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Executive summary

New insights have been gained in atmospheric and space launch stage separation from our
studies of the aerodynamic interference between multiple bodies in supersonic flow. Quick
means of estimating and controlling repulsion or attraction lift associated with this interaction is
an important enabling technology to size launch separation rocket motors to achieve the best
compromise between motor weight and safe staging. In this connection, motor weight reduces
usable payload.

Asymptotic methods, scattering, slender body theories and CFD modeling have provided
valuable systematic approximations schemes that advantageously couple with modern
computational methods. Our theoretical solutions for lift force interference between multiple
bodies give good agreement with numerical solutions and experimental data. These solutions
shed light on important scattering phenomena not previously recognized as relevant to this
problem. The analyses allow us to identify lumped nondimensional parameters and provide
scaling laws as well as closed-form expressions for the interference not accessible solely from
computation that can be used for interpolation and extrapolation of CFD solutions as well as
efficient testing and design of new flight vehicles. This approach dramatically simplifies
trajectory predictions in which inertial and aerodynamic forces are strongly coupled.

The aforementioned modeling has been carried out in the framework of the quasi-steady
approximation. However, there are cases when acceleration of the body C.G. and/or the pitching
angular velocity are not small and the unsteady effects become appreciable. First steps in
mathematical modeling of these effects have been made with emphasis on the body wave drag.
Namely, we have conducted theoretical analysis of the wave drag generated by a non-lifting
slender body of revolution during its instantaneous supersonic start. The analysis is based on
linear acoustic theory and asymptotic techniques. Typical phases of the transient process were
identified. For each phase, analytical expressions of the flow potential and wave drag were
derived. A composite solution for the wave-drag coefficient that is uniformly valid throughout
the transient process was obtained. The analytical solutions were plugged into a FORTRAN code
providing quick calculations of the wave drag versus time. Numerical examples were generated
for a slender body of half-sine shape for different Mach numbers of instantaneous body start. It
was shown that the initial wave-drag coefficient is significantly larger than its asymptotic level
relevant to steady flight. The transient time period increases and tends to infinity as the Mach
number decreases and approaches M =1 (transonic case). The transient process was also
simulated numerically by solving 3-D Euler equations for Mach=2 start of the aforementioned
body. It was shown that the theoretical wave drag is in excellent agreement with CFD in all
phases of the transient process. These results provide a good launching pad for theoretical
modeling of unsteady body motions including the coupling between body dynamics and
aerodynamics.

Our experience in low-order modeling of store separation helped Dr. Malmuth to develop a
physics-based predictive tool for quick estimates of the body trajectory in the case of separation
from a rectangular cavity to supersonic outer flow. This tool has been used for parametric studies
of store trajectories relevant to the HIFEX sled tests. The theoretical predictions along with CFD
studies of Boeing convinced the Air Force that the HIFEX store release was not a high-risk
event.
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1. Introduction

Emphasis on safe, high-accuracy, reliable parasite body separation will be critical for parasite
body system upgrades to cost-effectively for new aircraft development for the foreseeable future.
Although the problem of parasite bodies release from an aircraft platform has received much
attention as exemplified by Refs. [1-3], more effort is needed to understand the underlying basic
physics and essential parameters. In a larger sense, this technology is a subset of the problem of
the interactions between moving bodies in all speed ranges. Multi-body interaction applications
include separation and carriage of various stage vehicles for space missions and flight-testing as
well as crew escape. For this group, hypersonic multistage vehicle concepts of interest to the
U.S. Air Force frequently utilize the launch of a small rocket-powered stage from a large
subsonic or transonic aircraft such as the B-52. Other examples are the PEGASUS series and the
Shuttle. Currently, multistage launch scenarios are envisioned for future hypersonic and space
applications. A new thrust involves the use of air breathing (scramjet or turbo-scramjet) rather
than rocket-powered stages. These can be associated with recoverable launch vehicles such as
the RLV series (second and third generation) being studied in the Boeing CRI program. Other
applications include the Boeing Delta IV series.

The payload mass fraction can be drastically affected by sizing of the separation motors. Overly
conservative estimates requiring extra thrust will give a larger weight penalty associated with
more motor thrust for stage separation. A smaller (optimistic) separation motor design solution
will increase payload with the risk of re-contact and reduced safety. The correctness of these
decisions depends on our understanding of the interaction of the fluid dynamics with the
dynamics of the motion.

Rather than emphasizing speed, efficiency and accuracy of production CFD codes, we stress
computationally non-intense PC application to understand and harness (through new flow control
concepts) the important physical mechanisms that pervade a wide class of parasite body and
stage separation phenomena. Another emphasis is to formulate representative unit problems and
identify new interesting mathematical techniques to solve these problems and combine with them
current large-scale numerical techniques. On the other hand, more realism is being introduced as
our effort progresses.

Besides the research thrust of stage separation embodied in the effort discussed herein, another is
a tie-in with current efforts regarding optimizing parasite bodies-bay acoustic mitigation
measures with stage trajectory characteristics, (see [4]). Current control measures include
alternate jet blowing and actuators to reduce the amplitudes of the noise power from parasite
bodies-bay cavities. Flight and ground tests are underway to investigate the effects on parasite
body trajectories. The physics and time scales of the mitigation measures and their possible
coupling with the dynamic characteristics of the separation bodies needs to be better understood.
Our models provide useful insight into this interaction. Examples of our work are in Refs. [5-16].

2. Major accomplishments

A major thrust in FY 2005-2006 was a mathematical modeling of lift and pitching moment
associated with the two-body interaction. The general mathematical ideas were discussed in [16]
and key unit problems are shown in Figure 1. Special emphasis was on Problems 1, 2 and 4
relevant to scattering of the parent-body-induced shock wave by the parasite body.




In FY 2005 we studied the interaction between the wedge-induced shock and a cylinder using the
theory of scattering (Problem 1) [15]. The lift force associated with multi-scattering of the wing-
induced shock wave by a slender body of revolution was analyzed using linearized supersonic
theory, scattering theory [17,18] and asymptotic methods [19-21]. Although acoustical and
electromagnetic analyses such as those just cited are well known, their application to supersonic
shock-wave scattering problems has not received significant attention.The local and integral lift
coefficients were obtained in simple analytical forms convenient for quick calculations of the
aerodynamic loads. These solutions can be applied to the moderate supersonic (Mach numbers
from 1.2 to 3) multi-body interaction problem for crosscheck with other computational or
engineering methods.

—Z 2¢él
. U "ol P
Problem 1: Plane Problem 2: ——- =y
shock-parasite body parasite body- 0 3. parasite body-induced
interaction induced wave-train including expansion waves

wave train

Problem 4: Two body
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s N N e \I
Problem 5: Wave train between two
wedges

Figure 1 Unit problems relevant to supersonic stage separation.

The local analytical solution, which provides detailed distribution of the lift-force coefficient on
the length scale ~ body radius, is shown by the black line in Figure 2. The global solution ignores
local details and gives the step-function distribution shown by the red line. It was found that the
total lift is predominantly generated by the first scattering. We conduced series of Euler CFD
calculations for Mach=2 free stream (Figure 3), and showed that the total lift-force coefficient
predicted by CFD (red symbols) agrees well with the theoretical solution (black line). The
analytical solution, which is inaccessible from purely numerical methods, shows the excellent
complementarity of the numerics and the pen-and-paper methods. On the other, the numerics
shows accessibility to nonlinear effects not modeled by the linear theory.

