

COGNITIVE MODELS FOR LEARNING TO CONTROL

DYNAMIC SYSTEMS

Russ Eberhart, Xiaohui Hu, Yaobin Chen

May 2008

Final Report

© Computelligence LLC

This work was funed by in whole or in part by Department of Air Force contract FA9550-

07-C-0167. The U.S. Government has for itself and others acting on its behalf a paid-up,

nonexclusive, irrevocable worldwide license to use, modify, reproduce, release, perform,

display, or disclose the work by or on behalf of the U.S. Government

AF OFFICE OF SCIENTIFIC RESEARCH

875 NORTH RANDOLPH STREET, RM 3112

ARLINGTON VA 22203

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

14. ABSTRACT

15. SUBJECT TERMS

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON
 a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

16. SECURITY CLASSIFICATION OF:

19b. TELEPHONE NUMBER (Include area code)

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

iii

Table of Contents

List of Figures...v

List of Tables .. vi

1. Executive Summary ..1

2. Introduction and Literature Review ...2

2.1. Background ... 2
2.1.1. Machine learning and swarm intelligence .. 2
2.1.2. Particle swarm optimization ... 2

2.2. Dealing with dynamic environments with particle swarm.. 3
2.2.1. Improvement of PSO for dynamic environments ... 3
2.2.2. Environment change detection.. 5
2.2.3. Response strategy.. 6
2.2.4. Performance metric ... 8
2.2.5. Experimental design.. 9

2.3. Handling multiple-objectives with particle swarm.. 10
2.3.1. Basic concept .. 11
2.3.2. Nondominated solution archive and best particle selection.................................. 12
2.3.3. Density metric and diversity maintaining ... 16
2.3.4. Strategies related to objectives fitness function.. 21
2.3.5. Performance metrics ... 23
2.3.6. Application and test suits .. 26

2.4. Handing constraints with particle swarm... 27
2.4.1. Constraint problem.. 27
2.4.2. Constraint penalties and objective approaches ... 28
2.4.3. Separation strategies of constraints and objectives... 30
2.4.4. Pareto principle related constraint handling methods... 34
2.4.5. Linear constraints.. 35
2.4.6. Constraint satisfaction problem .. 35

3. Swarm-Powered Systems .. 37

3.1. Fundamental framework.. 37
3.2. PSO diversity measurement... 37

3.2.1. Introduction... 37
3.2.2. Position based population diversity .. 39
3.2.3. Population velocity diversity .. 41
3.2.4. Discussion ... 43
3.2.5. Conclusion .. 44

3.3. Human in the swarm: an NK landscape game... 44
3.3.1. Background ... 44
3.3.2. Methods... 44
3.3.3. Results... 47
3.3.4. Discussion ... 47

iv

3.3.5. Conclusion .. 48

4. Case Study – UAV scheduling... 49

4.1. Background ... 49
4.2. Problem description.. 49

4.2.1. Objective time matrix ,N MC ... 51

4.2.2. Visiting target sequence array t arg etS .. 51

4.2.3. UAVs assignment matrix UAVA ... 52

4.2.4. Discussion and explanation... 53
4.3. Constraints treatment... 55

4.3.1. Soft constraints treatment ... 55
4.3.2. Rigid constraints treatment ... 55

4.4. PSO application... 56
4.4.1. Fitness function... 56
4.4.2. Encoding ... 56

4.5. Experiments results .. 57
4.5.1. Experiment 1... 58
4.5.2. Experiment 2... 58
4.5.3. Comparison and discussion... 58

4.6. Discussion and plan for further research ... 60

5. References ... 62

v

List of Figures

Figure 1 Nondominated solution archive.. 12
Figure 2 Hyper-cube method developed by Coello Coello ... 18
Figure 3 Crowding radius method developed by Ray ... 18
Figure 4 σ method developed by Mostaghim.. 19
Figure 5 Niche method developed by Li... 19
Figure 6 Cluster method developed by Hsieh... 20
Figure 7 Separation sorting procedure.. 32
Figure 8 Three levels in the swarm model.. 37
Figure 9 NK landscape game screenshot for the Easy level ... 46
Figure 10 NK landscape game screenshot for the Medium level ... 46
Figure 11 NK landscape game screenshot for the Hard level... 47
Figure 12 Illustration of UAV assignment matrix .. 52
Figure 13 Pseudo-code to generate assignment matrix UAVA ... 53

Figure 14 Sub-function to generate feasible UAV array .. 53
Figure 15 Illustration of the target sequence(a) and the assignment matrix (b) 54
Figure 16 Calculation order of the objective time matrix... 54
Figure 17 Example of target sequence array encoding... 57
Figure 18 Example of assignment matrix encoding ... 57
Figure 19 Comparison of two tasks between PSO and GLPK ... 59
Figure 20 Comparison of three tasks between PSO and GLPK ... 59
Figure 21 Comparison of PSO computation time between two tasks and three tasks.................. 60
Figure 22 The fitness curve of 8-targets 10-UAVs and 2-tasks.. 61
Figure 23 Stagnated iteration into local optimums... 61

vi

List of Tables

Table 1 Comparison of some typical reference .. 17
Table 2 Fifteen fitness inheritance methods ... 23
Table 3 Statistics of metrics and reference ... 25
Table 4 Compared MO optimization algorithms .. 26
Table 5 MO functions tested in references ... 26
Table 6 NK Landscape Game Levels ... 45
Table 7 Performance comparison between pure PSO and human-in-the loop PSO..................... 47
Table 8 Nomenclature... 51
Table 9 Constraint classification... 55
Table 10 PSO algorithms .. 56
Table 11 PSO experiment on two tasks scenarios .. 58
Table 12 PSO experiment on three tasks scenarios .. 58
Table 13 Two tasks comparison between PSO and GLPK... 58
Table 14 Three tasks comparison between PSO and GLPK... 59

1

1. Executive Summary

Dynamic systems are comprised of the following main features: a series of control signals to
achieve an optimum, a system that changes as a consequence of the control signals, and other
internal/external factors. Thus the control signals are not independent, so that subsequent signals
depend on earlier ones. The control signals can either be continuous or be a series of discrete
actions. Real world examples include navigational control, battlefield decisions, logistics
planning, etc.

The goal of analyzing dynamic systems is to develop the ability to characterize all possible
trajectories of the system given all possible initial conditions. A state machine is one possible
model of a dynamic system. The state machine comprises the set of all possible states of the
system, where each state represents all relevant information at an instant in time, and all
allowable state transitions that specify how states are updated each time step.

The systems for which we are developing cognitive-based model controllers are typically highly
non-linear time-varying systems. Various approaches have been studied and various algorithms
have been developed to solve these dynamic control problems, including stochastic (non-
deterministic) and chaotic (deterministic) methods.

Our methodology focuses on swarm intelligence concepts, paradigms, algorithms, and
implementations.

In the Phase I STTR work, the concept of swarm-powered optimization and planning systems for
significantly improved unmanned aerial vehicle (UAV) mission planning and optimization was
demonstrated. Feasibility was demonstrated for swarm intelligence based dynamic learning
algorithms. Major accomplishments include:

a. Swarm intelligence based mission scheduling systems for multiple-UAV, multiple-task,
multiple-target scenarios has been studied. The swarm-based approach is able to schedule
optimal mission configurations two to four orders of magnitude faster than the mixed
integer linear programming approach currently used by the Air Force Research
Laboratory

b. A human-swarm hybrid model has been established and demonstrated.

c. Initial work on swarm diversity measurements has been finished and a group of diversity
metrics have been investigated.

2

2. Introduction and Literature Review

2.1. Background

2.1.1. Machine learning and swarm intelligence

Since the dawn of the history, humans have tried to duplicate functions of the brain, or
intelligence in an artificial form. Nowadays, the field is typically called artificial intelligence or
machine learning. Traditional artificial intelligence researchers have focused more on individual
mind processes or symbolic processes. A recent book “Swarm Intelligence” co-authored by the
PI of this proposal, described a different point of view of "intelligence" [1], which is a result of
social interaction rather than being a function and process of mind/brain. Our work rests upon
and is inspired by the culture and cognition foundation built by Latané, Axelrod, and Kennedy.

Latané’s dynamic social impact theory states that the behaviors of individuals can be explained
in terms of the self-organizing properties of their social system, that clusters of individuals
develop similar beliefs, and that subpopulations tend to diverge from one another. A summary of
this theory is that individuals influence one another and in doing so become more similar, and
that patterns of belief held by individuals tend to correlate within regions of a population. This
model is consistent with findings in the fields of social psychology, sociology, economics, and
anthropology [1].

Axelrod’s culture model represents populations of individuals as strings of symbols, or features.
The probability of interaction between two individuals is a function of their similarity, and
individuals become more similar as a result of interactions. The observed dynamic in this model
is polarization, homogeneous subpopulations that differ from one another [1].

Kennedy’s adaptive culture model states that there is no effect of similarity on the probability of
interaction, and that the effect of similarity is negative, in that it is dissimilarity that creates
boundaries between cultural regions. Interaction between individuals occurs if fitnesses are
different [1].

According to those social and cognition models, people adapt to complex environments by
evaluating, comparing, and imitating one another, learning from experience and emulating the
successful behaviors of others. The social interaction results in the development of the inherent
intelligence of humans [1].

In summary, swarm intelligence is defined as the collective behavior of relatively simple
individuals interacting locally with their environment which causes coherent functional global
patterns to emerge.

2.1.2. Particle swarm optimization

Particle swarm optimization (PSO) is a swarm intelligence technique for optimizing nonlinear
functions developed by Jim Kennedy (project advisor) and Russell Eberhart (project PI) [2, 3]. It
was initially developed as a social psychological model that simulates behaviors of bird flocking.
Later it was found that PSO was very effective as an optimization method and it has been applied
in numerous applications since then [2, 3].

The particle swarm population is initialized by assigning random positions and velocities to each
population member (particle). Potential solutions are then flown through hyperspace (the

3

problem space). Each particle keeps track of its "best" (highest fitness) position in hyperspace.
This is called pbest for each individual particle, gbest for the best in the population (when a
global model is used), and lbest for the best in a defined neighborhood (when a neighborhood
model is used). At each time step, each particle is stochastically accelerated toward its pbest and
gbest if the global model is used, or pbest and lbest if a neighborhood model is used. The
neighborhood comprises the particle and a selected number of its topological neighbors. For
example, a neighborhood of five includes the particle and its two topological neighbors on each
side.

The particle swarm optimization process is as follows:

1. Initialize the population in hyperspace.

2. Evaluate the fitness of individual particles.

3. Modify the velocity of each particle based on its pbest and gbest (or lbest).

4. Terminate on some condition.

5. Go to step 2.

The velocity vid and position xid update equations for the global version of particle swarm
optimization are

() ()
ididid

idgdidididiid

vxx

xpRandcxprandcvwv

+=

−+−+= ()() 21

where d is the dimension, c1 and c2 are positive constants, rand() and Rand() are random
functions, and w is the inertia weight [2, 3]. pid is the pbest while pgd is the gbest. (For the
neighborhood version, change pgd to pld, which is lbest)

The performance of each particle is measured according to a predefined fitness function. The
inertia weight influences the tradeoff between global and local exploration. A common approach
is to reduce the inertia weight during a run (i.e. from 0.9 to 0.4 over 1000 iterations), to set c1 and
c2 to about 1.5 or 2.0, and to set the maximum allowable velocity Vmax to the dynamic range of
each variable (on each dimension).

2.2. Dealing with dynamic environments with particle swarm

Many real-world systems involve dynamic environments that change state frequently; some
change almost continuously. Prices fluctuating, route programming, target recognition, schedule
changes, investment portfolio evaluations, data mining, etc., all pose dynamic optimization
challenges for computation intelligence methods. Meanwhile, the requirement is no longer to
locate optima in the search space, but to track their progression through the space as closely as
possible.

2.2.1. Improvement of PSO for dynamic environments

The earliest research work with evolutionary computation methods in a dynamic environment
can be traced back to 1966 [4]. Since year 2000, initial work on tracking dynamic systems with
particle swarm optimization was reported by Carlisle and Dozier [5], and Eberhart and Shi [6].

Carlisle applied several versions of sentry PSO to dynamic problems [5, 7, 8]. “Sentry” is a
selected point or a batch point, which is fixed or randomly picked in the search space, and used

4

to detect dynamic changes. Periodic and triggered replacements of best-known positions with
current positions are implemented. The dynamic PSO by Carlisle [8] was applied to fuse
information [9].

Based on an analogy of electrostatic energy, Blackwell [10, 11] proposed a charged PSO (CPSO),
in which particles are given an added an extra acceleration term to experience repulsive effects
from all other charged particles, maintain diversity and deal with changing dynamic
environments. Moreover, another extension is called atomic PSO where half of the particles have
the extra charge acceleration term and the other half are neutral. After adding a repulsion
function to make balancing diversity, Jatmiko [12] applied it to an odor source localization task.

Multi-population evolutionary algorithms, like Self Organizing Scouts [13], are proposed to
locate multiple peaks in a multi-modal landscape, and enhance search in a dynamic landscape.
These algorithms use a number of smaller sub-populations to watch over the most promising
peaks, and others for further exploration. Using the multi-population concept, multi-swarm PSO,
speciation-based PSO etc., the swarm approach has been adapted to track multiple optima
simultaneously with multiple swarms

Blackwell [14] designed multi-charged PSO and multi-quantum swarms. As a multi-population
version of CPSO, a CPSO swarm is placed on each local optimum in a multi-modal environment.
Those neutral sub-swarms keep searching and the surrounding charged particles maintain enough
diversity to track dynamic changes. In the same paper, based on a quantum rather than classical
picture of an atom, multi-quantum swarm optimization (multi-QSO) uses a quantum analogy for
the dynamics of the charged particles. The positions of quantum particles are determined by a
probability function centered on the swarm attractor, so particle-to-particle comparisons are thus
avoided. The quantum atom has the advantages of lower complexity and an easily controllable
distribution.

As a further elaborated work, the multi-swarm was integrated with the three diversity operators
[15] as follows: Quantum particles (a diversity preserving technique, used in [14] before);
Exclusion (a local interaction between colliding swarms, preventing swarms from settling on the
same peak); Anti-convergence (a new operator, sharing information among swarm with the aim
of allowing new peaks to be detected).

Another parallel sub-population model motivated by the multi-population idea is species-based
PSO (SPSO), proposed by Parrott and Li [16]. According to their similarities, particles are
adaptively divided into species at every iteration. Each species is grouped around a “seed”, a
dominating particle used for speciation. And Pmax, a maximum number of particles allowed for
a species, is set as a mechanism to avoid crowding. The model employs these mechanisms to
encourage simultaneous tracking of multiple peaks by preventing overcrowding at peaks.
Furthermore, Parrott [17] proposed an improved version of SPSO with a mechanism for
removing redundant duplicate particles in a species for better performance efficiency. Li
designed an extension of a speciation-based PSO [18], combined with several techniques: Pmax
[16]; "neutral" and "quantum"" concepts of a quantum swarm model [14] to maintain a better
diversity; a diversity threshold which triggers the anti-convergence[15] replacement process to
the worst species; and, a particle diversification threshold within a species to judge particle
relocation operation. Developing parallel species mechanism and improvement techniques
encourage swarms to converge onto multiple local optima instead of a single global optimum.

5

Recently, Lung [19] proposed a hierarchical sub-population PSO, named Collaborative
Evolutionary-Swarm Optimization (CESO), which consists of two populations of equal size. One
is motivated by an evolutionary algorithm's diversity preservation mechanism and responsible
for preserving diversity in order to prevent premature convergence, and the other tracks the
global optimum.

The P-Best Decay PSO (PBDPSO) [20] is designed to solve a dynamic pricing problem. When
response is triggered by any of the various changes, each personal fitness value is decayed by
multiplying it by a decay rate. Similar to PBDPSO, Tracking Dynamic PSO (TDPSO) [21] ,
uses an evaporation constant, to evaporate (decrease) the personal fitness value and global fitness
value over time. Both of them renew their memory without any centralized control and to
maintain simplicity of each particle.

2.2.2. Environment change detection

Early research work on PSO has shown that PSO is effective for optimization problems in both
static and dynamic environments. Fast converging to an optimum implies diversity loss that will
make swarm easier to stagnate at a local extremum. For a classic PSO in dynamic environments,
it is difficult to effectively respond to outside changes and restart exploration without enough
population diversity.

So, one starting point is maintaining the swarm diversity and adapting particles to a landscape
change throughout the entire run of the algorithm. The main advantage of such an approach is
that it does not need a special operation to detect the environment changes [10, 21]. This
approach is appropriate for continuous small changes in the objective function.

Another group of methods don’t use detection operations. In [5], a response action will be
triggered after a certain period of iterations, which means it assumes that a change has happened
at that time. The gbest and second gbest value are monitored to check if they have no changes for
20 iterations in [22]. Similar to this, monitoring the gbest and 20 iteration intervals are adopted in
[12].

Some techniques are designed to measure the changes and trigger a response. Most of them
assume that the environment changes are known, or at least measurable and detectable, e.g., by a
reevaluation of the objective function. Evaluating one or several points in the landscape and
comparing with the previous fitness value is a popular way to test changes. Carlisle[5] selected a
random point in the search space and only if its fitness change exceeds a setting allowable range,
it will trigger a response operation. A sentry particle [8] is also a fixed point, randomly initialized,
and is compared with its previous fitness at each iteration, which is also applied in [9]. Instead of
a randomly selected point, gbest is used in [22]. Combined with [5] and [22], Mullen [20] used
gbest as a detection point and a threshold for considering noise existing in a dynamic pricing
problem. Blackwell [15] chooses the quantum particles of every swarm as the detected point.
The best individual in the CRDE population, which is the first population of Collaborative
Evolutionary-Swarm Optimization and is used to maintain diversity, is re-evaluated to detect the
dynamic change [19].

Bird [23] proposed to monitor the five fittest particles for a standard constriction PSO with a von
Neumann neighborhood model and record the pbest of the fittest particle in each of the top five
species for species-based PSO, which is also adopted by [18]. Every iteration, reevaluating each
particle’s pbest fitness value at its recorded position is also a detection strategy for a species-

6

based PSO by Parrott [17], however, it does result in additional cost of fitness function
evaluation.

2.2.3. Response strategy

Like any other computational intelligence methods (e.g. EA, EP, GA, etc.), the performance of
PSO highly relies on the balance between exploration and exploitation, which is influenced by
the swarm diversity. During optimization and evolution, particles follow the lead particle to
search a target and tend to converge, so it is difficult for a swarm, losing diversity, to make a
further exploration in the search space without any effective strategy for enhancing diversity.
Especially in a dynamic optimization, the tracking behavior of a population with a low diversity
is less desirable. Generally, there are two type mechanisms to deal with the diversity problem in
dynamic environment: reactive and proactive [24]. Moreover, some algorithms combine the two
mechanisms, such as some species-based PSO. So, we will review of PSO response strategies to
dynamic changes from three aspects: Proactive strategy, Reactive Strategy and Hybrid Strategy.

Proactive strategy

The proactive strategy, in this report defined as the mechanism not based on the detection of
dynamic change, prevents swarms from converging too fast and maintains the swarm diversity. It
can be achieved by decreasing the selection pressure, diminishing outdated memory, periodically
stimulating diversity or constructing multi-population swarms, etc. PSO algorithms based on the
proactive strategy can adapt to a dynamic optimum, especially with small changes. However, by
maintaining the diversity, a swarm can’t converge as fast and be very close to a changing
optimum.

When dynamic change happens, the swarm’s memory (gBest and pBest) becomes outdated,
which will misguide other particles. “Reset” means that particles’ pBest and gBest have been
cleared and set to new re-evaluated fitness value. It is one of the most popular mechanisms to
deal with outdated information and diversity loss. For example, particles’ personal best vectors
are replaced with their current position vector on a regular frequency based on the iteration to
forget their experience [5, 17, 18, 23, 25]. In [12], one strategy is designed to restart the gbest
fitness value at the initial value (gbest=0) in order to make all particles jump out to follow the
changes. It implies loss of information gathered during the search so far. Another strategy in this
reference is to use charged PSO and add a repulsion function to balance diversity. Another
method is to periodically re-randomize part of the swarm or gbest particle to stimulate diversity
[5, 22].

The fundamental idea of a multi-swarm approach is to divide a swarm into a number of sub-
swarms. It is an effective approach to preserve diversity. Each swarm watches different
promising peaks of the landscape separately. Since all the particles don’t converge together,
when environment is changed, it can still have a search ability in some sense. From this
perspective, a multi-swarm mechanism is a kind of proactive method. Without a detection action,
a charged particle is used to produce the repulsive effects from all other charged particles for
both charged swarm PSO or atomic swarm PSO [10]. Also, without a special method to deal
with dynamic changes, the species-based PSO [16] adjusts the dynamic speciation by randomly
reinitializing the extra particles of a speciation. In [14], it re-randomizes the worst swarm within
a specified radius of each swarm for multi-charged PSO.

7

In addition to a multi-population structure to maintain diversity, multi-swarm PSO also works in
conjunction with other improvement approaches, which are often reactive type operations based
on change detection or proactive methods. So, this is regarded as a hybrid approach of proactive
and active actions, and will be discussed in the third part of this section.

Reactive strategy

Reactive strategy is defined as the response mechanism based on the detection of dynamic
change. Before a new change is detected, particles concentrate on searching the current optimum.
Only when alerted by a signal will it respond. Its main disadvantage is the additional cost of
fitness function evaluation because of the change detection procedure. Such an approach is
appropriate for discontinuous changes.

“Reset” has been widely adopted to reactive response mechanisms. All particles reset their pbest
values to their current position vectors by checking with defined threshold [20]. Instead of
simply replacing all pbests, an improvement of “reset” is to adopt re-evaluation step for pbest
and replace those particles, only if their current location is better than pbest [8, 9]. It doesn’t
completely deny the value of a pbest particle’s experience. Eberhart proposed that each pbest
fitness value be updated in the changed environment and its position be retained [6].

