
 0

Running head: Long-Term Symbolic Learning

Long-Term Symbolic Learning

William G. Kennedy and J. Gregory Trafton

Naval Research Laboratory

Contact information:
 Kennedy: e-mail: wkennedy@itd.nrl.navy.mil
 phone: 1-202-767-3349

 Trafton: e-mail: trafton@itd.nrl.navy.mil
 phone: 1-202-767-3479

 Affiliation and address for both: Naval Research Laboratory, Code 5515
 4555 Overlook Ave. SW
 Washington, DC 20375

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Long-Term Symbolic Learning

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Navy Center for Applied Research in
Artificial Intelligence (NCARAI),4555 Overlook Avenue
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
What are the characteristics of long-term learning? We investigated the characteristics of long-term,
symbolic learning using the Soar and ACT-R cognitive architectures running cognitive models of two
simple tasks. Long sequences of problems were run collecting data to answer fundamental questions about
long-term, symbolic learning. We examined whether symbolic learning continues indefinitely, how the
learned knowledge is used and whether computational performance degrades over the long term. We
report three findings. First, in both systems, symbolic learning eventually stopped. Second, learned
knowledge was used differently in different stages but the resulting production knowledge was used
uniformly. Finally, both Soar and ACT-R do eventually suffer from degraded computational performance
with long-term continuous learning. We also discuss ACT-R implementation and theoretic causes of
ACT-R’s computational performance problems and settings that appear to avoid the performance
problems in ACT-R.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

35

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 1

Abstract

What are the characteristics of long-term learning? We investigated the characteristics of

long-term, symbolic learning using the Soar and ACT-R cognitive architectures running

cognitive models of two simple tasks. Long sequences of problems were run collecting

data to answer fundamental questions about long-term, symbolic learning. We examined

whether symbolic learning continues indefinitely, how the learned knowledge is used,

and whether computational performance degrades over the long term. We report three

findings. First, in both systems, symbolic learning eventually stopped. Second, learned

knowledge was used differently in different stages but the resulting production

knowledge was used uniformly. Finally, both Soar and ACT-R do eventually suffer from

degraded computational performance with long-term continuous learning. We also

discuss ACT-R implementation and theoretic causes of ACT-R’s computational

performance problems and settings that appear to avoid the performance problems in

ACT-R.

Key words: long-term learning, symbolic learning, computational cognitive modeling,

ACT-R, Soar, computational performance, utility problem

 2

Introduction

Learning has been widely studied by researchers in the fields of psychology,

education, cognitive science, and Artificial Intelligence (AI). The nature and

representation of learning, including forms of learning, speed, memory capacity, etc.,

have been investigated, and theories proposed and discussed. Most theories of learning

assume that healthy people learn continuously, learn throughout their lives, and seem to

have an infinite capacity for knowledge. On the other hand, relatively few computational

systems have performed cognitively plausible long-term learning. In this paper we

explore long-term learning using computational cognitive architectures.

Several of our terms need clarification. By learning, we mean more than simply

acquiring knowledge. Learning, sometimes called skill acquisition, involves both the

acquisition of knowledge and its use to improve performance. Learning is commonly

defined as the improvement in performance with experience and involves both a

symbolic and subsymbolic component (Anderson, 2000). We focused our work on

symbolic learning, i.e., the learning of discrete pieces of knowledge. Limiting ourselves

to symbolic learning also avoids issues associated with the physiology of perception and

psychomotor response aspects of cognition. We emphasize the long-term aspect of

learning to get past the short-term transients of perception and short-term memory. We

also mean long-term in a systems sense, i.e., long enough to reach steady-state behavior.

Long-term learning in humans has been studied over periods of decades and performance

improvements, specifically in response time, were formalized as the “power law of

learning” (Anderson, 2000; Newell & Rosenbloom, 1981). In our study of long-term,

symbolic learning, we used two of the most widely used computational cognitive

architectures, Soar and ACT-R.

 3

Soar is a symbolic learning system with early success modeling the observed

(long-term) power law of learning (Rosenbloom & Newell, 1986). In 1990, Newell

proposed Soar as a unified theory of cognition (Newell, 1990) based on single

mechanisms for the different components of cognition. Soar uses one form of short-term

memory, called working memory, and a single learning mechanism, “chunking”, in

which the solution to a subproblem is formulated as a production. The single form of

long-term memory is the retention of all productions. Soar is a symbolic AI system and

does not attempt to model human learning below the symbolic level. Consistent with the

learning theory that Soar implements, productions are retained forever and working

memory is transient.

The ACT family of theories has a long history of integrating, matching, and

explaining psychological data. ACT-R derives important constraints from asking what

cognitive processes are adaptive given the statistical structure of the environment

(Anderson, 1990). In ACT-R’s model of human memory, knowledge is represented in

declarative or procedural forms, called chunks or productions respectively, and each is

modeled at both the symbolic and subsymbolic levels. Subsymbolic calculations of

activation determine the system’s ability to recall each piece of symbolic knowledge and

the associated latency of that recall. (Activation for productions is called production

utility.) The symbolic chunks and productions with current activations below a user-

specified thresholds are not retrieved. However, all declarative knowledge and

productions are maintained and subsequent experience can raise their activation. Several

model parameters control the details of the activation calculations.

 4

Research Questions

We focus on three fundamental questions associated with the nature of long-term

learning as modeled by Soar and ACT-R: (1) how long symbolic learning occurs, (2) how

the learned knowledge is used or transformed, and (3) whether there are performance

problems associated with long-term learning.

Does symbolic learning go on forever?

We first examined a fundamental assumption associated with long-term learning:

does symbolic learning go on forever or what is its long-term, steady-state behavior?

Newell (1990) wrote that learning, specifically the acquisition of symbolic knowledge,

occurs at an “approximately” constant rate apparently independent of the scale of the

task. Continuous learning is a tenet of his unified theory of cognition and of Soar, which

implemented his theory and successfully modeled the power law of learning (Newell &

Rosenbloom, 1981). For simple, finite domains, this means that once all the symbolic

knowledge has been learned, there is nothing left to learn and learning stops.