We also showed that the analytical solution agrees satisfactory with the experimental data [22]
(Figures 4 and 5) obtained for the blunt-base parabolic body of revolution in the flow-field
induced by a circular-arc wing in the Mach=2 free stream, despite the fact that the body radius
varies in the interaction region and the wing thickness is not very small (the wing thickness ratio
is 1/6). This adds more confidence in practicability of the theoretical model [15].
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Figure 2 Lift force C, induced by scattering of the parent-body-induced shock wave by the
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Figure 3 The total lift force predicted by theory (black line) agrees well with the Euler CFD
solution (symbols and panels showing the pressure field).
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Figure S Comparison of theoretical (solid line) and experimental (symbols) distributions of the
normal force induced by the wing shock impinging on the body at = ~ 0.4.

In FY 2006, we treated the case of two-body interference schematically shown in Figure 6 [23].
For this configuration, the cross sectional shape of both bodies is a function of the axial
coordinate, and bodies generate 3-D flow disturbances with appreciable streamwise variations

over the body length.
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Figure 6 Problem of the two-body interaction.

The problem is analyzed using two essentially different approaches:

e Approach 1 provides a global solution. The problem is solved using asymptotic methods as
well as the basic idea of slender body theory — replace bodies by distributions of sources and
doublets

e Approach 2 is based on the shock-wave scattering theory. In this connection, the theoretical
model [15] developed in 2005 was extended to the case of two bodies of revolution

These two approaches complement each other: the first provides a global structure of the lift
force distribution, the second provides flow details in local regions associated with rapid changes
of incoming (parent-body-induced) flow field in the vicinity of the parasite body such as shock-
body interaction regions.

We started with Approach 1 and considered a parasite body in the parent-body-induced
nonuniform supersonic flow (Figure 7). For large vertical distance between bodies (h/a ~ &™),
the parent-body-induced disturbance is predominantly two-dimensional (to relative accuracy
O(&?)) in the vicinity of parasite body. This potential gives the vertical velocity on the parasite
body axis (see the first box). The vertical velocity perturbation is treated as the induced angle of
attack. The parasite body is replaced by line-distributions of sources and doublets. In the vicinity
of parasite body axis, the radial velocity (induced by parasite body) has the form shown in the
second box. From boundary conditions on the parasite body surface we obtain intensities of
sources and doublets (see the third box). Then we calculate the pressure coefficient on the




parasite body surface and extract its asymmetric part, which contributes to the lift force (see the
fourth box). Integrating the asymmetric part of pressure coefficient over the parasite body
surface, we obtain the axial distribution of the lift-force coefficient (see the pink box).

Vertical velocity induced by parent body on parasite body axis
8,9, (x, R cos 6) = 8,0, (x,0)+ &0} @,(x,0)R cos 6 + O(&?)

Induced fift
Induced angle of attack a(x)=ca(x), @(x)=2a,¢,(x,0)

. g Farfield disturbance from parent body
il Radial velocity induced by parasite body‘
&)t _[®), 0 |
or 2xr 27rr
sources doublets | Distributions of and doubk

From boundary conditions on parasite body surface
f(x)=2meR(x)R'(x)+O(e”) source intensity
o(x) =-2ze*@(x)R* (x) + O(&*) doubletintensity

Q Asymmetric part of pressure coefficient on parasite body surface
S Gy (x) =267 cosO[@(x) R (x)] + O(£”)
Distribution of lift coeff cient with relative accuracy O(e)

' C,(x )- L(x) _2ja(x)S(x)dx+4ja ()S(x)dx, 0<x<l
i 0 S(x)=7R2(x)/ S,

Figure 7 Major steps of Approach 1 providing the global solution.

To illustrate basic features of the two-body interaction we analyzed the interaction between two
identical bodies, which have a sine-shaped nose of length /, and a long cylindrical afterbody.

The vertical distance between bodies was fixed, # =1/ , whereas the streamwise distance between

the nose tips was variable. Figure 8 shows the normalized lift-force coefficient as a function of
x, — streamwise distance from the parasite body tip to the point where the parent-body-induced

shock crosses the parasite-body axis.

The yellow frame in Figure 8 indicates the case, when the parent-induced disturbance interacts
with the cylindrical afterbody only. This case has been studied in details using Approach 2 based
on the scattering theory. Basic steps of this analysis are shown in Figure 9. The analysis is started
with replacing of the parent body by the line-source distribution. The Laplace transform of
corresponding perturbation potential contains modified Bessel function K, (see the first box).

Asymptotic expansion of this transform for large argument gives a solution, which can be treated
as a plane wave radiating the parasite-body cylindrical surface. The interaction of each plain
wave with the cylinder is solved analytically using methods of the scattering theory. Solution of
this unit problem provides the pressure distribution on the parasite body. Integrating this pressure
over the parasite body surface we obtain Fourier components of the local lift coefficient from
each elementary wave (see the second box). The inverse Laplace transform gives the local lift




coefficient per unit length (see the third box). Finally, we obtain the axial distribution of lift-
force coefficient shown in the pink box.
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Figure 8 Lift due to the interaction between two identical bodies of revolution (Approach 1).
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Figure 9 Basic steps in solving the scattering problem for the shock scattering on the cylindrical
afterbody (Approach 2).
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To verify aforementioned theoretical models, we carried out 3-D Euler simulation of this
problem (Figure 10). For two identical bodies with aligned nosetips, the problem is identical to
that for one body over a horizontal plane at the vertical distance /#/2 from the body axis. The
computational domain for this configuration is shown in the left bottom corner. The pressure,
temperature and Mach number distributions in the symmetry plane as well as the pressure
distribution on the body surface indicate a complex structure of induced and reflected
disturbances.

I N,
— 1T B

Xo>056: ShOCk crosses ; = .
cylindrical afterbody Bl plain wall
C,=0, no lift Pressure field Temperature field

=
body
$ w2 i
\a‘\e‘“’“\\ = plain wall Pressure on body surface
Computational domain Mach number field

Mach=2, nose length | ..=18a, h=16a

Figure 10 3-D Euler CFD solution for two identical slender bodies of revolution.

Figure 11 compares the theoretical distributions of C,(x) with the CFD solution. The blue line

shows the global solution obtained with Approach 1 (see Figure 7). The black line corresponds to
the local solution obtained with Approach 2 based on the scattering problem (see Figure 9). The
red symbols show the Euler CFD data. Despite 3-D complexity of two-body interference, the
leading-order analytical solutions agree with the CFD to O(¢).

We also considered the scaling issue of the two-body interaction (Figure 12). The analytical
forms of global and local asymptotic solutions allowed us to formulate the scaling law (see the
pink box). Robustness of this scaling was estimated using parametric calculations of the lift-force
coefficient as a function of x, (streamwise distance from the nose tip to the point where the

shock crosses the body axis) at various vertical distances between two identical bodies (see the
left plot) and various Mach numbers (the right plot). It is seen that these dependencies quickly
collapse to a universal curve as the separation distance /4 and/or the freestream Mach number
increases. Using this scaling it is feasible to interpolate/extrapolate CFD solutions and
dramatically reduce the computational effort that is of critical importance for quick assessments
of aerodynamic coefficients at various time moments during the separation process.
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Figure 11 Comparison of theoretical and CFD solution for the lift force coefficient distribution
along the parasite body axis.
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Figure 12 Scaling issue for interference between two identical bodies of revolution.
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The aforementioned modeling has been carried out in the framework of the quasi-steady
approximation. However, there are cases when acceleration of the body center of gravity and/or
the pitching angular velocity are not small and the unsteady effects become appreciable. In FY
2007, we started a mathematical modeling of these effects. As a first step we considered the
wave drag associated with unsteady motion of a slender body of revolution as shown in Figure
13.