Hu [22] also tested particle randomization as an active response method. The difficulty is to
determine the randomized proportion of swarm, large proportion randomization loses too much
previous information and is similar to restarting a new optimization, however, a small proportion
being re-randomized cannot stimulate enough diversity. So experiments demonstrate that 10
percent re-randomization rate is a good choice for most cases. This method is also applied in [25],
to compare PSO algorithms for tracking extrema in dynamic environments.

Instead of discarding all previous experience, the position value of each pbest of the P-Best
Decay PSO [20] is decayed by multiplying a decay rate. This allows the particles to
simultaneously make use of previous information while discounting possibly noisy or dynamic
data.

Hybrid strategy

Hybrid strategy refers to those PSO algorithms that utilize mechanisms of both proactive and
active strategies. Generally, each of them has its own advantages and disadvantages. For
example, proactive approaches always converge slowly and not very close to a changing
optimum, however active approaches result in extra computation cost. Designing improvements
that have a fast convergence before new changes and maintaining a diversity so as to adapt to
dynamic landscapes, is crucial.

Collaborative Evolutionary-Swarm Optimization (CESO) consists of two populations: SWARM
(PSO)and CRDE (Crowding Differential Evolution). One of the populations is responsible for
preserving diversity of the search and the other one tracks the global optimum. In case a change
appears in the environment or if the distance between cbest and gbest is very small, SWARM
will be reset by CRDE individuals [19] to enhance the diversity of SWARM.

If a change in the environment is detected, all particles’ pbest are re-evaluated/re-initialized [15],
which depends on the swarm status: Quantum particles, Exclusion, Anti-convergence. All of
them are designed to control diversity separately. Exclude reinitializes the worst swarm of any
two sub-swarms close to each other. Anti-convergence expels the worst swarm from its peak and
reinitializes it in the search space. This can make sure that at least one swarm keeps searching.

8

2.2.4. Performance metric

Performance metrics are important to compare different algorithms and provide measurements
for different strategies and approaches.

(1) Fitness Performance Metric

Some traditional measures of EA performance (uch as offline performance, online performance,
time to convergence, and best-so-far curves, etc.) are still adopted. Any new metrics and
modifications have been designed to compare performance for dynamic functions.

The Best-so-far curves are used to record and graph the best values which stand for the error of
the optimum at each generation. Some researches argue that the curves are inappropriate, since
after a landscape change, the previously fittest value may not be valid [26]. Nevertheless, as far
as making an extension with respect to the new optimum and re-evaluating particles to select the
fittest individual, extended best-so-far is still a simple and common metric. For instance, the real-
time distance of the best particle from the movement beacon [5], in fact it is the same as the
distance of the swarm's global best position at each iteration from the updated solution at that
iteration [6, 8-10].

A curve of extended best-so-far is generally saw-tooth shape, which is simple, distinct and much
easier to interpret, but lacks a quantitative description for the overall performance comparison.

The Offline error metric is the most popular and effective way to compare overall performance
of algorithms. It computes an average of best the performance of individuals over the number of
cycles. Branke and Schmeck introduce the offline error [10, 27] as a performance measure of
dynamic optimization problems, e.g. used in species-PSO [18] and mCPSO, mQSO [15] for the
moving peak benchmark problem. The cumulative mean revenue [20], based on the off-line
error, is an average of the total revenue earned at a certain time. The normalized minimum error
for each iteration and average minimum error over a run are used in [16]. Furthermore this is also
used in [17], named global best offline error. Two of the offline errors to measure the
performance are calculated as follows. The global best offline error is computed by the recorded
best global error of every particle with respect of the global optimum since last change; the
average local offline error is computed by the best average of best “local” errors since the last
environment change across all visible optima.

However, it is pointed out that the offline error metric provides less measurement for exploration
and exploitation characteristics of algorithms. The offline error is split into two orthogonal parts
[23]. One is Best Known Peak Error (BKPE), which is used to measure convergence speed and
another is Peak Cover, which is responsible for analyzing the optima or peaks quantity and also
measuring population diversity and exploration status. The metric offers new insight into the
convergence speed and diversity of an algorithm.

(2) Statistic Performance Analysis

Dozens of runs are usually executed for every experiment, so that the statistical performance is
able to analyzed and reduce the variability of results, e.g., the average iterations needed to track
the dynamic optimum, or the success rate to achieve a task under a certain time. It is essential to
provide the statistical properties for all random-based optimization algorithms.

In [5], three variants are computed: the reliability of the algorithm in terms of solutions found,
the efficiency in terms of average iterations per solution found, and the median iterations per run.

9

This gives a quick indication of the distribution of the solutions and comparison by considering
variations in target speed and swarm topology.

Some simple ways exist to average a performance over dozens of runs. One is to average the
extended best-so-far performance [25], such that each version PSO is run for 1000 generations
and 50 runs. The offline error is averaged after 50 runs [18, 19] to test the effect of different
parameters settings. The average of the cumulative mean revenue [20] is computed with
considering several version PSO with different detection and response methods. The global best
offline error, min, max errors and standard deviation for all the runs are recorded and averaged
after 50 runs in [16].

In [22], it is indicated that there are two kinds of performance indexes considered. The first is the
average number of iterations that PSO used to find the optimum. The second is the average
number of iterations PSO required to follow the dynamic changes Both are used considering the
difference of detection methods, changing severity and response strategy (different
randomization rates). The second one also is adopted in [12].

There are many metrics, widely adopted by other EA algorithms, but not used often by PSO, e.g.
the Collective Means fitness metrics, proposed by Morrison [26]. There are two average versions
of it, one is the average of the best individual over sufficient generations, and another is further
average over multiple runs. The strong point is it could be used for comparisons between
algorithms, since it will give a stable performance value after a large number of runs. Applying
this metric to PSO has not appeared in any research paper.

Other metrics include, mean tracking error, on-line performance, absolute performance, etc.

2.2.5. Experimental design

A real-world problem always has dynamic properties, characterized as changes in objectives,
priorities, and/or resources. It is necessary to design algorithms, which can operate in a dynamic
system, furthermore, abstract the real-world problem and design a fitness function. A real-world
problem, transformed into a mathematical world, may be studied more conveniently. And those
dynamic characteristics can be described, using the mathematic language. A dynamic problem
consists of finding for each time moment t, the value x*(t) which satisfied [28]:

))(,())((,(*
~

txtftxtf ≥ for all nRx∈ (for a maximum problem). Several characteristics of
dynamic problems [29] should be considered, including frequency of change, severity of change,
predictability of change and cycle length / cycle accuracy.

Dynamic PSO [9] is applied to an optimal fusion configuration of sensors in distributed detection
network in a non-stationary binary symmetric channel. The main objective is to maximize
probability of detection and minimize the probability of false alarms. The Dynamic pricing
problem, a real-time machine learning problem with scarce prior data and a concrete learning
cost, is depict by Kalyanam's log-linear demand model and studied by the P-Best Decay PSO[20].
The odor source localization problem in a dynamic environment with the odor Gaussian
distribution model and the advanced turbulence model, is studied in the simulation optimization
experiment [12]. A particle swarm model for swarm-based networked sensor systems is also
applied to the Joint Battlespace Infosphere (JBI) [30].

Like benchmark functions in static environment (Sphere, Rosenbrock, Rastrigrin, and Griewank,
etc,), it is necessary to construct general benchmark dynamic optimization problems. In 1999,

10

Branke [31] proposed Moving Peaks benchmark function and Morrison and De Jong [32]
proposed DF1. There are several ways in which the benchmark problems can change over time
[6, 32]:

Case 1. The simplest dynamic problems, the overall shape (morphology) of the fitness landscape
is constant, the optimum location in problem space can move with a speed, randomly or linearly
or periodically, etc. Tracking a beacon movement [5] at some constant velocity diagonally
through the search space is a linear motion in this case. The simple parabolic function is special
situation of this case. A 3-dim parabolic function is adopted as a test function with linear,
circular and random movement in [7] and a 10-dim one with linear movement is used in [6, 22].
And a randomly moving optimal of the parabolic function also was used in [21]. Three types of
dynamic optimum changes of DF1: small constant step changes, different large step changes, and
chaotic step changes are used by Xiaodong [25] to compare several version PSO. A 5-dim and 5-
cone landscape moving every 10 generations was studied in [26] for a performance measurement
research.

Case 2. More complicated, the location remains constant, but landscape's morphology changes,
including Peak heights, width, and shape. A species-based PSO [17] was run in 2-D environment
dynamism with the height and shape changing periodically.

Case 3. Both will change. Third both the location of the optimum and landscape's morphology
can vary. In a multidimensional system, these variations can occur on one or more dimensions,
either independently or simultaneously. E.g. the plume changes randomly according the wind
speed and wind direction, in [12]. The Moving Peaks Scenario 2 benchmark function is a typical
experiment of case 3, which may has a settings of 5-dim and 10 peaks and a change of peaks’
position, height, width in 5000 evaluations and the peak movements are uncorrelated. It was used
to the performance metrics [23] research with different numbers of peaks from 1 to 190, and by
an extended speciation-based particle swarm optimizer [18] and multi-Charged PSO, multi-
Quantum Swarm PSO [15]. Collaborative Evolutionary-Swarm Optimization (CESO) [19] also
use it as a benchmark experiment to compare with the Self Organizing Scouts (SOS), the Multi-
swarm (MPSO) methods, the Particle Swarm with Speciation and Adaptation (SPSO). A parallel
sub-population PSO with speciation and crowding mechanism [16] was applied to 2-
dimension,3-peaks DF1 problem with peaks shifting position spatially, changing shape and
weight periodically.

Besides the applications and benchmark functions mentioned above, other popular benchmark
problems include: dynamic knapsack problem, dynamic bit-matching, scheduling with new jobs
arriving over time, greenhouse control problem, etc.

2.3. Handling multiple-objectives with particle swarm

Most realistic optimization problems, particularly those in design, require the simultaneous
optimization of more than one objective function. So the multi-objective optimization problem
(MOP) is a class widespread optimization problem in real world, which contains several or some
hard-solving characteristics, including high-dimensional, discontinuous, non-convex,
multimodal, and/or NP-complete, etc. It arise a challenge for those deterministic methods, e.g.
greedy and hill-climbing algorithms, branch and bound tree/graph search techniques, depth-and
breadth-first search, best-first search, and calculus-based methods.

11

The earliest potential research of applying EA for MOP could be almost traced back to the late
1960s[33]. In Rosenberg‘s Ph.D. thesis, his research suggestion would have brought out the
multi-objective optimization if it was carried out as mentioned. Not until the mid-1980s, the
actual implementation of a multi-objective evolutionary algorithm was presented by Schaffer
who proposed the Vector Evolution Genetic Algorithm (VEGA) for solving machine learning
problems. Moore [34] firstly applied PSO to two-objectives MOP in 1999.

2.3.1. Basic concept

Multi-Objective Problem

In mathematical terms, the multi-objective problem can be described as:
)](),...,(),([)(min 21 xfxfxfxF m

Cx
=

∈
 (2-1)

where 1 2[, ,...,]nx x x x=
r

 is the vector of feasible solution or decision variables. : n

if →� � ,

1, 2...,i n= is the i -th objective function, ()g ⋅ and ()h ⋅ are the inequality and equality constrains,
respectively. Instead of a single optimum, the solutions of MOP are always a solution set (the so-
called Pareto optimal set), due to conflict between the objective functions.

Pareto Optimality

Pareto optimality, named after Vilfredo Pareto who used the concept in his studies of economic
efficiency and income distribution, is an important concept in economics with broad applications
in game theory, engineering and the social sciences. The concept of Pareto optimality is

introduced in MOP that a vector
*

x C∈
r

 in Equation 2-1 is said to be Pareto optimal for MOP, if
all other vectors have a higher value for at least one of the objective functions, or else have the
same value for all objectives. A few definitions are as below [35]:

Def. Dominates: Given two vectors , nx y∈
r ur

� , it is said that x y≤
r ur

 if i ix y≤ for 1,i k= K and

that x
r
dominates y

ur
 (denoted by x y

r ur
p) if x y≤

r ur
 and x y≠

r ur
.

Def. nondominated: A vector of decision variables nx χ∈ ⊂
r

� is nondominated with respect

to χ , if there does exist another
'

x χ∈
r

 such that
'

() ()f x f x
ur r ur r

p

Def. Pareto-optimal: A vector of decision variables nx F∈ ⊂
r

� (F is the feasible region) is
Pareto-optimal, if it is nondominated with respect to F .

Definition Pareto Optimal Set: *P is defined by: *P ={ |x F x∈
r r

is Pareto-optimal}.

Def. Pareto Front: *PF is defined by: * *{ () | }mPF f x x P= ∈ ∈
ur r r

�

Pareto optimal points are also known as efficient, non-dominated, or non-inferior points. The
shape of Pareto front indicates the nature of the tradeoff between different objectives.

MOP requirement for PSO

The information sharing mechanism in POS is significantly different with GA. In GAs,
chromosomes share information with each other. So the whole population moves like a one
group towards an optimal area. In PSO, only gbest (or lbest, nbest) provide the information with

12

others. It is blackboard information sharing model and one-way mechanism. All the particles
tend to converge to the best solution quickly even in the local version[36].

 approaches to guarantee that the solutions obtained are not only the Pareto optimal, but are also
uniformly distributed in the Pareto front[34, 37-39].

2.3.2. Nondominated solution archive and best particle selection

In the case of a single objective optimization problem, pbest is the better one between the
particle current position and previous personal best position; gbest is best position of all particles
in the swarm and can be selected from the pbest set; the optimum is a point or vector in the
solution space. However, the situation is changed for a multi-objective problem, the optimum
solution is not a point, but a Pareto optimal set; the gbest have to be selected form several
nondominated particles; the relationship between pbest and the current particles is no more a
better or not, but dominate, nondominated or neither. And all non-dominated solutions are
equally good. Thus, how to save the nondominated solution found by particles and how to select
the best particle from the solution archive is the unique research work of PSO in multi-objective
problems.

Nondominated solution archive

It is necessary to save all the found nondominated solutions in an archive, which may be internal
or external. The internal archive means those nondominated solutions are reserved in the swarm,
such as pbest set and gbest, without introducing other data set. In contrary, the external archive
will utilize some data set to maintain search results. The internal archive is exactly a fixed size.
Only a limited few papers reported adopting an external archive with an adaptive size. Most
external archives are also fixed size. In term of a fixed archive, when the archive is full, some
nondominated solutions have to be discarded, based on the density distribution, selection
pressure, or clustering.

Figure 1 Nondominated solution archive

(1) Internal repository

Internal Archive
Fixed size (pbest)

External Archive
General Methods

External Archive
Grid
Adaptive Grid

External Archive
Density & Crowding

External Archive
Dominated tree

External Archive
Clustering

13

The nondominated solutions found by particles are stored in the pbest set or a set with the equal
size of the swarm size. It means that the number of non-dominated solutions is directly
associated with the population size. So a larger population size is always preferred.

In [36], the earliest studies of PSO in MOP, Moore applied p-list (pbest) to keep track of all
Pareto nondominated solution that a particle encountered as it explored the search space, so as to
adapt PSO for multi-objective optimization. Hu[40] stored all the potential multiple optimal
solution in the pbest with a large size swarm and find the nondominated solutions from the pbest
set. In a further modification to significantly reduce the computation time, he introduced a
external archive to take place the pbest to memorize the Pareto optimum solution[41, 42].

(2) External Archive

The historical record of best solutions, a set used to store nondominated solutions, is always
called as repository, external archive or extended memory, etc. The archive may be fixed or
adaptive size. The nondominated solutions should be inserted in the archive and any dominated
solutions are eliminated from the repository.

□ General methods. Implementation of the external archive is set an external memory with a
bounded size. There exits a tradeoff between the computation cost and storage capacity of
nondominated solutions. The simplest way could customize an archive large enough and adopt
elitist policy to update the archive [43]. e.g. Simple Multi-objective PSO (SMOPSO)[39]. In [44],
an extended memory is applied to store all the Pareto optimal solutions, including those
neglected solutions which do not dominate the current particle, but dominate other particles.

□ Cluster related methods. Mostaghim[45] set a fixed size archive to retain the nondominated
solutions. The fitness space is divided into subspaces and every particle will find a nondominated
solution with minimal σ distance in the archive. Clustering is applied on the elite particle in the
archive, in the case the maximum archive size is reach and the extra particles will be moved.
Hsieh[46] also introduced the clustering method to construct the external archive. In the further
work, Mostaghim[47] added a multi-level subdivision scheme iterative division of the search
space into subspaces (boxes). There is a restricted archive size at initial run and no restriction at
the covering stage.

Instead of using one archive for gbest selection, Abido[48] employed two archives for both gbest
and pbest. Up to the current time, the nondominated solutions obtained by all particles are stored
in Nondominated global set and the nondominated solution obtained by personal particle is
stored in nondominated local set, the hierarchical clustering algorithm used by SPEA is
employed to guarantee the ember of the individuals stored in the set does not exceed the
maximum size by means of an average linkage. For all the two sets, if the member of the
individuals stored in the set exceeds the maximum size, reduce the set by means of an average
linkage based. Zhang[49] also employed two sets to record pbest and gbest, respectively. The
management of the sets included two stages. During initial stage of the evolution, when the
cardinality of pbest set exceeds the given threshold, the nearest particle to the current one is
deleted in order to explore more potential area. In contrast, during the final stage, the nearest one
is preserved to enhance the process of convergence.

□ Density related methods. Praveen[50] also adopted a fixed size archive, but employed a
sorting scheme based on ε-fuzzy dominance value. The external archive is used to store the top

14

best N nondominated solutions found so far from the solution in the current iteration and
previous generation, based on the fuzzy dominance values.

LI [51]proposed a non-dominated sorting PSO combined with two parameter-free niching
methods. All particles' personal bests and their offspring are compared and sorted together in the
entire population, that will ensure more non-dominated solutions can be discovered and provide
an appropriate selection pressure to guide the swarm population towards the Pareto-optimal front.

Carlo[52] incorporates the mechanism of crowding distance with Multi-objective PSO (MOPSO-
CD). A fixed external archive is used to store nondominated solutions found. All new
nondominated solutions are inserted into the archive, if they are not dominated by any of the
stored solutions. And those dominated solution in the archive have to be deleted from the archive.
If maximum size is reached, the most crowded particles will be removed. All nondominated
solutions in the archive will be sorted in descending order in term of the calculated crowding
distance value. And then a particle at the specified bottom portion will be randomly selected and
removed.

□ Dominated tree methods. In order to find a better way to select a gbest than density based
selection methods, Fieldsend[53, 54] adopted a new data structure, named dominated tree, into
the external archive. The nondominated global solutions are stored in an unconstraint external
archive and organized as a dominated tree. Moreover, a set of local best individuals found is also
maintained for each swarm member in local hyper-set.

□ Grid methods. Not only using the external memory to store the nondominated solutions found
during the search, Coello[55] adopted a grid to deposit every particle’s flight experience into a
hypercube. The adaptive grid uniformly distributes the solutions along the Pareto frontier, which
also helps to maintain swam diversity. Nondominated solutions will be placed into a hypercube.
The grid size is limited, so those particles located in less density cube have a higher priority for
retention than those in the crowding area. In [56], similar to the adaptive grid procedure, an
adaptive local archive, grouped by clustering algorithm, is applied to the multiple-swarm
MOPSO to improve the well-distributed sections of Pareto front that associate with each sub-
swarm.

As an enhanced archiving technique, Bartz-Beielstein [57] adopted the enhanced elitist technique
and an adaptive grid as an external archive, which is resized in every generation by considering
the selection pressure and particle density in a hypercube. A new solution is stored in the archive
only when it is non-dominated by all the other solutions already stored in the archive. Depends
on the deletion fitness value, the nondominated solutions are allowed to be replaced by new
particles which may improve the distribution of the archive in a fixed archive.

□ Rank related methods. The non-dominated particles are ranked based on Pareto ranking. The
particles is inserted in or removed from the set of leaders (SOL)[58], compared their
nondominated rank based on the objective values with the average rank in an unconstrained
problem, compared their nondominated rank based on the objective values and constrain matrix
with the average rank in an constrained problem. The structure of SOL, cooperating with the
selection strategy, results in a spread along the Pareto frontier.

Salazar-Lechuga[36] considered both the dominance and fitness sharing of a solution in the fixed
size repository. When there is full of nondominated solution in the memory, the particle with
worst fitness sharing is replaced by the new one.

15

Best particle selection

When solving a single objective problem, the gbest and pbest solutions are exactly dominated in
term of a certain swarm topology. In the case of MOP, there are several potential leaders in the
nondominated solution archive, different swarm topology and various strategies to select leaders
in the swarm. Further more, some other computational techniques are introduced, e.g.
tournament, roulette wheel, niching, etc. Thus, kinds of selection strategies have been reported
on papers. In this part, gbest is use to stand for the swarm best solution, nbest and lbest stands for
the best solution within neighbors. The selection strategies of pbest are similar in some papers
and they will be summarized together.

□ Lexicographic methods. Hu[40] proposed a Dynamic Neighborhood Particle Swarm
Optimization (DNPSO). The idea of nbest selection is similar to the Lexicographic method. The
nearest neighbor particles is organized together according to the calculated distance of the first
objective function’s fitness value, which could be also considered as a cluster operation,
furthermore, the local optima among the neighbors in terms of the fitness value of the second
objective function. In [42, 43, 59], Hu used a extended memory as the candidate pool which has
the same selection mechanism.

□ Random selection methods. The simplest selection way for those external archive based
algorithm is gbest is randomly selected a non-dominated particle from the external archive [34,
39]. Every non-dominated solution in the repository has equal chance to be selected. It results in
a selection pressure to the crowding region and is not good for distributing particles to locate the
Pareto front and maintaining diversity. In [53, 60], all previous found nondominated solution are
kept in the p-lists, the individual pbest is randomly selected from p-lists and the individual nbest
in the neighborhood is the non-dominated solution within the neighborhood by comparing the
nondominated solutions in the p-lists.

