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ABSTRACT 

The LCS will be a small combatant designed to address many of the challenges 

facing the Navy in the 2002 Defense Planning Guidance (DPG).  It will rely on newly 

developing mission modular technology that will allow the core component of LCS, the 

seaframe, to change out warfare mission packages to adapt it for different warfighting 

scenarios.  Unlike the current combatants of the Navy, LCS will be a single-mission 

focused ship that will rely on still developing technology to conduct operations in one of 

three main areas:  Anti-submarine Warfare (ASW), Mine Warfare (MIW) and Surface 

Warfare (SUW).   Through models developed in Microsoft Excel this thesis evaluates 

how speed and different fuel reserve levels impact Littoral Combat Ship fuel 

consumption and endurance of the two approved versions of LCS, analyzes the 

implication of these findings and other possible mission limiting factors on Littoral 

Combat Ship logistics and analyzes how the current CLF force structure in the Pacific 

will affect overall mission capability of LCS. 
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 EXECUTIVE SUMMARY 

The Defense Planning Guidance (DPG) of 2002 included the challenge that the 

Navy must be able to maintain an area devoid of mines for safe aircraft carrier operations, 

destroy or evade large numbers of submarines operating in littoral waters and have the 

capability to destroy numerous small anti-ship missile carrying combatants or weapons 

wielding merchant vessels without the support of carrier-based air power.  In 2002, 

Admiral Vern Clark, Chief of Naval Operations, addressed these concerns when he 

introduced the vision for the future of the United States Navy titled “Sea Power 21”.  

This concept was created to guide the Navy way of doing business and align it with the 

Joint Concept of Operations.  In his vision, ADM Clark described how the new Littoral 

Combat Ship (LCS) would enable the Navy to control the littoral regions of the 

battlefield.  The LCS will be a small combatant designed to address many of the 

challenges facing the Navy in the 2002 Defense Planning Guidance (DPG).  It will rely 

on newly developing mission modular technology that will allow the core component of 

LCS, the seaframe, to change out warfare mission packages to adapt it for different 

warfighting scenarios.  Unlike the current combatants of the Navy, LCS will be a single-

mission focused ship that will rely on still developing technology to conduct operations 

in one of three main areas:  Anti-submarine Warfare (ASW), Mine Warfare (MIW) and 

Surface Warfare (SUW). 

Through models developed in Microsoft Excel, this thesis evaluates how speed 

and different fuel reserve levels impact Littoral Combat Ship fuel consumption and 

endurance of the two approved versions of LCS, analyzes the implication of these 

findings and other possible mission limiting factors on Littoral Combat Ship logistics and 

analyzes how the current Combat Logistics Force (CLF) force structure in the Pacific will 

affect overall mission capability of LCS. 

The first analysis conducted on LCS involved using two sets of estimated fuel 

data to predict fuel consumption curves for LCS.  Using these consumption curves an 

endurance analysis was then conducted to see how well LCS might perform compared to 

the parameters listed in the Capabilities and Development Document (N76, 2004).  This 



 xvi

analysis showed that neither the Lockheed Martin (LM) nor General Dynamics (GD) 

LCS is able to meet the objective endurance range of 1,500nm at sprint speed.  At the 

objective economical speed of 20kts only the GD version of LCS is able to meet an 

endurance range of 4,300nm.  At the threshold sprint speed value of 40kts both versions 

of LCS meet the threshold endurance range of 1,000nm.   Only the GD version of LCS 

meets the threshold requirement of a 3,500nm range at speed of greater than 18kts.   

The endurance analysis for LCS also shows that the most economical speeds, the 

speed at which LCS has the longest range, for both the GD and LM versions are below 

the 18kt threshold value.  Additionally, the endurance analysis noted a large disparity in 

range is created by the difference in the fuel capacity of the LM and GD versions of LCS, 

because GD has a much larger fuel capacity.    

Once fuel consumption and endurance analysis is completed, a logistical analysis 

of LCS is done utilizing two distinct scenarios.  The first scenario is an MIW scenario 

which places LCS on a 90 day patrol in the Western Pacific Ocean.  During this scenario 

LCS is constrained by the Cardinal Rules described in Chapter I and the ROC/POE 

described in Chapter IV.  Analysis concluded that compared to legacy MIW platforms 

LCS gives the logistics planner much more freedom in scheduling refueling events. LCS 

was found to utilize up to 66% less refueling assets than the legacy platforms when fuel 

reserve levels are lowered to an effective, but still mission capable level for LCS.   The 

LCS, however, is shown to have a maximum operational availability (Ao) of 67% during 

this mission, compared to 70% of the legacy platforms.  This only occurs when a crew 

rest constraint from the ROC/POE is relaxed to allow LCS to maintain an extra day on-

station between necessary crew rest days.   If this constraint is not relaxed LCS has a 

maximum Ao of 60%.  Analysis of this mission also found that the large disparity in fuel 

capacity between the LM and GD versions of LCS gives the operational logistics planner 

more flexibility in scheduling fueling events for the GD LCS. 

The second scenario created three generic HA/DR scenarios in which LCS 

deploys from a forward operating base or forward operating CSG/ESG in the western 

Pacific Ocean to render assistance to a disaster area.  This scenario again showed how the 

large disparity in fuel capacity allows the logistics planner much more flexibility in 
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setting fuel reserve levels for the GD LCS than the LM LCS.  This large disparity in fuel 

capacity also requires less CLF support to complete a mission for the GD LCS over the 

LM LCS.  Additionally, analysis found, for these missions, slight reductions in the 

allowed fuel reserve levels allowed LCS to make the mission feasible in some cases, 

while in others, flexibility offered great improvements in the use of LCS sprint speed.  

One such example is found in the GD LCS Mission C scenario.  In this scenario LCS is 

tasked with a 3,500nm transit.  If fuel reserve levels are left at 50% and only one CLF 

ship is available, the mission is infeasible.  A reduction in the fuel reserve level to 38% 

however, allows GD LCS to arrive on-station 19 hours ahead of the CSG/ESG.  A further 

reduction in the fuel reserve level to 20% allows GD LCS to arrive almost 4 days ahead 

of the CSG/ESG. 

This thesis cites multiple examples on how careful management of allowed fuel 

reserve levels for LCS, in concert with available CLF assets, can determine success of an 

LCS mission when utilizing the sprint speed capability it brings to the theater.  

Furthermore, this thesis emphasizes, through analysis, the need for logistics planners to 

be forward thinking in their ability to support LCS when tasking the ship to perform 

missions throughout the Pacific Fleet area of responsibility. 
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I. INTRODUCTION  

A. BACKGROUND 

 

The ending of the Cold War in the early 1990’s and the events of September 11, 

2001 have ushered in a new era of warfare for the United States military.  Like its sister 

services, the United States Navy has found a need to adapt to fight the wars of the 21st 

century.  The Navy today is less likely to contend with other large blue water navies and 

more likely to need the capability to face smaller more agile and less technological foes.  

To engage these forces successfully the Navy will have to seek out and destroy them in 

more unfamiliar, unfriendly areas of the world where the U.S. may not hold the superior 

advantage it does on the open seas, the littorals.   

The Defense Planning Guidance (DPG) of 2002 addressed some of these concerns 

and stated that the Navy must be able to maintain an area devoid of mines for safe 

Aircraft Carrier operations, destroy or evade submarines operating in littoral waters and 

have the capability to destroy numerous small anti-ship missile carrying combatants or 

weapons wielding merchant vessels without the support of carrier-based air power.  In  

2002  Admiral Vern Clark, Chief of Naval Operations, addressed these concerns when he 

introduced the vision for the future of the United States Navy titled “Sea Power 21”.  

This concept was created to guide the Navy way of doing business and align it with the 

Joint Concept of Operations.  This vision encompasses three fundamental pillars: Sea 

Strike, Sea Shield and Sea Basing.   

 

Sea Strike is the ability to project precise and persistent offensive power 
from the sea; Sea Shield extends defensive assurance throughout the 
world; and Sea Basing enhances operational independence and support for 
the joint force. These concepts build upon the solid foundation of the 
Navy-Marine Corps team, leverage U.S. asymmetric advantages, and 
strengthen joint combat effectiveness (Clark, 2002). 
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To answer the challenges of the DPG 2002 within the construct of “Sea Power 

21”, the Navy turned to a new class of combat ship, a member of the next generation of 

surface combatants, the Littoral Combat Ship (LCS).  LCS promises to be an agile, fast 

and networked surface combatant centered on a mission module concept.  This modular 

concept is designed to provide “Combatant Commanders with warfighting capabilities 

and operational flexibility that will contribute to maritime dominance and access for the 

joint force.”(Fleet Forces Command, 2007)   LCS along with current and future surface 

combatants, such as the Zumwalt class Destroyers and CG(X), promise to give 

Combatant Commanders “the full dimensional protection and precision engagement 

required to maintain freedom of the seas for the Joint forces, safeguard maritime trade 

and support the Maritime Security Operations (MSO)”. (Fleet Forces Command, 2007)    

 

B. PROBLEM DEFINITION 

 

The LCS will be a small combatant designed to address many of the Navy 

challenges in the 2002 DPG.  It will rely on a newly developing mission modular 

technology that will allow the core component of LCS, the seaframe, to change out 

warfare mission packages to adapt it for different warfighting scenarios.     Unlike the 

current combatants of the Navy, LCS will be a single-mission focused ship that will rely 

on still developing technology to conduct operations in one of three main areas: Anti-

submarine Warfare (ASW), Mine Warfare (MIW) and Surface Warfare (SUW).   LCS 

will also be capable of conducting numerous secondary missions such as Intelligence 

Surveillance and Reconnaissance (ISR), Maritime Interdiction Operations (MIO) in 

support of the Global War on Terrorism (GWOT), humanitarian missions, support 

missions for special operations personnel as well as a host of other noncombatant 

missions. 

In May 2004, the Navy awarded contracts to build two version of the LCS 

seaframe to two competing teams.  The first team, led by Lockheed Martin (LM), was 

commissioned to build LCS-1 and LCS-3.  The second team, led by General Dynamics 
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(GD) was commissioned to build LCS-2 and LCS-4.  These two versions of LCS focus 

on two distinctly different hull types.  The Lockheed Martin version is based on what it 

refers to as a semi-planning advanced steel monohull (Lockheed Martin, 2007) while 

General Dynamics has opted for a more untraditional trimaran hull.  In April of 2007, the 

Navy announced that it could not reach an agreement with LM on the restructuring of the 

contract for LCS-1 and LCS-3.  The Navy consequently terminated the contract for LCS-

3.  Commenting on the termination Secretary of the Navy Donald Winter stated that 

“LCS continues to be a critical warfighting requirement for our Navy to maintain 

dominance in the littorals and strategic choke points around the world” (OASD, 2007).  

In November of 2007, the Navy followed its cancellation of LCS-3 with the cancellation 

of LCS-4 because  

 

The Navy intended to begin construction of LCS 4 if the Navy and 
General Dynamics could agree on the terms for a fixed-price incentive 
agreement. The Navy worked closely with General Dynamics to try to 
restructure the agreement for LCS 4 to more equitably balance cost and 
risk, but could not come to terms and conditions that were acceptable to 
both parties (DoD, 2007). 

 

Commenting on the newest cancellation of the next generation of naval 

combatants, Chief of Naval Operations ADM Gary Roughead was quoted as saying  

 

I am absolutely committed to the Littoral Combat Ship.  We need this 
ship.  It is very important that our acquisition efforts produce the right 
littoral combat ship capability to the fleet at the right cost (DoD, 2007).   

 

Figure 1 shows an artists rendition of the General Dynamics version of LCS while Figure 

2 shows a picture of the Lockheed Martin version of LCS just prior to launching in 

Marinette Wisconsin. 
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Figure 1.  Artist conception of General Dynamics version of Littoral Combat 
Ship (From General Dynamics, 2008) 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.  Lockheed Martin version of Littoral Combat Ship at christening 
ceremony in Marinette, Wisconsin (From Lockheed Martin, 2008) 
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With the future of LCS as a core component of both the Navy thirty year 

shipbuilding plan, in which 55 ships of the class have been proposed, and of future naval 

doctrine, many questions have arisen as to the value and impact LCS will have on the 

fleet.  In 2003, David Rudko of the Naval Postgraduate School in Monterey California 

conducted a logistical analysis of LCS based on the conceptual nature of the ship.  He 

concluded that a small, fast, agile ship conducting operations as outlined in the concept of 

operations (CONOPS) for LCS by Naval Warfare Development Command (NWDC) in 

2003 the LCS would be very limited in its ability.  “Just as the ASHEVILLE, PEGASUS 

and CYCLONE class ships were constrained in their operations due to low endurance 

and limited capability, the output from the Littoral Combat Ship model yields similar 

problems” (Rudko, 2003). 

Now that LCS has taken shape this paper will revisit this question based on both 

types of hulls currently in production.  With models developed in Microsoft Office Excel, 

this thesis evaluates how speed and different fuel reserve levels impact Littoral Combat 

Ship fuel consumption and endurance of the two approved versions of LCS, analyzes the 

implication of these findings and other possible mission limiting factors on Littoral 

Combat Ship logistics and analyzes how the current CLF force structure in the Pacific 

will affect overall mission capability of LCS.  

 

C. FOLLOWING THE CARDINAL RULES 

 

Commander Naval Surface Forces created the Cardinal rules for LCS to help 

align implementation of the new combatant into the fleet.  This thesis will adhere to these 

rules in all analysis.  The rules are: 

1.  Do not deviate from the Capability Development Document.  It provides 

operational performance attributes, including supportability, for the acquisition 

community to design the proposed system. It includes key performance 

parameters (KPP) and other parameters that guide the development,  
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demonstration, and testing of the current increment. It also outlines the overall 

strategy for developing full capability. Do not make policy decisions that don't 

match capability.  

2.  Do not covet Aegis or simultaneous multi-mission capability. LCS can do one 

focused mission at a time.  

3.  Do not try to compare LCS to legacy platforms.  It cannot be manned, trained, 

equipped, maintained or tactically employed in the same way. No old think. 

4.  Manage expectations.  The ship will perform as specified in the CDD. It can 

do no more and shouldn't be over-sold.  

5.  Risk is a given.  Embrace it and manage it. 

6.  Do not add weight to LCS. For anything added, something else must be 

removed.  

7.  Manage Spirals.  An effective spiral plan must balance capability to cost.  

Ensure spirals address critical needs and provide return on investment (ROI). 

8.  Manpower is a constraint. View the crew as you would an air crew.  They 

operate the ship and keep it going when underway. 

9.  Shipboard logistics and maintenance efforts must be focused on achieving   

operational agility.  Processes that are focused on sustainability should be 

accomplished either ashore or at the sea base.  

10.  Attack all LCS issues with the speed of heat. It will be here quickly.  Be 

ready (Fleet Forces Command, 2007). 
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1. Definitions 

Seaframe is the ship platform and all of its inherent combat capabilities.  Free 

standing with no mission module a seaframe will be able to perform all self-defense 

measures, navigation, C4I and air and small boat operations. 

Mission Package is an interchangeable package that is used to configure LCS for 

its primary warfighting role.  Mission Packages are currently being developed for ASW, 

MIW and SUW missions.  Each package may consist of manned and unmanned vehicles, 

deployable sensors, specially trained mission module personnel and several cargo 

containers housing the command and control elements.  These cargo containers will 

integrate with the seaframe creating a cohesive surface combatant specializing in any one 

warfare area.  Specified elements of each of the three main mission packages are listed in 

Chapter II. 

 

D. METHODOLOGY 

 

In Chapter II, the Littoral Combat Ship concept of operations is discussed and a 

model is designed to estimate the Littoral Combat Ship logistical efficiency.  For the 

purpose of this thesis logistical efficiency will be defined for two separate LCS scenarios.  

For the first scenario LCS will deploy for a MIW mission.  Efficiency, during this 

mission, will be measured in how long LCS can conduct continuous operations before a 

logistic or crew fatigue constraint forces it to leave the operating area.  The efficiency 

measure will be called operational availability (Ao).  The calculation method for Ao will 

be further defined in scenario development in Chapter III.  