Figure 13 Slender body of revolution moving along x -axis with speed U(¢).

It is assumed that the body-induced disturbance is small compared with speed of sound, and the
analysis is based on the linearized 3-D Euler equations. The disturbance velocity potential
#(x,y,z,t) is governed by the wave equation

v2¢—ia—2¢=o €))

a’ ot ’

where a_ is speed of sound in undisturbed fluid. A slender body moving along the x -axis
induces unsteady acoustic sources whose intensity Q(x,#) is coupled with the body shape and

motion as Q(x,f) =04, (x,t)/0t, where 4,(x,t)= 7z, (x,t) is the body cross-sectional area. For
the body of constant shape and length L moving with the velocity U(f), we have

A (x,t)=A4,(X), where X =x+ _[U (r)dr, 0< X < L, the solution is expressed in terms of the
0

retarded potential as [21,24]

1T U@4m )
4”_£\/(x—§)2+r2 ’ 2

=t——‘M>2+r2,77=§+]U(r’)dz",r=\/y2+zz. 3)

a0

#(x,y,2,0) =

The pressure distribution on the body surface is calculated using the near-field potential
#(x,r = 0,¢) and the unsteady Bernoulli equation in the slender-body approximation.

We considered an instantaneous acceleration of the body to a certain constant speed U at the
initial time 7 =0 and analyzed the wave drag D(¢) during the transient process. Figure 14 shows

trajectories (black lines) of the body leading and trailing edges, the typical regions 4, B and C
associated with phases of the transient process as well as characteristics (red dashed lines) and
end points x, typifying each phase. Analytical expressions for the wave drag D(t) were

derived for each of the aforementioned phases. Using these expressions D(f) was calculated and
compared with unsteady Euler CFD solution for the body of shape 7, (X)=r,, sin(zX/L),
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s = 0.01L at the Mach number M =U/a, =2 (Figure 15). The theoretical solution is in

excellent agreement with CFD. This analysis provides a launching pad for theoretical modeling
of the unsteady body motion accounting for the coupling between body dynamics and
aerodynamics.

Details of this study are given in Appendix A.

For t>L/(U-a) transient
process is over

X=L-Ut

e t=L/(U-8)

x=at
e o (VL)

In Region A In Region B In Region C

X!

X, and x, on leading edge x, on leading edge, x, - at (=0 x, and x, at =0

Figure 14 Characteristics lines and boundaries for a slender body accelerating to a supersonic
speed U at the initial time moment #=0; here a=a_, at =0 the body leading

edge x,(0) =0 and the trailing edge x,(0)=L.

0.05 T 0.05

| | ]

Total transient

l e Theory |
[ o Theory == Euler CFD

Euler CFD 0.04 4 Initial phase

instantaneous pressure field
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i

0.03

| — 0.03 |
O 1 o W o \
& il \
instantansous pressurs fied
0.01 | 0.01+4 \
MR,
0.00 — ! 0.00 .
-0.1 00 01 0.2 03 04 05 06 0.7 08 09 1.0 -0.02 0.00 0.02 0.04 0.06 0.08
T=ta/L T=ta/L

Figure 15 Comparison of theoretical and CFD history of drag coefficient C,(7T),
Co(T) = D(T)/ (AU 12), T=ta, /L.
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Our experience in low-order modeling of store separation helped Dr. Malmuth to develop a
physics-based model for quick estimates of the body trajectory in the case of separation from a
rectangular cavity to supersonic outer flow. The cavity is assumed to be deep with the shear layer
bridging the front and rare cavity lips (open cavity flow). 3-DOF equations for the body motion
includes aerodynamic loads (drag, lift and pitch moment), which are evaluated analytically and
numerically for the three pahses of separation:

1. Body moves incide cavity
2. Body crosses shear layer
3. Body moves outside cavity in supersonic flow

In Phase 1, the body experiences aerodynamic loads due to the flow circulation inside the cavity
and due to the body motion. Estimates based on viscous flow physics showed that these loads are

of ther order of O(Re,')+ O(8"), where Re, is Reynolds number based on free-stream

parameters and L =forebody length+cavity length, 3 = v, /U is ratio of the body vertical
velocity to the freestream speed. For many practical cases, these parameters are small, and the
aerodynamic loads incide cavity can be ignored. The body dynamic equations have a simple
analytical solution relevant to the free drop in vacuum.

In Phase 2, the shear layer is assumed to be much thiner than the body radius and it is
approximated by a straight line bridging the front and rare cavity lips. In addition, the body
thickness ratio, ¢, is treated as a small parameter (slender body approximation). With these
assumptions, the aerodynamic loads are expressed in analytical forms using the method of
matched asymptotic expansions.

In Phase 3, the equations for the body trajectory are solved analytically in the first-oreder
approximation with respect to small parameters ¢ and . This solution captures an osccilatory
behavior of the pitch angle that depends on the aerodynamic coefficient C,, (the pitch moment
coefficient derivative with respect to angle of attack).

Trajectories
12

==
—— Cma=-0.02
— Cma=-0.014
— Cma=-0.008
Cma=-0.004
Cma=0.

10 4

y (ft)

dashed lines - analytical solution
solid lines - numerical solution

X T ¥ ¥ T T T y
0 500 1000 1500 2000 2500
x (ft)

Figure 16 Trajectories at various C__, free-stream Mach number=2.

ma ’

15




As an example, Figure 16 shows the body trajectories at different values of C, ,. Flow and body
parameters are relevant to the HIFEX sled test [25]. As C,, tends to zero, the pitch angle &
evolves from oscillatory to monotonic behavior versus x. Ultimately, 6 becomes a linear
function of time at C,, =0 that gives monotonic decreasing of # with x (the green line). Note

that analytical solutions (dashed lines) are close to numerical ones (solid lines) in all cases
considered.

Similar parametric calculations showed that models would hit the diverter and would not damage
the test track (see Figure 17). This analysis along with other numerical studies of Boeing
convinced the Air Force that the HIFEX store release was not a high-risk event and gave Boeing
the go-ahead for the sled mission. Details of these studies can be given by Bill Bower (Boeing).

* Theoretical model allows
quick parametric studies
of body trajectories

* It was shown that the store |
would not hit the track |

When models are released from the

Mach 2 rocket sled configuration” HIFEX bay, it is necessary to ensure
that they do not damage the test
O R track’ 16

—gratylical, CHO=0, CMAN=0

—EEULT
14 o | ===twumarical, CNO=0, CMO=0
numerical, CNO=0, CMO=-0.005
, CNO=0, CMD=-0.05

diverter

Arrangement of HIFEX weapons bay and
MK-82 JDAM models for grid testing in 6
the Boeing Polysonic Wind Tunnel’ ]

‘W.W. Bower, V. Kibens, AW. Cary, G. Raman, and N. Malmuth, AIAA-2004-2513 O 500 1000 1500
x (ft)

Figure 17 Physics-based model helps to estimate store trajectories and shows that models
released from the HIFEX bay do not damage the test track (HIFEX program).

