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INTRODUCTION 
The objective of this project is to develop and evaluate fluorine-18 labeled 

fluorocholine as an imaging agent  for positron emission tomography (PET) detection of 
malignancy in anatomical sextants of the prostate gland.  The rationale for evaluating 
fluorocholine as an oncologic tracer applicable to prostate cancer is based on observations 
of increased choline and fluorocholine metabolism in malignant prostate tissue relative to 
normal tissue.  Information obtained from fluorocholine PET regarding tumor location and 
volume has potential value in guiding transrectal biopsy or in refining therapeutic 
approaches against organ-confined prostate cancer.   

This project, with a planned enrollment of 25 subjects with prostate cancer who have 
elected radical prostatectomy, will study investigational pre-operative fluorocholine PET 
scanning of the prostate using correlation with step-section prostate histopathology to 
assess the accuracy of sextant detection of prostate malignancy based on this technique.  
With the commercial introduction of PET/ X-ray computerized tomography (PET/CT), the 
original project was updated to replace stand-alone PET imaging with PET/CT.  Improved 
anatomical localization by PET/CT is expected to improve the accuracy of localizing 
fluorohcoline uptake in prostate gland sextants.  

This addendum to last year’s final report covers work performed during the period 
from 20 December 2006 to 19 December 2007.  During this period, PET/CT devices were 
installed at both The Queen’s Medical Center and Tripler Army Medical center.  IRB-
approved study protocols were revised this year to incorporate corresponding changes in 
protocol.  The FDA IND for fluorocholine was updated to include Tripler Army Medical 
Center as a site of radiopharmaceutical fluorocholine administration to human subjects.  
During this period, a method was also developed to facilitate spatial correspondence 
between prostate histopathologic data and tomographic imaging data.  This addendum 
summarizes these research activities.   

BACKGROUND 
The declining rate of prostate cancer deaths in the United States has been attributed 

to improved rates of cancer screening.  However, prostate cancer is still the most prevalent 
cancer affecting American men.  This disease is expected to account for 29% of the new 
male cancer cases in 2007 while remaining the second leading cause of male cancer death 
with an estimated 27,050 deaths this year (1).  The low ratio of deaths to incidence 
underscores the fact that treatment for early and localized prostate cancer is potentially 
curative.  If treated at an organ-confined stage, the expected 5-year survival from prostate 
cancer is 100% as compared to a 33% 5-year survival for metastatic prostate cancer. (1).  
In vivo imaging capable of detecting prostate cancer can contribute to increasing the 
number of patients receiving appropriate therapy by way of earlier detection and pre-
treatment localization of disease. 

BODY 
 
STUDY REVISION (related to SOW Task 1) 

For this project, PET/CT effectively replaces the use of stand-alone CT and magnetic 
resonance imaging (MRI) of the pelvis. The PET/CT devices became available for clinical 
use in April 2007 and September 2007 at  Tripler Army Medical Center and The Queen’s 
Medical Center, respectively.  Protocols for PET/CT in the research study were finalized 
shortly thereafter.  In addition to utilizing PET/CT, the study protocol was revised to allow 
Tripler to be an imaging site for the study.  The Chief of Nuclear Medicine at Tripler, Dr. 
Douglas Prager, was added as a study investigator authorized to supervise fluorocholine 
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administrations.  The FDA IND application for fluorine-18 fluorocholine was revised to 
reflect these modifications.   

Because the use of PET/CT constituted a significant protocol change, a revised 
protocol and consent form was submitted for institutional review board (IRB) approval prior 
to implementation.  Radiation dose estimates were updated to reflect the radiation exposure 
from the low-dose CT to be performed in conjunction with the PET.  Following radiation 
safety and human subjects review, the revised protocols were approved by The Queen’s 
Medical Center Research & Institutional Review Committee (IRB) on 12 July 2007, and by 
the Tripler Army Medical Center Human Use Committee on 24 September 2007. The 
revised protocol was subsequently sent to the USAMRMC Human Research Protection 
Office as part of an annual continuing review report on 2 October 2007.  The study is now 
active with a current protocol expiration date of October 2008.  As of December 19, 2007, 
two subjects have completed participation in the study under the revised protocol.  Because 
new data has not yet been collected from a significant number of subjects, there are no new 
tabulated results reported in this addendum. Previous research data acquired using stand-
alone PET was included in the 2006 Annual Report and has been accepted for publication 
in a scientific peer-review journal.  These results are also included and discussed in Reprint 
#3 of Appendix 2. 
  
STUDY METHODS (relevant to SOW Tasks 2 and 3) 
 
PET/CT Imaging 

A Discovery LS PET/CT (GE Medical Systems) was installed at Tripler AMC and a 
Gemini TF PET/CT (Philips Medical Systems) was installed at The Queen’s Medical Center.  
While there are significant technical differences between these two devices, the imaging 
protocols were standardized to provide similar data sets.  The current imaging protocol is 
briefly described: A sterile intravenous catheter is inserted into an antecubital vein, and the 
subject is positioned supine on the PET/CT scanning table.  A limited low-dose CT scan of 
the pelvis is performed without intravenous contrast (CT protocol: scout image with kv/mA 
120/10, followed by helical rotation CT covering the pelvis with rotation time 0.8s, thickness 
3.75 mm, interval 3.27 mm, pitch 1.5:1, kV/mA 140/110 with auto mA range 30-210, full field 
of view).  A dose of 0.09 mCi per kg of fluorine-18 fluorocholine is subsequently 
administered intravenously over 60 seconds followed by an intravenous saline flush.  A 
dynamic emission PET scan of the pelvis is performed immediately post-injection for up to 
20 minutes.  Vital signs are recorded before injection and immediately following completion 
of the PET/CT scan.  The entire imaging procedure can be completed in under 30 minutes.   

PET emission data is now acquired natively in list-mode.  After an interative 
reconstruction process, the tomographic data is presented in both dynamic and static 
formats.  Data from the Gemini TF system will also be reconstructed using a time-of-flight 
reconstruction algorithm.  Because a whole-body PET/CT scan would have resulted in a 
higher whole-body radiation dose than a conventional PET (emission and transmission) 
scan of the body (as employed in the original study protocol), the total radiation dose 
associated with the amended study protocol was limited by reducing the field of view of the 
PET/CT.  In the current revised protocol, only the prostate and surrounding pelvic lymph 
node regions are imaged.  This and other protocol design considerations are discussed in 
publication reprint #1 of Appendix 2.   
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DATA ANALYSIS (Relevant to SOW Task 3) 
There were no protocol changes related to histopathologic processing of the prostate 

specimens.  During the addendum period, two additional prostate specimens have been 
sent to the Armed Forces Institute of Pathology for histopathologic analysis.  While the 
clinical pathology has already been completed, digital images of the specimens have not 
yet been made available for sextant correlation analysis. Three subjects have been 
recruited since the protocol revision, but only 2 subjects have completed participation.  Data 
from a 3rd subject was not obtained due to temporary malfunction of the PET/CT at Tripler.  

 
Prostate Specimen Analysis and Development of Ex-vivo Image Registration 
Technique (Relevant to SOW Tasks 3 and  4) 

A method to automatically register histological slides to ex-vivo MRI was developed 
during this reporting period.  This method results in spatial correspondence between 
histology slides and ex vivo MRI, allowing histological correspondence to be propagated to 
in vivo tomography. The method of registration was implemented in software by Drs. 
Charles Miller and Hyunjin Park from the image processing laboratory of the University of 
Michigan Department of Radiology.  The implementation utilizes a cost-function based 
analysis of mutual information with transformations based on thin-plate splines to perform 
the co-registration.  The manual task of correlating histological slides to volumetric images 
such as MRI is difficult for humans because it is both time-consuming and requires 
extensive search of a 3D volume for corresponding 2D (ie. slice) results.  Computer 
automation of this task is non-trvial as there are significant differences in image contrast 
and information content between optical histology and MRI, with significantly higher 
information content and spatial resolution of the histology slides relative to MRI. The 
proposed registration method overcomes this challenge by breaking the difficult registration 
task into easier registration sub-tasks. For this purpose, registrations were performed 
between the histlogical slides and block face photos, as well as between the block face 
photos and ex vivo MRI.   Results from two registrations tasks are combined to establish 
registration between histology slides and ex vivo MRI.  The technical details of this 
registration approach are included in reprint #4 of Appendix 2.  

