A REFERENCE MODEL FOR AGENT-BASED COMMAND AND CONTROL SYSTEMS

*Christopher J. Dugan, Pragnesh Jay Modi, Joseph B. Kopena, William M. Mongan, and William C. Regli
Drexel University
Philadelphia, PA, 19104

Israel Mayk
C2 Directorate (C2D)
US Army Research, Development and Engineering Command (RDECOM)
Communications-Electronics Research, Development and Engineering Center (CERDEC)
Fort Monmouth, NJ 07703

ABSTRACT

Standardization and the ability to integrate similar
agent-based systems will be a key factor in the deployment
of future military agent-based systems: multiple develop-
ers can coordinate in the development phase, integration
with existing components will be streamlined in the deploy-
ment phase, and collaboration with similar systems (such
as coalition forces) will be trivial. Unfortunately, there ex-
ists no taxonomy of terms that can describe concepts, def-
initions, and functional elements within agent-based sys-
tems. This makes accomplishing the above difficult—if not
impossible. In this paper, we describe a reference model
for agent-based systems and show the methodology behind
its development. Such a comprehensive reference model
will facilitate adoption, adaptation, and integration of agent
technologies into systems for use by government and pri-
vate industry, with a particular focus on applications in mil-
itary command and control.

1. Introduction

A reference model describes the abstract functional el-
ements of a system. It does not impose specific design de-
cisions on a system designer. APIs, protocols, efc. are stan-
dards that can be used concurrently with a reference model.
A reference model does not define an architecture. Multi-
ple architectures can be derived from a reference model in
the same way that reference architectures could drive mul-
tiple designs or a design could drive multiple implementa-
tions (see Figure 1). As such, a reference model

e establishes a taxonomy of terms, concepts and defini-
tions needed to compare systems;

e identifies functional elements that are common be-
tween systems;

e captures data flow and dependencies among the func-
tional elements of systems; and,

e specifies assumptions and requirements regarding the
dependencies among these elements.

Currently, no reference model exists that describes
agent systems—making it impossible to uniformly describe
a system in the aforementioned terms. Thus, we developed
the Agent Systems Reference Model (ASRM) that aims to
allow for existing and future agent frameworks to be com-
pared and contrasted, as well as to provide a basis for iden-
tifying areas that require standardization within the agents

Reference Model

Reference Architecture

Design

Implementation

Figure 1: A reference model drives creation of one or more
reference architectures, which drive the creation of one or
more designs, which drives the development of one or more
implementations.

community. As a reference model, the document makes no
prescriptive recommendations about how to best implement
an agent system, nor is its objective to advocate any partic-
ular agent system, framework, architecture or approach.

1.1 Motivation

The motivation for this project is in part analogous to
the previous need for a communications standard, which
has since been adopted in many related disciplines. In the
early 1980s, communications systems were proprietary in
nature; consequently, there was a divide between commu-
nications devices and computer systems. The proposed
solution was to establish an open system architecture—
an n-layered approach to standardize communications sys-
tems (Zimmerman, 1980). A 7-layer model, the Open Sys-
tems Interconnection (OSI) reference model, was estab-
lished that has withstood the test of time. The growth of
these communications systems prior to the development of
the reference model is comparable to the present growth of
agent frameworks. Currently, enough frameworks exist that
can lay the groundwork for such an agent systems reference
model.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
01 NOV 2006 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Reference Model For Agent-Based Command And Control Systems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Drexel University Philadelphia, PA, 19104 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

See also ADM002075., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE UU 8
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.2 Approach

The ASRM needs to describe several elements of an
agent system, including agents and frameworks. An agent
is obviously a building block of any agent system; how-
ever, the ASRM does not develop a consensus about the
definition of an agent due to the largely inconclusive de-
bates of the past. There are many products in the market-
place today that are marketed as agent frameworks from
various sources: companies, academia and the open source
community. These agent frameworks have emerged from
several large governmental and private research and devel-
opment programs and were used in the creation of many
successful military and commercial systems. The ASRM
takes a quantitative and evidentiary approach; if it can be
built with one of these systems, an artifact might be called
an “agent.” Likewise, static and dynamic analysis of these
agents, their frameworks, and other related entities is used
to create the ASRM. For a more detailed discussion of these
entities and their purpose, see Section 2. See Section 4 for
more details about how the reference model was created.