3. Summary and impact of effort

In summary, new deductive asymptotic framework has been developed to treat the interaction
between two supersonic bodies. Compact, closed-form analytical solutions were obtained for the
two-body supersonic interference. These solutions are ideally suited for preliminary design,
scaling and separation motor payload safety compromise that are not available from purely
numerical solutions. They also provide a launching pad for systematic refinements and coupled
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dynamic/aerodynamic modeling needed for staging tradeoff studies. Our theoretical model
indicated that there are two physical mechanisms that control the interference flow field:

e Streamwise stratification of the transverse velocity imposed from one body on the other
(mutual induction)

e Shock scattering from one body incident on the other

The aforementioned analysis provides for the first time an approximate but coherent picture of
the wave train structure occurring in multi-body interference problems such as supersonic stage
separation and flight crew escape. This is particularly important for internal carriage and cocoon
release where shear layers bounding cavities exist. Moreover, this work provides a launching
pad for the effort to obtain more understanding of the near field as well as increased prediction
accuracy. This will strongly impact ejection system design and safe separation flow control.

Bill Bower of Boeing is using our store prediction and control expertise for HIFEX and SEAR
programs.

In the case of superlight bodies, when acceleration of the body C.G. and/or the pitching angular
velocity are not small, the unsteady effects become appreciable. First steps in mathematical
modeling of these effects have been made with emphasis on the body wave drag. Namely,
theoretical analysis of the wave drag generated by a non-lifting slender body of revolution during
its instantaneous supersonic start was carried out. Typical phases of the transient process were
identified. For each phase, analytical solutions of the flow potential and wave drag were
obtained. The transient process was also simulated numerically by solving 3-D Euler equations.
The theoretical wave drag is in excellent agreement with CFD in all phases of the transient
process. These results provide a solid foundation for theoretical modeling of unsteady body
motions including the coupling between body dynamics and aerodynamics.
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Appendix A: Wave Drag of a Slender Non-Lifting Body during
Transient Process of Instanteneous Supersonic Start

1. Acoustic theory for a slender non-lifting body
Consider a slender body of revolution moving with an unsteady speed U(¢) at zero angle of
attack along the x -axis as shown in Figure Al.

Figure A1 Slender body of revolution moving along the x -axis with speed U(¥) .

Let q(x,y,z,t) - velocity disturbance induced by the body motion in gas at rest. It is assumed
that this disturbance is small: |q|/ a, <<1, where a_ is speed of sound in undisturbed gas at the

infinity. The body-induced disturbances are treated as acoustic disturbances and governed by the
linearized 3-D Euler equations of acoustic theory

op
L 4V-pq=0, (1.1a)
Py Pq
aq
p|l—+q-Vq|=-VP, (1.1b)
ot
iﬁi‘;, (1.1c)
PP

where y is specific heat ratio. For the disturbance velocity potential ¢(x,y,z,7):
q(x,y,z,t) =V ¢, we obtain the wave equation

1 0°¢ P
Vigp——=—"L=0, a’ =y=. (1.2
’ a; ot =,

Disturbances of pressure, p =(P—-P,)/ P,, and density, 5 =(p—p,)/ p, , are expressed as

5= y5=alall (1.3)
HSa P ot

A pointed spherical source, which is located at (x,y,z)=(0,0,0), generates a spherical wave
with the potential
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This spherical wave induces the radial velocity
0  f(t—R/a,) f'(t—-R/a,)
R’t =— = LA . 1.5
%R = ok R a R e

The first term of (1.5) gives the near field and the second — the far field. For R — 0, the mass
flux perturbation (in units of p_) is

lim4zR*q,(R,t)=-4x f(t) = O(¢), (1.6)
where Q(¢) — the source intensity. For the impulse source, Q(¢) = 5(¢) , we obtain
1 6(t—R/a,)
Rt)y=————=2, 1.7
HR.1) 4 R
(1.7) is solution of the problem
1 2
Vg 2L = 5()8(1380), (1.89)
a, ot
o¢
=L =0atr=—0. 1.8b
¢ F =03 (1.8b)

The body induces unsteady acoustic sources with the source intensity depending on the body
shape and motion. If Q(x,?) is the source intensity at a point (x,?), then in accord with (1.7)

L e Q(f,z‘)é’(t—r——jij
a, dE |

—4np(x,y,z,0)= | d 1.9a
(%, y,2,1) J, g _l - (1.92)
R=\(x=&2+y*+2°. (1.9b)
Integrating over 7 we obtain
Aap(x, y,2,1) = j e L;—', (1.102)
b J(r—f)‘ +r

r:\/y2+z2 . (1.10b)

The flow potential at (x,r,#) is induced by sources that were active at early time instants

Jx=&+1
T=t = . These sources are located on the hyperbola 7=¢ _L@_ between
a a

© o)

trajectories of the leading and trailing edges of the body as schematically shown in Figure A2.
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Figure A2 Influence domain for accelerating body.

Following Ref. [1] we consider asymptotic behavior of the integral (1.10a) for » — 0. In this
limit, the dominant contribution is associated with the vicinity of £ =x. The integral (1.10a) is

expressed as a sum of three integrals

d(x,r,t)=¢,+d,+ ¢, (1.11)

d

5e(r) Q[f,t——a
xle(xJ;,t) \/(x~§)2 +rl

Q[f t— _(__x_f)_li]
d

e o]

—4rdg, (x,r,t)= &, (1.12)

c+&(r) a

—4rng, (x,r,t) = - =
' I() Jox-&? +r

1

¢, (1.13)

X lx,rit)

4719, (x,r,t)= ' —
Y R -

4]

o

dé . (1.14)
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With the substitution £ = x +rsinh o, the second integral is written as

a

o

4, (x,r,t) = I Q(x+rsinh0',t— rCOShO—]dG, (1.15)

o, =sinh™'(g/r).
Consider a distinguished limit () - 0: #/& — 0 for » — 0. Then (1.15) is expanded as

Iy

—4rg, (x,r,t)= j[Q(x,t)+rsinh0'Qx(x,t) rCOShGQ,( 1)+ ...}1’0‘=

-oy m

2Q(x,r)sinh-1(fj+0(g)=2Q(x,r)1og[f+,/f7+1 +0(s) = (1.16)
r r \r

2Q(x,t)log2—£+0(8,r—zj

¥ £
Consider the first integral (1.12). Integrating by parts we get
. 2 Q[;. Yﬁf}

_4;r¢;(x,r.r)=_‘kl;[_” (x_;“’ dé+...=
Q[xl,t—x"‘ljlog<x—xl)—Q(x,t)1oge—]log(x—«:){g [5 = ‘f}r—Q,(g“ =% ‘fﬂdé

°° " (1.17)

where x,(x,7) =x,(x,0,7) is shown in Figure A2 (see intersection of the dashed line with the
leading-edge trajectory).

i, X—gE
Lml.(.rf'Q(; r }

In a similar way

—4ngy (x,r 1) = —T"df
Xy—X . . . =% 1 E—x
Q{x:.r— - )log(xl—x)—Q(x.t)iogng Ilog(g—x}[QxL;.t— ]~-—Q, [é,t— ﬂd’f
ar. x ur. aoo ad)

(1.18)

where x,(x,f)=x,(x,0,) is intersection of the dashed line with the trailing-edge trajectory
(Figure A2). The final expression for the flow potential in the vicinity of slender body is
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dmp(x, 1) = 20(x, 1) log 2
:

+Q, log(x—x,) + Q, log(x, — x)

x x (1.19)
+ Ilog(x—f){Qx+iQ,} dé - Ilog(f—x){Qx—LQ,} dé
x a, d p s d
+O(r" logr)
where
leQ(xpt_x_XIJ’ szg(xzst_xz_x]’ (1.20)
a, a,
{11, Ef(é,t—M], (1.21)
aoo
x(x,)=x,(x,0,1), x,(x,t) =x,(x,0,7) . (1.22)

Note that the solution (1.19) coincides with the solution (2) of Ref. [2].

