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Abstract. A shallow-water model was used to understand marginal seas with lengthy coastal zones, impact of uncer-
model error induced by non-Gaussian wind uncertainty. Al-tainty of external forcing and/or subgrid parameterizations,
though the model was simple, it described a generic sysmay be as significant as errors in initial conditions. The
tem with many degrees of freedom randomized by externamodel blow-up often sets in much faster than the model loses
noise. The study focused on the nontrivial collective behav-its predictability due to errors in initial conditions (Jiang
ior of finite-amplitude perturbations on different scales andand Malanotte-Rizzoli, 1999; Boffetta et al., 2000; Bogden,
their influence on model predictability. The error growth 2001; Auclair et al., 2003, among others).

strongly depended on the intensity and degree of spatial in- Starting from the pioneering work of Lorenz (1963), the
homogeneity of wind perturbations. For moderate but highlydynamics of the prediction error (PE) due to uncertainty in
inhomogeneous winds, the error grew as a power law. Thignitial conditions has been deeply investigated in the theoret-
behavior was a consequence of varying local characterisical and numerical studies. The dynamics of model-related
tic exponents and nonlinear interactions between differentrrors has been paid much less attention to, probably due
scales. Coherent growth of perturbations was obtained foto the large variety of possible modeling errors. Although
different scales at various stages of error evolution. For thesome general trends have emerged (Capotondi and Holland,
nonlinear stage, statistics of prediction error could be ap-1997; Chu et al., 1999; Orrell et al., 2001; Vannitsem and
proximated by a Weibull distribution. An approach based Toth, 2002; Nicolis, 2003, 2004, among others), more refined
on the Kullback-Leibler distance (the relative entropy) andtheoretical investigations and additional experiments with an
probability-weighted moments was developed for identifi- hierarchy of ocean models of different levels of complexity
cation of Weibull statistics. Bifurcations of the variance, are necessary to get a more general view of the impact of
skewness and kurtosis of the irreversible predictability timemodel-related error (particularly finite-amplitude) on model
(a measure of model prediction skill) were detected whenpredictability.

the accepted prediction accuracy (tolerance) exceeded some |n the present paper, the dynamics of a model-related error
threshold. (hereafter, prediction error (PE)) generated by uncertainty in
wind forcing and its impact on predictability are studied in
the context of stochastic model stability (stability answered
in terms of probabilistic measures, such as expected values
or distribution functions (Freidlin and Wentzell, 1998)) for a

When circulation is simulated by a fine resolution regional SIMPlified regional model destabilized near an unstable equi-
model in an area with open boundaries, the circulation dy-iPrium state (an unstable fixed point in model phase space)
namics often depends crucially on specified open bound?Y Stochastic wind. _ - S
ary conditions, wind forcing and sub-scale parameteriza- " 9eneral, the stochastic stability and predictability dif-
tions. For atmospheric predictability, it is generally assumedf€r from one another. However, if a time scale quantifies the
that the model forecasting is most sensitive to uncertaintyModel predictability, and if this scale indicates the time when

of initial conditions. However, for oceanic predictability in the forecast uncertainty exceeds some boundary or when in-
formation on the initial condition is lost, the stochastic sta-

Correspondence td:. M. Ivanov bility and predictability are interchangeable. Since such time
(Imivanov@nps.edu) scales are widely used in meteorology (see, for example,
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2 L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing

Toth, 1991) and oceanography (Robinson et al., 1996), the&luced in Sect. 5. Section 6 investigates the sensitivity of the
stochastic stability concept seems to be a useful tool for thegoot mean square prediction error to variations of stochas-
predictability analysis of large ocean models, and “the irre-tic wind and the tolerance level (the accepted prediction ac-
versible predictability time” (a prediction time scale) (Chu et curacy). Section 7 analyzes finite-amplitude induced phase
al., 2002) is a quantitative measure of model predictability. transitions of predictability. Section 8 develops a technique
Numerical computations discussed below can have dor identification of the probability density function of the ir-
twofold interpretation. First, the obtained results can be in-reversible predictability time. Herein, we demonstrate that
terpreted as stability of a circulation regime relative to a high-the statistics of this time is rather Weibullian than Gaussian.
frequency component of wind forcing. Second, if we pa- The predictability horizon is estimated in Sect. 9. Section 10
rameterize uncertainty of wind forcing as a stochastic noiseprovides the conclusions. Appendix A contains analytical
the computation results are interpretable in the predictabil+epresentations for the wind error source term.
ity context. Therefore, hereafter, perturbations excited by
stochastic wind in an ocean basin will also be called a pre-

diction error. 2 Predictability measures
The principal motivation of the proposed study is formu-
lated as follows. We examine the sensitivity of a reference solution relative

First, it is well-known from numerical modeling that wind to stochastic variations of wind forcing. Such sensitiv-
is one of the main energy sources of ocean currents and thaify may be measured by the traditional non-dimension root
naturally, prediction errors associated with wind forcing un- mean square difference between perturbed (“pert”) and non-
certainty may grow quickly in numerical models (Robinson perturbed (“ref”) solution presented by a varialdfe which
et al., 1996; Berloff and McWilliams, 1999; Chu et al., 1999; may stand for energy, temperature, salinity, the stream func-
Sura et al., 2001; Burillo et al., 2002, and others). Behav-tion etc. (Holland and Malanotte-Rizzoli, 1989; Brasseur
ior of such model-related errors are highly dependent on theet al., 1996; Robinson et al., 1996; Wirth and Ghil, 2000,
properties of the underlying dynamical regime [attractor] re-among others),
produced by the numerical model and statistics of wind un-  _ 5 )
certainty. Circulation patterns with oscillations near quasi- < () >=< Ipen(t) > /Iies(t) @
equmbr_lum states and tra_nsmon dynamics between themand the irreversible predictability time (IPT) (Ivanov et al.,
are typical for many marginal seas, such as the Black Se:_ang4) defined as
(Stanev and Staneva, 2000), and for large-scale jet-like cur-
rents like Kuroshio (Masuda et al., 1999). The proposed _ . - _
study focuses on the case of evolution of finite-amplituder &) = ,'QB (t ‘1 @) > 82) ’ @)
non-Gaussian perturbations induced by stochastic wind error
when the ocean is near a quasi-stable equilibrium state (evewhere Iper= || Wper—Wret|, Iref= | Wrefll, hereafter<...> is
small perturbations can destroy such a state and stimulate the ensemble averaging, = ¢/Iref is the non-dimension
transition to another one). Therefore, the obtained results artolerance (the accepted prediction accurady)js the Eu-
important for understanding the regional model predictabil-clidean norm. According to Eq. (2) the irreversible pre-
ity (Robinson et al., 1996) when local attractor features deterdictability time is a time at which the prediction errdt/2
mine the phase-spatial organization of the local error growthreaches a predetermined legdbr the first time, i.e. any re-
rate. turns of model predictability are impossible aftdE).