The ex vivo MRI used for registration was obtained as follows: Upon receipt of the 
intact prostate specimens fixed in a 10% formalin solution, images were acquired at 7 telsla 
using a magnetic resonance microscope(MRM) (Bruker Biospec 7T, Bruker Biopsin Corp, 
Billerica, MA).  MRI sequences include rapid acquisition with relaxation enhancement 
(RARE, field of view (5.8)^3, matrix (256)^3) lasting 9 hours 26 minutes and gradient echo 
fast imaging lasting 7 hours 16 minutes.  Three-dimensional images of the entire prostate 
specimen and quantitative 2D slice images at selected planes were acquired.  After 
imaging, histologic processing of the prostate specimen was performed by the step-section 
technique.  Completely embedded whole prostate specimens were sectioned at regular 2.2 
mm intervals.  Block face photos consisting of digital images of the prostate specimen as it 
is sectioned were also acquired.  Thin slices from each section were mounted on large 
glass slides and stained with hemotoxylin and eosin.   
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KEY RESEARCH ACCOMPLISHMENTS 
 
- A method for registering step-section prostate histology slides and ex-vivo MRI was 
developed and tested.  This method should facilitate more accurate radiopathologic 
correlations, since the ex-vivo MRI image registered histopathology images are 
amenable to subsequent co-registrations with in-vivo MRI and other volumetric 
image data sets. 
 
- PET/CT and dynamic imaging were incorporated into the IRB-approved study 
protocol.  The human subjects research protocol is currently active and open to 
accrual until October 2008. 
 
 

REPORTABLE OUTCOMES 
 

The following reports supplement those listed in the 2006 Project Final Report: 
 
2007 PUBLICATIONS: 
 
Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN. Cancer Imaging with Fluorine-18 
Labeled Choline Derivatives. Seminars in Nuclear Medicine. 37: 420-428. November 2007. 

DeGrado TR, Kwee SA, Coel MN, Coleman RE.  The Impact of Urinary Excretion of 18F-
Labeled Choline Analogs.  J Nucl Med 2007 48: 1225 

Kwee SA, Thibault G, Stack R, Coel M, Furusato B, Sesterhenn I. Use of Step-Section 
Histopathology to Evaluate 18F-Fluorocholine PET Sextant Localization of Prostate Cancer. 
Molecular Imaging. 2007 –accepted for publication, in-press. 

2007 ABSTRACTS, PRESENTATIONS, AND CONFERENCE PAPERS: 
 
Kwee SA, Thibault G, Stack R, Coel M, Furusato B, Sesterhenn I. Non-Invasive Detection 
and Therapeutic Targeting of Cancer in the Prostate Using Fluorine-18 Fluorocholine 
Positron Emission Tomography.  IMPact (Innovative Minds in Prostate Cancer Today) 
2007.  Atlanta, GA. 

Kwee SA, Thibault G, Stack R, Coel M, Furusato B, Sesterhenn I.  Prostate Imaging with 
18F-Fluorocholine Using a Whole-Body Positron Emission Tomograph. Nuclear Science 
Symposium / Medical Imaging Conference - Institute of Electrical and Electronics Engineers 
2007. Honolulu, HI. 

Park H, Kwee S, Thibault G, Stack G, Furusato B, Sesterhenn I, Meyer CR. Registration 
Methods for Histological Slides and ex vivo MRI of Prostate.  Nuclear Science Symposium / 
Medical Imaging Conference, Institute of Electrical and Electronics Engineers 2007. 
Honolulu, HI.
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CONCLUSION 
As proposed in the 2006 Final Report, the project scope has been expanded to 

incorporate PET/CT.  Installation of the PET/CT devices was completed this year at the two 
project performance institutions, allowing dynamic PET data for the project to be acquired in 
conjunction with anatomical CT.  Recruitment for the study has resumed during this period 
and will continue through a no-cost extension into 2008 with the goal of accruing at least ten 
additional subjects.  Immunohistochemical correlation analysis will be finalized after 
specimen collections are completed.   A method to establish spatial correspondence 
between histology slides and ex vivo MRI was also developed during this period to allow 
histological correspondence to be propagated to the in vivo imaging space.  This new 
registration technique will allow more accurate histopathologic correlation to be performed 
in future validation studies of fluorocholine PET and potentially other prostate imaging 
techniques. 
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 APPENDIX 1: Statement of Work (Revised July 2006) 
 

Cancer Localization in the Prostate with F-18 Fluorocholine Positron Emission Tomography 
 
Task 1.  Study Preparation, Months 1-4: 
 

a.  Finalize research protocol and study-specific forms. 
 
b.  Obtain institutional review board (IRB) approval of study protocol and consent 
form at project sites: Tripler Army Medical Center (TAMC), Queen’s Medical Center 
(QMC), and the Armed Forces Institute of Pathology (AFIP). 
 
c. Orient all study personnel on protocol and methods. 

 
Task 2. Subject Recruitment and Data Collection, Months 4-20: 
 

a.  Begin subject recruitment at TAMC and QMC.  A total of 25 subjects will be 
recruited from both sites over a 16 month period. 
 
b. Subjects will undergo whole-body F-18 FCH PET or PET/CT scanning to acquire 
images of the prostate gland. 
 
c. Subjects not undergoing PET/CT will undergo a separate CT at QMC. 
 
d.  Following surgery, the prostatectomy specimens will delivered to AFIP for 
processing and analysis.  Analysis procedures include surgical histopathology and 
immunohistochemical staining for the Ki-67 antigen.  The data will be recorded on 
study-specific pathology forms. 
 
e.  All data will be entered into a study database for analysis.  

 
Task 3.  Data Analyses, Months 6 – 20: 
 

a.  PET or PET/CT image analysis will be performed by two physicians.  
 
b.  Collected data will be analyzed and correlated in periodic interim analyses.  
Interim results will be summarized in annual reports. 

 
Task 4. Final Analyses/Reporting and Design of Secondary Studies, Months 20-24: 
 

a.   Finalize analysis of data and summarize results as stated in the specific aims.  
 
b.  Prepare final report and manuscripts for publication. 
 
c.  Design secondary studies using the collected data. 
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APPENDIX 2: 
 

REPRINTS ATTACHED ON SUBSEQUENT PAGES: 
 

1. Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN. Cancer Imaging with Fluorine-
18 Labeled Choline Derivatives. Seminars in Nuclear Medicine. 37: 420-428. November 
2007. 
 
2. Timothy R. DeGrado, Sandi A. Kwee, Marc N. Coel, and R. Edward Coleman  The 
Impact of Urinary Excretion of 18F-Labeled Choline Analogs  J Nucl Med 2007 48: 1225   

3. Kwee SA, Thibault G, Stack R, Coel M, Furusato B, Sesterhenn I.  Prostate Imaging with 
18F-Fluorocholine Using a Whole-Body Positron Emission Tomograph. Nuclear Science 
Symposium / Medical Imaging Conference Institute of Electrical and Electronics Engineers 
2007. 