The theory behind the ACT-R system does acknowledge “great reductions in

cognitive involvement” based on obeying the power law (Anderson, 2000) as the system

gains experience with a domain. ACT-R theory explicitly acknowledges that speed up in

response time could continue until the learner reaches the limitations of the embodied

physical system. That suggests that the symbolic portion of learning, i.e., not including

the psychomotor phase of responses, would eventually end. This analysis suggests that

Soar theory predicts that symbolic learning continues at a constant rate until it stops and

ACT-R’s theory predicts that learning continues but slows toward an asymptote.

 5

How is learned knowledge used?

The second question concerns how learned knowledge is used or transformed.

Theorists have suggested that learning includes the retention of some facts based on a

potential use rather than a demonstrated use (Anderson, 2000). But, how and when is it

used?

Over the long term, the use of knowledge has been proposed to change in human

learning. The learned knowledge starts as declarative knowledge used in problem

solving and eventually becomes retrieved solutions without problem solving (Logan,

1988). Three stages have been proposed (Anderson, 1982; Fitts, 1964). The first stage is

the cognitive stage. The knowledge learned is primarily declarative and must be

interpreted through problem solving to improve performance. General problem solving

techniques are employed using the knowledge available and creating new declarative

knowledge. The second stage is the associative stage. Here there is a mix of declarative

and task-specific procedural knowledge and the problem solving is transitioning from

general methods to methods specific to the problem domain. By the third stage, called

the autonomous stage, the knowledge used is all procedural, is compiled from the

declarative knowledge, is fast, and is error-free. In this last stage, there is no problem

solving necessary because responses are directly recalled. The continued performance

improvements in the third stage are based on psychomotor speedup up toward physical

limitations (Anderson et al., 2004).

Previous experiments with Soar demonstrated that in some problem domains,

even in the long term, Soar only used about half of its learned productions (Kennedy,

2003). Further, although the number of productions used on each problem was

 6

approximately constant, more recently learned productions were used more frequently

but a smaller portion came from the whole range of the learning process (Kennedy & De

Jong, 2003). The results reported here will highlight similarities and differences between

ACT-R and Soar in how both systems perform long-term learning.

Are there performance problems in long-term learning?

The performance associated with learning is normally a combination of

improvements in effectiveness, i.e., fewer steps employed to accomplish a task, and

improvements in efficiency, i.e., using less resources, being quicker, cheaper. Tambe,

Newell, and Rosenbloom (1990) defined the former as the cognitive effect and the latter

as the computational effect. The performance problem we are concerned with is the

latter, how computational performance, in terms of the processing time to successfully

perform the task, changes with learning over long series of problems.

Few AI researchers have run symbolic learning systems on long series of

problems that emulate long-term learning (through cf. Lebiere, 1999). TacAir-Soar with

thousands of productions has been run for hours but did not employ learning (Jones,

Laird, & Nielsen, 1994). The default setting in Soar is to have learning turned off. Other

traditional AI learning systems typically have not been run long enough to achieve

steady-state behavior probably because the intent was to demonstrate the effects of new

learning techniques which are most evident in short runs. When AI systems have been

run over the long term, computational performance problems have occurred in as little as

9, 20, 25, 52, or 100 problems (Bostrom, 1992; Iba, 1989; Leake, Kinley, & Wilson,

1995; Markovitch & Scott, 1988; Minton, 1988, 1990; Mooney, 1989; Tambe, Newell, &

Rosenbloom, 1990). One reason for the performance problems was the cost of testing the

 7

applicability of knowledge to the current task (Minton, 1988, 1990): Problem-solving

time was found to grow with the number of productions in the system. Further research

suggested the computational performance problem was universal to symbolic AI systems

(Holder, 1990).

In contrast to these findings, Markovitch and Scott (Markovitch & Scott, 1988)

reported that their symbolic learner’s performance actually improved with forgetting.

After their system had learned productions (macros) based on 5,000 training problems

and had established a level of performance in terms of a minimum number of nodes

searched, as its learned productions were randomly and incrementally removed, its

performance actually improved. Performance peaked when approximately 90 percent of

the learned productions had been removed. This work suggested that a system of keeping

some productions while removing others might be a way to deal with the utility problem.

For computational cognitive architectures, this is problematic because most cognitive

systems do not explicitly forget learned knowledge.

At about the same time Soar was proposed as a unified theory of cognition, it was

confirmed to suffer computational performance degradation with continued learning. It

was found that some chunks were very expensive in processing time primarily due to an

exponential slowdown in the process of matching variables in a rule to the current state

(Tambe, Newell, & Rosenbloom, 1990). Restricting the expressiveness of chunks was

found to reduce computational performance costs per chunk but could, in the worst case,

require exponentially more chunks to represent the same knowledge (Tambe, Newell, &

Rosenbloom, 1990). Further research improved the matching algorithm’s computational

performance significantly (Doorenbos, 1995), but did not eliminate the performance

problem with continued learning. One component of Newell’s cognitive theory

 8

implemented in Soar is that productions are the only form of long-term memory and all

productions are kept indefinitely. In looking for a basis for relaxing the long-term

memory retention premise, analysis of the time between uses of productions was done.

This analysis revealed a characteristic transition curve separating the frequently used

productions from the rarely used productions. Setting a threshold for removal of

productions based on the duration since last use resulted in statistically better

computational performance (Kennedy & De Jong, 2003).

Therefore, the third question we will investigate in long-term learning is whether

and how ACT-R suffers from the computational performance problems that plague Soar

and AI’s symbolic learning systems.

Answers to all three of these questions will contribute to both the fields of AI and

Cognitive Science. For Cognitive Science, results should support the development of a

theory of long-term learning that may involve forgetting as well as activation. For AI,

results should be directly applicable to developing learning systems that are expected to

operate autonomously for long periods of time.