□ Probability methods based on density and crowding. The nbest selection of MOPSO [61] is
based on density, which is proportional to the number of dominated solutions inside the
hypercube. There are two steps for the geographically-based selection approaches. Firstly the
roulette wheel selection is used to choose the hypercube in the external archive grid and the
selection probability is inversely proportional to density of the hypercube. Secondly, the particle
within such hypercube is randomly selected as the nbest. The grid concept is also adopted in [56]
as a external archive. In [55, 62], gBest and pBest position are both selected from archive and in
[41], both of them are selected from group leaders in the adaptive local archive through a roulette
wheel selection,. A roulette wheel selection method is also applied in [57], gBest and pBest are
chosen for a particle according to the weighted sums of their age variable and their fitness values.
The roulette wheel scheme, a probabilistic crowding radius-based strategy, is applied for leader
(nbest) selection in SOL[58]. Leaders with less number of individuals around them have a higher
probability of being selected, thus allowing the strategy to explore new areas and maintain
swarm diversity. Salazar[49] used the fitness sharing to measure the density of those non-
dominated solution. Particles in the repository (Pareto Nondominated solutions) will be chosen
based on their fitness sharing by roulette wheel.

Instead of roulette wheel selection, a binary tournament selection is adopted to decide a gbest
solution, in [63]. LIU [50]used the tournament niche method to select gbest where a particle with
a lower niche count is selected from the archive.

16

LI [51]designed the selection mechanisms based on a ranking strategy and two niching methods:
Niche count and Crowding Distance Assignments. All particles and pbest are ranked first and the
new population for the next step is selected from the ranked fronts in ascending order, that make
a selection bias to the individuals in the populations. Based on the niche count method, those
“less crowded” particles with smallest niche counts will be selected as gbest. According to the
crowding distance assignments method, the crowding distance of every solution is calculated,
that is the average distance of the two solutions on either side of this solution along each of the
objectives. All particles of the current Pareto-solution Set are sorted in descending order and a
particle is chosen randomly from the top part of the sorted list as gbest for each particle. Similar
to the idea of sorting and randomly selection, MOPSO-CD[52] the gbest guide for each particle
is randomly selected from a specified to portion (e.g. top 10%) of the extended archive, sorted in
descending crowding distance values.

□ Distance methods. The dominated trees are utilized in [44] to improve the selection of an
appropriate Pareto archive member as the global ‘best’, which is based upon its closeness in
objective space to an individual in the nondominated set. Furthermore, the local best (personal
best) individuals are uniformly selected from the local Pareto solution set, instead of a single best
for each particle.

For σ -method based PSO[47], every particle will find a social leader with minimal σ distance
to the particle, that means every particle should find a closet line decided by a social leader. The
best nbest for each particle from the Pareto solution set will be selected. The σ -method
encourage the particles flying directly towards the Pareto-optimal front.

In [45] two archives for both gbest and pbest are employed, the nondominated solutions in
nondominated local set and global set give the minimum distance with the current particle,
respectively, they are selected as the local best and the global best of the particle respectively.

Hsieh[42, 53, 58, 63, 64] designed the Solution exploration strategy (SES) which will uniform
distribute each particle to a nondominated solution as their local guide which will lead movement
of corresponding particle. Each nondominated solution in the external archive will be selected as
a gbest. Thus particles in the swarm will distribute in a wide area.

□ pbest selection methods. The Pareto dominance based pbest selection is an easy and popular
method, e.g.[36, 40, 45, 51]. Between the current particle position and the previous personal best
position in memory, the nondominated one will be obtained as pbest, if neither of them is
dominated by the other, then it is selected randomly. In [49], only a new solution dominates the
current pbest, the pbest is updated. In [34, 39], if the solutions are incomparable or mutually
non-dominant, the operation is a little bit different with previous papers, that the current position
of the particle is used as the updated personal best.

2.3.3. Density metric and diversity maintaining

For the MO optimization problem, the task is to find the Pareto solution set, instead of an
optimum in a single objective optimization problem. Furthermore, during the optimization
process, all particles will follow the found nondominated solutions saved in the archive. In the
early research of MOP by PSO[53], there is no consideration to the operation of diversity
maintain. However, it is crucial to distribute these solutions in the fitness space, so as to locate
the Pareto front as much and close as possible. Thus one mission is how to maintain diversity in
the swarm. One way is to control diversity of the found nondominated solutions and propel

17

particles not to select those leaders in the crowding region; another way is to introduce some
improvement into the PSO update equations.

Table 1 Comparison of some typical reference

 Archive Update Equation Other
Coello,2002 Grid roulette wheel
HU,2002 Dynamic neighbor
Fieldsend, 2002 Dominated tree Turbulence
Ray, 2002 crowding radius
Mostaghim,
2003

σ -method Turbulence

Bartz, 2003 Adaptive Grid uniform selection
anti-clustering

Mostaghim,
2003

σ -method, subswarm Turbulence

LI, 2003 the niche count
crowding distance
 assignment

Pulido,2004 Subswarm, Cluster
Cagnina,2005 Grid Uniform Mutation
Carlo,2005 crowding distance Mutation deletion
ZHAO,2005 Grid roulette wheel
Reyes-
Sierra,2005

Subswarm, Cluster Crossover,
mutation

Leong, 2006 adaptive local archive
subswarm
clustering

 roulette wheel

Hsieh,2007 clustering Turbulence
Anbido,2007 clustering

□ Grid based methods. Coello[43] designed a geographically-based approach strategy by
dividing the external repository into hypercube. Fitness is given to each hypercube that contains
the found solutions, which is equal to dividing 10 by the number of resident particles. A roulette
wheel selection operation is applied to select the gbest vectors to guide particles. The selection
probability is inversely proportional to the number of dominated solutions inside the cube (see
Figure 3). In [56], an elitist policy is performed to store nondominated solutions in an external
archive with grid structure and a uniform mutation is applied.

As an extended study, Bartz-Beielstein [55] improve the grid to be adaptive to divide the archive,
as well as a relative distance metric (Equation 2-2) and a randomized approach to maintain a
spread in the fitness space. To those particles in the archive, a uniform selection probability, anti-
clustering selection technique, which is based on the deletion probability, are used to prevent
particles in huge clusters to be chosen. The calculation of all pair distance metric depends on
Equation 2-2. The constant c represents a selection pressure. max i ,min i are the maximal and
minimal values reached by an archive member at the j –th objective function.

#
2

1

1
, ()

max min

objectives
i j

del ijc
j i kij i i

x x
f D

D∀ ≠ =

−
= =

−∑ ∑ (2-2)

18

 Figure 2 Hyper-cube method developed by Coello Coello

Figure 3 Crowding radius method developed by Ray

Leong [57] designed a crowdness indicator to monitor the density of a cell which is defined as
the number of particles located in a cell and it involves the control of the population size at each
cell. Similar to the adaptive grid procedure, an adaptive local archive is designed to improve the
distributed solutions along the sections of the Pareto Front that associate with each sub-swarm,
which is constructed by clustering algorithm, based upon leaders’ position. A roulette wheel
selection is applied to choose the group leaders.

□ Distance based methods. Ray[51] proposed that a leader is probabilistically selected based on
the crowding radius of the leaders in the objective space, so that it allows exploring new area and
distributing along the Pareto front. A crowding radius is the average of the distance between its
left and right neighbor in the objective space (see particle j in Figure 3). The less the number of
individuals around leaders, the higher the probability of being selected they have. Carlo[44]
employed the crowding distance value of a solution to estimate the density, which measures the
size of the largest cuboids enclosing particle (see particle i in Figure 3) without including any
other point. In fact, it is the average distance of its two neighbor solutions, the same as Ray’s
measurement. The set of solutions is sorted in ascending objective function values. The deletion
operation, based on this sorted list, replaces the most crowded particles in the archive. As well as
mutation is applied to enhance the information sharing.

Mostaghim[44] use σ method to divide the fitness space (shown in Figure 5). Every particle will
find a social leader with minimal σ distance. A turbulence factor, which is a random value to the
current position, is added to the position updated equation. Based on a further improvement is
proposed in [46]. The optimization process is achieved in two steps[50]. At the covering step the
swarm is divided into subswarm by σ method, with more particles and no restriction on the
archive size.

f2
 Cuboid

i

j
i

19

Figure 4 σ method developed by Mostaghim

Li [45] employed two parameter-free niching methods (the niche count and crowding distance
assignments.) to measure the density in the archive. The niche count calculates the number of
other particles within a certain distance (as shown in Equation 2-3 and Figure 5). The crowding
distance of a point is the average distance of the two points on either side of this point along each
of the objectives, which is the same as the methods of Ray and Carlo).

2 2 1 1

1share

u l u l

N
σ

− + −
=

− (2-3)

To promote diversity, those particles in crowded areas (the largest niche count or the smallest
crowding distance value) will be removed and replaced by randomly generated particles.

Figure 5 Niche method developed by Li

□ Clustering based methods. Hsieh[47] used the archive cluster method to keep desired diversity
from the non-dominated solution set found so far. Each particle is assigned a cluster radius.
Particles within the radius of cluster center will be discarded (shown in Figure 4). The radius of
cluster is defined as:

1 min max max min
1 11

{(,), (,)}

2

m

i i i ii
d f f f f

r
s

−

+ +==
∑

 (2-4)

where s is the number of nondominated solution in the archive, m is the number of objective, d is
the Euclidean distance, max

if and min
if are the maximum and minimum of the i-th objective in

nondominated solutions. A disturbance operation, mutation-like evolutionary strategy, is also
introduced to enhance particle’s searching ability. The Gaussian noise is put into randomly
selected particles’ moving vectors (velocities). It is helpful to particles jump out from local
search and explores more un-searched area.

Archive
solution
Particle

f1

f2

20

Figure 6 Cluster method developed by Hsieh

In [61], an average linkage based hierarchical clustering algorithm is employed to reduce the
nondominated local and global set size if either exceeds the bounded size.

□ Subswarm based methods.

Reyes-Sierra[59] take advantage of some co-evolutionary concepts. He integrated several
diversity techniques into PSO for solving MOP. Particles are split into subswarm, which also
cooperate and compete among themselves and can adjust their own size based on their
contribution to the current Pareto front; the adaptive grid is used to store the obtained
nondominated solutions and enforcing a more uniform distribution along the Pareto front; a
clustering is performed to analyze the promising regions; crossover and mutation, operators of
GA, are introduced, three types of mutation (no mutation, uniform mutation and non-uniform
mutation) are applied to particles in the swarm, separately.

 In [36], a PSO algorithm is run in each subswarm and at some point the sub-swarms exchange
information. Johnson’s cluster algorithm is performed to assign leaders into groups to guide the
flight direction

□ Other methods. HU[40] designed a dynamic neighborhood strategy. At each iterations, a
particle finds the nearest particles as neighbors, based on the distance which is calculated in the
fitness space of the first fixed objective function. The dynamic neighborhood encourages the
information sharing of pbest and not concentrates on a single gbest and pbest. As a further study,
HU [52]introduced an external repository. Cooperated with the dynamic neighborhood strategy,
it propel particles to uniformly distribution the solutions along the Pareto frontier and enhance
the diversity. Fieldsend[65] proposed dominated tree for storing the particles and a turbulence
variable to velocity update equation. The global best for an individual is based upon its closeness
and calculated by quantitative procedure but not any random selection involved. The turbulence
variable is a random number, equivalent to perturbation in ES.

HO [66], make a modification of the update equation, considering the affection of personal and
social experience, velocity reverse and suddenly direction change of birds. Four additional
random variables are added to the update equation of velocity. One introduced random parameter,
named craziness variable, is a turbulence operation and used to maintain the diversity of the
particles in an optimization algorithm. Except these four random parameters, an age variable is
assigned to each solution in the repository, aiming to further maintain the diversity of the

21

algorithm. The roulette wheel selection mechanism is used to pick a solution according to the
weighted sums of their age variables and their fitness values.

2.3.4. Strategies related to objectives fitness function

In this section, several strategies involved the manipulation will be surveyed. The first one is an
approach to transform a MO problem to a single objective problem by a weighted aggregation
approach. The second one is introduced the lexicographic method to consider the objectives
separately according to the order at each step. The last one attempt to estimate the particle’s
fitness by some simple modeling operation, in order to reduce the computation cost.

Weighted Aggregation Approach

According the weighted aggregation approach, all objectives are summed with a weighted
combination and a MO problem is transformed into a single objective problem. The weights are
considered by normalizing and processing the contributions to the objective function. It is almost
the easiest way for coping with MO problem and the combination of the fitness functions ()if x

is presented as below:

1
()

k

i ii
F f xω

=
=∑ (2-5)

where iω , usually assumed that
1

1
k

ii
ω

=
=∑ ,can be fixed or dynamically adjusted by some

strategies during the optimization. So it can be classified into 3 type techniques as following and
Parsopoulos adopts the 3 fixed or adaptive weights Weighted Aggregation methods to convert a
multi-objective problem to single objective problem, compared and analyzed the performance in
[67].

(1) Conventional Weighted Aggregation (CWA) is a fixed weights approach, which requires a
priori knowledge to choose the appropriate weights. And it has to be repeated several times
search to obtain a number of Pareto Optimal points, however, in most case, we don’t know how
many Pareto optimal points there is. Furthermore, due to time limitations and heavy repeated
computational costs, it is rare reported adopting the CWA. Xia [68] applied the linear weight
aggregation to 3-objectives Job-Shop problems and got one acceptable solution for each problem.
ZHANG[65] use the fixed weight aggregation PSO to design a PID controller.

(2) Bang-Bang Weights Aggregation (BWA) can adjust weights during the optimization, based
on the equations: 1() (sin(2 /))t sign t Fω π= , 1 1() 1 ()t tω ω= − . The weights are changed abruptly.

As an improvement of CWA and a prototype of DWA, there is no paper reported that BWA is
combined with PSO for MO problems, except the comparison experiments in [69].

(3) Dynamic Weighted Aggregations (DWA) calculates the value of weights to forces the
optimizer to keep moving on the Pareto Front during the optimization. Liu[70] use a modified
fuzzy-Chebyshev programming (MFCP) to generate the weight or quantify the level of
importance for each objective based on its satisfaction level. Marandi[71] applied an ordered
weighted averaging operator to transform a 3-objectives MO problem to a one objective cost
function and a Mamdani fuzzy inference system to calculate weights for objectives.
Baumgartner[36, 40], adopted a gradient technique based approach to the weights adjustment.
The swarm is equally partitioned in subswarm. Each sub-swarm is belonging to a weighted sum
and evolving into the direction of its own swarm leader.

22

Only one optimal solution and fixed weight among the objectives are generally not sufficient to a
multi-objective problem. So there are still existing three main problems, the first one is how to
keep the found solutions and find more; the second one is whether the dynamic weighted
aggregation could describe the objectives’ relationship and how to design the dynamic strategy
to push the optimizer close to Pareto front; the last one is with the number increase of objectives,
the combination of weights and solution space dramatically increase, whether it is available and
computable to considered the MO problem as one objective cost function with a dynamic
weights. All weighted aggregation versions can be deduced by Kuhn-Tucker conditions, which
are necessary for a nondominated solution and require the Pareto front is convex. In fact, it is not
an efficient way to study the essential characteristic of MOP.

Lexicographic Method

In the lexicographic method, the objectives are ordered according to some considerations, e.g.
importance, difficulty, priority, etc. The solution is obtained by optimizing the objectives
separately according to the order. HU[72] introduced the lexicographic idea into the MOP-PSO.
One objective is defined as the optimization objective and fixed, other objectives are defined
neighborhood objectives. The first (maybe the most important, the highest priority, etc.)
objective optimization is started firstly, and then, based on the first result, the second objectives
will be optimized at each iteration. It is a low computation cost and computational complexity.
However, selecting the fixed objective must be done by having a priori knowledge about the
objective functions, due to the algorithm are sensitive to the order of objectives. And it is based
on an assumption that the objectives must be orthogonal. Only two-objective functions are tested,
with the increase of objectives number N (more than three), the computational complexity will
have a exponential growth as 1()NO N − .

4.3 Fitness Enhancement Techniques

In real world applications, the increase of fitness function evaluation is accompanied by the
dramatic increase in computation cost. Not only in real world problems, even if the mathematic
description is much more complicated and calculation time-consuming, frequently fitness
function evaluations will result in a very low efficiency optimization. Thus, in order to reduce
the computational cost of fitness evaluation and improve the performance, fitness enhancement
techniques are introduced in EA. The fitness heritance and fitness approximation are two typical
enhancement techniques. Recent years, they are adopted in the POS to solve MOP.

The use of the fitness heritance is calculated the fitness value of particle at the next iteration.
There are two ways[72, 73] to implemented by taking the average fitness of the two parents or
taking a weighted average of the fitness of the two parents. The parents are the current particle,
pbest or gbest. Reyes-Sierra[74] proposed 15 kinds Fitness Inheritance methods. The linear
Combination Based on Distance methods calculates the new fitness of a particle by means of
linear combinations of the positions of the particles. There are 3 variant kind versions, based on
the different selection of a particle's parents. The flight formula on objective space methods is
similar to the position and velocity update equation. And also has 3 versions through considering
different particles' fitness. The combination using flight factors method contains two types’
methods: the non-linear combination is similar to the velocity update equation. There are 6 kinds
equations to calculate the new fitness; the linear combination, Similar to NLC, but is a linear
combination of the 3 part. The performance of weighted average fitness inheritance is tested on a
well-known test suite of multi-objective optimization problems[75]. A study [42]of the

23

inheritance proportion indicated that it could reduce the computational cost by 32% without
affecting the quality of the obtained Pareto front and only when savings of more than a 50% of
the total number of evaluations the quality on the results is significantly affected.

Table 2 Fifteen fitness inheritance methods

 I II III
Linear Combination Based on
Distance (LCBD)

ix
f

gf
ix

f pf
ix

f
pf

gf

Flight Formula on Objective Space
(FFOS)

v
ix

f pf gf
ix

f pf gf v
ix

f gf

I
ix

f pf gf
pf gf

ix
f gf Non-linear

Combination
(NLC) II / 0.5

ix
f , / 2pf , / 2gf / 2pf , / 2gf / 0.5

ix
f , / 2gf

Combination
using Flight
Factors. Linear combination

(LC)
ix

f pf gf
pf gf

ix
f gf

Fitness approximation techniques are employed to estimate a particle's fitness depends on the
previously calculated fitness of its neighbors. The simplest way is that the fitness of a new
particle is assigned to the same value of the closest particles' fitness, which is look like the
operation of fitness inherence. In fact, it is estimated based on an approximate mode of fitness
landscape, including, polynomials, neural network and interpolation and regression model, etc.

Yapicioglu applied the idea of fitness approximation idea in [76]. PSO is utilized to find an
initial set of non-dominated solutions. And then, a general regression neural network is
constructed using these non-dominated solutions. The neural network will generate a
considerably larger set of non-dominated solutions.

Other fitness related modification

LI [77] introduced the Maximin strategy in game theory into the MOPSO and proposed an
extension PSO, named maximinPSO. The fitness function of maximinPSO is derived from the
maximin strategy to determine Pareto-domination and rank individual in the swarm instead of
the popular non-dominated sorting method. No additional clustering or niching techniques is
needed.

2.3.5. Performance metrics

Different of the metrics of single objective problem, the definition of quality is substantially
more complex in the case of multi-objective optimization. Generally, the metrics should be
considered [49] :

1. The distance of the resulting non-dominated solution set to the Pareto front should be
minimized;

2. A good (in most cases uniform) distribution of the resulting nondominated solution set
should occur;

3. A wide range of the Pareto front should be covered by the resulting nondominated
solutions set.

24

Some popular performance metrics are presented as following. And the statistics of metrics and
reference is summarized in Table 3.

□ Generational Distance (GD). It is the average distance of the current solution from the Pareto
front. It addresses the closeness between the found nondominated vectors and those in the Pareto
optimal set. It can be calculated by[34, 39, 41, 50, 78] :

' 1/
21

1
1

()
, min ()

'

n p p Mn
i i ji

i k k
j

k

d
GD d f f

n

=

=
=

= = −
∑ ∑ (2-6)

n The number of nondominated solutions in the known Pareto front set

'n The number of current nondominated solution in the found set by algorithm

M The number of objectives

i
kf The fitness of the i -th individual for objective k

□ Inverted Generational Distance (IGD). It is also used to measure how far the true Pareto
front from the obtained Pareto front is and gives an idea of how close and widely spread is the
obtained Pareto front with respect to the true Pareto front.

2

1

n

ii
d

IGD
n

==
∑

 (2-7)

where n is the number of elements in the actual Pareto front, id is the Euclidean distance, the
same in Equation 2-6.

□ Spacing(S). A metric allows measuring the distribution of vectors. In addition to comparing
the convergence to the true Pareto front, it is used to measure the spread (distribution) of vectors
throughout the nondominated vectors found so far.

2

1 1

1 1
() ,

1

n n

i i

i i

S d d d d
n n= =

= − =
− ∑ ∑ (2-8)

□ Error Ratio (ER). This metric is proposed by Veldhuizen to indicate the percentage of
solutions (from the nondominated vectors found so far) that are not members of the true Pareto
optimal set, as shown in Equation 2-9. 0ie = , if the i th solution is a member of the Pareto
optimal set, and 1ie = otherwise.

'

1

'

n

ii
e

ER
n

==
∑

 (2-9)

□ Success Counting (SCC). The measure counts the number of elements of the Pareto front

obtained, that belong to the true Pareto front of the problem.
'

1

n

i

i

SCC s
=

=∑ , where 'n is the number

of vectors in the obtained nondominated set

□ Two Set Coverage (SC).

It is also called C metric. (', '')SC X X map the two set 'X , ''X to the interval [0,1] , which gives
the ratio of points in 'X that are dominated by at least on point in the ''X . It could be presented
as:

25

|{ '' ''; ' ' : ' ''} |
(', '')

| '' |

a X a X a a
SC X X

X

∈ ∃ ∈ p
� (2-10)

If all points in the set 'X dominate or are equal to all point in ''X , then 1SC = , 0SC = implies the
opposite.

□ Diversity (∆). It is a diversity metric, which measures the extent of distribution achieved
among the obtained solutions and is defined as

' 1 ' 1

1 1

| |

,
1(1)

n n

f l i i

i i

f l

d d d d d

d
sd d s d

− −

= =

+ + −

∆ = =
−+ + −

∑ ∑
 (2-11)

where fd , ld are the Euclidean distance between the extreme solutions and the boundary

solutions of the obtained nondominated set.

