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ABSTRACT 

Future engine requirements, including high-altitude flight 
of unmanned air vehicles as well as a movement to reduce 
engine cost and weight, are challenging the current state of the 
art in low-pressure-turbine airfoil design.  These new 
requirements present low-Reynolds number challenges as well 
as the need for high-performance high-lift design concepts.  
Here we report on an effort to expand the relatively well 
established design space for low-pressure turbine airfoils.  
Analytical and experimental mid-span performance data and 
loadings are presented for four new airfoil designs based on the 
Pack B velocity triangles.  The new designs represent a 
systematic expansion of low-pressure turbine airfoil design 
space through the application of high-lift design concepts for 
front- and aft-loaded airfoils.  All four designs performed as 
predicted across a wide range of Reynolds numbers.  Full-span 
loss data for the new high-lift designs reveal increased endwall 
losses, which, with the application of non-axisymmetric 
endwall contouring, have been substantially reduced.  Taken 
holistically, the results presented here demonstrate accurate 
transition modeling provides a reliable method to develop 
optimized, very high-lift airfoil designs. 

 
INTRODUCTION 

Low-Pressure Turbines (LPTs) can contribute as much as 
30 percent of the weight of an aeroengine [1] and contain as 
many as 1900 individual airfoils (Figure 1).  When one 
considers the cost of each LPT airfoil, which is typically a 
precision investment casting, it is clear that reduced-count 
technology for LPTs can provide considerable cost and weight 
savings to both the manufacturer and customer.  The 
“historical” characteristic plotted in Figure 1 reflects airfoil 
counts of well established, in-service LPTs while the “Current” 
trend is more indicative of modern engines such as the GP7000 
shown.  One goal of the current work is to investigate closing 
the gap that exists between current LPT designs and the count 
levels afforded by “Geared” designs that employ a reduction 
gear between the LPT and fan to allow the LPT to operate at a 
more optimal rotational speed. 

  One of the key challenges in producing high-performance 
LPTs is the low Reynolds numbers associated with flight at 
cruise conditions.  Low-pressure turbine Reynolds numbers are 
often low enough to result in significant regions of laminar 
flow on the suction side of the airfoils, which in turn makes 
them susceptible to laminar separation and even full stall [2].  
Additionally, with the emergence of unmanned air vehicles, 
which may operate at altitudes significantly higher than 
commercial airliners, the Reynolds-number-related design 
challenges are becoming even more difficult. 
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Figure 1.  Low-pressure turbine airfoil counts as a function of 
pressure ratio demonstrating the trend toward reduced count. 

 
Significant headway has been made during the past decade 

towards the reduction of LPT airfoil counts through high-lift 
airfoil designs.  Initial research on the aerodynamics of more 
highly loaded LPTs appears to have been based on the family 
of T104-T106 airfoils developed by Hoheisel et al. [3].  This 
family includes airfoils with both front and aft loading having 
values of the non-dimensional Zweifel coefficient, Zw, of about 
1.04 to 1.07.  These and related airfoils have been used in 
notable investigations by the research groups of both Hodson 
[1], [4]-[11] and Fottner [12]-[15].  The related airfoils were 
designed with modified and increasing loadings, with the most 
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recent designs being described as ultra-highly loaded and 
reported by Zhang et al. [10] to have Zw = 1.22.  Recently, 
Bons et al. [16] tested an airfoil with Zw=1.35.  This airfoil was 
designed with integrated flow control in anticipation that such a 
high lift design would need some form of separation control.  
However, the airfoil proved to perform well without the 
activation of the flow control. 

Many of the initial studies were focused on the influence of 
Reynolds number on the loss behavior as well as the losses for 
both steady flow conditions and with the presence of impinging 
wakes.  The secondary-flow behavior has also received some 
attention (eg. [13]).  Also, more recently, the use of passive 
flow control in the form of surface trips, together with wake 
unsteadiness, have been investigated with the aim of reducing 
or eliminating the separation bubble [8]-[11].  The most highly 
loaded LP airfoil reported in the open literature appears to be 
that designed and investigated by Houtermans et al. [17] at 
VKI.  This blade row had a Zweifel coefficient of 1.47 and was 
fron-loaded design. 