Method

To address these research questions, we conducted experiments using Soar and

ACT-R. Both systems are available from their user groups (ACT-R Research Group;

The Soar Group). The classic Blocks-World domain (Winston, 1984) was used because

it was simple to implement, has a large search space, and can be scaled easily by

increasing the number of blocks. For both systems, runs were made long enough to

observe steady-state performance.

 9

Systems

The version of Soar used was 8.6.1 for Windows, run within the Soar Java

Debugger (in text view). The ACT-R system, version 6 [r145] was run on several

desktop PCs and Macintosh computers. Version 6 implements the latest theory on the

compilation of sequentially firing productions into new productions. For both systems,

common or default parameters were used except as listed in Table 1. To run long series

of problems in Soar, command files were generated and run in batch mode. For ACT-R,

a Lisp problem generator was run calling ACT-R to run each problem in the series.

Traces of the systems’ behavior were analyzed off-line.

Table 1. Systems and Parameter Settings

System Non-default settings used

Soar 8.6.1 Learning on

ACT-R Version 6 [r145] Subsymbolic calculations enabled, :esc t
Latency factor, :lf = 0.4
Retrieval threshold, :rt = -1
Production learning, :pl=t
Enable production learning, :epl=t

For Soar, the only non-default parameter adjusted was to turn learning on. For

ACT-R, a small number of its parameters were set at non-default values. Subsymbolic

calculations were enabled so that the system used its quantitative theories of declarative

knowledge activations and retrieval. The latency factor and the retrieval threshold of

ACT-R were adjusted to keep the memory of the problem available as needed during

problem solving. The non-default production learning settings allowed production

learning and the use of the quantitative ACT-R theory associated with learning and using

productions.

 10

Task Description

The general task was to rearrange a fixed set of three named blocks on a table

from one configuration to another. We used only problems that could be solved in one

move. As an example, one problem is to move the blocks of the initial configuration to

be identical to the goal configuration, as shown in Figure 1. Moves consist of selecting a

block and moving it to the table or on top of another block. The criteria to move a block

is that the subject block be clear, i.e., not having another block on top of it, and the

destination must also be clear. The table is always a legal destination. There are 30

problems in this domain. The Blocks-World domain was set up so that one learned

production can solve a problem, which would not be true for more complex problems or

problem domains. That simplicity allows us to isolate long-term learning characteristics

for both declarative and procedural knowledge. The expectation is that if we find

characteristics within one-step problems, those same characteristics would manifest

themselves in more complex models.

Figure 1: A Blocks World Problem.

Cognitive Models in Soar and ACT-R

Cognitive models of this task were implemented in Soar and ACT-R. Initially,

both systems blindly select legal moves with no prior knowledge. There is no planning

 11

involved because that was to be learned. Both systems chose from available legal moves

based on their knowledge.

When either system achieved the goal configuration, it learned the effective

move. In Soar, the solution to the subproblem of choosing the best move for the problem

was decided by the one-step look-ahead evaluation and resulted in a “chunk”, the new

production. In ACT-R, when no solution was already known, moves were tried at

random and only the move that solved the problem was saved as a “chunk” in declarative

memory. (Note the different uses of the term “chunk” for Soar and ACT-R.) When a

solution was retrieved, a new production compiling that information was generated.

After several recreations of the same production, in accordance with the ACT-R theory,

the production’s utility would be increased enough to compete successfully with the

solution retrieval production and fire (Anderson et al., 2004; Taatgen & Lee, 2003).

For Soar, three models of Blocks World were provided with the Soar software

(The Soar Group). The look-ahead model was used because it was the only one that

learns. The model representation specifies the current and goal states based on what each

block is on top of, either the table or another block. Soar sequentially selects a move

based on a one-step look-ahead evaluation and applies moves of a block to a new location

until the current configuration matched the goal. When Soar does not have the

knowledge to immediately select a move, it establishes a subproblem to decide the move

to make. The solution to a subproblem is saved as a learned production, a Soar “chunk”,

which eliminates the need to repeat the solving of the subproblem. Soar’s chunks are not

written for specific blocks but are generalized to descriptions of any blocks meeting

specific on-top and clear conditions.

 12

A similar model was developed for ACT-R following the approach common in

the ACT-R community (e.g., Fleetwood & Byrne, 2006; Gunzelmann, 2006; Salvucci,

2006; Taatgen, 2005). The ACT-R model uses its vision module to read in a problem’s

initial and goal configurations in terms of what the blocks are on. It then attempts to

recall a previous move from the current configuration to the goal. If it finds such a move,

that move is executed. If it does not, a legal move is created based on any block that can

be moved and any possible destination. After making the move, the resulting

configuration is evaluated as to whether it achieved the goal. The move achieving the

goal is saved as a solution to the problem of achieving that goal from the previous

configuration. The model randomly tries moves and recognizes, and then saves, those

that achieve the goal. (We did not use the new more general production formulation,

called “dynamic pattern matching.”) We have made our models is available at the ACT-

R website (ACT-R Research Group).

Both systems begin by conducting general problem solving, noting actions that

achieve the goal of solving a problem, and saving that knowledge for future use. Both

immediately save the new knowledge as a production. Soar makes that production

immediately available for use and ACT-R requires the production to be generated several

times to raise its utility enough to be used (Taatgen & Lee, 2003).

Results

For each question, experimental results, analysis, and observations are discussed.

 13

Does symbolic learning go on forever?

When we ran both Soar and ACT-R, on the three-block Blocks-World problems

that could be solved in one move, symbolic learning ended as shown by the learning

curves in Figures 2 and 3. The learning curves shown are plots of the cumulative number

of new productions in the system against the sequential problem number. Plots of the

average of five runs for both systems are shown and both reached steady state.

Both plots have the same general shape, but their units are very different. Figure

2 shows Soar’s learning over only 50 problems while Figure 3 shows ACT-R’s learning

over 2,500 problems. The scale is very different because Soar learned its last production

on problem 15 and ACT-R’s last production was learned on problem 1,751. Because

Soar learns very general productions, it does not need to see every possible problem in

the domain before learning stops. Our ACT-R model must see every problem to generate

a production to solve it. The number of productions learned is also very different. All of

the Soar runs learned exactly eight productions, all general. ACT-R eventually learned

34-37 productions, one for each problem plus a few due to model coding. Examples of

rules learned are presented in Figures 4 and 5.

