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Abstract

A technique is developed to determine the orbit of a sunlight illuminated satel-

lite passing through the field-of-view of a sensor platform in a Highly Elliptical Orbit

(HEO) and Geosynchronous orbit (GEO). The technique develops two different meth-

ods of initial orbit determination. The first relies on the Gauss initial orbit determi-

nation method to develop an estimate of the state from angular data. The second

method relies on positional data of the target relative to the Earth’s background to

determine an estimate of the state. These estimates are then refined in a non-linear

least squares routine. This estimate of the state is then used to identify the target

from the Air Force Space Command satellite catalog.

It was found that the Gaussian initial orbit determination method produced

reasonable estimates of the state given data sets larger than 30 seconds. The second

method proved to be useful when only very limited data sets were available and had

no limitations on data size. The least squares process was able to compensate for

errors of as much as 5 degrees in the initial estimate of the state values. In all HEO

test cases the estimate of the state vector provided enough information to identify the

target satellite from the satellite catalog. In GEO test cases it proved impossible to

identify other objects in GEO given the limited data available. The method developed

also proved unreliable in identifying orbits with eccentricities greater than .35. Over

82 percent of the objects listed in the Air Force Space Command satellite catalog can

be successfully identified in orbit using this method.
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Space Based Satellite Tracking and Characterization

Utilizing Non-Imaging Passive Sensors

I. Introduction

1.1 Objective and Scope

Satellite based sensors looking down at the Earth’s surface occasionally observe

reflected light from an object passing through the image which is moving too fast

relative to the background of the image to be located within the atmosphere. These

objects are commonly called fastwalkers. This term refers to any orbital object seen

passing through the field of view of an Earth observing sensor which is suspected of

being in orbit. The objective of this thesis is to develop a method to determine the

orbit of these objects from a sensor in a highly elliptical orbit (HEO) and geosyn-

chronous orbit (GEO) and then match them to an object in the Air Force Space

Command (AFSPC) catalog of satellites.

In order to conduct this analysis a few basic assumptions must be made. First,

the sensor ephemerids are known exactly since the position of the observer is necessary

to relate the observations to a location in space. Second, the targets are assumed to

be non-thrusting bodies in low Earth orbit (LEO), meaning they are at or near the

Earth’s surface below 2000 km in altitude. This assumption is reasonable for a HEO

satellite because the number of objects in a HEO orbit is very small, so very few non-

LEO spacecraft are likely to appear in the HEO sensors field of view. This assumption

is not valid for a GEO sensor. Therefore, we will need to differentiate between targets

in LEO and GEO when using observations from a GEO platform. Lastly, since the

objects are in a LEO orbit and the sensor field of view is limited, we will assume

that the maximum amount of time for which a data track is visible is less than 4

minutes. Given this brief period of observational data, it will be assumed that orbital

1



perturbations will have no visible effect on the orbit. For this reason the two body

equations of motion are sufficient to estimate the orbital element set.

The simulated data for this project was generated by the Satellite Tool Kit

(STK) available from Analytical Graphics Incorporated (AGI). This software is cur-

rently among the most versatile available and is commonly used for orbital modeling

within the Army and Air Force Space Community. Version 7 of STK was used in the

generation of all orbital data.

1.2 Research

In his thesis Osedacz [9] states that a database of fastwalker observations exists

with data from as far back as 1972. He uses this data from obtained ballistic missile

early warning satellites in GEO to attempt to determine the orbit of these fastwalkers.

His conclusion was that determining the orbit of other fastwalkers in GEO was im-

possible. This supported the conclusions of an earlier work conducted by Lem Wong

on the inability to determine the orbit of these objects. The research conducted by

Wong is no longer available, but according to Osedacz, the problem was found to be

unsolvable in a GEO orbit. This conclusion stemmed from the fact that most of the

fastwalkers were determined to also be in Geosynchronous orbit with the sensor. The

result was an inability to determine the range to the target.