1.3 Related Efforts

In the area of agent systems, a reference model for mo-
bile agent systems was constructed in (Silva et al., 2001).
While superficially similar to the ASRM (most of the def-
initions for terms, relationships, and abstract entities are
compatible with the ASRM), its main focus is on compar-
ing and evaluating different mobile agent systems. In addi-
tion, the model is more prescriptive of software architecture
than the ASRM, which is architecture independent. For ex-
ample, it presents a set of minimum feature requirements.
That is, the Agent Execution System is a required compo-
nent that supports mobility, communication, agent serial-
ization and security.

Some may see a resemblance between the FIPA Ab-
stract Architecture and the ASRM. However, a reference
model is a further abstraction of an abstract architecture.
The ASRM defines terms, describes concepts and identi-
fies functional elements in agent systems. The goal is to
allow people developing and implementing agent systems
to have a frame of reference to discuss agent systems. The
FIPA Abstract Architecture describes an abstract architec-
ture, with the intent of enforcing interoperability between
conforming agent systems.

2. Agent System Concepts and Layers

The core of the ASRM is the layered diagram por-
trayed in Figure 2. All agent systems can be mapped to
this diagram—an important characteristic of any reference
model. This figure certainly introduces some ambiguous
terms which will be defined in the following sections.

2.1 Whatis an Agent?

Software agents, sometimes called intelligent agents
or simply “agents,” are situated computational processes—
instantiated programs that exist within an environment
which they sense and effect. An agent actively receives
percepts, signals from the environment, through a sensor
interface. Though its response need not be externally ob-

/Agent-Based System

Agent
System Agent

=

—_
r Controller 1

Sensor Effector
Interface Interface

—
—

‘ Agent Framework(s) ‘
S I

1
-to-1-

nn

‘ Platform(s) ‘ 3

n-to-1

‘ Host(s) ‘ 3
] !
1

Infrastructure

n-to-1

‘ Physical World ‘

Figure 2: Abstract model of an agent system. Such sys-
tems decompose into several layers of hardware and soft-
ware that provide an operating context for agents.

servable at all times, an agent may take actions through an
effector interface that can manipulate and affect that en-
vironment. Importantly, the model does not commit sen-
sor and effector interfaces to specific hardware or software
structure and form, but rather generically as dataflow in and
out of an agent. Also, although the focus of this document
is on software agents, this does not preclude the possibil-
ity that an agent or collection of agents may be embodied
in the physical world, e.g., a sensor monitoring system or
robot controller.

In addition to being situated in an environment, one or
more of the following properties hold for any agent:

e Autonomous agents may perform their own decision-
making, and need not necessarily comply with com-
mands and requests from other entities.

e Proactive agents need not wait for commands or re-
quests and may initiate actions of their own accord.

e [nteractive agents may observably respond to external
signals from the environment, e.g. reacting to sensed
percepts or exchanging messages.

Note the distinction between agents and services. Services
are computational processes that exist to provide function-
ality for use by other processes. Services are infrequently
associated with autonomy and proactivity, but seem to be
interactive. We claim that services are not interactive in the
sense that they are not bound to their external environment;
whereas, agents are more dependent on their environment.

2.2 Agent-Based Systems

As computational processes, agents do not exist on
their own but rather within computing software and hard-
ware that provides them mechanisms to execute. Many
agent implementations also require substantial libraries and
code modules. Further, agents frequently possess prop-

erties not found in traditional software, such as mobil-
ity. Development and implementation of such software re-
quires significant infrastructure to provide core functional-
ity agents may use in conducting their tasks.

An agent-based system comprises one or more agents
designed to achieve a given functionality, along with the
software and hardware that supports them. It is comprised
of several layers as shown in Figure 2.

Agent Layer. Agents implement the application and they
achieve the intended functionality of the system. A more in
depth description can be found above.

Framework Layer. Frameworks provide functionality
specific to agent software, acting as an interface or abstrac-
tion between the agents and the underlying layers. In some
cases, the framework may be trivial or merely conceptual,
for example if it is a collection of system calls or is com-
piled into the agents themselves.

Platform Layer. The platform provides more generic in-
frastructure from which frameworks and agents are con-
structed and executed. Items such as operating systems,
compilers, and hardware drivers make up the platforms of
an agent system.