Second, in ocean models, unresolved dynamics is often The IPT is clearly interpretable in a model phase space,
represented in terms of random forcing. For example, impacwhere perturbed and non-perturbed (reference) solutions are
of mesoscale eddies on large-scale currents can be approxepresented b’ and X trajectories, respectively, and the
imated as a space-time correlated, random-forcing procesgquation/ (1)=£2 describes a spheroidal surfagé&) mov-
(Berloff, 2005). Therefore, the results obtained in the presening along the trajectorX’ (Fig. 1a). A distance*Xo—XM
study may be useful for interpretation of a wide spectrum ofbetween the trajectories at time momept(the initial er-
problems related to model predictability in the atmosphereror) usually grows with time due to model inaccuracy, and
and ocean. becomes larger thah (crossingS(g)) after a timez(g)

The rest of the paper is organized as follows. Section 2(Fig. 1a). This time is defined as the IPT.
explains a predictability metrics used to quantify the model For a steady reference solution (represented by a fixed
predictability for both small- and large-amplitude perturba- point in the model phase space), the IPT becomes the clas-
tions. Features of the reference solution (the control run) aresical first passage time (FPT). The classical FPT is a time at
discussed in Sect. 3. The surface wind is decomposed intavhich a trajectory reaches a boundary for the first time (Gar-
two parts: steady (“climatic”) part and stochastic one causedliner, 1985). Therefore, the IPT can also be defined as the
by unknown synoptic variability. Statistics of the wind un- FPT for varying boundaries (compare Fig. 1a and Fig. 1b).
certainty is given in Sect. 4. The model phase space is introThe FPT plays an essential role in many applied fields. We
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L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing 3

Fig. 1. Definitions of (a) IPT and(b) FTP. Phase trajectorie¥
(the reference solution) with the initial position &, and X’ (a
perturbed solution) with the initial position of jare denoted by
solid and dashed curves, respectively. A time wiértrossess (g)
in the point Ais the IPT (a) or FPT (b).

Fig. 2. Basin geometry. The, andxo axes point toward east and
north, respectively.

In practice the same momenisare estimated from an or-

dered random samp[e)f;’:1 of size N (Hosking and Wallis,

can suppose that the IPT may become a useful tool for thq_997) by

analysis of ocean model predictability too.

Statistics of the IPT (Ivanov et al., 1994; Chu and Ivanov,
2005) can be represented by the probability density func—&l —

tion (z-PDF) or the cumulative distribution function-CDF)
[P(g,t—19)]. T-CDF is the probability that>r—z for a
given tolerance level.

In practical applications, statistics of IPT-CDF or t-
PDF) may be identified froma-moments,

o0
q(é)zlf(t—ro)lflp(é,t—to)dr, I=1,...,L. (3)
10

Knowing these moments we may computemean , t-
variance t-var) , T-skewness-sk) andz-kurtosis ¢-ku).
For example,

T-mean= 11, T-var= 1, — (11)? etc.

If the cumulative distribution function P has a heavy tail
for large values of —1g, high-orderc-moments (=2, ..., L)

. N
S gty (5)
n=1

WhereCl"*l are the binomial coefficients.

The probability-weighted moments always exist and are
robust relative to sampling error. Therefore, the robust es-
timate of t-CDF or t-PDF for small forecast ensembles is
possible. This is one of advantages of the IPT. An appropri-
ate method for estimating distribution functions from knowl-
edge of the probability weighted moments will be discussed
in Sect. 8.

The moments of IPT as functions &f,— X/ satisfy the
Pontryagin-Kolmogorov-Stratonovich equations (Pontryagin
et al., 1969), which are linear elliptic differential equations.
Their asymptotic solutions can be obtained in many cases.
For example, Chu et al. (2002) calculated analytically first
two moments of IPT for a low-order nonlinear atmospheric
model (Lorenz, 1984). Therefore, the analytical estimate of

sometimes do not exist because the integral in Eq. (3) doegodel predictability in the IPT context is another advantage
not converge. In this case we suggested (lvanov and Chugf our approach.

2007) to identify -CDF or t-PDF from the probability-
weighted momentsy) defined originally by Greenwood et
al. (1979),

/1
0
whereX (P) is the quantile function (i.e., the inverse of cu-
mulative distribution function).

a= | X(P)YQA-P)\dP, 1=1,...L |, (4)

www.nonlin-processes-geophys.net/14/1/2007/

3 The reference solution

We consider a rectangular semi-closed basin with the hori-
zontal dimensionsL1=1050 km and.>=1000 km, and with
constant deptti{ =2 km, which is situated on a mid-latitude
B-plane. The basin has rigid™) and open(I"’) boundaries.
The geometry of the basin and its sizes are shown in Fig. 2.

Nonlin. Processes Geophys18420D7



4 L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing

Our numerical model is the nonlinear shallow-water equa-al. (1997). The structure of open boundary conditions on
tions with nonlinear bottom friction, wind and boundary day-0 and day-60 is demonstrated in Figs. 3a and b, respec-

forcing
dDu

ot Y+ L(Dug, Duy)— f Dup=—g DV1t+W1—a EY2u3, (6)
dDu

o1 2+ L(Duy, Dup)+ f Duy=—g DVt +Wo—a EY2uz, (7)

and the mass conservation equation

0
a—i + (V1Duy + VoDuy) =0, (8)

where L(...,...)

vation; the drag coefficient=2.5x10~3; the gravityg; and
E=u§+u§.

The Coriolis parameter varies linearly with a beta

plane approximatiorf = fo+Bx2, where fo=2% sin(y,) and
B=(2Q2/a) codp,). Here, Q and a are the rate of ro-
tation and the radius of the Earth, respectiveps=35".
For the chosen model parametersy,=7.3x10°s™1,
B=2.0x10"1m-1s1

A flow in the semi-closed basin bounded byu I'’ is
forced by both the zonal wind forcing/; (W2>=0) varying

,...) is the nonlinear advective operator;
[V4, Vz]z[aixl, aixz]; u1 andu» are the zonal and meridional
velocities, respectivelyD=H+¢, ¢ is the sea surface ele-

tively. The initial condition represents a non-closed anti-
cyclonic gyre shown in Fig. 3a. The corresponding initial
surface elevation is not shown because its structure is obvi-
ous.

After 30 days of integration the model reaches a spin up
when the spatially averaged kinetic energy oscillates with a
period of 120 days. Amplitude of this oscillation reduces
with time exponentially with rate of 1000 day. The spa-
tially averaged kinetic energy for the first 60 days is shown
in Fig. 4a only because this time period is used for sensi-
tivity studies. The circulation pattern formed after day-30
presents a multi-gyre structure with maximum velocities up
to 0.9..1.0m/s (Fig. 3b) and high surface elevation near 1m
(not shown).