The second scenario will require LCS to perform humanitarian operations from a 

forward deployed naval base or by being detached from an underway forward deployed 

carrier strike group or expeditionary strike group (CSG/ESG).  Speed is one of the key 

attributes LCS brings to a theater.  Speed has been a critical factor in getting aid to 

disaster areas or to injured and/or sick persons on the high seas.  The ability of the U.S. 

Navy to respond to tragedies quickly and provide life saving supplies and medical 
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technicians during relief operations could mean the difference between life and death for 

many.  In December 2007 the USS Ronald Reagan was dispatched from the coast of 

Southern California to render medical assistance to an ailing cruise ship passenger off the 

coast of Baja, Mexico.  The ships ability to close the cruise ship at a high rate of speed 

for a period of several hours allowed it to get close enough to launch a helicopter, air lift 

the passenger back to the ship, and render medical assistance which saved the passengers 

life.  For this scenario, efficiency will be measured by how quickly LCS can get 

humanitarian aid to an affected region, without having to utilize CLF assets in the 

Western Pacific, for logistical needs.  It will be measured through a combination of total 

fuel consumed, replenishment at sea evolutions required to maintain allowed fuel reserve 

levels and fuel on hand once the target destination is reached. 

Using these two scenarios in Chapter III, the Littoral Combat Ship concept of 

operations is overviewed, scenarios are created and critical design parameters are 

discussed.  These design parameters will reflect known usage rates on both version of 

LCS to show the difference in efficiency one might expect from the General Dynamics 

and Lockheed Martin versions.  The scenarios created in this chapter will represent a 

portion of the missions that LCS will be expected to complete when fully integrated into 

the fleet.  These scenarios will model possible MIW operations and Humanitarian 

Assistance/ Disaster Relief (HA/DR) Operations.  The concept of operations (CONOPS) 

for the LCS is taken from the Littoral Combat Ship Wholeness Concept of Operations 

(Fleet Forces Command, 2007).   

According to the LCS CONOPS, the Littoral Combat Ship will be capable of 

conducting missions over the full range of military operations, from combat missions to 

humanitarian assistance.  The ship will be able to integrate into any naval combat group, 

including groups with coalition partners, or act as an independently deploying ship.  The 

vessel will be capable of extended deployments in adverse weather environments, though 

these environments may inhibit LCS from conducting its primary mission.   

Factors that are considered for computing LCS’s operational availability while 

conducting a mission include fuel consumption, food consumption and ability to maintain 
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station based on assigned tasking.  For the purposes of this thesis, LCS will deploy with a 

certain mission package and will not be expected to change out mission packages while 

on deployment.   

In Chapter IV, the implications of mission planning for LCS when factoring in the 

current Combat Logistics Force is addressed. An analysis of Littoral Combat Ship off-

station time due to required replenishments is compared with the current size and 

replenishment capabilities of the Combat Logistics Force in order to determine the 

overall impact on a mission capability for LCS. 

In Chapter V, a conclusion of the Littoral Combat Ship logistical analysis is 

provided.  This thesis is based on current unclassified LCS capabilities and limitations, to 

include sea keeping ability and fuel consumption.  When known, true fuel data can 

replace the estimated figures in the mathematical models of this thesis to give a clear 

picture as to the impact the LCS may have on the Combat Logistics Force in the Pacific.  

In Chapter V, recommendations for further research into the logistical capabilities of the 

Littoral Combat Ship will also be presented. 
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II. LITTORAL COMBAT SHIP LOGISTICS MODEL 
DEVELOPMENT 

LCS will incorporate single-mission focused ability and sprint speed to 

accomplish specific warfare missions.  The ship will not be a typical U.S. combatant with 

multiple mission offensive and defensive capabilities.  It will be, instead, specialized for a 

particular warfare mission during a deployment.  The interchangeability of the LCS 

mission packages allows for the ship to alter its warfare specialty area during mid 

deployment. 

In this chapter, the LCS concept of operations is overviewed, and critical design 

parameters are discussed.  A model is then developed to estimate how well the LCS will 

perform based solely on logistical constraints.  This thesis does not analyze the ability of 

LCS to conduct MIW operations nor does it analyze whether or not LCS is the best 

choice of ship to use to deliver humanitarian aid to a region.  The concept of operations 

for the LCS in this thesis is taken from the Littoral Combat Ship Wholeness Concept of 

Operations (Fleet Forces Command, 2007) 

 

A.        CONCEPT OF OPERATIONS 

 

The Littoral Combat Ship will be unlike the modern day multi-mission ships of 

the U.S. Navy.  LCS will be a reconfigurable single-mission focused ship.  It will consist 

of a core seaframe that will give LCS its inherent self defense capabilities as well as the 

ability to plug in mission packages to allow it to specialize in specific littoral warfare 

areas.  These mission packages are slated to include the warfare areas of MIW, ASW and 

SUW.  Table 1 supplies the timelines mission packages are expected to enter the fleet in 

accordance with the Wholeness CONOPS. 
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MISSION PACKAGE DELIVERY SCHEDULE 
ASW 1 in FY07, 1 in FY09, 1 in FY10   
MIW  2 in FY08 
SUW 1 in FY08, 1 in FY09, 1 in FY10 

Table 1.   Expected delivery of LCS Mission Modules to the fleet  (After Fleet 
Forces Command,  2007) 

 

Mission capabilities for the LCS will come aboard in different designed mission 

packages.  Different logistics and manning will be associated with each mission package.  

These mission packages will allow LCS to be prepared to meet the needs of the Naval 

Component Commander in the region to which it will deploy.  While deployed, LCS is 

not permanently attached to its deploying mission package.  At the request of the Naval 

Component Commander, LCS can change out its mission package with another mission 

package forward deployed ashore, pre-positioned on other ships, or flown in. (Fleet 

Forces Command, 2007).  This allows for commanders to adjust LCS for specialized 

missions based on the current situation in the area of operations in which LCS is 

deployed.   

LCS will also have the ability to conduct other missions that are not are not part 

of its mission package outfitting.  These missions will include Enhanced Maritime 

Interception Operations (EMIO), Special Operations Forces (SOF) support, Intelligence, 

Surveillance and Reconnaissance (ISR), Anti-Terrorism/Force Protection (AT/FP) and 

other missions and operations as deemed necessary by the Naval Component 

Commander.   

 

1. MIW Mission 

According to the 2007 CONOPS, the MIW package for LCS will bring the Naval 

Combatant Commander a host of mine countermeasure capabilities.  These capabilities 

will range from mine detection to neutralization, avoidance and sweeping, supporting 



 13

Joint operations conducted ahead of or concurrent with power projection forces (Fleet 

Forces Command, 2007).    These abilities along with the sprint capabilities of LCS are 

expected to allow it to gain access to an area and clear the way for amphibious landing 

operations as well as protect the amphibious forces prior to or in conjunction with their 

arrival.  The ability of LCS to take full advantage of its speed and reach a contested area 

to clear it of mines prior to an amphibious group or CSG arriving is still under analysis.  

In 2003 Alidade Incorporated conducted a study relating how the proposed speed of LCS 

could impact the future tactical environment. The study found that for a squadron of 3 

LCS to clear an area 160,000 nm sq. to a 90% probability of detection using a random 

search requires 10.4 days to complete the mission (Dickmann, 2003).   

 

This means that the only theater this type of operational scenario is 

effective is for a surge from CONUS to the Persian Gulf.  In all other 

theaters the LCS squadron does not arrive in time for a random search to 

be completed (Dickmann, 2003). 

 

In his study, Dickmann also suggests that for his findings to be true LCS will be required 

to maintain 50kts the entire search and transit.   This study entirely neglects all logistical 

and personnel needs of the ship.      Though this study relates to LCS finding a single 

surface target, the model can easily be adapted to assume this target is a floating mine or 

could be adapted further to portray other variants of mines found throughout the world.  

In any case, the study shows that for speed to greatly affect the battlespace it must be 

much greater than what the current LCS will have to offer, and furthermore higher speeds 

are unrealistic unless infinite refueling is assumed.   

Figure 3 depicts how LCS will use its offboard sensor capabilities to conduct the 

MIW mission.  Table 2 contains a list of the elements incorporated into the MIW mission 

package (Fleet Forces Command, 2007). 
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Figure 3.  LCS MIW mission package capabilities (From Defense Industry 
Daily, 2007) 

 

 

MIW Package Elements QTY 
Unmanned Surface Vehicle (USV) 1 
Vertical Takeoff Unmanned Aerial Vehicle (VTUAV) 1 
     Coastal Battlefield Reconnaissance and Analysis (COBRA) 2 
MH-60S  1 
     Organic Airborne and Surface Influence Sweep (OASIS) 1 
     AN/AQS-20A Minehunting Sonar Set (helicopter-configured) 1 
     Airborne Laser Mine Detection System (ALMDS) 1 
     Rapid Airborne Mine Clearance System (RAMICS) 1 
     Airborne Mine Neutralization System (AMNS) 1 
Remote Minehunting Vehicle System (RMV/RMS) 2 
AN/AQS-20A Minehunting Sonar Set (RMV-configured) 2 

Table 2.   MIW Mission Package Elements (After Commander Third Fleet, 2005) 
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2. SUW Mission 

The second primary mission LCS will be configured for is SUW.  During this 

mission, the Wholeness CONOPS states, commanders employing LCS will be able to use 

both its speed and ability to detect track and kill hostile small fast attack craft in an 

operating area.  LCS is described in the CONOPS as bringing to the combatant 

commander’s capabilities the ability to move joint forces through restricted waters with 

the security of successfully combating enemy small boat swarms.  The SUW package, 

along with the inherent speed of the LCS is also claimed to provide the combatant 

commander a unique platform from which to conduct EMIO.  According to the 

CONOPS, LCS will also be able to, through the use of speed and both manned and 

unmanned aerial assets attached to the SUW mission package, help extend the sensor 

range of a strike group and enable it to move more securely through restricted waters and 

littoral regions (Fleet Forces Command, 2007). 

 

SUW Modular Elements QTY 
Vertical Take-Off Unmanned Aerial Vehicle (VTUAV) 2 
     EO/IR/LD sensor and datalink relay 1 
MH-60R/S 1 
     GAU 16/19 machine gun 1 (60R) or 2 (60S) 
     Hellfire missiles 8 

Non-Line-of-Sight Launch System (NLOS-LS) missile system 60 (4 launchers with 
15 missiles each 

Laser Designator for NLOS-LS missiles 1 
Mk 46 Mod 1 30mm gun system 2 
57 mm gun system 1 

Table 3.   SUW Mission Package elements (After Commander Third Fleet, 2005) 

 

3. ASW Mission 

LCS will enable the combatant commander, through the use of aerial, remote 

surface vehicles (RSV) and remote unmanned undersea vehicles (UUV) the ability to 

detect classify and destroy enemy submarines.  LCS will be capable of performing this 

mission in both the littoral regions and in a deep water environment.  LCS will also have 
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the capability to share sensor data with other elements of the joint task force enhancing 

the overall sub hunting capabilities of any naval task force. 

 

ASW Modules QTY 
USV with ASW Systems 2 
        UDS 1 
        UTAS 1 
MH-60R with 1 
        Mk 54 Torpedo Set 
        ALFS Set 
        Sonobouys Set 
RMV with ASW Systems 2 
        RTA (MFTA 1 
        RTAS 1 

Table 4.   ASW Mission Package Elements (After Commander Third Fleet, 2005) 

 

4. Core Capabilities 

According the LCS Wholeness CONOPS, LCS will have the ability to identify, 

track and protect itself from many, but not all, anti-ship cruise missiles and enemy 

aircraft.  LCS was not designed to act in a high intensity air defense environment like 

multi-mission naval combatants, but rather was designed to act in those types of 

environments under the air defense umbrella of a Carrier Strike Group or Expeditionary 

Strike Group.  The purpose of the ship, when acting in concert with other vessels during a 

high intensity conflict will be to operate as a node in the FORCEnet distributed network 

(Fleet Forces Command, 2007) adding to the Maritime Domain Awareness (MDA) 

picture.  

In addition to the three focused missions and the self-defense capabilities, LCS 

will be capable of performing other missions which will take advantage of the inherent 

capabilities of the platform.  The ability to maintain sprint speeds for a prolonged period 

of time, its inherent ability to traverse shallow areas and ports, the use of its 

maneuverability and its ability to carry cargo and personnel when properly outfitted, will 

allow LCS to handle secondary missions such as Humanitarian Assistance 

Operations/Disaster Relief (HA/DR) and Marine Security Operations (MSO). To help 
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further enhance LCS capabilities special mission packages and trained personnel may 

deploy with a ship to allow it to support an even wider range of missions.   These 

inherent capabilities of LCS are part of the core seaframe and are able to be used by the 

combatant commander no matter what mission a particular LCS has been previously 

outfitted to carry out. 

According to the Wholeness CONOPS, LCS will be able to inherently perform 

many of the secondary missions that today’s legacy platforms are being used for.  Such 

operations will include Maritime Interception Operations (MIO) and Enhanced MIO in 

support of Maritime Security Operations (MSO) or other operations (when equipped with 

an adequate Rigid Hull Inflatable Boat (RHIB)).  The speed and maneuverability of LCS 

also make it a prime candidate to conduct Homeland Defense Missions and Joint Littoral 

Mobility Missions.  LCS’s payload capacity, proposed high endurance at high speeds, 

and shallow water draft should make it one of the best suited platforms in the Navy for 

Humanitarian Assistance Operations (HAO) (Mueser, 2007) and intra-theater lift 

operations for personnel and supplies when outfitted with a HA/DR mission module 

(Kime,2007) or when cargo room is maximized for carrying relief supplies.  LCS will 

also be used as a sustainment and refueling base at-sea for H-60 sized non-organic 

helicopters.  Due to its inherent speed LCS will have the ability to rapidly deploy Special 

Operations Forces (SOF) and their equipment into littoral regions to conduct Special 

Reconnaissance (SR) and Direct Action (DA) missions.  

 

B.        LOGISTICS MODEL  

 

The purpose of this model is to give logistics planners a better sense of how the 

Littoral Combat Ship will perform under certain mission parameters.  It will give the 

planner an estimation of LCS endurance based on fuel consumption rates derived for 

different mission profiles.  The model is developed using Microsoft EXCEL and JMP 

7.0,  and is divided up into two sections.  The first section creates estimated fuel curves 

for LCS while the second section calculates the endurance factor of LCS based on the 
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fuel consumption calculations, applied to specific mission scenarios.  As of January 2008, 

the LCS has still not conducted sea trials and no actual fuel consumption data is 

available.  This model will use predicted fuel consumption values produced by Program 

Executive Office (PEO) Ships (Payor, 2007) and by Commander Logistics Group 

Western Pacific (COMLOGWESTPAC) (Darnell, 2007). 

 

1. LCS Critical Design Parameters 

The conceptual idea of the Littoral Combat ship was to have a small, agile, low 

cost, shallow draft long range ship capable of high sprint speeds and high cruising speeds.  

This ship was to fill the capability gaps in the United States Navy revealed in the 2002 

DPG.  The gaps were identified in MIW, ASW and SUW warfare areas.  In order to meet 

the challenges posed, critical design factors needed to be met by the engineers to enable 

LCS to fulfill its promised mission capabilities.  The table below lists the critical 

parameters as listed by the final System Design Capabilities Development Document 

Requirements (N76, 2004).  Located in the left hand column for each parameter is a 

descriptor identifying it as a key performance parameter (KPP) or an additional attribute 

(AA). 