More engine-specific, high-lift work was presented by 
Haselbach et al. [18] regarding the application of high lift to the 
BR715 LPT.   The authors reported an increase in the measured 
performance differential between take-off and cruise conditions 
which was attributed to increased endwall losses.  In their 
report, Haselbach et al. suggested that non-axisymmetric 
endwall contouring might be applied to mitigate the elevated 
endwall losses engendered by their high-lift blading.  In a 
similar work, Gier and Ardey [19] reported on the use of CFD-
based transition modeling to design high-lift airfoils for a three-
stage LPT rig.  The authors applied aft loading to their high-lift 
designs and found that measured performance was lost more 
rapidly with decreasing Reynolds number compared to the 
conventional-lift design.  This degradation in performance was 
attributed to boundary layer separations on the airfoil surfaces. 

The baseline airfoil for the present investigation is the Pack 
B profile, developed to study the aerodynamics of LPT airfoils 
in low-speed cascade experiments.  As with the other airfoils 
mentioned, Pack B has a separation bubble on the suction 
surface under most steady-flow operating conditions.  Both the 
steady and unsteady flow behavior of this blade row have been 
investigated by several research groups (eg. [18]-[22], 
[24][25]).  The application of flow control to this airfoil has 
also been investigated.  The flow control has taken the form of 
boundary layer tripping devices [26][27], steady blowing 
through a slot [28][29] and the use of vortex-generator jets 
[30]-[32]. 

To investigate the effects of high levels (relative to what is 
available in literature) loading on aerodynamic performance, as 
well as provide further validation of the transition modeling of 
[33] and [34], a suite of new airfoils has been designed for the 
same service as Pack B but with lift increases ranging from 25 
to 61 percent.  In this report, the term “high lift” is used to 
describe designs with loading levels above the baseline Pack B 
airfoil.  The following sections present information regarding 
the process employed to design the new airfoils as well salient 
test results for each geometry. 

NOMENCLATURE 
Latin: 
C  Chord 
CP  Static-pressure coefficient: (P01-Ps)/(P01-Ps2) 
CP0m Mixed-out total -pressure loss: (P01-P02m)/(P02m-Ps2) 

H  Airfoil span 
Tu  Turbulence intensity 
k  Turbulence kinetic energy 
s  Arc distance along airfoil surface 
u  Axial velocity 
v  Tangential velocity 
x  Axial direction 
z  Span-wise direction 
Zw  Zweifel load coefficient 
 
Greek: 
β  Flow angle relative to the axial direction 
Λ  Turbulence integral length scale 
τ  Airfoil pitch dimension 
  
Superscripts/Subscripts: 
+  Wall units 
1  Cascade inlet location 
2  Cascade exit location 
0  Total conditions 
s  Static conditions 
up  In the upstream direction 

AIRFOIL DESIGN PROCEDURE 
The CFD solver employed for the airfoil design work was 

the 3-D structured RANS code described by Ni [35] and Ni and 
Bogoian [36].  This solver is a density-based, finite-volume 
based code that is second-order accurate.  Additionally, multi-
grid techniques and preconditioning were employed to 
accelerate convergence.  Numerical closure for turbulence was 
obtained via the k-ω model.  Two-dimensional simulations 
were employed for the optimization work with an O-H grid 
topology comprising approximately 18,000 grid points per 
span-wise plane, per passage.  These grid counts provided 
essentially grid-independent solutions with values of y+ of the 
order 1 and approximately 7 grid points per momentum 
thickness.   