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40 50

Problems

Le
ar

ne
d

Pr
od

uc
tio

ns

Figure 2: Productions Learned in Soar

 14

0
5

10
15
20
25
30
35
40

0 500 1,000 1,500 2,000 2,500

Problems
Le

ar
ne

d
Pr

od
uc

tio
ns

Figure 3: Productions Learned in ACT-R

 15

Soar chunk:

sp {chunk-8*d5*tie*2
 :chunk
 (state <s1> ^name blocks-world
 ^problem-space <p1>
 ^desired <d1>
 ^operator <o1> +
 ^ontop <o2>
 ^ontop <o3>
 ^ontop <o4>)
 (<p1> ^name move-blocks)
 (<o1> ^destination <d2>
 ^moving-block <m1>)
 (<o2> ^top-block <d2>
 ^bottom-block <b1>)
 (<o3> ^top-block { <t1> <> <d2> }
 ^bottom-block <b1>)
 (<o4> ^top-block <m1>
 ^bottom-block <t1>)
 (<d1> ^ontop <o5>
 ^ontop { <o6> <> <o5> }
 ^ontop { <o7> <> <o5> <> <o6> })
 (<o5> ^top-block <m1>
 ^bottom-block <d2>)
 (<o6> ^top-block <d2>
 ^bottom-block <b1>)
 (<o7> ^top-block <t1>
 ^bottom-block <b1>)
 -->
 (<s1> ^operator <o1> >)
}

Translation:

A production resolving a tie between acceptable next steps is:
IF the desired arrangement is some block “ml” on top of some block “d2”
 with different blocks “t1” & “d2” on “b1” (i.e., the table)
AND the current state has the block called “ml” on top of block “t1”
 with blocks “d2” and “t1” on the table
AND a potential next action is to move block “ml” to on top of block “d2”,
THEN that action of moving “ml” to “d2” is better than any other action
(note: “ml”, “t1”, and “b1” are variable names for specific blocks).

Figure 4: A Production Learned by Soar

 16

(P PRODUCTION88
 "ATTEMPT-PREVIOUS-SOLUTION-FROM-PARTIAL &
ATTEMPT-PREVIOUS-SOLUTION-SUCCESSFUL - SOLUTION14-0"
 =GOAL>
 ISA PROBLEM
 A-ON TABLE
 B-ON TABLE
 C-ON BLOCKB
 GA-ON TABLE
 GB-ON TABLE
 GC-ON TABLE
 STATE PARTIAL-SUCCESS
 ==>
 =GOAL>
 STATE TRYSOLUTION
 +GOAL>
 ISA PROBLEM
 A-FREE YES
 A-ON TABLE
 B-FREE NO
 B-ON TABLE
 C-FREE YES
 C-ON BLOCKB
 GA-ON TABLE
 GB-ON TABLE
 GC-ON TABLE
 MOVER BLOCKC
 SOLUTION YES
 STATE MOVE-READY
 TOLOC TABLE
)

Translation:

A production that combines the recall of a previous solution and a production
that acts the recall of the declarative information, specifically solution 14, is:
IF the block C is on the block B
AND the blocks A and B are on the table
AND the goal is to have all three of these blocks on the table,
THEN the move to make is block C to the table and set other resulting
 attributes concerning which blocks are available to be moved (“free”).

Figure 5: A Production Learned by ACT-R

Although symbolic learning in both Soar and ACT-R stopped, there are

differences in the system’s behavior. Soar learned productions that are generalized while

ACT-R’s productions are specific to individual block names. Therefore, Soar needs far

fewer productions to cover the same domain knowledge. In addition, the ACT-R model

includes its vision module which introduces noise resulting in additional production

 17

learning which is not material to the model. As a result, the point at which learning ends

varies between the systems, but the fact that both stop learning is significant. This result

is consistent with Alan Newell’s unified theory of cognition (1990) that predicts a

constant rate of learning without any conditions, i.e., learning continues until everything

is learned in a finite domain. We do not make any claims with respect to Soar’s learning

theory applied to infinite or near infinite domains. The ACT-R theory includes both

symbolic and subsymbolic components of learning and these results are consistent with

Newell’s theory.

The two learning curves show very different learning rates which arise from the

many differences in their approaches to learning. These include the use of different

learning algorithms (chunking vs. knowledge compilation), different knowledge

representations for short-term and long-term memory, different approaches to

generalization, and different treatment of the subsymbolic learning foundations. These

differences are driven by different aims with respect to modeling human performance:

Soar is an AI system based on human cognition and ACT-R is a model of the human

cognition. Although both have shown results consistent with the power law of learning

or practice (Anderson, 2000; Anderson & Lebiere, 1998; Newell, 1990; Rosenbloom &

Newell, 1986), they also use different units. Soar's performance is presented in terms of

cycles or decisions and ACT-R's output is in milliseconds predicting human response

times. There are also differences in the use of the learned knowledge.

 18

How is learned knowledge used?

There were two findings concerning the use of learned knowledge. The first

concerned the overall frequency of use of learned productions and the second dealt with

the transformations of knowledge during the stages of learning.

The rational analysis component of the ACT-R theory (Anderson, 1990)

addresses the effect of the environment on the operation of rational systems, human or

machine. The theory is that the order and distribution of the problems in the domain

(environment) affects the operation of the learning system. The use of the learned

productions was expected to be uniformly distributed due to the fact that problems were

presented randomly.

For Soar, the statistics of production use confirm uniform use. Over five runs of

250 problems each, Soar learned eight new productions but used only four on each run.

Those four productions were each used 25 percent of the time (standard deviation was

less than 0.05 percent). In ACT-R, over five runs of 2,500 problems, the ACT-R model

learned an average of 36 productions but used 26 in four runs and 27 in the other. Over

the 2,500 problems, each production was each used 3.85 percent of the time (standard

deviation was less than 1.25 percent). (Perfectly uniform use would have been 1/26.2 =

3.81 percent of the time.) So, although Soar used only half of its learned productions, the

production use in both Soar and ACT-R was uniformly distributed. Uniformly

distributed production use is consistent with the uniformly distributed random ordering of

problems presented to the two systems supporting the theory that the environment affects

system operation.