Host Layer. Hosts are the computing devices on which
the infrastructure and agents execute, along with the hard-
ware providing access to the world. This may range from
common disk drives and displays to more specialized hard-
ware such as GPS receivers or robotic effectors.

Physical World Layer. This is the world in which the
infrastructure and agents exist. This may include physical
elements, such as the network connections between hosts,
as well as computational elements, such as web pages the
agents may access.

An agent-based system is simply a set of frameworks
and agents that execute in them. A multi-agent system is an
agent-based system which includes more than one agent.
Such systems may consist of many agents running within a
single framework instantiation, or in different frameworks,
on different hosts, etc. Figure 3 shows an example of de-
vices in the agent system, connected at the host layer via
wireless networking, transmitting and receiving signals in
the environment of the physical world. With respect to
the ASRM, communications are abstracted at the platform
layer by operating system and network software, e.g. rout-
ing tables. At the framework layer, each platform has one
or more executing frameworks. Each framework instantia-
tion then may be associated with many currently executing
agents in the agent layer. Note the distinction between in-
stantiation and type.

2.3 MAS Structure

A set of more than one agent will be collectively re-
ferred to as a group. In addition, a set of groups may also
be referred to as a group. Then, the term multi-agent sys-
tem is used to denote a group of agents plus their supporting
frameworks and infrastructure. A multi-agent system may
consist of multiple frameworks, executing across multiple
hosts and each deploying multiple agents, each of which
may have different internal agent architectures of varying

Agents

Agent
Layer

Framework
Instantiation

|
[

Framework
Layer

|
[

Host

Platform
Layer

|
[

Environment
and Host

|
[

Figure 3: Agents are depicted as computational processes
running within frameworks supported by platforms and ex-
ecuting on hosts operating together on a wireless network.

complexity.

There exist three basic types of MAS. Monolithic sys-
tems involve a single agent of high internal complexity. An
example would be a proxy agent which conducts tasks for
a user such as scanning the World Wide Web for prices
and making purchases to fill given specifications. Median
systems contain moderately complex and heterogensous
agents. Often, these types of systems involve coordina-
tion, cooperation, and resource sharing in order to achieve
a common goal. Robot soccer is a good example of a me-
dian system. Finally, swarm systems involve many similar
agents of low internal complexity. Swarms are studied be-
cause interesting behaviors result from the large number of
agents interacting with each other. They provide a large de-
gree of redundancy and the ability to introduce even more
agents with relative ease. An example of a swarm is the
modeling of a traveling salesman problem using ant agents
who leave pheremone to make statistical decisions.

2.3.1 Structured Groups of Agents

Groups have the property that they can be specialized.
In such a case, all of the agents in a group have a common
goal or perform a common task. The following terms are
specializations of the generic group concept, based on the
relationship between the goals and behaviors of agents and
groups of agents:

e A team is a group with a single or small number of
common goals. Frequently, each agent or group plays
a particular role in solving a larger problem.

e An organization is a group that interacts according
to some structure, such as a hierarchy. Each agent
or group has a goal which may be independent of
but not in conflict with the goals of other agents and
groups. Frequently the organization has a common
overall goal, with each member working to achieve

subgoals of it.

e A society is a group that has a common set of laws,
rules, policies, or conventions which constrains behav-
ior. Agents and groups contained therein do not neces-
sarily have any goals in common and may have goals
in conflict.

e An agency is a group that specializes in providing
expertise or enabling a service in a given domain.
There may be constraining policies, e.g. access con-
trol mechanisms or resource scaling, and these agents
and groups may be competing.

Typically these terms also have implication on the
quantity of agents in the group. For example, teams are of-
ten groups within an organization and organizations groups
within a society.

3. Functional Concepts

Agent systems can be viewed as a set of abstract con-
cepts that support overall system execution. For example,
security and mobility are two abstract functional concepts
(among others) described. It is important to note that these
descriptions make few prescriptions about whether and how
each functional concept is implemented. The way in which
functional concepts are instantiated may vary significantly
in structure, complexity and sophistication across different
agent system implementations. Indeed, some agent systems
may not even possess some of the functional concepts de-
scribed. The aim here is to describe what the function is
in abstract terms so that one can determine if the function
exists in a given system, or to verify its existence if it is
claimed to exist within a given system.

While a brief overview of functional concepts is given
below, a more detailed description can be found at (Modi
et al., 2006).

