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One of the great challenges of putting humanoid robots into space is developing cognitive 
capabilities for the robots with an interface that allows human astronauts to collaborate with the 
robots as naturally and efficiently as they would with other astronauts.  In this joint effort with 
NASA and the entire Robonaut team we are integrating natural language and gesture understanding, 
spatial reasoning incorporating such features as human-robot perspective taking, and cognitive 
model-based understanding to achieve a high level of human-robot interaction. Building greater 
autonomy into the robot frees the human operator(s) from focusing strictly on the demands of 
operating the robot, and instead allows the possibility of actively collaborating with the robot to 
focus on the task at hand. By using shared representations between the human and robot, and 
enabling the robot to assume the perspectives of the human, the humanoid robot may become a 
more effective collaborator with a human astronaut for achieving mission objectives in space. 
 
W%;X#"&*:  Autonomous Systems; Humanoid Robot; Cognitive Model; Spatial Reasoning. 
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As we develop and deploy advanced humanoid robots such as Robonaut,1 NASA’s 
robotic astronaut assistant platform, to perform tasks in space in collaboration with 
human astronauts, we must consider carefully the needs and expectations of the human 
astronauts in interfacing and working with these humanoid robots. We want to endow 
the robots with the necessary capabilities for assisting the human astronauts in as 
efficient a manner as possible.  Building greater autonomy into the robot will diminish 
the human burden for controlling the robot, and making the humanoid robot a much 
more useful collaborator for achieving mission objectives in space. 
 In this effort we build upon our experience in designing multimodal human-centric 
interfaces and cognitive models for dynamically autonomous mobile robots.  We argue 
that by building human-like capabilities into Robonaut’s cognitive processes, we can 
achieve a high level of interactivity and collaboration between human astronauts and 
Robonaut.  Some of the necessary components for this cognitive functionality addressed 
in this paper include use of cognitive architectures, natural language and gesture 
understanding, and spatial reasoning with human-robot perspective-taking. 
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Most of Robonaut’s activities involve interaction with human beings.  We base our work 
on the premise that embodied cognition, using cognitive models of human performance 
to augment a robot’s reasoning capabilities, facilitates human-robot interaction in two 
ways.  First, the more a robot behaves like a human being, the easier it will be for 
humans to predict and understand its behavior and interact with it.  Second, if humans 
and robots share at least some of their representational structure, communication 
between the two will be much easier.  For example, both in language use2 and other 
cognition3, humans use qualitative spatial relationships such as “up” and “north”.  While 
it would not be impossible, it would be difficult, and probably highly unnatural, to 
interact with a robot using only real number matrices. Humans employ spatial 
relationships and utilize qualitative transformations to express them.  Therefore, to 
facilitate communication, we believe it is necessary to endow the robot with qualitative 
representations of space parallel to those utilized by humans.  In previous efforts we 
have used cognitive models of human performance of tasks to augment the capabilities 
of robotic systems.4,5 
 We have investigated the use of two cognitive architectures based on human 
cognition for certain high-level control mechanisms for Robonaut.  These cognitive 
architectures are ACT-R6 and Polyscheme.7  ACT-R is one of the most prominent 
cognitive architectures to have emerged in the past two decades as a result of the 
information processing revolution in the cognitive sciences.   Recognized as a unified 
theory of cognition, ACT-R is a relatively complete theory about the structure of human 
cognition that strives to account for the full range of cognitive behavior with a single, 
coherent set of mechanisms.  Its chief computational claims are: first, that cognition 
functions at two levels, one symbolic and the other subsymbolic; second, that symbolic 
memory has two components, one procedural and the other declarative; and third, that 
the subsymbolic performance of memory is an evolutionarily optimized response to the 
statistical structure of the environment. These theoretical claims are implemented as a 
production-system modeling environment.  The theory has been successfully used to 
account for human performance data in a wide variety of domains including memory for 
goals,8 human computer interaction,9 and scientific discovery.10  We will use ACT-R to 
create cognitively plausible models of appropriate tasks for Robonaut to perform. 
 We use Cassimatis’ Polyscheme7 architecture for spatial, temporal and physical 
reasoning.  The Polyscheme cognitive architecture enables multiple representations and 
algorithms (including ACT-R models), encapsulated in “specialists”, to be integrated 
into inference about a situation.  We use an updated version of the Polyscheme 
implementation of a physical reasoner to help keep track of Robonaut’s physical 
environment. 
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One feature of human cognition that is very important for facilitating human-robot 
interaction is “perspective-taking”. There is extensive evidence that human perspective-
taking develops in young children around the age of four to five.11,12,13  In order to 
understand utterances such as “the wrench on my left”, the robot must be able to reason 
from the perspective of the speaker what “my left” means. 



