasting 
 
After the Bayesian forecasting procedure has been applied to make performance predictions for a 
given individual, the optimized values for the trait parameters (but not the initial state 
parameters) can be used again if predictions are needed for this same individual on another 
occasion. Specifically, the prior normal distributions for the trait parameters νi, ηi and λi in Eq. 
(16) can be replaced by the pdfs obtained for these parameters at the end of the previous 
application of the Bayesian forecasting procedure. This way, the data acquired for an individual 
during scenarios in the past continue to contribute to the precision of the performance predictions 
for that individual in the future.  
  
To examine this idea, a simulation was run using data from a different experiment (study 2 in 
Van Dongen et al., 2005a). A person was exposed to 36h total sleep deprivation in the laboratory 
on two occasions. Laboratory circumstances were similar to those encountered in the other 
simulations. However, the 36h sleep deprivations began at 10:00, and this time point was used to 
define the modeling start time for each sleep deprivation period (i.e., t0 = 10). Psychomotor 
vigilance testing occurred at 2h intervals, beginning at 10:30 (t = 10.5), during both sleep 
deprivations. The performance data were very similar between the two sleep deprivations (see 
Fig. 7), as was anticipated given that performance responses to sleep deprivation are overall trait-
like (Van Dongen et al., 2004a). It was expected that, despite the relatively small number of data 
points available, the Bayesian forecasting procedure would achieve greater prediction precision 
more rapidly for the second exposure to sleep deprivation when utilizing the trait information 
obtained in the first exposure. 

 
The results of the simulation are shown in Fig. 7. The first column of panels shows the results of 
Bayesian forecasting for the first sleep deprivation period. The second column of panels shows 
the results for the second sleep deprivation period without utilizing the trait information acquired 
in the first. Although some data points were missing in the first sleep deprivation session, the 
prediction results and corresponding 95% confidence intervals were nearly identical. The 
average prediction bias was –4.3 lapses for the first, and –6.0 lapses for the second sleep 
deprivation; and the average prediction error was 11.2 lapses for the first, and 11.0 lapses for the 
second sleep deprivation. The third column of panels shows the improvement in the predictions 
for the second sleep deprivation when employing the pdfs obtained for the trait parameters (but 
not the initial state parameters) at the end of the first sleep deprivation. Using these pdfs as prior 
information, the average prediction bias for the second sleep deprivation was reduced to 0.5 
lapses, and the average prediction error was reduced to 6.9 lapses.  
 
The improvement stemmed from the fact that the trait and initial state parameters converged 
more rapidly to the values best characterizing the individual at hand, due to the more informative 
prior distributions for the trait parameters. As a result, the performance predictions became more 
accurate, and the 95% confidence intervals were consistently smaller, than without the use of the 
information from the first exposure to sleep deprivation (compare the second and third columns 
in Fig. 7). This illustrates that the Bayesian forecasting procedure can become more effective 
when used repeatedly.  
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Figure 7: Simulation using the Bayesian 
forecasting procedure to predict 
performance over time for a single 
individual exposed to acute total sleep 
deprivation twice. The first column of 
panels shows the simulation for the first 
time the individual underwent 36h sleep 
deprivation; graphical details are the 
same as for Fig. 2. (Note that the 24h 
ahead predictions displayed in the bottom 
panel extend beyond the 36h period of 
sleep deprivation.) The second column of 
panels shows the simulation for the 
second time the individual was exposed 
to 36h sleep deprivation, retaining no 
information from the first exposure. The 
third column of panels shows the 
simulation for the second exposure to 
sleep deprivation again, but—as denoted 
by the asterisk—the estimates for the 

trait parameters at the end of the first exposure to 36h sleep deprivation were used as prior information this time 
(although the initial state parameters were still considered a-priori uncertain).  
 
 
Discussion 
 
We demonstrated the usefulness of the Bayesian forecasting procedure for predicting cognitive 
performance impairment with a mathematical model, in particular the two-process model, in the 
face of unknown trait characteristics and uncertain initial states in individual subjects. 
Prospective computer simulations were run using data from the psychomotor vigilance test 
(PVT), a marker of changes in cognitive performance mediated by the homeostatic and circadian 
processes (Dorrian et al., 2005), as recorded during a laboratory-based study of total sleep 
deprivation. The simulations showed that mathematical model parameters converged rapidly to 
the values that best characterized the individuals concerned, resulting in substantially improved 
performance predictions relative to the original version of the model. The Bayesian forecasting 
procedure also yielded estimates of 95% confidence intervals for the parameter estimates and for 
performance prediction accuracy. The 95% confidence intervals for performance shrunk over 
time, both in absolute size and relative to the differences in performance predictions among 
individuals, resulting in statistically relevant differentiation among subjects—i.e., successfully 
individualized performance predictions. Numerical computations were sufficiently fast on a 
Pentium-driven desktop computer to be feasible in real time in operational environments (even 
for keeping track of multiple individuals working in small teams).  
 
Thus, the work presented here provides the first solution to some of the most significant 
challenges in the development of mathematical models of performance for operational use 
(Dinges, 2004; Friedl et al., 2004): a) performance prediction for individuals (instead of groups) 
in the face of a-priori unknown trait inter-individual variability; b) performance prediction for 
individuals in the face of uncertain initial states; and c) quantification of prediction accuracy. 
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The Bayesian forecasting procedure as implemented in the two-process model possesses broad 
generalizability, in that it can be used to predict waking performance in any scenario and in any 
population for which the two-process model proper is valid. Thus, the procedure should work in 
total sleep deprivation, acute sleep restriction, acute sleep displacement, and nap sleep scenarios 
(Achermann, 2004). Furthermore, besides healthy adults, it may work in other populations such 
as adolescents (Carskadon et al., 2004), people with depression (Borbély, 1987), and patients 
with seasonal affective disorder (Koorengevel et al., 2002). Although it is important to establish 
a population model for the target population, it is not necessary to assess the population model 
under the same circumstances as those for which the Bayesian forecasting will be used. For 
example, a population model established in a nap sleep scenario should be usable as a basis for 
Bayesian forecasting in a sleep displacement scenario. The total sleep deprivation scenario 
considered in this report does not yet offer full generalizability, though, because the data set does 
not allow estimation of the rate of dissipation for the homeostatic process during sleep (which 
could be overcome by including performance data from the recovery days following sleep 
deprivation). Otherwise, the versatility of the Bayesian forecasting procedure is not bounded by 
the circumstances associated with the population model, as long as the procedure is applied in 
accordance with the scope of the underlying mathematical model, and the individuals for which 
performance is being predicted are part of the same population as the sample that yielded the 
population model. 
  
The validity of the two-process model as used to predict performance is limited, primarily, to 
short-term scenarios with acute sleep-related interventions. While this covers a wide range of 
operationally relevant scenarios, several common situations are outside the scope of the two-
process model, such as chronic sleep restriction (Van Dongen et al., 2003; see also later in this 
report), circadian phase shifting (Folkard et al., 1999), and use of pharmacological fatigue 
countermeasures (Balkin et al., 2004). The effect of sleep inertia on cognitive performance 
immediately after awakening (Dinges, 1990) is also not captured by the two-process model. 
Various adjustments have been considered to overcome these limitations (Achermann and 
Borbély, 1994; Åkerstedt and Folkard, 1997; Avinash et al., 2005). Furthermore, other models 
have been developed to push the envelope on performance prediction (Mallis et al., 2004). The 
Bayesian forecasting procedure may be implemented in the framework of such alternative 
models as well, following the same general approach as laid out in this report. Most current 
mathematical models of performance have more parameters than the two-process model, 
however, which may increase the number of performance measurements needed to obtain 
reliable subject-specific parameter estimates and may also increase the size of the 95% 
confidence intervals. Even so, with Bayesian forecasting, any available performance model may 
be utilized to make performance predictions for individuals in the face of unknown traits and 
uncertain states. 
 
This work built on the work by Olofsen et al. (2004), in which Bayesian forecasting was already 
applied to optimize subject-specific trait parameters. The present work extends this effort by for 
the first time including initial state parameters in the parameter optimization process. Initial state 
parameters can be treated as trait parameters in the context of Bayesian forecasting if they 
represent enduring conditions (i.e., if their values may be assumed stable over the time period for 
which predictions are made). However, for initial state parameters, unlike trait parameters, the 
optimization process does not benefit from prior information contained in the population model. 
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Moreover, if predictions are needed for individuals who were subjected to Bayesian forecasting 
before, then the previously optimized values of the individuals’ trait parameters may be reused to 
obtain more accurate predictions with fewer data points (see Fig. 7)—but this Bayesian property 
does not transfer to the initial state parameters. Improved prior information about the initial state 
parameters may be acquired by other means, though. For instance, actigraphy could be used to 
track sleep history, and could yield probability estimates for the initial homeostatic state ξ in lieu 
of the assumed uniform distribution in Eq.  (14). 
 