3.1 Agent Administration

Agent administration functionality facilitates and en-
ables supervisory command and control of agents and/or
agent populations and allocates system resources to agents.
Command and control involves instantiating agents, termi-
nating agents, and inspecting agent state. Allocating system
resources includes providing access control to CPUs, User
Interfaces, bandwidth resources, efc.

The functional concepts that fall under the heading of
agent administration include:

e Agent Creation. The act of instantiating or causing the
creation of agents.

o Agent Management. The process by which an agent is
given an instruction or order. The instructions or or-
ders could come from human operators, or from other
agents.

e Resource Control. The process by which an agent’s
access to system resources is controlled.

e Agent Termination. The process by which agents
are terminated (i.e., their execution is permanently
halted).

3.2 Security and Survivability

The purpose of security functionality is to prevent exe-
cution of undesirable actions by entities from either within
or outside the agent system while at the same time allowing
execution of desirable actions. The purpose of survivability
is for the system to be useful while remaining dependable
in the face of malice, error or accident.

The functional concepts that fall under the heading of
agent administration include:

e Authentication. A process for identifying the entity
requesting an action.

e Authorization. A process for deciding whether the en-
tity should be granted permission to perform the re-
quested action.

e FEnforcement. A process or mechanism for preventing
the entity from executing the requested action if au-
thorization is denied, or for enabling such execution if
authorization is granted.

3.3 Mobility

Mobility functionality facilitates and enables migra-
tion of agents among framework instances typically, though
not necessarily, on different hosts. The goal is for the sys-
tem to utilize mobility to make the system more effective,
efficient and robust.

Mobility capabilities exist along three axes. The mo-
bile state axis represents the capability of the state of exe-
cution (such as the instruction counter) to migrate with the
agent. The mobile code axis represents the capability of
code (byte code or platform specific) to migrate with the
agent. The mobile computation axis represents the capabil-
ity of the state of data members to migrate with the agent.

The functional concepts that fall under the heading of
agent administration include:

e Decision Procedure for Migration. A process for de-
termining whether or not a migration should occur.
The decision procedure can be passive or active. Pas-
sive mobility occurs when the decision to migrate is
made outside the agent. By contrast, active mobility
occurs when the agent is in control of its own mobil-
ity, and decides when and where it shall migrate on its
own.

o De-register, Halt, Serialize. Once an agent has de-
cided (or been notified) that it is migrating, it must
de-register from all of the directory services on the
framework instantaition with which it has registered.
Then, it halts execution, and is serialized. The seri-
alization process involves persisting the agent’s data
and/or state into a data structure. This data structure is
converted to packets or written to a buffer to prepare
the agent for migration.

e Migrate. The process by which the serialized, non-
executing agent leaves the source framework instance
and arrives at a destination framework instance. This
does not necessarily imply that the agent has left the
host; instead, the agent is changing the framework in-
stance on which it is executing. Recall that a host
and platform may be housing multiple framework in-

stances, allowing for migration within a particular
host. According to (Xu et al., 2003), mobility is also
recognized as an atomic function. As a result, agents
in a mobile state are not executing and cannot act until
the agent resumes its behavior at the destination.

e Deserialize, Re-Register and Resume. Corollary to se-
rialization is the process by which the agent, having
arrived at its destination, is converted from its serial-
ized state into the data structure that it existed as on the
sending host. Then, the agent re-registers with the ap-
propriate directory services in use by this framework
and resumes execution. As noted in the mobility de-
scription, the agent can either resume execution where
it stopped on the sending framework instantiation or
restart from the beginning, depending on the support
given by the framework.

3.4 Conflict Management

Conflict management functionality facilitates and en-
ables the management of interdependencies between agents
activities and decisions. The goal is to avoid incoherent
and incompatible activities, and system states in which re-
source contention or deadlock occur. Some general tech-
nologies for conflict management in agent systems include
argumentation and negotiation, distributed constraint rea-
soning, game theory and mechanism design, multi-agent
planning, norms, social laws and teamwork models.

The functional concepts that fall under the heading of
agent administration include:

e Conflict avoidance. A process or mechanism for pre-
venting conflicts.

e Conflict detection. The process of determining when a
conflict is occurring or has occurred.

e Conflict resolution. The process through which con-
flicts between agent activities are resolved. Negoti-
ation, mediation and arbitration are common mecha-
nisms for facilitating conflict resolution.

