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Abstract 

What are the characteristics of long-term learning?  We investigated the characteristics of 

long-term, symbolic learning using the Soar and ACT-R cognitive architectures running 

cognitive models of two simple tasks.  Long sequences of problems were run collecting 

data to answer fundamental questions about long-term, symbolic learning.  We examined 

whether symbolic learning continues indefinitely, how the learned knowledge is used, 

and whether computational performance degrades over the long term.  We report three 

findings.  First, in both systems, symbolic learning eventually stopped.  Second, learned 

knowledge was used differently in different stages but the resulting production 

knowledge was used uniformly. Finally, both Soar and ACT-R do eventually suffer from 

degraded computational performance with long-term continuous learning.  We also 

discuss ACT-R implementation and theoretic causes of ACT-R’s computational 

performance problems and settings that appear to avoid the performance problems in 

ACT-R. 
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Introduction 

Learning has been widely studied by researchers in the fields of psychology, 

education, cognitive science, and Artificial Intelligence (AI).  The nature and 

representation of learning, including forms of learning, speed, memory capacity, etc., 

have been investigated, and theories proposed and discussed.  Most theories of learning 

assume that healthy people learn continuously, learn throughout their lives, and seem to 

have an infinite capacity for knowledge.  On the other hand, relatively few computational 

systems have performed cognitively plausible long-term learning.  In this paper we 

explore long-term learning using computational cognitive architectures. 

Several of our terms need clarification.  By learning, we mean more than simply 

acquiring knowledge.  Learning, sometimes called skill acquisition, involves both the 

acquisition of knowledge and its use to improve performance.  Learning is commonly 

defined as the improvement in performance with experience and involves both a 

symbolic and subsymbolic component (Anderson, 2000).  We focused our work on 

symbolic learning, i.e., the learning of discrete pieces of knowledge.  Limiting ourselves 

to symbolic learning also avoids issues associated with the physiology of perception and 

psychomotor response aspects of cognition.   We emphasize the long-term aspect of 

learning to get past the short-term transients of perception and short-term memory.  We 

also mean long-term in a systems sense, i.e., long enough to reach steady-state behavior.  

Long-term learning in humans has been studied over periods of decades and performance 

improvements, specifically in response time, were formalized as the “power law of 

learning” (Anderson, 2000; Newell & Rosenbloom, 1981).  In our study of long-term, 

symbolic learning, we used two of the most widely used computational cognitive 

architectures, Soar and ACT-R.   
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Soar is a symbolic learning system with early success modeling the observed 

(long-term) power law of learning (Rosenbloom & Newell, 1986).  In 1990, Newell 

proposed Soar as a unified theory of cognition (Newell, 1990) based on single 

mechanisms for the different components of cognition.  Soar uses one form of short-term 

memory, called working memory, and a single learning mechanism, “chunking”, in 

which the solution to a subproblem is formulated as a production.  The single form of 

long-term memory is the retention of all productions.  Soar is a symbolic AI system and 

does not attempt to model human learning below the symbolic level.  Consistent with the 

learning theory that Soar implements, productions are retained forever and working 

memory is transient.   

The ACT family of theories has a long history of integrating, matching, and 

explaining psychological data. ACT-R derives important constraints from asking what 

cognitive processes are adaptive given the statistical structure of the environment 

(Anderson, 1990).  In ACT-R’s model of human memory, knowledge is represented in 

declarative or procedural forms, called chunks or productions respectively, and each is 

modeled at both the symbolic and subsymbolic levels.  Subsymbolic calculations of 

activation determine the system’s ability to recall each piece of symbolic knowledge and 

the associated latency of that recall.  (Activation for productions is called production 

utility.)  The symbolic chunks and productions with current activations below a user-

specified thresholds are not retrieved.  However, all declarative knowledge and 

productions are maintained and subsequent experience can raise their activation.  Several 

model parameters control the details of the activation calculations. 
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Research Questions 

We focus on three fundamental questions associated with the nature of long-term 

learning as modeled by Soar and ACT-R: (1) how long symbolic learning occurs, (2) how 

the learned knowledge is used or transformed, and (3) whether there are performance 

problems associated with long-term learning.  

Does symbolic learning go on forever? 

We first examined a fundamental assumption associated with long-term learning: 

does symbolic learning go on forever or what is its long-term, steady-state behavior?  

Newell (1990) wrote that learning, specifically the acquisition of symbolic knowledge, 

occurs at an “approximately” constant rate apparently independent of the scale of the 

task.  Continuous learning is a tenet of his unified theory of cognition and of Soar, which 

implemented his theory and successfully modeled the power law of learning (Newell & 

Rosenbloom, 1981).  For simple, finite domains, this means that once all the symbolic 

knowledge has been learned, there is nothing left to learn and learning stops. 

The theory behind the ACT-R system does acknowledge “great reductions in 

cognitive involvement” based on obeying the power law (Anderson, 2000) as the system 

gains experience with a domain.  ACT-R theory explicitly acknowledges that speed up in 

response time could continue until the learner reaches the limitations of the embodied 

physical system.  That suggests that the symbolic portion of learning, i.e., not including 

the psychomotor phase of responses, would eventually end.  This analysis suggests that 

Soar theory predicts that symbolic learning continues at a constant rate until it stops and 

ACT-R’s theory predicts that learning continues but slows toward an asymptote.   
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How is learned knowledge used? 