The two previously mentioned works dealing with fastwalkers focused on sensors

in GEO orbit. In a recent paper published by Li, Guo, and Zhou at the Chinese

National University of Defense Technology, a Kalman filter was used to successfully

determine an estimate of the orbital elements of an object visible from a sensor in

HEO orbit [7]. The Kalman filter needed over 30 minutes of tracking data to converge

on a solution that was accurate to within 4 kilometers. This method was inapplicable

to the central problem of this thesis, since a sensor in HEO orbit cannot normally

observe an object in LEO orbit for that amount of time. Very little research exists

using angles-only data from a space platform and almost nothing on the problem of

fastwalker orbit determination.

2



1.3 Approach

In addition to the sensor ephemerids, it was assumed that the time of each

observation, the azimuth and elevation to the target in the sensor frame, and the

latitude and longitude of the target against the background of the Earth were available

data. The general method of correlating observed tracks to entries in the Air Force

Space Command catalog was to use one of two initial orbit determination techniques

and then to use a least squares process to refine the estimate of the state vector. The

catalog could then be screened for possible matches by successively applying filters

based on the estimates of the elements in the state vector.

The state vector consisted of four elements. Three of which are necessary to

identify the target. The elements of the state vector are: right ascension of the

ascending node (RAAN), inclination of the orbit plane, an argument of latitude which

is equal to the mean anomaly of a circular orbit and an estimate of the altitude of the

target fastwalker. For the purposes of this research, both the node and the inclination

were treated as constants. They were then used to search the catalog, assuming that

the most recent catalog is used so that the change in RAAN is small.

The first initial orbit determination technique used the latitude and the longi-

tude of the background image. Spherical trigonometry was then used to determine

the state. The second initial orbit determination technique was the classic initial orbit

determination technique developed by Gauss. This technique used the azimuth and

elevation data to estimate the state vector.

Once an initial estimate of the state vector was obtained, a non-linear least

squares process was applied to refine the estimate using the rest of the data points

available in a given track. This refined estimate of the state was then used to search

the catalog for the right ascension of the ascending node and inclination near the

estimate of the state. Once a candidate was found, it could be propagated to the

epoch time of the estimated state and it’s argument of latitude compared to that of

3



the estimated state. A match would then allow us to confidently state that we had

identified the orbital object.
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II. Orbit Generation Equations and Methods

This chapter presents the equations necessary to develop an accurate model

of an orbiting object for the purpose of determining its orbit. The element sets,

coordinate frames and transformations used will be discussed in detail. This chapter

will also focus on describing the problem geometry and develop two different initial

orbit determination techniques. The first initial orbit determination technique that

will be discussed is the classic Gauss method, which uses three measurements of

azimuth and elevation in the sensor frame. The second technique discussed uses

latitude and longitude data from the background of the image produced by the sensor.

Descriptions of both techniques and their development are discussed in this chapter.

2.1 Problem Geometry

Understanding the geometry of the problem is fundamental to solving it. Both

initial orbit determination methods rely on the same fundamental equation. If we

let the vector ~r represent the position of the object with respect to the center of the

Earth, ~ρ is the range of the target satellite from the sensor, and ~R is the position of

the sensor then we can write by observation that

~r = ~ρ + ~R = ρL̂ + ~R (2.1)

where L̂ is a vector of direction cosines, as shown in Figure 2.1.

2.2 Element Sets

2.2.1 Classical Orbital Elements. To describe an orbit under the assumption

of a two-body gravity model, six or more parameters are required in addition to an

epoch time. For example, given some time, t0, and the position and velocity vectors

of a satellite, we can fully describe the current state of a satellite. However, due to the

limited nature of the data obtained from our observations and the need to limit the

number of values in our state vector when using non-linear least squares, the Classical

Orbital Element set was chosen as the parameter set in this work. In this element set
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Figure 2.1: Problem Geometry

five of the six elements are constant and one varies periodically through a single orbit

of the observed spacecraft. For this reason, the Classical Orbital Elements simplifies

the process of developing an estimate of the satellite state. Although many sources

define this orbital set, Wiesel [16] provides a solid development, which we will vary

from only slightly here.