3.5 Messaging

Messaging functionality facilitates and enables infor-
mation transfer among agents in the system. This concept is
associated specifically with the mechanisms and processes
involved in exchanging information between agents. Al-
though information exchange via messages can and often
does occur between other parts of the system—for exam-
ple between an agent and its framework, between frame-
works, between a host and its platform, efc.—such infor-
mation transfer is not included because it is in a sense at
a lower level. The concept of messaging used here is at
a higher level than that associated with network traffic or
inter-process communications.

Messaging involves a source, a channel and a message.
Optionally, a receiver may be designated, models in which
messages do not have a specific intended receiver are ac-
ceptable. Many other functional concepts such as conflict
management and logging may utilize messaging as a prim-
itive building block. Other functionality in support of con-
cepts such as semantic interoperability and resource man-
agement may be necessary to practically or effectively con-

duct messaging. However, messaging is defined here as a
stand-alone concept of its own right. Some areas of inter-
est in messaging functionality include notions of best effort
delivery, QoS and guaranteed delivery/timeliness.

The functional concepts that fall under the heading of
agent administration include:

e Message Construction. The process through which a
message is created, once a source agent determines it
wishes to deliver a particular message chosen from a
finite or infinite set of messages. No commitments are
made here in regard to the form, structure or content
of a message.

e Naming and Addressing. A mechanism for labeling
the message with its intended destination or route.

e Transmission. The actual transport of the message
over the channel. This may be a one-shot transmis-
sion or a continuous stream.

e Receiving. The process for acquiring the transmitted
information so that is usable by the receiver.

3.6 Logging

Logging functionality facilitates and enables informa-
tion about events that occur during agent system execution
to be retained for subsequent inspection. This includes but
does not imply persistent long-term storage. Logging is
a supporting service that provides informational, debug-
ging or management information about the agent system
as it executes. It can be a centralized service or distributed
amongst the agents (wherein each agent performs its own

logging).

The functional concepts that fall under the heading of
agent administration include:

e Log Entry Generation. The process by which informa-
tion to be logged is created. Log entries often include
type (informational, warning, critical, among others)
or priority (for instance, priority 1 through 5).

e Storing Log Entry Log entries are stored in a variety
of ways at the choosing of the implementation of the
agent system.

e Accessing Log Entry The logging functionality must
provide a mechanism for a human user or agent to ac-
cess the generated log entries. If the entry contained
any attributes, such as priority or type, they are also
accessible.

3.7 Directory Services

Directory Services functionality facilitates and enables
locating and accessing of shared resources. A directory is
an abstraction allowing the naming and registration of re-
sources enabling subsequent locating of and access to the
resources.

The functional concepts that fall under the heading of
agent administration include:

e Naming The process by which resources are assigned
identifiers so that they may be indexed and located.

This process can be fairly complex by supporting
group names, transport addresses, dynamic name res-
olution, and other complex features (Wright, 2004).

e Notification The process by which new resources are
added to and deleted from the directory. As resources
dynamically become available and unavailable, the di-
rectory is kept up-to-date via this notification process
to maintain an accurate picture of the resources avail-
able in the system. When a new resource is added,
the process often includes recording a description or
characteristics of the resource and an access method.

e Query Matching The process by which resources are
looked up in the directory. This process often occurs
in response to external requests for a resource and re-
turns information about how to access the requested
resource. Queries can be specified in terms of the
name of the service (e.g., white pages directory) or
by a service description (e.g., yellow pages directory)
(Sycara et al., 1999).

4. Creating the Reference Model

The traditional method for creating a reference model
consists of three large phases: capturing the essence of
the abstracted system via concepts and components, identi-
fying software modules and grouping them into the con-
cepts and components, and identifying or creating an
implementation-specific design of the abstracted system.
In creating the ASRM, reverse engineering and software
analysis methods are employed. It is necessary to employ
reverse engineering techniques as a means of performing
“software forensics” on existing (open-source and propri-
etary) agent systems and frameworks, due to the number
of such agent systems currently available. By performing
some analysis, one obtains the software modules that com-
prise the subject systems. Data is produced allowing the
documentation and understanding of legacy software sys-
tems and for verification of existing software documenta-
tion. This data is further abstracted to obtain this abstract
“essence” of the systems.