Now we can couple the source intensity Q(x,#) with the body motion by imposing the boundary
condition on the body surface. For the body shape

B(x,r,t)=0=r—r(x,1), (1.23)
the boundary condition reads
OB

—+q-VB=0at B=0. (1.24)
ot
This gives
or, or,
——=—¢p —+¢ =0 at r=r,(x,1), (1.25)
at x ax ¢r r b( )

where 7, is body radius. In the first-order approximation, we obtain
or,
x,r.t) =2k (1.26)
¢r ( b ) 6t

Using (1.19), which was derived for small r, we get
04,(x,1)

1.27
o (1.27)

Qx, 1) =

where 4, (x,) = 71 (x,t) is the body cross-sectional area.
For a body of constant shape and length L moving with velocity U(¢), we have
A (x,)=4,(X), 0<X <L, (1.28a)




X=x+ ]U(r)dr : (1.28b)

In this case
04, (x, t) dA oX

f)=—2"2 —=U@)4,(X). 1.29
O(x,1) X o (1)4,(X) (1.29)
Substitution of (1.29) into (1.10a) gives
1 @ %(5’7)
H(x,y,2,1) = [—e——t, (1.30a)
C4r AJ(x=E) +r°

(1.30b)

Note that this expression coincides with (1.3.11) of [3].

2. Analysis of the wave drag

The wave drag can be also calculated using the near-filed potential #(x,» — 0,f) given by
(1.19), and the unsteady Bernoulli equation. For a slender body (» — 0), the Bernoulli equation

p — ’) }) 9 ; ; l !. !

and the wave drag is calculated as
L

D)= [p,(X,))4,(X)dX , 2.3)
0

where X is measured from the body leading edge, and the pressure p,, is calculated on the body
surface.

Herein we consider an instantaneous acceleration of the body to a certain constant speed U at
the initial time moment =0 and analyze the wave drag D(¢) during the transient process.

Hereafter we consider the supersonic case U > a, following the plan:

1. Identify typical phases of the transient process and determine the end points x,, (see Figure

A2) associated with the basic expression (1.19) for the flow potential
2. Using (1.19) calculate the near-filed flow potential for each phase
3. Using (2.2) calculate the wall pressure p, (X,?)

4. Using (2.3) calculate the wave drag D(¢)
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2.1 Structure of the influence domain

Figure A3 shows trajectories of the leading and trailing edges, the typical regions 4, B and C

associated with phases of the transient process as well as locations of characteristics and end

points x, , for each phase.

1. If the point (x,7) lies in Region A4, the end points x,, are at the body leading and trailing
edges. The wall pressure p,(x,7)=p, ,(X) should correspond to a steady flight with
supersonic speed U .

2. If the point (x,f) lies in Region B, then x, is at the leading edge, while x, lies on the body
axis at £ =0. Here the wall pressure p, (x,7) = p, ,(X,?) is unsteady.

3. In Region C, the end points x, are on the body axis at #=0, and the wall pressure

p,(x,t)=p, -(X,¢) is unsteady.

Ht
For t>L/(U-a) transient
X, =L-Ut process is over
B! x=-at
SN SR t=L/(U-a)
lLe A
te.
X, =-Ut
B x=at
---------------------------------------- t=L/(U+a)
C
X
In Region A
xt

X; and x, on leading edge x, on leading edge, x, — at =0 X, and x, at =0

Figure A3 Characteristic lines and boundaries for a slander body accelerating to a supersonic
speed U at the initial time moment #=0; here a=a_, at =0 the body leading

edge x,(0)=0 and the trailing edge x,(0)=L.

For t>L/(U-a,), the region A covers the total body length; i.e., the wall pressure corresponds

to the steady flight allover the body length. The transient process is over and the wave drag
should be given by the classic formula of von Karman and Moore [4]

D, =—p;—ZZ].A;'(X)ﬁ.log(X—a)A;’(a)da}dX. 24)
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X, —Ut+ Mx dx Xy
=S T ge=—T x(E=x)=0, X,(E=x)=X, x-&= ,(2.12)
3 1+ M) g 1+ M) (G =x,) (& =x) 4 1+ M (
X, - Ut - Mx dX X, =26
== — — dé= 2 X, (&= =0, X,(,=x)=X, E—x= —.(2.13)
g (- ¢ (- M) 2(E=x,,) 2{(§=x) ¢ 1—M
Then the potential (2.11) is written as
$(x, 1) = ——UA!(X) log = —
2 2
U’ (X-X U (X,-X
—— |1 L1AN(X)dX, +— |1 = AN(X,)dX, +
4”003[1+Mjb( DdX, 471')'([0g[1—Mjb( ,)dX,
+O0(r* logr) =
1 r
—U4 (X)log——
o  ( )ng
Ut (X-X U, (X-X
-— |l L14)(X,)dX, —— |1 2 4(X,)dX, +
4ﬂoog[1+Mj {eare 4ﬁof°g(M_1j (X)X,
+O(r* logr) =
I r U* (X—O')2 5
=—U4,(X)log——— |log| —=— |4 (0)do +O(r* logr
>~ UA,(X)log > 4ﬁJg[M2_1 (@)do +0(r* logr)
Finally we get for the near-filed potential at (x,¢) € 4
X
¢A(x,r,t)=—2£ J.log[z()("%a))A;’(a)da, f=IM>-1. (2.14)
7T ¥

Note that this potential coincides with the well known near-field potential for steady supersonic
flight (see, for example, Ref. [5]).

2.2.2 Potential in Region B

In this region the end points are

xlB:x1A=U+am (x—apt), x,, =x+a,t. (2.15)
The sources are
0,0, =U+ M)4(X), (2.16)
a,
{Q‘_WLLQ.} =U(1+M)4(X), X, =(0+M)E+Ut — Mx, (2.17)
A d
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{Qx —LQI} =U(1-M)4)(X,), X,=(1-M)E+Ut+ Mx. (2.18)
A d

Since 4,(0)=0 for body with a sharp nose, we have
0=0, Q0 =U4,(x+a,). (2.19)
Then, (1.19) gives

@ (x,7,t) = —LUA,; (x+a_t)loga,t+ LUA,: (X) logi
4z 2r 2

U(l M)

v (14+ M) j log(x — &) A"(X,)d& + j log(é—x)A'(X,)dE  (2.20)
T

+O(r* log r)
Equation (2.20) can be written as

@, (x,r, 1) = ¢A(x,r,t)—4—l-UA,;(x+amt) log awt+ T log(¢é—x)4,(X,)dé.
n

*24

Using the new variable X, , we get

X,-Ut-Mx .  dX,
TTam T

Then (2.20) is written as

X,—X
0’ X,(E=x)=x+a,t, X,(=x,,)=0, E—x= IZ—M :

4 ‘?]A:(Xz)dxz -

U ' U x+ayt
¢B(x’r’t)=¢A(x9rat)_EAb(x'i_aoot)logaeot-i'E Jlog( M—

x+a,t

¢A(x,r,t)—%Al:(x+awr)log[(U—aw)t]+:lU; 5[ log(X—O')A,:'(O')da

Finally we obtain for (x,7) e B

x+ay!