□ Maximum Spread (MS). It gives a value which represents the maximum extension between
the farthest solutions in the obtained non-dominated set.

2max max min min

max min
1

min(,) max(,)1 m
k k k k

k k k

f F f F
MS

m F F=

 −
=

−
∑ (2-12)

max
kf and min

kf are the maximum and minimum of the k th objectives in nondominated solution

found so far, respectively; and max
kF and min

kF are the extreme in the actual Pareto optimal set. In a
problem with two objectives, the value will be the Euclidean distance between the two farther
solutions. In this metric a bigger, value indicates better performance.

□ R-metrics. The R-metrics compare two non-dominated sets on the basis of some utility
functions and determine the expected number of occasions where the solutions of on set are
better than the other.

□ Attainment surface. Attainment surface use a set of non-dominated solutions to define a
surface that delineates the objective space into a dominated and non-dominated region.

□ S-metirc. The S-metric calculates a hyper-volume of a multi-dimentional region enclosed by
the non-dominated set to be assessed and reference point to measure the diversity and the
convergence of the obtained non-dominated set.

Table 3 Statistics of metrics and reference

Category Reference
Number of nondominated solution found [43, 45, 48-50, 55, 58, 59, 61, 63, 79]
Generational Distance (GD) [72, 74, 75]
IGD [43, 48, 51, 53, 55, 58, 59, 61, 63, 79]
Spacing (SP) [48, 59, 61, 79]
Error Ratio (ER) [72, 74, 75]
Success Counting (SCC) [40, 44, 46, 51, 55, 61, 74]
Two Set Coverage (SC) [45, 50]
Diversity (∆) [45, 58, 63]
Maximum Spread (MS) [56]
R-metric and S-metric [79]

26

2.3.6. Application and test suits

Since MO issues have been studied for a long time, no matter by deterministic methods or
stochastic approaches, there are many classic application cases and test functions investigated by
EAs and GAs. All of them provide a shot cut for researching and testing PSO. Furthermore,
based on the previous proposed test functions, some comparison research papers have been
published, e.g. the pure comparative studies by Coello[78], Emma [80-82], etc, and comparative
analysis with a new proposed PSO algorithms in the paper, which is summarized in Table 4.
Some tested functions are popular and often adopted in an experiment and it is summarized in
Table 5. In addition, some resources can be found online[55, 72, 74].

Table 4 Compared MO optimization algorithms

Compared algorithms Reference
Cluster-MOPSO [61]
CO-MOEA [40]
original Dynamic Neighborhood PSO [79]
Micro-Genetic Algorithm for MO (microGA) [43]
Multi-Objective Genetic Algorithm 2 (MOGA2) [48, 49, 51, 52]
MOPSO [45, 48, 50, 53, 58, 61, 78, 79]
Non-dominated Sorting Genetic Algorithm (NSGA II) [55]
Non-dominated Sorting PSO [43, 53, 58, 78, 79]
Pareto Archived Evolution Strategy (PAES) [52]
Partitioned Quasi Random Selection (PQRS) [45, 55, 72, 74]
sigma-MOPOS [47, 61]
Strength Pareto Evolutionary Algorithm (SPEA) [44, 45, 78]
SPEA II [55, 72]

Table 5 MO functions tested in references

Test functions Num-OBJ, Pareto Front properties Reference
DTLZ2 3-OBJ, 12 decision variable, a surface Pareto front [72]
DTLZ6 3-OBJ [49, 51, 56, 58]
Kursawe 2-OBJ, discontinued, three disconnected Pareto curves [41, 43]
MOP5 3-OBJ, unconstrained disconnected, asymmetric [43]
MOPC1 2-OBJ, constrains, convex [47, 53]
TP1 (Schaffer) 2-OBJ, discontinuous [47]
TP2 [44-50, 72]
ZDT1 (TP3) 2-OBJ, Convex, continuous, uniform distribution of

solutions
Difficulty: Large number of parameters

[45, 50, 72]

ZDT2 2- OBJ, non-convex [43-50, 53, 57, 58,
72, 83]

ZDT3 (TP4,
Func1 by Deb,
MOP6)

2-OBJ, non-convex, unconstrained,
discontinuous , consistent of 4 Pareto curves

[44, 46, 48-50, 53,
55, 57, 72]

ZDT4 (Func2
by Deb)

2-OBJ, convex, continuous
Difficulty: Large number of local Pareto-optimal
fronts, 60 local Pareto fronts

[46, 48, 49]

ZDT6 Non-convex, disconnected-continuous, non-uniform [84]

27

density of solutions
Difficulties: adverse density of solutions, non-convex
front and discontinuous front

There are several different names of the same test functions in various papers, such as TP4,
ZDT3, MOP6, and one function by Deb[84] stand for the same function. TP3 and ZDT1 are the
same function, ZDT4 and another function by Deb[57] are the same. The Schaffer function is the
same as TP1.

Besides the research work on the test suits, some other application cases are also investigated, e.g.
a welded beam problem subject to several constraints and a design work of a multiple disc brake,
by Ray[69], Design of reconfigurable machine tools (RMTs) involves several objectives, by LIU
[85], an optimization problem of the thermodynamic parameters of the Na2O-SiO2 system in the
mineralogy by Halter [86], an I-beam problem with the bending stress constrain by Eric[70], a
hard multi-objective electromagnetic problem of a planar antenna for using in two-way satellite
Internet services in the Ku-band, by Marandi [42], a non-linear constrained multi-objective
economic load dispatch problem in power system with 3-objectives and constrains, by
Yapicioglu[62], the optimal control problem for interplanetary trajectories design to minimize
both the propellant mass to maneuver and the transfer time for the Earth to the target planet, by
Mich [87], the molecular docking problem to find a good position and orientation for docking a
small molecule to a larger receptor molecule by Stefan [87].

2.4. Handing constraints with particle swarm

Most realistic optimization problems involve a number of constraints and should be minimized
or maximized subjected to those constrains on the possible values of the independent variable,
which can also be equality constraints and inequality constraints. The constraint problems can be
addressed using either deterministic or stochastic methods. Deterministic methods such as
Feasible Direction, Gradient-descent methods, Gradient-projection method, Quadratic
Programming, Sequential Quadratic Programming and Lagrange multiplier methods, etc, usually
require objective or constraint functions should be differentiable, continuous and the feasible
domain is convex. Unfortunately, lots of problems don’t meet these requirements.

Compared with the deterministic methods, the evolutionary computation techniques depend less
on characteristics of the constraint problem and push themselves to a strong support in the
research of constraint problem. Many research results and surveys about constraint handling
techniques in evolutionary computation methods, i.e. Evolutionary Algorithm (EA), Genetic
Algorithm (GA), etc., have been published [88-93].

In the recent ten years, Particle Swarm Optimization (PSO) has aroused considerable attention
regarding its potential as an efficient algorithm for constraint problems. In this review,
constrained handling methods for Constrained Optimization Problems (COP) are surveyed in
detail and for the Constraint Satisfaction Problem (CSP) are also discussed.

2.4.1. Constraint problem

A constrained optimization problem is usually written as a nonlinear programming (NLP)
problem as following:

28

mjxh

lixg
tosubject

Rxxf

j

i

n

,...2,1,0)(

,...2,1,0)(

),(min

==

=≥

∈

 (2-13)

where ()f ⋅ is the objective fitness function, x S F∈ ∩ ,
nS R⊆ is the n-dimension search space and

F is the feasible region satisfying the inequality constraints ()
j

g x and equality constraints ()ih x . In
constrained optimization, the general aim is to guide solutions in the infeasible domain to
feasible area. Large classes of early methods transform the constrained problem to a basic
unconstrained problem that can be easier solved, by using a penalty function which were
proposed in 1940s and later improved by many researchers. The penalty functions utilize the
amount of constraint violation to penalize the infeasible solutions and to favor feasible solutions.
They simply penalize constraints and build a single objective function. However there are lots of
limitations, such as the selection of appropriate penalty coefficient is not an easy task. Penalty
functions are classified into two main categories: stationary and non-stationary. Stationary
penalty functions use fixed penalty values throughout the minimization, while in contrast, in
non-stationary penalty functions, the penalty values are dynamically or adaptively modified. In
order to overcome the limitations of , many alternative methods are proposed, such as rejecting
infeasible solutions, repairing the infeasible solutions, separation strategies of constraints and
objectives, Pareto principle related constraint handling techniques, designing special mutation
and crossover operators[94], etc.

2.4.2. Constraint penalties and objective approaches

Static Penalty

An individual of penalty category methods can be evaluated by the following formula [88]:
2

,
1

() () ()
l m

i i k j j

j

F x f x r xφ
+

=

= +∑
 (2-14)

where ,k jr is a penalty coefficient for the j -th constraint and the k -th level of violation which is

defined by user.
2 ()j xφ impose a penalty controlled by a sequence of penalty coefficients.

Zhu[95] concerned on solving Vehicle Routing Problem with Time Windows (VRPTW)

problem. Some large positive numbers are employed as the punishment coefficients ,k jr to deal
with vehicle capacity, travel time and arrival time feasibility constraints. The constraint problem
is converted to an unconstraint problem with these static coefficients incorporated into the object
function

The static penalty approach belongs to stationary penalty category. The penalty factors ,k jr remain
constant during the entire evolutionary process. The description of the approach is simple,
although there are lots of coefficients to be set up in some cases. Whereas, generally penalty
coefficients are problem dependent and real time related with the optimization process. If the
coefficient value is not penalized enough, the proportion of penalty in the objective function is
too small to have an infeasible solution; on the contrary, if the value is too large, it will lead to
premature convergence to a local optimum and is difficult to move from one feasible region to
another one, which are disconnected each other. In general, penalty function approaches heavily
dependent on the coefficient settings which require a strong a priori and are different for variant
issues.

29

Dynamic Penalty

Under this category, penalty coefficients ,k jr are the function of the generation number. Normally,
it is designed as an increase function over the generation number (i.e., proportional) so as to
allow individuals gradually converge to feasible region.

Parsopoulos[96] proposed a non-stationary multi-stage assignment penalty function, defined by
adding the sum of violation of all constraint functions to the objective functions as penalty,
defined as equation 2-15.

(())

1

() () ()

() (()) () j

i i k

l m
q x

j j

j

F x f x r x

x q x q x
γ

φ

φ θ
+

=

= +

=∑
 (2-15)

where
() max{0, ()}j jq x g x=

is a relative violated function of constraints and ()γ ⋅ is the power of
()jq x

; ()if x is the objective function and
()jg x

are the constraints in Equation 2-15. The weight

kr of each violation is a function of iteration number k and designed as two versions

kr k= and kr k k= for different problems. The ()h ⋅ , ()θ ⋅ and ()γ ⋅ are problem dependent[96].
The main difficulty of the dynamic penalty function method is also the difficulty of selecting an
appropriate value for the penalty coefficients that adjusts the strength of the penalty[97].
Parsopoulos claimed it outperformed other different evolutionary algorithms, such as Evolution
strategies and genetic algorithms.

Xu[98] studied the realistic portfolio selection problem with transaction costs, tax and buy-in
threshold, based on Markowitz mean-variance model. Constraints are handled by dynamic

penalty factor kr C k= ⋅ , and the violation of both equality and inequality constraints are
considered as Equation 2-16.

max{0, ()} 1
()

(()) 1
j

j

j l

g x j l
q x

abs h x l j l m−

≤ ≤
= + ≤ ≤ + (2-16)

The algorithm is sensitive to the value of constantC in penalty factor, but there is no any
suggestion how to select in the paper.

In some papers, it is reported that penalties work better than static penalties. In fact, it works well

for some simple problems, but failed for more difficult problems [99]. The value of ,k jr
 is

usually predefined monotonically increasing and problem dependent, thus the convergence
process is irreversible and once the swarm is trapped in a feasible local optimum, it may stay
there forever.

The crux of dynamic penalties is the configuration of those sensitive problem dependent
coefficients.

Adaptive Penalty

Both dynamic penalty and adaptive penalty approaches belong to non-stationary penalty function

methods. Compared to dynamic penalty methods, ,k jr is adjusted automatically and adaptively
relies on the feedback information from optimization process.

30

Liang[94] designed the new constraint handling strategy for Dynamic Multi-swarm Optimizer
(DMS-PSO). For each sub-swarm according to the adaptive constraints combination, the roulette
selection is used to assign the objective function or a single constraint as its target. The average
of weighted constraints is to balance the impacts of different constraints (as Equation 2-17). The
constraints that are more difficult will have more sub-swarms work for it, while the easier ones
will have less or even no sub-swarm working for it.

max

1
max

1

1/
() (()) 1,2...

1 /

l
j

i j j i j l
j

j

j

g
x g x j l

g

φ λ λ
=

=

= ⋅ = =∑
∑

 (2-17)

He[100] developed a c o-evolutionary particle swarm optimization approach (CPSO) for
constrained optimization problems and employed the notion of co-evolution to adapt penalty
factors. The PSO is applied with two kinds of swarms for evolutionary exploration and
exploitation in spaces of both solutions and penalty factors.

Ismael[101] calculated the constraint violation separately as Equation 2-18. Where
[()] max{0, ()}i ih x h x+ = ， : [1,]nH R → +∞

1

log(1 ()) log(1 [()])

()

l m

i i

i i

g x h x

H x e
+

=

 + + +

∑ ∑

= (2-18)

Although different problems lead to a different adjust strategies for ,k jr , adaptive penalty methods
relatively require less prior knowledge of problems. More recent constraint-handling approaches
in EA pay a lot of attention to this issue [92].

2.4.3. Separation strategies of constraints and objectives

Instead of using penalty functions for constraint-handling what is the most common approach,
some strategies consider the constraints and objectives separately. In some cases, the separation
strategies are employed to compare individuals based on the objective fitness and eliminate some
infeasible solutions. And in other cases, the constraint violation is calculated as a measurement to
the feasible region of a particle, so as to be used to sort or rank.

Separation for Death Penalty

The death penalty method is a popular and probably the easiest way to handle objectives and
constraints separately. It utilizes the interior penalty rules to discard infeasible solutions from a
population that means the heuristic information from infeasible points is neglected. It works well
in term of linear constraint problem. Whereas, the drawback of the method is the limitations for
problems, that it might be stagnated, when the feasible search space is non-convex or
disconnected, or small. Especially for some problem with small feasible region, such as equality
constraint problem, it is almost too hard to generate new feasible solutions, especially at
initialization stage.

Amin[102] applied particle swarm optimization to the hardware/software partitioning problem
which is to minimize the area and communication costs between software and hardware blocks
subject to execution timing constraint requirement. The fitness value of feasible solution is
defined as summation of communication cast and hardware cost, otherwise it is set to infinite if
the timing constraint can be satisfied. In some cases, It will take much more time for a fixed
number of generations, since looking for feasible solutions.

31

Hu[103, 104] employed the preservation of feasible solutions method (FSM) for constraint
handling with PSO. Constraints are only used to see whether a solution is feasible or not[105].
PSO is started with forcing all particles into the feasible space before any evaluation of the
objective function has begun. And feasibility function is used to check if the new explored
solutions satisfy all the constraints. Only those particles in feasible space are counted for update
of pBest and gBest values (for both global and local version), the current position of some
particles can be infeasible that keeps the possibility to move from one feasible region to another
one, in term the disconnected feasible region distributed in the search space.

Talal[106] applied PSO to optimize the repairable-item inventory model with state-dependent
repair and failure rates as well as steady-state environment. PSO is modified to handle stochastic
constraints and discrete decision variables. A variance of the estimated expected performance
constraint is considered as a supplementary item to inequality constraints that original constraints
can be transformed into a manageable. Only those records of feasible solutions are kept.

Goldbarg[107] studied the bi-objective degree-constrained minimum spanning tree problem. A
tree is represented with the edge-set representation. Particles are initialized based on a depth first
search. The local search procedure and the path-relinking operation with the back and forward
strategy are utilized as the velocity update operators. If constraint is violated, the current edge is
discarded. A non-dominated solution, represented by the set of edges constituting the tree, is kept
in an archive with size limited. As a constraint problem, those infeasible solutions are dealt with
death penalty methods.

There are no predefined parameters and preprocessing to manipulate the objective and
constraints which are handled separately. Thus it is an effective method for handling constrains.
Coath[108] reported that the rate of convergence and accuracy of those methods proposed by
Hu[103] and Parsopoulos[96],separately, were very competitive at finding near-optimal
solutions. However the obvious drawback is that it may have a very high computational cost to
initialize a group of feasible solutions in some functions, such as the constrained nonlinear
optimization problems with extremely small feasible spaces or equity constraints optimization
problems. It may take a impractical long time until the initialization process is completed. In
some case in [104], even the generation of one million of random points was insufficient to
produce a single feasible solution[109].

Separation for Sorting

In this category, the total violation of constraints for each infeasible particle will be counted as a
distance measurement to the feasible region, instead of discarded directly. All solutions are
sorted and selected based on the objective fitness and violation summation. The common
procedure to compare two solutions is following the criteria (also termed as "feasibility and
dominance" (FAD), see Figure 7) and the Individuals are evaluated using Equation 2-19, where

()jφ ⋅
stands for all constraints, including both equality and inequality constraints.

1) Between two feasible particles, the one that has a better fitness
value wins;

2) A feasible particle is always preferred over an infeasible one;
3) Between two infeasible particles, the one having lower total

violation of constraints wins.

32

Figure 7 Separation sorting procedure

1

()

()
()

i

l m
i

j

j

f x if feasible

F x
x if infeasibleφ

+

=

=

∑

 (2-19)

Zhang[110] proposed a hybrid particle swarm with differential evolution operator, named
DEPSO. DEPSO obeys the separation sorting rules in Figure 7 and Equation 2-19. The bell-
shaped mutations, similar to that used in differential evolution, keep consensus on the population
diversity along with the evolution. It is applied only on the pBest so as to keep the self-
organization. The gBest also influences the mutation that might enhance the social learning
capability and speed up convergence. The black-box problems and problems with small feasible
region are still difficulties for DPSO. The approach is sensitive to the values of crossover
constant unless the crossover constant could be decided in term of the correlation of the
parameters.

Angel[111] designed particle evolutionary swarm optimization algorithm (PESO). The constraint
handling and selection mechanism are based upon the "feasibility and dominance" rules (in
Figure 7). The optimization process is divided into several stages. Two new perturbation
operators "c-perturbation" and "m-perturbation" are implemented in different stage so as to
enhance the diversity and deal with the premature convergence problem. The "c-
perturbation"(similar to the reproduction operator in differential evolution algorithm) is added to
every particle, but in DEPSO[110] this operator is only applied to pBest. "m-perturbation" is
performed on each dimension of decision variable vector with some probability.

Pulido[109] introduced a normalized sorting selection for processing infeasible individuals to lie
on the closeness to the feasible region. Based on Equation 2-19, the infeasible points are
calculated as:

1

()
()

|| ||

m

i

j

x
F x if infeasible

φ
φ=

=∑
 (2-20)

The total violation of constraints, defined in Equation 2-20, sums normalized violation with
respect to the largest violation of each constraint. A turbulence operator, incorporated to prevent
trapping in local optima and improve the exploratory capabilities, is calculated depends on the
probability which is related to the current number of iteration. It means there is a much higher
probability at the beginning and tends to stable over time. It is claimed[109] that the PSO
approach does not require any user defined parameters and less objective evaluations, however,
it does not provide any suggestion to decide the largest violation of constraints.

In [112], it adopted almost the same the decision-making scheme in [110], but not the
normalized constraint violations, Zielinski just assigned a sum of constraint violations to
infeasible solutions. If no feasible individual is found, the search is guided only by the amount of
constraint violations. In the paper, 24 constrained single-objective optimization problems are
tested and it successfully accomplished the optimization of test functions with disjoint feasible
regions, or with many inequality constraints and different types of objective functions. However,
as the other optimization techniques, it is also a challenge for handling those problems with
extremely small feasible space, such as the problems with equality constraints. It is also declared
that a high dimensionality cause difficulties and active constraints at the optimum could not be
sufficiently analyzed since containing equality constraints or high dimensionality,
simultaneously.

33

Lexicographic Separation

Takahama developed the α[113] and the ε[97, 114] constrained methods, which consider the
objective and constraints separately and allow all solutions are comparable with each other by
replacing the ordinal comparisons with the α level and the ε level comparisons. With the
lexicographic order of the ε level comparisons, the violation of constraints is more prior than
fitness, the formula goes as follows:

1 2 1 2

1 1 2 2 1 2 1 2

1 2

,

(,) (,)

f f if

f f f f if

otherwise

ε

φ φ ε

φ φ φ φ
φ φ

< ≤

< ⇔ < =
 < (2-21)

where iφ is the constraint violation which can be calculated as the maximum of all constraints (as
Equation 2-22) or the summation of all constraints (as Equation 2-23).

() max{max{0, ()},max | () |}i j j
j j

x g x h xφ =
 (2-22)

() || max{max{0, ()} || || () ||
pp

i j j
j

j j

x g x h xφ = +∑ ∑
 (2-23)

Based on lexicographic order mechanism of Equation 2-21, constraint problems are converted to
unconstraint problems, since it is comparable among solutions. Equality constraints can be easily
handled. Furthermore, Takahama[115] proposed an adaptive strategy to maintain the maximum

velocity maxV , which is a Lipschitz condition used to guarantee the input and output is
boundary[116]. The value influence the stability and performance of algorithm and is also
problem dependent. The swarm is divided into several sub-swarms which have their own settings
about the maximum velocity. The worst group will adjust the value in term of the best sub-
swarm. It is also claimed that εPSO could find much better solutions that had been never found
by other methods and on average for all problems[116]. However, only the results that the ε level
is assigned to 0 are reported, in this case, the constraint handling approach is the same as
lexicographic orders in which the constraint violation precedes the fitness. The study of other
settings of variable ε is the further research work.