4 Wind forcing uncertainty

Governing Eqs. (6-8) are perturbed by adding the stochastic
wind forcingw= (w1, wp) to W= (W3, W»). The stochastic
wind forcing is traditionally parameterized in the following
form

w(ry, x2. 1) = 20 Cy U (a1, x2, )| U x1, x2. 1),

Pw

(10)

with latitude as

Wy = — % cog 22), )
Pw L2

wherepaj is the air density (1.3 kg M), C4(2x1073) is the
drag coefficient, and/is the stochastic wind.
Following Sura et al. (2001 is represented by

where p,,=1025kg m3, w, is the wind stress,
%:1.0x10‘3m25—2 ,and a prescribed net flux (char-

acterized by the normal velocityi,(x2,7) and surface Whereu(H)=[u1(?), n2(1)] are white Gaussian vector pro-
elevation g (x2, 1) along the boundary™’). Zero normal  cesses with zero mean and unit varianceis the wind vari-

velocity and zero Neumann conditions for the surfaceance; the spatial structure function G characterizes a degree
elevation are imposed on the rigid boundary of spatial inhomogeneity of wind perturbations above an area

The chosen model configuration is suitable for the analysis°f interest.
of ocean model predictability affected by different kinds of ~ Two different structure functions are used. The first one
stochastic uncertainties: errors inserted in initial conditionsis given by
(lvanov and Chu, 2007), wind (the present study) and open X2
boundary condition's Cross-correlations between these er- Galx1, x2) = COS(L_Z)'
rors can also be studied.

Model (6-8) is similar to that used by Veronis (1966) for
the analysis of nonlinear wind-driven circulation in a closed
basin. Butin contrast to Veronis (1966) we parameterize bot-
tom friction by the quadratic drag law (Pedlosky, 1987). L1 Lo\ Y2

The barotropic mode of Princeton Oceanographic Model92(1: ¥2) = ascale[ﬂﬁlﬂzerf<2—ﬂl> erf<2_/32>}
(Blumberg and Mellor, 1987) was applied to Egs. (6—8) with 2 2
the following model parameters: spatial resolution — 50 km; exp| — (01— L1/2)"  (x2—L2/2) .(13)
time step — 2 min. 2p7 283

bozzteja?resi’gngsrqn nt?tz;jSti[;O?f r\)//vanseteiui(aiiggsﬁl t%ehSpSWere, erf is the error functiongscae is @ scaling parame-
y P P ter; (81, B2) are the decorrelation scaleS, shows the im-

Livanov, L. M. and Chu, P. C.: Effects of stochastic open bound- Pact of the localized atmospheric eddy activity near the point
ary uncertainty on predictability of regional ocean models, Mon. (L1/2, L2/2) on the surface wind perturbations (Sura et al.,
Weather Rev., in preparatidiilstatus? 2007.) 2001).

U=[U1(x1, x2, 1), Up(x1, x2,1),] =i ()0 GY2(x1, x2), (11)

(12)

In this case only the amplitude of wind stress (Eq. 9) is dis-
torted by the non-Gaussian white noise.
The second one is chosen as

Nonlin. Processes Geophys., 14162007 www.nonlin-processes-geophys.net/14/1/2007/
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Fig. 3. Spatial structure of the reference solution at the initial g@tand after integration for 60 dayb). Open boundary conditiong)
corresponding to the reference solution are shown to the right of the circulation patterns.

In most numerical experiments the scaling constagie 2000
is chosen to adjust the weight function in Eq. (13) to 1 for @ ,
Bc=p1=p2=600km. However, a humber of computations LBOOP 2 N g
usep, between 100 km and 600 km. ; ;

The noise in the surface wind with?=28.0nf s 2 cor- 1600+ f
responds to typical observed atmospheric conditions in the _ ; ;
North Atlantic region (Wright, 1988). Therefore, the 200 [
stochastic forcing (Egs. 10-13) is a conceptual tool to study :Eg ; ;
the effect of noise on simple and more complex wind-driven w200p [
regional ocean models.

To understand statistics of wind forcing, Eq. (10) is re-
written into

1000 f oo

OO vt

o
w(xy, x2,1) = X Ca02G(x1, x2) | (1)| (1)
Pw 600;

= 2 04626 (x1, x2)d, (14)

Pw

20 40
t (days)

Fig. 4. Characteristics of the reference solutiofa) the kinetic
wherew= ()| u(t). Then, the probability density function  energy averaged over the semi-closed babirthe relative variance
f (w1, wp) is calculated using the elementary zero-memory s,, computed for the initial state of the reference solution (solid
transformations, which are discussed in most textbooks oturve) and after integration for 60 days (dashed curve).
probability theory (see, for example, Stratonovich, 1963).
Accordingly to the general theory

In the polar coordinate systemz, 6}[wi=zcog0),

fib1, W) = flgy M (W1, W2), g5 (b1, w2)] - /], (15)  wo=zsin(®)], probability density function (Eq. 16) trans-

. . . forms to the following form:
whereJ is the Jacobian of the transformation from the ran-

dom variablegt1 andu to the random variables, andwy;
g - andg, * are the inverse functions.
Simple calculations result into

1
f(z,0) = = exp(—z/2). (18)
T

Two-dimensional distribution Eq. (18) is easily transformed
o 1 o \1/2 to a one-dimension fornfiy; simply by integratingf (z, 6)
[y, W)=———"—— exp[— (w1+w2) /2} (16)  with respect t@,

4 (W5-+w3) .
The meansii),(i2) and variance 2,63 computed from fin(2) = = exp(—z/2), (19)

Eq. (16) have the following values which is the exponential distribution.

(ib1) = (W) = 0.0 ands? = 62 = 3.0. (17) The above calculations clearly indicate that altholgts

a white Gaussian process, the wind stneds not. Therefore
Both w1(r) and w2(¢) are delta-correlated processes (Kly- PE has non-Gaussian statistics even if the wind uncertainty is
atskin, 2005). small. For large values of stochastic wind stress, distribution

www.nonlin-processes-geophys.net/14/1/2007/ Nonlin. Processes Geophys16420D7



6 L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing

m=1

x2(km)

400 800
X, (km)

Fig. 5. Four orthonormal modeg,, with numbersn=1,3,9, and 30. The contour interval is non-dimensional, with positive vorticity in dark
and negative vorticity in light, and non-dimensional velocity vectors are overlaid in each panel.

function (19) decays slower than the Gaussian one. This indibetween ensembles ok10°, 5x10%, 1x10%, 2x10% and
cates that rare high-energetic wind events can strongly con5x10* samples. The optimal size of an ensemble sampling,
tribute tow statistics. Therefore, even for small-amplitude i.e. a number of ensemble realizations providing a trade-
errors, t-PDF has asymmetric shape with a tail stretching off between the ensemble ability to reproduce main features
into short prediction time scales. of PE statistics, and the computational cost, is estimated
A weak second-order algorithm (Cao and Pope, 2003)as 18 for any values of52. Hereafter the non-dimension

is applied to numerical integration of stochastically forced variance of wind perturbations introduced a§=o2/og,
Egs. (6-8). Although the time step for the model integra-(;g:l-OmZS—Z, is used. The optimal size is found using the
tion is 5min, the stochastic wind is updated every hour. Anon-symmetrical Kullback- Leibler distance (White, 1994).
correlation time £.) for such a noise is shorter than one An interested reader is referred to Chu and Ivanov (2005),

hour. Since characteristic time scales for the reference sovanov and Chu (2007) for more details of such an approach.
lution and PE arge~10-20 days (determined from Fig. 4a)

andteror3-5 days (determined from Fig. 7b), respectively,
te/tretK1 andt, / terrork 1. Such a stochastic wind represents 5 Model phase space
a white noise-like process (Stratonovich, 1963).