The classical orbital elements are:

a - The Semimajor Axis

e - Eccentricity

i - Inclination

Ω - Right Ascension of the Ascending Node

w - Argument of Perigee

v - True Anomaly

When describing the Classical Orbital Elements, it is necessary to first determine the

shape of orbits around a body. An orbit around a body can be described as a conic

section, which is generated by slicing a circular cone with a plane. Five types of conic
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Figure 2.2: The Classical Orbital Elements

sections can be formed in this way, but we are only concerned with two, the circle and

the ellipse. The semi major axis, a, is a constant which describes half of the major

axis of an ellipse. The shape of the ellipse is defined by the eccentricity, e, which is a

value in the interval 0 ≤ e ≤ 1 and for a circle e = 0.

The inclination of an orbit refers to the tilt of the orbital plane. This angle is

measured from the unit vector described by the Z axis to the angular momentum

vector, ~h, and varies from 0 ≤ i ≤ 180 degrees, as shown in Figure 2.2. It can be

defined in terms of these quantities by,

cos (i) =
Ẑ · ~h
∣

∣

∣
Ẑ
∣

∣

∣

∣

∣

∣

~h
∣

∣

∣

(2.2)

The right ascension of the ascending node, Ω, is the angle in the equatorial

plane measured positively from the X axis to the point on the orbit where the satellite

crosses the equator moving from South to North. Values for the ascending node range

from 0 ≤ Ω ≤ 360 degrees. All inclined orbits also have a descending node where the
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satellite crosses the equator moving from North to South. The line connecting these

two points is called the Line of Nodes.

The final two elements of the set are interrelated. The Argument of Perigee, w,

is the angle formed between the Line of Nodes and the point at which the orbit is

closest to the Earth, called perigee. Values for the Argument of Perigee range from 0

to 360 degrees. The True Anomaly, v, is undefined for perfectly circular orbits, which

the least squares model in this thesis assumes. For circular orbits this value is replaced

with a measurement of the angle between the right ascension of the ascending node

and the actual position of the satellite at some epoch time. For this thesis, we will

refer to this as the Argument of Latitude. For non-circular orbits, the True Anomaly

is not measured from the line of nodes but from the perigee point as pictured in Figure

2.2. Values for both also range from 0 to 360 degrees.

Figure 2.3: Two Line Element Set

2.2.2 Two Line Element Set. While the Classical Orbital Elements are used

widely, the Air Force Space Command catalog of satellites is published using a set of

elements commonly referred to as the Two Line Element set (TLE). An example of

a TLE is shown in Figure 2.3. This system of describing orbits is a relic of the need,

before the modern age of computing, to use punch cards in order to have the data read

by computers. Space Command’s catalog is the most up to date and reliable catalog

of objects in orbit around the Earth. For this reason, it is used as the database for

our search.
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2.3 Coordinate Frames

Several Coordinate Frames are used for the purposes of generating data and

describing the orbits of the objects within them. The transformations between these

coordinate frames and their use is described.

2.3.1 Earth Centered Inertial Frame. The Earth Centered Inertial Frame

(ECI) originates at the center of the Earth and is designated in Figure 2.2 by the

letters XYZ. The fundamental plane of this coordinate frame is the Earth’s Equator.

The X axis points towards the vernal equinox. The Y axis is 90 degrees to the East

of the X axis in the equatorial plane. The Z axis extends through the North Pole.

Another set of labels that are commonly used for these are IJK.

2.3.2 Sensor Frame. The sensor frame is a slightly modified Topocentric

Horizon Coordinate System (SEZ). This system is commonly used for ground based

telescopes where the local horizon forms the fundamental plane. The S axis points

South from the observer. The E axis points East and is undefined at the poles. The Z

axis points outward from the center of the Earth. In the sensor frame the coordinate

system is translated along the radial direction from the surface of the Earth to the

center of the observing satellite. See Figure 2.1 for an example of the coordinate

frame with reference to the problem geometry. Measurements taken in this frame are

azimuth (Az) and elevation (El). Azimuth is measured positively clockwise from the

-S axis and elevation is measured negatively down from the plane formed by the E

and Z axis where the negative Z axis would be -90 degrees. The line-of-sight unit

vector to the target in the sensor frame, L̂h, can then be defined as:











Lhx

Lhy

Lhz











=











−cos (Az) cos (El)

sin (Az) cos (El)

sin (El)











(2.3)