Liang[94] combined Dynamic Multi-swarm Optimizer (DMS-PSO) and Sequential Quadratic
Programming (SQP) method. SQP is used to achieve a better local search performance, which
can also be regarded as a kind of hybrid method in this sense. The novel constraint-handling
mechanism is incorporated into the DMS-PSO, that the population is periodically divided into
sub-swarms which are adaptively assigned to explore different constraints according to their
difficulties. The constraints that are more difficult will have more sub-swarms work for it, while
less or even no sub-swarm will be assigned to easier ones. The priority relations are similar with

Equation 2-21, except the iφ of DMS-PSO is defined as Equation 2-17. Thus, it is classified to a
dynamic lexicographic method.

Ismael[101] incorporated the dominance concept into PSO to address nonlinear constrained
optimization problems. Both objective function and the constraint violation (calculated as
Equation 2-18) are regarded in order to extend PSO to constraint problems. The dominated

comparison is implemented as Equation 2-21,, except iφ .

34

2.4.4. Pareto principle related constraint handling methods

In the past few years, some researchers incorporated the concepts of multi-objective optimization
into the constraint-handling techniques. Pareto Principle based methods are effective for the
research of multi-objective optimization. And it also produced a considerable interest to adopt

the Pareto concept in constraint handling. The N objective functions of a constrained

optimization problem, incorporated with the m l+ constraints are organized as a N m l+ + multi-
objective function. Generally, constraint problems with a single objective function are redefined

as a 1 m l+ + multi-objective function. The research of multi-objective constraint problems are
gradually increasing. Both cases are treated as belong to the same class problems which employ
the Pareto principle based methods in this section.

Ray[117] utilized a Pareto ranking scheme to handle constraints, which is a concept widely used
in multi-objective optimization scenarios. The equality constraints are transformed to a set of
inequalities with a tolerance and all constraints are presented in a unified formulation. An
effective multilevel information sharing strategy is implemented by constructing a
CONSTRAINT matrix corresponding to each constraint of every particle; moreover all elements
in the constraint matrix are sorted based on the non-dominated ranking scheme. All these
mechanisms enforce the selection pressure to the set BPL. Instead of the regular update equation,
the simple generational operator, which can generates a new variable between a individuals and
leaders, is useful to avoid premature convergence. It is claimed the proposed algorithm
converged fast benefiting from the reduction of fitness evaluation. Although the methods to
handle equality constraint are designed, there are no test functions with equality constraints
studied in the paper. The Pareto ranking and the generation of unique individuals’ process are
two computationally expensive to the multilevel information sharing mechanism.

Wang[118] took into account three design constraints and three objectives for generating system
adequacy assessment, in order to achieve reliability assurance during system operations. A
constrained multi-objective particle swarm optimization (CMOPSO) algorithm is proposed to
derive a set of Pareto-optimal system configurations. The non-dominated solutions are stored in a
archive and gbest is produced by the binary tournament selection from the archive. The fuzzified
global best selection, niching and fitness sharing, and disturbance factor are applied in order to
enhance solution diversity. A rejecting strategy is adopted to have the constraint check to the
solutions. If all of the constraints are satisfied, the solution is eligible to compare with the non-
dominated solutions in the archive. As long as any constraint is violated, the candidate solution is
considered as infeasible.

Ji[119] developed the Divided Range Multi-objective Particle Swarm Optimization (DRMPSO)
which utilize a Multi-swarm Particle Swarm Optimization for multi-objective and multi-
constraint optimization problem. At each generation, according to every particle’s fitness,
population is dynamically spitted into sub-swarms whose number is the same as the number of
objective function. That means each swarm works for an objective function at each generation.
Populations are consisted of feasible and infeasible individuals. In each sub-swarm, the feasible
individuals fly towards Pareto front guided by objective functions and the infeasible individuals
is guided towards feasibility by an unfeasibility evaluation function, generally the constrained
function or the weighted constrained functions. If the proportion of infeasible individuals
exceeds the threshold, the information from the best global feasible individual is adopted to
update the infeasible particles iteratively until they become feasible individuals. Moreover, the

35

threshold reduces gradually and the number of non-dominated solutions is directly linked to the
population size, so a larger population size is preferred.

But in many cases, solving multi-objective optimization problems is a more difficult and
expensive task than solving single objective optimization problems[120].

2.4.5. Linear constraints

In the search space, the linear constraints define a convex polyhedron, named the feasible region.
Since locating the feasible region and considering the linear equality constraints and the
objective functions, the linear class PSO algorithm always moves inside the region. The feasible
region of linear constraints is relative small in the search space and a high computational time
will be required to the initialization stage and repair those infeasible solutions into the feasible
region during optimization.

Paquet [121, 122] proposed the Linear PSO (LPSO) and the Converging Linear PSO (CLPSO) to

the optimization problems with linear constraints Ax b= . All individuals are initialized in the
feasible region and velocity vectors are set to zero. So as to guarantee the updates of velocity are
linear combination of previous position and velocity vectors, the acceleration factors are kept
constant in Linear PSO. Thus, the following calculation of position vectors must be feasible
solutions. The Guaranteed Convergence Particle Swarm Optimizer (GCPSO), developed by
Bergh, is introduced to improve the gBest for the Converging Linear PSO and only particles with
feasible direction are updated. Except initialization process, these methods save more
computation cost than other methods to solve constraint problems. Yet, the acceleration factors
are set as constants may weaken the searching ability of algorithms.

Halter[123] investigated an optimization problem of the thermodynamic parameters of the
Na2O-SiO2 system in the mineralogy as a Bi-level Optimization problem, consisted of upper and
lower levels problems. The Linear Multi-Objective PSO (LMOPSO) is designed to solve linearly
constrained multi-objective optimization problems in the lower level, which contains three
objective functions and two linear constraints. LMOPSO is efficient to preserve and guarantee
the feasibility of the solutions during the optimization, when solving linearly constrained
problems. The population members are evaluated and the non-dominated solutions are found and
stored in the archive. In fact, since the boundary conditions constructed by inequality constraints,
two feasible solutions may lead some of the particles to the infeasible part to inequality
constraints. Thus, a feasibility preserving method has to be designed to move the infeasible
particles back to a random feasible position or to the boundary. The rescaled velocity is as
below:

[0,1]

final

final

x x v

v v

λ

λ λ

= +

= − ∈

r r r

r r

 (2-24)

2.4.6. Constraint satisfaction problem

A constraint satisfaction problem (CSP) is defined on a nonempty domain of possible values and
a set of constraints. A set of variables to a CSP, taken from the domain, is a complete assignment
that satisfies all the constraints. Furthermore, some CSPs also require a solution that maximizes
or minimizes an objective function. Problems that can be expressed as constraint satisfaction
problems are the a warm-up problem, Pythagorean triple problem, n-queens problem, map

36

coloring problems, the Sudoku, the boolean satisfiability problem, send-more-money puzzle,
scheduling problems and so on.

Schoofs[124] applied a discrete particle swarm for solving binary constraint satisfaction
problems. The binary PSO proposed by Clerc is adapted and several improvements are applied in
the velocity update equation: the previous velocity vector is neglected and only current states are
considered; a deflection operator, similar with the mutation operator in Gas, a deflection operator
is used to enhance the exploitation power; the number of conflicts a variable causes in the
candidate solution are considered in the multiplication of a coefficient with a velocity; no-
hope/re-hope system are employed to drive exploration force. The number of conflict checks
until termination and the success rate are used in the binary constraints problem experiments.
Compared with ant colonies and genetic algorithms, Schoofs reported that the proposed particle
swarm method is outperformed. One of the reasons that the algorithms perform more effectively
is a particle will not change its assignment to the variable, only if it is in conflict by taking
constraint violation information into account for each variable[125].

Lin[125] made a further research work based on Schoofs’ work. The deflection operation is
modified as a probability threshold rather than a Boolean switch. A no-hope and hop technique is
added to fix constraint violations or to minimize the constraint violations when the regular
swarm stops improving the search. A conflict count function and a distance estimation function
are employed as penalty functions to guide the particles. The conflict function counts constraint
violations as a penalty score when the constraint and the distance estimation function compute
the distance from a potential solution to a feasible solution.

Yang[126] added the max-degree static variable ordering of variables to the fitness function of
[124], so that some variable satisfied constraint firstly with high probability and guides the
direction of the whole swarm by selecting the gbest and pbest particles. The algorithm is similar
to the Backtracking search in solving problems

Alberto[127] used the geometric framework to design the Geometric particle swarm optimization
(GPSO) to solve the Sudoku puzzle. Deferent with standard PSO, no velocity is used, the update
of position is the convex combination, there is mutation and the parameters ω, φ1, and φ2 are
positive and sum up to one in GPSO. The 4 types of constraints in the Sudoku constraint
satisfaction problem are divided into hard constraints, which all solutions have to be respected,
and soft constraints that can be only partially fulfilled and the level of fulfillment is the fitness of
the solution. The fitness function is consisted of three parts summation: the number of unique
elements in each row, the number of unique elements in each column and the number of unique
elements in each box. It also could be considered as a special case of static penalty. Compared
with those methods using brute force trial-and-error search employing back-tracking, it is more
efficient. It is claimed in the paper that “the 9x9 Sudoku puzzle of any difficulty can be solved
very quickly by a computer” and “this is the first time that a PSO algorithm has been
successfully applied to a non-trivial combinatorial space”.

One difficulty for PSO, GA and other swarm intelligence methods is there is no explicit
objective function of those problems[124]. The simplest way to design a fitness function is
counts the number of constraint violations by assignments, which leads to no difference could be
made, if assignments has an equal number of constraint violations. More repairing methods
should be used as infeasible solutions or unsatisfiable potential solutions handling strategies for
further enhancing the algorithms.

37

3. Swarm-Powered Systems

3.1. Fundamental framework

It shows PSO can successfully track the changing optima in an efficient way with different
dynamic tracking strategies. The results are very promising and show that PSO can be used to
implement fast learning algorithms to control dynamic systems.

Currently the information processing of PSO is focused on two levels of intelligence. In the
velocity update formula, one term is the individual cognition component and the other is the
social communication component. The individual cognition component represents the search
ability of the particle itself. (c1, pid, vid, Vmax, w). The social communication component
represents the influence from the social environemnt (c2, pgd).

However, for more complex applications, such as dynamic environments , higher level
intelligence should be integrated into the algorithm. This kind of intelligence either cannot be
furnished by the particles themselves or is not easy to accomplish without losing performance.
Environment detection and response are new intelligence methods which cannot be achieved by
individual particles. This is population-level intelligence, shown in Figure 8; at this level, we can
integrate more human knowledge and intelligence to the PSO to accommodate complex systems.
For example, for dynamic systems, we can make PSO maintain a certain level of diversity
instead of converging to the optimial area quickly.

Figure 8 Three levels in the swarm model

3.2. PSO diversity measurement

3.2.1. Introduction

Background

Particle swarm optimization (PSO) is an evolutionary computation technique developed by
Kennedy and Eberhart in 1995 [128-130]. It is being researched and utilized in over 30 countries.

The process for implementing the global version of PSO is as follows:

1. Initialize a population (array) of particles with random positions and velocities on n
dimensions in the problem space.

2. For each particle, evaluate the desired optimization fitness function in n variables.

Population Level

Interactive Level

Individual Level

38

3. Compare particle’s fitness evaluation with particle’s pbest. If current value is better than
pbest, then set pbest value equal to the current value, and the pbest location equal to the
current location in n-dimensional space.

4. Compare fitness evaluation with the population’s overall previous best. If current value
is better than gbest, then reset gbest to the current particle’s array index and value.

5. Change the velocity and position of the particle according to (1) and (2), respectively
[131-133]:
vid =w* vid + c1 * rand() * (pid – xid) +c2 * Rand() * (pgd – xid) (3-1)
 xid = xid + vid (3-2)

After step 5, loop to step 2 until a criterion is met, usually a sufficiently good fitness or a
maximum number of iterations (generations).

Particle swarm optimization is especially useful for obtaining answers to problems involving
multiple objectives and multiple constraints. It has outperformed other algorithms in a number
of benchmark tests, and a number of researchers have developed methodologies for its utilization
for these types of problems.

There is also a local version of PSO in which, in addition to pbest, each particle keeps track of
the best solution, called lbest, attained within a local topological neighborhood of particles.

The positions and velocities of a population of particles can be represented in vector format as
follows, where m is the population size of the swarm, and n is the number of dimensions
(variables) for each particle.

mixxxx iniii ,...,2,1},,...,,{ 22 == (3-3)

mivvvv iniii ,...,2,1},,...,,{ 22 == (3-4)

The population of particles’ positions and velocities can be represented in matrix form as
follows:

==

mnmm

n

n

T

mi

xxx

xxx

xxx

xxxX

L

OM

L

L

L

21

22221

11211

2),,,((3-5)

==

mnmm

n

n

T

mi

vvv

vvv

vvv

vvvV

L

OM

L

L

L

21

22221

11211

2),,,((3-6)

Fitness-based Population Diversity

In the literature, including a paper co-authored by the authors of this paper [134], the diversity of
a genetic algorithm (GA) population has been calculated using the standard deviation of the
individual fitness values of population members. This is, however, an indirect metric for
population diversity; fitnesses are attributes of population behavior (phenotype), rather than
direct diversity measures at the information-theoretic level. The diversity of a GA population

39

has also been calculated as the average Euclidian distance from the GA population’s average
location vector [135].

The authors propose to view diversity from more of an information-theoretic perspective. Such
an approach should be based on something more closely related to entropy. For a particle
swarm, the positions and velocities of the particles provide such a basis. In the following
sections, we present basic metrics for population position diversity and population velocity
diversity, and then discuss ways to combine them into a unified diversity metric for particle
swarm diversity. With minor modifications, this approach is applicable to other evolutionary
algorithms.

3.2.2. Position based population diversity

Element-wise Population Position Diversity

Based on previous work done on GA population diversity [135, 136], the elements of all
dimensions in an individual can be equally weighted. (It should be noted that in the two cited
references, each element is a binary gene, having a value of either 0 or 1, rather than a real
value.)

The superscript index p in pD (Equation 3-8) stands for the population position diversity with
respect to the particle’s position xi. In subsequent sections, the superscript v stands for population
velocity diversity.

∑∑
= =×

=
m

i

n

j

ijx
mn

x
1 1

1
 (3-7)

∑∑
= =

−
×

=
m

i

n

j

ij

p xx
mn

D
1 1

2][
1

 (3-8)

Euclidean Distance-based Population Diversity

In this method, the Euclidean distance is measured between pairs of population members for all
possible combinations.

ba

xxd
xxd

xxxxd

ji

p

ji

p

jiji

p

−
=

−=

),(
),(

~

),(

 (3-9)

∑∑
= +=−

=
n

i

n

ij

ji

p

ED xxd
nn

D
1 1

),(
~

)1(

2
 (3-10)

In this measure, [a, b] is the dynamic range of the particle’s position, that is, the particles are
limited to “fly” within the range [a, b]. This type of diversity metric was discussed in Wen et al.
[137] and Wen et al.[138].

Dimension-wise Population Position Diversity

For a particle swarm, instead of considering whether the particles are close to each other by
looking at a single distance measure separating them, we measure the diversity of each
dimension’s positions by considering the position values on each dimension of the particles in
the population. In the equations below, m is the population size, and the subscript I is a

40

dimension which varies from 1 to m. Also, n is the number of dimensions (variables) in each
particle, and the subscript j is an index that varies from 1 to n.

∑

∑

=

=

−=

=

m

i

jij

p

j

m

i

ijj

xx
m

D

x
m

x

1

2

1

][
1

1

 (3-11)

Therefore, we have a dimension-wise position diversity vector),,,(21
p

n

pp DDD L . Based on this

n-dimensional diversity measure, there are several ways to measure the swarm population
position diversity.

4) Weighted Summation Position Diversity

In the first position diversity measure we examine, the individual dimensions (parameters) are
assigned different weights, resulting in the weighted summation position diversity over all
dimensions as defined in (3-12).

 ∑
=

=
n

j

j
p

j

p

WS DwD
1

 (3-12)

Each wj is a positive value (weight) less than or equal to 1. If all the dimensions are treated
equally, we have nw j /1= for all values of j. Then (3-12) can be revised as (3-13) for weighted

summations with equal weights.

 ∑
=

=
n

j

j
pp

WSew D
n

D
1

1
 (3-13)

 2) Weighted Maximization Position Diversity

Another measure that might be of interest is a weighted maximum position diversity, which is
the weighted maximum value calculated on any individual dimension, as indicated in (3-14).

 njDwD j
p

j

p

WM ,,1}max{ L== (3-14)

Again, wj is the weight for the
p

jD position diversity for one dimension defined in (11b).

3) Position Diversity Vector Length

It may be useful to calculate the Euclidean length of the position diversity vector, as illustrated in
(3-15).

 njDD
n

j

p

j

p

L ,,1
1

2
L== ∑

=

 (3-15)

 4) Normalized Dimension-wise Population Position Diversities

Another method to calculate the position diversity values analogous to (12)–(15) is to normalize
the position values before calculating the position diversity.

In most implementations of PSO, the particles are restricted to an initial range of values
(dynamic range) for each parameter (dimension). Assuming the particle is initially limited to the
dynamic range [aj, bj] on dimension j, then the normalized particle position value is given in (16).

41

njmi

bxa
ab

x
x jijj

jj

ij

ij

LL ,1;,,1

;
||

ˆ

==

≤≤
−

=
 (3-16)

The normalized dimension-wise position diversity can then be calculated as in (3-17).

∑

∑

=

=

−=

=

m

i

jij

p

jN

m

i

ijj

xx
m

D

x
m

x

1

2

1

]ˆ[
1

ˆ
1

 (3-17)

The population position normalized diversity can then be obtained by using the weighted
summation, weighted maximization, or diversity vector length approach defined in (3-12)–(3-
15).

3.2.3. Population velocity diversity

A feature of PSO not found in other evolutionary algorithms is that there is a velocity, in addition
to a position, associated with each population member (particle). Therefore, we should not only
consider the population diversity from the perspective of position, but also from the perspective
of velocity.

To distinguish between position and velocity, we use the superscript index p to represent
diversity with regards to the particles’ positions, and the superscript index v to represent diversity
with regards to the particles’ velocities.

Velocity has two components: speed and direction. We consider particles’ velocity from two
perspectives: dimension by dimension, where we calculate speed diversity; and particle by
particle, for which we calculate direction diversity. Since particles move along dimensions, it is
logical to use intra-dimensional movement to calculate speed diversity. However, there is no
intra-dimensional direction diversity. (See (1) and (2), from which it can be seen that
calculations are done on a dimension-by-dimension basis.) We calculate direction diversity
using the difference in angle between each particle’s overall velocity vector and the average
velocity vector for the swarm population.

 Dimensional Speed Diversity

To calculate the dimensional speed diversity, each particle’s speed is first normalized using the
unit length over all population members along a single dimension j.

∑
=

=
m

i

ij

ijnor

ij

v

v
v

1

2

dim_

 (3-18)

Then in a manner similar to (11), we calculate dimension-wise speed diversity, as shown in (3-
19), where dsv

jD _ is the speed diversity on dimension j.

42

∑

∑

=

=

−=

=

m

i

nor

j

nor

ij

dsv

j

m

i

nor

ij

nor

j

vv
m

D

v
m

v

1

2dim_dim__

1

dim_dim_

][
1

1

 (3-19)

Weighted Summation Dimensional Speed Diversity

In a manner similar to (3-12), we can calculate the weighted summation dimensional speed
diversity over all dimensions.

 ∑
=

=
n

j

dsv

jj

dsv

WS DwD
1

__ (3-20)

As before, we define wi as a positive value less than or equal to 1. If all the dimensions are
treated the same, we obtain nwi /1= . Then (20) can be written as (3-21).

 ∑
=

=
n

j

dsv

j

dsv

WSew D
n

D
1

__ 1
 (3-21)

Weighted Maximization Dimensional Speed Diversity

Analogous to the position diversity calculation of (3-14), we can calculate the weighted
maximum dimensional speed diversity, shown in (3-22).

njDwD dsv

jj

dsv

WM ,,1}max{ __
L== (3-22)

Each wj is the weight for
dsv

jD _ as defined in the weighted summation calculation of (3-20).

Dimensional Speed Diversity Vector Length

It may be useful to calculate the Euclidean length of the dimensional speed diversity vector, as
illustrated in (3-23).

niDD
n

j

dsv

i

dsv

L ,,1
1

2__
L== ∑

=

 (3-23)

Particle Direction Diversity

To calculate the particle direction diversity, each particle’s velocity elements are normalized
using the unit length over all dimensions for that particle as shown in (3-24).

∑
=

=
n

j

ij

ijparnor

ij

v

v
v

1

2

_

 (3-24)

We now calculate the normalized average velocity vector for the population of particles. We
first average the velocity elements on each dimension, as shown in (3-25). This gives us the
dimension-by-dimension elements of the average velocity vector.

 ∑
=

=
m

i

ij

avg

j v
m

v
1

dim_ 1
 (3-25)

43

We then calculate the normalized average velocity vector elements (dimension-by-dimension) as
shown in (3-26).

∑
=

=
n

j

avg

j

avg

javgnor

j

v

v
v

1

2dim_

dim_
_

 (3-26)

We can now calculate the cosine of the angle θ between each normalized particle velocity
vector and the normalized average particle velocity vector as in (3-27). The particle population
direction diversity is then defined in (3-28).

 () ()∑
=

− •=
n

j

noravg

j

parnor

iji vv
1

_cos θ (3-27)

 ∑
=

=
m

i

i

dirv

m
D

1

2_ 1
θ (3-28)

3.2.4. Discussion

We should consider the position, speed, and direction diversities together, not only one or two of
them at a time. There is a trade-off between position based population and velocity based
population diversities. A way to calculate the overall diversity is shown in (29).

dirv

dirv

dsv

dsv

p

p DwDwDwD _
_

_
_ ++= (3-29)

The quantity dsvD _ can be any of the speed diversity metrics such as dsv

LD _ of (23). Without a loss
of generality, the velocity, speed and direction diversities can be treated equally, that is, the
weights wp, wv_ds and wv_dir can be set to be equal. Other values are possible and will depend on
the problem to be solved. The weights can also be a function of PSO performance and the
diversities themselves. They can also be adjusted or evolved to reflect dynamic changes during
the PSO search process.