 

 
 

 To explore how and when people use perspective taking (especially spatial 
perspective taking) in a context relevant to a robot like Robonaut, we examined two 
astronauts working at the neutral buoyancy laboratory (NBL) at NASA/JSC. In the NBL, 
astronauts conduct a wide variety of training for extravehicular activity (EVA); i.e., 
working outside the space shuttle, including working out the procedures and defining 
roles to perform EVAs. 
 As part of this project, the following conversation (Table 1) occurred between three 
individuals — two astronauts (EV1 and EV2) in the neutral buoyancy tank  — and one 
person (Ground) outside of the tank in mission control.  The latter watched the two 
astronauts through a video feed of the activity.  

 
Table 1:  Dialog between two astronauts and an observer. 

EV1 EV2 Ground 
  Bob, if you come straight down from where 

you are, uh, and uh kind of peek down under 
the rail on the nadir side, by your right hand, 
almost straight nadir, you should see the uh, 

 Mystery hand-rail  
  The mystery hand-rail, exactly 
 OK  
There’s a mystery hand-
rail? 

  

  Oh, it’s that sneaky one.  It’s there’s only 
one in that whole face. 

Oh, yeah, a mystery one.   
  And you kinda gotta cruise around until you 

find it sometimes. 
I like that name.   

 
 Notice several things about this conversation.  First, the mission control person 
mixes reference frames from addressee-centered (“by your right hand”) and exocentric 
(“straight nadir” which means towards the earth) in one instruction, the very first 
utterance.  Second, the participants come up with a new name for a unique unseen object 
(“the mystery hand-rail”) and then tacitly agree to refer to it with this nomenclature later 
in the dialog. 
 This short excerpt shows that an automated reasoning system needs to be able not 
only to mix perspectives, but to do so in a rather sophisticated manner.  One of the most 
difficult aspects of this problem is the addressee-centered point of view, which happens 
quite often in the corpus we have examined.  Thus, in order for a robotic system to be 
truly helpful, it must be able to take into account multiple perspectives, especially 
another person’s perspective.  There are, of course, multiple ways of solving this 
problem.  We have worked on two possibilities, both focusing on computational 
cognitive models.  Both models have been described in more detail elsewhere.14,15,16 
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Polyscheme is a cognitive architecture based on the ability to conduct mental 
simulations of past, future, distant, occluded and/or hypothetical situations.  Our 
approach has been to use Polyscheme to enable robots to simulate the world from the 



 

 
 

perspective of people with whom they are interacting, and to understand and predict the 
actions of humans. 
 Polyscheme uses several modules, called specialists, which use specialized 
representations for representing some aspect of the world.   For example, Polyscheme’s 
space specialist uses cognitive maps to represent the location of and spatial relations 
among objects.  Its physics specialist uses causal rules to represent the causal 
relationship between events.  Using these specialists, Polyscheme’s specialists can 
simulate, i.e., represent the state and predict subsequent states, of situations it cannot see 
at present, either because they occurred in the past or future, they are occluded from 
view and/or they are hypothetical. 
 Polyscheme modelers have the ability to set strategies for choosing which situations 
to simulate in what order.  Modelers use these strategies to implement reasoning and 
planning algorithms, including perspective taking.  For example, the counterfactual 
simulation strategy “when uncertain about A, simulate the world where A is true and the 
world where A is false” implements backtracking search when used repeatedly.  The 
stochastic simulation strategy “when A is more likely to be true than false, simulate the 
world where A is true more often than the world where A is false” implements an 
approximate form of probabilistic reasoning (often used, e.g., to estimate probabilities in 
a Bayesian network).  Polyscheme’s ability to combine multiple simulations from 
multiple strategies and to share simulations among strategies is the key to tightly 
integrating multiple reasoning and planning algorithms.14  Since each simulation is 
conducted by specialists that use multiple representations (e.g., perceptual, spatial, etc.), 
the integration of reasoning with sensation and multiple forms of reasoning is inherent 
and on-going. 
 

 
Fig. 1. The robot needs to take the perspective of the person 
in order to determine to which cone the human has referred. 



 

 
 

 By using Polyscheme to implement the perspective simulation strategy “when a 
person, P, takes action, A, at time, T, simulate the world at time T from A’s 
perspective,” we have given our robots the ability to reason about the world from the 
perspective of people and to thereby disambiguate their utterances.  In many cases, for 
instance, an utterance is ambiguous given the listener’s knowledge, but unambiguous 
given the speaker’s knowledge.  Figure 1 is an example.  The figure shows a robot and a 
person facing each other.  The robot can see that there are two cones in the room, cone1 
and cone2, but the person only knows about cone2 because cone1 is hidden from her.  
When the person commands, “Robot, go to the cone”, the phrase “the cone” is 
potentially ambiguous to the robot because there are two cones, though unambiguous to 
the person because she only knows of the existence of one cone.  Intuitively, if the robot 
could take the perspective of the person in this task, it would see that, from that 
perspective, cone2 is the only cone and therefore “the cone” must refer to cone2. 
 We have used Polyscheme to implement this sort of reasoning on Robonaut.  
Generally, Polyscheme uses perspective taking and mental simulation to determine 
which cone the person can see (creating multiple hypothetical worlds until the “correct” 
world is found and the correct cone then becomes disambiguated for the robot.14  