 

LCS Flight 0 Critical Design Parameters 
  Category  Threshold Objective Level 
  HULL     

KPP Draft at Full load Displacement 20 feet 10 feet 

KPP Mission Module Payload (note 3) 

180 MT (105 MT 
mission package / 75 
MT mission package 

fuel) 

210 MT (130 MT 
mission package / 80 
MT mission package 

fuel) 
AA Hull Service Life   20 Years 30 Years 

  PROPULSION AND 
ENGINEERING     

KPP Sprint Speed at Full Load 
Displacement in Sea State # 

 40 Knots in Sea 
State 3 (note 1) 

 50 Knots in Sea 
State 3 (note 1) 
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KPP Range at Sprint Speed   1,000 nautical miles 
(note 2) 

1,500 nautical miles 
(note 2) 

AA Range at Economical Speed  
3 500 nautical miles 

(>18 knots) with 
payload 

4 300 nautical miles 
(20 knots) with 

payload 

  OFFBOARD VEHICLE SUPPORT     

AA Simultaneous OVC 4 indigenous 
Vehicles 

All Off-board 
Vehicles 

AA Aviation Capabilities Level I Class I Level I Class I 

AA Aircraft Launch/Recover   Sea State 4 best 
heading (note 1) 

Sea State 5 best 
heading (note 1) 

AA Mission Package Boat type   11 Meter RHIB 40 ft High Speed 
Boat 

AA Watercraft Launch/Recover  
Sea State 3 best 

heading with in 45. 
mins. (note 1) 

Sea State 4 best 
heading with in 15 ~ 

mins. (note 1) 

AA Mission Module Handling and 
Stowage 

Handle and Stow w/ 
Organic systems 

Handle and Stow w/ 
Organic systems 

  LOGISTICS     

AA 
Time for Mission Package Change-Out 
to full operational capability including 

system OPTEST 
4 days 1 day 

AA Provisions 336 hours (14 days) 504 
hours (21 days) 336 hours (14 days) 504 hour (21) days 

AA Underway Replenishment Modes 
(UNREP) 

CONREP 
VERTREP and RAS

CONREP 
VERTREP and RAS

KPP Core Crew Size  50 15 

AA 
Crew Accommodations (both core 

crew and mission package 
detachments) 

75 personnel 75 personnel 

AA Operational Availability (Ao)  0.85 0.95 
  INTEROPERABILITY     

KPP Interoperability Exchange 
Requirements (IER) 

1005 Critical Top-
Level IER 

100% Top-Level 
IER 

  COMBAT SYSTEMS     

KPP Focused Mission Execution 
Conduct Successful 
MIW, SUW, ASW  
and Mission DTE 

Conduct Successful 
MIW, SUW, ASW  
and Mission DTE 

AA Core Self Defense DTE Conduct 
Successfully Using 

Conduct 
Successfully Using 
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Core Systems Core Systems 

AA AAW Core Self Defense Classified Classified 
AA SUW Core Self Defense Classified Classified 

  TOTAL COST     

AA FY 05 
Seaframe $220M, 
Mission Package 

$150M 

Seaframe $150M, 
Mission Package 

$75M 
  Note 1: Sea State parameters are defined in Appendix A of PDIRD 

  

Note 2: Includes Payload - Taking into account the focused mission nature of the 
LCS, payload is defined as the heaviest possible Mission Package and core 
mission systems, excluding ship’s fuel. 

  

Note 3: Mission package payload is defined as all non-core systems, vehicles, 
helos, ordnance, and associated personnel, equipment, and containers to perform a 
single mission. This includes fuels to operate the mission package. 

  AA = Additional Attribute 
  KPP=Key Performance Parameter  

Table 5.   Littoral Combat Ship Critical Design Parameters (After Czapiewski, 2005) 

 

2. Fuel Consumption Data 

Fuel consumption data for either version of the Littoral Combat Ship has yet to be 

collected.  To further add to the difficulties of providing a smooth fuel curve for LCS is 

the fact that it has a combined diesel and gas (CODAG) engineering plant.  For the 

purposes of this model, two sources of data are used to help estimate a fuel consumption 

curve for both the General Dynamics and Lockheed Martin versions of LCS.  Table 6 

shows the conversion rates used to convert all data into gallons.  Table 7 shows data used 

by COMLOGWESTPAC to predict fuel usage on the Lockheed Martin version of LCS 

and Table 8 shows the data used by COMLOGWESTPAC to predict fuel usage on the 

General Dynamics version of LCS.  Table 9 shows data used by PEO Ships to predict 

fuel consumption rates for a generic Littoral Combat ship.  This table takes into account 

the two different prime movers LCS will use to propel itself through the water.  It shows 

the consumption rates for the diesel engines and then for the gas turbine motors (GTM) at 

higher speeds.  A speed of approximately 18.5kts has been identified by PEO as the 
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speed at which the GTM’s will take over and power LCS.  For speeds below this 

threshold it is more economical for LCS to use its diesel capabilities 

 

 

Table 6.   Fuel Conversion Factors 

 
 

LOCKHEED Version 
    

Speed (Kts) Gal / Hr 
7 83
18 443
30 2,072
40 3,135
45 3,800

Table 7.   COMLOGWESTPAC fuel usage data for LM  LCS (After Darnell, 2007) 

 
 

General Dynamics 
Version 

    
Speed (Kts) Gal / Hr 

7 69
18 246
30 2,052
40 3,713
46 4,855

Table 8.   COMLOGWESTPAC fuel usage data for GD LCS (After Darnell, 2007) 

 
 
 
 
 

Fuel Conversion Factors: 
 

1 kilogram (kg)  =  2.2046 pounds 
1 gallon (gal)     =  8 pounds 
1 barrel (bbl)      =  42 gallons 
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PEO LCS 
  

Speed (Kts) Gal/ Hr 
0 69
5 83

10 220
15 481

18.5 825
18.5 1,430
20 1,650
25 1,953
30 3,396
35 3,946
40 4,496
45 5,046
50 5,596

Table 9.   PEO  fuel usage data for LCS (After Payor, 2007) 

 

3. Fuel Consumption Rate 

In 1996 David Schrady, Gordon Smyth and Robert Vassian of the Naval 

Postgraduate School developed a way of calculating ship fuel consumption (Schrady, 

1996) that better predicts consumption rates at low speeds.  Their analysis was 

undertaken to assist operational logistics planners in better estimating ship and strike 

group fueling-at-sea (FAS) requirements.  At the conclusion of their analysis the authors 

recognized that an exponential model of fuel use as a function of ship speed is best used 

to create an overall fuel consumption curve.  For the remainder of this thesis the model 

will be referred to as the Schrady model.  The model took the form 

 

3
2

10
VpeppF +=  

   

Figure 4.  Exponential Model of Fuel use (From Schrady, 1996) 
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In the application of this model, the coefficients 0p , 1p  and 2p  are determined by 

regression performed using JMP 7.0 (JMP 1989-2007).  As shown in the data in Table 9 

LCS shows an exceptional increase in overall fuel consumption at a speed of 

approximately 18.5kts due to the change over in its prime mover at that speed.  In order 

to more accurately capture how this will effect the fuel consumption of LCS, the Schrady 

model was applied to both diesel and GTM prime movers.  This created two distinct 

curves as shown in Figure 5.    

 
 

Figure 5.  LCS Fuel Consumption Curve using Schrady model and data from 
PEO. 

 

4. Fuel Replenishment Calculations 

The requirement for a ship to be refueled depends upon the amount of fuel it can 

carry, the amount of fuel it uses for a particular mission profile and the reserve level of 

fuel which the ship must maintain.  The reserve level of fuel a ship must maintain is the 

minimum amount of fuel a ship must have onboard at any time during operations.  A 

reserve level is calculated as a percentage of the overall fuel capacity of the ship.  For the 
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purpose of this thesis, fuel reserve levels will be calculated as a percentage of the fuel 

capacity of the Littoral Combat Ship.  Fuel reserve levels of 50%, 35% and 20% of the 

100% fuel carrying capacity of LCS will be used for analysis. 

Once the Littoral Combat Ship has reached its minimum allotment of fuel, it must 

refuel.  This can be done inport or while at-sea.  If the Littoral Combat Ship needs to fuel-

at-sea and is in transit from one destination to another, LCS will not have to deviate from 

track to complete a refueling evolution.  This thesis will assume that if fuel is needed 

while in transit a Combat Logistics Force (CLF) ship will be able to meet the requirement 

and refuel LCS along its intended track.  Further analysis is then done in Chapter IV to 

show how different levels of CLF availability will affect LCS mission planning.  Upon 

completion of refueling, LCS will have 95% of fuel capacity.  If LCS is conducting a 

mission in the littoral regions and reaches its minimum fuel allotment, it will be forced to 

break away from the mission to meet a CLF ship or conduct inport refueling.  For the 

purpose of this thesis, it is estimated that a CLF ship rendezvousing with LCS will do so 

a safe distance from the littoral area of operation.  Upon reaching its reserve level, LCS 

will detach from its mission and travel 200 nautical miles at a speed of 20kts to 

rendezvous with the CLF asset.  Upon meeting up with the replenishment ship, LCS will 

spend on average 2 hours alongside and refuel to 95% of its capacity.  Once refueled, 

LCS will travel back to its mission area and continue operating as directed.   

To calculate the total amount of fuel consumed by LCS each day the average 

speed for the day is multiplied by the expected fuel consumption for that speed per hour 

and then multiplied by 24.  To calculate the amount of fuel onboard the amount 

consumed for one day is subtracted by the current onboard amount.   For the purpose of 

this thesis LCS will be at maximum fuel load when it is 95% of tank capacity.  Once LCS 

has completed a mission the total number of required FAS’s, over the duration of the 

mission, are divided by the total number of days in the mission to find the average 

number of days between refueling evolutions.  A mission Operational Availability (Ao) is 

then calculated by subtracting the amount of days off station due to refueling events, 

crew rest and other reasons, from the total days of the mission, then dividing it by the 

total days in the mission.  
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The following formulas were used to derive the overall Ao of LCS during a 

specified mission profile: 

 

_ _ * _ _ _ _ _ *24Fuel Used Avg daily speed Fuel consumed at averag daily speed− =
_ _ _ _ _ _ _ _

_
_ _ _
_ _ _ _ / _
_ _ _ _ _ _ _
_ _ _

Fuel onboard end of day Fuel used day Fuel onboard
beginning day
Avg days between FAS
Total number of requried refuelings Mission Length
Total days off station Total days off station FAS
Total days off

= −

=

= +
_ _ _ _ _ _

_ _ _ _ / _
station crew rest Total days off station other

Operational Availability Total days off station Mission Length
+

=

 

                                                                         

5. Fuel Optimizer 

In the summer of 2007 Brown, Kline, Rosenthal and Washburn of Naval 

Postgraduate School in Monterey, California published an article in Interfaces magazine 

titled “Steaming on Convex Hulls” ( Brown, 2007).  In this article, the authors discussed 

how U.S. Navy ships could better manage their fuel expenditures by steaming in mixed 

mode operation.  This method entails using different engine configurations at different 

speeds for specified periods of time in order to reduce the amount of fuel used to transit 

from one point to another.  Their method was proven to be a viable tool for one of the 

authors during a practical application in the fleet.  This thesis will require LCS to use the 

same fuel usage optimization strategy while transiting between two points.  A model was 

created using Microsoft EXCEL in which an operator can enter the distance to be 

traveled and the time in which it needs to be traveled, and returns to the user the speeds 

and amount of time needed to be spent at those speeds to ensure the most fuel 

conservative voyage is taken.  The speed a ship needs to travel can easily be adjusted for 

wind and currents, but for simplicity this step is omitted in this model. 

The objective of the formula is to minimize the amount of fuel used during a 

transit through a combination of different engine usage and speeds.  The data required for 

computation using EXCEL Premium Solver V 5.0 are the distance to travel, the time 

required to travel that distance and the fuel consumption data for LCS.  The decision 
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variables include the time spent transiting at a certain speed, the time it takes LCS to 

travel the specified distance and the amount of fuel used when minimizing fuel is the 

objective.   The information gathered is then used to determine how many FAS 

evolutions LCS would require during a transit of the proposed length.  The given data, 

decision variables and formulation are the same or adaptations of those used by Brown et. 

al in their 2007 article (Brown, 2007). 

 Index use  

 s S∈   speed index [1…50] 

Given Data (Units) 

distance required distance LCS is to travel during a transit (nautical miles) 

speed s   the speed at which LCS travels during a particular time ((knots = 
nautical miles/hour). 

sconsumption  fuel consumption rate for LCS operating with its most   efficient   
mode at speed s (gallons/hour). 

hours   required time LCS is to travel distance in (hours) 
 

Decision variables (units) 

sHOURS   time spent underway at sspeed (hours). 

FUEL  fuel consumed by LCS in transit, when minimizing fuel is the    
objective (gallons). 

T IME time required by LCS for transit, when minimizing transit time is     
the objective (hours). 

 

The formulation for minimizing fuel consumption for a given transit is then 

solved as a linear program 

Formulation _MINFUEL_ for vessel LCS: 
 

, 
MIN   

FUEL HOURS
FUEL  

s.t.  
             distanceS S

s S

speed HOURS
∈

≥∑  
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Figure 6 is an EXCEL spreadsheet example of the LCS fuel optimizer.  This 

figure is a derived from the Brown article (Brown, 2007).  This spreadsheet shows that 

for LCS to travel 3,500nm in 78 hours it will require 385,151gal of fuel.  This 

information is then used to determine the amount of FAS evolutions LCS will require to 

make the transit while maintaining its minimum allowed fuel capacity, or reserve level.  

This figure also shows that when data is unavailable, as in the COMLOGWESTPAC 

data, for low speeds of the GTMs or high speeds of the diesel a penalty consumption rate 

is assigned. This is done to ensure LCS maintains the assumption that diesel engines will 

be used for speeds below 18.5kts and GTMs will be used for speeds above 18.5kts. 

 
 

 
Figure 6.  LCS fuel optimizer (After Brown, 2007) 
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III.  SCENARIO DEVELOPMENT 

A sound logistics plan is the foundation upon which a war operation 
should be based. If the necessary minimum of logistics support cannot be 
given to the combatant forces involved, the operation may fail, or at best 
be only partially successful.  

       --ADM Raymond A. Spruance  
 

A. IMPORTANCE OF LOGISTICS PLANNING 

 

The ability of the U.S. Navy to keep its fleet fueled, fed and armed around the 

world has been, and continues to be, the lynchpin for successful operations.  The ability 

of logistics planners to thoroughly prepare for the needs of a fleet in action can be the 

difference between success and failure at sea.  No matter how much firepower a ship can 

bring to the fight, it is worthless if it can not get there due to fuel constraints or missing 

parts.  As LCS enters the fleet, logistics planners will be faced with a system that is 

untested and new to the Navy.  Logistics planners must be able to adapt to this new 

system and the needs LCS will place on the Navy logistical system.  LCS will have a 

supply and maintenance system that will rely heavily on shore support and automated 

sensors.  LCS will be greatly limited in its capacity to perform maintenance, not have the 

ability to make major repairs at sea and be severely constrained in the amount of supplies 

it can carry.  LCS will not have the space to increase its food and parts loadout, so LCS 

will require support from shore based assets to support any schedule deviations.  A 

supply of 21 days of prepackaged meals will be allotted for each assigned sailor.  

Supplies, both consumables and repair, will be controlled by the shore based facility, 

currently located in San Diego, California with the Littoral Combat Ship Squadron 

(LCSRON) commander.  This arrangement for supply management will make it 

imperative for logistics planners to think ahead and meet the needs of the ship as it is 

deployed and operating. 

The most critical logistics constraint that planners must prepare for is the ability 

to understand patterns for refueling LCS and how to get the fuel to the ship when it needs 



 30

it.  If LCS is forced to slow down or drastically and continuously maneuver from its 

assigned operations to get fuel, the ship will ultimately negate its ability to use its speed 

the way it was intended to be used in accordance with the CDD.  If LCS is forced to 

refuel at a higher rate than planners are used to seeing in other platforms, CLF may be 

forced to adapt and assign necessary assets to enable it to complete its missions.  As 

Rudko alluded to in his thesis the history of the Navy has shown an inability to keep 

ships whose primary asset is speed, refueled in a manner so the ship could continue 

operating as a contributing force multiplier (Rudko, 2003).  One of the best examples of 

this he gives relates to the PEGASUS class patrol boats of the 1980’s.   

The ability to predict when a ship needs to be refueled is crucial in any 

operational planning.  If LCS is unable to overcome the stigma of short range and low on 

station availability time due to high fuel burn rates at high speeds, it may be relegated to 

the same fate as previous naval high speed craft as suggested by Rudko (Rudko,2003).  