The second question concerns how learned knowledge is used or transformed.  

Theorists have suggested that learning includes the retention of some facts based on a 

potential use rather than a demonstrated use (Anderson, 2000).  But, how and when is it 

used? 

Over the long term, the use of knowledge has been proposed to change in human 

learning.  The learned knowledge starts as declarative knowledge used in problem 

solving and eventually becomes retrieved solutions without problem solving (Logan, 

1988).  Three stages have been proposed (Anderson, 1982; Fitts, 1964).  The first stage is 

the cognitive stage.  The knowledge learned is primarily declarative and must be 

interpreted through problem solving to improve performance.  General problem solving 

techniques are employed using the knowledge available and creating new declarative 

knowledge.  The second stage is the associative stage.  Here there is a mix of declarative 

and task-specific procedural knowledge and the problem solving is transitioning from 

general methods to methods specific to the problem domain.  By the third stage, called 

the autonomous stage, the knowledge used is all procedural, is compiled from the 

declarative knowledge, is fast, and is error-free.  In this last stage, there is no problem 

solving necessary because responses are directly recalled.  The continued performance 

improvements in the third stage are based on psychomotor speedup up toward physical 

limitations (Anderson et al., 2004). 

Previous experiments with Soar demonstrated that in some problem domains, 

even in the long term, Soar only used about half of its learned productions (Kennedy, 

2003).  Further, although the number of productions used on each problem was 
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approximately constant, more recently learned productions were used more frequently 

but a smaller portion came from the whole range of the learning process (Kennedy & De 

Jong, 2003).  The results reported here will highlight similarities and differences between 

ACT-R and Soar in how both systems perform long-term learning.   

Are there performance problems in long-term learning? 

The performance associated with learning is normally a combination of 

improvements in effectiveness, i.e., fewer steps employed to accomplish a task, and 

improvements in efficiency, i.e., using less resources, being quicker, cheaper.  Tambe, 

Newell, and Rosenbloom (1990) defined the former as the cognitive effect and the latter 

as the computational effect.  The performance problem we are concerned with is the 

latter, how computational performance, in terms of the processing time to successfully 

perform the task, changes with learning over long series of problems.   

Few AI researchers have run symbolic learning systems on long series of 

problems that emulate long-term learning (through cf. Lebiere, 1999).  TacAir-Soar with 

thousands of productions has been run for hours but did not employ learning (Jones, 

Laird, & Nielsen, 1994).  The default setting in Soar is to have learning turned off.  Other 

traditional AI learning systems typically have not been run long enough to achieve 

steady-state behavior probably because the intent was to demonstrate the effects of new 

learning techniques which are most evident in short runs.  When AI systems have been 

run over the long term, computational performance problems have occurred in as little as 

9, 20, 25, 52, or 100 problems (Bostrom, 1992; Iba, 1989; Leake, Kinley, & Wilson, 

1995; Markovitch & Scott, 1988; Minton, 1988, 1990; Mooney, 1989; Tambe, Newell, & 

Rosenbloom, 1990).  One reason for the performance problems was the cost of testing the 
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applicability of knowledge to the current task (Minton, 1988, 1990):  Problem-solving 

time was found to grow with the number of productions in the system.  Further research 

suggested the computational performance problem was universal to symbolic AI systems 

(Holder, 1990).   

In contrast to these findings, Markovitch and Scott (Markovitch & Scott, 1988) 

reported that their symbolic learner’s performance actually improved with forgetting.  

After their system had learned productions (macros) based on 5,000 training problems 

and had established a level of performance in terms of a minimum number of nodes 

searched, as its learned productions were randomly and incrementally removed, its 

performance actually improved.  Performance peaked when approximately 90 percent of 

the learned productions had been removed.  This work suggested that a system of keeping 

some productions while removing others might be a way to deal with the utility problem.  

For computational cognitive architectures, this is problematic because most cognitive 

systems do not explicitly forget learned knowledge. 

At about the same time Soar was proposed as a unified theory of cognition, it was 

confirmed to suffer computational performance degradation with continued learning.  It 

was found that some chunks were very expensive in processing time primarily due to an 

exponential slowdown in the process of matching variables in a rule to the current state 

(Tambe, Newell, & Rosenbloom, 1990).  Restricting the expressiveness of chunks was 

found to reduce computational performance costs per chunk but could, in the worst case, 

require exponentially more chunks to represent the same knowledge (Tambe, Newell, & 

Rosenbloom, 1990).  Further research improved the matching algorithm’s computational 

performance significantly (Doorenbos, 1995), but did not eliminate the performance 

problem with continued learning.  One component of Newell’s cognitive theory 
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implemented in Soar is that productions are the only form of long-term memory and all 

productions are kept indefinitely.  In looking for a basis for relaxing the long-term 

memory retention premise, analysis of the time between uses of productions was done.  

This analysis revealed a characteristic transition curve separating the frequently used 

productions from the rarely used productions.  Setting a threshold for removal of 

productions based on the duration since last use resulted in statistically better 

computational performance (Kennedy & De Jong, 2003).   

Therefore, the third question we will investigate in long-term learning is whether 

and how ACT-R suffers from the computational performance problems that plague Soar 

and AI’s symbolic learning systems. 