The assumption of enduring initial states implies that the use of the Bayesian forecasting 
procedure described here is restricted to scenarios in which there are no unexpected changes in 
initial states—no homeostatic discontinuities (e.g., due to unreported naps) and no circadian 
phase shifts (e.g., due to exposure to bright light). Considerable work has been done to derive 
equations for the modeling of circadian phase changes (and even temporary deviations from the 
limit cycle process determining circadian amplitude) (e.g., Kronauer et al., 1998; St. Hilaire et 
al., 2007). Incorporation of such equations may allow substitution of the initial state parameter 
for circadian phase angle by a few trait parameters, thereby lifting the assumption of enduring 
circadian phase angle in the present work. Other approaches to maintaining performance 
prediction accuracy under conditions involving dynamic circadian phase changes can be 
envisioned as well. One such approach could entail the development of procedures relying on 
on-line measurements for estimating circadian phase.  
  
Implementation of the Bayesian forecasting procedure does not prohibit performance prediction 
in the absence of any subject-specific data, but the underlying (group-average) mathematical 
model is only outperformed when at least a few performance measurements are available for the 
individual at hand. However, in operational environments, it may not be possible or practical to 
interrupt the ongoing tasks in order to administer performance tests. Automatically measured 
embedded performance measures, such as lane deviation to track driver performance (Gillberg et 
al., 1996), may offer a solution to this problem. An additional advantage of using embedded 
performance measures is that they may be directly relevant to the demands of the operational 
setting. However, embedded performance measures must be sensitive to the underlying 
neurobiology in order to be useful, and must not be overly influenced by other factors (e.g., 
learning, performance strategy, environmental distractions) that can mask the influence of sleep 
homeostasis and circadian rhythmicity on performance capability. Note also that the same 
performance measure should be used for assessing the population model as for applying the 
Bayesian forecasting procedure, because inter-individual differences in vulnerability to sleep loss 
appear to be dependent on the type of performance being measured (Van Dongen et al., 2004a). 
  
We recently published our work on the Bayesian forecasting procedure in the peer-reviewed 
literature (Van Dongen et al., 2007a). Since then, an alternative approach for individualized 
performance prediction has been published (Rajaraman et al., 2008). It involves transformation 
of the individualized equations of the two-process model into a set of linear optimization 
problems, which are solved with the least-squares method in order to find estimates for the 
subject-specific model parameters.  
 
We believe that the Rajaraman et al. (2008) paper contains a number of important inaccuracies. 
First, the Bayesian forecasting methodology is critiqued, but random effects are mixed up with 
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intra-individual variability; prediction horizon limitations are mentioned that do not exist (see 
also Reifman et al., 2007, and Van Dongen et al., 2007b); multimodal distributions are wrongly 
asserted to cause convergence problems; and the computational cost of our numerical 
implementation (see above) is confused with the fundamental computational expense of 
Bayesian forecasting (which can be shown to be merely of order N2; see Smith et al., in press). 
Second, the two-process model proper is discredited as a basis for performance prediction in 
total sleep deprivation (Rajaraman et al., 2008), but this conclusion is based on a critical mistake 
in the processing of the circadian phase parameter. 
 
These erroneous criticisms of the work of others notwithstanding, there is no a-priori reason to 
believe that the Bayesian forecasting procedure couldn’t be improved. Even so, it is unclear what 
the advantage of the Rajaraman et al. (2008) approach would be. The approach requires 
performance data to be available at regular time intervals, and breaks down when data are 
missing. In addition, parameter convergence is much slower than in the Bayesian forecasting 
procedure. Because of the effort involved in linearizing the model equations, the Rajaraman et al. 
(2008) approach cannot readily be applied to other fatigue and performance models. 
Linearization also prohibits accurate estimation of confidence intervals.  
 
Rajaraman et al. (2008) claim that their approach does not require in-advance assessment of a 
population model to individualize performance predictions (in fact, even if a population model is 
available, the approach cannot take advantage of it). However, this feature comes at the cost of 
considerably greater need for performance measurements from the individual at hand—so much 
so, that the Bayesian forecasting procedure can as well be used effectively without a population 
model if that many data points are available. Further, the Rajaraman et al. (2008) approach is 
claimed to yield a unique solution for the parameter optimization problem, even if the pdf for the 
multidimensional parameter space is multimodal. However, application of the least-squares 
method to multimodal pdfs may yield parameter values that, while representative of the 
statistical mean, do not themselves have a high likelihood (e.g., Sivia, 1996). The usefulness of 
predicting performance for an individual on the basis of a parameter solution that does not have a 
high likelihood is questionable. The Bayesian forecasting procedure, on the other hand, yields 
the parameter set that is most likely for the individual at hand (which is also a unique solution), 
thereby generating the most probable individualized performance predictions. Furthermore, if 
multimodality of pdfs is indeed an issue in practice, then it is straightforward in Bayesian 
forecasting to capture any ensuing multimodality in the performance predictions.  
 
Regardless of ongoing and future efforts to improve the present methodology (e.g., through 
application of predictive covariates; see Olofsen et al., 2004), we believe that the Bayesian 
forecasting procedure as presented in this report is powerful and robust enough to be considered 
for validation in selected operational settings. Such a validation should begin with establishing 
population models for these operational settings. This is important because the distribution of the 
trait parameters may be different depending on the population involved, and the error variance 
(i.e., the estimate for σ2) may vary from one setting to another. Once demonstrated to be effective 
in the field, the Bayesian forecasting procedure can be a key component of a reliable and 
efficient sleep/wake-based fatigue management tool—to predict cognitive performance 
impairment, and possibly even accident risk (Ingre et al., 2006), at the level of individuals.  
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NEW MATHEMATICAL MODEL FOR THE SLEEP/WAKE HOMEOSTATIC 
REGULATION OF FATIGUE AND PERFORMANCE 
 
Introduction 
 
Sleep deprivation and circadian misalignment cause a wide range of cognitive performance 
deficits (Dinges and Kribbs, 1991; Banks and Dinges, 2007). Various mathematical models of 
fatigue and performance have been developed to predict such performance impairment (Mallis et 
al., 2004). However, scientific progress in this area has been limited by difficulties predicting 
performance under chronic conditions of partial sleep loss (Van Dongen, 2004). 
 
Most of the available fatigue and performance models are based on the seminal two-process 
model of sleep regulation (Borbély, 1982; Daan et al., 1984). This model posits that sleep and 
wakefulness are governed by two primary biological mechanisms: a homeostatic process that 
builds pressure for sleep during wakefulness and dissipates this pressure during sleep (Borbély 
and Achermann, 1999), and a circadian process that modulates sleep pressure as a function of 
time of day (Edgar et al., 1993). The two-process model has been successful in predicting 
various aspects of sleep and of waking cognitive functions across a range of sleep and sleep 
deprivation paradigms (Borbély and Achermann, 1999; Achermann, 2004). For instance, it was 
shown that waking cognitive functions could—in many instances—be predicted by the 
arithmetic difference between the homeostatic pressure for sleep and the circadian pressure for 
wakefulness (Achermann and Borbély, 1994).  
 
Extending the two-process model from its original focus on sleep (Borbély, 1982) to include 
predictions of waking functions has been a goal for some time (Borbély and Achermann, 1999; 
Dinges and Achermann, 1999). However, efforts to achieve this goal have not been universally 
successful. Several studies have shown that chronic sleep restriction leads to cumulative 
increases, progressing over days for a week or more, in sleep propensity and cognitive 
impairment (Carskadon and Dement, 1981; Dinges et al., 1997; Belenky et al., 2003; Van 
Dongen et al., 2003)—see Fig. 8a. The two-process model does not accurately capture these 
increasing deficits, predicting instead a stabilization of waking cognitive functions across days 
after just a few days of chronic sleep loss (Van Dongen et al., 2003)—see Fig. 8b. Other fatigue 
and performance models have similarly failed to predict the cumulative effects of chronic sleep 
restriction (Van Dongen, 2004). 
 