4. Park H, Kwee S, Thibault G, Stack G, Furusato B, Sesterhenn I, Meyer CR. Registration 
Methods for Histological Slides and ex vivo MRI of Prostate. Nuclear Science Symposium / 
Medical Imaging Conference Institute of Electrical and Electronics Engineers 2007. 
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The choline transporter and choline kinase enzyme frequently are overexpressed in malig-
nancy. Therefore, positron-emitter-labeled compounds derived from choline have the po-
tential to serve as oncologic probes for positron emission tomography. The fluorine-18
(18F)–labeled choline derivative fluorocholine (FCH) in particular has demonstrated poten-
tial utility for imaging of a variety of neoplasms, including those of the breast, prostate,
liver, and brain. The pharmacokinetics of FCH and other choline tracers allow for whole-
body imaging within minutes of injection while still achieving high tumor-to-background
contrast in most organs, including the brain. These features, along with the possibility of
imaging malignancies that have proved elusive with the use of 18F-fluorodeoxyglucose
positron emission tomography support further clinical investigations of 18F-labeled choline
tracers.
Semin Nucl Med 37:420-428 © 2007 Elsevier Inc. All rights reserved.
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n mammals, choline is an essential nutrient that serves as
an extrinsic substrate for the synthesis of phosphatidylcho-

ine (PC), a major constituent of the cell membrane. Phos-
horylation by choline kinase (CK) constitutes the first inter-
ediate step in the incorporation of choline into
hospholipids via the Kennedy pathway. The importance of
his metabolic pathway for cell viability is underscored by the
act that there are no known inherited diseases in humans
ffecting this pathway. However, in cancer, there is often an
ncrease in the cellular transport and phosphorylation of cho-
ine, as well as an increase in the expression of the CK en-
yme.1–3 These observations have fueled interest in develop-
ng imaging and therapeutic agents out of compounds

etabolized by CK. With this in mind, this article will sum-
arize the development of fluorine-18 (18F)-labeled choline
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adiopharmaceuticals as oncologic probes for positron emis-
ion tomography (PET).

evelopment of Choline Tracers
abeled With Fluorine-18

umor imaging with choline-based tracers was introduced
y Hara and coworkers using carbon-11 (11C) choline PET to
uccessfully visualize brain tumors and prostate cancer.4,5 As
true tracer, 11C choline is biochemically indistinguishable

rom natural choline. This compound has shown particular
romise for imaging tumors of the genitourinary tract be-
ause of its limited urinary clearance and avidity for bladder
nd prostate cancers.6–11 However, the short decay half-life of
he carbon-11 (20 minutes) has limited its use to centers
quipped with an on-site cyclotron.

The practical need for longer-lived agents has led subse-
uently to the development of 18F-labeled choline deriva-
ives. The first of these, fluoroethylcholine (FeCH) and 18F
uorocholine (FCH), were introduced by Hara and cowork-
rs and DeGrado and coworkers, respectively.12,13 Contrary
o initial observations, these compounds, which are phos-
horylated by CK, do appear to participate further in the
ynthesis of membrane phospholipids as substrates for cyti-
ylyltransferase, although the rate of their incorporation into
hospholipids may be slower than that of choline.14 In addi-
ion to compounds that serve as specific substrates of CK,

here are choline transporter-specific ligands which can be
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Cancer imaging with 18F-labeled choline derivatives 421
sed to specifically image the choline transporter system.
hese include deshydroxy-18F fluorocholine as well as ana-

ogs of hemicholinium-3, an inhibitor of membrane choline
ransporter.15,16 Of these agents, FCH has undergone the
ost study to date.
FCH is a fluoromethylated analog of choline consisting of

uoromethyl-dimethyl-2-hydroxyethylammonium labeled
ith fluorine-18. Several synthesis methods are available for
roducing this compound in commercially acceptable
ields.17–20 At the present time, it is not known which choline
erivative is most advantageous for clinical use. There have
een no direct in vivo comparisons between individual com-
ounds, and previous in vitro comparisons have not con-
rolled for potentially confounding factors, including the
resence of synthetic contaminants such as dimethylethano-

amine, which may modulate the phosphorylation and trans-
ort of these compounds in vitro.21 In vitro experiments sug-
est that the rate of FCH phosphorylation by yeast CK, as well
s the rate of FCH uptake by PC-3 cancer cells, does ap-
roach that of natural choline.18 Thus, for now, it may be
ufficient to consider FCH as a prototypical 18F choline until
he optimal formulation is known.

Given the role of extrinsic choline in eukaryotic phospho-
ipid synthesis, tracers derived from choline were proposed
s imaging agents for measuring proliferative or mitogenic
ctivity. The observation that phosphorylcholine can trigger
NA synthesis in quiescent NIH3T3 fibroblasts, along with

he observation that inhibition of CK (by hemicholinium-3)
an block proliferation activity unless bypassed by extrinsic
hosphorylcholine, supports CK as a regulator of mitogenic
ctivity.22 However, to date, few studies have shown a strong
orrelation between markers of proliferation in malignant
umors and choline radiopharmaceutical uptake in vivo. A
tudy that compared tumor uptake of 11C choline and ki-67
abeling in malignant prostate tissues did not support the
resence of a direct correlation between 11C choline uptake
nd cellular proliferation rate.23 One possibility is that trans-
ormation reduces the efficiency of choline metabolism, re-
ulting in a disassociation of choline uptake rate and cell
embrane synthesis rate. The general finding of high levels

f phosphorylcholine in a variety of tumor types is consistent
ith the argument that these rates are not well-coupled. De-

pite the apparent avidity of choline tracers in a variety of
alignancies, further research will be needed to determine
hether clinically relevant markers of tumor growth can be
erived from the measured uptake of these compounds.
The choline metabolite peak on magnetic resonance spec-

roscopy (MRS) also has been proposed as an indicator of
alignancy or proliferation.24 However, correlations be-

ween 18F-FCH or 11C choline uptake on PET and choline
etabolite concentrations on MRS have not always been ob-

erved, alluding to the possibility that increased choline spec-
ral peaks on MRS may not specifically reflect free choline or
he active accumulation of choline metabolites by cells.25,26

or example, in the case of a tumefactive demyelinating le-
ion, where increases in choline metabolite concentrations

re frequently observed with MRS (presumably due to demy- u
lination), there may not be corresponding increases in the
ptake of 11C choline or 18F- FCH.26,27 In malignant glial
umors, where mitogenic activity would be expected to result
n the active utilization of choline, a direct regional correla-
ion has been observed between 18F-FCH uptake and choline
etabolite peaks on spectroscopy.26 Without a better under-

tanding of the biochemical basis of what is measured by
oth MRS and choline-based PET imaging, it will be difficult
o integrate this information for clinical purposes.24 Because
here is occasional discordance, there will most likely be
omplementary value to both measures.

Because the authors of several in vitro studies have sug-
ested the cellular uptake of FCH is dependent on choline
ransporter and CK activity, we explored the expression of
hese proteins in an array of 30 distinct tumor types. Abnor-
al expression of one or both proteins was observed in most
alignancies, including prostate carcinoma, glial tumors,

reast carcinoma, lymphoma, sarcoma, esophageal carci-
oma, melanoma, and lung carcinoma. In the case of glial
umors and breast cancer, the degree of CK expression was
ound to correspond to tumor grade (Fig. 1). Pilot investiga-
ions with FCH-PET in a limited number of patients with
hese diseases have produced analogous results supporting
he potential of radiolabeled choline metabolic substrates for
maging a broad variety of neoplasms (Fig. 2).