The lack of attention focused on logistics planning can easily become a serious factor in 

victory or defeat in the world’s oceans.  In 1986 Hughes relates two stories on how 

placing insufficient importance on logistics can greatly alter a battle.  One of his stories 

centers around fuel capacities and burn rates in battle planning and how lack of proper 

thought or planning in considering these two characteristics can lead to a disastrous 

outcome. 

 

It is important to assess fuel capabilities in battle planning.  The Battle of 
the Eastern Solomons in 1942 gave us a memorable example of what 
happens when this area is neglected.  Instead of three carriers, Fletcher 
only had two in the battle, because he had sent the WASP south to fuel.  
She missed all the fighting and was sunk soon thereafter by a submarine.  
Tactical endurance hardly ever enters into amateur force correlations, and, 
being a distraction, an aggravation, and a great source of friction, it is 
rarely given the place it deserves (Hughes, 1986). 

 

In this chapter, two scenarios are created to analyze the logistics capabilities of 

LCS.  The first scenario will focus on a LCS primary warfare mission, MIW.  This 
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scenario will be used in conjunction with the models developed in Chapter II to better 

gain insight into how LCS may be expected to operate.  The second scenario will focus 

on an inherent secondary mission of LCS.  This thesis has chosen the HA/DR mission for 

LCS because according to the latest Maritime Strategy (Conway et al, 2007) the ability to 

conduct Humanitarian Assistance and Disaster Relief has been elevated to one of six core 

competencies of the U.S. maritime services.  According to CDR Carl Mueser of 

Commander Naval Surface Forces LCS will be able to assist the Navy in this mission 

because the ships have lift capacity with the huge mission bays, they can go fast and get 

close to shore, they have a helicopter and they can make fresh water (Mueser,2007). In 

this scenario, models from Chapter II are again used to identify how LCS may perform 

during this particular mission.  Both of these scenarios are set in the Western Pacific 

Ocean. 

 

B. MIW SCENARIO 

 

LCS has been designed to handle one of three core warfare missions along with a 

host of secondary mission abilities.    MIW is one of the three core competent missions 

LCS must be able to perform.  As legacy U.S. Navy MIW platforms are retired from the 

fleet, LCS will become the primary asset to fill this specialized role.   In this role, as 

described in Chapter II and in the Wholeness CONOPS 

 

The LCS will provide the JFMCC with a capable array of organic mine 
countermeasure (OMCM) capabilities ranging from mine detection to 
neutralization, avoidance and sweeping, supporting Joint operations 
conducted ahead of or concurrent with power projection forces.  This 
capability will help open ingress lanes for Joint Forcible Entry Operations 
(JFEO) and contribute to protection of amphibious forces. Mine 
countermeasures (MCM) operations will commence earlier, potentially 
reducing the timeline for access to the contested littorals, providing more 
flexibility to the Joint Force Commander (Fleet Forces Command, 2007).  
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During fiscal year 2008, all remaining MHCs in the naval inventory are slated to 

be decommissioned leaving LCS as the ship that is to take over this vital role.  

During the decommissioning ceremony of USS OSPREY (MHC 51), 

Commanding Officer, CDR Knusten,  was quoted as saying “LCS will continue 

where Osprey leaves off by carrying on and refining the Navy’s critical mission 

of countering mine threats to this nation (Naval Station Ingleside Public Affairs, 

2006)”. 

 For this MIW scenario, a logistics baseline was created by using a generic 

90 day patrol which is common to today’s MCM platforms.  During a 90 day 

patrol, based on a ship departing from a forward deployed operating base in the 

Western Pacific (WESTPAC), and operating in or around a potentially hostile 

area in the region, an expected Ao is calculated using the model described in 

Chapter II.  For a legacy MCM, it is assumed that the ship will transit to the 

operating area at a speed of eight knots and will require two days to reach its 

destination.  Once at the operating area, the vessel will commence mine 

countermeasure operations as long as it can logistically sustain them.  Once the 

ship is required to refuel, repair a part or conduct necessary maintenance it will 

detach from operations and then return upon completion.  For the purpose of 

refueling or repairing a part, the MCM will detach from its operations and 

conduct a brief stop for fuel (BSF) at a port in the region or conduct a FAS from 

an available CLF asset operating in area.  For a legacy MCM leaving station to 

refuel it is estimated that it will take 24 hours for the vessel to transit from the 

operating area, refuel, get underway and then return and recommence operations.    

 While conducting operations, only daily requirements will be tallied.  If a 

ship projects that during the next days operations it will require a refueling, it will 

refuel during that next day, and an operating vessel will not allow itself at any 

point to have less fuel on hand than prescribed by the required fuel reserve level.  

For an MCM, a requirement to conduct carbon burns is also instituted.  On 

average it is assumed that every three days the ship must leave station for four 

hours to conduct a carbon burn prior to returning to operations.  If an MCM is 
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required to conduct a BSF the day after a carbon burn, the carbon is not delayed.  

It is assumed that when requirements arise they are conducted that day. 

 LCS is then placed in the same baseline model, a 90 day MIW patrol in 

the operating area.  For LCS fuel reserves of 50%, 35% and 20% will all be 

analyzed.  When LCS is required to refuel it is assumed the ship can receive fuel 

during a BSF or through FAS if a CLF asset is available.  During a refueling 

evolution it assumed LCS will require 22 hours to transit, refuel, transit back to 

the operating area and then recommence operations.  Using the fuel curves and 

model created in Chapter II an Ao for LCS is then calculated. 

 

C. HUMANITARIAN ASSISTANCE/DISASTER RELIEF SCENARIO 

 

In order to gain a more thorough insight into the range and endurance capabilities 

of LCS in providing support for a HA/DR mission, three scenarios will be analyzed.  

Each scenario requires LCS to detach from a forward deployed CSG/ESG or depart form 

a forward deployed naval base and deliver aid to an effected region.   It is assumed that 

each ship being detached to an area is outfitted with a proposed HA/DR mission if 

departing from a forward deployed naval base, or is loaded with HA/DR items from other 

ships in the deployed CSG/ESG prior to being detached to the affected area..  There 

currently is no approved HA/DR mission package but the contents of a likely package 

have been studied in an exercise for the CNO (Kime, 2007).  Even without a specific 

package, LCS will still be expected to conduct life saving humanitarian operations when 

necessary.    

In 2005, when the Abraham Lincoln Strike Group (ALCSG) provided 

humanitarian assistance to the tsunami stricken areas of Sumatra, no special HA/DR gear 

was provided.    LCS is expected to add to the capability of a CSG because the ships are 

expected to be able to bring extra lift capacity through their mission bays, use their speed 

to get to an affected area faster than a normal CSG can travel and get closer 
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to shore because of their shallow draft.  This combined with their ability to make fresh 

water and use their embarked helicopter assets appears to make the ship a well suited 

asset for this type of mission though this thesis does not conduct an analysis of the ability 

to conduct HA/DR missions.   

For the purpose of this thesis, three generic intra-theater HA/DR missions will 

require LCS to travel 1,500, 2,500 and 3,500 nautical miles to get aid to affected regions.  

LCS will conduct each mission at speeds between 15 and 45 knots.  Other ships operating 

in conjunction with LCS will depart from the same location at the same time and travel at 

a speed of 15 knots.  The ships traveling at 15 knots will be accompanied by a CLF asset 

and will be able to refuel when necessary.  It will be assumed that when LCS reaches its 

reserve capacity a CLF asset will be needed to refuel it along its intended track without 

forcing LCS to deviate from track.  This assumption will be used in Chapter IV to further 

discuss the impact a high speed vessel will have on a logistics planner scheduling LCS 

and CLF assets if speed is to be used as an asset by LCS.  Fuel reserves of 50%, 35% and 

20% will all be analyzed for each LCS transit.  A sensitivity analysis will then be 

conducted to help a logistics planner measure the tradeoff between lowering the fuel 

reserve and LCS time of arrival ahead of the CSG/ESG.  Upon arriving at the final 

destination, LCS will commence HA/DR operations.    
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IV. ANALYSIS  

In this chapter, an analysis of LCS in both the HA/DR and MIW scenarios created 

in the previous chapter is conducted.  In the MIW scenario, an analysis is conducted to 

show tradeoffs between different refueling schedules for both the LM and GD versions of 

LCS and how the missions are impacted by CLF availability and leveraging different fuel 

reserve levels.  In the HA/DR scenario an analysis is conducted to gain insight for a 

decision maker as to how best to utilize the sprint speed capability of LCS based on fuel 

reserve levels and CLF asset availability.  This analysis will give a decision maker the 

ability to make tradeoffs between the speed at which aid can reach an affected area and 

the cost incurred in overall fuel spent and CLF assets required for mission 

accomplishment. 

 

A. FUEL CONSUMPTION AND ENDURANCE ANALYSIS 

 

As described in Chapter II, there is no data yet available for fuel consumption of 

either the LM or GD versions of LCS.  For the purpose of this thesis, two estimated 

sources of data were used.  The first source of data was received from Commander 

Logistics Group Western Pacific (COMLOGWESTPAC) (Darnell, 2007) and the second 

from Program Executive Office Ships (PEO) (Payor, 2007).  The data received from 

COMLOGWESTPAC has subsequently been used for fleet analysis of LCS during a 

series of Logistics Rehearsal of Concept (LROC) drill sets.  The purpose of these drill 

sets was to conduct a test of logistics processes in support of LCS and the Wholeness 

CONOPS and SOPs that govern that support (Amadio, 2007).   Both sets of data were 

applied to the model described in Chapter II and yielded fuel burn rates for LCS for the 

range of speed from 0 to 50 knots.  Figure 7 shows the resultant fuel curves for both the 

LM and GD versions of LCS based on data from COMLOGWESTPAC.   
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Figure 7.   Predicted fuel curves for both LM and GD versions of LCS using data 
from COMLOGWESTPAC. 

 

Figure 8 shows the resultant fuel curves from the data provided by PEO.  This 

data is given for a generic LCS and is not specific to either the LM or GD version.  This 

fuel burn data also shows a distinct change over in the consumption rate at approximately 

the 18.5kt mark.  This marks the point in the data in which the diesel engines are no 

longer sufficient to power LCS at the desired speed and the gas turbine engines must be 

used.  Because this data shows a distinct difference in the consumption rates between the 

two prime movers a fuel curve was created for both the diesel and gas turbine engines.  

These two fuel curves were shown in Figure 5.  To optimize the fuel usage of LCS a 

method created in Brown et al (Brown, 2007), is used to create a single smoothed fuel 

curve for LCS.  This fuel curve requires LCS to operate in a mixed mode, using diesel 

engines and gas turbine engines at certain speeds in order to achieve the overall average 

speed required to reach a destination on time.  This method of operation will be further 

referred to as PEO Optimal Mixed-mode Operations (PEO-OMO).  This type of 

operating will be used in mainly transit type situations in this thesis.  When PEO fuel 

curves are being applied to LCS in a non mixed-mode operating environment the ship 

will be described as using PEO Single Mode Operations (PEO-SMO).   
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Figure 8.  LCS Fuel consumption rates using PEO data in Single Mode 
Operations (PEO-SMO) and Optimal-mode Operations (PEO-OMO) 

 

Figure 9.  Comparison of LCS fuel consumption curves using 
COMLOGWESTPAC and PEO-OMO data.   

 

Based on the fuel consumption data from Figure 9 an endurance analysis was 
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performance parameter (KPP) objective for LCS endurance was created, which states that 

LCS should be able to travel 1,500nm at a sprint speed of 50kts.  An AA also states that 

LCS should be able to transit 4,300nm at an economical speed of 20kts.  For the purpose 

of range endurance calculations both the GD and LM versions of LCS have fuel 

capacities as described in NWP 4-01-2 Sustainment at Sea (DoN, Office of the CNO, 

2007).  The capacities are listed in Table 10. 

 

LCS FUEL CAPCITY (gallons) 
LOCKHEED MARTIN LCS 111,846
GENERAL DYNAMICS LCS 179,592

Table 10.   LM and GD fuel capacities  

 

Figure 10 shows endurance calculation predictions for LCS.  For the purpose of 

this thesis, and because PEO fuel consumption data is not for a specific version of LCS, 

both LM and GD fuel capacities were applied to PEO-OMO fuel consumption data to 

create range calculations. 

Figure 10.  Range calculations for LCS using COMLOGWESTPAC and PEO-
OMO fuel consumption rates. 
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The System Design Capabilities Development Document Requirements (N76, 

2004) listed in Table 5 show both threshold and objective values for LCS endurance.  

Table 11 lists these endurance parameters.  Sprint speed and range at sprint speed are 

KPPs while economical speed and range at economical speed are listed as AAs. 

 

Endurance Parameters for LCS 
Parameter Threshold Objective 

Sprint Speed 40kts 50kts 
Range at Sprint Speed 1,000 nm 1,500 nm 
Economical Speed >18kts 20kts 
Range at Economical Speed 3,500 nm 4,300 nm 

Table 11.   Endurance parameters for LCS (After N76, 2004) 

 

The endurance analysis shows that at 50kts none of the LCS models is able to 

meet the objective endurance of 1,500nm as described by the KPP.  At the objective 

economical speed of 20kts only the GD version of LCS; using both the 

COMLOGWESTPAC and PEO-OMO data is able to meet an AA endurance range of 

4,300nm.  At the threshold sprint speed value of 40kts both versions of LCS applied to 

both COMLOGWESTPAC and PEO-OMO data are able to meet the KPP threshold 

endurance requirement of 1,000nm.   Only the GD version of LCS meets the AA 

threshold requirement of a 3,500nm range at speed of greater than 18kts.   

The endurance analysis for LCS also shows that the most economical speeds, the 

speed at which LCS has the longest range, for both the GD and LM versions are below 

the AA 18kt threshold value.  For both the LM PEO-OMO and GD PEO-OMO versions 

of LCS the most economical speed is at 7kts.  At this speed the LM PEO-OMO version 

of LCS has a range of approximately 6,650nm while the GD PEO-OMO has a range of 

approximately 10,675nm.  The large disparity in range is created by the difference in the 

total fuel capacity the two versions of LCS.    

Applied to the COMLOGWESTPAC data the LM version of LCS has a higher 

economical speed, 17kts vice 13kts for the GD version.  The large disparity in overall 
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fuel capacity, a difference of 67,746 gallons, however, gives the GD dynamics version a 

much longer range at its economical speed.  The GD COMLOGWESTPAC LCS is 

capable of traveling over twice the distance of the LM COMLOGWESTPAC LCS at 

their respective economical speeds.  At sprint speeds of 40kts and 50kts the GD version 

of LCS is able to travel more than 25% further than the LM version of LCS when applied 

to both the COMLOGWESTPAC and PEO-OMO fuel burn rates. 

 

B. MIW MISSION ANALYSIS 

 

As described in the previous chapter an MIW scenario was created in which LCS 

is deployed from a forward operating base in the western Pacific Ocean to a contested 

littoral region.  LCS is deployed equipped with a MIW mission module and will be 

actively engaged in mine clearance operations in preparation for an approaching 

CSG/ESG.  LCS will be sent on a 90 day patrol.   In this situation, LCS is envisioned to 

be deployed with ships of other classes as well as other LCS combatants in a Task Force 

composition.   For the purpose of this thesis, one LCS of the deployed Task Force will be 

analyzed to help operational logistic planners understand how different logistical 

planning factors will affect the deployment of LCS in a similar scenario. 

 

1. Current MIW Deployment Analysis 

The U.S. Navy currently has one class of ship remaining to deal specifically with 

potential mine threats.  In the 1980’s and early 1990’s during the Iraq-Iran War and the 

Gulf War the Navy was reminded of the importance of keeping potential operating areas 

and international chokepoints in the littoral regions of the world devoid of mines.  It was 

during this timeframe that the U.S. Navy developed and employed the Avenger and 

Osprey class mine hunter-killer ships.  These ships, along with new air mine warfighting 

assets became the backbone of the Navy MIW fleet.  According to the Navy official 

website the Avenger class ships are  
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designed as mine hunter-killers capable of finding, classifying and 
destroying moored and bottom mines. The last three MCM ships were 
purchased in 1990, bringing the total to 14 fully deployable, oceangoing 
Avenger class ships. 