Pair-wise calculations of diversities (position, speed, and/or direction) similar in concept to the
calculation of (10) for distance-based population diversity would be possible. However, the
approaches we have used, such as (28), are significantly simpler and don’t become
computationally intensive for realistic problems. We acknowledge that some users might prefer,
for particular reasons, to make pair-wise calculations for all three diversity measures, but we
believe that the methods we propose will prove more effective for most applications.

Other metrics are enabled by the three diversity measures we propose. For example, the standard
deviations of the diversity measurements may provide insight into system performance, and the
optimal values of these metrics may also change as iterations progress.

This method is also adaptable to other evolutionary algorithms such as genetic algorithms. For
example, although GAs do not have a velocity, the measurement of their population “velocity”
diversity can be approached by considering the changes in location of population members from
one generation (iteration) to the next in a manner analogous to the velocities in PSO.

This methodology for measuring diversity can facilitate many areas of investigation for PSO and
other evolutionary algorithms. Among them are:

a. How should diversity be managed?

44

b. How does varying parameters and features of PSO such as using the global versus local
model, adjusting Vmax, c1, c2, etc. (see Equations 1 and 2) affect diversity?

c. What is the best way to increase or decrease diversity by a predictable quantity?

d. How should each of the three metrics be weighted?

e. Which (if any) statistical attributes of the three metrics are significant and useful?

3.2.5. Conclusion

It is important to note that optimal diversity varies with the problem and over the course of a run
of an evolutionary algorithm such as PSO. There has been much discussion in the literature of
the importance of population diversity. This paper proposes a method to measure it for particle
swarm optimization. The method is adaptable for use with other evolutionary algorithms.

The measurement of diversity is only the first step in the eventual management and optimization
of diversity. We have much to learn regarding how to determine optimal diversity values, and
how these values vary over the process of a run of an evolutionary algorithm. In order to
manage diversity, however, we must be first able to measure it. This paper proposes a method to
provide this first and important step.

3.3. Human in the swarm: an NK landscape game

3.3.1. Background

Computers are faster, and in some ways more powerful, than human beings. On the other hand,
human beings are generally better at learning, making decisions, and adapting to dynamic
environments. In this paper, we examine ways to combine the strengths of computers and
humans to solve real world problems. Specifically, the objective of this paper is to begin to
investigate how humans interact with swarm intelligence. The swarm intelligence paradigm
used is particle swarm optimization (PSO) (Eberhart and Kennedy 1995, Kennedy and Eberhart
1995, Kennedy et al. 2001).

Kennedy (2001) designed particle swarm optimization programs using pattern matching with NK
landscapes (Kauffman 1995) to study how humans perform as particle. His preliminary results
show that the introduction of a human only marginally (at best) helps find an optimum and the
swarm always beats the human. However, the underlying assumption is that the human and the
particle swarm have the same amount of information about the problem. What if the human has
more knowledge than the particles? Following is an introduction to an NK-landscape game
developed by the authors which is an extension of the game described in Kennedy’s paper.

3.3.2. Methods

The NK landscape game program first defines a globally optimal bitstring. This bitstring is
random for the Hard level of the game, and complies with constraints associated with the
Medium and Easy levels of the game (levels are described below). The global bitstring
determines whether each square on the checkerboard pattern will be red or white. Then the
program defines K connections for each node (square), makes sure that each node has inputs
from exactly K other nodes, and that each node connects to exactly K others. (It randomly
assigns them rather than using adjacent neighbors as is usually done by Kaufmann (1995).)

45

Based on the state (color) of each node (square) and the K nodes connected to it the program has
established the local pattern which corresponds to the global optimum. This local pattern is
assigned a fitness value of 1.0. So if a square is the correct color and all of the squares upon
which it depends are the correct color, the square’s bitstring matches the global optimum, and
that square (node) will return a fitness value of 1.0.

The fitness values of non-optimum bitstrings are determined using a “short-cut” method
(Kennedy 2001, Kennedy 2007). A short-cut is desirable because as N and K increase, fitness
evaluation tables grow exponentially. Therefore, in this game a random number seed is
generated for each non-optimal bitstring based on a random integer generated when the program
is initialized, the node’s index, and the binary value of the node and its K inputs. Fitness values
are then generated by seeding the random number generator and reading its output. (A similar
approach was described by Lee Altenberg in the 1997 Handbook of Evolutionary Computation.)

Note that if K=0, creating a unimodal landscape, hill-climbing algorithms will always find the
optimum by flipping bits and keeping the new value if the fitness improves. As K increases,
complexity increases quickly, and even low values of K result in difficult problem surfaces.
Local optima quickly complicate the error surface, and finding solutions is difficult even with
K=3 (the default value in the NK Landscape Game).

After selecting the game configuration in Target Settings (rows, K neighbors, and difficulty
level) and PSO settings (20 particles with a neighborhood size of 3 is default), a player makes a
move by clicking on one or more squares in the top left box (see Figs. 1-3) to change square
color. When the player is satisfied, the “Step” box is checked, and the program accepts the
player’s input and implements one iteration of the particle swarm algorithm (assuming 1 iteration
per step is selected). The program can also execute 10 or 100 iterations of PSO per human input
step by clicking on the appropriate radio button. The lower left box is the player’s own previous
best pattern, and the lower right box is the swarm’s best (this may be either the human particle’s
best, or the best of one of the particles managed by the program).

Three scenarios have been implemented in the NK-landscape pattern matching game as shown in
Table 6. In each game session, a target pattern is randomly generated based on the levels and
conditions defined in Table 6. Particle swarm optimization (PSO) is used to find the matched
pattern based on the NK-landscape information. The particle swarm does not know how the
pattern is generated beyond the fact that the pattern is completely random, i.e., the additional
constraints in the easy and medium levels are not coded into the PSO fitness function. However,
the human knows how the patterns are generated. For example, at the easy level, the human user
knows that only one block in each column is red, and all blocks are linked to each other (the
pattern is a spline).

Table 6 NK Landscape Game Levels

Levels Target Pattern

Easy Only one red block in each column, and only spline patterns.
Medium Multiple red blocks, but no isolated links; spline patterns only.
Hard Totally random patterns in N*N blocks

Figure 9, Figure 10, and Figure 11 show screen shots taken during a game session with the
computer-generated pattern to be matched by the human shown by checking the “show target”
box. The “show target” box is generally not shown during a game session. It is used for player
orientation to the game, or if a player gives up and wants to see the correct pattern.

46

Figure 9 NK landscape game screenshot for the Easy level

Figure 10 NK landscape game screenshot for the Medium level

47

Figure 11 NK landscape game screenshot for the Hard level

3.3.3. Results

In a test of the game, the PSO settings were as follows: population size was 20, neighbor size
was 3, c1 and c2 were 1.49445 and w was [0.5+Rnd/2.0]. The NK-landscape parameters were, N
= 7 and K = 3. Ten runs were executed for PSO without a human particle, and for PSO with a
human particle. The results are displayed in Table 7. Results depend on the skill of the player,
but preliminary indications are that the results in Table 7 are typical of those obtained by a
computer-savvy player adept at electronic games.

Table 7 Performance comparison between pure PSO and human-in-the loop PSO

(average iterations used to find the pattern over 10 runs)

Levels Without Human Particle With Human Particle Who found solution
Easy 146.6 36.9 Human 9 – Swarm 1

Medium 103.8 69.0 Human 2 – Swarm 8
Hard 90.0 - Human 0 – Swarm 10

3.3.4. Discussion

From the results, it can be seen that:

 1. When human has significant knowledge that swarm does not have, the human-swarm team
can beat the swarm-only-team.

 2. The less random the pattern, the slower the particle swarm finds the optimum.

3. If the extra knowledge that the human has is easy to implement, the human can usually beat
the computer (the human was first to find the solution 90% of the time in the Easy case). If the

48

extra knowledge the human has is hard to implement, the computer will usually beat the human
(the computer was first to find the solution 80% of the time in the Medium case).

3.3.5. Conclusion

If the swarm knows the constraints for the Easy and Medium levels, it might solve the problem
faster than a human. However, in order to incorporate constraints there are three challenges that
need to be addressed. First, the constraints must be encoded in software, which sometimes is
difficult. Second, the algorithm may require significantly more computation to deal with the
complexity added by those constraints. Third, constraints may appear dynamically in a way
relatively obvious to humans but not to computers, and recoding to include them during a run is
not always feasible.

Thus, the combination of the human-swarm team may have advantages in certain environments,
such as dynamic decision making tasks. The team approach can combine computer
computational power with human intuitive knowledge to provide fast response for dynamic and
complex tasks.

49

4. Case Study – UAV scheduling

4.1. Background

With the innovation of advanced material, engine and sensor technology, it improves the tactics
performance of Unmanned Air Vehicles (UAVs); the rapid development of communication,
information and image processing technology make it efficiently to deal with large amounts of
information and data; artificial intelligence and computational intelligence methods enable UAV
more intelligent, and better adapt to the changes in the battlefield. The roles and complexities of
UAV are growing and research approaches are evolving.

UAV assignment and task allocation problems, among the most studied topics, decompose the
optimization of air-to-ground operations into several parts and study how to allocate and
schedule the UAVs to perform tasks so as to maximize effectiveness of the overall mission.,
involving different geographical locations, goal assignment, trajectory optimization, and time or
task requirements., The complexity and computation cost are dramatically increase with the
increase of problem size[139, 140]. ‘Multi-tasking Multi-assignment problem’ consists of two
aspects: modeling and solving task assignment problem[141].

(1) Modeling of the multi-task and multi-assignment problem.

Based on classic assignment and scheduling problems, some models are adapted in the research
of UAV assignment problem, including Multiple Traveling Salesman Problem (MTSP)[142,
143], Vehicle Routing Problem (VRP);, Mixed-Integer Linear Programming (MILP)[140, 144,
145], Dynamic Network Flow Optimization (DNFO)[146], Multiple Processors Resource
Allocation (MPRA), and so on.

(2) Solving of the multi-task and multi-assignment problem.

Approaches applied to solve the UAVs assignment problems can be classified into two
categories: deterministic and stochastic methods. Under some assumption, the assignment
problems are simplified as a certain type mathematic model (e.g. linear programming model),
and those deterministic methods, well-developed in the optimal theory and operational research,
such as Hungarian algorithm[147],dynamic programming[148], branch and bound and decision
tree[149], etc, can arrive at optimal or good decisions efficiently. However, known as a typical
NP-problem, the complexity and computation cost rapidly aggravate subject to the complexity
increase of the assignment problem.

Stochastic methods, especially heuristic algorithms, don’t spend polynomial time cost in solving
assignment problem with the combinatorial complexity. They try to optimize a global or sub-
optimal in a limit computation cost. Genetic Algorithm[150-152], Ant Colony Algorithm [153],
Tabu Search[140, 143, 154], Auction Algorithms[139], Particle Swarm Optimizer[142], etc, are
widely utilized to achieve the optimization task.

4.2. Problem description

Obviously, the UAV assignment problem is similar and related to Traveling Salesman Problem
(TSP) and Linear ordering Problem (LOP). There are some popular models of them are
introduced to the assignment problems, such as the integer programming formulation of TSP
proposed by Dantzig-Fulkerson-Johnson and Miller-Tucker-Zemlin[150].

50

 The Mixed Integer Linear Programming (MILP) model, one of the most studied and widely
recognized models, is applied to describe the UAV assignment problem and GLPK program
package in [144]. A scenario, with N targets, M UAVs and K tasks, is studied. There are
(1) 2 2 1N N MK NMK NM NK M− + + + + + decision variable, which include 3 1NK+ + continuous

nonnegative variables. In all, there are 12(1) 9 2 2 3N NM NM NMK NK M− + + + + constraints,
including KN M+ equality constraints, 7 2NM M+ inequality non-timing constraints and the rest
are inequality timing constraints. The size of the MILP model grows rapidly with the increase of
problem size. So it is a big challenge to deal with more complicate and constraint problem. In
this report, based on swarm intelligence theory, a computation technique, termed Particle Swarm
Optimizer (PSO) is applied to the UAV assignment problem in [144]. Firstly, the problem is
analyzed and the model is re-presented so as to adapt the requirement of PSO.

Assumption:

(1) The number of tasks are the same as those in [144]. In another word, three tasks
(classification, attack and verification) or two tasks (without the classification tasks) will be
implemented on each target. In [139], there is another task, named ‘search task’, which will be
considered in the future research.

(2) All UAVs are homogeneous. That means all vehicles can perform all tasks on all targets, but
they have different time cost.

(3) The number of targets and UAVs obey the requirement in [144], which means the number of
UAVs is no less than targets.

(4) All targets have the same priority. In paper [143], the priority difference is considered, which
will be considered in our future research.

Definition: The objective function can be defined as:

.
1 ,1

min{ max (,)}N M
i N j M

C i j
≤ ≤ ≤ ≤ (4-1)

subject to all the constraints which will be expressed in the following Constraints[144]:

1) Mission completion requires that all three tasks are performed on each target exactly one
time;

2) Not more than one UAV is assigned to perform a specific task on a specified target;

3) An UAV, coming from the outside, can visit the target at most once; if an AV entered
target (node) to perform a classification, it can perform the ‘attack’ task on the same
target;

4) UAV leaves a node at most once;

5) An UAV can be assigned to attack at most one target and cannot also be assigned to
perform any other tasks at targets;

6) If UAV enters a target (node) for the purpose of performing ‘classification’ or
‘verification’ task, it must also exit the target;

7) If UAV is not assigned to visit node, then it cannot possibly be assigned to fly out of
node;

51

8) All UAVs leave the source nodes. An AV leaves the source node even if this entails a
direct assignment to the sink;

9) A UAV can leave a node, unless it completes the task at the node;

10) A UAV can perform a task, only if the preceding task at the node has been completed.

All variables are explained in Table 8.

Table 8 Nomenclature

N Number of targets K Number of tasks for each target
M Number of UAVs

,N MC

Objective time Matrix

i jT

Fly time matrix between node i and j.
, ,n m kT

Time matrix of task completion

t arg etS

Visiting Target Sequence Array

UAVA
UAVs Assignment Matrix

4.2.1. Objective time matrix ,N MC

The objective time matrix ,N MC (as shown in Equation 4-2) contains a cumulative time

accounting of the mission time tasks. Each row in the ,N MC matrix corresponds to a target, and

each column corresponds to a UAV. When a task of the n-th target is completed by the m-th
UAVs, the cumulative completion time ,n mc is calculated by Equation 4-3.

1,1 1,

, ,

,1 ,

...

... ...

...

M

N M n m

N N M N M

c c

C c

c c
×

 =

 (4-2)

max max
, , , , , , ,max{ , },n m n m k n Row m Column n m k n m kc t c c t T− −= + ∈ (4-3)
max

,max{ | 1, 2... }n Row n ic c i M− = = (4-4)
max

, , , ,max{ | 1, 2... },m Column i j j m i j i jc t c j N t T− = + = ∈ (4-5)

max
m Columnc − means after the m-th vehicle completes all its own preceding tasks, it will takes ,i jt to

arrive at the n-th target. max
n Rowc − means the new task at the n-th target has to wait all tasks so far

have been completed. , ,n m kt stands for the time cost of the m-th vehicle performs the k-th tasks on

the n-th target. The largest value appearing in any cell of matrix ,N MC is thus the maximum

elapsed time for the mission, which is the maximum time taken by any of the UAVs. This time
is the fitness function, and is the value which is being optimized (minimized) by the PSO
algorithm. The operations of ,N MC meet the time constraints.

4.2.2. Visiting target sequence array t arg etS

The Visiting Target Sequence Array t arg etS (VTSA, shown as), an integral row vector, indicates

the order that the targets should be visited. There are N K× elements in t arg etS , and every

element is is the target number and stands for the time precedence of targets. Since M tasks

should be implemented on each target, each target number should appear M times which

52

correspond to the tasks in order, such that the first time that a target number appear is
corresponded to the first task of this target.

1t arg et 2 N KS s ,s s ×=[...]

(4-6)

4.2.3. UAVs assignment matrix UAVA

The UAV assignment matrix UAVA is a K by M matrix (see Equation 4-7). Each row stands for

a task and each column stands for a target (illustrated in Figure 12). ,k nv is the k-th row and the n-

th column element in UAVA and stands for UAV number, which performs the k-th task of the n-th

target. (Here, using the same letter v in [144] to stand for vehicles).

1,1 1,

,

,1 ,

...

... ...

...

M

UAV k n

K K M K M

v v

A v

v v
×

 =

 (4-7)

Figure 12 Illustration of UAV assignment matrix

The calculation of objective time matrix ,N MC is based on visiting target sequence

array t arg etS and UAV assignment matrix UAVA . Every vehicle assignment in UAVA should satisfy

rigid constraints. The pseudo-code to generate assignment matrix is shown as Figure 13. The 5th

constraints have the highest priority in the assignment matrix, so vehicles which will implement
“ATTACK” task are assigned, firstly. According some selection methods that it can be designed
through many ways, the feasible vehicle is selected from the feasible UAV array. The available
vehicle list includes all UAVs which satisfy all constraints at that time and is illustrated in Figure
14.

53

Figure 13 Pseudo-code to generate assignment matrix UAVA

Figure 14 Sub-function to generate feasible UAV array

4.2.4. Discussion and explanation

There are K N K M⋅ + ⋅ decision variables of the proposed model in this section, including K N⋅
variables of visiting target sequence array and K M⋅ UAV assignment matrix. Based on the
operation of ‘Step 1’ in Figure 13, UAVs, which will have the ‘ATTACK’ mission, are assigned
first and it is generated by the sorted particle vector of PSO (discussed in the 4th section), so there
is no constraint here. In Figure 14, each vehicle has 2M constraints. There are K 1 N−()
vehicles, performing ‘CLASSIFICATION’ or ‘VERIFICATION’. So, in all, there are
2 K 1 NM−() constraint variables.

54

Explanation: A simple scenario (2-targets, 3-tasks and 3-UAVs) goes as follows to explain the
aforementioned model.

Figure 15 Illustration of the target sequence(a) and the assignment matrix (b)

Figure 16 Calculation order of the objective time matrix

The numbers in Figure 15 (a) then are interpreted as follows: First implement the first task for
the 2nd target, then the first task for the 1st target, then the second task for the 2nd target, then the
second task for the 1st target, and so on.

The matrix in Figure 15 (b) is interpreted as follows: The top row corresponds to the first task
(‘CLASSIFICATION’, in this scenario), while the middle row corresponds to the second task
(‘ATTACK’) and the third row corresponds to the third task (‘VERIFICATION’). Each column
corresponds to a target. The first column corresponds to the first target, etc. (Note that there is
one more column than there are targets. In this case, the last column on the right is ignored.) .

The objective time matrix ,N MC in Figure 16 contains a cumulative time accounting of the

mission time tasks. Each row in the ,N MC matrix corresponds to a target, and each column

corresponds to a UAV. The values in the second column then are for UAV 2, and will show
cumulative increasing values as the UAV verifies destruction of targets 1 and 2, in that order.
Cumulative time cost is calculated by Equation 4-3. The largest value appearing in any cell of
matrix ,N MC is thus the maximum elapsed time for the mission, which is the maximum time

taken by any of the UAVs.

The matrix values are combined with the string of numbers of target sequence array in Figure 15
(a) to form a schedule. Thus, in this case, the first task on the 2nd target is implemented with

UAV number 3 and the time cost ○1 is filled in Figure 16. Then the first task on the 1st target is

55

implemented with UAV number 1 and ○2 is calculated, followed by implementing the second

task on the 2nd target with UAV number 3 and ○3 is accumulated, followed by implementing the

second task on the 1st target with UAV number 1, and so on. The last task in the schedule is to
implement the third task on the 1st target with UAV number 2.

4.3. Constraints treatment

Generally, the constraints of UAV assignment problem are derived and represented as equality
and inequality equations, so as to in accordance with the requirement of the models and
optimization methods, such as Mixed-Integer Linear Programming whose advantages are the
problem and constraints are organized as standard mathematic equation and the optimal can be
achieved. On the other hand, it will leads to variables size explosion with the increase of problem
complexity. Aforementioned, according to the model definition in Equation 4-1, constraints and
data structure in the 2nd section, constraints can be classified into two categories: rigid constraints
and soft constraints (see Table 9). To deal with the rigid constraints, it is necessary to design
some techniques which will check and adjust potential solutions to meet the constraint’s
requirements at each iteration. Contrarily, the soft constraints will always be satisfied, since
some operations have been applied to guarantee the constraints in the process of model
configuration.

Table 9 Constraint classification

 Constraints in the report Constraints in [144]
Rigid constraints: the 3rd, 4th, 5th, 6th, 9th, 10th; the 1st, 2nd, 3rd, 5th, 7.3th, 7.6th, 9th;
Soft constraints: the 1st, 2nd, 7th, 8th; the 4th, 6th, 7.1th, 7.2th, 7.4th, 7.5th, 8th,10th;
Constraints for
further research:

--- the 11th, 12th, 13th;

4.3.1. Soft constraints treatment

The 1st constraint: In Equation 4-7 and Figure 12, there are only K rows of UAVA , which is equal

to the task number and stands for K tasks of a target separately.

The 2nd constraint: In Equation 4-7 and Figure 12, each element of UAVA correspond to a UAV

number. There is exactly one UAV assigned to perform a task at a target,

The 7th constraint: In Equation 4-2 and 4-4, the time-of-flight is accumulated only based on the
preceding visited node. It means vehicles can not fly out of a node, unless it executes a task at
the node.

The 8th constraint: In Equation 4-5, it means a vehicle either fly to implement another task at a
node, or just fly to sink node directly, which also could be considered as a mission of a vehicle.

4.3.2. Rigid constraints treatment

The 3rd constraints: in Figure 14, it limits that the UAV m can not perform a
‘CLASSIFICATION’ at another target before the current implementation order in t arg etS , and

also assigned to perform ‘ATTACK’ at the same target after the current implementation order
in t arg etS

56

The 4th constraints: in Figure 14, the vehicle which has visited a target for ‘CLASSIFICATION’
or ‘ATTACK’ is not allowed to allocate to ‘VERIFICATION’.