PE statistics is insensitive to more often update of theFor the chosen model parameters, a quasi-geostrophic ap-
stochastic wind. We made computations with update varyingoroximation (Pedlosky, 1987) is applicable to interpret the
from less than one hour to 5min. These computations rereference and perturbed flows in a model phase space. The
quired very large computer resources. Therefore, the choiceasis of M-dimension phase space is formed from orthonor-
of one-hour update is a trade-off between accuracy in repremal functions (modesy,,, which are the eigenvectors of the
sentation of the wind forcing and the computational cost.  plane Laplace operat6f? (Eremeev et al., 1991, 1992),

Ensembles of perturbed model trajectories were used to

computer-PDF. Little difference inc-statistics is obtained V2, = —Am¥m, ¥mlror =0, m=1,..,M. (20)

Nonlin. Processes Geophys., 14162007 www.nonlin-processes-geophys.net/14/1/2007/



L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing 7

Then, the geostrophic stream function is decomposed as A

M
Y (x1, x2, 0= Y An(O)Pm (X1, x2)+Pharm(x1, x2, )+C (1),
m=1

M =100 | (21)

whereymarm is the harmonic function; the constafit?) is
determined from the mass conservation constraint imposed
upon the stream function (McWilliams, 1977).

The spatial modeg,, are determined only by the geom-
etry of a basin, and can be easily computed for any non-
rectangular domain. Figure 5 shows the spatial structure of
a few basis functions,, involved in the present analysis.
The spatial modes, in general, have no physical significance
by themselves, but only when they imply a flow. However,
they are useful to identify the energy-dominated scales for
the reference and perturbed flows.

The harmonic function/narm is obtained from a,

VZYham=0 . Ynam|r =0. Fig. 6. Phase portrait in a phase sub-space generated by the basis
2 functionsyp,, ¥4 andys.
VYharmlr = —/‘ﬁb(ﬂ)))d)’: (22)
0
Applying the classical linear stability analysis (Gucken-
heimer and Holmes, 1983) to the model (6-8) linearized
near the spin up solution, we find that the spin up represents
an unstable focus (spiral point) in the model phase space.
The growth and decay of infinitesimal perturbations near this

It is a highly predictable component of the flow because of
the exact value ai;, in Eq. (22).

The PE presents the sum of the mean or systematic erroy
Yref— (wpen} and the transient or random eri&yp:

< > <” y < y n} sy ”2) point are characterized by the spectra of positive and negative
pert ref — \Vpe local characteristic exponents only.
= [ Vrer — (wpert>”2 n <|I5W||2>- (23) Therefore, an error trajectory should tend to this focus (de-

noted by B in Fig. 6) along stable manifolds corresponding to

The inertial (nonlinear) terms of the governing equationsthe large-scale negative exponents and simultaneously drifts
hardly contribute tGWpert) at the initial stage of PE growth, from B along the small-scale unstable manifolds correspond-
and their contribution is negligible at later stages. The ran-ing to the positive exponents. Such a model trajectory is
dom error grows faster than the systematic error. Thereforeasymptotically unstable in Lyapunov sense -asoo (Guck-
we suggest quantifying the PE behavior through the growthenheimer and Holmes, 1983).
of the random error only. Figure 6 shows projections of error trajectories onto the

The reference and perturbed solutions are reprephase subspace. The trajectories tend to reach the focus
sented in the model phase space as the referencalong the stable manifolds projected onto the phase plane
A=[A1(t), ..., Ay (@®)] and error a=[ai(t), ..., apy(t)] lap, aq]. However, they move away from the focus along un-
trajectories, respectively. Using these notations the variancetable manifolds projected on the phase pldnagsa,] and

of the random prediction error becomes lag, as].
Iy We useM =100 and confirm that such a choice does not
(Isyll) = Z <a,2,,>, (24)  Smooth the reference trajectory for 70 days of model integra-
= tion. The relative varianc,= (A,-4,),_, I converges

to 1 very quickly as m increases (Fig. 4b). The first fifty-sixty

and the wind error source term (see Appendix A) is written modes contain more than 99% of variance for the reference

by solution.

R, =y,§ (bz +Cz)’ 25 . Qne hundred n_10de representation !s also quite suf-
ficient to approximate the error trajectory for 60—

where ym_panc H 102, b= ff 96 ydxrdxz 70 days of model |r;teg_r?t|0n. The relative va'rlance

em= [ 35 e Ymdxidxo, the double integration is made over S, = (<ap-a,> ),, 1 (Ipert) converges to 1 asn in-

the semi-closed basin area. creases, slower thas), (compare Figs. 4a and 7a), but the
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Fig. 7. Features of a perturbed solutio(a) the relative variance  Fig. 8. The growth ratep (solid curve) for differen&2 andG: (a)
Sy, computed at day-10 (dashed curve) and day-50 (solid curve)52 — 01, G=G3; (b) 52=1.0, G=G1; (c) 52=1.0, G=G,, and

52=1.0; (b) <1§en> normalized by its saturation value /2> (d) 52=2.0, G=G,. Dashed line, white dots and asterisks show
for 52=0.1 (solid curve), 1.0 (dotted and dashed curve), and 2.0€xponential, linear, and power (with scaling exponent8ka0-1)
(dashed curve). laws, respectively.

) o 6.1 Linear growth of perturbations
speed of the convergence is quite high.

At the initial stage (transient phase) where the stochastic
forcing term dominates the governing equatiom®;1/¢
(Figs. 8a, b, c, d). It corresponds to the linear growth of
6 Error evolution the mean square error:
(1Zen) ~ D, (26)
Typical growth of an ensemble averaged PE with time for
G=G1 and G2 varying between 0.1 and 2.0, is given in Duration of this regime is typically up to 4-5 daysif~0.1—
Fig. 7b. Perturbations excited by uncertainty of stochastic1.0. The effective coefficienDes is determined by sum-
wind grow at all scales and during the whole 50-60 daymation of contributions from the error source term at all
period. That is in contrast to the case when there is un- M
certainty in the initial condition only. In the last case the wavenumberdes= mX—:1 Ron-
high predictability of the dynamical regime within the initial Linear law Eq. (2?) was earlier documented in a num-
15-20 day period was clearly demonstrated by Ivanov ander of studies (see, for example Vannitsem and Toth, 2002).
Chu (2007): the PE at first decays with time for all scaleswe have analytically determined the wind error sources for
due to dissipation caused by nonlinear bottom friction, andmodel (6-8) (Appendix A). Our calculations show strong de-
only after day-20 grows faster than [quasi]-exponentially. pendence of the effective coefficient on the variance of wind,
Therefore, the presence of the spatio-temporal noise (Eq. 1Qds~o4, as well as on degree of spatial inhomogeneity of the
in wind forcing (Eq. 9) causes the monotonic error growth wind forcing.
shown in Fig. 7b.