These ships use sonar and video systems, cable cutters and a mine 
detonating device that can be released and detonated by remote control. 
They are also capable of conventional sweeping measures. The ships are 
of fiberglass sheathed, wooden hull construction (Department of the Navy, 
2008).  

 

The Osprey class ship was officially decommissioned from the Navy in 2007.  

The Navy currently has 14 Avenger class ships remaining whose MIW duties will be 

transferred to the LCS as the ship becomes integrated into the fleet. 

The Avenger class ship currently conducts regular patrols and training throughout 

the world.  Training exercises are conducted on both unilateral and multilateral 

dimensions.  Avenger class ships are an integral part of both the operating Navy abroad 

and Homeland Security Department operations at home.    During a routine patrol in the 

Western Pacific Ocean, an Avenger class ship can routinely conduct a 90 day patrol in 

which it can conduct MIW operations in support of an exercise or combat operations if 

necessary.  This thesis will assume that an Avenger class ship will conduct a routine 

patrol in which MIW operations are conducted for a period of 90 days.  

During this 90 day patrol, an Avenger class ship on station availability (Ao) is 

constrained by several logistics factors.  On average an Avenger class ship must leave 

station once every 5 days to conduct refueling operations.  On days when a refueling is 

scheduled the ship will conduct no MIW operations.  During these days it is also assumed 

that all other necessary supplies such as food and parts will be supplied.  Average days 

between refueling are calculated based on MIW operations being conducted at an average 

speed of 4-6kts a day.  For the purpose of this thesis, an Avenger class ship will travel 

from a forward deployed home port to an operating area at a speed of 8kts and arrive on 

station after two days of transiting.  The final constraining factor that will cause a 

decrease in Ao for an avenger class ship is the need to conduct a carbon burn on its diesel 

engines.  This will occur on average for four hours after every 36 hours of operation.  
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Using this information, the Ao is calculated by subtracting the total number of days the 

ship was required to be off station from the total number of days in the patrol then 

divided by the total number of days in the patrol.  Table 12 shows the average Ao for an 

Avenger class ship based on the constraining factors assumed in this thesis an average Ao 

of 70% and a requirement for a CLF asset or BSF every 5 days.  This requirement 

assumes a fuel reserve level of 50% is required during operations. 

 

Avenger Class Analysis 
Patrol length 90 days 
Avg. time b/w refueling evolutions 5 days 
Total time off station for refueling 17 days 
Carbon burn requirements 4 hours every 36 hours of operations 
Total time off station for carbon burn 6 days 
Total time traveling 4 days 
Total days off station 27 days 
Ao 70%   

Table 12.   Calculated average Ao for an Avenger class ship conducting a 90 MIW 
mission (After Shu, 2007) 

 

2. LCS MIW Deployment Analysis 

To conduct an analysis of LCS, how LCS is intended to be employed during a 

mission must be considered.   For the purpose of this thesis it is assumed that LCS will 

operate per the Required Operational Capabilities (ROC) and Projected Operational 

Environment (POE) For LCS 1 (FREEDOM) Class Littoral Combat Ships rough draft 

dated August of 2006 (N86E, 2006).  This rough draft classifies different environments 

into which LCS will deploy, and how it will operate in them.  This section of the thesis 

will focus on Condition IIM: Battle Readiness – Mine Countermeasures (N86E, 2006).   

The draft ROC/POE defines this condition as a 

 

Special readiness condition applicable only to mine countermeasures 
vessels. The LCS Class will operate in Condition IIM only when 
conducting its focused MIW mission with the MIW Focused Mission 
Package embarked. This is the highest state of mine countermeasures 
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readiness in which mines are present or a probable threat. The LCS 
conducts all mine prosecution and neutralization using stand-off 
operations. Condition IIM is set: 

 -  For mine hunting operations; 

 -  For mine-like contact prosecution or mine neutralization operations                 
using the Airborne Mine Neutralization System (AMNS) or Rapid 
Airborne Mine Clearance System (RAMICS), remotely operated vehicles 
(ROV), or embarked helicopters; 

 -  When conducting route survey operations (OPNAV N86E, 2006). 

 

During Condition IIM restrictions are placed on how long LCS will be able to 

operate due to crew endurance.  According to the draft ROC/POE LCS will only be able 

to conduct operations in a Condition IIM state for 72 hours.  After LCS has been at 

condition IIM for 72 hours the schedule must allow for 48 hours of Condition III 

operations.  Condition III, as defined by in the draft ROC/POE (OPNAV N86E, 2006) 

still places LCS in a heightened warfare posture but allows for other routine activities to 

take place. 

 

The crew is in two-section watches with an opportunity for 4-6 hours of 
rest per day. The ship is limited by crew endurance to 72 consecutive 
hours of mine sweeping operations followed by 48 hours of Condition III 
operations to refuel, and to perform routine PMS and urgent repairs. Only 
the minimum required maintenance and mission critical repairs are 
expected during Condition IIM (N86E, 2006). 
  
 

To accommodate for the imposed scheduling restrictions two scheduling options 

are proposed in this thesis for LCS.  The first option places LCS in a 3-2 schedule during 

a 90 day patrol.  During this schedule, LCS will adhere strictly to the ROC/POE draft by 

conducting focused MIW operations for 72 hours followed by 48 hours of Condition III 

steaming.  The second schedule allows for a relaxation of the Condition IIM constraint 

and allows LCS to conduct operations for 96 hours followed by 48 hours of Condition III 

steaming.  As is stated in the ROC/POE draft all fueling and supplying evolutions, as 
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well as maintenance and drills will take place on non-MIW days.  For analytical 

purposes, supplying evolutions will take place on the first non-MIW operating day.  This 

constrains a logistics planner to ensure assets are available for a FAS/RAS or brief stop 

for fuel (BFS) during an LCS downtime.   

Based on the two proposed schedules it is assumed LCS will be able to maintain 

Condition IIM and conduct operations without problems during scheduled MIW time 

periods.  LCS will begin MIW operations on day 2 of both schedules, following 1 day of 

transit, and complete operations on day 89, followed by 1 day of transit to home port.  

Based on these assumptions an average Ao for LCS is calculated for both the 3-2 

schedule and the 4-2 schedule using the same calculations as for the Avenger class ship.  

Tables 13 and 14 show the average Ao for a 3-2 schedule and 4-2 schedule respectively. 

 

LCS Class Analysis for 3-2 Schedule 
Patrol length 90 days 
Total scheduled condition IIM time 54 days 
Total scheduled Condition III time 34 days 
Total time traveling 2 days 
Total days off station 36 days 
Ao 60%   

Table 13.   Calculated Ao for LCS on a 90 MIW mission using a 3-2 schedule 

 
LCS Class Analysis for 4-2 Schedule 

Patrol length 90 days 
Total scheduled condition IIM time 60 days 
Total scheduled Condition III time 28 days 
Total time traveling 2 days 
Total days off station 30 days 
Ao 67%   

Table 14.   Calculated Ao for LCS on a 90 MIW mission using a 4-2 schedule 

 

Using a 3-2 schedule LCS has an average mission Ao of 60% while using a 4-2 

schedule allows LCS to have an average Ao of 67%.  Even using a 4-2 schedule LCS is 

on station an average of 03% less time than the current Avenger class ships.  Further 
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analysis will show, however, that LCS, although spending less time on station conducting 

MIW operations, has the opportunity to lessen the strain on CLF assets and create more 

flexibility for a logistics planner. 

 

3. COMLOGWESTPAC LM LCS Replenishment Requirements 

Throughout this section when LCS is mentioned, it will refer to the LM version 

applied to COMLOGWESTPAC fuel consumption rates unless otherwise specifically 

noted.  LCS, although giving the combatant commander less time for mission availability 

due to crew constraints, does offer the combatant commander more flexibility with 

logistics than the current Avenger class.  Operations occur in a cyclical fashion, a 3-2 or 

4-2 schedule, allowing the resupplying of LCS for food, parts and fuel to take place at 

intervals greater than five days.   Assuming that fuel reserve levels for LCS will be 

adjusted to gain the greatest benefit, a scheduler can greatly extend the amount of days 

between supply events.   As stated in Chapter III, each refueling event will bring LCS 

back to 95% fuel capacity.  

As shown in Figure 11, if LCS is to be scheduled on every off-cycle for a fueling 

event, it will retain a fuel reserve level of 58% during cyclic operations.  This level will 

dip to 48% during the first cycle due to travel to get on station and begin operations.  The 

fuel reserve level can be kept above 50% if a CLF asset was able to meet LCS upon 

arrival to the area prior to beginning operations.  This schedule will also cause LCS fuel 

reserve levels to dip to 37% upon return to homeport.   This can also be avoided if a CLF 

asset is available to refuel LCS upon completion of MIW operations during the transit 

day.   

LCS has the flexibility to refuel every other cycle, reducing the necessary CLF 

assets by half.  This flexibility may, however, come at an unrealistic cost to mission 

planners for the LM version.  This option will only be available to planners if LCS is 

allowed to maintain a fuel reserve level of 10%.  LCS must also refuel after the first cycle 

of operations, day 5 of deployment, due to the fuel consumed during the transit.  
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Remaining on-hand daily fuel percentages for a 90 day patrol replenishing every other 

cycle are shown in Figure 12.    

Figure 11.   Daily Fuel Remaining (%) for COMLOGWESTPAC LM LCS on 90 
day MIW mission (3-2 Mission schedule refueling every cycle) 

 

Figure 12.   Daily Fuel Remaining (%) for COMLOGWESTPAC LM LCS on 90 
day MIW mission (3-2 Mission schedule refueling every other cycle) 
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If allowed a fuel reserve of 10% other considerations, such as stability and range of LCS 

must be taken into consideration by the logistics planner.   

If employed on a 4-2 cycle schedule, COMLOGWESTPAC LM LCS becomes 

more restrictive for a logistics planner.  If this schedule is employed, a logistics planner 

would gain little scheduling flexibility over an Avenger class ship.  In order for LCS to 

maintain single cycle replenishment cycle, a fuel reserve of 49% must be established.  

During the first cycle, due to transiting speeds LCS must be allowed dip to 39% of its 

fuel capacity.  By allowing this deviation, LCS will still be capable of transiting over 

1,200nm at 13kts.  Figure 13 shows daily fuel remaining (%) for COMLOGWESTPAC 

LM MIW on 90 day Patrol using a 4-2 mission profile and refueling each cycle.   Without 

a refueling on the transit to home port LCS will arrive with a fuel level of 28% 

 

Figure 13.   Daily Fuel Remaining (%) for COMLOGWESTPAC LM LCS on 90 
day MIW mission (4-2 Mission schedule refueling every cycle) 
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noted.  This version of LCS has a greater fuel capacity, as noted in Table 11, and is also 

more fuel efficient at slower speeds than the LM version described in the previous 

section.  This combination of greater fuel capacity and greater fuel efficiency allows a 

logistics planner much greater planning flexibility over the COMLOGWESTPAC LM 

LCS.   

As shown in Figure 14 if LCS is scheduled for single cycle refulings during a 3-2 

mission profile it will maintain a fuel reserve level of 79%.  This level will drop to 72% 

during the first cycle and 66% upon arrival to home port.  This analysis suggests that it 

would not be necessary to schedule a CLF asset or BSF for LCS during every off cycle.   

 

Figure 14.  Daily Fuel Remaining (%) for COMLOGWESTPAC GD LCS on 90 
day mission (3-2 Mission schedule refueling every cycle) 
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Figure 15.  Daily Fuel Remaining (%) for COMLOGWESTPAC GD LCS on 90 
day mission (3-2 Mission schedule refueling every other cycle) 
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Daily Fuel Remaining (%) for COMLOGWESTPAC GD MIW on 90 day Patrol
(3-2 Mission schedule refuel every third cycle w/ first fueling evolution on day 10)
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Figure 16.  Daily Fuel Remaining (%) for COMLOGWESTPAC GD LCS on 90 
day mission (3-2 Mission schedule refueling every third cycle) 

 

As an example, to ensure LCS remains above a 39% fuel level, a planner can 

schedule the first fueling evolution on day 10 of the patrol.  This would cause the last 

fueling evolution to occur on day 85.  Figure 17 shows this example employment of LCS.  
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Figure 17.  Daily Fuel Remaining (%) for COMLOGWESTPAC GD LCS on 90 
day mission (3-2 Mission schedule refueling every third cycle w/ first event 
occurring on day 10) 
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The GD LCS also enables logistics planners the ability to schedule a refueling 

event every fourth cycle.   This would require allowing LCS to observe a fuel reserve 

level of 20%.  At 20% GD LCS still has the capability of transiting up to almost 1,300nm 

at 13kts.  When allowing LCS to refuel every twenty days planners must be aware that no 

reserves will be left for food.  When deployed LCS will carry prepackaged meals for each 

sailor aboard that will last for 21 days.  If a refueling is scheduled every 20 days LCS 

must still complete a replenishment event for food and stores at a shorter interval.  This 

will enable logistics planners the ability to use a CLF asset that does not need to be 

refueling capable and allows the fleets oilers the flexibility to service other customers if 

necessary.  An asset needs only to be able of conducting a vertical replenishment and 

have the storage capacity to hold LCS food and parts to assist LCS.  This allows a 

planner to use CLF assets, aircraft carriers, and amphibious assault ships.  Using this 

schedule the GD LCS will use only 25% of the oiler assets necessary to refuel the same 

ship on an every cycle refueling schedule. 

Employed in a 4-2 MIW schedule GD LCS becomes more restrictive during 

longer refueling periods but less restrictive during an every cycle refueling period.  

During an every cycle refueling schedule, because there is a longer duration between 

refuelings than when a 3-2 schedule is used, there are less overall fueling events 

necessary.  When conducting a 4-2 mission profile, the first refueling event occurs on day 

6 and the final event on day 84 of the patrol.  This leaves a requirement for 14 total 

fueling events vice 17 for a 3-2 schedule.  This creates an 18% less need for a CLF asset 

or port call.  This finding also holds true for the LM LCS.   

Employed in a 4-2 mission profile LCS will maintain a fuel reserve level of 76%.  

If the first scheduled refueling occurs at the end of the first four days of operation, day 6, 

LCS will drop to a 68% fuel level.  LCS will arrive back at homeport at a 63% fuel level.  

Figure 18 shows how this fueling schedule affects fuel levels for MIW operations. 
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Figure 18.  Daily Fuel Remaining (%) for COMLOGWESTPAC GD LCS on 90 
day mission (4-2 Mission schedule refueling every cycle) 
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Figure 19.  Daily Fuel Remaining (%) for COMLOGWESTPAC GD LCS on 90 
day mission (4-2 Mission schedule refueling every other cycle) 

 

Figure 20.  Daily Fuel Remaining (%) for COMLOGWESTPAC GD LCS on 90 
day mission (4-2 Mission schedule refueling every third cycle) 
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5. Comparative Analysis between COMLOGWESTPAC GD and LM 
Versions of LCS 

Throughout this section when GD LCS and LM LCS are mentioned, they will 

refer to the GD or LM approved versions of LCS applied to COMLOGWESTPAC fuel 

consumption rates. 

As noted in the previous section the larger fuel capacity and greater fuel 

efficiency at lower speeds allow for the GD LCS to have more flexibility when 

scheduling its logistical needs.  Figure 21 shows the effects of different cyclic refueling  

schedules for both the LM LCS and GD LCS during a 3-2 mission profile on a 90 day 

patrol.  During this mission profile, GD LCS is capable of using 50% of the CLF and port 

visit assets needed to maintain enough fuel to complete the MIW mission between 

refuelings.  Even when using only half the fueling assets necessary to maintain the LM 

LCS during a 90 day MIW mission, GD LCS is able to maintain a fuel reserve of almost 

twice that of its counterpart.   