The 5th constraints: in Figure 14, any vehicles, performed ‘ATTACK’ before the current
implementation order in t arg etS , are not feasible to other tasks or targets.

The 6th constraints: in Figure 13, the ‘Step 3’ operation enforces all vehicles, except those
allocated to ‘ATTACK’, has to fly to sink node.

The 9th and10th constraint are guaranteed by Equation 4-4 and 4-5, separately.

4.4. PSO application

UAV assignment problem is a typical scheduling problem with constraints. It is a challenge to
solve it efficiently in subject to large number of constraints, local minimum, difficulties for
construction feasible solutions, etc. Several version PSO algorithms have been applied on the test
problems, according to their own features. Experiments results demonstrate all PSO algorithms
exhibit a good performance and very effective, moreover the classic PSO with 2-Neighborhood
information topology has the best performance and good global search ability. Potential solutions
are separately optimized by two swarms by Bi-PSO and Bi-AFPSO and combined together to
calculate the fitness. This is a kind potential method to reduce the dimension of solution space
which is divided into two parts and searched separately.

Table 10 PSO algorithms

Algorithms Information Topology Swarm Quantities Encoding
Classic PSO Global version 1 Real value
Classic PSO 2-Neighborhood 1 Real value
AFPSO Global version 1 Real value
Bi-PSO Global version 2 Real value

Bi-AFPSO Global version 2 Real value

4.4.1. Fitness function

The cumulative time cost is stored in the objective time matrix ,N MC (Equation 4-2). and the

largest value appearing in any cell of matrix is thus the maximum elapsed time for the mission,
which is the maximum time taken by any of the UAVs. This time is the fitness function, and is
the value which is being optimized (minimized) by the PSO algorithm.

4.4.2. Encoding

The position vector X (Equation 4-8) of a particle in PSO is a 1 by K N K M⋅ + ⋅()real value
vector, which is consisted of two parts: the first K N⋅ items of X (as Equation 4-9. shown)
corresponding to the target sequence array (Equation 4-6) and the last K M⋅ variables (as
Equation 4-10 shown) standing for assignment matrix (Equation 4-7).

1 1[,..., ,..., , ,..., ,...,] [,]n K N K N v K N K M S AX x x x x x x X X⋅ ⋅ + ⋅ + ⋅= = (4-8)

1 1[,..., ,...,]S n K N K NX x x x ⋅ × ⋅= (4-9)

1 1[,..., ,...,]A K N v K N K M KMX x x x⋅ + ⋅ + ⋅ ×= (4-10)

sX will be sorted firstly and then the modules of these sorted serial numbers will be calculated to

acquire the target sequence array. An example is given as bellow to explain it.

57

Figure 17 Example of target sequence array encoding

AX can be firstly organized as a K byM matrix '

AX (see Equation: 4-11), '

A A UAVX X A→ → .

1,1 1,

'
,

(1) 1,1

...

... ...

...

M

A k m

K M K M K M

x x

X x

u u− ⋅ + ⋅ ×

=

 (4-11)

In Equation 4-11, the row vector, corresponds to the attack task, is sorted. (In Figure 18, it is the
first row, since there are only two tasks in the paper). This is the ‘Step 1’ in Figure 13. In the
sorted list, the order of the first N elements is preserved, according to the N targets. See Figure
18. Moreover, it guarantees the 5th constraints that a vehicle can be assigned to attack at most one
target. In the feasible UAV array (described in Figure 14) the vehicle whose real value in AX is

the largest, , will be selected in the assignment process of other tasks.

Figure 18 Example of assignment matrix encoding

There are two advantage of the proposed encoding method in the report. First, real value number
is utilized so that it is very easy to realize and calculate. Second, since it is based on the sort of
particle vector to transfer real value vector to integral sequence array and assignment matrix,
there is no any value limitation and initial requirement of the particle position vector.

4.5. Experiments results

The classic PSO with 2-Neighborhood information topology, in term local version PSO, exhibits
the best performance in all the three scenarios. Various scenarios with different target and UAV
size, task requirement, are studied in the section. An assumption is made in advance that the time
of attack delay and flight time to the sink node are not taken into account. The assumption makes

sort module'
argS S t etX X S→ →

Exp: 4-targets, 5-UVAs, 2-Tasks
=[-0.2339 42.7231 101.5801 -13.8674

 96.4728 1.3992 -12.5743 -19.9650]
SX

' () [8,4,7,1,6,2,5,3]
S S

X sort X= =

'
arg mod() 1 [1,1,4,2,3,3,2,4]t et SS X= + =

'

A A UAVX X A→ →

Exp: 4-targets, 5-UVAs, 2-Tasks
' 91.5188 -63.1606 101.7629 97.6368 -12.932
=

-9.3305 - 7.5982 -66.4578 76.6219 94.1288AX

'st

Asort(1 row of X)= [2,5,1,4,3] ,

so the relationship is as follows

58

the fitness (Equation 4-1) of the scenarios with 3 tasks requirement is the same as those with 2
tasks requirement, so as to verify the optimization results for both of them.

4.5.1. Experiment 1

In the experiment 3, only two tasks, that is ‘ATTACK’ and ‘VERIFICATION’, are considered.
So the dimension of each particle vector of PSO is 2 N M+(). 100 particles are adopted in the
PSO. Bothe acceleration factors of PSO are set to 2 and the inertia weight is 0.7. All experiments
in Table 11 are run 100,000 times. The format of ‘Scenario’ in Table 11, is [Target, Task, UAV]
whose elements stands for the number of variables.

Table 11 PSO experiment on two tasks scenarios

Scenario Fitness Min-Time Avg-Time Min-
Iteration

Max-
Iteration

Avg-
Iteration

[1,2,3] 7.0711 0ms 0.675 ms 1 1 1
[2,2,3] 10.831 0ms 1.563 ms 1 1 1
[3,2,4] 14.3162 0ms 1.845 ms 1 18 1.536
[4,2,5] 13.831 0ms 14.828 ms 1 252 13.785
[5,2,6] 16.099 0ms 122.106 ms 1 98.0681 2622

4.5.2. Experiment 2

Some more complicated scenarios are studied in this part. Vehicles should complete three tasks
at all targets. The dimension of each particle vector of PSO is3 N M+(). The population size and
parameters setting are the same with those of the experiment 3.

Table 12 PSO experiment on three tasks scenarios

Scenario Fitness Min-Time Avg-Time Min-
Iteration

Max-
Iteration

Avg-
Iteration

[1,3,3] 7.0711 0 ms 1.384 ms 1 1 1
[2,3,3] 10.831 0 ms 2.467 ms 1 1 1
[3,3,4] 14.3162 0 ms 20.989 ms 1 192 9.882
[4,3,5] 13.831 15.625 ms 5.769 sec 2 1301 223.764
[5,3,6]* 16.099 156.246 ms 17.934 sec 20 58314 2545.286

* In the scenario, 200 particles of PSO are adopted and algorithms parameters are adjusted
(1 2w 0.7,c c 2.1,= = =) so as to deal with the complexity of the problem and lots of local

optimums in the solution space.

4.5.3. Comparison and discussion

(1) Two tasks comparison between PSO and GLPK

The UAV assignment problem is also modeled as a Mixed-Integer Linear Programming problem
and the GLPK (GNU Linear Programming Kit)[155] is applied on all scenarios. The average
computation time cost by the two methods is compared in

Table 13 and Figure 19 . Computation time rapidly increases with the increase of the number of
target and vehicles. Moreover, shown in Figure 19 , search process of GLPK will lead to
unacceptable computation time.

Table 13 Two tasks comparison between PSO and GLPK

 Scenarios Avg-Time of PSO Avg-Time of GLPK

59

Scenario-1 [1,2,3] 0.675 ms 47 ms
Scenario-2 [2,2,3] 1.563 ms 157 ms
Scenario-3 [3,2,4] 1.845 ms 2.86 sec
Scenario-4 [4,2,5] 14.828 ms 194.094 sec
Scenario-5 [5,2,6] 122.106 ms More than 6 hours

0

20

40

60

80

100

120

140

[5,6][4,5][3,4][2,3]

 PSO

 GLPK

[Targets UAVs]

A
v
e
ra
g
e
 T
im
e
 o
f
P
S
O

(M

ill
is
e
c
o
n
d
)

[1,3]

0

100

200

300

400

500

600 A
v
e
ra
g
e
 T
im
e
 o
f G

L
P
K
 (S

e
c
o
n
d
)

More than 6 hours

Figure 19 Comparison of two tasks between PSO and GLPK

(2) Three tasks comparison between PSO and GLPK

When a new task is added, the computation cost of both PSO and GLPK increase obviously,
compared to the two task scenarios. However, GLPK can not achieve the optimization within an
acceptable time.

Table 14 Three tasks comparison between PSO and GLPK

 Scenarios Avg-Time of PSO Avg-Time of GLPK
Scenario-5 [1,3,3] 1.384 ms 62 ms
Scenario-6 [2,3,3] 2.467 ms 425 ms
Scenario-7 [3,3,4] 20.989 ms 467.282 sec
Scenario-8 [4,3,5] 5.769 sec More than 6 hours
Scenario-9 [5,3,6] 17.934 sec More than one day

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra
g
e
 T
im
e
 o
f
P
S
O

(S
e
c
o
n
d
)

 PSO

 GLPK

[5,6][4,5][3,4][2,3]

[Targets UAVs]

[1,3]

0

1000

2000

3000

More than one days

A
v
e
ra
g
e
 T
im
e
 o
f G

L
P
K
 (S

e
c
o
n
d
)

More than 6 hours

Figure 20 Comparison of three tasks between PSO and GLPK

60

(3) Impact of the number of tasks on computation time cost

With the increase of number of tasks, it not only leads to a large quantity of variables, but also
brings more constraints. So the consideration of computation complexity and time cost becomes
more important. In Figure 21 , the computation time cost of PSO is compared between two tasks
and three tasks scenarios. The unit of the left vertical coordinates, corresponding to the two tasks
scenarios, is millisecond and the unit of the right vertical coordinates is second. An interesting
result in the figure is that the computation time cost of PSO increases almost 1000 times when
there is a new task added.

0

20

40

60

80

100

120

140

[5,6][4,5][3,4][2,4]

 Two Tasks

 Three Tasks

[Targets UAVs]

 C
o
m
p
u
ta
ti
o
n
 T
im
e
 o
f
T
w
o

T
a
s
k
s
 S
c
e
n
a
ri
o
s
 (
M
ill
is
e
c
o
n
d
)

[1,3]

-2

0

2

4

6

8

10

12

14

16

18

20

 C
o
m
p
u
ta
tio
n
 T
im
e
 o
f T

h
re
e

 T
a
s
k
s
 S
c
e
n
a
rio

s
 (S

e
c
o
n
d
)

Figure 21 Comparison of PSO computation time between two tasks and three tasks

4.6. Discussion and plan for further research

Flexibility: Current finished work adopted the solution construction method. It will construct
feasible solutions at each iteration based on the constraints requirement, which obviously is a
very efficient search way in the solution space to solve those assignment problems not too
complex. Meanwhile, it lacks flexibility in two aspects. The first one is a new construction
techniques will be designed when a new constraint is introduced, and another one is it will
difficult to construct feasible solutions, when constraints are complex and have a large mount.
So, the plan for next step research is to utilize the techniques of constraint and multi-objective
optimization. Solutions will be examined whether it satisfies constraints and it will allow those
feasible and unfeasible solutions exits at the same time. Fitness function and selection methods
will base on the Pareto rules.

Reliability and Efficiency: Reliability is also the most important point should be considered.
However it is a dilemma subject to the efficiency sometimes. So, besides the design of the
problems, the improvement and configuration of PSO algorithms are also necessary. The statistic
performance will be applied to examine the reliability.

Rescheduling: In a more real-operational environment, online rescheduling will be realized in
the feature work. Several non-stationary situations will be occurred, such as the dimension of
solution space, quality of constraints or objective changing. The dimension of solution space will
changed, when a target or vehicle is added or moved. The quality of constraints is often caused
by the change of tasks quality, or some new constraints are introduced, which maybe leads to
some feasible solutions become infeasible. If the fitness metrics change, the assignment problem

61

will be transferred to a dynamic multi-objective optimization problem. So various procedures
and heuristics operations, widely adopted in the constraint, dynamic and multi-objective
optimization, should be utilized or developed to assign vehicles to targets and schedule those
vehicles in the non-stationary environment.

Algorithm Analysis and Improvement: With the increase of the problem size and the number of
constraints, the performance of the algorithm (PSO) will not be as good as before. In Figure 22
and Figure 23 , the scenario, which includes 8 targets, 10 UAVs and 2 tasks, is studied. The
experiments are run 5 times separately and the fitness curve is illustrated in Figure 22 . The
optimum is 10.3031, the best fitness we found so far. Only one experiment, corresponding to the
red solid line, achieves the optimum and others stagnate into some local optimum. In Figure 23 ,
those local optimums of all 5 experiments are summarized and those iterations that the algorithm
stagnates into those local optimums are counted. Apparently, the most terrible local optimums of
the scenario include 12.6620, 13.0623, 13.6620, 14.2334, 14.4424, 14.4403, etc and they will
take algorithm a long time to jump out, or even leads to premature convergence. So, it is
necessary to make an improvement to the algorithm to handle those more difficult and complex
problems.

10
3

10
4

10
5

10
6

10

11

12

13

14

15

16

17

Iteration (log)

F
it
n
e
s
s

Figure 22 The fitness curve of 8-targets 10-UAVs and 2-tasks

12 14 16

0

5

10

15

20

S
ta
g
n
a
te
d
 I
te
ra
ti
o
n
s

in
to
 a
 l
o
c
a
l
o
p
ti
m
u
m
 (
L
o
g
)

Fitness value of Local optimum

Figure 23 Stagnated iteration into local optimums

62

5. References
 [1] Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm intelligence San Francisco: Morgan

Kaufmann Publishers, 2001.

 [2] Eberhart, R. C. and Kennedy, J., "A new optimizer using particle swarm theory",
Nagoya, Japan. pp. 39-43, 1995

 [3] Kennedy, J. and Eberhart, R. C., "Particle swarm optimization", Piscataway, NJ. pp.
1942-1948, 1995

 [4] Fogel, L. J., Owens, A. J., and Walsh, M. J., Artificial intelligence through
simulated evolution 1966.

 [5] Carlisle, A. and Dozier, G., "Adapting particle swarm optimization to dynamic
environments", Proceedings of International Conference on Artificial Intelligence, Las
Vegas, Nevada, USA. pp. 429-434, 2000

 [6] Eberhart, R. C. and Shi, Y., "Tracking and optimizing dynamic systems with particle
swarms", Proceedings of IEEE Congress on Evolutionary Computation, pp. 94-100, 2001

 [7] Carlisle, Anthony, "Applying the particle swarm optimizer to non-stationary
environments." Auburn University, Auburn Alabama, 2002.

 [8] Carlisle, A. and Dozier, G., "Tracking changing extrema with adaptive particle swarm
optimizer", Proceedings of World Automation Congress, pp. 265-270, 2002

 [9] Veeramachaneni, K. and Osadciw, L. A., "Dynamic particle swarm optimizer for

information fusion in non stationary sensor networks", Proceedings of IEEE
Swarm Intelligence Symposium, Indianapolis, Indiana. 2006

 [10] Blackwell, T. M. and Bentley, P. J., "Dynamic search with charged swarms", Proceedings
of Genetic and Evolutionary Computation Conference (GECCO), New York, NY. USA.
pp. 19-26, 2002

 [11] Blackwell, T. M. and Bentley, P. J., "Don't push me! Collision-avoiding swarms",
Proceedings of IEEE Congress on Evolutionary Computation, pp. 1691-1696, 2002

 [12] Jatmiko, W., Sekiyama, K., and Fukuda, T., "A PSO-based mobile sensor network

for odor source localization in dynamic environment: theory, simulation
and measurement", Proceedings of IEEE Congress on Evolutionary Computation,
2006

 [13] Branke, J., Kaußler, T., Schmidt, C., and Schmeck, H., "A multi-population approach to
dynamic optimization problems", Adaptive Computing in Design and Manufacture, pp.
299-308, 2000

63

 [14] Blackwell, T. M. and Branke, J., "Multi-swarm optimization in dynamic environments",
Lecture Notes in Computer Science, Coimbra, portugal. pp. 489-500, 2004

 [15] Blackwell, T. M. and Branke, J., "multiswarms, exclusion, and anti-convergence in
dynamic environments", IEEE Transactions on Evolutionary Computation, vol. 10, no. 4,
pp. 459-472, 2006.

 [16] Parrott, D. and Li, X., "A particle swarm model for tracking multiple peaks in a dynamic
environment using speciation", Proceedings of IEEE Congress on Evolutionary
Computation, pp. 98-103, 2004

 [17] Parrott, D. and Li, X., "Locating and tracking multiple dynamic optima by a

particle swarm model using speciation", IEEE Transactions on Evolutionary

Computation, vol. 10, no. 4, pp. 440-458, 2006.

 [18] Li, X., Branke, J., and Blackwell, T. M., "Particle swarm with speciation and adaptation
in a dynamic environment", Proceedings of the annual conference on genetic and
evolutionary computation, Seattle, Washington, USA. pp. 51-58, 2006

 [19] Lung, R. I. and Dumitrescu, D., "A new collaborative evolutionary-swarm optimization
technique", Proceedings of the annual conference on genetic and evolutionary
computation, London, United Kingdom. pp. 2817-2820, 2007

 [20] Mullen, P. B., Monson, C. K., Seppi, K. D., and Warnick, S. C., "Particle swarm
optimization in dynamic pricing", Proceedings of IEEE Congress on Evolutionary
Computation, pp. 1232-1239, 2006

 [21] Cui, X., Hardin, C. T., Ragade, R. K., Potok, T. E., and Elmaghraby, A. S., "Tracking
non-stationary optimal solution by particle swarm optimizer", Proceedings of
International Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, pp. 133-138, 2005

 [22] Hu, X. and Eberhart, R. C., "Adaptive particle swarm optimization: detection and
response to dynamic systems", Proceedings of IEEE Congress on Evolutionary
Computation, pp. 1666-1670, 2002

 [23] Bird, S. and Li, X., "Informative performance metrics for dynamic optimisation
problems", Proceedings of the annual conference on genetic and evolutionary
computation, London, England. pp. 18-25, 2007

 [24] Zaharie, D. and Zamfirache, F., "Diversity enhancing mechanisms for

evolutionary optimization in static and dynamic environments", Proceedings
of of 3rd Romanian-Hungarian Joint Symposium on Applied Computational Intelligence,
pp. 460-471, 2006

 [25] Li, X. and Khanh, H. D., "Comparing particle swarms for tracking extrema in dynamic
environments", Proceedings of IEEE Congress on Evolutionary Computation, pp. 1772-
1779, 2003

64

 [26] Morrison, R. W., "Performance measurement in dynamic environments", Proceedings of
the Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1210-
1221, 2003

 [27] Moser, I. Review all currently known publications on approaches which

solve the moving peaks problem. 7-18-2007. Swinburne University of
Technology.

 [28] Moser, I. Review all currently known publications on approaches which

solve the moving peaks problem. 7-18-2007. Swinburne University of
Technology.

 [29] Branke, J., Evolutionary optimization in dynamic environment Kluwer
Academic Publishers, 2002.

 [30] Kadrovach, B. A. and Lamont, G. B., "A particle swarm model for swarm-based
networked sensor systems", Proceedings of ACM Symposium on Applied Computing,
Madrid, Spain. pp. 918-924, 2002

 [31] Branke, J., "Memory enhanced evolutionary algorithms for changing

optimization problems", Proceedings of IEEE Congress on Evolutionary
Computation, 1999

 [32] Morrison, R. W. and De Jong, K. A., "A test problem generator for non-stationary
environments", pp. 2053, 1999

 [33] Coello, C. A., Veldhuizen, D. A. V., and Lamont, G. B., "Evolutionary Algorithms for
Solving Multi-Objective Problems", Kluwer Academic Publishers, 2002.

 [34] Moore, J. and Chapman, R., "Application of Particle Swarm to Multiobjective
Optimization", Department of Computer Science and Software Engineering, Auburn

University, 1999.

 [35] Reyes-Sierra, M. and Coello Coello, C. A., "Multi-objective particle swarm optimizers: A
survey of the state-of-the--art", International Journal of Computational Intelligence

Research, vol. 2, no. 3, pp. 287, 2006.

 [36] Hu, X. and Eberhart, R. C., "Multiobjective optimization using dynamic neighborhood
particle swarm optimization", pp. 1677-1681, 2002

 [37] Li, X. and Andries, P. E. Particle swarm optimization: an introduction and its recent
developments. Proceedings of the 2007 GECCO conference companion on Genetic and
evolutionary computation. 3391-3414. 2007. London, United Kingdom, ACM.

 [38] Hu, X., Shi, Y., and Eberhart, R. C., "Recent advances in particle swarm", pp. 90-97,
2004

65

 [39] Moore, J., Chapman, R., and Dozier, G. Multiobjective particle swarm optimization.
Proceedings of the 38th annual on Southeast regional conference. 56-57. 2000. Clemson,
South Carolina, ACM.

 [40] Hu, X., Eberhart, R. C., and Shi, Y., "Particle swarm with extended memory for
multiobjective optimization", Indianapolis, Indiana, USA. pp. 193-197, 2003

 [41] Ho, S. L., Shiyou, Y., Guangzheng, N., Lo, E. W. C., and Wong, H. C., "A particle
swarm optimization-based method for multiobjective design optimizations", IEEE

Transactions on Magnetics, vol. 41, no. 5, pp. 1756-1759, 2005.

 [42] Yapicioglu, H., Dozier, G., and Smith, A. E., "Neural Network Enhancement of
Multiobjective Evolutionary Search", pp. 1909-1915, 2006

 [43] Cagnina, L., Esquivel, S., and Coello, C. A. C., "A particle swarm optimizer for multi-
objective optimization", Journal of Computer Science & Technology, vol. 5, no. 4, pp.
204-210, 2005.