DeGrado and coworkers pursued further work to develop
CH as a clinical imaging probe. These investigators per-
ormed the first human dosimetry study of 18F-FCH to deter-
ine the dose-critical organ and radiation dose limit for re-

earch studies. While the favorable dosimetry of FCH and
bility to perform scans shortly after injection allows for ex-
ellent image quality at commonly administered doses,
ewer PET instruments with very high count-rate perfor-
ance will likely be capable of optimal image quality at a

ower dose.28

rostate Cancer Imaging With
luorocholine

rostate cancer is the second-leading cause of cancer death in
merican men older than 50 years of age. Clinically, there
as been a long-standing need for better imaging methods
hat can be applied to diagnose, risk stratify, stage, and direct
reatments for prostate cancer. Conventional 18F-fluorode-
xyglucose (FDG)-PET has proven to be of limited usefulness
or diagnosing prostate cancer, although it does appear pos-
ible to detect advanced or metastatic prostate cancer with
his technique.29,30 To compare the avidity of FCH and FDG
or prostate cancer, Price and coworkers performed both
CH-PET and FDG-PET in 18 patients with prostate can-
er.31 They found that more lesions were identifiable with
CH-PET, including lesions of the prostate, bone, and soft
issues. In addition, an in vitro component to this study re-
ealed significantly greater uptake of FCH compared with
DG in cell cultures of androgen-dependent (LnCAP) and
independent (PC-3) prostate cancer. These results favor the

se of FCH rather than FDG for prostate cancer imaging.
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Subsequently, a number of early clinical studies have in-
estigated the potential usefulness of FCH-PET for diagnos-
ng or localizing primary prostate cancer. Currently, ultra-
ound-guided prostate biopsy is the most common method
or diagnosing this disease. However, conventional prostate
iopsy using standard 6 or 12 needle templates is susceptible
o sampling error, with a false-negative rate as high as 20%
egardless of the number of needles used.32,33 A few studies
ave preliminarily investigated FCH-PET as a method for

mproving cancer localization in the prostate. In a study by
wee and coworkers, 34 prostate sextants harboring malig-
ancy were found to demonstrate significantly higher FCH
ptake than biopsy-negative sextants, with the cancer-af-
ected side in 6 of 6 patients with unilaterally positive pros-
ate biopsies demonstrating the highest uptake on FCH-PET.
y identifying areas within the prostate that have the highest

ikelihood of malignancy, FCH-PET could potentially serve
o identify areas for additional biopsy, thus potentially reduc-
ng the false-negative rate of the procedure.

It is worth noting that, with FCH-PET, delayed imaging
ay be required for adequate tracer uptake and distribution

n the prostate. In a study by Kwee and coworkers, delayed
CH-PET imaging up to 1-hour after injection led to both a

Figure 1 Dot blot analysis of choline transporter and chol
and breast carcinomas and their corresponding normal (
expression by use of Western blot standards. Top row
transporter expression) increases with increasing World
Bottom Row: Both choline transporter and CK express
expression of CK exceeds that of normal breast tissue, bu
of malignancy. IDCa, infiltrating ductral carcinoma.

Figure 2 FCH-PET scans in patients with malignant breas
image: increased FCH uptake in right breast carcinom
esophageal carcinoma. (C) Saggital PET image: increase

noma.
ignificant increase in measured uptake by malignant tumors
n the prostate, as well as a significant decrease in uptake in
enign areas.35 In contrast, FCH-PET imaging of the prostate
t 2 minutes after injection was not found to be useful for
ifferentiating between benign hyperplasia and malignancy

n the prostate.36 Additional studies using whole-prostate
pecimen analysis for histopathologic correlations are under-
ay to better estimate the accuracy of intraprostatic cancer

ocalization with FCH-PET.
The advent of hybrid PET/computed tomography (CT) has

ed to a number of studies using FCH for whole-body staging
f prostate cancer.36–39 Because of its ability to provide struc-
ural/anatomical correlation, PET/CT is advantageous for lo-
alizing disease in lymph nodes, a common route of spread in
rostate cancer. In a study by Schmid and coworkers,36 FCH
ET/CT was able to identify local and distant sites of disease

n both patients with newly diagnosed prostate cancer and
atients suspected of having recurrent cancer. Lesions that
ere identified included local recurrent tumors, nodal me-

astases, and skeletal metastases. Thus, FCH PET/CT may
ave the potential to provide information that can be used for
eciding between regional and systemic treatment in both
atients with newly diagnosed and recurrent prostate cancer.

ase (CK) expression in tumor lysates (T) of glial tumors
ue controls. Washing conditions were optimized for CK
expression (and, to a less-appreciable extent, choline
h Organization tumor grade in malignant glial tumors.
reases with increasing breast cancer grade. Malignant
al tissue expression of choline transporter exceeds that

hageal, and nasopharyngeal cancers. (A) Transaxial PET
w). (B) Coronal PET image: increased FCH uptake in

uptake in recurrent metastatic nasopharyngeal carci-
ine kin
N) tiss
: CK
Healt

ion inc
t norm
t, esop
a (arro
d FCH
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Cancer imaging with 18F-labeled choline derivatives 423
ith regard to recurrent prostate cancer, several other stud-
es using FCH-PET/CT have explored the relationship be-
ween prostate-specific antigen (PSA) level and lesion detec-
ion in patients with posttreatment increases in PSA. A study
y Heinisch and coworkers found that FCH PET/CT detected
umor recurrences in only half of patients suspected of hav-
ng recurrent prostate cancer with a PSA level �5 ng/dL.38 In
nother study of 100 patients by Cimitan and coworkers, use
f FCH-PET/CT led to the identification of prostate cancer
ecurrence in 53 of the patients.39 In this study, 89% of the
atients with presumably false-negative FCH-PET/CT scans
ad a serum PSA level �4 ng/dL. Thus, FCH-PET/CT does
ppear to be less sensitive for recurrent prostate cancer if the
SA level is low. However, it is worth noting that the use of
CH-PET in these studies had value for distinguishing be-
ween local and distant metastatic recurrence. Such a distinc-
ion is clinically relevant since it helps determine the appro-
riateness of local salvage therapy.
With regard to clinical decision making and treatment

lanning, FCH-PET/CT may also have value for newly diag-
osed patients with prostate cancer.34,36,40 Recently, Langste-
er and coworkers40 reported that FCH-PET/CT performed
uring initial preoperative staging for prostate cancer pa-
ients who were at high risk for metastases (eg, Gleason score

7 or PSA �10 ng/mL or doubling time �3months) led to
ownstaging in 4% of cases and upstaging in 12% with po-
ential consequential changes in clinical management. In ad-
ition to staging, FCH PET/CT could also prove useful for
lanning treatments for patients with newly diagnosed pros-
ate cancer. For example, with intensity-modulated radiation
herapy, or a combination of brachytherapy and external ra-
iation therapy, it may be possible to apply very high radia-
ion doses to specific targets in the prostate identified with
CH PET, while still treating the remainder of the prostate
ith a conventional therapeutic radiation dose in addition to
aintaining acceptable levels of radiation exposure to unin-

olved organs. The current conventional approach is to treat
he prostate uniformly with a radiation dose that is usually
imited by toxicity concerns rather than the radiation sensi-

Figure 3 FCH-PET-guided radiotherapy. (A) The black ar
uptake in a malignant tumor situated in the left lobe o
PET-defined biological target volume (BTV) will be pres
image is used to plan the radiation treatment. In this pat
14 mL. (C) The experimental treatment plan is summar
radiation. Doses of 91 Gy and 76 Gy were prescribed
increasing radiation exposure to un-involved organs (re
ivity of the tumors. By targeting tumor areas specifically, it s
ecomes possible to apply higher doses to the most critical
argets while still maintaining a reasonably safe level of radi-
tion exposure to uninvolved areas. We examined the feasi-
ility and safety of this concept by applying FCH-PET to
uide the augmentation of radiation dose to prostate tumors.
n experimental intensity-modulated radiation therapy pro-

ocol was developed to deliver the highest radiation dose (at
east 90 Gy) to a biological target volume (BTV) that corre-
ponds to the area of highest 18F-FCH uptake in the prostate.
his protocol was based on the premise that the area of high-
st tracer uptake on prostate PET images represents the dom-
nant area of malignancy in the prostate.34,35,41 While treating
he BTV with supra-conventional radiation doses, the exper-
mental treatment protocol was still designed to maintain a
olerable dose to surrounding normal tissues while achieving
conventional therapeutic dose of 76 Gy to the remainder of

he prostate gland. In this manner, the experimental treat-
ent would be expected to be at least equivalent to conven-

ional treatments with regards to potential efficacy. Using
tandard dose volume histograms to estimate the radiation
xposure to uninvolved organs (rectum and bladder), we
ere able to preliminarily assess the potential safety of both

xperimental and conventional treatment plans.
Figure 3 illustrates the experimental treatment approach.