¢B(x,r,t)=¢A(x,r,t)—%A,;(x+awt)log[(U—aw)t]+% J log(X—O')Al:'(O')dO'. (2.21)

2.2.3 Potential in Region C

Coordinates of the end points are
Xeo=Xx—ayt, x,.=x+a,t. (2.22)

The sources are

QXiLQ, =U(1xM)4(X), (2.23)
aoc




{Qx oL Q,} =UQ+MA(X), X, =(1+M)E+Ut - Mx, (2.24)
Ay d

{Qx —LQ,} =U(1-MA(X,), X, =(1-M)E+Ut+ Mx, (2.25)
9y d

Q =Ud(x-a,pt), Q,=Ud(x+a,t). (2.26)

Then, (1.19) gives
P (x,r,t) = —LUA; (x—a_t)loga_t— LUA,: (x+a t)loga,t
4 4
I , r Ud+M) " .
=g () 10g 2 - LU Tiog(e ) 41x,)d
2 2 4z

Xic

MI log(¢é —x)4](X,)dé +O(r* logr)

This expression can be written as

1
o (x,r,t)=¢,(x,r,1) - %UA,; (x—a_t)loga,t— e UA,(x+a_t)loga,t
7 T
(2.27)

+ 2O Froge- )0z + ZEH Frog(e - 10 g

X4 24

Using the new variables X, and X,, we obtain

X, —Ut+ Mx dx, -
§=Wsd§ a0’ , X((§=x,)=0, X|({=x)=x-at, x-¢& YA
X,-Ut-Mx . dX, B
g_W, dg = M) , Xy(§=xc)=x+at, X,(§=x,,)=0,5-x= T

Then the potential (2.27) is expressed as

xX—agt

1., U X-X\
¢C(x,r,t)=¢B(x,r,t)—EUAb(x—awt)logawt+E 5" log( s )A (X)dX, =

By (x,7 t)——A (x—a,Hlog[(U +a,)t +4E j log(X —o) 4)(0)do
Finally we get for (x,7)e C

X—dagt

¢c(x,r,t)=¢B<x,r,r)—%A;(x~awt)log[(U+am)t]+% | log(x -0) 4](0)do . (2:28)
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2.3 Wavedragfor 1> L/(U-a,)

Figure A3 shows that for > L /(U —a_) the body is totally in Region 4. Then

=—— I lo ( X —0) J A (o)do = %{jA;’(a) logrdo - jlog (ML’B_OQJ A4, (O')dO’:I

(2.29)

99,] _U 4%

(2.30)
ar r=n,(X) 27[ ’Z(X)

/L | _ AX-0))
ot r=R(X)_U6X - 2”[.4 (X logr,(X) Il ( JAb(O')dO':| (2.31)

The wall pressure in Region 4 is

_ o¢, 09, _
i p{ar 2(6r]l=r_

o U 8% (2AX-0) 4x)Y
—27{—Ab(X)logrb(X)+a—X6|‘lo ( : ]A( Ydo (T(X)”

Substituting (2.32) into (2.3) we get the wave drag

(2.32)

2D, 20X -0)) ., 4(X)
- _IA (X){ A(X)logrb(X)+—Il° [ A ]A( ydo - [rb(X)] }dx

Since 4; =2rr,r, , we can combine the first and third terms as

k=]

L

—J{Aé(X)AZ(X)logn(XH

0

K(X)
2r,(X)

where we utilized the condition 4;(0) = 4;(L) =0. The second term is integrated by parts as

f [A X5 j o (2(X o) j A;’(a)da]d)( - —LJ‘[A;(X)I}log(X - a)A;’(a)da}dX

0

[A,:(X)]Z}dh— j—ﬁ%Af(X)logn(X)}dho,

Finally we obtain the classic formula of Karman and Moore

D,=- p;Uz Lj[ A;(X))]log(x - a)A,,"(a)da} dX =
w

0

_p U 1
= J‘{A (X)Ilog(lX JA (a)do}

(2.33)

0
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2.4 Wave drag for L/(U +a, ) <t<L/({U-a,)

In this case, Region 4 corresponds to 0< X <L,, and Region B corresponds to L, <X <L,
where L, =(U —a_)t. The wave drag is

D)= [ PuXD AL + [ p (X DACOD =D, + [y (K1) pa(X. DM (X)X

L,
where the difference p,,,(X,t)=p, ,(X,1)—p,,(X,?) is calculated using the flow potential

x+a,t

P =00, =—%;A,:(x+awt)log[(U—aw)t]+ZU; 5[ log(X —0)4;(c)do. (234

Interestingly, the potential ¢,, does not depend on 7. Then

4, (x+ amt)} B

0 U p
Puap = Pus ~ Pus = " Po ﬂ - pL[awAb(x +a,)log[(U-a, )]+
ot 4r i

B x+ag,t

puU| T _UAi(o)
4r o x+Ut-o

do+a A (x+a,t)log[(U - aw)t]} =
o X+ayt A 2 , X-(U-ag)t ,n
pl| Axran Uf VL@ 4| o AK-W-a)) T 4@,
4r t x+Ut-o 4r Ut s X-o

0

The wave drag component associated with this pressure difference is

D)= [[Pus(X.0)= p,. (X, D] 4 (X)dX =

4r

ol | AKXy T
Ut

4©) do} 4(X)dX = (2.35)
X-o

U-ag)t ]

L

2 2 I X—(U-ax)t
4 '
pU" 1 | A(X U -anax)dx -LY~ f { | 4(@) da]Ab(X)dX
ar Ut 35, 47 oy o X-o

Then the wave drag is

D(#)=D,+D (1) (2.36)
Note that the second integral in (2.35) is not singular since (U-a,)t<X -0 <X, where
U-a)<X<Land L/(U+a,)<t<L/({U-a,).As t—> L/(U —a,), the lower limit behaves

as (U —-a_ )t > L, and both integrals tend to zero; i.e., the wave drag (2.36) is matched with D,
at the upper boundary t=L/(U —a_).
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2.5 Wavedrag for 0<t<L/(U +a_)

In this case, Region 4 corresponds to 0< X <L, , Region B corresponds to L, < X <L, and
Region C corresponds to L, <X <L, where L, =(U —a_)t and L, =(U +a,)t . The wave drag
is

D)= [ (XD + [ oy (X DAOAX + [ po (X, A(X)X =

=D+ [[Pus(X,0)= Py (X D14, (X)X + [[p,c(X,1) = Py (X, D14 (X)dX = (3.37)

=D, +DAB(t)+DBC(t)