Van Dongen et al. (2003) proposed a different model, shifting the emphasis from sleep loss to 
cumulative wake extension or “excess wakefulness”. This subtle conceptual difference provided 
a parsimonious explanation for the effects on waking functions of both acute total sleep 
deprivation and chronic partial sleep deprivation (Van Dongen et al., 2003; Van Dongen and 
Dinges, 2003b). The excess wakefulness model has theoretical significance, but it is not useful 
for computational predictions of cognitive impairment, because it does not explicitly state how 
recovery from the effects of prior sleep loss would be achieved.  
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Figure 8: Cognitive performance observations 
and predictions by different models. A total of 48 
healthy young adults were subjected to one of four 
laboratory sleep deprivation protocols (Van 
Dongen et al., 2003). Each protocol began with 
several baseline days involving 8h time in bed 
(TIB), the last of which is labeled here as day 0. 
Subsequently, 13 subjects were kept awake (0h 
TIB) for 3 additional 24h days (left panels). The 
other subjects underwent various doses of sleep 
restriction for 14 consecutive days, followed by 2 
days with recovery sleep at 8h TIB (right panels). 
The sleep restriction dose was 4h TIB per day for 
13 subjects (red); 6h TIB per day for another 13 
subjects (yellow); and 8h TIB per day for the 
remaining 9 subjects (green). Awakening was 
scheduled at 07:30 each day. Performance was 
tested every 2h during scheduled wakefulness 
using the PVT, for which the number of lapses 
(RT ≥ 500ms) was recorded.  
(a) Observed performance (PVT lapses) for each 
test bout (dots represent group averages). The first 
two test bouts of each waking period are omitted 
in order to avoid confounds from sleep inertia. 
Gray bars indicate scheduled sleep periods.  
(b) Performance predictions according to the 
original two-process model (Borbély and 
Achermann, 1999), linearly scaled to the data. 
Boxes represent performance predictions at wake 
onset. Thin curves represent predictions within 
days, but the focus here is on changes across days 
(dashed lines). Note the rapid stabilization across 
days predicted to occur in the chronic sleep 
restriction conditions (right panel), which does not 
match the observations. (c) Performance 
predictions according to the extended two-process 
model (Avinash et al., 2005), linearly scaled to the 
data. Note the under-prediction of performance 
impairment in the total sleep deprivation condition 
(left panel) and the over-prediction of the 
impairment build-up across days in the 4h TIB 
condition (right panel), relative to the actual data. 
(d) Performance predictions according to the new 
model defined by Eqs. (40) and (45). Note the 
improved fit to the experimental observations 
across days for total sleep deprivation (left panel), 
as well as for the 4h TIB condition (right panel). 
Performance impairment in the 6h TIB and 8h 
TIB conditions (right panel) is under-predicted. 
However, the average impairment levels observed 
for these conditions are inflated due to a few 
outliers (Van Dongen et al., 2003).  

 
Alternative solutions were introduced by Hursh et al. (2004) and by Johnson et al. (2004), who 
each included an additional regulatory process modulating their versions of the homeostatic 
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process, in order to account for the cumulative effects of chronic sleep restriction. Based on the 
approach proposed by Johnson et al. (2004), Avinash et al. (2005) then extended the original 
two-process model, as part of the present project. The objective of this effort was to capture the 
effects of chronic sleep restriction on waking cognitive performance (Van Dongen et al., 2003), 
while retaining the successes of the original two-process model in predicting other aspects of 
waking functions and sleep (Achermann, 2004). The Avinash et al. (2005) approach, which was 
seminal for further work in this project, can be summarized as follows. 
 
The homeostatic process of the original two-process model is typically represented as a pair of 
difference equations (Borbély and Achermann, 1999): 
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−−= τ  during wake, (19a) 
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= dτ  during sleep. (19b) 
Here S is the homeostatic sleep pressure as a function of time t; Δt is the time step; and τr > 0 and 
τd > 0 are time constants for the rise and decay of the homeostatic process during wakefulness 
and sleep, respectively. The reason the two-process model predicts excessively rapid 
stabilization of performance across days of sleep restriction is related to the asymptotic 
properties of Eqs. (19). Specifically, the wake equation tends to a steady state represented by an 
upper asymptote U = 1, while the sleep equation tends to a steady state represented by a lower 
asymptote V = 0. This asymptotic behavior can be demonstrated by rewriting Eqs. (19): 
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The extension of the two-process model by Avinash et al. (2005) involved modulating the 
homeostatic process through manipulation of the asymptotes U and V in Eqs. (20), as follows:  

tUU ttt Δ+= Δ− rμ  during wake, (21a) 
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Here μr > 0 represents the slope of a linear rise of the asymptotes during wakefulness, and μd > 0 
represents the time constant of an exponential decay of the asymptotes during sleep.  
 
The model proposed by Avinash et al. (2005) performed better at capturing the cumulative 
deficits in cognitive performance across days as induced by chronic sleep restriction, but at the 
cost of reduced accuracy in describing the magnitude of the effects across days of acute total 
sleep deprivation—see Fig. 8c. However, it can be shown that the model of Eqs. (21) belongs to 
a much broader class of homeostatic models based on the same principles, which offer further 
improvements in predicting performance impairment across days of sleep loss.  
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New Class of Models Formulated in Terms of Coupled Non-Homogeneous First-Order 
Ordinary Differential Equations 
 
Beginning with the original two-process model (Achermann and Borbély, 1994), we can write 
model equations for cognitive performance as:  

)()()( tctwtp nn −=  for t∈[tn, tn + Wn]  (i.e., during wake), (22a) 
)()()( tctstq nn −=  for t∈[tn + Wn, tn + Tn]  (i.e., during sleep). (22b) 

The variables wn and sn denote the homeostatic pressure during wakefulness and sleep, 
respectively, in the nth wake/sleep cycle (i.e., day), where n = 0, 1, … The function c(t) is the 
original circadian process (see Borbély and Achermann, 1999). Further, tn denotes the time of the 
beginning of the nth wake/sleep cycle, Tn is the total duration of the nth cycle (such that tn+1 = tn + 
Tn), and Wn is the duration of wakefulness in the nth cycle. We require that 0 < Wn ≤ Tn, where  
Wn = Tn corresponds to total sleep deprivation. Finally, pn and qn are the predictions for 
performance during wakefulness and sleep, respectively, in the nth wake/sleep cycle. The 
predictions during sleep are notional; they are included strictly for continuity between 
consecutive wake/sleep cycles. Here pn and qn are coupled as follows: 

),()( nnnnnn WtqWtp +=+  (23a) 
).()( 11 ++=+ nnnnn tpTtq  (23b) 

 
The homeostatic process of Eqs. (19) may be written in the form of a system of first-order 
ordinary differential equations (ODEs):  
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Note that wn and sn are still functions of time t, but to reduce clutter in later differential equations 
this is no longer indicated explicitly. From Eqs. (24) it follows that Eqs. (22) can also be written 
as a system of first-order ODEs: 
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where pn and qn are again coupled as per Eqs. (23). The non-homogeneities β(t) and γ(t) represent 
the circadian process, and may be generalized to include other non-homeostatic influences on 
performance.  
 
The system of Eqs. (25) is an exact representation of the original two-process model (Borbély 
and Achermann, 1999). In the same manner, the extended two-process model of Avinash et al. 
(2005) can be written as a system of coupled non-homogeneous first-order ODEs:  
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Here un and vn are the levels of the upper and lower asymptotes, respectively, in the nth 
wake/sleep cycle. The non-homogeneities β1(t) and γ1(t) represent the circadian process, and may 
again be generalized to include other non-homeostatic influences on performance. Likewise, 
β2(t) and γ2(t) represent any circadian or other non-homeostatic effects there might be on the 
levels of the upper and lower asymptotes. Note that in this notation, β1(t) and β2(t) have absorbed 
the parameter μr (i.e., the slope of the linear rise of the upper asymptote during wakefulness). 
Analogous to Eqs. (23), Eqs. (26) are coupled as follows: 
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where δ > 0 is the distance between the two asymptotes. For the extended two-process model,  
δ = 1 (Avinash et al., 2005). 
 
When we write Eqs. (26) in generalized form, it becomes clear that there is an asymmetry in the 
extended two-process model of Avinash et al. (2005):  

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)(
)(

00 2

11211

t
t

u
p

u
p

n

n

n

n

β
βαα

&

&
 for t∈[tn, tn + Wn], (28a) 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)(
)(

0 2

1

22

1211

t
t

v
q

v
q

n

n

n

n

γ
γ

σ
σσ

&

&
 for t∈[tn + Wn, tn + Tn]. (28b) 

Namely, Eq. (28b) for sleep has one more parameter than Eq. (28a) for wakefulness. Adding the 
corresponding coefficient α22 in Eq. (28a) generates a useful new model, as shown later in this 
report. Moreover, both equations have room for another parameter in the 2 by 2 coefficient 
matrices (i.e., α21 and σ21, respectively). 
 