 

Figure 21.   Minimum percentage of fuel remaining onboard between fueling 
events for cyclical operations during a 3-2 schedule for GD and LM LCS 
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In section 3 of Chapter IV it was stated that LM LCS is only able to complete its 

mission if a CLF asset or inport refueling is available at the end of each cycle of 

operations during a 4-2 mission profile.  This gives the LM LCS the same flexibility and 

less Ao then the Avenger class ship.  The GD LCS is able to offer the option of scheduled 

refuelings up to and including after every third cycle of completed operations.  Upon 

completion of the third cycle of operations, GD LCS will still have the ability to transit 

almost 2000nm.  In comparison, when refueling at the end of every cycle and maintaining 

a minimum fuel level of 49% during cyclical operations the LM LCS will be able to 

transit 1524nm.  The GD LCS provides more flexibility for scheduling while using only 

one third of the refueling assets necessary to maintain the LM LCS.  GD LCS is also 

capable at transiting nearly 480nm more at its lowest fuel reserve between refuelings.   

This allows the scheduler the flexibility to allow a CLF asset to stand off further from a 

dangerous littoral region, or to schedule GD LCS to use a further secondary port for 

refueling operations if a primary port is unavailable. Figure 22 shows the effects of 

different cyclic refueling schedules for both the LM LCS and GD LCS during a 4-2 

mission profile on a 90 day patrol. 

Figure 22.  Minimum percentage of fuel remaining onboard between fueling 
events during cyclical operations for a 4-2 schedule for GD and LM LCS 
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6.  PEO LM LCS Replenishment Requirements 

Throughout this section when LCS is mentioned it will refer to the LM version 

applied to PEO-OMO fuel consumption rates unless otherwise specifically noted.  As 

shown in Figure 8, PEO-OMO fuel consumption rates and PEO-SMO fuel consumption 

rates are the same for speeds below 19kts.  Although PEO-OMO fuel consumption rates 

are better suited for transit analysis than MIW operations analysis the maximum speed 

used in this scenario of 15kts allows this fuel curve to be used for analysis. 

Figure 9 showed that the PEO-OMO consumption rate is more efficient than the 

COMLOGWESTPAC LM LCS consumption rate at speeds below 16kts.  This added 

efficiency gives logistics planners the ability prolong refueling during cyclical operations.  

The high burn rate of LCS above 16kts, combined with a relatively small overall fuel 

capacity, requires logistics planners to be much more vigilant of LCS fuel levels during 

high speed transits.   

In a 3-2 mission profile, due to the high speed of the transit to the operating area, 

LCS requires a refueling after the first cycle of MIW operations.  Refuelings after the 

first cycle can then be altered to allow for refueling events to be scheduled after every 

other cycle or after every third cycle.  Figure 23 display the effects of refueling every 

cycle on fuel levels during a 90 day mission profile.  During this mission profile, LCS 

will maintain a minimum fuel level of 76% during cyclical operations and minimum fuel 

level of 33% after the first cycle and of 22% upon arrival at homeport.   This scenario 

assumes the first fueling event will take place on day 5 and the final event will take place 

on day 85.  If a CLF asset is available to meet LCS during the transit to homeport LCS 

can be kept above a 50% minimum fuel level for the entire mission. 

This scheduling maximizes the Ao of LCS but increases its dependence on CLF 

assets and/or BSF evolutions.   
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Figure 23.  Daily Fuel Remaining (%) for PEO-OMO LM LCS on 90 day 
mission (3-2 Mission schedule refueling every cycle) 
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Daily Fuel Remaining (%) for PEO-OMO LM MIW on 90 day Patrol
(3-2 Mission schedule refuel every other cycle)
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Figure 24.  Daily Fuel Remaining (%) for PEO-OMO LM LCS on 90 day 
mission (3-2 Mission schedule refueling every other cycle) 

 

Employed in a 4-2 mission profile LCS is subject to many of the same constraints.  

This schedule reduces the overall necessity for a CLF asset or BSF from 17 to 14 total 

events, but may come at an overall cost to crew rest.  If a refueling is scheduled every off 

cycle LCS will maintain a minimum fuel level of 73% during cyclic operations.  This 

scheduling also causes LCS to enter into its first refueling event with a 30% fuel level.   

This level can be substantially increased by the operational planner if LCS is able to 

refuel upon arrival at the operating area and prior to commencing operations, thereby 

placing LCS at a fuel level of 83% upon its first refueling. 

A more effective approach to servicing LCS during a 4-2 mission profile would 

be to schedule a refueling event every other cycle during cyclical operations.  This would 

also require LCS to be refueled at the end of the first complete cycle of MIW operations.  

A second non-cyclic scheduled refueling would be required for LCS prior to arrival at 

homeport to maintain a fuel reserve level above 46% as well.  This would overall reduce 

the need for a CLF asset or BSF by 43% over a single cycle refueling schedule.  This 

schedule would cause LCS to attain a minimum fuel level of 40% during cyclical 
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operations.  Figure 25 shows the effects of refueling every other cycle on fuel levels 

during a 90 day mission profile. 

 

Figure 25.  Daily Fuel Remaining (%) for PEO-OMO LM LCS on 90 day 
mission (4-2 Mission schedule refueling every other cycle) 

 

This scenario schedules the first fueling event on day 10 and the final cyclical refueling 

on day 80.  An extra refueling is scheduled on day 85 to allow LCS to transit back to 

homeport at a high rate of speed to ensure travel time remains 1 day. 

 

7.  PEO GD LCS Replenishment Requirements 

Throughout this section when LCS is mentioned it will refer to the GD version 

applied to PEO-OMO fuel consumption rates unless otherwise specifically noted.   The 

overall larger fuel capacity of GD LCS over LM LCS allows a logistics planner much 

more flexibility when scheduling refueling events during this tailored scenario.  If LCS is 

scheduled for a 3-2 mission profile a mission planner has the opportunity to schedule 

refuelings up to every forth cycle during MIW operations.  If a scheduler chooses to 

refuel LCS after each cycle it will take 17 RAS/BFS events to complete the mission and 
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the ship will maintain a minimum fuel level of 83% during 3-2 cyclical MIW operations.  

If the first refueling is scheduled on day 5 of the patrol and the final scheduled on day 85, 

the minimum fuel level LCS will attain is 50%.  This level will not be reached until 

arrival at homeport.   

If a planner chooses to refuel LCS every ten days the lowest expected fuel level 

during cyclic operations that will be reached is 64%.  This schedule requires only half of 

the CLF and inport assets necessary to refuel LCS, and allows the ship to remain fully 

mission capable.  At 15 days between scheduled refuelings LCS will maintain a 

minimum fuel level of 46% while conducting operations.  If this schedule is chosen and 

the first fueling event takes place on day 15 LCS will see a minimum fuel level of 19% 

while on patrol.  At this fuel level LCS is capable of transiting over 1300nm at 13kts.  

Assuming the last fueling event takes place on day 75 of the patrol LCS will complete 

operations at a 46% fuel level and arrive at homeport after a full day transit at 25kts with 

a 13% fuel level.  This schedule will require LCS to receive a total of 5 fueling events, 

less than one third the events required if refueling every cycle and almost one half less 

the events required if refueling every other cycle.   

GD LCS is also capable of refueling every fourth cycle between cyclical 

operations.  If this schedule is used and no separate RAS evolutions are scheduled at 

shorter intervals LCS will be left with a food reserve level of 1 day.  To optimize the 

schedule and use the least amount of CLF and inport assets to refuel LCS, while 

maintaining a fuel reserve level that will assure full mission capability, the first scheduled 

event will occur on day 10 and the final event will occur on day 85.  This schedule will 

require a total of 5 refueling events and will assure LCS will maintain a fuel reserve level 

above 29% during cyclic operations.  Not included in the member of refueling events 

required is the number of off station events needed to ensure LCS maintains a desired 

reserve level of rations per person.  This schedule does not lessen the need for CLF or 

inport refueling assets but it does allow the scheduler the flexibility to schedule a fleet 

oiler asset or non-oiler replenishment asset at different times as opposed to a ship with 

combined capabilities each time a refueling event is schedule.  Figure 26 shows the 

effects of refueling every third cycle on fuel levels during a 90 day mission profile.  
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Figure 27 shows the effects of refueling every fourth cycle on fuel levels during a 90 day 

mission profile while Figure 28 shows the effect on food reserve levels if not resupplied 

at a shorter interval.  These levels are based on the 21 day pre-packaged meal plan for 

LCS sailors. 

 

  Figure 26.  Daily Fuel Remaining (%) for PEO-OMO GD LCS on 90 day 
mission (3-2 Mission schedule refueling every 15 days during cyclic MIW ops) 

 

Figure 27.  Daily Fuel Remaining (%) for PEO-OMO GD LCS on 90 day 
mission (3-2 Mission schedule refueling every fourth cycle during cyclic ops) 
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Figure 28.  Daily food remaining (amount in days worth per sailor) for PEO-
OMO GD LCS on 90 day MIW patrol when resupplying every fourth cycle of a 
3-2 mission profile 

 

As shown in Figure 28 on resupply days LCS will have 1 day of prepackaged 

food remaining out of a 21 day meal plan for each crew member.  This implies that if 

LCS is unable to conduct a RAS on a scheduled day due to weather or lack of assets the 

ship would simply run out of food.  The overall analysis of GD LCS conducting a 3-2 

mission profile suggests refueling every third cycle is the most effective scheduling for 

operational planners to choose. 

If LCS is able to conduct a 4-2 mission profile vice a 3-2 profile, as discussed 

earlier it will be able to increase Ao by 7%.  This change in mission profile shows a slight 

overall improvement in reducing the necessary amount of CLF and inport assets 

necessary to keep LCS refueled but at a cost in mission reliability.  When LCS is enabled 

to conduct a refueling event every third cycle a minimum fuel level of 7% is reached 

upon return to homeport.  During cyclic MIW operations a fuel reserve level of 40% is 

maintained when this scheduling preference is used.  Compared with a 3-2 mission 

profile, which requires 5 refueling evolutions, if allowed to drop below a 10% fueling 
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level LCS will require 4 FAS/BFS evolutions.  A fuel level of 7% can easily be overcome 

by scheduling a FAS or BSF after the final cycle of mine hunting/sweeping operations is 

conducted.  The analysis in Figure 29 does not show this and leaves it to the planner to 

address this issue.  Overall the 4-2 mission profile offers a slight improvement 

logistically over the 3-2 schedule because it involves overall less fueling events.  This 

still, however, is the preferable schedule if crew fatigue levels allow it because of the 

added increase it offers in Ao.  Conducting resupplying evolutions every 4 cycles for 

LCS with a 4-2 mission profile is infeasible due to the 21 day meal plan constraint.  It is 

assumed for the purpose of this thesis that this constraint is not flexible based on food 

storage capacity in LCS. 

 

Figure 29.  Daily Fuel Remaining (%) for PEO-OMO GD LCS on 90 day 
mission (4-2 Mission schedule refueling every third cycle during cyclic MIW 
ops) 

 

8. Comparative Analysis between PEO-OMO GD and LM Versions of 
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expected minimum fuel levels will be reached for a chosen refueling policy during a 3-2 

mission profile.  Figure 30 also shows that when refueling every cycle both the GD and 

LM PEO-OMO versions of LCS record similar minimum fuel levels during a 3-2 mission 

profile.   

 

Figure 30.  Minimum percentage of fuel remaining onboard between fueling 
events during cyclical operations for a 3-2 schedule for GD and LM PEO-OMO 
LCS 

 

When LCS refuels every cycle although each version records similar minimum 

fuel levels during cyclic operations GD LCS is able to transit almost 2,400nm further at 

13kts as the LM LCS.  This, again, is due to the large disparity in fuel capacity between 

the two models.  The difference in the endurance of both the LM and GD LCS at 

minimum fuel levels during a 3-2 mission profile is explored at a transit speed of 13kts 

and a sprint speed of 45kts in Figure 31 and Figure 32 respectively.  These figures are 

shown to further assist a decision maker as to which refueling schedule will yield the 

largest benefit by reducing the need for CLF and inport assets, while still maintaining the 

ability to remain a fully mission capable asset to a combatant commander for other 

tasking if necessary. 
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Figure 31.  Endurance analysis of LM and GD PEO-OMO LCS at a transit speed 
of 13kts using refueling schedules of 1, 2, 3 and 4 cycles during a 3-2 mission 
profile 

 
 

Endurance analysis of LM and GD PEO-OMO LCS at a sprint speed of 45kts  using 
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Figure 32.  Endurance analysis of LM and GD PEO-OMO LCS at a sprint speed 
of 45kts using refueling schedules of 1, 2, 3 and 4 cycles during a 3-2 mission 
profile 
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In a 4-2 mission profile GD and LM assets retain many of the same differences as 

in a 3-2 mission profile.  GD offers more flexibility to a scheduler because of its ability to 

go up to 18 days without needing to refuel.  Assuming fueling and resupplying events 

take place at the same intervals this would, however, allow meals per person on board to 

dip to 3 while still maintaining a fuel reserve level of 40%.  Figure 33 shows a 

comparison of necessary minimum fuel reserve levels to allow LCS to conduct refueling 

events every, every other, every third and every fourth cycles. 

 

Figure 33.  Minimum percentage of fuel remaining onboard between fueling 
events during cyclical operations for a 4-2 schedule for GD and LM PEO-OMO 
LCS 
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C. CLF ASSET AVAILABLITY 

 

There are several factors that need to be considered when detailing a CLF asset to 

refuel LCS.  Two key factors among them are (1) is the asset available and (2) if it is 

available is it capable of reaching LCS to conduct a refueling event.  The HA/DR 

scenarios  in this chapter will adopt several 7th Fleet key logistics support assumptions to 

help answer these questions, though in a real planning scenario they must remain at the 

forefront of questions being asked by a operational logistics planner when deciding to use 

LCS sprint speed as an asset.  In a logistics support brief given in January of 2007 

(Tucker, 2007), it was assumed the first deployment of LCS would happen during an 

already heavily loaded schedule in the 7th Fleet AOR.  Figure 34 shows the expected 

competing factors for CLF assets in 7th Fleet during the summer of 2007, among them is 

LCS.  It will be assumed for the purpose of this thesis that LCS will face similar 

competition for CLF assets during its actual first deployment.  These factors may include 

Extended Maritime Interdiction Operations (EMIO), Cooperation Afloat Readiness and 

Training exercises (CARAT), Ballistic Missile Defense/ Limited Defense Operations 

(BMD/LDO), Carrier (CV) operations and Carrier Strike Group and Expeditionary Strike 

Group (CSG/ESG) transits.  

This thesis will also assume that the amount of CLF assets in 7th Fleet AOR are 

similar as was expected during the summer of 2007.  Figure 34 shows the expected CLF 

employment during the summer of 2007. 
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Figure 34.  Expected CLF employment for summer of 2007.  From 7th Fleet LCS 
Logistics support brief (From Tucker, 2007) 

 

For the purpose of analysis, tables are created in section D of this chapter that will 

allow the logistics planner to see the tradeoff between an allowable fuel reserve level and 

the number of CLF assets needed to maintain that fuel reserve level to complete the 

assigned mission.  Although it may be predictable that 1.0 CLF assets may be available 

for LCS during this mission, it is also conceivable that there may be more or less actual 

assets available at any one time.  It is also conceivable that although an asset is available 

it may not be able to reach LCS for a refueling event along the LCS planned track.  The 

reality of this assumption becomes clear in Figure 35.  This figure depicts a snapshot of 

fueling events and the vessels that conducted the events in the Western Pacific Ocean in 

2007.   Using this figure as a possible indicator for what the snapshot will look like when 

LCS deploys, it is likely that if LCS is en route to an HA/DR mission outside an area 
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defined by Yokosuka, Japan, Sasebo, Japan, Singapore and Guam there is a high 

likelihood a CLF asset may not be available.   

 

Figure 35.  RAS annual snapshot in the Western Pacific theater of Operations.  
From 7th Fleet LCS Logistics support brief (From Tucker, 2007) 

 

Figure 36 shows 7th Fleet supportability zones.  This further emphasizes the need 

for a logistics planner to fully understand where LCS is coming from and where it is 

going to.  Once the planner understands this and how the intended track of LCS will 

direct it through the 7th Fleet AOR, the tables in the following section may be used as a 

guideline to help decide what speed and fuel reserve will best fit the logistical situation 

LCS will face based on the number of probable CLF assets that will be available.  As 

shown in Figure 36, if LCS begins its transit from the Indian Ocean and heads towards 

the northern entrance to the Straights of Malacca there is little capability for refueling in 

the transiting region.  This may cause the planner to slow LCS or allow it to maintain a 

low fuel reserve or some combination of the two.    