Here D, is given by (2.33), D ,(¢) is given by (3.35), and D,.(f) is calculated using the
potential

xX—ayt

o (X, ) =@ — P, = —%A,;(x—awt)log [(U+aw)t]+4—(;— I log(X —o)4)(c)do . (2.38)

The wall pressure is expressed as

0 U -
Pusc = ~Px __g:;c = ‘%[_amAb (x—a t)log[(U +a_t)]+
p.U x_]-mt UA] (o)

dr | § x+Ut-o

pU| 4(x—a.r) -I Ug) , |_pU | 4X-Wra) (" 4@
4r t o x+Ut-o 4r Ut s X-o

A (x— awt)} B
t

do—a A (x—a_t)log[(U + awt)]} =

Dye(§) = [[puc(X,0) =,y (X, D14 (X)dX =

2 L ] X—(U+tay)t ”
pooU J' Ab (X (U + aoo)t) _ J' Ab (O-) do A;(X)dX — (239)
4z (Ura)t Ut 7 X-o

/5

pU* 1 : , p Ut T [T 400) |,
i [ 4 -U+anaax -£==— | [ Ao (0dX

(U+ag)t Utay it

0

Finally we get
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D#)=D,+D,()+D,.(1)=D, +

2 L 2 L [ X-U-a,)t n
A ,
WL LT - —a A 0ax L2 49 4o Lt xyax +
dx Ut Uy 4z wal 8 X-o ]
2 L 2 L [ X-U+a,)t n T
y
L L e ngoax -2 | A jo L (xydx
4z Ut (U+a,)t 4r Ua )t | 0 X-o B

(2.40)
2.6 Wave drag for 1 > 0

For ¢t — 0, the components D, (¢) and D,.(¢) need a special treatment, since the drag tends to
infinity as

2
1
D(t) > pwU

j[A (X)Fdx . (2.41)

More precisely, this limit corresponds to a, /R — x; i.e., R<<a_t << L and pressure waves

propagate at a distance, which is much larger than the body radius and much smaller than the
body length.

The expression (2.41) can be derived by considering (1.11) at £ =a_t

,Q[f =
47 =—4rg, (x,r,0) = |

~dE . (2.42)
et \/(x— EY +r°
Using (1.16) we obtain for a_t — 0 and »/(a,t) >0
r2
—4 2 t . 2.43
#9=20(x1) ( (awty] @43
Using (1.29) we write (2.43) as
U r
=—A(X)1 2.44
¢ o7 ( )ngawt (2.44)
Then
9_YUy J0, (245)
or 2r
2
6¢ o —A4 (X)(logr log2a, t) 1 4 (X) (2.46)

ot 2w 27[ t

Using (2.2) we obtain the wall pressure
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$,.1(0¢ =
Pyw="Px |:6t 2(61"] :|r=rb(X)_

(2.47)
p U2 1 AI:Z(X) ” b(X)
= | ———=——=-4/(X)] X)- A4 (X)log2a t+——
o [ 4z 7200 ,(X)logr, (X) - 4,(X)log T
Then the wave drag is expressed as
L
D(t) = [p,(X,0)4,(X)dX =
0
pU 14N, , 4X) |,
= || -— - 4,(X)1 X)—A4(X)log2a t+—=—= |4,(X)dX
> I[ A~ A0 loer () - 4(X)log2a,¢ + 252 4(X)
The first two terms give
L /]
X) d[1 ., }
A, (X)A4,(X)1 X+b( A (X)) |dX =—|—| =4, (X)logr,(X) |dX =0
()I[()()ogr,,() b(X)[()]} OjdX[zb()gb()
The third term is zero since 4;(0) = 4,(L) =0, and the forth term gives the expression
2
D(t)—p“’U . IA’Z(X)dX (2.48)

that coincide with (2.41).

According to (2.48) the wave drag tends to infinity as # — 0. To resolve this singularity we
should consider a much shorter time interval in which a_t = O(R) . The expression (1.16) gives

N2 2
2 X—=&) 41
@] gt
x+al ]
] - a
v

—47d =
m;é I_:[.I \/(-’l'_’;]: 42

It is immediately seen that for very short time, a_t/r — 0, (2.49) gives

1 ,
(%) a.t _ Y oo (2.50)
2r r 27 r

¢ 1(0¢ _puUa, | 4(X)
P p[at 2(ar”r=m" 27 |:rb(X)+m:|

Then the wave drag at =0 is

1l'f§—2Q(.1'.r)log[£+ [u r] +]J+O(a 1).(2.49)
r r

¢:_

The wall pressure is

p.Ua bz(X) pU2 2 , UI2O(S° 251
D(0) === j 0 X5 MOI(X)A L(X)dX = p U LO(S), 2.51)
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where 6 =r, . /L is the body thickness ratio.

Note that the steady-flight drag

2 L X
D, =— p;U I{A;’(X) [log(x - O')A,:'(O')do} dx = p U L*0(6*) . (2.52)
Ty E ,
For brevity we write (2.49) in the form
¢= —-—I-Q(x,t)log F(r,tH)= —EA,:(X)logF(r,t) , (2.53)
2 2z
where
Fr,n=2=L (-‘i-’-] 1 (2.54)
¥ r
a,i a.
aa_ine 4T = Fe % F, (2.55)
t 2 1V 2
r J(axf] 1 J(ﬂ] & J(a 1) +1
¥ ¥
at at
GTF-__GJ;I L+ r _— fz F. (2.56)
; 2 ; 2 2
a1 i J{ an}‘] 1 J(awt +r
. .,‘
2 ' 2 A, (X
%__U_A (X)l EMa_Fz_U_A:(X)IOgF_U b( ) e (257)
o 2rm 2r F o 2« \/( at) +r
a,t
of _ 1oF _U (2.58)

v = b( )__=_7r 4,(X )——m

Then the wall pressure is

1

ot or

o2 1 [A - b(X)j

27 | 4x (awt) +1(X)

po(X.1)= p{a"’ ( "’” i {A () log F(5,(X), )+ "jff)
=1, (X)
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and the wave drag (for short time intervals) is expressed as

L

pU” [4,(0Gx, nax (2.59)

Do(t) = 2

1, 4,(X) 1
G =—| A/(X)1 X), B
(X = | AOIOg F (00 + 2 s
 (R(XDa)
(a1) +1; (X)

(2.60)

The expressions (2.59) and (2.60) are convenient for numerical integration.
Combining (2.59) with (2.40) and subtracting their common part, we obtain a composite formula
for 0O<t<L/(U+a,)

D(t) =D, + D (1) + D, (£) + Dy (1) - ”;Zz -;—t f[4x] ax, (2.61)

where the last term represent subtraction of the common part.

2.7 Summary of analysis

Summarizing the foregoing results, we outline formulas for the wave drag:

For t>L/(U -a,)
p U2 L X
D,=-F= || 41¢x) [log(x - 0) 4 (0)do |dx . (2.62)
a 0

0

For L/(U+a )<t<L/(U-a,)

D()=D,+D () (2.63)
pcx)Uz 1 g ’ 1
Dy()=E—— [ 4X-U-a)n4X)dx -
47 Ut (U2 )t
e (2.64)
2 L —(U—az)t "
_PU J' { J‘ fﬁ@do}d;(X)dX
4 (U-ag)t 0 X -
For 0<t<L/(U+a,)
P U? L .
D(f)=D, +D ,(t)+ D, () + D, () - — Oj[Ab X)] dx (2.65)
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_pUt L , ~
Dye(t) = (I )tAb(X (U +a,)0) 4, (X)dX
2 L X—(U+a,,)u: " aish)
_PU” J' [ J‘ Ma’o}A;(X)dX
4z (U+a )t s X-o
D,(H)= ”szz 46X nax (2.67)
1 ., A(X) 1
G(X,)=—| A/(X)log F(r,(X),t) + -
7Z'|: M [(a1)+17(X) 2.68)
 (r(X)ay)’
(a ) +1 (X)
For t=0
p(oy= £V % :J'rb’(X)A; (X)dX . (2.69)

These relations are used for calculations discussed hereafier.