9



Figure 2.4: Right Ascension and Declination

2.3.3 Right Ascension and Declination Frame. When using the Gauss Initial

Orbit Determination Method the measurements are taken as azimuth and elevation in

the sensor frame and need to be transformed into right ascension and declination. In

order to transform from the sensor frame to the right ascension-declination frame, the

sensor frame unit vector found from equation (2.3) is needed. Before transformation

between the two coordinate frames is possible, the two angles described by λ and φ

in Figure 2.4 need to be found. Recall that we assumed we know the position of the

sensor, ~R. It’s ECI components can be defined as Ri, Rj, Rk. Then a vector ~Rij may

be defined as

~Rij =











Ri

Rj

0











(2.4)

10



The angle φ can then be found by:

φ = acos





~Rij · ~R
∥

∥

∥

~Rij

∥

∥

∥

∥

∥

∥

~R
∥

∥

∥



 (2.5)

We can then similarly use either the I axis unit vector or the i component of ~R to

find λ by:

λ = acos





~Rij · ~X
∥

∥

∥

~Rij

∥

∥

∥

∥

∥

∥

~X
∥

∥

∥



 (2.6)

Care must be taken when using this equation, it requires a quadrant check of the

position of the sensor to determine if θ is greater than 180 degrees. With θ now

defined it is then possible to transform the sensor frame measurement unit vector ~Lh

into the right ascension-declination frame.











Li

Lj

Lk











=











sin (φ) cos (λ) −sin (λ) cos (φ) cos (λ)

sin (φ) sin (λ) cos (λ) cos (φ) sin (λ)

−cos (φ) 0 sin (φ)











·











Lhi

Lhj

Lhk











(2.7)

2.3.4 Geocentric Latitude and Longitude. Measurements of latitude and

longitude can be found using the background of images taken by the sensor platform.

These measurements can then be used to approximate the position of a low earth orbit

satellite’s position near the Earth’s surface. These measurements are typically given in

terms of surface coordinates on the Earth’s surface, referred to as geodetic coordinates.

Since the Earth is not perfectly spherical and does in fact have a slightly elliptical

shape it is necessary to convert these measurements to geocentric coordinates. First

we need to define a flattening constant, Fearth which describes the elliptical shape.

Fearth =
1

298.257223563
(2.8)
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It is then possible to find the geocentric latitude given the geodetic latitude.

Latgeocentric = atan
(

(1 − Fearth)
2 tan (Latgeodedic)

)

(2.9)

2.4 Initial Orbit Determination Techniques

The nature of the data provides no direct measurement of range. We are then

limited to angles only initial orbit determination techniques by this. These techniques

have classic roots with the methods of Gauss and Laplace with more recent work in

the field having been done by R.H. Gooding [4,5] and in a published technical paper

by the National Aeronautics and Space Administration (NASA) [2]. Despite this, the

number of unique methods developed since Gauss and Laplace is extremely limited.

For over 150 years, there were many refinements of these two unique techniques devel-

oped. However, the next significant work was not published until 1959 by R.E. Briggs

and J.W. Slowley [1], although mention is made by both B.G. Marsden [8] and L.K

Kristensen [6] of a little known technique developed in 1939 by Vaisala for which I

could find only broad descriptions. The Briggs and Slowley technique, relying on the

recent development of computers, introduced an iterative method of angles only initial

orbit determination. This method formed the basis for an entirely new method by P.

Escobal [3] called double-r iteration. Most recently, Vallado [15] reviewed the three

primary techniques of Gauss, Laplace, and Escobal iteration, recommending them as

the current standard in initial orbit determination. This work considered only these

three methods and R.H. Gooding’s recent work in selecting a suitable initial orbit

determination method.

These four techniques represent a broad range of approaches to solving the initial

orbit determination problem, but we will focus only on their effectiveness in terms

of the number and angular separation of the observations that is necessary for them

to function. The Gooding technique is an iterative technique developed specifically

for Earth orbiting satellites which relies on angular data developed over multiple

revolutions. For our purposes, this method is impractical for the problem considered
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in this thesis. A thorough development of the remaining techniques is developed

by Escobal [3]. He states that the double-r iteration technique is preferable but it

requires data spanning large arcs or a number of revolutions. The standard Laplacian

technique is a classic technique optimized for determining the orbits of very distant

heliocentric planetary orbits [3]. The Laplacian method is not considered robust

or reliable enough for satellite observations [15]. Escobal states that the preferred

method for short arcs is Gauss [3]. However, this recommendation is not unanimous.