 

2.1.2. P%"*5%$-'A% -1O'() 6*'() *'4'21" "%5"%*%(-1-'#(*:  ACTSR 
 
The cognitive architecture jACT-R is a java version of the ACT-R architecture.17  To 
represent declarative memory, it uses chunks of various types of elements.  These 
chunks can be accessed through a memory retrieval buffer.  In order to use and 
manipulate the chunks of memory, ACT-R provides a framework for production rules.  
A sample chunk and production rule is shown in Figure 2.  ACT-R then simulates 
cognitive behavior and thought based on activation values and propagation of chunks 
and higher-level goals.  ACT-R also includes support for perceptual and motor cognitive 
tasks by including a second visual buffer for viewing objects in space. 
 ACT-R/S extends jACT-R to implement a theory about spatial reasoning.18 It posits 
that spatial representations of objects are temporary, egocentric and dynamically 
updated.19 ACT-R/S has three buffers for spatial cognition:  the configural buffer, the 
manipulative buffer, and the visual buffer.  The configural buffer represents spatial 
extents of objects that are updated during self-locomotion and is used during navigation, 
path-computation, object-avoidance, etc.  The manipulative buffer represents the metric 
spatial bounds of an object and is used for spatial transformations of objects.20,16  The 
visual buffer is the same as the “standard” perceptual-motor buffer in ACT-R/PM.21 
 ACT-R/S represents objects using vectors to the visible sides of the object.  It has 
the ability to track these objects through the configural buffer, a data structure analogous 
to the other buffers of ACT-R that stores each object once it has been identified.  The 
coordinate vectors of the objects in the buffer are then dynamically updated as the agent 
moves throughout the spatial domain. The configural buffer, unlike the visual and 
retrieval buffers of ACT-R, can hold more than one object to account for the fact that 
animals have been shown to track more than one landmark at once while moving 
through the world.22  In order to focus on the representational aspects of perspective-
taking, we have built our model using only the spatial representations within jACT-R/S. 



 

 
 

 Using the configural extension begins with locating and attending to an object via 
the visual buffer provided by the standard Perceptual-Motor extension to ACT-R. Once 
an object is found, it is possible to request that the ACT-R/S-visual object at that 
location, if one exists, be placed in the configural buffer.  The model then begins 
tracking this object, creating the initial vectors and updating them as the agent moves 
around in the world.  The updating transformation is done by adding or subtracting 
vectors representing the agent’s movement to the vectors and object’s location. 

 

    chunk_cone: 
  isa: cone 
  color: gray 
  speaker_can_see: true 
  location: (x,y) 
 
    production_take_cone: 
  if isa cone 
        and speaker_can_see 
        and (my_x, my_y) = (x,y) 
  then take_cone 
 

Fig. 2.  An ACT-R memory chunk and production rule. 
 
 

 In order to demonstrate the results of perspective taking using jACT-R/S, we solved 
the same perspective-taking task that Polyscheme did:  disambiguating which cone a 
person referred to when the robot could see two cones but the person could only see one.  
For this example, we did not implement the full system on a physical robot.  In the 
simulated world, two agents (hereafter referred to as the ‘speaker’ and the ‘robot’) are in 
a room with two cones and a screen.  The screen blocks the view of one of the cones 
from the speaker, but not the robot.  Then, the speaker asks the robot to hand them the 
cone, using some locative clue such as “in front of me.”  If both of the cones match this 
description, then the robot should hand the speaker the cone that they know the speaker 
can see.  
 The model thus uses the ACT-R/S architecture in order to use spatial perspective 
taking to complete its task.  In general, the ACT-R/S model fires a series of productions 
that inspect the viewpoint of the speaker (through the configural buffer) to determine 
which cone the speaker is referring to.  Throughout the simulation, the model mentally 
walks and perceives from both the speaker’s and the listener’s viewpoint.15   
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We use a multimodal interface to process the various interactions with the robot.  While 
there are a wide variety and many examples of multimodal interfaces, too numerous to 
cite here, there are a few multimodal interfaces that focus on the kinds of interactions 
with which we are concerned; namely, gestural and natural language modes of 



 