Answers to all three of these questions will contribute to both the fields of AI and 

Cognitive Science.  For Cognitive Science, results should support the development of a 

theory of long-term learning that may involve forgetting as well as activation.  For AI, 

results should be directly applicable to developing learning systems that are expected to 

operate autonomously for long periods of time. 

Method 

To address these research questions, we conducted experiments using Soar and 

ACT-R.  Both systems are available from their user groups  (ACT-R Research Group; 

The Soar Group).  The classic Blocks-World domain (Winston, 1984) was used because 

it was simple to implement, has a large search space, and can be scaled easily by 

increasing the number of blocks.  For both systems, runs were made long enough to 

observe steady-state performance.   
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Systems 

The version of Soar used was 8.6.1 for Windows, run within the Soar Java 

Debugger (in text view).  The ACT-R system, version 6 [r145] was run on several 

desktop PCs and Macintosh computers.  Version 6 implements the latest theory on the 

compilation of sequentially firing productions into new productions.  For both systems, 

common or default parameters were used except as listed in Table 1.  To run long series 

of problems in Soar, command files were generated and run in batch mode.  For ACT-R, 

a Lisp problem generator was run calling ACT-R to run each problem in the series.  

Traces of the systems’ behavior were analyzed off-line.   

Table 1.  Systems and Parameter Settings 

System  Non-default settings used 

Soar 8.6.1  Learning on 

ACT-R Version 6 [r145] Subsymbolic calculations enabled, :esc t 
Latency factor, :lf = 0.4 
Retrieval threshold, :rt = -1 
Production learning, :pl=t 
Enable production learning, :epl=t 

 
For Soar, the only non-default parameter adjusted was to turn learning on.  For 

ACT-R, a small number of its parameters were set at non-default values.  Subsymbolic 

calculations were enabled so that the system used its quantitative theories of declarative 

knowledge activations and retrieval.  The latency factor and the retrieval threshold of 

ACT-R were adjusted to keep the memory of the problem available as needed during 

problem solving.  The non-default production learning settings allowed production 

learning and the use of the quantitative ACT-R theory associated with learning and using 

productions.      
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Task Description 

The general task was to rearrange a fixed set of three named blocks on a table 

from one configuration to another.  We used only problems that could be solved in one 

move.  As an example, one problem is to move the blocks of the initial configuration to 

be identical to the goal configuration, as shown in Figure 1.  Moves consist of selecting a 

block and moving it to the table or on top of another block.  The criteria to move a block 

is that the subject block be clear, i.e., not having another block on top of it, and the 

destination must also be clear.  The table is always a legal destination.  There are 30 

problems in this domain.  The Blocks-World domain was set up so that one learned 

production can solve a problem, which would not be true for more complex problems or 

problem domains.  That simplicity allows us to isolate long-term learning characteristics 

for both declarative and procedural knowledge.  The expectation is that if we find 

characteristics within one-step problems, those same characteristics would manifest 

themselves in more complex models. 

 

Figure 1:  A Blocks World Problem. 

Cognitive Models in Soar and ACT-R 

Cognitive models of this task were implemented in Soar and ACT-R.  Initially, 

both systems blindly select legal moves with no prior knowledge.  There is no planning 
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involved because that was to be learned.  Both systems chose from available legal moves 

based on their knowledge. 

When either system achieved the goal configuration, it learned the effective 

move.  In Soar, the solution to the subproblem of choosing the best move for the problem 

was decided by the one-step look-ahead evaluation and resulted in a “chunk”, the new 

production.  In ACT-R, when no solution was already known, moves were tried at 

random and only the move that solved the problem was saved as a “chunk” in declarative 

memory.  (Note the different uses of the term “chunk” for Soar and ACT-R.)  When a 

solution was retrieved, a new production compiling that information was generated.  

After several recreations of the same production, in accordance with the ACT-R theory, 

the production’s utility would be increased enough to compete successfully with the 

solution retrieval production and fire (Anderson et al., 2004; Taatgen & Lee, 2003).  

For Soar, three models of Blocks World were provided with the Soar software 

(The Soar Group).  The look-ahead model was used because it was the only one that 

learns.  The model representation specifies the current and goal states based on what each 

block is on top of, either the table or another block.  Soar sequentially selects a move 

based on a one-step look-ahead evaluation and applies moves of a block to a new location 

until the current configuration matched the goal.  When Soar does not have the 

knowledge to immediately select a move, it establishes a subproblem to decide the move 

to make.  The solution to a subproblem is saved as a learned production, a Soar “chunk”, 

which eliminates the need to repeat the solving of the subproblem.  Soar’s chunks are not 

written for specific blocks but are generalized to descriptions of any blocks meeting 

specific on-top and clear conditions.   
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A similar model was developed for ACT-R following the approach common in 

the ACT-R community (e.g., Fleetwood & Byrne, 2006; Gunzelmann, 2006; Salvucci, 

2006; Taatgen, 2005).  The ACT-R model uses its vision module to read in a problem’s 

initial and goal configurations in terms of what the blocks are on.  It then attempts to 

recall a previous move from the current configuration to the goal.  If it finds such a move, 

that move is executed.  If it does not, a legal move is created based on any block that can 

be moved and any possible destination.  After making the move, the resulting 

configuration is evaluated as to whether it achieved the goal.  The move achieving the 

goal is saved as a solution to the problem of achieving that goal from the previous 

configuration.  The model randomly tries moves and recognizes, and then saves, those 

that achieve the goal.  (We did not use the new more general production formulation, 

called “dynamic pattern matching.”)  We have made our models is available at the ACT-

R website (ACT-R Research Group). 