The transition modeling capability described by Praisner 
and Clark [33] and Praisner et al. [34] was employed in the 
design of the four new high-lift airfoils reported on here.  
Praisner and Clark [33] provided evidence that the accuracy of 
empiricism used for the prediction of transition can be 
enhanced by capturing the effects of free-stream turbulence on 
pre-transitional boundary layers.  Subsequently, for the design 
work performed for the current study, inlet free-stream 
turbulence quantities of k and ω were set based on measured 
values of turbulence intensity (Tu) and integral length scale (ω).  
Praisner and Clark [33] also reported on a modeling system for 
quasi-laminar boundary layers which they employed to 
supplement 104 cascade data sets to build databases for 
attached- and separated-flow transition.  Two correlations were 
developed from this data base, one for the onset of attached-
flow transition and the other separated-flow transition.  These 
models were based on local flow-field parameters and were 
validated with a range of turbomachinery-specific validation 
cases in [37].  

For the design of each new airfoil shown in Figure 2, the 
general airfoil shape and loading characteristics were set by an 
experienced designer.  Guidance for the airfoil loading 
characteristics and boundary layer state (separated or attached 
flow) was provided by both inviscid and transitional-viscous 
simulations.  Once a non-stalled flow condition was achieved, 
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as predicted by the aforementioned modeling capability, and 
the desired loading characteristics were achieved, computer-
aided optimizations were performed with two-dimensional 
transitional CFD simulations.  The objective of each 
optimization was the minimization of predicted profile loss at a 
design Reynolds number (ReC2) of approximately 135,000 
based on exit conditions (subscript 2) and airfoil chord (C).  All 
design work was conducted with an inlet free-stream turbulence 
intensity of approximately 4.0%.  This value is typical of free-
stream levels present in LPTs [33] and is consistent with the 
companion experimental testing.  Also, careful attention was 
paid to ensure that each of the four new high-lift designs (Zw > 
1.2) were free of pressure-side separations at design conditions. 

Pack B Pack D-A Pack D-F Pack E Pack F  
Figure 2.  Four new airfoil designs compared to the baseline 
Pack B design.  

 
Figure 2 shows the general shapes of the five airfoil 

designs considered in the current study.  The Pack B airfoil is a 
low-speed design characteristic of in-service P&W LPTs of the 
time and was originally released to research institutions in the 
mid 1990s for the study of low-Reynolds number LPT 
boundary layer behavior.  While the exit metal angle of the 
Pack B design is 60 degrees relative to the axial direction, the 
typical measured and predicted (with transition modeling) exit 
flow angle is approximately 58.5 degrees.  Employing the 
measured exit flow angle, a Zweifel load coefficient (Zw) of 
1.13 is calculated for Pack B using the following equation: 
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where τ is the airfoil pitch, Cx is the axial chord, β1 and β2 are 
the inlet and exit flow angles, and Ux1 and Ux2 are the inlet and 
exit axial velocities, respectively.  The Pack D, E, and F airfoils 
were designed with 25%, 43%, and 61% lift increases 
respectively compared to Pack B.  
 
Table 1.  Design parameters for each of the five airfoils 
considered for this study. 

 Pack 
B 

Pack 
D-A 

Pack 
D-F 

Pack 
E 

Pack 
F 

Zw Base +25% +25% +43% +61% 
C/Cx 1.11 1.11 1.22 1.20 1.19 
τ/Cx 0.8856 1.106 1.106 1.264 1.424 

Suction-s/Cx 1.45 1.53 1.53 1.61 1.71 
 

High-level design parameters for the airfoils are given in 
Table 1.  The Pack D designs have been the focus of testing for 
a number of years now, and detailed profile and secondary loss 
data are presented by Popovic et al. [38] and Zoric et al. 
[39][40].  The Pack D-A design is an aft-loaded design with a 
stagger angle that matches that of Pack B with a higher 
thickness-to-chord ratio.  Pack D-F is a front-loaded design 

with a higher stagger angle than Pack B and a similar thickness-
to-chord ratio.  From Figure 2, Pack E can bee seen to be a 
high-camber design with high suction-side curvature in the fore 
region and a stagger angle close to the Pack D-F design and a 
similar thickness-to-chord ratio of Pack B.  Finally the Pack F 
design presents a similar, albeit thicker, geometry to Pack E. 