Reverse engineering techniques determine both the
structural and behavioral makeup of software systems, in-
cluding agent systems. The static analysis of the soft-
ware system yields the structural components that exist in
the system, and the dynamic (behavioral) analysis shows
how and when these components are instantiated and used.
Moreover, behavioral analysis shows the runtime interac-
tions between the components found during static analysis.

4.1 Documenting the Reference Model: The 4+1
Model

According to (Kruchten, 1995), a comprehensive soft-
ware architecture document provides a description of the
software system using various views. Views are architec-
ture descriptions of a software system in a particular con-
text that is relevant to a group of stakeholders. Stakehold-
ers may include developers, business-persons, customers,
etc. Views illustrate system functional and non-functional
requirements from various perspectives, and may overlap
with one another.

The 4+1 Model realizes the various types of compo-

nent relationships that exist in software systems. For ex-
ample, an inheritance relationship between components is
not the same as a data flow or call graph relationship be-
tween components. Depending on the stakeholder, differ-
ent relationships carry different weights and significance.
For some, certain relationships are meaningless and can be
disregarded.

The views presented by the 4+1 Model are:

e Development View: the package or development lay-
out of the system

e Process View: runtime behavior of the system, includ-
ing concurrency relationships and ordered tasks car-
ried out by components of the system

o Physical View: the platform level view of a system,
including servers and hardware requirements

e Logical View: the static structural layout of the soft-
ware system, including its object oriented design

Because these views may overlap or be somewhat dis-
joint, there exists a view that summarizes all the other views
in a cohesive way. This represents the “+1” view, called
scenarios. Scenarios use UML use cases to represent the
interactions between the 4 views, and cross cuts them to
aggregate the views into a software architecture.

4.2 Reverse Engineering Techniques for Informing a
Reference Model

Reverse Engineering is the analysis of software sys-
tems by extracting artifacts and functionality from an exist-
ing system. Using Reverse Engineering techniques, one ex-
tracts software components and their relationships through
automated analysis of a system’s source code or runtime
behavior. Software components are basic software entities
such as classes, collections of classes, and packages. Rela-
tionships between components are one or more interactions
that exist between software components.

For example, two components might interact via a
method call, by sharing data, or by aggregating one another
through class inheritance or implementation; these are all
examples of component relationships. Components and re-
lationships are often depicted using an entity-relationship
(ER) graph, in which components are referred to as entities
or nodes and relationships are referred to as edges between
components.

One can further extract these inter-relationships by
identifying the level of coupling (the amount of relation-
ships) and the type of relationships that exist between com-
ponents. It is often the case in software systems that compo-
nents are relatively loosely coupled, but are locally tightly
coupled. In other words, most components do not depend
directly on one another on the whole, while related compo-
nents interact to achieve their common functionality.

For example, an Operating System might contain a col-
lection of components for handling graphical display, and a
collection of components for handling disk operations. It is
evident that these collections tend to inter-operate strongly
amongst themselves, yet little interaction takes place be-
tween the collections themselves. Relationships that exist
within a particular collection of components are called in-

ternal relationships. On the other hand, relationships that
exist between collections of components are referred to as
external relationships.

Collections of relationships, called clusters, are formed
by grouping components with only a high degree of cou-
pling. This process may be repeated any number of times
by further grouping entire clusters based on their coupling.
Software analysis tools exist to extract and to abstract data
from systems in this way. The end result is usually a hier-
archical depiction of the software system, in which clusters
of clusters of components are shown.

This data may be static components such as classes and
call graphs or it may be dynamic components such as in-
stantiation and data flow. In either case, the hierarchical
result is ideal for identifying subsystems that exist within a
software system, such as disk access and graphic display,
as well as layers (collections of subsystems, or clusters of
clusters) that comprise the system’s architecture. For ex-
ample, disk access and RAM access might be combined
as part of a larger memory management layer, and so on.
By appropriately abstracting these layers, one uses Reverse
Engineering techniques to make a good hypothesis as to
a generic reference architecture that comprises a class of
software systems, such as Operating Systems. In addition,
RE validates and identifies discrepancies between that ref-
erence architecture and existing systems.

4.3 Static Analysis

Static analysis is the analysis of software using its
source code as the primary artifact. The system needs not
be executing in order to obtain the appropriate data. In-
stead, source code or intermediate code is inspected to find
the software modules, data structures, data flow, methods
and metrics appropriate to the system.