n this plan, a dose of 91 Gy could be delivered to the BTV
hile attaining a minimum dose of 76 Gy to the remainder of

he prostate. This experimental plan also met desired safety
onstraints, with less than 20% of the rectal wall receiving 70
y or higher dose and less than 25% of the bladder volume

eceiving 75 Gy or higher dose. Although not actually used,
his plan demonstrates the feasibility of selective radiation
ose escalation using FCH-PET as a means to target high-risk

ntraprostatic regions, while still achieving therapeutic goals
or the remainder of the prostate and meeting the safety con-
traints of other organs. Given that the likelihood of local
umor control after external beam radiotherapy for organ-
onfined prostate cancer is directly related to radiation dose,
his approach may potentially improve the therapeutic effi-
acy of radiation therapy, while maintaining an acceptable

his transaxial PET image corresponds to increased FCH
rostate gland. In an experimental treatment plan, this
a radiation dose of at least 90 Gy. (B) A “fused” PET/CT
e prostate volume was 62 mL and the BTV volume was
colored lines corresponding to prescribed iso-doses of
BTV and prostate, respectively, without significantly

nd bladder).
ea on t
f the p
cribed
ient, th
ized by
to the
afety profile. A clinical trial will ultimately be required to
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424 S.A. Kwee et al
valuate the clinical benefit of this approach in a suitable
umber of patients.

rain Imaging
eGrado and coworkers first reported brain tumor imaging
ith 18F-FCH in a patient with biopsy proven recurrent ana-
lastic astrocytoma.18 These investigators noted that the low
oncentration of FCH in normal cerebral cortex allowed for
xcellent delineation of the tumor from normal brain. They
bserved that a �10:1 tumor-to-cortex ratio was achievable
ithin 5-minutes of tracer injection. FDG-PET revealed a

orresponding area of increased FDG uptake; however, the
umor boundaries were difficult to assess with FDG because
f high uptake by normal cortex. Although overall there is
ery little uptake of FCH in the brain, it is worth noting that
hysiologic uptake does occur in the pituitary gland and
horoids plexus. Physiologic uptake in these areas should not
e difficult to recognized, especially if the FCH-PET images
re interpreted in conjunction with brain magnetic resonance
maging (MRI).

The use of FCH-PET to evaluate primary and metastatic
rain tumors was investigated subsequently by Kwee and
oworkers in 30 patients with solitary brain lesions.42 This
tudy found that high-grade gliomas, brain metastases, and
enign lesions could be distinguished on the basis of mea-
ured FCH uptake, with metastases demonstrating signifi-
antly greater uptake than high-grade gliomas. Furthermore,
igh-grade gliomas were distinguished in this study by a
haracteristic pattern of FCH uptake consisting of increased
CH uptake beyond the areas of contrast enhancement on
RI (Fig. 4). This pattern of “peritumoral uptake” is hypoth-

sized to be due to infiltration of the white-matter tracts by
alignant cells. Such a process of occult tumor spread is

nown to occur frequently in high-grade gliomas but seldom
n metastases.43–46 This study also found that lesions with low
CH uptake were likely to remain stable radiographically at
-year of follow-up. However, because this study did not

nclude low-grade tumors, further investigations in a broader
pectrum of patients are warranted to evaluate the diagnostic
nd prognostic value of this technique in patients presenting
ith an intracranial mass.

iver Imaging
epatocellular carcinoma (HCC) is the fifth most frequent

ancer worldwide and the most frequent cause of death in
irrhotic patients.1 The sensitivity of FDG-PET for the detec-
ion of HCC is suboptimal, ranging between 50% and 70%.3,4

iven that the use of MRS demonstrates high choline content
n HCC, it may be possible to detect this disease using FCH,7

espite the fact that the liver demonstrates significant physi-
logic uptake of FCH. A proof of concept study was per-
ormed by Talbot and coworkers, comparing FDG PET/CT
ith FCH PET/CT in 9 patients known to have HCC.8 All 9
atients were positive with FCH (100%) in contrast to 5 with
DG (56%). Despite significant FCH uptake by unaffected

ortions of the liver, HCC lesions as small as 9-mm in size a
ould be distinguished visually, and by semiquantitative up-
ake measurement, on FCH PET/CT (Fig 5 and 6). A trend for
reater uptake of FCH in well-differentiated HCC compared
ith moderate and poorly differentiated HCC also was ob-

erved in this study. In 2 cases of metastatic HCC, FCH was
lso taken-up by distant metastases to the lungs and bone. In
ontrast, colorectal carcinoma metastatic to the liver was
ound to demonstrate low uptake of FCH relative to the liver,
hus potentially distinguishing these lesions from those of
CC (Fig. 7). However, the lack of uptake by metastatic

olorectal carcinoma does suggest that FCH PET may be
nsensitive for colorectal carcinoma and possibly other types
f metastases. A subsequent study is currently underway in
atients with liver masses to prospectively compare the rela-
ive accuracies of FCH PET/CT and FDG PET/CT for the
iagnosis, staging, and localization of liver tumors.

ractical Issues and Potential
itfalls in FCH-PET Imaging

CH is effectively cleared from the blood within minutes

igure 4 MRI and FCH-PET in primary (A and B) and metastatic (C
nd D) brain tumors. (A) Glioblastoma multiforme observed as a
ing-enhancing lesion in the left occipital lobe on T1-weighted MRI.
B) The corresponding area on PET shows increased FCH uptake.
owever, abnormal uptake (arrow) was also noted anteriorly be-
ond the area of enhancement. This characteristic (“peritumoral
ptake”) appears specific to high-grade gliomas. C) Metastatic ovar-

an carcinoma seen as a ring-enhancing lesion in the right frontal
obe on T1-weighted MRI. (B) In contrast to the previous case,
ncreased FCH uptake on PET corresponds only to the region of
ontrast enhancement on MRI.
fter its intravenous administration. During this brief period
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Cancer imaging with 18F-labeled choline derivatives 425
f rapid clearance, FCH is capable of significant uptake and
etention by malignant tumors, while achieving minimal re-
ention in organs such as the heart and brain. These features
f FCH are advantageous, because they allow for very effi-
ient scanning of the entire body. However, as a consequence
f rapid blood clearance, the tissue distribution of FCH is
ikely to be dependent on delivery (ie, blood flow). Although
study has not been done to correlate blood flow and choline
ptake in a tumor model, the correlation is believed to be
igh since there is little redistribution from other organs after
learance from the blood, and the metabolism of FCH to
oncholine metabolites leaves no alternative mechanism for
ccumulation in tumors. Thus, the influence of blood flow on
CH distribution should be carefully considered in image

nterpretations, particularly if FCH PET is used to monitor an
ntervention that modulates blood flow.