Both systems begin by conducting general problem solving, noting actions that 

achieve the goal of solving a problem, and saving that knowledge for future use.  Both 

immediately save the new knowledge as a production.  Soar makes that production 

immediately available for use and ACT-R requires the production to be generated several 

times to raise its utility enough to be used (Taatgen & Lee, 2003). 

Results 

For each question, experimental results, analysis, and observations are discussed. 
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Does symbolic learning go on forever? 

When we ran both Soar and ACT-R, on the three-block Blocks-World problems 

that could be solved in one move, symbolic learning ended as shown by the learning 

curves in Figures 2 and 3.  The learning curves shown are plots of the cumulative number 

of new productions in the system against the sequential problem number.  Plots of the 

average of five runs for both systems are shown and both reached steady state.   

Both plots have the same general shape, but their units are very different.  Figure 

2 shows Soar’s learning over only 50 problems while Figure 3 shows ACT-R’s learning 

over 2,500 problems.  The scale is very different because Soar learned its last production 

on problem 15 and ACT-R’s last production was learned on problem 1,751.  Because 

Soar learns very general productions, it does not need to see every possible problem in 

the domain before learning stops.  Our ACT-R model must see every problem to generate 

a production to solve it.  The number of productions learned is also very different.  All of 

the Soar runs learned exactly eight productions, all general.  ACT-R eventually learned 

34-37 productions, one for each problem plus a few due to model coding.  Examples of 

rules learned are presented in Figures 4 and 5. 
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Figure 2:  Productions Learned in Soar 
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Figure 3:  Productions Learned in ACT-R 
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Soar chunk: 
 
sp {chunk-8*d5*tie*2 
    :chunk 
    (state <s1>  ^name   blocks-world  
  ^problem-space  <p1>  
  ^desired  <d1> 
            ^operator  <o1> +  
  ^ontop   <o2>  
  ^ontop   <o3>   
  ^ontop   <o4>) 
    (<p1>  ^name   move-blocks)  
    (<o1>  ^destination  <d2>  
  ^moving-block  <m1>) 
    (<o2>  ^top-block  <d2>  
  ^bottom-block  <b1>) 
    (<o3>  ^top-block  { <t1> <> <d2> } 
  ^bottom-block  <b1> ) 
    (<o4>  ^top-block  <m1>  
  ^bottom-block  <t1>) 
    (<d1>  ^ontop   <o5>  
  ^ontop   { <o6> <> <o5> }  
  ^ontop   { <o7> <> <o5> <> <o6> }) 
    (<o5>  ^top-block  <m1>  
  ^bottom-block  <d2>) 
    (<o6>  ^top-block  <d2>  
  ^bottom-block  <b1>) 
    (<o7>  ^top-block  <t1>  
  ^bottom-block  <b1>) 
    --> 
    (<s1>  ^operator <o1>  >  ) 
} 
 
Translation: 
 
A production resolving a tie between acceptable next steps is: 
IF   the desired arrangement is some block “ml” on top of  some block “d2”  
 with different blocks “t1” &  “d2” on “b1” (i.e., the table) 
AND  the current state has the block called “ml” on top of block “t1” 
 with blocks “d2” and “t1” on the table   
AND  a potential next action is to move block “ml” to on top of block “d2”, 
THEN that action of moving “ml” to “d2” is better than any other action 
(note: “ml”, “t1”, and “b1” are variable names for specific blocks). 
 

Figure 4:  A Production Learned by Soar 
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(P PRODUCTION88 
  "ATTEMPT-PREVIOUS-SOLUTION-FROM-PARTIAL &  
ATTEMPT-PREVIOUS-SOLUTION-SUCCESSFUL - SOLUTION14-0" 
   =GOAL> 
       ISA  PROBLEM 
       A-ON  TABLE 
       B-ON  TABLE 
       C-ON  BLOCKB 
       GA-ON  TABLE 
       GB-ON  TABLE 
       GC-ON  TABLE 
       STATE  PARTIAL-SUCCESS 
 ==> 
   =GOAL> 
       STATE  TRYSOLUTION 
   +GOAL> 
       ISA  PROBLEM 
       A-FREE  YES 
       A-ON  TABLE 
       B-FREE  NO 
       B-ON  TABLE 
       C-FREE  YES 
       C-ON  BLOCKB 
       GA-ON  TABLE 
       GB-ON  TABLE 
       GC-ON  TABLE 
       MOVER  BLOCKC 
       SOLUTION  YES 
       STATE  MOVE-READY 
       TOLOC  TABLE 
) 
 
Translation: 
 
A production that combines the recall of a previous solution and a production 
that acts the recall of the declarative information, specifically solution 14, is:  
IF  the block C is on the block B  
AND  the blocks A and B are on the table  
AND  the goal is to have all three of these blocks on the table,  
THEN  the move to make is block C to the table and set other resulting 
 attributes concerning which blocks are available to be moved (“free”). 
 