This type of analysis yields many benefits such as
code-rewriting, vulnerability detection, and abstracting a
data repository for source code. For purposes of the ref-
erence model, the primary goal is to use static analysis to
produce a data repository from code that can be queried
to find the primary software subsystems. This facilitates
the transition from analyzing subject systems to identifying
software modules that might fit the overall abstract system
defined by the reference architecture.

4.4 Dynamic Analysis

Dynamic analysis also collects data on software sys-
tems, but it does so by inspecting that system during ex-
ecution. This analysis varies widely by implementation,
but one approach is to build a data repository of program
behavior. This repository holds information on data flow,
object instantiation, the call graph, interprocess communi-
cation, network or filesystem I/O activity, and so on. This
analysis assists the production of the reference model by
providing more sophisticated justification than is provided
from static analysis alone. For example, static analysis re-
lies somewhat on the software architecture of the subject
system. If the system contains a lot of “dead code” or other
obfuscated constructs, the static analysis results can be in-
accurate and deficient in describing the true structure of
the system. Dynamic analysis inspects the system as it is

running and often breaks the system down into “features.”
These features can be analogous to the relevant subsystems
found during static analysis. Moreover, dynamic analysis
can obtain data on behavior-specific aspects of the system
such as threading and I/O, that could not otherwise be found
simply using static analysis techniques. Finally, dynamic
analysis can assist in cases where source code is not avail-
able for static analysis to be performed.

4.5 Command and Control (C2) and the ASRM

The Command and Control Battle Command Infor-
mation Exchange model is an example implementation of
multi-agent agencies and societies.

Agencies within a society share a common objective,
even if their individual goals or means are different. The
information received is often the same or similar, and repre-
sents the high level objective. The agencies asynchronously
digest this information and internalize it.

In the Command and Control Information Exchange
context, information is first located during the Form stage.
It is not processed or interpreted, but simply acquired. It
is stored for processing during the Storm stage, and then
adapted to meet the group’s needs during the Norm stage.
Once this is established, the information is used, aggregated
and turned into knowledge, experience, and action during
the Perform stage.

This process occurs in cycles in the context of several
Battle Command processes (agencies). The communica-
tions process of Connect, Federate, Collaborate, and Oper-
ate follows the Tuckman paradigm (Tuckman and Jensen,
1977). Each process performs this cycle asynchronously,
applying and sharing aggregated information appropriately
and as needed. These domains include: Intelligence Prepa-
ration of the Battlefield (IPB) for analyzing the enemy and
logistical information such as weather and terrain, Com-
mand and Control (C2) for administration of the opera-
tion, Decision Making (DM) for planning and management
functions, Targeting (TGT) for operational control, and an
omnipresent Information Exchange (IE) that supports all
the domains with common objective information.

In each of these agencies, the goal is to turn raw data
obtained during the form stage into experience and action
in the perform stage. This information is often shared with
other agencies in an aggregated form. The asynchronous
“output” of one agency might be an input for another. The
aggregation and domain specific processing of this data
adds value and efficiency to the society.

Each subprocess of C2 is a process itself. These sub-
processes are interconnected and interoperable. For exam-
ple, the C2 process is made up of “Observe,” “Decide,” and
“Act,” and each of these corresponds to Intelligence Prepa-
ration for the Battlefield (IPB), Decision Making (DM), and
Targeting (TGT), respectively.

These Command and Control processes represent spe-
cific implementation possibilities for agent communities
within the ASRM. However, a more flexible and intelligent
design allows for a more generic and abstract agent imple-
mentation that is independent of the domain process being
conducted.

For example, the X2 Intelligence officer manages the
IPB process previously described. Each officer has a pro-
cess to manage. Regardless of the process, there exist be-
haviors (like the Information Exchange process) that dictate
how these officers and their processes interact.

The following describes a case study for a possible
implementation of agent societies and agencies within the
context of the ASRM.

Intelligence Preparation for the Battlefield. Intelli-
gence Preparation for the Battlefield (IPB) is an implemen-
tation of the Operational Net Awareness (ONA) process.
Its product is a document of knowledge and intelligence
that an X2 officer gives to an X3. The subprocesses within
IPB show how intelligence officers think about actionable
intelligence.

The C2 Observe process delegates to and oversees the
operation of the IPB subprocess. The IPB phases (subpro-
cesses) of “Define,” “Describe,” “Determine,” and “Evalu-
ate* also interoperate to produce their result.