A practical end result of the rapid in vivo kinetics of FCH
s a whole-body PET scan that can be completed shortly after
racer injection. However, rapid clearance of background ac-
ivity necessitates the existence of a normal process by which
he tracer is eliminated from circulation. In the case of 18F-
CH, this process depends on physiologic tracer uptake by
he kidneys. Thus, like with FDG, there can be significant
ccumulation of radioactivity in the urine over time. This
ctivity has the potential to obscure malignant lesions near

Figure 5 Large liver mass in a patient with hepatitis C viru
standardized uptake value � 20) was noted on PET (A).
VI and VIII on FCH PET/CT (B). No abnormal uptak
differentiated hepatocellular carcinoma was confirmed
he genitourinary tract. However, based on collective experi- fi
nces in patients with prostate cancer, the urinary excretion
f FCH has seldom caused problems with image interpreta-
ion.31,34,35,38,39 This may be caused in part by the effects of
rodynamic alterations, which are common in men with
rostate disease. Conditions such as urinary retention may
erve inadvertently to reduce the concentration of radioactiv-
ty in the bladder through dilution effects. In addition, PET
maging protocols with FCH have the flexibility to acquire
mages during a time when bladder radioactivity is not
igh.34,36 For example, using a dynamic scan acquisition, it is
ossible to retrospectively sum the frames acquired just be-
ore the appearance of urinary radioactivity to provide a pel-
ic image of early FCH distribution. Although hydration or
uid restriction have been proposed as a means to influence
rinary excretion, we have not been able to observe a certain
ffect of these interventions on the appearance of urinary
adioactivity. The influence of diet or fasting on the biological
istribution of FCH is also not known. Although bladder
atheterization and irrigation can effectively eliminate arti-
acts from bladder radioactivity,47 we have not routinely used
his technique in studying patients with prostate cancer be-
ause these patients may be at increased risk of complications
fter bladder catheterization. Finally, with regards to avoid-
ng potential interpretive pitfalls, the use of PET/CT has
elped tremendously by providing anatomical references for

tion. A liver lesion with intense FCH uptake (maximum
ion measures 12.5 cm and involves Couinaud segments
ted on FDG PET (C) and PET/CT (D). Grade 2 well-
rgery.
s infec
The les
e is no
ndings in the retroperitoneum and pelvis.
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Uptake in benign conditions such as infection is known to
imit the specificity of FDG-PET for malignancy. It remains
lausible that inflammation or benign proliferative processes
an lead to an increase in FCH uptake, thus also reducing the
pecificity FCH-PET for malignancy. It is already known that
ome benign conditions can cause a transient increase in
CH uptake. Price and coworkers has reported that benign

nguinal lymph nodes can demonstrate transiently increased
CH uptake during the first 5 minutes of injection, but that
ptake within these benign lymph nodes diminishes rapidly
o background levels by 20 minutes.31 We have also observed
his “washout” phenomenon in other lymphatic regions, in-
luding cervical lymph nodes. Thus, as with the prostate,35

elayed or dynamic imaging may be required to resolve is-
ues of transient increases in uptake in benign tissues.

It remains possible that benign proliferative conditions can
ead to a persistent increase in choline tracer uptake. With
1C choline, persistent increases in uptake have been ob-
erved in cases of liver regeneration posthepatectomy, prolif-
rative synovitis, and inflammatory lung nodules.48–50

hether the same holds true for 18F-FCH is not known at
his time. In one animal model, FCH uptake in a sterile in-
ammatory lesion was much less than uptake in an im-
lanted tumor, whereas the uptake of tritium-labeled deoxy-
lucose was relatively increased in both types of lesions.51

ther experimental models suggest tissue inflammation
caused by infection or acute radiation injury) can lead to
easurable increases in FCH uptake,17,52 whereas blood–

rain barrier disruption alone in the absence of inflammation
as modeled by cryolesions) does not.17 In lesions caused by
adiation injury, the uptake of FCH is lower than uptake in
alignant tumors, supporting FCH as potentially useful for
istinguishing tumor recurrence from necrosis after radiation
herapy.17 Further in vivo studies in a wider spectrum of

Figure 6 Recurrent hepatocellular carcinoma in a patient
elevated at 1,250 ng/mL. On CT, a 9-mm nodule was fou
significant FCH uptake relative to surrounding liver,
corresponding FCH PET (C, top) and PET/CT images (
with alcoholic cirrhosis. Serum alpha-foeto protein levels were
nd in the segment VII of the liver (A). The lesion demonstrated
as shown on maximum intensity projection image (B) and
iseases are needed ascertain the diagnostic specificity of c
igure 7 FCH PET (A and B) and FDG PET (C and D) images of a
epatic mass in a patient with a previous history of rectal adenocar-
inoma. The mass (arrow) took up FDG and not FCH, appearing
hotopenic on FCH PET as compared with the surrounding healthy

iver tissue. The lesion was confirmed to be metastatic rectal adeno-

arcinoma at surgery.
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CH PET when applied to the evaluation of tumors and
umor recurrences.

onclusion
he 18F-labeled choline analogs, and in particular FCH, are
urrently under investigation as oncologic probes for the de-
ection and monitoring of malignancies. These probes may be
iewed as in vivo biomarkers of choline transporter and CK
ctivity, although their uptake may also reflect a component
f tissue perfusion. To date, the majority of studies have
ocused on the use of the FCH PET to evaluate prostate can-
er, with preliminary studies having provided encouraging
esults for detecting primary and metastatic cancer. Experi-
nce in other tumor types is growing, including work involv-
ng brain and liver tumors. In most organs, high tumor-to-
ackground contrast is achieved with FCH within minutes of

njection. Excellent discrimination can be achieved in the
rain, where there is very little physiologic uptake of FCH. In
ther organs such as the liver, malignant discrimination ap-
ears still possible despite a moderate degree of physiologic
ptake. The rapid circulatory clearance of FCH is advanta-
eous from a practical point of view since it allows comple-
ion of a PET scan within minutes of tracer injection. Al-
hough the renal excretion of FCH is not ideal for evaluations
f the urinary tract, it has not proven intractable in actual
ractice. Therefore, FCH and other choline derivatives may
ossess the features of efficiency and ease of use that is im-
ortant for successful clinical application.
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L e t t e r t o t h e E d i t o r

The Impact of Urinary Excretion of 18F-Labeled
Choline Analogs

TO THE EDITOR: We have read with interest the article of
Schuster et al. (1) on the initial evaluation of an 18F-labeled amino
acid transport tracer, anti-1-amino-3-18F-fluorocyclobutyl-1-
carboxylic acid (FACBC) in patients with prostate cancer. In
this preliminary study on a small cohort of patients, FACBC
appeared to have several favorable properties for the imaging of
prostate cancer in the pelvic region, including avid uptake in
primary tumors and metastases in lymph nodes and bone, rela-
tively lower uptake in nonmalignant tissues of the prostate or
lymph nodes, and low urinary excretion. The results showed a
certain promise that the evaluation of amino acid transport function
with this tracer may be useful in new and recurrent prostate cancer.

However, we would like to respond to the comments of the
authors that imaging of prostate cancer with 18F-labeled choline
(FCH) is disadvantaged because of its relatively higher urinary
excretion pattern. The urinary excretion of FCH has been reported
to be 4.9% 6 4.8% of the administered dose in female patients
and 1.9% 6 1.6% in male patients within the first hour after
injection (2). Because of the extremely rapid renal clearance of
FCH, most of the urinary radioactivity generally arrives at the
urinary bladder within the first 20 min. Although urinary activity
has the potential to confound the imaging of prostate cancer,
image acquisition protocols have been designed to minimize the
impact of this potential problem. Dynamic imaging over the pelvic
region for the first 10 min after injection allows clear delineation
of tumor uptake that precedes the appearance of radioactivity in
the ureters and bladder (3,4). Consequently, it is possible to
retrospectively exclude frames that show significant urinary
interference. Furthermore, because there is rapid circulatory and
urinary clearance of tracer but little washout from malignant
tumors, voiding followed by delayed scanning with or without
gentle hydration can also lead to satisfactory prostate images with
high tumor-to-background contrast (5). The dynamic imaging
information is useful not only for exclusion of urinary radioac-
tivity but also for understanding the relationship of early FCH
uptake, indicative of tracer delivery (perfusion) and choline
transport, and of later tissue retention that is dependent on
intracellular metabolism. In this regard, Schuster et al. (1) also

found dynamic imaging to provide important information on
FACBC kinetics: The amino acid analog was found to be
transported but not metabolically trapped. Thus, the relative
advantage of the lower urinary excretion of FACBC diminishes as
the tracer washes out of malignant regions. The use of FACBC for
whole-body imaging may require short image acquisition proto-
cols, which may limit detection sensitivity for tumors. It will be of
high interest to understand how rates of amino acid transport in
prostate cancer, as seen with FACBC, relate to rates of choline
transport and choline kinase activity, as seen with positron-labeled
choline analogs.
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ABSTRACT 