 
 

interaction.  For example, one gestural interface uses stylized gestures of arm and hand 
configurations23 while another is limited to the use of gestural strokes on a PDA 
display.24  The extent to which such devices will be employed in the environment of 
space has yet to be determined.  However, since our interface has modules already in 
place, they are provided here for expository completeness.  The use of a PDA device as 
currently envisioned might prove to be rather cumbersome for astronauts, already 
encumbered by a bulky spacesuit.  However, future work may show that the use of such 
devices as wearable interfaces might prove beneficial for astronauts in certain situations. 
 Other interactive systems process information about the dialog using natural 
language input.25,26  Our multimodal robot interface is unique in its combination of 
gestures and robust natural language understanding coupled with the capability of 
generating and understanding linguistic terms using spatial relations.   
 An interface supporting communication between a humanoid robot and a human 
sharing a real world environment and interacting with each other in that environment 
must include a natural language component.  Just as humans interact with each other, not 
relying on monitors, joysticks or other computational devices with which to exchange 
information or request actions to be performed in the real world, humans interacting with 
humanoids will not necessarily  use these devices in their daily interactions (although 
they may be provided for ancillary purposes).  On the other hand, to facilitate 
communication, the interface will use natural language and gestures to allow the agents 
to communicate with each other in a very natural way.  The emphasis here, of course, is 
on what is natural for the human, to provide a more habitable interface for the human to 
use.  Thus, an interface which is to support collaboration between humans and humanoid 
robots must include a natural language component. 
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We currently employ a natural language interface that combines a ViaVoice™ speech 
recognition front-end with an in-house developed deep parsing system, NAUTILUS.27  
This gives the robot the capability to parse utterances, providing both syntactic 
representations and semantic interpretations.  The semantic interpretation subsystem is 
integrated with other sensor and command inputs through use of a command 
interpretation system.  The semantic interpretation, interpreted gestures from the vision 
system, and command inputs from the computer or other interfaces are compared, 
matched and resolved in the command interpretation system.   
 Using our multimodal interface (Figure 3), the human user can interact with a robot, 
using natural language and gestures.  The natural language component of the interface 
embodied in the Spoken Commands and Command Interpreter modules of the interface 
uses ViaVoice™ to analyze spoken utterances.  The speech signal is translated to a text 
string that is further analyzed by our natural language understanding system, 
NAUTILUS, to produce a regularized expression.  This representation is linked, where 
necessary, to gesture information via the Gesture Interpreter, Goal Tracker/Spatial 
Relations component, and Appropriateness/Need Filter, and an appropriate robot action 
or response results.  
 



 

 
 

 
Fig. 3.  Multimodal Interface for Human-Robot Collaboration. 

 
 
 For example, the human user can ask the robot “How many objects do you see?”  
ViaVoice™ analyzes the speech signal, producing a text string.  NAUTILUS parses the 
string and produces a representation something like the following, simplified here for 
expository purposes. 
 

(ASKWH                                                                                                                 (1)                               
  (MANY N3 (:CLASS OBJECT) PLURAL) 
  (PRESENT #:V7791                                    

  (:CLASS P-SEE)                                                    
  (:AGENT (PRON N1 (:CLASS SYSTEM) YOU))  
  (:THEME N3)))  

 
 The parsed text string is mapped into a kind of semantic representation, shown here, 
in which the various verbs or predicates of the utterance (e.g. *%%) are mapped into 
corresponding semantic classes (5S*%%) that have particular argument structures (1)%(-, 
-.%4%). For example, “you” is the agent of the 5S*%% class of verbs in this domain and 
“objects” is the theme of this verbal class, represented as “N3”—a kind of co-indexed 
trace element in the theme slot of the predicate, since this element is fronted in English 
wh-questions.  If the spoken utterance requires a gesture for disambiguation (e.g. the 
sentence “Look over there”), the gesture components obtain and send the appropriate 
information to the Goal Tracker/Spatial Relations component where linguistic and 
gesture information are combined.   



 

 
 