3. Numerical examples

The FORTRAN code “Wave Drag” was developed to calculate the wave-drag time history,
D(?), using the relations (2.62)-(2.68). Numerical examples were generated for the body shape

n(X)=r, sin(zX/L).
In the dimensionless variables X = X /L and 7, =7,/ L, this shape is expressed as
7, =0sin(rX). (2.70)

Calculations were carried out for § =0.05. The body shape characteristics are shown in Figure
A4.

D(T)
AU 12
M=Ula,=2, where T=ta /L is nondimensional time and A, =7rr, =#6'L" is

Figure AS shows the drag coefficient C,(T)= for the case of Mach number

maximum cross-sectional area. The characteristic times T, =& (%, =7, .. /a,), T, =1/(M -1)
(ty,=L/(U+a,))and T, =1/(M+1) (¢t, =L/(U+a,)) are marked by arrows. The circle shows
Cp,(0) calculated using (2.69). For T >T,, the transient process is over and the wave drag
coefficient is constant. Note that this coefficient does not depend on Mach number. In accord
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with (2.62) it is a function of the body shape only. The initial wave-drag coefficient C,(0) is
significantly higher than C,, relevant to steady flight. The drag quickly decreases in the time
interval T = O(J) and then relatively slow approaches the steady state level.

0.20

A5 = i
0.15 \ | 8=0.05 /
0.10

0.05

IR “‘f\7L>

_ N =
-0.10 -

! N 7 —4,
015 \1-.._.-'/ —A b |

A"

-0.20 . . - . T

0.0 02 0.4 0.6 0.8 1.0

XL

Figure A4 Characteristics of the body shape (2.70), 6 =0.05.

Mach number M=2, §=0.05

0.22

0.20

0.18

0.16

0.14

\
\
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0.08

0.06 - | ———
0.04

0024—t+——

0.00

Figure AS Wave drag coefficient C,,(T') for M =2, 6 =0.05.
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Figure A6 shows C,(T) for different Mach numbers. As expected, the transient time increases

and tends to infinity as the Mach number decreases and approaches M =1 (transonic case). Note
that the transonic case needs special treatments, since the linear acoustic theory is not valid in the
vicinity of M =1 even for slender bodies.

=0.05
0.40 2
0.35 ¢ M=2
——M=1.6
9T ——M=1.4
' —M=1.2
0.25
(@] .
O 020 \
0.15
0.10 ——
=
0.05
O-Oo Ll L) L L] L L
0.0 0.2 04 0.6 0.8 1.0 1.2
T

Figure A6 Wave drag coefficients C,(7) for various Mach numbers, 6 =0.05.

4. Comparison with Euler CFD solution

Numerical calculations of an axisymmetric inviscid flow over a slender body of revolution were
carried out for the free-stream parameters:
e Mach number M _ =2

e Static pressure p_=383410Pa

e Temperature 7, =277K

e Density p, =4.8222 kg/m’

e Velocity U, =667.03 m/s

The body shape is given by (2.70) with the parameters:
e Bodylength L=1m

e Thickness ratio 6 =0.01
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Near the nosetip X — 0, the body radius is r, = 67X that gives the nose half-angle

a=on= % =1.8°. Note that the Mach wave angle is y = arcsin(M;l) =30°.

0.05
© Theory
e Euler CFD| |
0.03
(=]

C |
0.02 I
0.01
0.00

-0.1 0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1.0
T=ta/L

Figure A7 The drag coefficient C, as a function of time 7 =ta_ /L, solid line — CFD, symbols
— theoretical solution summarized in Section 2.7.

The computational grid contains approximately 10° cells: ~300 grid points along the body
surface and ~300 grid points in the direction normal to the body surface.

The drag coefficient versus time is shown in Figures A7 and A8 (black lines) for relatively large
and short initial time intervals, respectively. The wave drag almost instantaneously reaches its

maximum, decreases with time to the minimum C,, = 3.65x 10~ at 7'=0.13, and then tends to

the steady-state level C, ~4.4x10”. The CFD solution (black line) agrees well with the
theoretical solution summarized in Section 2.7.

Instantaneous pressure fields at various time moments (CFD solution) are shown in Figure A9.
In accord with linear acoustic theory, the body-induced pressure waves propagate along
characteristics and, finally, form a steady-state pressure field around the body moving with
constant Mach number. For this steady field, distributions of axial and radial velocity,
temperature and Mach number are shown in Figures A10-A13.
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Figure A8 The drag coefficient C,, as a function of T =ta, /L for the initial time interval, black

line — CFD, red line — theoretical solution summarized in Section 2.7, red circle —
C,(0) calculated using (2.69).
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Figure A9 Evolution of static pressure field.
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Figure A10 Axial velocity at 7 =3000x10"sec.

Figure A11 Radial velocity at ¢ =3000 x 10 sec.
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Figure A12 Temperature at ¢ = 3000 %10 sec.

Figure A13 Mach number at 7 = 3000 x107 sec.
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Conclusions

. Mathematical modeling of unsteady effects associated with acceleration of the body center of

gravity has been carried out. Namely, we have conducted theoretical analysis of the wave
drag generated by a non-lifting body of revolution during its instantaneous supersonic start.
The analysis is based on linear acoustic theory and asymptotic techniques.

Typical phases of the transient process were identified. Analytical expressions of the flow
potential were derived for each phase. These expressions were used to obtained the pressure
distribution on the body surface and calculate the wave drag.

It was shown that in the initial time interval R <<a, f<<L, the wave-drag solution is
singular. Asymptotic analysis of this initial phase of transient process allowed us to resolve
the singularity, obtain an analytical expression for the initial wave drag D(¢=0) and build
up a composite solution convenient for computations.

The aforementioned theoretical results were incorporated into a FORTRAN code providing
quick calculations of the wave drag time history. Numerical examples were generated for a
slender body of half-sine shape with thickness ratio & =0.05 for different Mach numbers
(M=1.2, 1.4, 1.6 and 2) of instantaneous body start. It was shown that the initial wave-drag
coefficient C, (¢t =0) is significantly larger than C,, relevant to steady flight. The wave drag

quickly decreases in the time interval ¢# ~SL/a, and then relatively slow approaches the
steady-state level. The transient time increases and tends to infinity as the Mach number
decreases and approaches M =1 of transonic flow.

The transient process was also simulated numerically by solving 3-D Euler equations for
Mach=2 start of the aforementioned body with § =0.01. It was shown that the theoretical
wave drag D(¢) is in excellent agreement with that predicted by CFD in all phases of the

transient process.

These results provide a good launching pad for theoretical modeling of unsteady body motions
including the coupling between body dynamics and aerodynamics.
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