 

Prostate Imaging with 18F-Fluorocholine Using a Whole-Body Positron Emission Tomograph 
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Abstract: 
 

Non-invasive methods for localizing malignancy in the prostate gland are needed for targeted 
biopsy or treatment.  Due to its anatomical location, the prostate is a challenging organ to image with 
nuclear techniques. We evaluated whole-body positron emission tomography (PET) with the 
investigational tracer fluorine-18 fluorocholine for sextant localization of prostate tumors in patients 
with histologically confirmed prostate cancer.  Step-section histopathology of whole-mounted radical 
prostetectomy specimens served as the reference for comparisons with pre-operative PET of the 
prostate.  PET images were obtained using a 32-ring PET device 10 minutes after the intravenous 
administration of 3.3 to 4 Mbq/kg of fluorine-18 fluorocholine.  The maximum standardized uptake 
value (SUVmax) of prostate sextants was measured by region of interest analysis.  Sixty-one of 90 
prostate sextants were found to contain malignant tumors.  The mean total tumor volume per 
specimen was 4.9 cc (range 0.01 cc to 28.7 cc).  Mean SUVmax was 6.0 in malignant sextants and 
3.8 in benign sextants (p < 0.0001).  The area under the receiver operating characteristic (ROC) 
curve was 0.82 for sextant detection of malignancy based on SUVmax measurement.  There was a 
statistically significant correlation between maximum tumor diameter and sextant SUVmax in 
malignant sextants (Pearson correlation coefficient r=0.54, p < 0.05).  In 13 subjects, the sextant with 
the highest SUVmax contained the largest tumor for that specimen. Six of 9 falsely-negative sextants 
contained only tumors with diameters smaller than 0.5 cm.  In conclusion, prostate SUVmax is a 
reproducible, semi-quantitative measure of fluorocholine uptake that can be used to localize 
dominant malignant tumors in the prostate.  However, small prostate tumors can elude detection 
despite the availability of tumor-specific tracers.  This data may be of value to phantom and 
simulation experiments directed at optimizing PET for prostate imaging. 
 
Acknowledgements: This work is supported by U.S. Army Medical Research and Materiel 
Command grant W81XWH-05-1-0056.
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Summary: 
 

Prostate cancer is the second leading cause of cancer death in American men over 50 years of age.  
Invasive ultrasound-guided prostate biopsy is the most common method for diagnosing prostate cancer.  
Unfortunately, this technique is prone to sampling error despite the use of various biopsy strategies.  A 
technique for identifying areas in the prostate with the highest likelihood of malignancy would be 
advantageous in refining the biopsy strategy.   

Positron emission tomography (PET) can detect tumors through measurement of metabolic changes at 
the cellular level.  This technique works by depicting the biochemical interactions of radiolabeled tracers in 
the body.  Unfortunately, fluorine-18 fluorodeoxyglucose, the only FDA-approved PET tracer for detecting 
cancer, is not useful for prostate cancer.  We are the first site in the United States to be conducting clinical 
investigations with the fluorine-18 labeled PET tracer fluorocholine under its IND (investigational new drug) 
status with the FDA.  The phosphorylation of fluorocholine by choline kinase (CK), an enzyme commonly 
over-expressed in malignancy, leads to the intracellular accumulation of this compound in malignant tissues 
(1). The observation that there is increased choline metabolism in malignant prostate tissue relative to normal 
tissue supports the possibility of using fluorocholine PET to visualize cancer in the prostate gland (2, 3).   

In a histopathological correlation study, we assessed the diagnostic performance of a standard full-
ring PET scanner using fluorine-18 labeled fluorocholine for the task of localizing malignant tumors in 
prostate gland sextants.  The convention of prostate sextants is based on a biopsy template dividing the 
prostate into basal, mid, and apical portions on each side.  To evaluate sextant-level prostate tumor detection, 
we performed histopathologic analysis on completely embedded whole-mounted prostate specimens from 15 
patients who underwent PET imaging with fluorine-18 fluorocholine before prostatectomy.  Written informed 
consent was obtained from all subjects prior to involvement in this institutional review board approved study.   

Images were obtained with a 32-ring whole-body PET scanning instrument (SHR-22000, Hamamatsu 
Photonics KK, Hamamatsu City, Japan) using a fluorocholine protocol developed previously at our institution 
(4).   Measurement of uptake in prostate sextants was performed on computed tomography (CT)-registered 
PET images. For analysis, the prostate was manually segmented into sextants consisting of an upper (basal) 
one-third, middle one-third, and lower (apical) one-third portion on each side.  Using region of interest (ROI) 
analysis, the maximum standardized uptake value (SUVmax) corresponding to each sextant was measured and 
recorded.  SUVmax is a measure of radioactivity concentration defined as the maximum measured 
radioactivity divided by the injected radioactivity normalized to body weight.  Two independent readers 
(S.A.K., M.N.C.) obtained concordant SUVmax measurements in all subjects.  Histology of the prostate 
specimen was performed by the step-section technique.  Areas of malignant tumor on each slide were assigned 
to their corresponding sextant by a pathologist with extensive experience in genitourinary pathology (I.A.S.).  
Sextants were classified as malignant if they contained at least one malignant tumor.   

Sixty-one of 90 prostate sextants contained at least one malignant tumor on analysis of the whole-
mounted specimen.  The mean total tumor volume was 4.9 cc (range 0.01 cc to 28.7 cc).  Mean SUVmax in 
malignant sextants was significantly higher than in benign sextants (6.0 vs. 3.8 respectively, p < 0.0001).  The 
area under the receiver operating characteristic (ROC) curve was 0.82 for detection of sextant malignancy 
based on SUVmax measurement.  Using a SUVmax of greater than 5.6 to classify malignancy, the sensitivity 
and specificity of PET was 64% and 90% respectively.  Diagnostic sensitivity increases and specificity 
decreases with a lower classification threshhold.  For example, using a SUVmax threshold of 4.0, the 
sensitivity and specificity of fluorocholine PET for sextant diagnosis was 85% and 62% respectively.  The 
area of highest SUVmax in the prostate was localized to a malignant sextant in all subjects.  In 13 out of 15 
subjects, the sextant with highest SUVmax also contained the largest malignant tumor of that specimen.  With 
a SUVmax classification threshold of 4.0, six out of 9 false-negative sextants contained only tumors with a 
diameter less than 0.5 cm.  There was a statistically significant correlation between maximum tumor diameter 
and SUVmax in malignant sextants (Pearson correlation coefficient r=0.54, p < 0.05).  

Several points warrant discussion.  The use of an objective measure (SUVmax) to isolate prostate 
malignancy is more reproducible than subjective visual interpretation as commonly performed in radiology.  
Although tumor burdens were relatively low in our patients, the measurement of SUVmax in the prostate on 
fluorocholine PET still demonstrated an accuracy for sextant localization of prostate cancer comparable to that 
of MRI, a technique which requires visual interpretation (2, 5).  However, the finding of a correlation between 
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tumor diameter and SUVmax in malignant sextants suggests that the use of a single SUVmax threshold does 
limit the sensitivity of fluorocholine PET for identifying sextants harboring only small tumors.   