 19

The other pattern of use of productions observed in ACT-R concerned the three

stages of learning (Anderson, 1982; Fitts, 1964). Figure 4 shows, per problem, the

number of moves created during problem solving, retrievals of previously successful

moves, and firing of learned move productions per 100 problems. The number of

productions fired per 100 problems became approximately 100, or one production per

problem in the third stage, as expected.

0
20

40
60

80
100

0 500 1,000 1,500 2,000 2,500

Problems

C
ou

nt
 p

er
 1

00
 P

ro
bl

em
s

Retrievals

Production Uses

Moves
Created

Figure 4. ACT-R Stages of learning

Figure 4 clearly shows three stages of learning. When ACT-R begins, it uses its

declarative knowledge of the problem domain and general problems-solving productions

to create legal moves. There was no knowledge in the model guiding the generation of

moves other than their legality. After some problem solving experience, later problems

are solved by retrieving previously generated moves. This is the transition of the second

stage of learning. ACT-R compiles the knowledge contained in a retrieval into a new

production that contains the information from memory. With continued presentation of

problems, ACT-R begins to directly use the new productions it generated. These

productions implement the appropriate moves directly without retrieval. Requiring

repeated development of a production before allowing its use is how ACT-R controls the

 20

development of productions per its theory (Anderson & Lebiere, 1998). Soar does not

delay a production’s use and therefore does not display these phases of learning.

These runs demonstrated that both systems transitioned from problem solving to

using learned knowledge. Soar did so immediately and ACT-R took longer. Both

systems reused learned knowledge: Soar used half its learned productions and ACT-R

used approximately three-fourths. Consistent with the random order of problems in the

domain, both Soar and ACT-R used their productions uniformly. Finally, the ACT-R

system demonstrated the three phases of learning.

Are there performance problems in long-term learning?

As discussed earlier, Soar has been shown to exhibit computational performance

problems when run under conditions of long-term learning (Tambe, Newell, &

Rosenbloom, 1990). To test whether ACT-R suffered from degraded computational

performance with continued learning, timing data was collected during long runs of the

system on Blocks World problems. We hoped to find that a cognitive modeling system

would not demonstrate the performance problems found in more traditional symbolic

learning AI systems because humans do not suffer computational performance problems.

Multiple runs were made on personal computers running the Windows operating

system with the standalone version of ACT-R version 6 [r145] (Allegro Common Lisp,

version 6.2) and on Apple Macintosh G4 and G5 machines running Mac OS X and

Macintosh Common Lisp (MCL) version 5. No changes were made to the default Lisp

garbage collection parameters. Processing time was available from the Lisp

programming language (implementation specific) and from the ACT-R system. Both

times measurements were associated with solving a problem in ACT-R. The first was the

 21

human’s response time calculated by ACT-R as a function of the Blocks-World model

and ACT-R’s sub-symbolic modeling. Figure 5 shows the average ACT-R run times

averaged over 10 problems and five runs.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300
Problems

A
C

T-
R

 S
ec

on
ds

Figure 5. ACT-R Model Times for Blocks World Problems

Figure 5 shows a downward trend in the average time to solve individual Blocks

Worlds problems per ACT-R’s model of human cognition. This is the expected output of

the ACT-R model corresponding to the observed power law of learning. With parameter

adjustments for different models of different tasks, ACT-R’s output has been shown to

correspond to the improved performance with learning that has been seen in many human

subject studies (Altmann & Trafton, 2002; Anderson, Bothell, Lebiere, & Matessa, 1998;

Taatgen, 2002).

To successfully model long-term learning, ACT-R needs to run for long periods.

However, in all of the long-term runs of the Blocks World problems, it eventually failed

(froze). Failures ranged from as early as 340 problems on a small Apple Macintosh G4

(desktop) with 384MB of memory to over 32,000 problems on a Windows PC with 1GB

of memory. Note that ACT-R was able to adequately run on the older hardware; we used

it in order to see computational performance issues in shorter time scales than a current

 22

top of the line computer. Figures 6 shows the Lisp processing time on the Apple

Macintosh G4 that ACT-R used in producing the above results up to its point of failure.

The system continually required additional memory until it ran out of physical memory

and failed. The causes of ACT-R’s computational performance problems have been

investigated and are discussed in the next section.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300

Problems

Li
sp

 P
ro

ce
ss

in
g

Ti
m

e
(s

ec
on

ds
)

Figure 6. ACT-R Run Times for Blocks-World Problems

ACT-R and the Computational Performance Problems

There were two major aspects to the performance problems in ACT-R. The first

is the continual need for additional memory which eventually lead to requests for more

memory than was available resulting in a fatal error. The second aspect was the

increasing processing time with continued learning that caused a slowing down of the

system which could lead to the system running slower than real time.

To investigate ACT-R’s computational performance problems, we used a simpler

domain than the original Blocks-World domain. We found we could demonstrate the

performance problems using the simple task of counting objects with ACT-R running on

an older hardware setup (the same small Apple Macintosh G4 (desktop) with 384MB of

memory that was used in earlier experiments). We used the counting model provided

 23

with the ACT-R tutorial (ACT-R Research Group) expanded to count from one to ten.

We then ran this model of counting to ten in blocks of a hundred repetitions. The code

and model are available from the ACT-R website (ACT-R Research Group). The

counting model focused primarily on declarative learning; no procedural learning

occurred.

We were able to replicate the prior computational performance issues on the

simpler task of counting, suggesting that the performance problems were not due to the

Blocks-World model. Because the counting model is quite simple, we were able to

systematically explore possible causes and solutions to the computational performance

problems. Possible sources of the computational performance problems range from the

system’s hardware and operating system software environment, to ACT-R’s

implementation in Lisp, to the ACT-R theory itself. We will address each of these in

turn.