A vigorous condemnation was made of the Gauss technique by L.G. Taff [13], in which

he cited its poor radius of convergence based on it’s use of series functions but it has

also been equally well defended by B.G. Marsden [8].

Two primary initial orbit determination techniques will be used. The first is the

classic Gauss Technique which relies on three position vectors and their associated

times. The Gibbs or Herrick-Gibbs technique is then used to determine the velocity

vector at the central position and obtain a complete description of the orbit. The

Gauss method can be modified to use either azimuth and elevation measurements in

the sensor frame or geocentric latitude and longitude measurements obtained from

the background of the image generated by the sensor. The second technique is less

sophisticated and uses the same latitude and longitude measurements applied on a

sphere to obtain a partial description of the orbit.

2.4.1 Gauss Angles-Only Initial Orbit Determination. This development

and description of the Gauss technique follows that of Escobal [3] and Prussing and

Conway [10]. Since the motion of the object occurs in a plane, it is possible to express

the position vector at any time as a linear combination of the position vectors at any

two other times. Therefore, it should be possible to determine a set of scalars a, b, c

not all zero such that

a~r1 + b~r2 + c~r3 = 0 (2.10)
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If we solve for the central date corresponding to ~r2 and denote the new coefficients

by c1 and c3,

~r2 = c1~r1 + c3~r3 (2.11)

Expressions for the coefficients in the above equation can be found by taking

the cross products of the equation with the first and third position vectors.

c1 =
|~r2 × ~r3|

|~r1 × ~r3|
(2.12)

c3 =
|~r2 × ~r1|

|~r3 × ~r1|
(2.13)

To solve for c1 and c3, the f series function and g series function are used. These

functions allow us to express the position vector at some time, ~ri, in terms of the

velocity, ~v, and position, ~ri±j at some other time.

~r1 = f1~r2 + g1~v2 ; ~r3 = f3~r2 + g3~v2 (2.14)

where f and g are:

f3 = 1 −
(t3 − t2)

2

2
h2 ; g3 = (t3 − t2) −

(t3 − t2)
3

6
h2 (2.15)

f1 = 1 −
(t1 − t2)

2

2
h2 ; g1 = (t1 − t2) −

(t1 − t2)
3

6
h2 (2.16)

where we can define h2 using Earth’s gravitational parameter µ,

h2 ≡
µ

|~r2|
3

(2.17)
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Now we can define a new time variable, τ , to simplify the time differences in equations

(2.15) and (2.16).

τ1 ≡ t3 − t2 ; τ2 ≡ t3 − t1 ; τ3 ≡ t2 − t1 (2.18)

If we combine equation (2.12) and equation (2.14) we get;

c1 =
|~r2 × ~r3|

|~r1 × ~r3|
=

|~r2 × (f3~r2 + g3~v2)|

|(f1~r2 + g1~v2) × (f3~r2 + g3~v2)|

c1 =
g3

(f1g3 − f3g1)
≈

τ1

τ2

[

1 +
(τ 2

2 − τ 2
1 )

6
h2

]

(2.19)

Similarly:

c3 ≈
τ3

τ2

[

1 +
(τ 2

2 − τ 2
3 )

6
h2

]

(2.20)

Combining equation (2.1) with equation (2.11) we obtain:

ρ2L̂2 − c1ρ1L̂1 − c3ρ3L̂3 = c1~rsite1 + c3~rsite3 − ~rsite2 (2.21)

where:

• c1 and c3 are functions of |~r2| and t1,t2,t3.

• L̂1,L̂2,L̂3 are observationally determined from either the background latitude

and longitude or the observed azimuth and elevation angles from the observer

to the target.

• ~rsite1,~rsite2,~rsite3 are the position vectors of the sensor platform with respect to

the center of the Earth and are known.