EXPERIMENTAL DETAILS 
The data presented in this report were obtained from two 

low-speed cascade facilities, one at Carleton University, and a 
second at Wright Patterson Air Force Base.  A brief description 
of each facility follows. 

The Carleton University (CU) facility is an open-loop 
facility that accommodates 9 Pack B airfoils with an axial 
chord of 7.5cm and a span of 20.0cm for an aspect ratio of 2.41.  
Free-stream turbulence can be elevated to 4.0% through the use 
of two turbulence-generating grids.  While both grids provide 
4.0% turbulence at the inlet to the cascade, the grids were 
designed and located so as to provide two levels of turbulence 
length scale at the same intensity.  The first grid (Grid 1) was 
mounted far upstream of the cascade (xup=18.4Cx) and provided 
a length-scale-to-chord ratio (Λ/Cx) of 0.4 while the second grid 
(Grid 2) was mounted closer to the test section inlet (xup=4.6Cx) 
to achieve a length-scale-to-chord ratio of 0.1.  Mid-span 
profile losses were measured 0.4Cx downstream of the cascade 
using a three-hole pressure probe with a tip width of 2.0mm.  
The uncertainties for the pressure probe measurements are 
estimated to be ±0.6o for flow angles and ±0.5% of the local 
dynamic pressure for the dynamic and total pressures. The 
resulting uncertainty in the total pressure loss coefficient is 
approximately ±17% at ReC2=88,000.  More details concerning 
the Carleton University test hardware and data reduction can be 
found in [23] and [38].   

The open-loop, induction wind tunnel which houses the 
cascade at Wright Patterson Air Force Base (WP) draws air 
through the bell-mouth inlet equipped with flow straighteners 
and into the 0.85m tall x 1.22m wide test section at up to 80 
m/s.  The baseline Pack B linear cascade consists of sixteen 
0.88m span by 8.9cm axial chord (Cx) blades.  Uniformity of 
the inlet velocity across the baseline 16 blade cascade is within 
±2% at a Reynolds number of 50,000 with less than 1% free-
stream turbulence.  A turbulence grid mounted at xup=18.4Cx 
provide a turbulence level of approximately 3.3% and 
Λ/Cx=0.4.  A Kiel probe was employed to measure the total 
pressure 0.7Cx downstream of the cascade trailing edge while 
an x-hot-wire was used to obtain corresponding velocity and 
flow angle measurements.  Uncertainties in the individual 
measurements translated to an uncertainty of approximately 
±10% for the total pressure loss coefficient at ReC2=88,000.  A 
more detailed description of this cascade facility can be found 
in Bons et al. [30].   

Since the losses for the two cascade facilities were 
measured at different axial stations, loss values presented in 
this report were mixed-out according to the process for 
incompressible flow provided in [41]. 

TEST RESULTS 
Figure 3 shows the surface static-pressure distribution for 

the pack B design at design Re as predicted by a fully turbulent 
CFD simulation.  The ordinate scale for this plot was set to 
match those of Figures 5 and 7 to facilitate comparisons 
between these figures.  It should be noted that, while not 



 4 Copyright © 2008 by ASME 

present in Figure 3 due to the fully-turbulent assumption, the 
Pack B design possess a small separation bubble on the 
pressure side of the airfoil at the design Reynolds number.  
Pack B presents a distinctly aft-loaded pressure distribution 
with a peak velocity occurring at approximately 52% of the 
suction-side surface distance.  The peak velocity is followed by 
a region of relatively strong adverse pressure gradient which 
gradually relaxes as the trailing edge is approached. 
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Figure 3.  Baseline Pack B airfoil predicted loading distribution. 
 