Hardware and Operating System Software

Failure of ACT-R on long series of problems was found to be independent of the

hardware and operating system: we used both Macintoshes and Windows PCs and in all

cases, the system locked up, i.e., failed. The failures were also independent of the Lisp

environment: we used Allegro and Macintosh Common Lisps, and ACT-R in both

standalone and interpreted versions. Therefore, we ruled out the hardware and system

software as the cause of the computational performance problems.

ACT-R’s Implementation

We then turned to the ACT-R implementation as a possible cause. Previous long

runs of ACT-R (Lebiere, 1999) used a different version of ACT-R and did not have

performance problems because it used an optimized version of the activation formula

 24

which will be discussed below (C. Lebiere, personal communication, February 14, 2007).

The version we used, Version 6, was not optimized for computational performance but

for stability and modifiability (D. Bothell, personal communication, September 6, 2006).

Therefore, it was possible that some knowledge representations or processes may have

been implemented such that a memory leak occurred. Indeed, such a problem was found.

To be consistent with the ACT-R theory, the current implementation creates

copies of chunks of declarative knowledge for different uses. A copy is made for each

retrieval from declarative memory and each change of a buffer, even if it is a duplicate of

an existing chunk. Each temporary copy has an internal name. Although duplicate

chunks are later recognized by the ACT-R code and not added to declarative memory,

their temporary names are retained within the ACT-R system and accumulate

indefinitely. The author of the ACT-R code, Daniel Bothell, graciously made minor

revisions to the ACT-R code (changes r292, r294-r297) to provide a function to clean up

temporary names. These revisions allowed ACT-R with default settings to run an order

of magnitude longer than previous runs (over 5,000 blocks). Figure 7 shows a series of

runs of the tutorial’s counting model with and without this function. (The runs labeled

Full Activation Formula and Efficient Activation Formula employed this function and are

discussed below.) These changes resolved the apparent memory leak caused by the

retention of internal Lisp names. Note that these results used ACT-R with default settings

(see Table 2). Computational performance problems still existed with non-default

settings. Other performance issues, perhaps as a result of the ACT-R theory, are

discussed next.

 25

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900

Blocks of Counting to Ten 100 Times

Li
sp

 P
ro

ce
ss

in
g

Ti
m

e
(s

ec
on

ds
)

Default ACT-R
(all runs failed)

Full Activation Formula
(all runs failed)

Efficient Activation Formula
(no runs failed)

Figure 7. Comparison Long-Term Counting Runs with Different Parameters

Table 2. Settings for Long-Term Counting Runs

Parameter

Default
ACT-R
(Ver. 6
[r297])

Full
Activation
Formula
(Ver. 6
[r297])

Efficient
Activation
Formula
(Ver. 6 [r297])

Latency factor, :lf 0.04 0.04 0.04

Base Level
Learning, :bll 0.5 0.5 0.5

Optimized
Learning, :ol optimized full formula 1 (one term)

ACT-R Theory

There are parts of the ACT-R theory that require the retention of historical

information indefinitely and, therefore, cause increasing memory requirements and

computational burden over the long term. The ACT-R theory’s representation of

declarative memory calculates an activation level for every chunk of declarative memory.

This activation is used to determine whether a chunk is successfully recalled and the

latency of the recall process. The activation calculation includes two components, a base

level of activation and an associative contribution. In accordance with the ACT-R

 26

theory, the base-level activation is a function of the frequency and recency of the uses of

the subject chunk. The base-level learning formula, equation 4.1 (Anderson & Lebiere,

1998) is:

 β+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

−
n

j

d
ji tB

1

ln Eq. 1

where the base-level activation for a chunk, Bi , is the log of the sum over all n previous

uses of the chunk, of the time lag since each use, t, raised to power of a negative

parameter, d, plus a constant. The formula’s parameter d is set via the base-level learning

ACT-R parameter. The full implementation of Equation 1 requires keeping the history of

the each use of all chunks throughout the model’s run. This creates a monotonically

increasing demand for additional memory and causes an increase in computational

resources to be used, eventually leading to a memory-related failure.

The computational burden of the full base-level learning formula has been known

within the ACT-R community for years. To address the burden, ACT-R has a parameter,

:ol “optimized learning”. The default value for this parameter directs the use an

optimized learning formulation (Anderson & Lebiere, 1998), which is:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≈ −d
ni t

d
nB

)1(
ln Eq. 2

where all the terms are the same as in Equation 1: the base-level activation for a chunk,

Bi , is approximately the log of the n previous uses of the chunk divided by 1 minus a

parameter, d, times the time lag since the first use, t, raised to power of the negative

 27

parameter, d. This formulation does not require the history of the chunk’s uses, only the

number of uses, n, and assumes a uniform distribution of uses since creation of the chunk.

However, that formula is considered less cognitively plausible based on the assumed

uniform distribution of previous uses and its inconsistency with observations.

A more computationally efficient approximation was recently developed (Petrov,

2006). The new, improved approximation is:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

∗
−
−

+≈
−−

=

−∑)(
)(

)1(
)(ln

11

1 kn

d
k

d
n

k

j

d
ji tt

tt
d
kntB Eq. 3

where all the terms are the same as in Equations 1 and 2 with the additional parameter k.

This formulation of base-level activation is a combination of the full and optimized

formulations, Equations 1 and 2. It uses a parameter k for the number of the most recent

chunk uses to be calculated as in the full base level learning, Equation 1, and then the

optimized learning approximation for the rest of the terms, Equation 2. Note that this

formulation is more cognitively plausible than Equation 2, but probably less plausible

than Equation 1. It is an open question how much history is needed to maintain high

cognitive fidelity and plausibility. This formulation is already included in ACT-R.

The implementation of Equation 3 has the user specify a finite number of

previous uses which then results in finite memory requirements. Specifying a finite

number of uses ends the unbounded growth in the demand for more memory. Figure 7

shows comparable long-term runs using the different equations for base level learning.