Figure 5:  A Production Learned by ACT-R 

Although symbolic learning in both Soar and ACT-R stopped, there are 

differences in the system’s behavior.  Soar learned productions that are generalized while 

ACT-R’s productions are specific to individual block names.  Therefore, Soar needs far 

fewer productions to cover the same domain knowledge.  In addition, the ACT-R model 

includes its vision module which introduces noise resulting in additional production 
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learning which is not material to the model.  As a result, the point at which learning ends 

varies between the systems, but the fact that both stop learning is significant.  This result 

is consistent with Alan Newell’s unified theory of cognition (1990) that predicts a 

constant rate of learning without any conditions, i.e., learning continues until everything 

is learned in a finite domain.  We do not make any claims with respect to Soar’s learning 

theory applied to infinite or near infinite domains.  The ACT-R theory includes both 

symbolic and subsymbolic components of learning and these results are consistent with 

Newell’s theory.    

The two learning curves show very different learning rates which arise from the 

many differences in their approaches to learning.  These include the use of different 

learning algorithms (chunking vs. knowledge compilation), different knowledge 

representations for short-term and long-term memory, different approaches to 

generalization, and different treatment of the subsymbolic learning foundations.  These 

differences are driven by different aims with respect to modeling human performance: 

Soar is an AI system based on human cognition and ACT-R is a model of the human 

cognition.  Although both have shown results consistent with the power law of learning 

or practice (Anderson, 2000; Anderson & Lebiere, 1998; Newell, 1990; Rosenbloom & 

Newell, 1986), they also use different units.  Soar's performance is presented in terms of 

cycles or decisions and ACT-R's output is in milliseconds predicting human response 

times.  There are also differences in the use of the learned knowledge. 
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How is learned knowledge used? 

There were two findings concerning the use of learned knowledge.  The first 

concerned the overall frequency of use of learned productions and the second dealt with 

the transformations of knowledge during the stages of learning.   

The rational analysis component of the ACT-R theory (Anderson, 1990) 

addresses the effect of the environment on the operation of rational systems, human or 

machine.  The theory is that the order and distribution of the problems in the domain 

(environment) affects the operation of the learning system.  The use of the learned 

productions was expected to be uniformly distributed due to the fact that problems were 

presented randomly.   

For Soar, the statistics of production use confirm uniform use.  Over five runs of 

250 problems each, Soar learned eight new productions but used only four on each run.  

Those four productions were each used 25 percent of the time (standard deviation was 

less than 0.05 percent).  In ACT-R, over five runs of 2,500 problems, the ACT-R model 

learned an average of 36 productions but used 26 in four runs and 27 in the other.  Over 

the 2,500 problems, each production was each used 3.85 percent of the time (standard 

deviation was less than 1.25 percent).   (Perfectly uniform use would have been 1/26.2 = 

3.81 percent of the time.)  So, although Soar used only half of its learned productions, the 

production use in both Soar and ACT-R was uniformly distributed.  Uniformly 

distributed production use is consistent with the uniformly distributed random ordering of 

problems presented to the two systems supporting the theory that the environment affects 

system operation.  
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The other pattern of use of productions observed in ACT-R concerned the three 

stages of learning (Anderson, 1982; Fitts, 1964).  Figure 4 shows, per problem, the 

number of moves created during problem solving, retrievals of previously successful 

moves, and firing of learned move productions per 100 problems.  The number of 

productions fired per 100 problems became approximately 100, or one production per 

problem in the third stage, as expected.   
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Figure 4.  ACT-R Stages of learning 

Figure 4 clearly shows three stages of learning.  When ACT-R begins, it uses its 

declarative knowledge of the problem domain and general problems-solving productions 

to create legal moves.  There was no knowledge in the model guiding the generation of 

moves other than their legality.  After some problem solving experience, later problems 

are solved by retrieving previously generated moves.  This is the transition of the second 

stage of learning.  ACT-R compiles the knowledge contained in a retrieval into a new 

production that contains the information from memory.  With continued presentation of 

problems, ACT-R begins to directly use the new productions it generated.  These 

productions implement the appropriate moves directly without retrieval. Requiring 

repeated development of a production before allowing its use is how ACT-R controls the 
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development of productions per its theory (Anderson & Lebiere, 1998).  Soar does not 

delay a production’s use and therefore does not display these phases of learning. 

These runs demonstrated that both systems transitioned from problem solving to 

using learned knowledge.  Soar did so immediately and ACT-R took longer.  Both 

systems reused learned knowledge: Soar used half its learned productions and ACT-R 

used approximately three-fourths.  Consistent with the random order of problems in the 

domain, both Soar and ACT-R used their productions uniformly.  Finally, the ACT-R 

system demonstrated the three phases of learning. 

Are there performance problems in long-term learning? 

As discussed earlier, Soar has been shown to exhibit computational performance 

problems when run under conditions of long-term learning (Tambe, Newell, & 

Rosenbloom, 1990).  To test whether ACT-R suffered from degraded computational 

performance with continued learning, timing data was collected during long runs of the 

system on Blocks World problems.  We hoped to find that a cognitive modeling system 

would not demonstrate the performance problems found in more traditional symbolic 

learning AI systems because humans do not suffer computational performance problems.   