We define our new class of models, formulated in terms of coupled non-homogeneous first-order 
ODEs, by the following generalized equations (which incorporate the original and extended two-
process models):  
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The coupling of these equations is given by Eqs. (27). Of the non-homogeneities β1(t), β2(t), γ1(t) 
and γ2(t) we require that they are bounded, oscillatory functions. They co-determine the profiles 
of performance changes within wake/sleep cycles, in part through the circadian process, but this 
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is beyond the focus of the present work. The α and σ coefficient matrices are of primary interest 
here, as they determine the dynamic behavior of the system across wake/sleep cycles.  
 
For constant values of the α and σ coefficients, the general solution of the ODE system of Eqs. 
(29) is of the form (Derrick and Grossman, 1997): 
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where ψn(t) and φn(t) are the respective fundamental solutions of the homogeneous parts of Eqs. 
(29). These fundamental solutions depend on the eigenvalues λi and the corresponding 
eigenvectors [ki1 ; ki2] of the α and σ coefficient matrices. The eigenvalues and eigenvectors of 
the α coefficient matrix are found by solving: 
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The process is analogous for the σ coefficient matrix.  
 
The fundamental solution ψn(t) depends on the real and distinct eigenvalues λ1 and λ2 found by 
solving Eqs. (31); and the fundamental solution φn(t) depends on the likewise derived real and 
distinct eigenvalues λ3 and λ4, as follows: 
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Note that while Eqs. (32) are sensitive to shifting of the origin of the time variable t, the 
functions ψn(t) and φn(t) end up being used only in products with their respective inverses, and 
these so-called principal matrix solutions are invariant to time translation. 
 
Having found the general solution of the ODE system of Eqs. (29), difference equations can be 
derived for the predicted level of performance at the onset of each wake period and at the onset 
of each sleep period. Although these predictions for wake onset do not account for transient 
effects of sleep inertia (e.g., Dinges, 1990), and the predictions for sleep onset are merely 
notional (since the person is asleep), they completely describe the model behavior across 
wake/sleep cycles. They therefore serve as useful anchor points to examine the pattern of 
cognitive performance changes across days.  
 
Using Eqs. (27) and (30), the difference equations for performance at wake onset, pn(tn), and for 
performance at sleep onset, qn(tn + Wn), can be shown to be given by: 
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Changes in cognitive performance across wake/sleep cycles depends entirely on this system of 
difference equations for performance at the onsets of wakefulness and sleep.  

 
Of particular interest is whether the pattern of changes in cognitive performance across 
wake/sleep cycles can display a steady state or “fixed point”—that is, whether the performance 
profile within days can be found to repeat itself across days or across clusters of days when a 
particular wake/sleep schedule is maintained. This condition of fixed wake duration W and fixed 
wake/sleep cycle duration T is described by: 
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where m = 1, 2, … is the number of wake/sleep cycles after which the performance pattern 
repeats itself. If the oscillation period τ of the non-homogeneities β1(t), β2(t), γ1(t) and γ2(t) equals 
the wake/sleep cycle duration T, as is the case under conditions of circadian entrainment, then 
the fixed point performance pattern would be expected to repeat itself every day (i.e., m = 1). If  
τ ≠ T, then a beat phenomenon could occur in which the performance pattern repeats itself every 
m days. Forced desynchrony protocols (e.g., Dijk and Czeisler, 1994) are based on this 
supposition. 
 
Indeed, for fixed wake duration W and fixed wake/sleep cycle duration T, and assuming that the 
non-homogeneities oscillate with period τ = T, Eqs. (32), (33c) and (33d) may become repetitive 
across wake/sleep cycles n. Fixed points [p(tn)  u(tn)] and [q(tn + W)  v(tn + W)] can be derived by 
solving Eqs. (33), which results in: 
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Because of the matrix inversions embedded in Eqs. (35), fixed points can only exist if: 
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Below, we examine this condition for a specific case of the model defined by Eqs. (29). 
 
Provided a fixed point is shown to exist, the question arises whether it is stable, that is, whether 
the model predictions would converge to this fixed point for a repetitive wake/sleep schedule. 
We can say that the model is asymptotically stable (for m = 1) or asymptotically periodic (for  
m > 1) if: 
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even if the starting values [p0(t0)  u0(t0)] and [q0(t0)  v0(t0)] are not already on the fixed point. 
Because Eqs. (33) are linear in [pn(tn)  un(tn)] and [qn(tn + W)  vn(tn + W)], the stability of fixed 
points is determined by the eigenvalues of the following matrices: 
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It can be shown (Kelly and Peterson, 2001) that fixed points are asymptotically stable if all 
eigenvalues Λi of the system of Eqs. (33), whether real or complex, are inside the unit circle  
(i.e., |Λi| < 1). The eigenvalues are found by solving the characteristic equations: 
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Inspection of Eqs. (38), the results of which are mirrored, reveals that the eigenvalues derived 
from Eq. (39a) are identical to those derived from Eq. (39b). Thus, the fixed points [p(tn)  u(tn)] 
and [q(tn + W)  v(tn + W)] are either both asymptotically stable (or periodic), or both unstable. 
We now examine this property for a specific version of the model. 
 
 
A Model with a Bifurcation 
 
We consider a particular case of the model of Eqs. (29): 
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where α11 < 0 and σ11 < 0, and where α11 ≠ α22 and σ11 ≠ σ22. The coupling of these equations is 
given by Eqs. (27). As before, we require that the non-homogeneities β1(t), β2(t), γ1(t) and γ2(t) 
are bounded, oscillatory functions. 
 
Per Eqs. (31), the (real and distinct) eigenvalues of the α and σ coefficient matrices are:  
λ1 = α11 < 0; λ2 = α22; λ3 = σ11 < 0; and λ4 = σ22. Through Eqs. (32), these eigenvalues determine 
the existence of fixed points as assessed using Eqs. (36). Under conditions of fixed wake 
duration W and fixed wake/sleep cycle duration T, Eqs. (36) reduce to the following sole 
inequality: .0)1)(1( )()( 22221111 ≠−− −− WTWWTW eeee σασα  If both α parameters and both σ parameters 
are negative, this inequality is satisfied and thus fixed points exist for all 0 < W ≤ T (both for 
performance at wake onset and for performance at sleep onset). If either α22 ≥ 0 or σ22 ≥ 0, 
however, there may be a critical amount of daily wakefulness Wc, with 0 < Wc ≤ T, for which no 
fixed point exists: 
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To assess the stability of the fixed points when they do exist, we solve Eqs. (39), which results in 
the following eigenvalues: 
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If all α and σ parameters in Eqs. (42) are negative, then 0 < Λi < 1 for both eigenvalues, meaning 
that the fixed points (which then exist for all 0 < W ≤ T) are always asymptotically stable. Since 
the difference equation system considered here is linear, this stability is global (i.e., the 
predictions converge to the fixed point regardless of initial conditions).  
 

Figure 9: Dynamic behavior of the bifurcating model given 
by Eqs. (40). The figure shows performance predictions 
(PVT lapses of attention) at wake onset (boxes) for 16 days 
(n = 0, 1, …, 15) of fixed duration T = 24h, assuming a 
constant period τ = 24h for the non-homogeneities. The thin 
curves represent the predictions within days using the non-
homogeneities given by Eqs. (45)—but the profile of changes 
across days (dashed lines) as determined by the α and σ 
coefficient matrices is of primary interest here. Each 
prediction curve corresponds to a different amount of daily 
wakefulness: W = 16h (green), W = 18h (yellow), W = 20h 
(red), W = 22h (dark gray), and W = 24h (i.e., total sleep 
deprivation; black). Light gray areas indicate nocturnal sleep 
periods. In this illustration, the bifurcation point is set to 
occur at Wc = 20h. For daily wake durations below the 
bifurcation point (green and yellow), the model thus 

converges to an asymptotically stable fixed point, that is, performance impairment ultimately levels off. For daily 
wake durations beyond the bifurcation point (gray and black), the model diverges from an unstable fixed point, 
meaning that performance impairment tends to escalate. At exactly the bifurcation point W = Wc (red), there is no 
fixed point, resulting in an asymptotically linear build-up of performance impairment across days. 
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If α22 (the key parameter distinguishing the model given by Eqs. (40) from the extended two-
process model) is positive, there are three possibilities for Λ2. In order of increasing amount of 
sleep loss, these possibilities are:  
• For W < Wc, we find that 0 < Λ2 < 1, implying globally asymptotically stable fixed points;  
• For W = Wc, no fixed point exists (see above); 
• For W > Wc, we find that Λ2 > 1, implying that the fixed points are unstable. 
Thus, for α22 > 0, the model behavior is such that if the amount of wakefulness W in each 
wake/sleep cycle exceeds a critical threshold Wc, the model flips from a state in which 
performance predictions converge toward an asymptotically stable fixed point, to a state in which 
performance predictions diverge away from an unstable fixed point. This qualitative change in 
dynamic behavior constitutes a bifurcation—see Fig. 9.  
 