 70

Figure 36.   CLF Logistics Supportability Zones.  From 7th Fleet LCS Logistics 
support brief From (Tucker, 2007) 

 

From this assumption, it is derived for the purpose of the HA/DR scenario that 

there will be a maximum of 3.0 CLF assets available and a minimum of 0.0 at any one 

time to resupply LCS.  Any mission that will require LCS to use more than 3.0 CLF 

assets will be considered infeasible thus negating the use of LCS sprint speed.  NWP 4-

01.2 will be used as the guideline for determining what assets may be used to refuel LCS, 

and it will be assumed that all CLF assets capable of refueling other combatants may be 

used to refuel LCS.  This assumption is made because although the T-AFS has the 

capability to carry fuel and replenish ships at sea NWP 4-01.2 suggests that it cannot 

transfer fuel to any combatant.   Table 15 shows hourly transfer rates from CLF assets to 

combatants from NWP 4-01.2 (CNO, 2007).  This table shows that the transfer rate from 

an AFS to LCS is 0 barrels per hour.  Despite the published zero transfer rate, this thesis 

assumes that because an T-AFS can carry fuel for combatants it will be able to refuel 

LCS.   
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Table 15.   Hourly transfer rates from CLF assets to combatants. ( From NWP 4-01.2, 
2007) 

 

D. HUMANITARIAN ASSISTANCE/DISASTER RELIEF MISSION 
ANALYSIS 

 

As described in the previous chapter, three generic HA/DR scenarios are created 

in which LCS deploys from a forward operating base or forward operating CSG/ESG in 

the western Pacific Ocean to render assistance to a disaster area in the AOR.  Table   16 

lists parameters for each intra-theater mission. 

 

Mission 
Distance to affected 

area from origin 
A 1,500 
B 2,500 
C 3,500 

Table 16.   Intra-theater HA/DR mission descriptions 
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For the purpose of analysis in each mission, and because it is still uncertain 

whether  COMLOGWESTPAC or PEO estimated fuel curves will fit , both GD and LM 

LCS are applied to COMLOGWESTPAC and PEO-SMO predicted fuel consumption.  

To ensure optimal fuel usage the fuel optimizer created in Chapter III is then applied to 

each version of LCS.     In an operational situation where HA/DR is needed in an affected 

area speed becomes vital.  The ability of the U.S Navy to get material on scene to those in 

need in a timely manner could mean the difference between life and death for some.  LCS 

will not be able to provide major medical assistance to those in need but is capable of 

carrying food, supplies and making water.   It is assumed, for this thesis, that if LCS is 

deployed to an area for HA/DR that a CSG/ESG with greater capabilities will also be 

deployed.  This CSG/ESG will be assumed to begin its transit towards the affected area at 

a speed of 15kts and leave at the same time as LCS.  This will allow the decision maker 

to make a comparative analysis as to how much he or she is willing to spend on refueling 

assets and money to ensure LCS is given the required supplies to arrive at a distressed 

region prior to the CSG/ESG.  Table 17 shows CSG/ESG average statistics for each 

mission, assuming a CSG/ESG transiting at 15kts will require RAS/FAS once every four 

days.     

CSG/ESG statistics for HA/DR scenarios transiting at 15kts 
        

Intra-Theater Mission TOA (hrs) Days RAS/FAS  Required 
A 167 4 1 
B 100 7 2 
C 233 10 2 
        

Table 17.   Expected time of arrival and fueling-at-sea/replenishment-at-sea 
evolutions required for CSG/ESG to reach affected HA/DR mission region 

 

1. HA/DR COMLOGWESTPAC LCS Mission A Analysis 

Mission A consists of a 1,500nm transit from a forward deployed homeport or 

forward deployed ESG/CSG in the western pacific to a disaster area.  For analysis 

purposes LCS transits at speeds between 15kts, this will be used as a baseline, and 45kts.  

While traveling at 15kts LCS will be able to utilize CSG/ESG refueling assets and will 
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not require any extra CLF assets to complete the mission of delivering supplies to an 

affected area.  Based on transit speeds used for Mission A, Table 18  shows the time 

saving benefit the speed of LCS can bring to the HA/DR mission area.   

 

Speed (kts) 
Time to arrival 

(hrs) 

Time of arrival 
ahead of 

CSG/ESG (hrs) 

Time of arrival 
ahead of 

CSG/ESG (days) 
15 100 0 0.0 
18 83 17 0.7 
20 75 25 1.0 
25 60 40 1.7 
30 50 50 2.1 
35 43 57 2.4 
40 38 63 2.6 
45 33 67 2.8 

Table 18.   Time ahead of CSG/ESG LCS will arrive to affected region using 
different speed profiles during  HA/DR Mission A 

 

Though LCS can arrive up to almost three days prior to the CSG/ESG, as noted 

earlier in this thesis speed comes at a price of needing to refuel at relatively short 

intervals for LCS.  This, in turn, will require CLF assets to refuel LCS along its intended 

track.  The max speeds of a T-AO, T-AFS and T-AE are approximately 20kts.  In order 

for LCS to maintain the speed required to arrive ahead of the CSG/ESG it is assumed that 

any speed over 18kts,   LCS will require multiple CLF assets to meet it along PIM.  Table 

19 shows how many CLF assets will be required for both the LM and GD versions of 

LCS applied to COMLOGWESTPAC fuel data when fuel reserve levels of 50%, 35% 

and 20% are allowed.  If only 1.0 assets are available for tasking during this mission any 

speed requiring more than 1.0 CLF assets is considered to be unfeasible.    At speeds of 

15kts 0 assets will always be required and at 18kts no more than 1.0 asset will be 

required. 
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Number of CLF assets required to complete Mission A while maintaining the specified fuel reserve 
throughout mission.  

speed 

CLF Assets 
Required to 

maintain FR of 
50% for CLWP 

LM LCS 

CLF Assets 
Required to 

maintain FR of 
35% for CLWP 

LM LCS 

CLF Assets 
Required to 

maintain FR of 
20% for CLWP 

LM LCS 

CLF Assets 
Required to 

maintain FR of 
50% for CLWP 

GD LCS 

CLF Assets 
Required to 

maintain FR of 
35% for CLWP 

GD LCS 

CLF Assets 
Required to 

maintain FR of 
20% for CLWP 

GD LCS 
15 0.0 0.0 0.0 0.0 0.0 0.0 
18 1.0 0.0 0.0 0.0 0.0 0.0 
20 1.0 0.0 0.0 0.0 0.0 0.0 
25 1.1 0.0 0.0 0.0 0.0 0.0 
30 1.2 1.1 0.0 0.0 0.0 0.0 
35 1.4 1.2 1.1 1.1 0.0 0.0 
40 1.6 1.4 1.2 1.3 1.1 0.0 
45 1.8 1.7 1.5 1.5 1.3 1.2 

Table 19.   Number of CLF assets required to complete Mission A while transiting at 
speeds from 15kts to 45kts and maintaining a fuel reserve level of 50%, 35% and 
20% 

 

Because certain CLF requirements were close to being feasible, for example at 

25kts LM LCS would require 1.1 CLF assets if a fuel reserve limit of 50% is established, 

some sensitivity analysis was done to find what fuel reserve level would be needed to 

make Mission A possible for LCS given the CLF restriction of 1.0 assets available. For 

the LM version of LCS to be feasible for Mission A the greatest impact it can make is to 

arrive one day before the CSG/ESG if a fuel reserve of  50% is established and 2 days 

prior if a fuel reserve of just below 35% is established.  As discussed in the endurance 

calculation, if LCS arrives on scene with only 35% of its overall fuel capacity remaining 

it will be able to continue to make water for and ferry supplies, which were loaded 

aboard, to an affected area by helicopter while maintaining a speed of 5-8kts for up to 4 

days.  Assuming a minimum fuel capacity of just below 35% is established, LCS will 

drop to approximately a 17% fuel level prior to being refueled by the CSG/ESG.  LM 

LCS is unable to complete Mission A at a speed of greater than 30kts and have fuel 

remaining to conduct operations once on station unless the CLF availability is raised to 

2.0. 

The GD version of LCS can complete Mission A in the same amount of time as 

the LM LCS without needing a CLF asset.  If allowed to drop to a fuel reserve level of 

43% the GD LCS can arrive on station using a speed of 35kts, allowing it to arrive 2.4 
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days prior to the CSG/ESG.  If allowed to drop to a fuel reserve of 29% GD LCS can 

transit a speed of 40kts and arrive on station 2.6 days prior to the CSG/ESG.  As noted 

earlier, the efficiency at which GD LCS burns fuel at slow speeds combined with the size 

of its fuel tanks allow it to be able to continue to operate in the affected region without 

needing to refuel prior to the CSG/ESG arrival.  Figure 37 describes how lowering the 

allotted fuel reserve for Mission A effects the time in which LCS can reach an affected 

area.  This graph assumes that there is only a 1.0 CLF asset presence for tasking in 

theater. 

As Figure 37 shows, allowing a reduction in the fuel reserve level to 40% of the 

GD  LCS gains a maximum of  only 10 hours in arrival time to the affected region 

assuming there is 1.0 CLF assets available and LCS will transit at the maximum 

allowable speed while maintaining the minimum allowed fuel reserve level.  The LM 

version, however, benefits much more during this mission by allowing a reduced fuel 

reserve level.    As stated earlier the LM version is only capable of transiting at 20kts if a 

fuel reserve level of 50% is established.  By reducing this level to 41% LCS can transit at 

25kts and arrive 40 hours ahead of all other scheduled assets.  A reduction to 33% would 

enable LM LCS to arrive 10 hours earlier.   Using this fuel reserve level would also 

require an on station mission speed slow enough to allow LCS to maintain station for 

over 2 days prior to being refueled upon the CSG/ESG arrival. 
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Figure 37.  Effect of changing fuel reserve level on maximum time of arrival 
ahead of CSG/ESG for COMLOGWESTPAC Mission A 

 

2.  HA/DR COMLOGWESTPAC LCS Mission B Analysis 

Mission B consists of a 2,500nm transit from a forward deployed homeport or 

forward deployed ESG/CSG in the Western Pacific Ocean to a disaster area.  For analysis 

purposes LCS transits at speeds between 15kts, this will be used as a baseline, and 45kts.  

While traveling at 15kts LCS will be able to utilize CSG/ESG assets and will not require 

any extra CLF assets to complete the mission of delivering supplies to an affected area.  

Based on transit speeds used for Mission B, Table 20  shows the time saving benefit the 

speed of LCS can bring to the HA/DR mission area.   

Speed (kts) 
Time to arrival 

(hrs) 

Time of arrival 
ahead of 

CSG/ESG (hrs) 

Time of arrival 
ahead of 

CSG/ESG (days) 
15 167 0 0.0 
18 139 28 1.2 
20 125 42 1.7 
25 100 67 2.8 
30 83 83 3.5 
35 71 95 4.0 
40 63 104 4.3 
45 56 111 4.6 

Table 20.   Time ahead of CSG/ESG LCS will arrive during Mission B 
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Number of CLF assets required to complete Mission B while maintaining the specified fuel reserve 
throughout mission.  

speed 

CLF Assets 
Required to 

maintain FR of 
50% for CLWP 

LM LCS 

CLF Assets 
Required to 

maintain FR of 
35% for CLWP 

LM LCS 

CLF Assets 
Required to 

maintain FR of 
20% for CLWP 

LM LCS 

CLF Assets 
Required to 

maintain FR of 
50% for CLWP 

GD LCS 

CLF Assets 
Required to 

maintain FR of 
35% for CLWP 

GD LCS 

CLF Assets 
Required to 

maintain FR of 
20% for CLWP 

GD LCS 
15 0.0 0.0 0.0 0.0 0.0 0.0 
18 1.0 1.0 1.0 0.0 0.0 0.0 
20 1.4 1.2 1.0 0.0 0.0 0.0 
25 1.5 1.3 1.2 1 .1 0.0 0.0 
30 1.7 1.5 1.4 1.3 1.1 0.0 
35 1.9 1.8 1.6 1.5 1.4 1.2 
40 2.3 2.1 1.9 1.8 1.6 1.5 
45 2.6 2.5 2.3 2.1 1.9 1.8 

Table 21.   Number of CLF assets required to complete Mission B while transiting at 
speeds from 15kts to 45kts and maintaining a fuel reserve level of 50%, 35% and 
20% 

 

Table 21 shows the analysis conducted on Mission B, relating to the amount of 

necessary CLF assets that must be available for mission success.  If only 1.0 CLF asset is 

available LM LCS will not be able to complete the mission and arrive more than 1 full 

day ahead of the CSG/ESG unless allowed to change to a fuel reserve level of 20%.  At 

this speed LM LCS will arrive 42 hours prior to the CSG/ESG and still maintain the 

ability to conduct HA/DR operations as described in section 1 of this chapter during that 

time period.  All other advantageous speed options for LM LCS are infeasible unless the 

CLF assets available are at least 2.0. 

The GD LCS is able to conduct operations, based on both the CLF asset 

availability constraint and given fuel reserve level constraints at a speed of up to 30kts if 

allowed to maintain a fuel reserve level of 20%.   A short sensitivity analysis was done by 

easing the constraints placed on fuel reserve levels.  If GD LCS is allowed to drop to a 

fuel reserve of 25% this mission can be accomplished at 30kts.  Any higher speed would 

make the mission infeasible.  By allowing LCS to drop to a fuel reserve level of 25% vice 

the notional 50% assumed to be required of the fleet in this thesis, supplies can reach the 

affected area 3.5 days prior to that of what a nominal CSG/ESG could accomplish.  If a 
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2.0 CLF asset availability is attainable GD LCS can accomplish Mission B at a speed of 

45kts and arrive with a fuel reserve level of 39%.   Figure 38 describes how adjusting the 

allotted fuel reserve for Mission B effects the time in which LCS can reach an affected 

area ahead of the CSG/ESG.  This graph assumes that there is only a 1.0 CLF asset 

presence for tasking in theater. 

 

Figure 38.  Effect of changing fuel reserve level on maximum time of arrival 
ahead of CSG/ESG for COMLOGWESTPAC Mission B 
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to the HA/DR mission area. Mission C, due to its distance, truly allows a decision maker 

to see the effect speed can have on getting aid to an area in a timely manner.  At its full 
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potential, as shown in Table 22, LCS could have aid to a disaster region almost seven 

days prior to what the nominal normal assets could do. 

 

Speed (kts) 
Time to arrival 

(hrs) 

Time of arrival 
ahead of 

CSG/ESG (hrs) 

Time of arrival 
ahead of 

CSG/ESG (days) 
15 233 0 0.0 
18 194 39 1.6 
20 175 58 2.4 
25 140 93 3.9 
30 117 117 4.9 
35 100 133 5.6 
40 88 146 6.1 
45 78 156 6.5 

Table 22.   Time ahead of CSG/ESG LCS will arrive to affected region using 
different speed profiles during  HA/DR Mission B 

 

Number of CLF assets required to complete Mission C while maintaining the specified fuel 
reserve throughout mission.  

speed 

CLF Assets 
Required to 
maintain FR 
of 50% for 
CLWP LM 

LCS 

CLF Assets 
Required to 

maintain FR of 
35% for 

CLWP LM 
LCS 

CLF Assets 
Required to 

maintain FR of 
20% for 

CLWP LM 
LCS 

CLF Assets 
Required to 
maintain FR 
of 50% for 
CLWP GD 

LCS 

CLF Assets 
Required to 

maintain FR of 
35% for 

CLWP GD 
LCS 

CLF Assets 
Required to 
maintain FR 
of 20% for 
CLWP GD 

LCS 
15 0.0 0.0 0.0 0.0 0.0 0.0 
18 1.0 1.0 1.0 1.0 0.0 0.0 
20 1.7 1.5 1.4 1.2 1.0 0.0 
25 1.9 1.7 1.5 1.4 1.2 1.0 
30 2.1 2.0 1.8 1.6 1.4 1.3 
35 2.5 2.4 2.2 1.9 1.8 1.6 
40 3.0 2.8 2.6 2.3 2.1 2.0 
45 3.5 3.3 3.2 2.7 2.6 2.4 

Table 23.   Number of CLF assets required to complete Mission C while transiting at 
speeds from 15kts to 45kts and maintaining a fuel reserve level of 50%, 35% and 
20% 

 

As shown in Table 23, Mission C analysis provides similar results to both A and 

B.  When all constraints are factored in the LM LCS gives no sprint speed advantage to 

the combatant commander.  The GD version of LCS is capable of conducting the same 
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mission at a speed of 25kts with only one RAS necessary.  This would place aid from the 

GD LCS at the disaster relief area 140 hours after departing.  This is a difference of 93 

hours from the CSG/ESG while still maintaining feasibility within all given constraints.   