Using the naming function and using Equation 3 resolved the computational performance

 28

problems for the counting model. We then applied these changes to the original Blocks-

World domain to test the effects there.

With the implementation of the naming function and the use of Equation 3, ACT-

R successfully ran 1,000 Blocks-World problems, long past the original failure point of

340 problems. This performance demonstrated that the original failure of ACT-R with

long-term learning was due to these problems.

On the procedural side of memory, ACT-R theory has a similar formula for the

utility of a production and supports compilation of productions into a new productions.

We hypothesize that a similar memory demand and computational slowdown will result

from the code’s implementation of the theory for procedural knowledge. However, the

effects are not as great and have not been noted in the long-term learning experiments we

have conducted. Therefore, this constitutes future work. Table 3 summarizes the results

of our exploration of the computational performance problems in ACT-R.

Table 3. ACT-R and the Computational Performance Problems

 Performance
Problem Cause Approach Evidence

Hardware and
System Software

System locks
up

Not hardware or
software --

Problem occurs with
different systems, and
Lisp versions

ACT-R’s
Implementation

Memory leak Retention of
temporary chunk
names

New function to
clear up names

Long runs with and
without new function
(Figure 7)

Declarative
memory
overflow and
processing
slowdown

Base level
learning equation
requires the
retention of all
previous uses of
each chunk

“Optimized
learning”
approximation or
simplified base-
level activation
formula

Long runs with and
without simplified
base-level activation
formulation (Figure 7)

ACT-R Theory
Procedural
memory
overflow and
processing
slowdown

Retention of
production use
history
(hypothesized)

Future research

Future research

 29

Conclusions and Discussion

We conclude that Soar and ACT-R have similar long-term learning

characteristics. We explored three questions: does learning continue forever, how is

learned knowledge used, and whether ACT-R suffers from computational performance

problems like Soar and more traditional symbolic AI systems do.

For the first question, we found that in finite domains, symbolic learning on long-

series of problems eventually stops in both Soar and ACT-R which suggests that learning

stops in finite domains in humans as well. This may be important depending on when

learning ends with respect to when the degraded computational performance begins. For

example, a symbolic learning system would be much more useful if the system’s learning

ended before reaching the point where degraded performance began and unfortunate if

learning continued until after the computational performance degraded.

On the use of learned productions, there are several differences between Soar and

ACT-R. Soar learns from one learning opportunity and makes the new procedural

knowledge available immediately. In contrast, ACT-R requires many learning

opportunities before a new production is usable. Soar also creates procedural knowledge

that is more general and therefore more powerful than the productions that ACT-R

creates. There are advantages and disadvantages to both approaches for AI systems and

Cognitive Science purposes.

Soar’s learning mechanism has enabled Soar modelers to build some very

powerful AI systems. However, one of the criticisms of Soar’s learning mechanism is

that it is too powerful (Anderson & Lebiere, 1998), specifically, Soar creates too many

chunks. Soar's powerful learning mechanisms do not hurt the AI engineering endeavors,

but they can make matching human-level performance data more difficult. ACT-R’s

 30

learning mechanisms are not as computationally powerful as Soar’s, but ACT-R learns at

both symbolic and sub-symbolic levels as humans do. Consistent with ACT-R’s high-

level goal of matching human cognitive behavior, it is also able to demonstrate different

phases of learning.

Finally, we found that ACT-R, like Soar, suffers from computational performance

problems with long-term learning. We found that the performance problems were caused

by both an ACT-R implementation detail and ACT-R theoretical issues. A coding

change resolved the computational performance problems caused by the implementation

detail and the updated version of ACT-R with default parameters can perform long-term

symbolic learning.

Two important and related theoretical issues remain, however. Both deal with the

consequences of the long-tem retention of learned knowledge. First, the current ACT-R

theory for the sub-symbolic activation of declarative memory requires the retention of all

previous uses of each item in declarative memory. Any computational theory that must

maintain a history of its operation without bounds will, eventually, run out of storage.

Therefore, the activation theory and its mathematical formulation need revision to

address long-term learning, not just as a computational efficiency issue (Petrov, 2006),

but as a cognitively plausibility issue. A similar memory overflow issue applies to

procedural learning and needs to be addressed as well. (Note that recent work presents a

new utility equation for ACT-R that does not require the retention of all previous uses

(Anderson & Fu, 2006).)

The second theoretical issue associated with long-term, symbolic learning is more

general. Any theory of learning that continually adds new symbols to memory must,

eventually, run out of storage. A finite, symbolic memory capacity theoretically applies

 31

to both human and machine learning systems. In computer systems, a limited memory

capacity is familiar, though no overall capacity limitations in humans have been shown.

This capacity limit applies to all symbolic learning, i.e., both declarative and

procedural. The work reported here has focused on declarative memory as the source of

the observed degraded computational performance within ACT-R. However, procedural

memory is expected to have the same performance problems and theoretical issues.

This work also has implications for AI systems. Symbolic AI learning systems

need to address these capacity issues to avoid system failures. Possible approaches are to

limit learning based on memory capacity, incorporate forgetting of low value items to

make room for continued learning, or incorporate automatic representational changes

based on memory capacity.

On the cognitive science side, in spite of these theoretical issues, humans do not

appear to have long-term computational performance problems nor appear to have

reached their memory capacity. Like AI systems research, cognitive science needs to

address these theoretic capacity issues. Future research may develop a cognitively

plausible justification for removal of some knowledge, for example, symbols that have

not been used for a very long time (e.g., they have very low activation levels) may be

removed permanently. Alternatively, it may be possible to change the representation so

that those symbols require less memory.

Long-term learning is at the core of theories of cognition, both natural or

artificial. Research aimed at advancing our understanding of cognition is greatly

facilitated by the existence and availability of computational cognitive modeling systems

implementing theories of cognition. Implemented theories of cognition provide a

foundation for building and testing computational cognitive models. Our work is an

 32

example of the use of computational cognitive models built on the implementations of

different theories of cognition to advance the science toward a unified theory of

cognition.