Figure 4 shows measured mid-span losses for the Pack B 
airfoil from both the CU and WP facilities.  Grid 2 with 
Tu=4.0% was employed for the CU data while the WP data was 
taken with Tu=3.3%.  At the approximate design Reynolds 
number of 140,000, the measured losses from these two 
facilities are in reasonable agreement.  As un-stalled profile 
losses have been shown to be sensitive to turbulence intensity 
[38], the higher WP losses compared to those from the CU 
facility are attributed to the lower Tu level employed for 
testing.    The data from the CU facility shows the typical trend 
of loss-versus Reynolds number with open separations 
occurring only below ReC2=80,000.  The data from WP show 
stall below a similar critical level of approximately 90,000. 
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Figure 4.  Pack B loss data from both the CU and WP test 
facilities.  Also plotted are unsteady wake-passing loss data for 
Pack B from Mahallati [24] and the “U1” airfoil design from 
Howell et al. [5]. 
 

Also plotted in Figure 4 are loss data from [5] for the 
“ultra-high lift” U1 airfoil and for Pack B [24] with the 
presence of unsteady bar-generated wakes.  The losses for the 
U1 design with Tu=0.5% with unsteadiness are, on average, 
lower than the unsteady Pack B data with Tu=0.4%.  The 
unsteady Pack B data with Tu=4.0% display the lowest losses 
plotted in Figure 4.   

As in the results presented by [4] and [5] for a similar Zw 
level, the Pack B design realize a notable loss reduction with 
the introduction of the unsteady wakes.  More details 
concerning the unsteady Pack B data will be presented later in 
this section.  These comparisons demonstrate that, although 
released in the mid 1990s, the Pack B design is a high 
performance design considered appropriate here for use as a 
baseline reference for high-lift studies. 

Surface static pressure distributions for the Pack D-A and 
D-F designs are shown in Figure 5.  Here the Pack B loading is 
also included for reference.  Again, both Pack D designs 
provide 25% increased loading compared to Pack B.  The 
loading shapes for each Pack D airfoil were intentionally set to 
be distinctly front and aft loaded.  The diffusion level on the aft 
portion of the suction side of Pack D-A is significantly higher 
than for Pack B and D-F.  In contrast, the Pack D-F design is an 
extremely front loaded design that generates a pronounced 
over-speed at the leading edge.  While the peak velocity level 
of the D-F design is slightly higher than Pack B, the gross 
diffusion level on the suction side is similar to the Pack B 
design due to the front-loaded nature of the design.   
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Figure 5.  Pack D surface static pressure distributions with the 
Pack B loading included for reference. 

 
Measured losses from the CU test facility are shown in 

Figure 6 with the Pack B data from Figure 4.  Again, here Grid 
2 was employed for the testing.  Pack D-A experiences 
reattaching separations above ReC2=60,000 while experiencing 
pronounced stall for lower Reynolds numbers.  This abrupt stall 
behavior is similar to the results presented in [38] for Tu=1.5% 
In contrast, the Pack D-F design does not experience stall for 
any of the Reynolds numbers tested.  In fact, measured surface 
static pressures indicated that separations do not exit at the 
higher Reynolds numbers for the Pack D-F design [38].  So 
although the D-A design is not stalled at the design Reynolds 
number, the high level of diffusion on the suction side 
generates loss levels approximately 15% higher than the D-F 
design.  Although the mid-span losses of Pack D-F are 



 5 Copyright © 2008 by ASME 

comparable to those of Pack B, the endwall losses have been 
shown to be substantially higher than both the Pack B and D-A 
designs [39].  This is consistent with the work of Weiss and 
Fottner [13] with front- and aft-loaded airfoils. 

Off-design performance characteristics for Packs B, D-A, 
and D-F are presented by Zoric et al. [40].  Their results 
indicate that, due to a high aft-region diffusion level, the Pack 
D-A design is more sensitive to off-design conditions than Pack 
D-F.  Finally, the performance of the Pack D airfoils were well 
predicted by the transition modeling system employed to design 
them [34][42].  
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Figure 6.  Comparisons of Pack D-A and D-F measured loss 
data with Pack B. 
 