It is instructive to study the model behavior when daily wakefulness is kept constant at the 
bifurcation value: W = Wc. Here, the generalized iterative system of Eqs. (33) assumes the 
following specific form: 
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The solution of this system tends to a straight line as n → ∞. The change across days for 
performance at wake onset and sleep onset is defined, respectively, by slopes Mp and Mq: 
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where F2 and G2 are the second element of vectors F and G in Eqs. (33). From Eqs. (44) it 
follows that the slopes of change across days are not necessarily the same for performance at 
wake onset and performance at sleep onset.  
 
 
Model Simulations 
 
To compare the model given by Eqs. (40) to actual performance observations under conditions of 
sleep loss, we fit it to group-average data of performance lapses on a psychomotor vigilance test 
(PVT; Dinges and Powell, 1985; Dorrian et al., 2005) from a study of healthy young adults 
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subjected to chronic sleep restriction or total sleep deprivation—with W = 16h, 18h, 20h, or 24h 
(Van Dongen et al., 2003). These data are shown in Fig. 8a.  
 
For the non-homogeneities, we make use of the circadian process c(t) defined by Borbély and 
Achermann (1999), applied to the performance predictions pn and qn (but not the asymptotes un 
and vn): 
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Here γ and μ are parameters scaling the circadian process, and θ is a phase parameter shifting it 
in time. For the initial conditions [p0(t0)  u0(t0)] we estimate the values corresponding to the fixed 
point at W = 16h, which characterizes the baseline condition in the study. Further, t0 = 7.5h (i.e., 
07:30), and T and τ are fixed at 24h. 
 
Using least-squares regression, we find the following parameter estimates:  
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The resulting PVT performance predictions are shown in Fig. 8d, and the predictions for the total 
sleep deprivation condition (W = 24h) are explored in more detail in Fig. 10. With the parameter 
estimates of Eqs. (46), the model explains 72.4% of the variance in the group-average data of 
Fig. 8a. It fits substantially better to the data than the original two-process model (Fig. 8b, 
explained variance 22.6%) and the extended two-process model (Fig. 8c, explained variance 
38.4%).  
 
Evaluation of Eq. (41) given the parameter estimates in Eqs. (46) indicates that there must be a 
bifurcation at Wc = 20.2h. That is, the model should flip from a state of convergence to a state of 
divergence when daily sleep is reduced to less than 3.8h.  
 
This property can be verified by comparing model predictions to the group-average observations 
of PVT performance in another study of chronic sleep restriction, with W = 15h, 17h, 19h or 21h 
(Belenky et al., 2003). These data are shown in Fig. 11a. We use the non-homogeneities defined 
in Eqs. (45) again, set t0 = 7.0h (i.e., 07:00) in accordance with the study design, and fix all 
model parameters at their previously estimated values given in Eqs. (46).  
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Figure 10: Examination of the performance predictions 
under conditions of total sleep deprivation. The new model 
defined by Eqs. (40) and (45) with the parameter estimates 
given by Eqs. (46) has a bifurcation at Wc = 20.2h, implying 
that predictions for performance in the total sleep deprivation 
condition (i.e., W = 24h > Wc) of Fig. 8a (top left panel) 
should exhibit diverging (i.e., escalating) performance 
impairment across days. However, the actual predictions 
displayed in Fig. 8d (bottom left panel) would seem to 
suggest a converging pattern. This can be explained by 
simultaneously considering the performance predictions pn 
(black dashed curve), the fixed point p (dotted horizontal 
line), and the upper asymptote un (gray dashed curve). Since 
α22 > 0, the upper asymptote un increases exponentially across 
days. Thus, within waking episodes, performance pn is 
increasingly drawn upwards. On the other hand, the fixed 
point p is located above the initial performance value p0(t0). 
Thus, divergence from the fixed point would entail a drive 

downwards. Here, the net result is that performance impairment is predicted to increase across days, but in a 
decelerating manner (cf. Van Dongen et al., 2003). If wakefulness were maintained for additional days, though, the 
performance predictions would cross the fixed point and then diverge from it upwards, exposing the typical 
escalating behavior for W > Wc in this model (see the illustration in Fig. 9). 
 

 
Figure 11: Experimental observations and predictions by our new 
model for performance impairment. A total of 66 healthy young 
adults were subjected to one of four laboratory sleep deprivation 
protocols (Belenky et al., 2003). Each protocol began with several 
baseline days involving 8h time in bed (TIB), the last of which is 
labeled here as day 0. Subsequently, the subjects underwent 
various doses of sleep restriction for 7 consecutive days, followed 
by 3 days with recovery sleep at 8h TIB. The sleep restriction 
doses were 3h TIB per day for 13 subjects (blue); 5h TIB per day 
for 13 subjects (brown); 7h TIB per day for 14 subjects (orange); 
and 9h TIB per day for 16 subjects (purple). Awakening was 
scheduled at 07:00 each day. Cognitive performance was tested 
every day at 09:00, 12:00, 15:00 and 21:00 using the PVT. In the 
5h TIB condition an additional test bout occurred at midnight, and 
in the 3h TIB condition another one took place two hours after 
midnight.  
(a) Observed performance (PVT lapses) for each test bout (dots 
represent group averages). The first test bout of each waking 
period is omitted in order to avoid confounds from sleep inertia. 
Gray bars indicate scheduled sleep periods.  
(b) Corresponding performance predictions according to the new 
model defined by Eqs. (40) and (45). Parameter estimates are fixed 
at the values of Eqs. (46), as previously estimated with the data in 
Fig. 8a. Boxes represent predictions at wake onset; thin curves 
represent predictions within days. The focus here is on changes 
across days (dashed lines). Note that the model predictions across 
the 7 days of sleep restriction accurately capture the qualitative 
change from convergence (i.e., leveling off of performance 
impairment) in the 9h, 7h and 5h TIB conditions, to divergence 
(disproportionately rapid escalation of performance impairment)  
in the 3h TIB condition. 
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Applying linear scaling to account for any irrelevant differences in absolute performance 
outcomes (e.g., due to variations in population characteristics or performance testing conditions), 
we find the scaling factor to be 1.17—suitably close to 1. The corresponding performance 
predictions are shown in Fig. 11b. They explain 72.2% of the variance in the data, and fit well to 
the observed performance changes across days.  
 
Note that the W = 21h condition shows a divergent profile in both observations and predictions 
(Figs. 11a and 11b), which is not seen in the W ≤ 19h conditions in this study. This qualitative 
difference indicates the presence of a bifurcation. Indeed, on the basis of fitting the model to the 
data in Fig. 8a, we had predicted that a bifurcation should occur at Wc = 20.2h (see above). The 
goodness-of-fit of our model to the data in Fig. 11a is consistent with this prediction, and 
provides a first validation of the model. 
 
 
New Theoretical Predictions 
 
The value of a new model is determined, in part, by any falsifiable new predictions it makes. 
Here we present two specific predictions that can be tested in future work, and that will have 
considerable theoretical impact if confirmed. The first new prediction pits the new model defined 
by Eqs. (40) against the only other quantitative, sleep/wake physiology-based model of the 
effects of chronic sleep restriction on cognitive performance: the excess wakefulness model  
(Van Dongen et al., 2003). In that model, performance impairment across days is posited to be 
proportional to the cumulative amount of wakefulness exceeding a maximum period of stable 
wakefulness (of ~16h if prior sleep duration exceeds ~4h). This is conceptually distinct from the 
modeling framework introduced in the present report. 
 
Our first prediction involves the important question of how much sleep is needed to recover from 
performance impairment induced by prior chronic sleep restriction (e.g., Lamond et al., 2007). 
The excess wakefulness model would predict that as long as wake duration exceeds the 
maximum period of stable wakefulness, performance continues to deteriorate. On the contrary, 
the model defined by Eqs. (40) with the parameter values given by Eqs. (46) would predict that 
when wake duration is less than the bifurcation point Wc, performance levels should converge to 
a fixed point, and thus some recovery could occur if wake duration is shorter than what was 
maintained in the prior days of chronic sleep loss.  
 
As a specific example, consider a scenario involving 5 days of sleep restriction to 4h per day 
(i.e., W = 20h), followed by a day with 6h time for sleep (i.e., W = 18h). The opposing model 
predictions are illustrated in Fig. 12. The excess wakefulness model predicts that performance 
deteriorates progressively across the 5 days with 4h sleep, and continues to deteriorate—albeit at 
a slower rate—following the 6h sleep. Our new model also predicts progressive performance 
degradation across the 5 days with 4h sleep. However, the fixed point for 6h sleep (W = 18h) is 
lower than the level of performance degradation reached after 5 days with 4h sleep. Therefore, 
the new model forecasts some degree of recovery after the subsequent 6h sleep. This prediction 
may seem counterintuitive considering that 6h sleep following multiple days with 8h sleep 
actually leads to performance degradation (Van Dongen et al., 2003). Yet, preliminary evidence 
from an ongoing laboratory study (Banks et al., 2005) suggests that some recovery does occur 
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with 6h sleep in this chronic sleep restriction scenario, supporting the new model over the excess 
wakefulness model. 
 