Multiple runs were made on personal computers running the Windows operating 

system with the standalone version of ACT-R version 6 [r145] (Allegro Common Lisp, 

version 6.2) and on Apple Macintosh G4 and G5 machines running Mac OS X and 

Macintosh Common Lisp (MCL) version 5.  No changes were made to the default Lisp 

garbage collection parameters.  Processing time was available from the Lisp 

programming language (implementation specific) and from the ACT-R system.  Both 

times measurements were associated with solving a problem in ACT-R.  The first was the 
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human’s response time calculated by ACT-R as a function of the Blocks-World model 

and ACT-R’s sub-symbolic modeling.  Figure 5 shows the average ACT-R run times 

averaged over 10 problems and five runs.     
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Figure 5. ACT-R Model Times for Blocks World Problems 

Figure 5 shows a downward trend in the average time to solve individual Blocks 

Worlds problems per ACT-R’s model of human cognition.  This is the expected output of 

the ACT-R model corresponding to the observed power law of learning.  With parameter 

adjustments for different models of different tasks, ACT-R’s output has been shown to 

correspond to the improved performance with learning that has been seen in many human 

subject studies (Altmann & Trafton, 2002; Anderson, Bothell, Lebiere, & Matessa, 1998; 

Taatgen, 2002).   

To successfully model long-term learning, ACT-R needs to run for long periods.  

However, in all of the long-term runs of the Blocks World problems, it eventually failed 

(froze).  Failures ranged from as early as 340 problems on a small Apple Macintosh G4 

(desktop) with 384MB of memory to over 32,000 problems on a Windows PC with 1GB 

of memory.  Note that ACT-R was able to adequately run on the older hardware; we used 

it in order to see computational performance issues in shorter time scales than a current 



 22

top of the line computer.  Figures 6 shows the Lisp processing time on the Apple 

Macintosh G4 that ACT-R used in producing the above results up to its point of failure.  

The system continually required additional memory until it ran out of physical memory 

and failed.  The causes of ACT-R’s computational performance problems have been 

investigated and are discussed in the next section.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300

Problems

Li
sp

 P
ro

ce
ss

in
g 

Ti
m

e 
(s

ec
on

ds
)

 

Figure 6.  ACT-R Run Times for Blocks-World Problems 

ACT-R and the Computational Performance Problems 

There were two major aspects to the performance problems in ACT-R.  The first 

is the continual need for additional memory which eventually lead to requests for more 

memory than was available resulting in a fatal error.  The second aspect was the 

increasing processing time with continued learning that caused a slowing down of the 

system which could lead to the system running slower than real time.   

To investigate ACT-R’s computational performance problems, we used a simpler 

domain than the original Blocks-World domain.  We found we could demonstrate the 

performance problems using the simple task of counting objects with ACT-R running on 

an older hardware setup (the same small Apple Macintosh G4 (desktop) with 384MB of 

memory that was used in earlier experiments).  We used the counting model provided 
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with the ACT-R tutorial (ACT-R Research Group) expanded to count from one to ten.  

We then ran this model of counting to ten in blocks of a hundred repetitions.  The code 

and model are available from the ACT-R website (ACT-R Research Group).  The 

counting model focused primarily on declarative learning; no procedural learning 

occurred.  

We were able to replicate the prior computational performance issues on the 

simpler task of counting, suggesting that the performance problems were not due to the 

Blocks-World model.  Because the counting model is quite simple, we were able to 

systematically explore possible causes and solutions to the computational performance 

problems.  Possible sources of the computational performance problems range from the 

system’s hardware and operating system software environment, to ACT-R’s 

implementation in Lisp, to the ACT-R theory itself.  We will address each of these in 

turn.   

Hardware and Operating System Software 

Failure of ACT-R on long series of problems was found to be independent of the 

hardware and operating system: we used both Macintoshes and Windows PCs and in all 

cases, the system locked up, i.e., failed.  The failures were also independent of the Lisp 

environment: we used Allegro and Macintosh Common Lisps, and ACT-R in both 

standalone and interpreted versions.  Therefore, we ruled out the hardware and system 

software as the cause of the computational performance problems. 

ACT-R’s Implementation 

We then turned to the ACT-R implementation as a possible cause.  Previous long 

runs of ACT-R (Lebiere, 1999) used a different version of ACT-R and did not have 

performance problems because it used an optimized version of the activation formula 
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which will be discussed below (C. Lebiere, personal communication, February 14, 2007).  

The version we used, Version 6, was not optimized for computational performance but 

for stability and modifiability (D. Bothell, personal communication, September 6, 2006).  

Therefore, it was possible that some knowledge representations or processes may have 

been implemented such that a memory leak occurred.  Indeed, such a problem was found.   