 [44] Mostaghim, S. and Teich, J., "Strategies for finding good local guides in multi-objective
particle swarm optimization (MOPSO)", pp. 26-33, 2003

 [45] Hsieh, S. T., Sun, T. Y., Chiu, S. Y., Liu, C. C., and Lin, C. W. Cluster based solution
exploration strategy for multiobjective particle swarm optimization. Proceedings of the
25th conference on Proceedings of the 25th IASTED International Multi-Conference:
artificial intelligence and applications. 295-300. 2007. Innsbruck, Austria, ACTA Press.

 [46] Mostaghim, S. and Teich, J., "Covering Pareto-optimal fronts by subswarms in multi-
objective particle swarm optimization", pp. 1404-1411, 2004

 [47] Abido, M. A. Two-level of nondominated solutions approach to multiobjective particle
swarm optimization. Proceedings of the 9th annual conference on Genetic and
evolutionary computation. 726-733. 2007. London, England, ACM.

 [48] Zhang, X. h., Meng, H. y., and Jiao, L. c., "Intelligent particle swarm optimization in
multiobjective optimization", pp. 714-719, 2005

 [49] Praveen, K., Sanjoy, D., and Stephen, M. W., "Multi-objective hybrid PSO using Âµ-
fuzzy dominance", 2007.

 [50] Li, X., "A non-dominated sorting particle swarm optimizer for multiobjective
optimization", Chicago, IL, USA. pp. 37-48, 2003

 [51] Carlo, R. R. and Prospero, C. N. An effective use of crowding distance in multiobjective
particle swarm optimization. Proceedings of the 2005 conference on Genetic and
evolutionary computation. 257-264. 2005. Washington DC, USA, ACM.

66

 [52] Fieldsend, J. and Singh, S., "A multi-objective algorithm based upon particle swarm
optimisation, an efficient data structure and turbulence", In The 00 U.K.Workshop on

Computational Intelligence, pp. 34-44, 2002.

 [53] Coello, C. A. and Lechuga, M. S., "MOPSO: a proposal for multiple objective particle
swarm optimization", pp. 1051-1056, 2002

 [54] ZHAO, B. and CAO, Y. j., "Multiple objective particle swarm optimization technique for
economic load dispatch", Zhejiang Univ SCI, vol. 6A, no. 5, pp. 420-427, 2005.

 [55] Leong, W. F. and Yen, G. G., "Dynamic Population Size in PSO-based Multiobjective
Optimization", IEEE Congress on Evolutionary Computation, CEC 2006, pp. 1718-1725,
2006.

 [56] Bartz-Beielstein, T., Limbourg, P., Mehnen, J., Schmitt, K., Parsopoulos, K. E., and
Vrahatis, M. N., "Particle swarm optimizers for Pareto optimization with enhanced
archiving techniques", Evolutionary Computation, 2003.CEC apos;03.The 2003

Congress on, vol. 3, no. 8-12, pp. 1780-1787, 2003.

 [57] Ray, T. and Liew, K. M., "A swarm metaphor for multiobjective design optimization",
Engineering Optimization, vol. 34, no. 2, pp. 141-153, 2002.

 [58] Salazar-Lechuga, M. and Rowe, J. E., "Particle swarm optimization and fitness sharing to
solve multi-objective optimization problems", pp. 1204-1211, 2005

 [59] Pulido, G. T. and Coello Coello, C. A., "Using clustering techniques to improve the
performance of a multi-objective particle swarm optimizer", Seattle, WA, USA. pp. 225-
237, 2004

 [60] ZHAO, B. and CAO, Y. j., "Multiple objective particle swarm optimization technique for
economic load dispatch", Zhejiang Univ SCI, vol. 6A, no. 5, pp. 420-427, 2005.

 [61] Reyes-Sierra, M. and Coello, C. A. C., "Improving PSO-Based Multi-objective
Optimization Using Crowding, Mutation and e-Dominance," Evolutionary Multi-

Criterion Optimization 2005, pp. 505-519.

 [62] Mich and le, R. L. Multi-objective PSO for interplanetary trajectory design. Proceedings
of the 9th annual conference on Genetic and evolutionary computation. 175. 2007.
London, England, ACM.

 [63] Liu, D. S., Tan, K. C., Goh, C. K., and Ho, W. K., "On Solving Multiobjective Bin
Packing Problems Using Particle Swarm Optimization", pp. 2095-2102, 2006

 [64] ZHAO, B. and CAO, Y. j., "Multiple objective particle swarm optimization technique for
economic load dispatch", Zhejiang Univ SCI, vol. 6A, no. 5, pp. 420-427, 2005.

 [65] Konstantinos, E. P. and Michael, N. V., "Particle swarm optimization method in
multiobjective problems", pp. 603-607, 2002

67

 [66] Ho, S. L., Yang, S., Ni, G., Lo, E. W. C., and Wong, H. C., "A particle swarm
optimization-based method for multiobjective design optimizations", IEEE Transactions

on Magnetics, vol. 41, no. 5, pp. 1756-1759, 2005.

 [67] XIA, W. and WU, Z., "Hybrid particle swarm optimization approach formulti-objective
flexible job- shop scheduling problems", Control and Decision, vol. 20, no. 2, pp. 137-
141, 2005.

 [68] ZHANG, X. h. and ZHOU, L. x., "Multi-object Optimization Design of PID Controllers
Based on Particle Swarm Algorithms", JOURNAL OF APPLIED SCIENCES, vol. 25, no.
4, pp. 392-396, 2007.

 [69] Liu, W. and Liang, M., "A Particle Swarm Optimization Approach to A Multi-objective
Reconfigurable Machine Tool Design Problem", pp. 2222-2229, 2006

 [70] Marandi, A., Afshinmanesh, F., Shahabadi, M., and Bahrami, F., "Boolean Particle
Swarm Optimization and Its Application to the Design of a Dual-Band Dual-Polarized
Planar Antenna", IEEE Congress on Evolutionary Computation, 2006.CEC 2006., pp.
3212-3218, 2006.

 [71] Baumgartner, U., Magele, C., and Renhart, W., "Pareto optimality and particle swarm
optimization", IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1172-1175, 2004.

 [72] Reyes-Sierra, M. and Coello, C. A. C., "A study of fitness inheritance and approximation
techniques for multi-objective particle swarm optimization", pp. 65-72, 2005

 [73] Reyes-Sierra, M. and Coello Coello, C. A., "A Study of Techniques to Improve the
Efficiency of a Multi-Objective Particle Swarm Optimizer," Evolutionary Computation in

Dynamic and Uncertain Environments 2007, pp. 269-296.

 [74] Reyes-Sierra, M. and Coello Coello, C. A., "Fitness Inheritance in Multi-Objective
Particle Swarm Optimization", Pasadena, California. pp. 116-123, 2005

 [75] Reyes-Sierra, M. and Coello, C. A. C. Dynamic fitness inheritance proportion for multi-
objective particle swarm optimization. Proceedings of the 8th annual conference on
Genetic and evolutionary computation. 89-90. 2006. Seattle, Washington, USA, ACM.

 [76] Li, X., "Better Spread and Convergence: Particle Swarm Multiobjective Optimization
Using the Maximum Fitness Function", Lecture Notes in Computer Science, vol. 3102,
no. 117-128, 2004.

 [77] Zitzler, E., Deb, K., and Thiele, L., "Comparison of multiobjective evolutionary
algorithms: empirical results", Evolutionary Computation, vol. 8, no. 2, pp. 173-195,
2000.

 [78] Emma, L. B. Optimising the flow of experiments to a robot scientist with multi-objective
evolutionary algorithms. Proceedings of the 2007 GECCO conference companion on

68

Genetic and evolutionary computation. 2429-2436. 2007. London, United Kingdom,
ACM.

 [79] Coello, C. A., Pulido, G. T., and Salazar-Lechuga, M., "Handling multiobjectives with
particle swarm optimization", IEEE Transactions on Evolutionary Computation, vol. 8,
no. 256-279, 2004.

 [80] "http://www.cs.cinvestav.mx/~EVOCINV/software.html".

 [81] "http://www.pserc.cornell.edu/matpower/#optionalpackages".

 [82] http://www.tik.ee.ethz.ch/~zitzler/testdata.html.

 [83] Naitali, A. and Giri, F., "Hammerstein and Wiener nonlinear models identification using
a multimodal particle swarm optimizer", pp. 6,

 [84] Deb, K., "Multi-objective genetic algorithms: Problem difficulties and construction of
test problems", Evolutionary Computation, vol. 7, no. 3, pp. 205-230, 1999.

 [85] Halter, W. and Mostaghim, S., "Bilevel Optimization of Multi-Component Chemical
Systems Using Particle Swarm Optimization", pp. 1240-1247, 2006

 [86] Eric, O. and Babak, F. A Particle Swarm Algorithm for Multiobjective Design
Optimization. Proceedings of the 18th IEEE International Conference on Tools with
Artificial Intelligence. 765-772. 2006. IEEE Computer Society.

 [87] Stefan, J., Daniel, M., and Martin, M., "Molecular docking with multi-objective Particle
Swarm Optimization", Appl.Soft Computing, vol. 8, no. 1, pp. 666-675, 2008.

 [88] Michalewicz, Z., "A survey of constraint handling techniques in evolutionary
computation methods", Proceedings of Annual Conference on Evolutionary
Programming, Cambridge, MA. 1995

 [89] Coello, C. A. C. A Survey of Constraint Handling Techniques used with Evolutionary
Algorithms. 1999. Xalapa, Veracruz, MÃ©xico, Laboratorio Nacional de InformÃ¡tica
Avanzada. Technical Report Lania-RI-99-04.

 [90] Coello, C. A. C., "Theoretical and Numerical Constraint-Handling Techniques used with
Evolutionary Algorithms: A Survey of the State of the Art", Computer Methods in

Applied Mechanics and Engineering, vol. 191, no. 11, pp. 1245-1287, 2002.

 [91] Mezura-Montes, E. and Coello Coello, C. A., "A Survey of Constraint-Handling
Techniques Based on Evolutionary Multiobjective Optimization", PPSN workshop on
Multiobjective Problem Solving from Nature, Reykjavik, Iceland. 2006

 [92] Coello, C., "Constraint-handling techniques used with evolutionary algorithms", 2007.

69

 [93] Apt, K. R. and Wallace, M. G., Constraint Logic Programming using ECLiPSe
Cambridge University Press, 2006.

 [94] Liang, J. J. and Suganthan, P. N., "Dynamic Multi-Swarm Particle Swarm Optimizer with
a Novel Constraint-Handling Mechanism", pp. 9-16, 2006

 [95] Zhu, Q., Qian, L., Li, Y., and Zhu, S., "An Improved Particle Swarm Optimization
Algorithm for Vehicle Routing Problem with Time Windows", pp. 1386-1390, 2006

 [96] Parsopoulos, K. E. and Vrahatis, M. N., "Particle swarm optimization method for
constrained optimization problems", 2002

 [97] Takahama, T. and Sakai, S., "Solving Constrained Optimization Problems by the Îµ
Constrained Particle Swarm Optimizer with Adaptive Velocity Limit Control", pp. 1-7,
2006

 [98] Xu, F., Chen, W., and Yang, L., "Improved Particle Swarm Optimization for Realistic
Portfolio Selection", 2007.

 [99] Runarsson, T. P. and Yao, X., "Stochastic Ranking for Constrained Evolutionary
Optimization", IEEE Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 284-
294, 2000.

 [100] He, Q. and Wang, L., "An effective co-evolutionary particle swarm optimization for
constrained engineering design problems", Eng.Appl.Artif.Intell., vol. 20, no. 1, pp. 89-
99, 2007.

 [101] Ismael, V., Lu, and Vicente, N., "A particle swarm pattern search method for bound
constrained global optimization", J.of Global Optimization, vol. 39, no. 2, pp. 197-219,
2007.

 [102] Amin, F. F., Mehdi, K., Sied Mehdi, F., and Saeed, S., "HW/SW partitioning using
discrete particle swarm", 2007.

 [103] Hu, X. and Eberhart, R. C., "Solving constrained nonlinear optimization problems with
particle swarm optimization", Orlando, USA. 2002

 [104] Hu, X., Eberhart, R. C., and Shi, Y., "Engineering optimization with particle swarm",
Proceedings of IEEE Swarm Intelligence Symposium, pp. 53-57, 2003

 [105] Takahama, T. and Sakai, S., "Solving Constrained Optimization Problems by the Îµ
Constrained Particle Swarm Optimizer with Adaptive Velocity Limit Control", pp. 1-7,
2006

 [106] Talal, M. A. and Mohamed, A. A., "Simulation-based optimization for repairable systems
using particle swarm algorithm", 2005.

70

 [107] Goldbarg, E. F. G., de Souza, G. R., and Goldbarg, M. C., "Particle Swarm Optimization
for the Bi-objective Degree constrained Minimum Spanning Tree", pp. 420-427, 2006

 [108] Coath, G. and Halgamuge, S. K., "A comparison of constraint-handling methods for the
application of particle swarm optimization to constrained nonlinear optimization
problems", pp. 2419-2425, 2003

 [109] Pulido, G. T. and Coello, C. A. C., "A constraint-handling mechanism for particle swarm
optimization", pp. 1396-1403, 2004

 [110] Zhang, W. J. and Xie, X. F., "DEPSO: hybrid particle swarm with differential evolution
operator", pp. 3816-3821, 2003

 [111] Angel, E. M., oz, Z., Arturo, H., ndez, A., and Enrique, R. V. D., "Constrained
optimization via particle evolutionary swarm optimization algorithm (PESO)", 2005.

 [112] Zielinski, K. and Laur, R., "Constrained Single-Objective Optimization Using Particle
Swarm Optimization", pp. 443-450, 2006

 [113] Takahama, T. and Sakai, S., "Constrained optimization by the á constrained particle
swarm optimizer", Journal of Advanced Computational Intelligence and Intelligent

Informatics, vol. 9, no. 3, pp. 282-289, 2005.

 [114] Takahama, T. and Sakai, S., "Constrained optimization by å constrained particle swarm
optimizer with å-level control", Proccedings of IEEE International Workshop on Soft
Computing as Transdisciplinary Science and Technology (WSTST), Muroran, Japan.
2005

 [115] Takahama, T. and Sakai, S., "Solving Constrained Optimization Problems by the Îµ
Constrained Particle Swarm Optimizer with Adaptive Velocity Limit Control", pp. 1-7,
2006

 [116] Pan, F., Chen, J., Gan, M., Cai, T., and Tu, X., "Model analysis of particle swarm
optimizer", Zidonghua Xuebao/Acta Automatica Sinica, vol. 32, no. 3, pp. 368-377, 2006.

 [117] Ray, T. and Liew, K. M., "A swarm with an effective information sharing mechanism for
unconstrained and constrained single objective optimization problem", Seoul, Korea. pp.
75-80, 2001

 [118] Wang, L. and Singh, C., "Adequacy-based Design of A Hybrid Generating System
Including Intermittent Sources Using Constrained Particle Swarm Optimization", pp. 1-7,
2007

 [119] Ji, C., "A Revised Particle Swarm Optimization Approach for Multi-objective and Multi-
constraint Optimization", 2004.

71

 [120] Takahama, T. and Sakai, S., "Solving Constrained Optimization Problems by the Îµ
Constrained Particle Swarm Optimizer with Adaptive Velocity Limit Control", pp. 1-7,
2006

 [121] Paquet, U. and Engelbrecht, A. P., "A new particle swarm optimiser for linearly
constrained optimisation", pp. 227-233, 2003

 [122] Ulrich, P. and Andries, P. E., "Particle Swarms for Linearly Constrained Optimisation",
Fundam.Inf., vol. 76, no. 1-2, pp. 147-170, 2007.

 [123] Halter, W. and Mostaghim, S., "Bilevel Optimization of Multi-Component Chemical
Systems Using Particle Swarm Optimization", pp. 1240-1247, 2006

 [124] Schoofs, L. and Naudts, B., "Swarm intelligence on the binary constraint satisfaction
problem", 2002.

 [125] Lin, I. Ling, "Particle swarm optimization for solving constraint satisfaction problems."
MASTER OF SCIENC Simon Fraser University, School of Interactive Arts and
Technology, 2005.

 [126] Yang, Q., Sun, J., and Zhang, J., "Improvements of Particle Swarm in Binary CSPs with
Maximal Degree Varibles Ordering", Journal of Computer Research and Development,
vol. 43, no. 3, pp. 436-441, 2006.

 [127] Alberto, M. and Julian, T., "Geometric particle swarm optimization for the sudoku
puzzle", 2007.

 [128] Eberhart, R. C. and Kennedy, J., "A new optimizer using particle swarm theory",
Proceedings of International Symposium on Micro Machine and Human Science, pp. 39-
43, 1995

 [129] Kennedy, J. and Eberhart, R. C., "Particle swarm optimization", Proceedings of IEEE
International Conference on Neural Networks, pp. 1942-1948, 1995

 [130] Eberhart, R. C., Simpson, P. K., and Dobbins, R. W., Computational Intelligence PC

tools, 1st ed. ed. Boston, MA: Academic press professional, 1996.

 [131] Eberhart, R. C. and Shi, Y., Computational Intelligence: Concepts to Implementations
San Francisco: Morgan Kaufmann Publishers, 2007.

 [132] Shi, Y. and Eberhart, R. C., "A modified particle swarm optimizer", Proceedings of IEEE
Congress on Evolutionary Computation, pp. 69-73, 1998

 [133] Shi, Y. and Eberhart, R. C., "Parameter selection in particle swarm optimization",
Proceedings of Annual Conference on Evolutionary Programming, New York. pp. 591-
600, 1998

72

 [134] Shi, Y., Eberhart, R., and Chen, Y., "Implementation of evolutionary fuzzy system",
IEEE Transactions on Fuzzy Systems, 1999.

 [135] Matsui, K., "New selection method to improve the population diversity in genetic
algorithms", Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics, pp. 625-630, 1999

 [136] Wang, K., "A new fuzzy genetic algorithm based on population diversity", Proceedings
of IEEE International Symposium on Computational Intelligence in Robotics and
Automation, pp. 108-112, 2001

 [137] Wen, J., Wang, S., Cheng, S., Wu, Q., and Shimmin, D., "Measurement based power
system load modeling using a population diversity genetic algorithm", Proceedings of
International Conference on Power System Technology, pp. 771-775, 1998

 [138] Wen, J. Y., Wen, J. Y., Wu, Q. H., Shimmin, D. W., Turner, D. R., and Cheng, S. J.,
"Population diversity based genetic algorithm for fuzzy control of synchronous
generators", Proceedings of IEEE International Symposium on Computer Aided Control
System Design, pp. 504-509, 1999

 [139] Chandler, P. R., Pachter, M., Swaroop, D., and Fowler, J., "Complexity in UAV
cooperative control", Proceedings of the American Control Conference, pp. 1831-1836,
2002

 [140] Alighanbari, M., Alighanbari, M., Kuwata, Y., and How, J. P., "Coordination and control
of multiple UAVs with timing constraints and loitering", pp. 5311-5316, 2003

 [141] Tao, Long, "Research on Distributed Task Allocation and Coordination for Multiple
UCAVs Cooperative Mission Control." PHD PHD thesis, National University of Defense
Technology,, Control Science and Engineering, 2006.

 [142] Secrest, Barry R., "Traveling salesman problem for surveillance mission using particle
swarm optimization." Master's thesis Air University, School of Engineering and
Management of the Air Force Institue of Technology, 2001.

 [143] Vijay, K. S., Moises, S., and Rakesh, N., "Priority-based assignment and routing of a
fleet of unmanned combat aerial vehicles," Elsevier Science Ltd., 2008, pp. 1813-1828.

 [144] Schumacher, C., Chandler, P. R., Pachter, M., and Pachter, L. S. Optimization of Air
Vehicle Operations Using Mixed-Integer Linear Programming. 2006. Air Force
Research Lab (AFRL/VACA) Wright-Patterson AFB OH Control Theory Optimization
Branch.

 [145] Schumacher, C., Chandler, P. R., Pachter, M., and Pachter, L. S., "UAV task assignment
with timing constraints via mixed-integer linear programming", AIAA 3rd "Unmanned
Unlimited" Technical Conference, Workshop and Exhibit, 2004

73

 [146] Nygard, K. E., Chandler, P. R., and Pachter, M., "Dynamic network flow optimization
models for air vehicle resource allocation", Proceedings of the American Control
Conference, Arlington, Texas. pp. 1853-1858, 2001

 [147] Kuhn, H. W., "Kuhn HW. The Hungarian method for the assignment problem. Naval
Research Logistic Quaterly 1955;2:83-97", Naval Research Logistic Quaterly, vol. 2 pp.
83-97, 1955.

 [148] Darryl, K. A., Arnold, H. B., and John, R., "Assignment scheduling capability for
unmanned aerial vehicles: a discrete event simulation with optimization in the loop
approach to solving a scheduling problem", 2006.

 [149] Rasmussen, S. J. and Shima, T., "Tree search algorithm for assigning cooperating UAVs
to multiple tasks", International Journal of Robust and Nonlinear Control, vol. 18, no. 2,
pp. 135, 2007.

 [150] Arulselvan, A., Commander, C. W., and Pardalos, P. M. A hybrid genetic algorithm for
the target visitation problem. 2008. Naval Research Logistics.

 [151] Chen, G., Jose, J., and Cruz, B., "Genetic algorithm for task allocation in UAV
cooperative control", 2003.

 [152] Tal, S., Steven, J. R., Andrew, G. S., and Kevin, M. P., "Multiple task assignments for
cooperating uninhabited aerial vehicles using genetic algorithms," Elsevier Science Ltd.,
2006, pp. 3252-3269.

 [153] Duan, H. Methods of multi-UAVs' mission assignments based on basic ant colony
intelligence. 2007. P.R.China.

 [154] O'Rourke, K. P., Bailey, T. G., Hill, R., and Carlton, W. B., "Dynamic Routing of
Unmanned Aerial Vehicles Using Reactive Tabu Search", Military Operations Research

Journal, vol. 6 2000.

 [155] GNU Linear Programming Kit package.
http://gnuwin32.sourceforge.net/packages/glpk.htm . 2008.