Based on the experience gained with the Pack D airfoil 
testing, two new airfoils, Pack E and F, were design with 
loading increases of 43% and 61% relative to Pack B.  The 
loading distributions for these two designs are shown in Figure 
7 along with Pack B.  Both new designs were set to be 
distinctly front-loaded with the aft-region diffusion for Pack E 
being similar to Pack B.  The Pack F design displays a higher 
peak velocity than the E design and higher aft-region diffusion 
levels.  Assuming a typical exit Mach number for a large 
commercial LPT of 0.65, the peak CP value on the suction side 
of Pack F represents a surface Mach number of approximately 
1.1.  Based on numerical studies as well as cascade testing, this 
level of surface Mach number is deemed admissible with regard 
to shock formation.  
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Figure 7.  Pack E and F surface pressure distributions with the 
baseline Pack B shown for reference. 

 
The measured losses versus Reynolds number for the Pack 

E and F designs are shown in Figure 8.  The Pack E design was 
tested in the WP facility with Tu=3.3% while the Pack F design 
was tested in the CU facility with Grid 1 (Tu=4.0%).  The Pack 
E losses shown here demonstrate performance on par with the 
Pack B design, even down to the lowest Reynolds numbers 
considered.  Similarly, the Pack F design provides comparable 
mid-span performance to the Pack B design.  Additionally, the 
stall-free characteristics of the E and F designs were predicted 
by the transition modeling capability employed to design them.  
Taking into consideration the level of high-lift associated with 
these front-loaded designs, one might expect the endwall losses 
to be increased for both airfoils relative to Pack B and even D-
F. 
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Figure 8.  Pack E and F measured loss data versus Reynolds 
number with Pack B data plotted for reference. 

 
Figure 9 shows a plot of the loss-versus-Reynolds number 

characteristics for all five airfoils considered in this work.  
Companion power-law fits are included for each data set in 
order to enable visual interpolation.  At the design Reynolds 
number (ReC2=135,000) the high-lift designs, save Pack D-A, 
generate mid-span losses in line with the baseline Pack B 
design.  This is somewhat surprising considering the lift levels 
achieved by the new designs and the fact that unsteady wakes 
were not present in this testing.  So, it appears that, with 
engine-specific levels of Tu and no deterministic unsteadiness 
such as wake passing, front loading enables high-lift designs 
with good mid-span performance.  However, the high-lift front-
loaded designs have been shown to engender higher endwall 
losses than conventional-lift, aft-loaded designs [39][40].   
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Figure 9.  Comparison of loss-versus-Reynolds number 
characteristics for the four high-lift and baseline Pack B designs 
with power-law fits for each data set. 

 
To address the increased endwall losses generated by high-

lift, front-loaded airfoil designs, non-axisymmetric endwall 
contouring was applied to the Pack D-F design.  Pack D-F was 
chosen because it showed the most promise considering its low 
profile losses (Figure 9).  More details regarding this effort are 
reported by Praisner et al. [42].  The contoured endwalls 
installed in the CU test facility, are shown in Figure 10.  For 
this testing, only the endwalls at the base of the cascade were 
contoured and losses were measured across the half span. 

 

 
Figure 10.  Endwall contouring applied to the Pack D-F design. 

 
Figure 11 shows mixed-out loss-versus-span distributions 

for Pack B and D-F with planar endwalls as well as Pack D-F 
with the contoured endwall.  These data were taken at a 
Reynolds number of approximately 180,000 to reduce the 
impact of any suction-side separations and thus, provide a more 
isolated assessment of the contouring effects.  Additionally, 
Grid 2 was employed for the contouring study in the CU 
facility.  The results shown in Figure 11 reveal a significant 
reduction in losses in the endwall region between 0 and 35 
percent span.  The total mass-averaged integrated loss for the 
Pack B data in Figure 11 is 0.043 while the planar and 
contoured values for Pack D-F are 0.063 and 0.049 
respectively.  So, the mitigation of the endwall losses afforded 
by the contouring brings the full-span loss of the high-lift Pack 

D-F design down to a level approximately 14% higher than the 
baseline Pack B design.  When considering the lift increase of 
25% provided by this design, this level of loss increase trades 
favorably with weight and cost reductions.    
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Figure 11.  Comparisons of the span-wise loss distributions for 
Pack B and D-F with planar endwalls and Pack D-F with 
contoured endwalls. 