 Both natural and so-called “symbolic” gestures are input to the multimodal 
interface.  Users can gesture naturally by indicating directions, measurements, or 
specific locations with arm movements or they can use more symbolic gestures, by 
indicating paths and locations on a metric-map representation of the environment or 
video image on a PDA screen or end-user terminal (EUT). Users of this modality can 
point to locations and objects directly on the EUT monitor, thereby permitting the 
following kinds of utterances: “Go this way,” “Pick up that object/wrench,” or “Explore 
the area over there” using a real-time video display in addition to already available 
natural means of gestural interchange should the situation require its use.  If the gesture 
— whatever its source — is valid, a message is sent to the appropriate robotics 
module(s) to generate the corresponding robot action.  If the gesture is inappropriate, an 
error message is generated to inform the user, just as humans interact with other humans 
when further information is required or corrective action is needed for further exchanges.  
Where no gesture is required or is superfluous, the linguistic information maps directly 
to an appropriate robot command.  In the above example (1), no further gesture 
information is required to understand the question about the number of objects seen.   
 In previous efforts we interacted with several non-humanoid mobile robots.  As 
indicated earlier, as we focus more on working with humanoid robots, we believe natural 
gestures will become more prevalent in the kinds of interactions we study.  Gesturing is 
a natural part of human-to-human communication.  It disambiguates and provides 
information when no other means of communication is used.  For example, we have 
already discussed the disambiguating nature of a gesture accompanying the utterance 
“Look over there.”  However, humans also gesture quite naturally and frequently as a 
non-verbal means of communicating information.  Thus, a human worker collaborating 
with another worker in an assembly task might look in the direction of a needed tool and 
point at it.  The co-worker will typically interpret this look and gesture as a combined 
non-verbal token indicating that the tool focused on and gestured at is needed, should be 
picked up and passed back to the first co-worker.  In terms of the entire communicative 
act, both the look and the gesture indicate that a specific object is indicated, and the 
context of the interaction, namely assembly work, dictates that the object is somehow 
relevant to the current task and should therefore be obtained and handed over.   
 A verbal utterance might also accompany the foregoing non-verbal acts, such as 
“Get me that wrench” or simply “Hand me that.”  In the case of the first utterance, the 
object in the world has a location and a name.  Its location is indicated by the deictic 
gestures perceived (head movement, eye gaze, finger pointing, etc.), but its name comes 
solely from the linguistic utterance.  Whether or not the term “wrench” is already known 
by the second co-worker, the latter can locate the object and complete the task of 
handing it to the first co-worker.  Further, even if the name of the object is not part of the 
second co-worker’s lexicon, it can be inferred from the gestural context. Gestures have 
narrowed down the possibilities of what item in the world is known as a “wrench.”  In 
the case of the second utterance above, the name of the item is not uttered, but the item 
can still be retrieved and handed to the first co-worker.  In this case, if the name of the 
item is unknown, the second co-worker can ask “What’s this called?” as the co-worker 
passes the requested item. 
 We envision such interactions and behaviors as those outlined above as elements of 
possible scenarios between humans and Robonaut.  Thus far, in our work on a 
multimodal interface to mobile robots, we have shown how various modes of our 
interface can be used to facilitate communication and collaboration.  However, we 



 

 
 

would like to extend such capabilities to a humanoid robot, as well as add learning, such 
as learning the name of an object previously unknown based on contextual 
(conversational and visual) information.   
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Building upon the existing framework of our natural language understanding system, 
and utilizing the on-board sensors for detecting objects, we are developing a spatial 
reasoning capability for the robot.28,29,30,31  This spatial reasoning capability has been 
integrated with the natural language and gesture understanding modules through the use 
of a spatial modeling component based on the histogram of forces.32  Force histograms 
are computed from a boundary representation of two objects to provide a qualitative 
model of the spatial relationship between the objects. Here, the histograms are computed 
between an environment object (extracted from sensory data) and the robot to produce 
an egocentric model of the robot’s environment.  Features extracted from the histograms 
are fed into a system of rules33 or used as parameters in algorithms30 to produce 
linguistic spatial terms.  The spatial language component will be incorporated into the 
cognitive framework of the robot through a perspective-taking capability implemented 
using the Polyscheme architecture. 
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Spatial reasoning is important not only for solving complex navigation tasks, but also 
because we as human operators often think in terms of the relative spatial positions of 
objects, and we use relational linguistic terminology naturally in communicating with 
our human colleagues.  For example, a speaker might say, “Hand me the wrench on the 
table.” If the assistant cannot find the wrench, the speaker might say, “The wrench is to 
the left of the toolbox.” The assistant need not be given precise coordinates for the 
wrench but can look in the area specified using spatial relational terms.  
 In a similar manner, this type of spatial language can be helpful for intuitive 
communication with a robot in many situations. Relative spatial terminology can be used 
to limit a search space by focusing attention in a specified region, as in “Look to the left 
of the toolbox and find the wrench.”  It can be used to issue robot commands, such as 
“Pick up the wrench on the table.”  A sequential combination of such directives can be 
used to describe and issue a high level task, such as, “Find the toolbox on the table 
behind you. The wrench is on the table to the left of the toolbox.  Pick it up and bring it 
back to me.”  Finally, spatial language can also be used by the robot to describe its 
environment, thereby providing a natural linguistic description of the environment, such 
as “There is a wrench on the table to the left of the toolbox.”   
 In all of these cases the use of spatial terminology increases the dynamic autonomy 
of the system by giving the human operator less restrictive and more natural language 
for communicating with the robot.  However, the examples above also assume some 
level of object recognition by the robot. 



 

 
 

 To address the problem of linguistically identifying and understanding novel objects 
in the real world, the natural language understanding system interacts with the spatial 
relations component to assist in recognizing and labeling objects.  This is achieved by 
allowing the user to dialog with the robot about novel objects.   Once an object is 
labeled, the user can then issue additional commands using the spatial terms and 
referencing the named object.  An example is shown below: 
 

 Human:  “How many objects do you see?”   
 Robot:    “I see 4 objects.”   
 Human:  “Where are they located?” 
 Robot:    “There are two objects in front of me, one object on my right, and one  
                 object behind me.” 
 Human:  “The nearest object in front of you is a toolbox. Place the wrench to the left  
           of the toolbox.” 