Decision Making. Similarly, the Decide subprocess of
C2 oversees the Decision Making (DM) subprocess. This
subprocess includes phases “Assess,” “Plan,” and “Moni-
tor.” As before, all subprocesses interoperate and produce
a plan under the supervision of the X3 officer.

Targeting. The Act subprocess of C2 corresponds to the
Targeting (TGT) subprocess. The TGT subprocess consists
of the “Detect,” “Decide,” and “Deliver” phases that inter-
operate with one another.

This process is a good illustration of the modularity of
the C2 subprocesses, because it is clear that this Act sub-
process is not necessarily implemented by Targeting. In-
stead, any actionable process is used as long as it accepts
a plan from the Decision Making process and collaborates
with the IPB process.

Information Exchange. The processes, subprocesses
and phases of Command and Control interoperate. This
is accomplished through information exchange and is illus-
trated by the Information Exchange (IE) subprocess.

However, as in human communications, this is not a
simple matter of sending information; a protocol must be
followed to establish a conversation and send the informa-
tion in an orderly and expected way. Moreover, effective
information exchange must take into account both the IE
Requirements and IE Desirements of the recipient.

The ISO OSI Reference Model provides the process by
which this information exchange occurs. C2 implements
this process via the Tuckman paradigm and is consistent
with the Messaging component of the ASRM. C2 Informa-
tion Exchange includes the following phases:

o Federate (Connect). This represents the low level ISO
communication layers in which a connection is estab-
lished between the communicating parties. No data is
exchanged, but the communication channels are sim-
ply opened. This Federate phase corresponds to the
Tuckman form stage.

e Federate (Initialize). This represents the higher level
ISO communication layers in which a protocol is cho-

sen and the communications channels are prepared for
high level message passing. This Federate phase cor-
responds to the Tuckman storm stage.

e Collaborate. Data is exchanged but no action is taken.
The exchanging parties must discuss and interpret the
exchanged information before taking action on the in-
formation. The Collaborate phase corresponds to the
Tuckman norm stage.

e Operate. Finally, action is taken and the exchanging
parties interoperate based on the information shared.
The Operate stage corresponds to the Tuckman per-
form stage.

The IE subprocess is omnipresent and domain-independent,
so it is used by all the other processes within C2.

5. Conclusion

A reference model for agent-based systems produces a
taxonomy of terms that can describe concepts, definitions,
and functional elements within and between individual sys-
tems. We believe the ASRM accomplishes such a task. We
have shown that agent systems are relevant to the Command
and Control domain. Once a reference model is agreed
upon, C2 military applications can be built and integrated
with relative ease. Further, these applications can interop-
erate with existing applications allowing the military or a
coalition force to perform cooperatively as was never pre-
viously possible.

References

Kruchten, P, 1995: Architectural blueprints—The “4+1”
view model of software architecture. IEEE Software, 12,
42-50.

Modi, P, S. Mancoridis, W. Mongan, W. Regli, and
I. Mayk, 2006: Towards a reference model for agent-
based systems. Proceedings of Autonomous Agents and
Multiagent Systems, Industry Track.

Silva, A. R., A. Romao, D. Deugo, and M. M. D. Silva,
2001: Towards a reference model for surveying mobile
agent systems. Autonomous Agents and Multi-Agent Sys-
tems, 187 —231.

Sycara, K., J. Lu, M. Klusch, and S. Widoff, 1999: Dy-
namic service matchmaking among agents in open infor-
mation environments. Journal ACM SIGMOD Record,
Special Issue on Semantic Interoperability in Global In-
formation Systems.

Tuckman, B. and M. Jensen, 1977: Stages of small group
development revisited. Group and Organization Studies,
2,419-426.

Wright, T., 2004: Naming services in multi-agent sys-
tems: A design for agent-based white pages. Proceedings
of Third International Joint Conference on Autonomous
Agents and Multiagent Systems.

Xu, D., J. Yin, Y. Deng, and J. Ding, 2003: A
formal architectural model for logical agent
mobility. IEEE Trans. Softw. Eng., 29, 31-45,
doi:http://dx.doi.org/10.1109/TSE.2003.1166587.

Zimmerman, H., 1980: OSI reference model—the ISO
model of architecture for open system interconnection.
IEEE Transactions on Communications, 28, 425-432.