At least four predictability regimes are identified from 6-2 Power growth of perturbations

Fig. 7b. In all the cases the PE grows in a monotonic : .
. : For moderate but inhomogeneous winds the power growth of
manner but with different speeds. More accurately, these : : . .

. . o ) ; erturbations are observed in our numerical experiments af-
regimes can be identified using the growth rate defined a%) ; .
0= In<i2 - er the transient phase (for example, see Figs. 8a, b, ¢). For

dt pert— small values 052« 1.0 the power growth is replaced by the

A set of growth rates computed for differe6t and 52 exponential growth (shown by the dashed line in Fig. 8a).
is presented in Figs. 8a, b, ¢, d. These results clearly indiif 52 exceeds 1, there is no exponential growth and the PE
cate that error dynamics strongly depends on the intensitgrows with the power law with power exponent of about

and spatial inhomogeneity of wind uncertainty. 8.8x10~L. This regime exists between day-5 and day-15 in
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Fig. 9. Spectra of wind error term witlfa) G1, (b) G» and

A=600km, andc) G andA=100 km. A critical wavenumberis de- Fig. 10. Coherent behavior of perturbations on different scales for
termined from the condition aRy, / Max(R,)=1.0x10~2 (shown  &2=1.0 andG=G. (a) Large, andb) small scale perturbations.
by dashed line). Black arrows indicate the critical numbers. The largest scale perturbation witt¥1 is labeled by dashed curve.

Fig. 8a, between day-7 and day-23 in Fig. 8b, between dayequals to 32 if8,=100 km (Fig. 9¢c). Reduced values gf

4 and day-14 in Fig. 8c, but there is no power-law regimelead to a wider spectrum of local characteristic exponents
in Fig. 8d when the stochastic wind uncertainty is too largeand stronger contribution of the cumulative effects to the PE
(62>2.0). For such a variance the linear growth of PE dom-growth.

inates. Our computations have also shown that one of the main

For G=G1 the spectrum ofR,, is linear with dominat-  specificities of the power growth regime is that all dominat-
ing peaks at wavenumbers=1,3, and 5 (Fig. 9a). These ing scales (modes) may exhibit a similar growth rate. For
wavenumbers indicate modes with maximum response to thexample, Fig. 10 demonstrates two groups of modes with dif-
stochastic wind forcing. The weak wind forcing%«1.0) ferent coherent behavior from day-7 to day-25. The coherent
essentially affects the large scales of the flow and excitedbehavior of modes is a collective response to the external
only several low-order modes. In this case the PE at firststochastic forcing when amplitudes of many modes exceed
grows linearly, then its quasi-exponential growth is observed some threshold at the same time due to spatial inhomogene-
Smaller scales affected by the stochastic wind are subjedty of wind forcing (defined by the choice @f). Clearly that
to strong viscous damping due to increasing drag coefficienthe coherent behavior is absent if this threshold was exceeded
a with growth of the kinetic energy of large-scale perturba- only by a few modes.
tions. Therefore, the smaller scales grow slower than the un-
stable large scales. The growing perturbations rapidly adop6.3 “Super-exponential” growth of perturbations
the horizontal scales comparable to those of the reference
State. After day-25 the PE grows faster than exponentially (“super-

Alternatively, stronger stochastic winég{>1.0) excites  exponentially”) until non-linear interactions between differ-
more modes at smaller scales than the weak wind, and thent scales destroy this growth (saturation regime) (Fig. 7b).
coherent behavior of modes is clearly observed in this casé&trong coherence in behavior of different modes accompa-
(for example see Fig. 8b). nies the “super-exponential” growth of perturbations.

For G=G, and B.=600km, what corresponds to inho-  Figure 1la shows coherent behavior of 30 dominated
mogeneous winds, the spectrum RBf, is continuous and modes. Explicit “synchronization” in behavior of these
band limited at the critical wavenumber=11 (Fig. 9b).  modes is observed. After 35-37 days of integration, the first
Therefore, the stochastic wind excites several modes arounchode (shown by dashed curve in Fig. 10a) is a “driver” deter-
wavenumbers of 2 and 10. The PE growth ratio depends omining the behavior of all other dominant large-scale modes,
the spectrum of local characteristic exponents. In this casevhich are called “responses” (hereafter we use the terminol-
the coherent behavior of modes exists even for the weak winegy from Boccaletti et al., 2002). During a 10-12 day time
forcing (G2«1.0). period (up to day-47) the driver and responses perform coher-

The decorrelation scalg,. determines the width of spec- ently. For small-scale perturbations at least two drivers can
trum band forR,,. For example, the critical wavenumber be identified in Fig. 11b. Mode:=9 (the first driver) grows
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10 L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing

The stochastic resonance appears if both periodic and noisy
forces drive a nonlinear system, with the periodic response
having a maximum at some noise amplitude.

Perez-Munuzuri et al. (2005) have demonstrated a coher-
ent resonant behavior for an atmospheric global circulation
model induced by a white (in time and space) additive Gaus-
sian noise. In our case, however, no peak appears in the spec-
tral density(a? ) at a given wavenumber for an intermediate
level of noise.

Our results show the coherent behavior of a group of
modes when amplitudes of many modes in the group ex-
ceed a threshold. Low- and high-order modes are separately
grouped. For quite large amplitudes our results demonstrate
the driver-response relationship for which phase of modes

10 430 35 40 45 l07330 35 40 45 are locked.
t(days) t(days) To examine this mechanism we have linearized govern-
. ) ) . ing Eqgs. (6-8), and calculate the growth of perturbations
lflzg 11. Coherent behavior of pertl_thiatlons_on ”dn‘ferent scales for oy cited by stochastic forcing Eq. (10) in this case. The re-
0°=0.1 andG=Gy. (a) Modem=1is "the driver” for large-scale ¢ 15 of these calculations are summarized as follows. The
responses. Three responses (moded, 12, 29) are indicated by - . . . .
bold dashed linestb) two drivers (modes=9, 11) observed for power growth of perturbations in the transient regime is ob-
small-scale perturbations. Moae=9 grows with the exponential served up tp day-20 an_d, therefore, cannot b? caused by the
law. phase locking mechanism. “Super-exponential” growth of
perturbations after day-25 disappears when nonlinear (iner-
tial) terms are removed from the governing equations.
along the exponential law. The non-exponential growth of The power growth of perturbations in the transient regime
the second driver (mode:=11) is a consequence of the can be explained using results obtained by Seki et al. (1993).
fact that different scales grow with different local char- They pointed out that for a linear dynamical system forced
acteristic exponents varying betweer8210-1day ! and by a Gaussian white noise the mean deviation of perturbation
9.4x10 1day 1. amplitudes can grow along a power law up to a time s€gle

For very strong external noises the modes may not be syndefined by inverse of friction coefficient. For large values
chronized because the intensive noise destroys correlatiorgf friction coefficients such a power-law behavior disappears
among them. This effect is clearly observed in our numericalbecause’,— 0.