The prostate is a challenging organ to image using nuclear techniques due to its small size and 
anatomical location (Figure 1).  The intrinsic ability of PET to image small lesions is limited by the effects of 
radioactive scatter and positron travel.  Furthermore, SUV is a voxel-based measure, and thus represents an 
assessment of mean radioactivity in a fixed volume of tissue.  Assuming that fluorocholine is more 
concentrated in malignant cells, it would be expected that the measured SUV of a volume containing both 
malignant and benign cells would be lower than the measured SUV of a volume containing only malignant 
cells.  Clinically speaking however, large tumors lead to greater morbidity, causing more symptoms and 
having a higher potential to metastasize. Thus, in light of the potentially favorable prognosis associated with 
smaller prostate tumors, a diminished sensitivity for small lesions may be acceptable to physicians, or even 
desirable, especially in frail patients in whom the risks of treatment could potentially outweigh the benefits.   

Nevertheless, advances in PET imaging technology, and work towards developing prostate-optimized 
PET imaging devices, have the potential to capitalize further on prostate cancer-avid tracers such as 
fluorocholine.  Recently introduced PET techniques such as time-of-flight imaging and dynamic scanning 
with list-mode data acquisition could significantly enhance the per-sextant or per-lesion evaluation of the 
prostate with PET.  For evaluating organs such as the prostate, a substantial increase in PET count-rate 
performance (as can be achieved with time-of-flight) can lead to significantly improvements in PET image 
quality, especially in larger patients(6).  Data from our study on fluorocholine metabolism in prostate tumors 
and their surrounding organs may have value in future phantom and simulation experiments with the goal of 
optimizing PET for prostate imaging.  

 
Figure 1.  A. Computed tomography (CT) image of the pelvis at the level of the prostate.  The prostate is a homogeneous 
structure in the pelvis center (arrow).  Although there is prostate cancer, the prostate does not appear abnormal on the CT.   
B. Fluorocholine PET corresponding to the same level in the pelvis as the CT shows abnormally increased fluorocholine 
uptake in the peripheral zones of the prostate gland (arrow).  C. After surgery, the corresponding prostate specimen was 
examined histologically.  This 10X micrograph reveals multiple foci of prostate cancer (outlined in black), which 
regionally correspond to the abnormal areas of increased uptake on PET as shown in panel B. 
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Abstract:  
 
A methodology for registering histological slides and ex vivo MRI of prostate is proposed. After such registration is 
performed, spatial correspondence between histology slides and ex vivo MRI is established, thus histological truth can be 
propagated to the ex vivo MRI space. We employ the well established registration approach based on mutual information 
(MI) and thin-plate splines (TPS), which is automatic after user’s initial placement of control points. Directly registering 
histology slides onto ex vivo MRI is challenging because 1) it is a difficult 2D (slice) to 3D (volume) registration problem 
and 2) there is a big difference in information content as histology slides are typically taken at much higher resolution 
than ex vivo MRI. Here we propose to overcome this challenge by breaking the difficult direct registration task into easier 
registration sub-tasks. For this purpose, we acquire digital photographs of prostate specimen as it is sectioned, which are 
referred to as block face photos. First, we register histology slides onto block face photos and then register block face 
photos onto ex vivo MRI. Results from two registrations tasks are combined to establish registration between histology 
slides and ex vivo MRI. Before the second registration task, we stack the block face photos into a volume so that 
registration onto the ex vivo MRI is a more stable 3D (volume) to 3D (volume) registration. 
 
Keyword: registration, histology slides, prostate, ex vivo MRI. 
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1. Introduction  
 
The goal of registration is to establish spatial correspondence between two scans so that both can be viewed in the same 
spatial frame.  Here we study the registration between histology slides and ex vivo MRI of prostate. This registration has 
two important applications; 1) If the registration process is repeated for many patients’ prostates, one can build an atlas of 
prostate cancer sites, which can give you a quantitative probability of cancer presence given a location in the prostate. 2) 
It can be a bridge to establishing registration between in vivo MRI and histology slides. Combined with the registration of 
in vivo MRI and ex vivo MRI, one can establish registration between in vivo MRI and histology. 
 
2. Methods 
 
We employ the well established registration approach based on mutual information (MI) and thin-plate splines (TPS). MI 
measures the similarity between two scans, while TPS is used to implement the geometric transform. Control points are 
used to control the degrees of freedom (DOF) in TPS. Registration with many control points can model complex 
deformation. The process of registration can be formulated as maximizing MI under a hypothetical geometric transform 
implemented by TPS,  

^ ^
arg max ( ( ), ( ( )),   T;estimate of the transform

T
T MI A B T= i i . 

 
Applying the above registration directly to register histology slides and ex vivo MRI is difficult. Such direct registration is 
a difficult 2D (slice) to 3D (volume) registration, as there may be many portion of the 3D volume that might look similar 
to the slice in question. Information content in one slice is often not enough to correctly register onto a volume. Histology 
slides are typically taken at much higher resolution than ex vivo MRI, which leads to resolution mismatch. Registration is 
best accomplished when both scans are of similar resolution. Our approach is to break this difficult direct registration into 
two easier registration tasks. We acquire digital photographs of prostate specimen (referred to as block face photos) as it is 
sectioned for histological examination. First, we perform 2D to 2D registrations between histology slides and block face 
photos using 9 control points. This registration is quite feasible as histology slides are prepared from the sections and 
many common features can be found in both histology slides and block face photos. Second, we stack block face photos 
to form a volume. Successive block face photos are registered in rigid (rotate-translate) fashion and then stacked. We 
place rigidly registered photos in the same spacing used to section the prostate (2.2 mm) and insert zero valued slices in 
between so that individual slice thickness is thinner. We use 4 zero slices between non-zero slices (photo slices), thus slice 
thickness is 2.2/5 = 0.44 mm. If we don’t insert zero valued slices, it will make regular photo slices (non-zero slices) too 
thick, which is far from the reality, since histology slides are very thin (0.4 µm). Inserting many zero valued slices will 
make non-zero slices thinner but it will lead to partial volume effects (resolution mismatch) in the next registration step. 
Third, we perform a 3D to 3D registration between stacked block face photos and ex vivo MRI using 18 control points. If 
one photo slice is to be incorrectly registered in the ex vivo MR then the adjacent slices below and above will discourage 
that slice in question to be registered onto a wrong position. Basically, adjacent slices will lead the slice in question to 
achieve better registration. Registration is best achieved when both volumes have similar voxel dimension, thus we cannot 
make stacked photo volume have far smaller thickness than the thickness of ex vivo MRI (0.23 mm). Finally, we combine 
registration results from three tasks and achieve registration between histology slides and ex vivo MRI.  The stacked block 
face photo volume is the key bridge that connects between histology and ex vivo MRI. Below is the block diagram of our 
approach.  
 



 
Figure 1. Block diagram of our registration approach. NEEDS TO BE VIEWED IN COLOR. 
 
3. Results 
 
Prostate undergoes a formalin fixation after surgery and then histology sections are obtained by whole prostate step 
section method with 0.4 µm thickness at 2.2 mm spacing. There are 18 histology slides and corresponding 18 block face 
photos. Block face photos are taken as the sectioning occurs using a regular digital camera. Ex vivo MRI is a T2 weighed 
scan of grid 2563 and voxel size 0.233 mm3 acquired from a 7T scanner imaged for roughly 7 hours. Here we show 
registration results of histology slides and ex vivo MRI for one patient. Only histology slice 4 is shown here due to limited 
space. 

 
Figure 2. Registration result of one histology slice (slice4) and ex vivo MR via intermediate stacked block face photo. 
NEEDS TO BE VIEWED IN COLOR. Top left is histology, top middle is block face photo, bottom left is ex vivo MRI, 
and  bottom middle is fused histology with MRI using alternating subblocks. Above four pictures are all in the same space 
so that they can be compared quantitatively. Note that all the spatial features line up correctly. Rightmost figure is the 
volumetric registration between stacked block face photo (colored bright, all 18 slices) and ex vivo MRI (grayscale) to 
visualize the registered slice profile. Note that some of slices are slightly warped to get correctly registered onto ex vivo 
MRI. This warping shows that our registration approach is capable of modeling the non-linear deformation that occurs 
during the sectioning process. 
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