 
  Establishing a common frame is necessary so that it is clear what is meant by 
spatial references generated both by the human operator as well as by the robot. Thus, if 
the human commands the robot, “Turn left,” the robot must know whether the operator 
refers to the robot’s left or the operator’s left.  In a human-robot dialog, if the robot 
places a second object “just to the left of the first object,” is this the robot’s left or the 
human’s left?  We anticipate that the dialoging, coupled with Polyscheme’s ability to 
construct a world employing the objects under discussion, will produce an adequate 
representation of the perspectives of the various agents involved in the interaction. 
 Currently, commands using spatial references (e.g., “go to the right of the table”) 
assume an extrinsic reference frame of the object (table) and are based on the robot’s 
viewing perspective, consistent with Grabowski’s “outside perspective”.34 That is, the 
spatial reference assumes the robot is facing the referent object.  In the example, the 
robot would first turn to face the table, and then determine a target point to the right of 
the table. 
 There is some rationale for using the robot’s viewing perspective.  In human-robot 
experiments, Moratz et al. found that test subjects consistently used the robot’s 
perspective when issuing commands.35  We are investigating this by conducting human-
factors experiments. In these experiments individuals who do not know the spatial 
reasoning capabilities and limitations of the robot provide instructions to the robot to 
perform various tasks requiring spatial referencing.  The results of these studies36,37 will 
be used to enhance the multimodal interface by establishing a common language for 
spatial referencing which incorporates those constructs and utterances most frequently 
used by untrained operators for commanding the robot.   
 Preliminary findings in our pilot study confirmed that human users usually take the 
robot’s perspective when issuing directional or spatial commands when they have the 
robot’s point of view.  However, we also provided the human users with a God’s-eye-
view of the robot’s environment. An interesting question arises when the user has a 
God’s-eye-view of the robot’s environment.36  Namely, do humans continue to facilitate 
the interchange with addressee-centered spatial references or employ other types of 
perspectives, such as object-oriented or object-centric orientations to compensate for the 



 

 
 

mismatch of perspectives?  However, we cannot answer this question here because data 
analysis at this point is incomplete.  Further findings are forthcoming.36 
  
 
L5>5 Spatial representation 
 
In previous work we have used both 2D horizontal planes (e.g., an evidence grid map, 
built with range sensor data) and 2D vertical planes (using image data), but thus far they 
have not been combined.  For Robonaut we will combine them to create a 2½D 
representation.  To achieve the type of interaction described above, it is not necessary to 
build a full 3D, global representation of the environment.  Rather, we assert that a more 
useful strategy is to obtain range information for a set of objects identified in the image 
plane. Human spatial language naturally separates the vertical and horizontal planes, 
e.g., “the wrench is on the table, vs. the wrench is to the left of the toolbox.”  Our 
linguistic representation provides a mapping for both locative prepositional phrases, e.g., 
“the wrench is on the table to the left of the toolbox.”  Processing the spatial information 
as two (roughly) orthogonal planes provides a better match with human spatial language.   
 Range information is extracted from stereo vision; the vision-based object 
recognition can assist in determining the correct correspondence between stereo images 
by constraining the region in the image.  We do not need to label everything in the 
scene, but only those objects or landmarks that provide a basis to accomplish the robot’s 
task.  
 
 
L5F5 Spatial databases 

 
The position of recognized objects can be stored in a robot-centric frame such as the 
Sensory Ego Sphere (SES);38 global position information is not necessary. The SES is a 
database implementation of Albus’s proposed egosphere.39 This spatial database 
provides an egocentric view of the world which is consistent with the robot’s viewing 
perspective. The SES structure is a geodesic dome with a default frequency of 13, 
yielding a resolution of about five degrees with 1680 hexagonally-connected triangles. 
Each vertex can be labeled with an object identifier; some objects span multiple vertices. 
Objects may be retrieved using azimuth and elevation angles as indices into the 
database. An azimuth and elevation may also define a starting point in a search, for 
example, to look for an object in a specified region. In this case, a breadth-first search is 
executed using the specified azimuth and elevation as the starting node.38 
 As a database structure, sensory processes may be adding information to the 
database in the form of identified objects and ranges, while, at the same time, motor 
processes may be retrieving information for navigation or manipulation tasks. Being 
egocentric, SES facilitates sensor fusion and reasoning in the robot’s inherent reference 
frame.39  
 In addition, the egocentric structure provides a convenient method of applying 
Previc’s cognitive model which specifies how the egocentric space is subdivided and 
used depending on the type of task (manipulation, recognition, navigation, or 



 