(b)

responses

drivers

response

experiments independently @hif 52>2.0. The effective dissipation in model (6—8) depends on the
structure of the reference flow and shape of the spectrum of
6.4 Physical mechanisms of perturbation growth R,,. When forcing becomes stronger or is inhomogeneous,

the center mass of energy spectrum shifts to high wavenum-
The numerical results discussed above explicitly show “aber domain and, in general, the dissipation of perturbations
synchronization” effect due to external noise and replacereduces because the nonlinear bottom friction is most effec-
ments of the traditional exponential growth of perturbationstive for largest-scale perturbations as it has been checked nu-
by the power or sub-exponential growth. There is a num-merically. That results into appearance of power-law behav-
ber of mechanisms for which noise can lead to more ordeiior for variance of perturbations. In this case power exponent
in the dynamics. To be mentioned here are the effects otlepends on the structure of time-dependent reference flow,
noise-induced order in chaotic dynamics (Matsumoto andand unfortunately, cannot be analytically calculated. Seki
Tsuda, 1983), synchronization of self-sustained oscillatorset al. (1993) calculated the power exponents for two simple
(Pikovsky et al., 2000), cumulative effects of many different stochastic dynamical systems only. However explicit corre-
scales (Aurell et al., 1996), coherence resonance (Pikovskjation between level of model dissipation and existence of a
and Kurths, 1997), stochastic resonance (Nicolis and Nicopower-law behavior of perturbations are clearly observed in
lis, 1981; Benzi et al., 1981), and interference between initialour numerical experiments.
error and stochastic forcing (Seki et al., 1993). These effects After 25 day integration noiseless model (6-8) reaches a
in some respects are close and cannot be easily distinguisheghin up when a solution oscillated with a period of 120 days
from one another when signals reflect different variables offor the dominant low-order modes within any 1000-day time
the same system (Rosenblum et al., 2004). interval. Oscillating modes weakly interact one with another

In our case circulation dynamics is not driven by a peri- due to nonlinear (inertial and frictional) terms in the gov-

odical force. That allows excluding the stochastic resonancerning equations. Effects of external noise on these modes
as a possible physical mechanism driving mode dynamicslead to coherent behavior of modes that seems to be simi-
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lar to the phase locking of the modes, which is understood so = S T ]

in a statistical sense, as the existence of a preferred value o ] o '

the phase difference between individual stochastically forced s : sl Ao

modes with weak interactions among them. 40 o .,lo' n ! :
Non-steady nature of the reference flow is essential for ex- 5 .. " . N !

istence of super-exponential regime of perturbation growth. SO |2 e Ty <17

This was checked by numerical modeling. The oscillations § [ g1 Pyt [E

are smoothed and the reference flow becomes steady whe < 2s ;‘O {ast ' ! 05 l R

the drag coefficient is 2—3 times as much. Neither “super ex- £ ot i I ' , : ;". '.",,'

ponential” growth of perturbations nor coherent behavior of f ol \ | . : ;'u $°

modes is observed for such levels of model dissipation. sroa . ': b EE;FOq
Note that high-order modes of the reference flow have a o} | ' Lo hf’ ::',' ¢

dominant oscillation period of about 30 days, not 120 days ¢ e I 17 wee

as low-order modes. Since the first twenty modes containup °[ 4 o

to 90% of the kinetic energy of circulation, 120-day oscilla-  o"—ur—  ob—u—J L] " ,L } —

10 100 10 10 100 10 10 100 10 10 10

tions dominate the flow and mask faster motions. However, *° % 2 2 2
existence of the second dominant period leads to coherence
in behavior of high-order modes, which is different than that Fig. 12. z-statistics for different values 6 anda2. (a) r-mean,
low-order modes demonstrate. (b) T-variancec) z-skewness ant) t-kurtosis. Triangles, aster-
The coherence in behavior of modes can be explainedsks and circles corresponddé=2.0, 1.0, and 0.5.
by a number of mechanisms, such as synchronization of
weakly coupled oscillators (Pikovsky et al., 2000), modu- ) . . )
lation (Landa, 1996) and others. In practice these mech- We have called such bifurcations as the “f_u_ute-a_mphtude
anisms cannot be selected using only a driver-response rd?duced phase (non thermodynamic) transitions in model
lationship or the cross-spectral technique without a simplePredictability”.  They are detected using statistics of IPT,
physical model. Unfortunately, this is a great problem to SUch ast-variance, r-skewness and-kurtosis, but other
develop a model, which would adequately describe nonlin-measures of model predictability are also applicable.
ear oceanic flow dynamics with many degrees of freedom. Finite-amplitude phase transitions should easily be de-
Therefore herein we are not able to select one of the physicdected for any hydrodynamic model using the dependence of
mechanisms discussed in modern literature for explanatiodPT statistics ore? because the value of the tolerance level
of the coherent behavior of modes observed in our numericaliMits the maximum amplitude of perturbations existing in
experiments for finite-amplitude perturbations. However, un-the model. As an example, detection of the phase transition
doubtedly the observed coherent behavior is due to nonlineafer model (6-8) is described below.

interactions among modes and oscillations of the reference For small tolerance&€ <5.0x10-%) model predictability
flow. is low: z-mean does not exceed 20 days (Fig. 12a) and

variance is quite large, up to 25-27 day&ig. 12b). Ad-
ditionally, a large negative skewness abeud.5 (Fig. 12c)
7 Finite-amplitude-induced transition in predictability indicates that the IPT distribution has a tail stretching into
skill domain of small prediction times.
The mean IPT monotonically grows & increases
Our computations have shown that for strong winds model(Fig. 12a). Although here, the IPT grows with various rates
predictability demonstrates stronger sensitivity to amplitudesfor different tolerance levels, no bifurcations are observed in
of perturbations induced by the stochastic wind than to thethis figure. In contrast ta-mean, the value of-variance
choice of spatial structure function in Eq. (10). Intuitively, suddenly changes wheif becomes larger than@®x 103
larger-amplitude perturbations should cause faster decay dfthis value is taken as a threshold). The variance, which was
model predictability, what was confirmed by our numerical quite large (about 25-27 d&yfor small tolerances, suddenly
experiments for the mean predictability timemean mono-  reduces to 5 deywhenz? crosses the threshold (Fig. 12b).
tonically reduced a&? increases (not shown). Both t-skewness and-kurtosis also change considerably
Furthermore, our experiments have also shown that th€Figs. 12c, d). They converge asymptotically to 1.0 and 4.7,
collective behavior of finite-amplitude perturbations may respectively, ag? increases. Positive skewness corresponds
cause sudden changes (bifurcations) in the high-order statigo asymmetricc-PDF shapes with a tail stretching into large
tics of predictability time. This effect is clearly observed prediction times. The large kurtosis (much larger than 3) in-
when perturbation amplitudes exceeded some threshold, afiicate that PDF is highly non-Gaussian.
ter which the global correlations among the perturbations Typical 7-PDFs computed before and after the phase tran-
with different scales dominated the PE characteristics. sition, are given in Figs. 13a and b, respectively. Comparing
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120 140 - We apply the three-parameter Weibull statistics with dis-
(@) (b) tribution f(r) and cumulative distributiow® (r)
120 b

| B (t—r\! t—y\f
100 f(r)=5< n > eXp[_< n >} @
80 s

80 N _ B
60 i P(1) = eXp[— <t7y> } , (28)

60

100

events

40 40 for the analysis ofc. Here,n, y, and g are scale, shape,
and location parameters (von Storch and Zwiers, 1999). The
20 following original algorithm is developed to estimate the pa-