If 2.0 CLF assets are available along the intended track LM LCS will be able to 

complete the mission at a speed of 30kts and the GD LCS will be able to complete the 

mission at a speed of 40kts.  This will place LCS on station 6 days prior to the CSG/ESG 

arriving.  If LCS can maintain a loiter speed of between 5-8kts while delivering water and 

supplies to the affected area it will be able to remain on station for 6 days if the only RAS 

it receives is when it reaches a fuel level of 20% during transit.  This leaves no room for 

operational delay of the CSG/ESG arriving to the affected area.  If allowed to drop to 

15% during transit LCS will be able to maintain station at the relief zone long enough to 

allow the CSG/ESG to arrive and conduct a refueling operation prior to running critically 

low on fuel. 

Figure 39 shows the sensitivity analysis done for Mission C.  This figure shows 

that LM LCS in incapable of completing the mission utilizing the sprint speed capability 

the ship brings to a theater.  The GD LCS, however, is able to gain significant time 

through slight reductions in its fuel reserve level.  A reduction from 43% to 38% allows 

an increase of 19 hours ahead of the CSG/ESG.  A further reduction in the fuel reserve 

level to 20% allows GD LCS to arrive almost 4 days ahead of the CSG/ESG. 
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Figure 39.  Effect of changing fuel reserve level on maximum time of arrival 
ahead of CSG/ESG for COMLOGWESTPAC Mission B 

 

4. HA/DR PEO LCS Mission Analysis 

HA/DR PEO Mission analysis applies the same fuel consumption rates to both 

versions of LCS.   Tables 24, 25 and 26 show how the larger fuel capacity of the GD LCS 

gives the operational logistics planner greater ability in using the greatest asset LCS 

brings to the combatant commander, speed.  Also noticeable in this analysis is that the 

GD LCS is not as fuel efficient at higher speeds based on the PEO fuel calculations done 

earlier in this chapter.  This causes GD LCS to lose much of the speed advantage gained 

when using COMLOGWESTPAC fuel consumption data.    

Figures 40 and 41 show how increasing the fuel reserve level of LCS affects 

ability to reach an HA/DR mission area assuming 1.0 CLF assets available for use in 

theater.  There is no figure for Mission C in this section because neither version of LCS is 

able to complete the mission without being escorted.  This limits both versions of LCS to 

a speed of 18kts and an arrival time of 39 hours ahead of the CSG/ESG. 
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Number of CLF assets required to complete Mission A while maintaining the specified fuel reserve 
throughout mission.  

speed 

CLF Assets 
Required to 
maintain FR 
of 50% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 35% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 20% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 50% for 
PEO GD 

LCS 

CLF Assets 
Required to 
maintain FR 
of 35% for 
PEO GD 

LCS 

CLF Assets 
Required to 
maintain FR 
of 20% for 
PEO GD 

LCS 
15 0.0 0.0 0.0 0.0 0.0 0.0 
18 1.0 0.0 0.0 0.0 0.0 0.0 
20 1.3 1.1 0.0 1.0 0.0 0.0 
25 1.6 1.4 1.1 1.2 1.0 0.0 
30 1.7 1.6 1.3 1.3 1.1 0.0 
35 1.9 1.7 1.4 1.4 1.2 0.0 
40 2.0 1.8 1.5 1.4 1.3 0.0 
45 2.1 1.9 1.7 1.5 1.3 1.1 

Table 24.   Number of CLF assets required to complete PEO Mission A while 
transiting at speeds from 15kts to 45kts and maintaining a fuel reserve level of 
50%, 35% and 20% 

 
 

Number of CLF assets required to complete Mission B while maintaining the specified fuel reserve 
throughout mission.  

speed 

CLF Assets 
Required to 
maintain FR 
of 50% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 35% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 20% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 50% for 
PEO GD 

LCS 

CLF Assets 
Required to 
maintain FR 
of 35% for 
PEO GD 

LCS 

CLF Assets 
Required to 
maintain FR 
of 20% for 
PEO GD 

LCS 
15 0.0 0.0 0.0 0.0 0.0 0.0 
18 1.0 1.0 1.0 1.0 1.0 0.0 
20 1.8 1.6 1.4 1.3 1.2 0.0 
25 2.2 2.1 1.8 1.6 1.4 1.2 
30 2.6 2.4 2.1 1.8 1.6 1.3 
35 2.8 2.6 2.3 1.9 1.8 1.5 
40 2.9 2.8 2.5 2.0 1.9 1.6 
45 3.1 2.9 2.7 2.1 2.0 1.7 

Table 25.   Number of CLF assets required to complete PEO Mission B while 
transiting at speeds from 15kts to 45kts and maintaining a fuel reserve level of 
50%, 35% and 20% 
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Number of CLF assets required to complete Mission C while maintaining the specified fuel reserve 
throughout mission.  

speed 

CLF Assets 
Required to 
maintain FR 
of 50% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 35% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 20% for 
PEO LM 

LCS 

CLF Assets 
Required to 
maintain FR 
of 50% for 
PEO GD 

LCS 

CLF Assets 
Required to 
maintain FR 
of 35% for 
PEO GD 

LCS 

CLF Assets 
Required to 
maintain FR 
of 20% for 
PEO GD 

LCS 
15 0.0 0.0 0.0 0.0 0.0 0.0 
18 1.0 1.0 1.0 1.0 1.0 1.0 
20 2.3 2.2 1.9 1.6 1.5 1.2 
25 2.9 2.8 2.5 2.0 1.9 1.6 
30 3.4 3.2 2.9 2.3 2.1 1.8 
35 3.7 3.5 3.2 2.5 2.3 2.0 
40 3.9 3.7 3.4 2.6 2.5 2.2 
45 4.2 4.0 3.7 2.8 2.6 2.3 

Table 26.   Number of CLF assets required to complete PEO Mission C while 
transiting at speeds from 15kts to 45kts and maintaining a fuel reserve level of 
50%, 35% and 20% 
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Figure 40.  Effect of changing fuel reserve level on maximum time of arrival 
ahead of CSG/ESG for PEO Mission A 

 

Figure 40 shows that given the same fuel reserve levels, the GD LCS is capable of 

transiting at higher speeds due to its larger fuel capacity.  This enables the GD LCS to 
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arrive at the affected area over 1 day faster than the LM version, and at a fuel reserve 

level of 40%, and 2 days prior to the CSG/ESG.   Figure 41 shows that while conducting 

Mission B both versions of LCS maximize their ability to increase arrival time at around 

a 25% fuel reserve.  During this 2,500nm transit GD LCS, because of its larger fuel 

capacity, is able to arrive on station 14 hours prior to the LM version and 42 hours prior 

to the CSG/ESG 

 

Figure 41.  Effect of changing fuel reserve level on maximum time of arrival 
ahead of CSG/ESG for PEO Mission B 

 

As the distance in the mission increases to 3,500nm there is little logistical 

advantage in one LCS over its counterpart.  Neither version of LCS will be able to 

complete mission C utilizing its sprint speed ability.  During this scenario LCS is limited 

to a speed of 18kts while being escorted by a CLF asset.  This speed still allows LCS to 

arrive at the affected area 2.4 days prior to the CSG/ESG but at the cost of tying up a 

CLF asset the entire transit.  If this is the case it seems more efficient to leave LCS with 

the CSG/ESG and increase the overall transit speed of the entire group.  This analysis 
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however, is not done as part of this thesis and will be discussed further in Chapter V.   

This analysis also does not take into account the carrying capacity of both versions of 

LCS.  Current mission bay specifications for both the LM and GD versions of LCS lead 

the author to believe that the GD version will have a much larger cargo carrying capacity 

for a HA/DR mission both while configured for another mission, or when specifically 

configured for HA/DR operations. 
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V. CONCLUSIONS AND RECOMMENDATIONS  

I don't know what the hell this 'logistics' is that Marshall is always talking 
about, but I want some of it 

                                                                --Fleet ADM E. J. King: To a staff officer. (1942) 
 

A. CONCLUSION 

 

The United States Navy has come a long way in understanding logistics and its 

importance to mission success since ADM King made the above statement in 1942.  The 

Navy still, however, tends to use back of the envelope type scheduling to replenish fleets 

around the world.  There is no single logistical system or model that the Navy uses to 

predict when ships or strike groups will need replenishments and how they are to be 

replenished.  There is no single program or model that is used to assist logistics planners 

in optimizing how to schedule a thinly stretched CLF to best support the fleet and its 

numerous missions.   NWP 4-01.2 Sustainment At Sea, is considered by the Navy the 

publication to be used by logistics planners and line officers to ensure that proper 

logistics planning factors are being considered and schedules are being created around 

those factors in order to sustain strike groups at sea. 

 

The information contained in NWP 4-01.2, SUSTAINMENT AT SEA, is 
directed at Navy operational logisticians, line officers, and logistics 
planners from other services and provides an in-depth overview of the 
organizational framework and structure of Navy sustainment at sea. 
Further, NWP 4-01.2 addresses the sustainment at sea systems and the 
organizations that provide support to the carrier strike group 
(CSG)/expeditionary strike group (ESG) at the strategic, operational, and 
tactical levels. This publication provides a readily available resource that 
describes naval sustainment and the doctrinal foundations. (CNO, 2007) 

 

This publication, however, leaves logisticians on their own to figure out what the 

true logistics planning factors for a CSG/ESG may be.  In a note listed under each 
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planning factors table in NWP 4-01.2 it is stated that planning factors provided in this 

NWP must be reviewed, assessed and adjusted as required to reflect the context of the 

mission and other factors that could alter consumption over time (CNO, 2007).  It is 

recognized that there can be no canned answer for every CSG/ESG that deploys as to 

how they will logistically need to be maintained, but there is little reference for a 

logistician to rely on besides his or her own experience.   

In the mid 1990’s, David R. Schrady authored a user’s guide for a computer based 

program called TACLOG which had the primary functions of planning, tracking and 

predicting the usage and replenishment of fuels and ordnance (Schrady, 1996).  The 

program was tested but eventually never adopted by the Navy.  With the introduction of 

LCS to the fleet, it becomes more important that a logistics planner be capable of 

predicting how the employment of LCS will affect the ship logistically. 

This thesis has shown using the fuel consumption prediction model described in 

Chapter II that LCS will not meet some of the key parameters discussed in the Littoral 

Combat Ship Critical Design Parameters (PEO 420, 2004).  The endurance analysis 

shows that at 50kts none of the LCS models is able to meet the objective endurance of 

1,500nm.  At the objective economical speed of 20kts only the GD version of LCS; using 

both the COMLOGWESTPAC and PEO-OMO data is able to meet an endurance range 

of 4,300nm.  At the threshold sprint speed value of 40kts both versions of LCS applied to 

both COMLOGWESTPAC and PEO-OMO data are able to meet the threshold endurance 

requirement of 1,000nm.   Only the GD version of LCS meets the threshold requirement 

of a 3,500nm range at speed of greater than 18kts.   

The endurance analysis for LCS also shows that the most economical speeds, the 

speed at which LCS has the longest range, for both the GD and LM versions are below 

the 18kt threshold value.  For both the LM PEO-OMO and GD PEO-OMO versions of 

LCS the most economical speed is at 7kts.   

This thesis has also shown in two separate employments of LCS that the sprint 

speed capability the ship brings to the combatant commander could potentially strain the 

logistics system if proper planning or allowances in the adjustment of fuel reserve levels 



 89

are not closely monitored.    The MIW scenario has shown that with allowing fuel reserve 

levels to drop below the notional 50% level, the time between refueling events can be 

extended by up to three times the normal cyclical refueling schedule.  This will result in 

the use of one third the CLF and inport refueling assets.  This scenario also showed that 

logistics may not be the limiting factor in allowing LCS to complete an assigned task.  

Even though LCS is capable of refueling less frequently than a current mine warfare 

asset, current assets are able to maintain at least a 03% greater on station availability 

because of LCS crew rest requirements.   

 In the HA/DR mission, this thesis offers the logistics planner the tools to enable 

them to compare tradeoffs between using LCS sprint speed capability and allowed fuel 

reserve levels.  These tables also allow the planner to factor in the number of available 

CLF assets to help in the decision making process.  This thesis shows that slight 

adjustments in the allowed fuel reserve level can result in either less CLF assets needed, 

arriving on station with aid in a shorter time period or even a combination of the two.   

Finally, this thesis has shown that with predictive planning on behalf of logistics 

operation planners, LCS can place minimal impact on the CLF fleet in the Pacific.  In 

knowing where and how LCS will be employed a logistics planner can offer 

recommendations to naval component commanders as to how to adjust fuel reserve levels 

for LCS to minimize the need for refueling or resupplying events, while still enabling the 

ship to maintain full mission capability, or recommend the CLF assets needed to ensure 

LCS can conduct a mission while maintaining a specified fuel reserve level. 

 

  B. RECOMMENDATIONS FOR FURTHER STUDY 

 

As of the completion of this thesis, USS FREEDOM (LCS 1) remains pier side in 

Wisconsin waiting to make its maiden voyage out to sea in the summer of 2008. USS 

INDEPENDENCE (LCS 2) is also facing problems and delays of its own.  In February 

2008, Defense Daily reported,   



 90

Recently, Navy Supervisor of Shipbuilding (SUPSHIP) personnel 
observed various degrees of bowing in the transverse beams that support 
the flight deck on LCS-2. A Navy/Industry team is reviewing the cause of 
these deflections, verifying that the ship structure is stable, and developing 
any corrective actions that might be required (Fein, 2008).   

 

The article also noted on how the cost of the two ships has grown significantly 

since the original contracts were awarded. 

 

Budget documents released last week showed Independence, with a 
construction cost of $440 million, is lower than the $471 million cost to 
build Freedom. However, adding in the final system design, mission 
system and ship integration, outfitting and post delivery, the cost for 
Independence was $636 million compared to $631 million for Freedom 
(Fein, 2008). 

 

Though LCS continues to struggle in its infancy, both the Secretary of the Navy 

and the Chief of Naval Operations remain steadfast that LCS is the future of the Navy.  

Assuming this remains the case, the full potential of LCS is still yet to be understood 

through analytical study.  This thesis recommends the following as some areas for further 

study with regards to LCS logistics as follow-on questions to this thesis:  

• Are there enough CLF assets in the Pacific to handle a large number of LCS 

independent deployers or SAGs 

• What is the right CLF force structure to maintain operations in the Pacific 

once LCS is introduced into the fleet in substantial numbers 

• Where will LCS be deployed and how will it affect the overall operational 

availability and logistics sustainment of LCS 
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In addition to questions left unanswered by this thesis LCS leaves a host of 

questions still needing concrete analytical answers.  Some of these questions include: 

• How will the placement of mission modules affect the ability of LCS to 

conduct missions around the globe 

• If LCS is forward deployed what infrastructure changes must be made to 

accommodate the vessels and crews 

• If LCS is forward deployed what type of crew-seaframe rotation is the most 

optimal to ensure a high rate of operational availability 

• What size squadrons will LCS deploy in as a surface action group (SAG) in 

the future for different missions and how will this affect the CLF fleet 
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