Acknowledgments

The authors are deeply indebted to Daniel Bothell for clarifying ACT-R’s design

and implementation philosophy and for making modifications to ACT-R to address the

memory leak associated with chunk names supporting this research. This work and paper

benefited from discussions with the cognitive modeling group at the Naval Research

Laboratory which includes: Len Breslow, Sara Kriz, Mike Brudzinski, and Malcolm

McCurry. We would also like to thank the three anonymous peer reviewers who ensured

our clarity and precision.

This work was performed while the first author held a National Research Council

Research Associateship Award at the Naval Research Laboratory. This work was

partially supported by the Office of Naval Reactors under job order numbers 55-8551-06,

55-9019-06, and 55-9017-06. The views and conclusions contained in this document

should not be interpreted as necessarily representing the official policies, either expressed

or implied, of the U. S. Navy.

References

ACT-R Research Group. ACT-R Retrieved October 13, 2006, from http://act-

r.psy.cmu.edu/
Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-based model.

Cognitive Science, 26, 39-83.
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369-

406.
Anderson, J. R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Erlbaum.

 33

Anderson, J. R. (2000). Learning and Memory: an Integrated Approach (2nd ed.).
Hoboken, NJ: John Wiley & Sons.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S., Lebiere, C., & Qin, Y. (2004).
An integrated theory of mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of
list memory. Journal of Memory and Language, 38, 341-380.

Anderson, J. R., & Fu, W.-T. (2006). From recurrent choice to skill learning: A
reinforcement-learning model. Journal of Experimental Psychology: General,
135(2), 184-206.

Anderson, J. R., & Lebiere, C. (1998). The Atomic Components of Thought. Mahwah, NJ:
Erlbaum.

Bostrom, H. (1992). Eliminating Redundancy in Explanation-Based Learning. Paper
presented at the Ninth International Workshop on Machine Learning, San Mateo.

Doorenbos, R. B. (1995). Production Matching for Large Learning Systems. Carnegie-
Mellon University, Pittsburgh.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of
human learning. New York: Academic Press.

Fleetwood, M. D., & Byrne, M. D. (2006). Modeling the visual search of displays: A
revised ACT-R/PM model of icon search based on eye tracking data. Human
Computer Interaction, 21.

Gunzelmann, G. (2006). Understanding Similarities in the Performance on Different
Orientation Tasks: Strategy Adaption. Paper presented at the Seventh
International Conference on Cognitive Modeling, Trieste, IT.

Holder, L. B. (1990). The General Utility Problem in Machine Learning. Paper presented
at the Seventh International Conference on Machine Learning, Austin, TX.

Iba, G. A. (1989). A Heuristic Approach to the Discovery of Macro Operators. Machine
Learning, 3, 285-317.

Jones, R., Laird, J., & Nielsen, P. (1994). Coordinated Behavior of Computer Generated
Forces in TacAir-Soar. Paper presented at the Fourth Conference on Computer
Generated Forces and Behavioral Representation, Orlando, FL.

Kennedy, W. G. (2003). Long-Term Learning in Soar and its Application to the Utility
Problem. George Mason University, Fairfax.

Kennedy, W. G., & De Jong, K. A. (2003). Characteristics of Long-term Learning in
Soar and its Application to the Utility Problem. Paper presented at the Twentieth
International Conference on Machine Learning (ICML-2003), Washington, DC.

Leake, D. B., Kinley, A., & Wilson, D. (1995). Learning to Improve Case Adaptation by
Introspective Reasoning and CBR. Paper presented at the First International
Conference on Case-Based Reasoning, Sesimbra, Portugal.

Lebiere, C. (1999). The dynamics of cognition: An ACT-R model of cognitive arithmetic.
Kognitionswissenschaft, 8(1), 5-19.

Logan, G. G. (1988). Toward an Instance Theory of Automatization. Psychological
Review, 95(4), 492-527.

Markovitch, S., & Scott, P. D. (1988). The role of forgetting in learning. Paper presented
at the Fifth International Conference on Machine Learning, Ann Arbor, MI.

Minton, S. (1988). Quantitative Results Concerning the Utility of Explanation-Based
Learning. Paper presented at the Seventh National Conference on Artificial
Intelligence, St. Paul, MN.

 34

Minton, S. (1990). Quantitative Results Concerning the Utility of Explanation-Based
Learning. Artificial Intelligence, 42, 363-391.

Mooney, R. (1989). The Effect of Rule Use on the Utility of Explanation-Based Learning.
Paper presented at the Eleventh International Joint Conference on Artificaila
Intelligence, Los Altos.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of Skill Acquisition and the Law
of Practice. In J. R. Anderson (Ed.), Cognitive Skills and Their Acquisition.
Hillsdale, NJ: Erlbaum.

Petrov, A. A. (2006). Computationally Efficient Approximation of the Base-Level
Learning Equation in ACT-R. Paper presented at the Seventh International
Conference on Cognitive Modeling, Trieste, IT.

Rosenbloom, P. S., & Newell, A. (1986). The Chunking of Goal Hierarchies, A
Generalized Model of Practice. In R. S. Michalski, J. G. Carbonell & T. M.
Mitchell (Eds.), Machine Learning (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human
Factors, 48, 362-380.

The Soar Group. Soar Retrieved July 7, 2005, from
http://sitemaker.umich.edu/soar/home

Taatgen, N. A. (2002). A model of individual differences in skill acquisition in the
Kanfer-Ackerman Air Traffic Control Task. Cognitive Systems Research, 3(1),
103-112.

Taatgen, N. A. (2005). Modeling parallelization and flexibility improvements in skill
acquisition: from dual tasks to complex dynamic skills. Cognitive Science, 29(3),
421-455.

Taatgen, N. A., & Lee, F. J. (2003). Production Compilation: A simple mechanism to
model complex skill acquisition. Human Factors, 45(1), 61-76.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The Problem of Expensive Chunks
and its Solution by Restricting Expressiveness. Machine Learning, 5, 299-348.

Winston, P. H. (1984). a prediction of human response (2nd ed.). Reading, MA:
Addison-Wesley Publishing Company.