 
Finally, experiments were conducted with unsteady bar-

generated wakes with the Pack B and D airfoil designs.  Loss 
data versus reduced frequency are plotted in Figure 12 for the 
three designs.  Here reduced frequency is defined as: 

    

bars

bars

1

x

r

v

u
C

f τ=
             (2) 

Details concerning the choice of this form of reduced frequency 
are given in [25].  For comparative purposes, the form of 
reduced frequency employed by researchers such as [4][8] can 
be approximated from the abscissa in Figure 12 simply by 
dividing by 3.5. 

The data presented in Figure 12 were collected at 
approximately ReC2=90,000 with Grid 1 in the CU cascade 
facility.  It was necessary to employ Grid 1 for the unsteady-
wake testing because the placement of Grid 2 interfered with 
the rotating bar apparatus.   Details of the experimental 
techniques employed to record these data are presented in 
Mahallati and Sjolander [24].  With the attendant increase in 
length scale associated with the use of Grid 1, Pack D-A 
experiences stall at ReC2=90,000 while it does not stall at this 
Reynolds number with Grid 2.  This is evidenced in the 
extremely high loss for Pack D-A at zero reduced frequency in 
Figure12.  However, with the introduction of unsteady wakes at 
even low reduced frequencies, stall is mitigated for the Pack D-
A design.  While the unsteady wake losses experience 
continued reduction with increased wake-passing frequencies, 
they do not reach the levels of Pack B at any of the levels of 
reduced frequency tested.  The results for Pack D-F however, 
demonstrate similar losses to Pack B for all reduced frequencies 
considered.  To date, unsteady-wake testing has not been 
performed with the Pack E and F designs.  More details 
concerning the unsteady bar-generated wake studies with the 
Pack B and D designs are given by [25] and [41]. 
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Figure 12.  Mid-span losses for Pack B and D designs as a 
function of the reduced frequency of unsteady bar-generated 
wake passing. 

 

CONCLUSIONS 
Results from a study of the application of high-lift design 

concepts to LPT airfoils have been presented.  Experimental 
data presented for the baseline Pack B airfoil have 
demonstrated it to be a low-loss design.  Furthermore, the 
unsteady losses of the Pack B design have been shown to be 
similar in level to published results from other LPT-related 
high-lift studies.  The new high-lift airfoils employed for this 
study were developed using both designer input as well as 
computer aided optimization techniques coupled with a CFD-
based transition modeling system.  Four new airfoils were 
designed with up to a 61% lift increase relative to the Pack B 
design.  Mid-span loss data for the new high-lift airfoils, 
indicate that designs are possible with relatively low profile 
loss.  Also, these low profile losses are achievable simply with 
engine-specific levels of free-stream turbulence intensities, and 
without capitalizing on the benefits of unsteady wake 
impingement from upstream rows.  From a mid-span 
performance perspective, the most successful high-lift designs 
tested are shown to be the front-loaded airfoils.  However, with 
the front loaded designs are shown to have higher endwall 
losses than similar designs which employ aft-loading 
conventions.  Experimental data are presented which 
demonstrate the effectiveness of endwall contouring in 
reducing the high endwall losses of a high-lift front-loaded 
design.  The integrated loss of the contoured high-lift design is 
shown to be reduced to a level which is reasonably close to the 
baseline design.  Finally, a select front-loaded high-lift design 
demonstrates essentially the same mid-span performance as the 
baseline Pack B airfoil when exposed to unsteady wake-passing 
flow conditions.  Finally, future considerations include studying 
the impacts of high-lift wakes and endwall flows on multi-stage 
performance. 
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