To be consistent with the ACT-R theory, the current implementation creates 

copies of chunks of declarative knowledge for different uses.  A copy is made for each 

retrieval from declarative memory and each change of a buffer, even if it is a duplicate of 

an existing chunk.  Each temporary copy has an internal name.  Although duplicate 

chunks are later recognized by the ACT-R code and not added to declarative memory, 

their temporary names are retained within the ACT-R system and accumulate 

indefinitely.  The author of the ACT-R code, Daniel Bothell, graciously made minor 

revisions to the ACT-R code (changes r292, r294-r297) to provide a function to clean up 

temporary names.  These revisions allowed ACT-R with default settings to run an order 

of magnitude longer than previous runs (over 5,000 blocks).  Figure 7 shows a series of 

runs of the tutorial’s counting model with and without this function.  (The runs labeled 

Full Activation Formula and Efficient Activation Formula employed this function and are 

discussed below.)  These changes resolved the apparent memory leak caused by the 

retention of internal Lisp names. Note that these results used ACT-R with default settings 

(see Table 2).  Computational performance problems still existed with non-default 

settings.  Other performance issues, perhaps as a result of the ACT-R theory, are 

discussed next. 
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Figure 7.  Comparison Long-Term Counting Runs with Different Parameters 

Table 2.  Settings for Long-Term Counting Runs 

Parameter 

Default 
ACT-R 
(Ver. 6 
[r297]) 

Full 
Activation 
Formula        
(Ver. 6 
[r297]) 

Efficient 
Activation 
Formula           
(Ver. 6 [r297]) 

Latency factor, :lf 0.04 0.04 0.04 

Base Level 
Learning, :bll 0.5 0.5 0.5 

Optimized 
Learning, :ol optimized full formula 1 (one term) 

 

ACT-R Theory 

There are parts of the ACT-R theory that require the retention of historical 

information indefinitely and, therefore, cause increasing memory requirements and 

computational burden over the long term.  The ACT-R theory’s representation of 

declarative memory calculates an activation level for every chunk of declarative memory.  

This activation is used to determine whether a chunk is successfully recalled and the 

latency of the recall process.  The activation calculation includes two components, a base 

level of activation and an associative contribution.  In accordance with the ACT-R 
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theory, the base-level activation is a function of the frequency and recency of the uses of 

the subject chunk.  The base-level learning formula, equation 4.1 (Anderson & Lebiere, 

1998) is: 
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where the base-level activation for a chunk, Bi , is the log of the sum over all n previous 

uses of the chunk, of the time lag since each use, t, raised to power of a negative 

parameter, d, plus a constant.  The formula’s parameter d is set via the base-level learning 

ACT-R parameter.  The full implementation of Equation 1 requires keeping the history of 

the each use of all chunks throughout the model’s run.  This creates a monotonically 

increasing demand for additional memory and causes an increase in computational 

resources to be used, eventually leading to a memory-related failure.   

The computational burden of the full base-level learning formula has been known 

within the ACT-R community for years.  To address the burden, ACT-R has a parameter, 

:ol “optimized learning”.  The default value for this parameter directs the use an 

optimized learning formulation (Anderson & Lebiere, 1998), which is: 
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where all the terms are the same as in Equation 1:  the base-level activation for a chunk, 

Bi , is approximately the log of the n previous uses of the chunk divided by 1 minus a 

parameter, d, times the time lag since the first use, t, raised to power of the negative 
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parameter, d.  This formulation does not require the history of the chunk’s uses, only the 

number of uses, n, and assumes a uniform distribution of uses since creation of the chunk.  

However, that formula is considered less cognitively plausible based on the assumed 

uniform distribution of previous uses and its inconsistency with observations.   

A more computationally efficient approximation was recently developed (Petrov, 

2006).   The new, improved approximation is: 
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where all the terms are the same as in Equations 1 and 2 with the additional parameter k.  

This formulation of base-level activation is a combination of the full and optimized 

formulations, Equations 1 and 2.  It uses a parameter k for the number of the most recent 

chunk uses to be calculated as in the full base level learning, Equation 1, and then the 

optimized learning approximation for the rest of the terms, Equation 2.  Note that this 

formulation is more cognitively plausible than Equation 2, but probably less plausible 

than Equation 1. It is an open question how much history is needed to maintain high 

cognitive fidelity and plausibility.  This formulation is already included in ACT-R.   

The implementation of Equation 3 has the user specify a finite number of 

previous uses which then results in finite memory requirements.  Specifying a finite 

number of uses ends the unbounded growth in the demand for more memory.  Figure 7 

shows comparable long-term runs using the different equations for base level learning.  

Using the naming function and using Equation 3 resolved the computational performance 
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problems for the counting model.  We then applied these changes to the original Blocks-

World domain to test the effects there. 

With the implementation of the naming function and the use of Equation 3, ACT-

R successfully ran 1,000 Blocks-World problems, long past the original failure point of 

340 problems.  This performance demonstrated that the original failure of ACT-R with 

long-term learning was due to these problems. 

On the procedural side of memory, ACT-R theory has a similar formula for the 

utility of a production and supports compilation of productions into a new productions.  

We hypothesize that a similar memory demand and computational slowdown will result 

from the code’s implementation of the theory for procedural knowledge.  However, the 

effects are not as great and have not been noted in the long-term learning experiments we 

have conducted.  Therefore, this constitutes future work.  Table 3 summarizes the results 

of our exploration of the computational performance problems in ACT-R. 