 
 

localization).40 For example, peripersonal space is used for manipulation tasks, covering 
the central 60 degrees in the lower field of a body-centered egocentric space, up to about 
two meters. Navigation tasks use action space which covers a full 360 degrees with a 
range of about two meters up to intermediate distances. 
 We plan to evaluate the use of the SES as a spatial database for Robonaut. To 
achieve the type of spatial language dialog described above, we will project environment 
objects onto horizontal and vertical planes. For example, phrases such as “look for the 
wrench to the left of the toolbox” will utilize a horizontal plane at the appropriate height. 
The toolbox (stored in the SES with a known range) would be projected onto this 
horizontal plane and a region to the left of the toolbox, also located on the horizontal 
plane, would be computed. This left region location is then transformed back into the 
SES to define a starting node for the wrench search. In a similar way, a vertical plane 
can be used to form the relations above and below or on top.   
 
 
M5  IHJGAHA67I7=96 
  
This section describes the integration of previously discussed concepts, speech 
understanding, and perspective-taking for the robotic astronaut assistant platform, 
Robonaut. 
 
 
M545 Architecture 
 
The system implementing Robonaut’s autonomy is made up of several modules (Figure 
4).  Modules communicate among each other using TCP/IP and/or Network Data 
Delivery Service (NDDS) version 2.3d.41  The modules are implemented across multiple 
operating systems and machines.  This section gives details of the implementation and 
functionality of each of the modules. 
 
 
6.1.1.  S5%%$. "%$#)('-'#( 1(& 6(&%"*-1(&'() 
 
Human speech is captured by microphone and then processed into a text string by 
ViaVoice™.  The text string is then sent via TCP/IP socket connection to NAUTILUS.  
NAUTILUS parses the text and activates appropriate behaviors such as talking, 
movement, or reasoning via NLPProxy. ViaVoice™ is currently running under 
Windows XP while NAUTILUS has been compiled on Red Hat 7.2 kernel 2.4.2 under 
Allegro Lisp 6.1. Due to unavailability of a Linux version of NDDS and Windows 
license of Allegro Lisp, it was necessary to implement NLPProxy to pass messages from 
NAUTILUS to the remainder of the system.  The proxy, a simple C server application, 
receives the command tokens from NAUTILUS over TCP/IP and sends out appropriate 
NDDS messages.  
 



 

 
 

 
Fig. 4.  Architecture diagram. 

 
 In addition to capabilities available from our previous work28 such as simple motion 
commands (e.g., turn, move), spatial language terminology (between, to the left or right 
of, etc.) was adapted to match Robonaut’s capabilities. The system was augmented to 
handle the concepts exemplified by verbs such as grasp, give, pick-up, push, press, 
point, and show to take advantage of Robonaut’s arms and its grasping capabilities. 
 Less obviously, the collaborative nature of Robonaut's tasks also requires the system 
to handle words that structure the dialogues that such tasks typically require.  This is 
being developed for parallel use in a robot that can learn the task from the human 
collaborator.42 Task-structuring words include ‘top-level’ ways of announcing the task at 
hand (e.g., “Let's do task number 3”), sequencing words to arrange and delineate 
subtasks (e.g., now, first, next), and feedback (e.g., “That's wrong,” “Okay,” “Good”).   
 
 
UN>N?N P%"*5%$-'A%S-1O'() '( P#2;*$.%4% 
 
A perspective-taking specialist was implemented in Polyscheme.  When Polyscheme 
receives a command from NAUTILUS (or rather NLPProxy) to reach for, give, or show 
an object, the perspective-taking specialist simulates a “world” from the human 
perspective based on knowledge about objects in the real world as recorded in 
Egosphere.  It then reasons about relevant objects and resolves any possible ambiguities 



 

 
 

in that world based on occlusions or proximity.  Once the requested object has been 
found, the model issues motion commands to Robonaut.  If the object is not found or the 
ambiguity cannot be resolved without additional information, the model provides the 
human with speech feedback.   
 Polyscheme and its specialists are implemented in Java and thus are platform 
independent. Since the specialist controls the robot directly, it makes use of Java Native 
Interface to call foreign functions implemented in Robonaut and Egosphere interfaces, 
which are currently only supported under Windows XP. Polyscheme currently runs 
under Windows XP with Java 1.4.2. 
 
6.1.3. S%(*#"; E)#*5.%"% <SES=  
 
The SES is used to represent Robonaut’s perception of its environment at its current 
state. Due to the difficulty of automatic object recognition, objects are currently 
identified and labeled by the human.  Such objects can then be entered into the SES.  
The information obtained from the vision and the speech processes is stored in a local 
MYSQL database and includes the name of the object (nut1, driver2, etc.), its type (tool, 
person, part, etc.), frame of reference (chest or vision), its 3D position, and the pose of 
the robot at the time the object was identified. The Egosphere interface currently allows 
clients (e.g., Polyscheme, NLPProxy) to retrieve any attributes of a specific object and to 
return name of the object at a specified 3D location. The SES interface and database 
management application itself are implemented in C and C++ and run under Windows 
XP with MYSQL version 4.0.13. 
 