Figure 12: Opposing predictions from two models 
regarding recovery following chronic sleep restriction. The 
figure shows performance predictions at wake onset 
(boxes) for five 24h days with sleep restriction to 4h per 
day (W = 20h) followed by one 24h day with 6h recovery 
sleep (W = 18h). Gray areas indicate nocturnal sleep 
periods. (a) Predictions for performance changes across 
days according to the excess wakefulness model (Van 
Dongen et al., 2003). This model predicts that performance 
deteriorates progressively across the 5 days with 4h sleep, 
and continues to deteriorate at a slower rate following the 
6h sleep period. (b) Predictions for performance changes 
across days according to the model given by Eqs. (40), (45) 
and (46). This new model also predicts that performance 
deteriorates progressively across the 5 days with 4h sleep, 
but forecasts a modest relative performance improvement 
following the 6h recovery sleep. 

 
The second new prediction concerns the “recycle” issue, which derives from the question of 
whether or not there is any carry-over of performance impairment from past sleep restriction 
when beginning a new period of sleep restriction following limited time for recovery. We 
consider a laboratory study currently underway (Banks et al., 2007b), which involves a period of 
5 days with sleep restriction to 4h per day (i.e., W = 20h), followed by a day with 10h time for 
recovery sleep (i.e., W = 14h), followed by another period of 5 days with sleep restriction to 4h 
per day (W = 20h). Initial experimental evidence would suggest that the intervening 10h sleep 
period should be enough for (near-)complete recovery to baseline performance (Banks et al., 
2007a), effectively undoing the impairment incurred by the prior sleep loss. Thus, the 
performance profile seen during the second 5-day period of sleep restriction might be expected to 
be similar to that seen during the first 5-day period of sleep restriction.  
 

Figure 13: New prediction for rapid recycling after a 
period of chronic sleep restriction. The figure shows 
predicted performance at wake onset (boxes) over 
days, during a period of five 24h days with sleep 
restriction to 4h per day (W = 20h), followed by one 
24h day with 10h recovery sleep (W = 14h), followed 
by recycling into a second period of five 24h days with 
sleep restriction to 4h per day (W = 20h). Gray areas 
indicate nocturnal sleep periods. The performance 
predictions, derived from the new model given by Eqs. 
(40), (45) and (46), indicate that the intermittent 
recovery sleep should confer only a short-lasting 
benefit—in the second period of sleep restriction, 
performance is predicted to further deteriorate (while 
converging towards the asymptotically stable fixed 
point for W = 20h with a time constant extending far 
beyond the period displayed in the graph). 
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The dynamics of the new model, however, would imply that the single 10h recovery sleep should 
be seen as an intermittent perturbation in an extended series of days with sleep restriction to 4h 
per day. Thus, the model predicts that the recovery sleep confers only a short-lasting 
performance improvement, after which performance further deteriorates as it continues to 
converge to the asymptotically stable fixed point associated with W = 20h. This prediction is 
illustrated in Fig. 13. Preliminary evidence from the laboratory study examining the scenario at 
hand suggests that indeed there is substantial carry-over of performance impairment from the 
first 5-day sleep restriction period to the second (Banks et al., 2007b), providing tentative 
support for the new model. 
 
 
Discussion  
 
The regulation of sleep, wakefulness and performance is not fully understood, and involves an 
array of possible neurobiological mechanisms (e.g., Porkka-Heiskanen et al., 1997; Krueger and 
Obál, 2003; Fuller et al., 2006). Nonetheless, at the behavioral level, the circadian component 
has been captured by models with relatively few degrees of freedom (see Indic et al., 2006). We 
believe the same may be possible for the sleep homeostatic component. Using evidence from 
laboratory studies with multiple days of sleep loss (Figs. 8a and 11a), we showed that the 
homeostatic regulation of cognitive performance can be described by means of a system of 
coupled non-homogeneous first-order ODEs with only a few additional degrees of freedom 
relative to the homeostatic process postulated in the original two-process model (Borbély and 
Achermann, 1994, 1999).  
 
Our new model does include an additional component, modulating the homeostatic process 
across days and weeks, as prompted by findings from chronic sleep restriction experiments 
demonstrated to be incongruent with the original two-process model (Van Dongen et al., 2003; 
Van Dongen, 2004). Yet, the model structure introduced here is essentially still composed of a 
homeostatic process and a circadian process. Conceptually, therefore, the new model remains 
compatible with the principles of sleep regulation instantiated in the original two-process model 
(Borbély, 1982). The dynamics of the new model across days are principally governed by the α 
and σ coefficient matrices in the homogeneous part of the differential equations (the homeostatic 
process), while the changes within days are primarily governed by the non-homogeneities (the 
circadian process). These model components also interact, in agreement with laboratory 
observations of a nonlinear interaction between the homeostatic and circadian processes (Dijk et 
al., 1992; Van Dongen and Dinges, 2003a).  
 
Two seminal laboratory studies first highlighted the need for fundamentally new model 
development beyond the two-process model in order to account for the waking cognitive 
consequences of chronic sleep loss (Belenky et al., 2003; Van Dongen et al., 2003). However, 
these two studies previously drew markedly different conclusions about the dynamics of 
cognitive impairment across days of sleep restriction. In their study with 7 days of systematic 
sleep restriction, Belenky et al. (2003) reported a plateau of cognitive impairment when sleep 
was restricted to 7h or 5h per day, as well as incomplete recuperation at the end of the study after 
3 days with 8h time in bed for recovery sleep. They hypothesized that chronic sleep loss induces 
long-lasting adaptive changes in the brain’s response to sleep loss, leading to stabilized reduced 
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performance under conditions of sleep loss at the cost of transiently diminished maximal 
performance capacity following recovery sleep. In contrast, in their study with 14 days of sleep 
restriction, Van Dongen et al. (2003) noted that performance continued to degrade when sleep 
was restricted to 6h or 4h per day, with no evidence of adaptation across the study period.  
 
In the present project, the two data sets (Figs. 8a and 11a) were examined in a single analytical 
framework. Using PVT performance lapses as a well-validated outcome measure (Dorrian et al., 
2005) for both studies, no convincing evidence of an impairment plateau is found in either data 
set. Yet, our modeling results indicate that stabilization of performance impairment would occur 
eventually, beyond the duration of the two experiments. Furthermore, the modeling outcomes 
suggest that several days with recovery sleep would be needed to restore performance to baseline 
levels. Experiments currently underway (Banks et al., 2007a, 2007b) will shed further light on 
the time course of post-deprivation recovery. 
 
Our mathematical examination of the dynamics of the new model defined by Eqs. (40) revealed 
an unanticipated emergent model property: a bifurcation involving a critical amount of 
wakefulness which, if exceeded, changes the model behavior from a state of convergence toward 
an asymptotically stable fixed point, to a state of divergence away from an unstable fixed point 
(as illustrated in Fig. 9). This feature, previously alluded to (Belenky et al., 2003; Van Dongen 
and Dinges, 2003b) but as yet never explicitly considered, turned out to capture an essential 
aspect of the nature of performance impairment due to sleep loss. Using data from the chronic 
sleep restriction and total sleep deprivation experiments documented by Van Dongen et al. 
(2003) (Fig. 8a), we estimated the critical wakefulness threshold to occur at 20.2h, that is, at 3.8h 
sleep per 24h. This estimate was supported by data from the chronic sleep restriction study of 
Belenky et al. (2003), who observed escalating performance impairment when sleep was reduced 
to just 3h per day (Fig. 11a). 
 
The importance of the bifurcation in the new model implies that other two-process-based models 
of performance impairment due to chronic sleep loss (Hursh et al., 2004; Johnson et al., 2004; 
Avinash et al., 2005), which do not possess the bifurcation property, must have a more limited 
range of applicability than the new model. The excess wakefulness model (Van Dongen et al., 
2003), which is based on the fundamentally different conjecture that performance impairment 
across days is proportional to the cumulative amount of wakefulness in excess of a ration 
determined by the preceding sleep period, does not a priori have this same limitation of scope 
(Van Dongen and Dinges, 2003b). However, the excess wakefulness model and the model 
introduced in the present report make opposite predictions for performance impairment after a 
period of chronic sleep restriction followed by a limited amount of recovery sleep (Fig. 12). This 
juxtaposition entails the first of two testable new predictions by which our present model can be 
validated.  
 