20 rameters of distribution (27) from an IPT ensemble sampling.

Closeness of two inverses of CDFs: X (P)(“real” value)

0 Q . .
0 10 . (dzgys) 30 40 035 . (ggys) 45 50 and Xo(P) (the first guess), may be estimated by the
Kullback-Leibler distanc& (White, 1994):
Fig. %3. Histograzms of I2PT computed faré=1.0. 1
(a) £¢=1.0x10"4, (b) £<=0.1. Q- /X(P) IN[X(P)/Xo(P)]dP. (29a)
0

them one to another, we find that the phase transition causehen, X (P) is the solution of the following variation prob-

the PDF tail stretching into domain of large prediction times. lem (Kapur and Kesavan, 1992)

This tail is formed by rare predictions of duration up to 50 .

days. Smaller variance and larger positive skewness shov§/2 — min. (290)

that model predictability was considerably enhanced after therne Kullback-Leibler distanc& should be a subject to ad-

phase transition. ditional constraints from the following condition: the proba-
Two physical mechanisms are responsible for the phas#ility weighted moments computed from the ensemble sam-

transition. First, it is clearly from Fig. 12a that the phase pling («1, @2, andaa) and theoreticallyd1, a2,andy) from

transition exists when the meanlPT is not less than 30 Eg. (4) must coincide. This condition is accounted for in

days. During this time period the model reaches the spin ugeg. (29) through additional constrain as

state. Different stability properties in the phase space near

and far away from the point are caused by the inhomogene- R

ity of model phase space. That leads to different statistics of? = / X(P)IN[X(P)/Xo(P)]dP + x1 (e1a—61)

PE before and after the phase transition. Second, even when 0

perturbation amplitudes are several percents of the reference 4, (2 — &2) + x3 (a3 — &3) — min. (30)

solution, a coherent behavior of different scales are clearly

observed. In this casevariance reduces due to strong cor- Wherexi, x2, andys are Lagrange multipliers.

relations among the scales (Kravtsov, 1993). Functional Eq. (30) is minimized with respect 0(P).
The solution of minimization problem (Eg. 30) is written as

X(P) = Xo(P)exp(—xaP = x2P?— xaP®).  (3D)
8 Weibullian statistics of IPT For details see Kapur and Kesavan (1992). Then, the La-
grange multipliersy1, x2, and x3 are determined by the
Our computations have shown that stochastic forcingquasi-Newton iteration method as a solution of nonlinear
Eq. (10), in general, induces highly non-GaussigPDFs for  least-square problem resulting from Egs. (30) and (31).
finite-amplitude PEs. The following question arises: what Our computations show that (a) the method discussed
kind of statistics can be used to represent sudbDFs? If  above is robust relative to sampling error if only few mo-
appropriate distribution function is found, it would be pos- ments are used as constrains, and (b) Lagrange multipliers
sible to identify the ensemble generated PDFs from limitedare estimated within 10-12 iterations only. In general case,
observation series and small forecast ensembles, and in tumwhen sampling error is considerable and more moments are
to estimate the model predictability horizon (i.e. maximum required in Eq. (30), the non-linear least-squares minimiza-
predictability time reached for the given model and wind un- tion problem is solved through the Levenberg-Marquardt it-
certainty (Kravtsov, 1993)). erative method (Engl et al., 1996).
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We did not find difference between the distribution func-  2s0 1
tion calculated by a non-parametrical technique based on the @ 0o ®)
Epanichenikov’s kernel and the bootstrap re-sampling pro- -
cedure (Good, 2001) directly from ensemble sampling, and 2% 08
appropriate Weibull counterpart obtained by the method (29— 07

31), at least at 95% confidence level. 150 06

This conclusion is illustrated for the ensemble sampling H '
shown in Fig. 14a. The-CDFs computed by the non-
parametrical technique (solid curve) and our method (black 04
dots) are compared in Fig. 14b. Differences between them
are negligible. The parametersy, and 8 are equal to
37.1x10°1 days, 30.0 days and IB<10~1, respectively. 50 0.2

Parametep affects the length of the PDF tail formed by
rare forecasts, which are longer than the mean ensemble fore
cast({r). Small 8 indicates enhanced probability for real- %30 3 10 a5 % 5 10 a5 %0
ization of abnormal long (in our case up to 50 days) model © (days) t-y (days)
forecasts.

events

Fig. 14. Identification oft-CDF. (a) IPT histogram for a 19term
ensemble;(b) CDF computed directly from the ensemble (solid
9 Model predictability horizon curve) and using the developed method (black dets)30 days.

Asymptotic behavior ofr-CDF ast—oo determines the

predictability horizon of the model, i.e. the maximum pre- high-order moments were computed for a large number of

dictability time of an individual forecasting for the given ensemble realizations (up to 50000). This guaranteed re-

model and statistics of wind perturbations (Kravtsov, 1993). duced sampling error and robustness in estimating the PE
Accordingly to Eqg. (28) the model predictability horizon statistics.

is calculated by Similar analysis is difficult to undertake in full-scale nu-

- 1B merical forecast ocean models due to limited computer re-
thor =y +n[=InP*]7T, (32)  sources. Generally, the full-scale models produce small en-
semble samples and therefore, cannot resolve the full com-
plexity of the PE. The idealized model revealed trends in PE
behavior and the model reconstructed PE statistics with min-
imum distortion. These statistics can be used for the analysis
of the smaller ensemble samples from the full-scale models.
Baroclinic high-resolution ocean models should be used to

where P* is the probability thatner will be achieved in an
individual forecasting. For fixed®* Eq. (32) shows a slow
power-law growth of the predictability horizon with the de-
crease of the shape parameter.