6.1.4. T.% "#9#-: R#9#(16- 
 
As mentioned previously, Robonaut is a humanoid robot developed at NASA Johnson 
Space Center (JSC).  There are currently two models.  Robonaut Unit A has 43 degrees-
of-freedom (DOF) as follows: a 2-DOF head, two 7-DOF arms, two 12-DOF hands, and 
a 3-DOF tail.  The newer model, Robonaut Unit B, adds additional degrees of freedom 
in the head and tail and is currently mounted on a Segway platform providing it with 
additional mobility.  Our work to date has been done on Unit A, but is completely 
compatible with Unit B. 
 Robonaut’s interface allows clients (e.g., NLPProxy, Polyscheme) to easily control 
trajectories of motion of all of the robot’s extremities as well as to obtain pose and 
sensor (e.g., vision, touch) information.  Additional, higher-level functionality includes 
positioning of arms and grasping at desired locations, and looking toward a specified 
location.  The Robonaut interface is written in C++ and currently runs under Windows 
XP.  A simulator which supports most of Robonaut’s functionality and includes a 3D 
display is provided as well.  
 
 
M5>5  Demonstrations 
 
The following experimental scenarios were designed to present systems capabilities 
including speech recognition and natural language understanding, perspective-taking for 
resolution of occlusion- and proximity-based ambiguities among objects, object labeling, 
task learning, and autonomous grasping.    



 

 
 

6.2.1. T##2 "%-"'%A12 *$%(1"'# 

In this scenario Robonaut assists a human by retrieving requested tools (Figure 5).  
There are a couple of objects of interest, in this case tools (or more specifically 
wrenches), which are placed in the environment, located between human and the robot.  
The human can see only one wrench because an obstacle, a plastic container, occludes 
the other one.  Robonaut, on the other hand can see both wrenches.  Robonaut is able to 
reason about the wrenches from human’s perspective, giving it the ability to resolve the 
ambiguity in commands referring to the object, for example “Give me the wrench.”  
 A perspective-taking specialist was implemented in Polyscheme which is able to 
resolve occlusion-based ambiguities and was integrated with speech recognition and 
natural language understanding modules, ViaVoice™ and NAUTILUS respectively.  
Furthermore, the model was able to get Robonaut to look toward and point at the 
appropriate object.  Robonaut was also able to provide speech feedback during the 
interaction.  In the current instance of the scenario, Robonaut was provided with a list of 
objects (e.g., wrenches, containers, people) and their positions in the environment.  
Integration efforts currently underway include visual object recognition provided by 
NASA JSC, SES by Vanderbilt University, and grasping implemented by the University 
of Massachusetts. 
 

 
Fig. 5.  Tool retrieval scenario. 

6.2.2. W.%%2 1**%492; -1*O 
 
In this scenario Robonaut will fasten nuts onto a wheel (similar to lug nuts on an 
automobile wheel). There are several nuts available, a wheel, and several tools.  A 
human identifies all the relevant objects in the environment through speech and gesture; 
for example, the human could say “Robonaut, this is a driver” while pointing to the 
driver in the environment.  The human first shows Robonaut the task to give it the 



 

 
 

opportunity to learn, and then the robot performs the task autonomously.  During the 
learning phase of the task Robonaut assists the human by retrieving parts and 
appropriate tools.  
 This scenario will extend the integration performed for the tool retrieval scenario by 
taking advantage of the work being done at Vanderbilt University and Media Lab at MIT 
in learning by example and visual gesture tracking implemented at NASA JSC.  The 
Polyscheme specialist will also be extended to allow Robonaut to resolve command 
ambiguities based upon objects’ proximity to the person requesting them, in addition to 
resolving occlusion-based ambiguities as in the tool retrieval scenario. 
 
 
N5  C96<G;C=96C 
 
Humanoid robots such as Robonaut offer many opportunities for advancing the use of 
robots in complex environments such as space, and for development of more effective 
interfaces for humans to interact with them. Once a sufficiently high level of interaction 
between robots and humans is achieved, the operation of and interaction with these 
robots will become less of an additional burden for the humans, and more of a 
collaboration to achieve the objectives of the task-at-hand.  In this paper we describe our 
plans to endow Robonaut with cognitive capabilities which will support collaboration 
between human astronauts and Robonaut.  We build upon our experience in natural 
language understanding, gesture recognition, spatial reasoning and cognitive modeling 
in achieving these goals. 
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Support for this effort was provided by the DARPA IPTO Mobile Autonomous Robot 
Software (DARPA MARS) Program.  Thanks also to William Bluethmann, Mike Goza, 
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