Table 3.  ACT-R and the Computational Performance Problems 

 Performance 
Problem Cause Approach Evidence 

Hardware and 
System Software 

System locks 
up 

Not hardware or 
software -- 

Problem occurs with 
different systems, and 
Lisp versions 

ACT-R’s 
Implementation 

Memory leak Retention of 
temporary chunk 
names 

New function to 
clear up names 

Long runs with and 
without new function 
(Figure 7) 

Declarative 
memory 
overflow and 
processing 
slowdown 

Base level 
learning equation 
requires the 
retention of all 
previous uses of 
each chunk  

“Optimized 
learning” 
approximation or 
simplified base-
level activation 
formula 

Long runs with and 
without simplified 
base-level activation 
formulation (Figure 7) 

ACT-R Theory 
Procedural 
memory 
overflow and 
processing 
slowdown 

Retention of 
production use 
history 
(hypothesized) 

 
Future research 

 
Future research 
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Conclusions and Discussion 

We conclude that Soar and ACT-R have similar long-term learning 

characteristics.  We explored three questions: does learning continue forever, how is 

learned knowledge used, and whether ACT-R suffers from computational performance 

problems like Soar and more traditional symbolic AI systems do. 

For the first question, we found that in finite domains, symbolic learning on long-

series of problems eventually stops in both Soar and ACT-R which suggests that learning 

stops in finite domains in humans as well.  This may be important depending on when 

learning ends with respect to when the degraded computational performance begins.  For 

example, a symbolic learning system would be much more useful if the system’s learning 

ended before reaching the point where degraded performance began and unfortunate if 

learning continued until after the computational performance degraded.   

On the use of learned productions, there are several differences between Soar and 

ACT-R.  Soar learns from one learning opportunity and makes the new procedural 

knowledge available immediately.  In contrast, ACT-R requires many learning 

opportunities before a new production is usable.  Soar also creates procedural knowledge 

that is more general and therefore more powerful than the productions that ACT-R 

creates.  There are advantages and disadvantages to both approaches for AI systems and 

Cognitive Science purposes.   

Soar’s learning mechanism has enabled Soar modelers to build some very 

powerful AI systems.  However, one of the criticisms of Soar’s learning mechanism is 

that it is too powerful (Anderson & Lebiere, 1998), specifically, Soar creates too many 

chunks.  Soar's powerful learning mechanisms do not hurt the AI engineering endeavors, 

but they can make matching human-level performance data more difficult. ACT-R’s 
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learning mechanisms are not as computationally powerful as Soar’s, but ACT-R learns at 

both symbolic and sub-symbolic levels as humans do.  Consistent with ACT-R’s high-

level goal of matching human cognitive behavior, it is also able to demonstrate different 

phases of learning.  

Finally, we found that ACT-R, like Soar, suffers from computational performance 

problems with long-term learning.  We found that the performance problems were caused 

by both an ACT-R implementation detail and ACT-R theoretical issues.  A coding 

change resolved the computational performance problems caused by the implementation 

detail and the updated version of ACT-R with default parameters can perform long-term 

symbolic learning. 

Two important and related theoretical issues remain, however.  Both deal with the 

consequences of the long-tem retention of learned knowledge.  First, the current ACT-R 

theory for the sub-symbolic activation of declarative memory requires the retention of all 

previous uses of each item in declarative memory.  Any computational theory that must 

maintain a history of its operation without bounds will, eventually, run out of storage.  

Therefore, the activation theory and its mathematical formulation need revision to 

address long-term learning, not just as a computational efficiency issue (Petrov, 2006), 

but as a cognitively plausibility issue.  A similar memory overflow issue applies to 

procedural learning and needs to be addressed as well.  (Note that recent work presents a 

new utility equation for ACT-R that does not require the retention of all previous uses 

(Anderson & Fu, 2006).)   

The second theoretical issue associated with long-term, symbolic learning is more 

general.  Any theory of learning that continually adds new symbols to memory must, 

eventually, run out of storage.  A finite, symbolic memory capacity theoretically applies 
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to both human and machine learning systems. In computer systems, a limited memory 

capacity is familiar, though no overall capacity limitations in humans have been shown.  

This capacity limit applies to all symbolic learning, i.e., both declarative and 

procedural.   The work reported here has focused on declarative memory as the source of 

the observed degraded computational performance within ACT-R.  However, procedural 

memory is expected to have the same performance problems and theoretical issues.  

This work also has implications for AI systems.  Symbolic AI learning systems 

need to address these capacity issues to avoid system failures.  Possible approaches are to 

limit learning based on memory capacity, incorporate forgetting of low value items to 

make room for continued learning, or incorporate automatic representational changes 

based on memory capacity. 

On the cognitive science side, in spite of these theoretical issues, humans do not 

appear to have long-term computational performance problems nor appear to have 

reached their memory capacity.  Like AI systems research, cognitive science needs to 

address these theoretic capacity issues.  Future research may develop a cognitively 

plausible justification for removal of some knowledge, for example, symbols that have 

not been used for a very long time (e.g., they have very low activation levels) may be 

removed permanently.  Alternatively, it may be possible to change the representation so 

that those symbols require less memory.   

Long-term learning is at the core of theories of cognition, both natural or 

artificial.  Research aimed at advancing our understanding of cognition is greatly 

facilitated by the existence and availability of computational cognitive modeling systems  

implementing theories of cognition.  Implemented theories of cognition provide a 

foundation for building and testing computational cognitive models.  Our work is an 
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example of the use of computational cognitive models built on the implementations of 

different theories of cognition to advance the science toward a unified theory of 

cognition. 
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