Let us estimate the predictability horizon for the example
discussed above. Substitution of the distribution parameters

obtained above into Eq. (32) leads to examine the following trends obtained in the present study.
The predictability time for small perturbations may be
Thor & 40.2 days 454 days and 50.5 days (33)  much larger than the inverse of the leading local character-

_ . istic exponent. The shallow water model showed that it is
. 2 3 4
for P*=1.0>107%, 1.0x10"* and 10x10°%, respectively. ,,qqjpie to have non-trivial time evolutions of small (but fi-

Tzhese (_egtimations demon_strat_e_that f(_)r the_ chosen values &fite) perturbations and that their growth could be fitted by
£“ ando“, the model predictability horizon is limited to 50

L ; N power laws although the perturbations were actually ampli-
gg:’ ia;ngnellirlzlydlwdual forecasting, which is longer than 50fied by the background flow. The power growth for all or a

portion of scales was determined by the cumulative effects of
multiple characteristic times .
10 Conclusions The expected growth of error and decay of skill occurs
most rapidly for smaller scales and, with time, expands to
A simple shallow-water model was used to understand senlarger scales. One of the main features of the ocean is the ex-
sitivity and predictability of ocean models with inaccurate istence of strongly interacting spatial scales, which raises the
wind forcing. This model used a highly idealized represen-possibility of different behavior of the PE at different scales
tation of ocean dynamics and did not simulate the redistri-of motion. It is traditionally assumed that small scales are
bution of PE between barotropic and baroclinic dynamics adess predictable than larger scales. This picture was drawn
high-resolution ocean models. However, due to the smalby Lorenz (1969) for perfect model scenario, and then trans-
number of degrees of freedom of the model (only 462 vari-ferred to the analysis of forecast error as a function of spatial
ables), distribution functions for predictability scale and its scale in operational atmospheric (see, for example Dalcher
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14 L. M. Ivanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing

and Kalnay, 1987) and oceanographic models (Brasseur athereZ,, andQ,, are linear and nonlinear (inertial and fric-
al., 1996, among others). tional) terms, respectively (for details see Pedlosky, 1987),

Our simplified model predicts existence of two additional and
predictability regimes for imperfect models. For large scale )
stochastic winds, the perturbations rapidly grew to horizontal = YmZ (bm SIN¢
scales comparable to those of the reference state. In contrast, air 1o 9G
smaller scale perturbations excited by the wind were subjecym = —CaH "%,,70°, by = // 3—wmdx1dxz,
to strong viscous damping. Therefore, the predictability of v i
wind-driven circulation was less affected by model uncer-and
tainties acting at small scales than at larger scales. Mahade- 3G
van et al. (2001), using a quasi-geostrophic ocean circulae,, = // —Ymdxidxo. (A3)
tion model for perfect-model twin experiments, found that dx2
such a scenario was favourable for weakly aperiodic, peri-The stochastic processes) andd(¢) are defined in Sect. 4.
odic, and stationary circulation regimes when the mesoscale The variance of Pl‘ga,zn> satisfies the obvious equation
energy content was relatively low. )

For stochastic wind that is limited to scales smaller than 4 <d;,> —2(<Z
those occupied by large-scale flow, perturbations on differ- dt
ent scales may grow coherently due to interactions amongith the wind error source term
them. The coherent growth of perturbations has been iden-
tified on different scales at various stages of PE evolution.Rm = ¥ [bm (zSiN0ay) + ¢ (zCOSOay,)] . (A5)
atonal atmospheric mocels (Boer, 2003, a5 an example IS/ C: 1= (2 /(©), average of Eq. (AS) can b diide
and quasi-geostrophic models (Vannitsem and Nicolis, 1997lnto t\_NO steps. (1)’?161’" is averaged ovey. (2) The obtained
McWilliams and Chow, 1981, among others). McWilliams function <rmap>; is averaged ove. .
and Chow (1981) demonstrated that for a simple three-leve, The c_orrela‘uon function<za,, >. 'S anaIy'ucaIIy calcu- .
quasi-geostrophic model, all scales of motion exhibited aated using the cumulant decomposition (Klyatskin, 2005):
similar growth rate after a short transient phase. The coherent ~ t t
growth of PE on different scales can be found in imperfect (, )4, (1)), = Z (l) / .../dtl...dts;cﬁl(t, 1y s ty)
quasi-geostrophic models too (for example, see Vannitsem, AN ; ;
2006). These and other results (not discussed here) indicate N

— ¢y COSO) , (A2)

mam> + <Omam> + <rmam>),  (A4)

that the coherent growth of PE may be caused by model in- <M> . (A6)
dependent (universal) mechanisms, which require further in- dz(11)...8z(5) [,
vestigation.

. L . Here,k,(t1, ..., t;) is the s-th order cumulant of the noise
The present study introduced a new statistics (Welbull)-l-he notation’” denoted the functional derivative
8z .

for finite-amplitude PE and suggested a practical way for its For a stationary—correlated noise one obtains
identification through the probability weighted moments and

a variation principle. This extremum statistics is often ob- x, (11, ..., t;) = ks (t1)8(t1 — 12)...8(ts — ts—1), (A7)
served to arise in finite sized, multi-body systems, exhibiting . . . .
correlation over a broad range of scales, leading to emergetN€ré ks (11) are the intensity coefficients (Stratonovich,
phenomenology, such as self-similarity and in some cased963). o ) )

fractional dimensions (Boffetta et al., 2002). A universal ap- Substituting Eq. (A7) into Eq. (A6) yields

proach to extract extremum statistics from short- and inter- o0 554, (1)
mediate marine forecasts was suggested. Possible generalz(¢)da, (1)), = Z (—'>ks+1(t) <5LS> , (A8)
ization of the approach for small forecast ensembles will be s=1 \ 5 dONNE
discussed in a separate paper. From Eq. (A1) we obtain fos=1

Sam (1) .
Appendix A < Szm(t) > = Y (b COSO + c1 SING) (A9)

g Z
Wind error source term and fors>2
s

Using the quasi-geostrophic approximation, governing <M> —=0. (A10)
Egs. (6-8) can be re-written in the spectral form 8z()* |,
day, Taking into consideration that for exponential distribution
—— = Zpy(ar) + Omla, ar) + ry (1), (AL) function the s-order cumulant is calculatedkas-2-(s — 1)!

dt
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(Zelen and Severo, 1972), and averaging Eq. (A9) over theCao, R. and Pope, S. B.: Numerical integration of stochastic dif-

stochastic procestr) we find ferential equations: Weak second-order mid-point scheme for
2, 2 2 application in the composition PDF method, J. Comput. Phys.,
R = v (b, + €3, (A11) 185, 194-212, 2003,

The Coeﬁ:|c|ent$m and Cm depend Only on the Spatlal in- Capotondi, A. and Holland, W. R.: Decadal Variability in an ideal-
homogeneity of stochastic wind forcing. Spectrum of wind ized ocean model and its sensitivity to surface boundary condi-

error termr,, for different structure function§ is shown in tions, J. Phys. Oceanogr, 27, 1072-1093, 1997. .
Figs. 9a, b, ¢ Chu, P. C. and Ivanov, L. M.: Statistical characteristics of irre-

versible predictability time in regional ocean models, Nonlin.
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