The other new prediction, which has real-life relevance, concerns the longevity of the 
performance improvement conferred by a single prolonged recovery night (“sleeping in”) 
preceded and followed by periods of chronic sleep restriction (Fig. 13). Our model predicts that a 
single recovery night intervening a series of consecutive sleep opportunities of, say, 4h per day 
constitutes a mere temporary perturbation, after which performance levels continue to decline 
and converge to an asymptotically stable fixed point. Confirmation of this prediction by 
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experimental evidence currently being obtained (Banks et al., 2007b) will have significant 
implications—both theoretically, for our understanding of sleep and performance regulation, and 
practically, with regard to sleep/wake/work scheduling in operational settings.  
 
The dynamics of the model defined by Eqs. (40) may provide insight into the nature of the 
underlying neurobiological mechanisms. Conceptually, the model resembles a system of two 
connected compartments containing interacting substances with time-varying concentrations—
one with longer time constants than the other. In this regard, our model could be a mathematical 
representation of the interaction between a neurotransmitter or neuromodulator and its receptor, 
with the density of both changing dynamically across time awake and time asleep. However, the 
model’s dynamic behavior and the parameter estimates we obtained (notably the finding that 
α12 > 0 and σ12 > 0) point to positive feedback regulation in the system, which is not typical in 
neurotransmitter/neuromodulator mechanisms. Yet, such a regulatory process may be taking 
place in the adenosinergic system. 
 
Adenosine is a (by)product of brain energy metabolism (Porkka-Heiskanen et al., 2002), and has 
been reported to induce sleepiness and impair waking functions, particularly through the 
cholinergic system in the basal forebrain (Basheer et al., 2000). Hence, the adenosinergic system 
might be a final pathway in the homeostatic regulation of sleep and waking cognitive functions 
(Benington and Heller, 1995), and could be the temporal bottleneck that determines the time 
constants across days in our model. In accordance with the dynamic structure of the model, it has 
been observed that both extracellular adenosine level and adenosine A1 receptor density change 
dynamically in response to sleep loss (Yanik and Radulovacki, 1987; Basheer et al., 2004, 2007; 
Elmenhorst et al., 2007; Porkka-Heiskanen et al., 2000). Moreover, sleep deprivation-induced 
increases in extracellular adenosine lead to concomitant increases in A1 receptor expression, 
implicating positive feedback regulation (Basheer et al., 2007) in agreement with the model.  
 
Based on these considerations, we propose an explanation for the effects of sleep loss on PVT 
performance lapses in particular, and on cognitive performance in general, in terms of adenosine 
binding to receptors that are up- and downregulated dynamically across wake/sleep cycles. We 
postulate that periods of wakefulness and sleep induce adenosine receptor upregulation and 
downregulation, respectively, as represented in the model by increases and decreases of the 
asymptotes u and v. Thus, increased adenosine production during extended wakefulness would 
cause both increased sleep homeostatic pressure inducing waking cognitive impairment, and 
receptor upregulation. This would effectively enhance sensitivity to sleep loss on subsequent 
days (Basheer et al., 2007), which would serve a protective function by restraining further sleep 
restriction. Should additional sleep loss occur anyway, a shifted physiologic balance would 
establish as the rates of adenosine receptor upregulation during wakefulness and downregulation 
during sleep reach a new equilibrium. 
 
However, if wakefulness is extended to more than the critical amount Wc, which we have 
estimated to be 20.2h, then a physiologic balance may no longer be achievable. This bifurcation, 
observed in both the model predictions and the experimental observations, may suggest a role for 
slow wave activity (SWA; ~0.5–4.5 Hz) in the EEG of non-REM sleep. SWA is substantially 
preserved when sleep duration is reduced down to 4h per day (Brunner et al., 1993; Van Dongen 
et al., 2003). However, when daily sleep is restricted below approximately 4h, then insufficient 
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time remains to fully express SWA (see Van Dongen and Dinges, 2003b). This reduction in 
SWA could be related to the qualitative change in the effects of sleep loss on cognitive 
performance when sleep duration is reduced to below ~4h per day.  
 
Also, a connection between SWA and adenosinergic mechanisms has been noted. For instance, 
stimulation of adenosine A1 receptors affects SWA expression in the same manner as does acute 
total sleep deprivation (e.g., Benington et al., 1995).  
 
Here, we hypothesize more specifically that SWA is a physiological correlate of adenosine 
receptor downregulation during sleep. This could explain why homeostatic balance can be 
achieved when wake duration is no more than approximately 20h per 24h day, as it allows 
enough time for sleep (at least ~4h) to preserve SWA. However, if daily wakefulness is extended 
beyond the bifurcation threshold, then despite SWA intensification, the overall expression of 
SWA is curtailed. The hypothesized adenosine receptor downregulation may thus no longer be 
sufficient to counter the upregulation during prior wakefulness, and a homeostatic balance may 
not be reached anymore. As a result, adenosinergic sensitivity to sleep loss would escalate, 
which in turn would cause the accelerating cognitive impairment that has been observed under 
such extreme sleep restriction conditions (Belenky et al., 2003; Van Dongen et al., 2003; Van 
Dongen and Dinges, 2003b).  
 
Our proposed account of the waking cognitive effects of sleep deprivation across days, 
postulated to be governed by dynamic changes in both adenosine production and adenosine 
receptor expression, may have noteworthy implications for the role of caffeine as a 
countermeasure for cognitive impairment due to sleep loss. Caffeine’s main mode of action is as 
an adenosine receptor antagonist (e.g., Biaggioni et al., 1991). As such, in addition to mitigating 
the cognitive consequences of sleep loss (e.g., Penetar et al., 1993), it might also block the sleep 
deprivation-mediated adenosine receptor upregulation.  
 
It may thus be hypothesized that regular consumption of moderate amounts of caffeine could 
help to prevent increasing sensitivity to sleep loss across days of sleep restriction, which would 
offer a strategy for managing chronic sleep loss. Although this may already be practiced by 
millions of individuals around the world, how this could be effective had not really been 
understood mechanistically as yet (and still needs to be confirmed by experimental evidence).  
 
At higher doses, caffeine may interfere with the expression of SWA (e.g., LaJambe et al., 2005), 
which by extension of our hypothesis would block the sleep-related downregulation of adenosine 
receptors. Thus, depending on dose, caffeine may also be counterproductive in mitigating the 
waking cognitive consequences of sleep loss. In that sense, effective use of caffeine as a 
countermeasure for sleep loss may not be straightforward. In safety-critical scenarios, therefore, 
it may be advisable to target caffeine administration with the help of a biology-based model of its 
physiological effects. Such a model could be developed using the new mathematical framework 
introduced in the present report. 
 
In conclusion, we have put forth a new model formulated in terms of coupled non-homogeneous 
first-order ODEs, with a dynamic repertoire capturing sleep homeostatic changes in waking 
cognitive functions across a wide range of wake/sleep schedules. Further work is needed to 
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integrate our model with a state-of-the-art mathematical model of the circadian component (e.g., 
Jewett et al., 1999; St. Hilaire, 2007), and to deal with sleep inertia (e.g., Åkerstedt and Folkard, 
1997; Jewett and Kronauer, 1999). In addition, trait-like inter-individual differences in 
vulnerability to sleep loss (Van Dongen et al., 2004a) have yet to be accounted for in our new 
model. This will be resolved in a follow-up project using modern statistical modeling tools (e.g., 
Van Dongen et al., 2004b, 2004c), which can also yield improved model parameter estimates 
(and their standard errors) as well as confidence intervals for the model predictions (see  
Van Dongen et al., 2007a).  
 
Finally, it should be recognized that the effects of sleep loss on waking cognitive performance 
depend in part on which aspects of cognitive functioning are considered (Durmer and Dinges, 
2005). Our present focus on PVT performance lapses entails a well-validated (Dorrian et al., 
2005) but incomplete account of cognitive responses to sleep loss (e.g., see Van Dongen et al., 
2004a). Ongoing efforts to connect fatigue and performance models with computational models 
of cognition (Gunzelmann et al., 2007) represent a promising strategy to address this issue. 
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THESIS RESULTING FROM THE PROJECT 
 
Deepa Avinash, M.S. successfully defended her Master’s thesis on a portion of the work 
performed for this project, on 23 August 2005, at Drexel University in Philadelphia, 
Pennsylvania. The executive summary of her thesis (Avinash, 2005) is as follows. Results are 
integrated in this final report.  
 
Laboratory experiments have demonstrated that cognitive performance deteriorates due to sleep 
deprivation and sleep restriction (even if sleep is reduced only a few hours per day on a chronic 
basis). Various biomathematical models have been developed to predict performance deficits 
resulting from sleep deprivation. One influential model is the “two-process model” of sleep 
regulation, which predicts sleep and performance on the basis of two interacting processes. The 
first process, referred to as the “sleep homeostat” or Process S, which seeks to balance time spent 
awake and time spent asleep. The second process, known as the “circadian rhythm” or Process C, 
is driven by the biological clock in the brain, which keeps track of the time of day. The two-
process model properly predicts the performance degradation associated with multiple days of 
total sleep deprivation, but does not accurately predict performance under conditions of chronic 
partial sleep restriction. The model predicts that chronic sleep restriction leads to relatively little 
cognitive impairment, whereas laboratory experiments have shown that performance deteriorates 
progressively across days of sleep restriction. This thesis describes the development of an 
expansion of the two-process model to accurately predict the performance impairment resulting 
from chronic sleep loss, by integrating a novel Process U along with the original two processes S 
and C. The parameters of Process U were estimated using statistical analysis. The parameter 
assessment was performed by maximum likelihood estimation using nonlinear mixed effects 
modeling (NONMEM) software. The predictions of the expanded two-process model were 
compared to psychomotor vigilance task (PVT) performance data from a laboratory experiment 
involving 14 days of sleep restriction to 4h, 6h or 8h time in bed (TIB) or 3 days of total sleep 
deprivation. Model predictions were fitted to experimental observations of PVT lapses (reaction 
times ≥ 500ms), as measured every 2h during scheduled wakefulness in the laboratory study. We 
used the observations from two baseline days (8h TIB per day) and all experimental sleep loss 
days, for a total of n = 47 subjects; as well as data from one recovery day (8h TIB) for the subset 
of 34 subjects exposed to chronic sleep restriction. The expanded two-process model may prove 
useful in operational environments faced with sleep loss, such as hospitals, emergency services, 
and transportation. The model could be used for improved scheduling of work hours for people 
working in such sleep-deprived environments, or to signal the need to employ fatigue 
countermeasures to maintain optimal performance. Thus the expanded model may help optimize 
safety and performance. 
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State University; Columbus, Ohio. 

October 2006 (Van Dongen): Lecture “Sleep and sleep deprivation: trait inter-individual 
differences,” University of Chicago; Chicago, Illinois. 

November 2006 (Van Dongen): Lecture “Cognitive impairment from sleep loss: individual 
differences and prediction,” Washington State University; Spokane, Washington. 
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November 2006 (Van Dongen): Lecture “Sleep, sleep deprivation, and cognitive performance,” 
Idaho Sleep Disorders Association 2006 Meeting; Coeur d’Alene, Idaho. 

November 2006 (Van Dongen, Belenky): Organization of the international symposium 
“Sleeping, waking, working,” Sleep and Performance Research Center, Washington State 
University; Spokane, Washington. 

March 2007 (Smith): Lecture “Predicting performance impairment under conditions of sleep 
deprivation: Individualization and confidence intervals,” Eastern Washington University; 
Cheney, Washington. 

March 2007 (Van Dongen): Lecture “Sleep and sleep deprivation,” Spokane Chapter of the 
National Rehabilitation Association; Spokane, Washington.  

May 2007 (Van Dongen, Belenky): Lecture “Sleep deprivation,” Naval Postgraduate School; 
Monterey, California. 

May 2007 (Van Dongen): Lecture “Neurobiology and chronobiology of sleep,” American 
Thoracic Society 2007 Conference; San Francisco, California. 

June 2007 (Van Dongen): Organization of the symposium “Individual differences in sleep: basic 
research and clinical relevance,” SLEEP 2007 Conference; Minneapolis, Minnesota. 

June 2007 (Van Dongen): Lecture “Trait individual differences in the sleep structure of healthy 
young adults,” SLEEP 2007 Conference; Minneapolis, Minnesota. 

June 2007 (Van Dongen): Meet the Professor session “Cumulative sleep loss: consequences for 
wakefulness and sleep,” SLEEP 2007 Conference; Minneapolis, Minnesota. 

July 2007 (Van Dongen): Briefing on “Sleep deprivation, cognitive performance, and 
biomathematical modeling,” JASON 2007 Summer Study; La Jolla, California.  

September 2007 (Van Dongen): Lecture “Individual differences in neurobehavioral impairment 
from sleep loss,” WorldSleep07; Cairns, Australia. 

September 2007 (Van Dongen): Lecture :Status and perspectives of the 2-process model: 
Neurobehavioral functions,” International Symposium on 25 Years with the Two-Process 
Model of Sleep Regulation; Ittingen, Switzerland. 

October 2007 (Van Dongen): Lecture “Sleep deprivation and circadian rhythms,” Washington 
State Department of Services for the Blind; Tacoma, Washington. 

November 2007 (Van Dongen): Lecture “Fatigue and performance models in 24-hour 
operations: Potential and challenges,” National Center for Intermodal Transportation; 
Washington, D.C. 

November 2007 (Van Dongen): Lecture “Cognitive performance impairment: Contribution of 
homeostatic, circadian, and individual variability factors,” University of Surrey; Guildford, 
United Kingdom. 

February 2008 (Van Dongen): Lecture “Bayesian forecasting for predicting individual 
performance: Foundational information,” Individual Differences Workshop; Baltimore, 
Maryland. 

 
Consultative and advisory functions to other laboratories and agencies 
January 2005–present (Van Dongen): Member of steering committee for Core Capability in 

Fatigue and Performance Modeling and Interventions Research, Military Operational 
Medicine Research Program, Walter Reed Army Institute of Research; Washington, D.C. 

March 2005–present (Van Dongen): Member of Editorial Advisory Board, Journal of Sleep 
Research. 
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April 2005–present (Van Dongen): Consultation for NIH K23 Career Development Award of Dr. 
Peter Franzen, Ph.D., University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania. 

June 2005–March 2006 (Van Dongen): Consultation on individual differences modeling to Dr. 
Adam Fletcher, Walter Reed Army Institute of Research; Washington, D.C. 

July 2005 (Van Dongen): Academic liaison for pharmacologic countermeasures panel at military 
operational medicine workshop “Cognitive performance: Force multiplication through 
human-in-the-loop augmentation,” U.S. Army Medical Research and Materiel Command & 
Defense Advanced Research Projects Agency; Las Vegas, Nevada.  

October 2005 (Van Dongen): Member of National Institutes of Health program project grant 
review panel; Washington, D.C. 

November 2005 (Belenky): Consultation on fatigue risk management to Union Pacific Railroad; 
Omaha, Nebraska. 

January 2006 (Belenky): Consultation on managing sleep to sustain performance to U.S. Air 
Force human factors researchers; Spokane, Washington. 

June 2006–present (Van Dongen): Associate Editor, journal SLEEP. 
September 2006 (Belenky): Consultation on fatigue risk management to United Airlines; Denver, 

Colorado. 
September 2006–March 2008 (Van Dongen): Member of dissertation committee for Daniel 

Mollicone, B.S., Drexel University; Philadelphia, Pennsylvania. 
April 2007–present (Van Dongen): Member of Editorial Board, The Open Sleep Journal. 
February 2008–present (Van Dongen): Member of advisory group for Warfighter Rapid 

Awareness Processing Technology program, Archinoetics, LLC; Honolulu, Hawaii. 
 
Transitions 
• We transitioned the Bayesian forecasting framework developed as part of this project to help 

industry develop a state/trait optimization tool deployable by the military for the prediction of 
cognitive performance in the face of both unknown individual traits and uncertain prior states 
(key individuals involved: Daniel Mollicone, Ph.D. and Christopher Mott, M.S. of Pulsar 
Informatics, Inc.). 

• We transitioned an earlier version of the chronic modulating process developed as part of this 
project to the Institute of Experimental Psychiatry in Philadelphia, Pennsylvania, so as to 
contribute to the development of an Astronaut Scheduling Assistant for NASA (key 
individuals involved: Melissa Mallis, Ph.D. and John Caldwell, Ph.D. of the Fatigue 
Countermeasures Group at NASA Ames Research Center).  

 
 
New Discoveries, Inventions, or Patent Disclosures  
 
A provisional patent application for individualized performance prediction by means of state/trait 
optimization has been submitted. This application covers a range of individualization algorithms 
developed in a project initiated after and building on the present project, and funded through 
other mechanisms (USAMRMC awards W81XWH-04-1-0923 and W81XWH-05-C-0155). The 
provisional patent application also covers the Bayesian forecasting procedure outlined in this 
report, as applied to individualized prediction of fatigue and performance, owing to the fact that 
the other individualization algorithms fundamentally employ the same mathematical and 
statistical principles. 