Equation (2.21) represents a set of three scalar equations with the four unknowns

ρ1,ρ2,ρ3 and |~r2|. Therefore one more independent equation must be added to create

a system that can be solved.
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|~r2|
2 = ρ2

2 + |~rsite2|
2 + 2ρ2L̂2 · ~rsite2 (2.22)

We can now rewrite equation (2.11) as:

c1~r1 + c2~r2 + c3~r3 = 0 (2.23)

where c2=-1 or in terms of equation (2.21),

c2ρ2L̂2 + c1ρ1L̂1 + c3ρ3L̂3 = −c1~rsite1 − c3~rsite3 − c2~rsite2 ≡ M (2.24)

expanded in matrix form,











L1x L2x L3x

L1y L2y L3y

L1z L2z L3z





















c1ρ1

c2ρ2

c3ρ3











= M = [L]











c1ρ1

c2ρ2

c3ρ3











(2.25)

Therefore, we can separate the matrix of line-of-sight unit vectors by inverting it,











c1ρ1

c2ρ2

c3ρ3











= [L]−1 M (2.26)

where

[L]−1 ≡ [A] =











a11 a12 a13

a21 a22 a23

a31 a32 a33











(2.27)

At this point we need to redefine (2.19) and (2.20) in terms of new variables,

c1 =
g3

f1g3 − f3g1

≈
τ1

τ2

[

1 +
(τ 2

2 − τ 2
1 )

6
h2

]

= A1 + B1h2 (2.28)
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c3 ≈
τ3

τ2

[

1 +
(τ 2

2 − τ 2
3 )

6
h2

]

= A3 + B3h2 (2.29)

where we then define the vectors ~A and ~B as:

~AT =
[

A1 −1 A3

]

; ~BT =
[

B1 0 B3

]

(2.30)

We can also define the site vector, ~rsite, at all three times such that,

[

X
... Y

... Z
]T

=











~rsite1x ~rsite2x ~rsite3x

~rsite1y ~rsite2y ~rsite3y

~rsite1z ~rsite2z ~rsite3z











(2.31)

If we solve for ρ2 in equation (2.26) we can see that

ρ2 = A∗

2 + B∗

2h2 (2.32)

where

A∗

2 = a21
~A · ~X + a22

~A · ~Y + a23
~A · ~Z;

B∗

2 = a21
~B · ~X + a22

~B · ~Y + a23
~B · ~Z

(2.33)

Similarly from (2.26) if we solve for ρ1 and ρ3 we find,

ρ1 =
A∗

1 + B∗

1h2

c1

; ρ3 =
A∗

3 + B∗

3h2

c3

(2.34)

where

A∗

1,B
∗

1 ,A
∗

3,B
∗

3 are similar in form to A∗

2 and B∗

2

A∗

1 = −
(

a11
~A · ~X + a12

~A · ~Y + a13
~A · ~Z

)

;

B∗

2 = −
(

a11
~B · ~X + a12

~B · ~Y + a13
~B · ~Z

) (2.35)
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A∗

3 = −
(

a31
~A · ~X + a32

~A · ~Y + a33
~A · ~Z

)

;

B∗

3 = −
(

a31
~B · ~X + a32

~B · ~Y + a33
~B · ~Z

) (2.36)

However equations (2.32) and (2.34) still contain the term h2 defined earlier by (2.17)

which is still unknown. So in order to determine the magnitude of the radius vector

to our target at the central time, r2, one final equation is needed.

r2
2 = r2

site2 + (A − 2∗ + B∗

2h2)
2 + 2

(

L̂2 · ~rsite2

)

(A − 2∗ + B∗

2h2) (2.37)

Or, in its more recognizable 8th order polynomial form,

r8
2 − r6

2

[

r2
site2 + A∗2

2 + 2
(

L̂2 · ~rsite2

)

A∗

2

]

−r3
2

[

2A∗

2B
∗

2µ + 2
(

L̂2 · ~rsite2

)

B∗

2µ
]

− B∗2
2 µ2 = 0

(2.38)

A key point in the process must be highlighted here. In most forms of the Gauss

algorithm, the emphasis is placed on selecting the largest root of the polynomial as the

correct value of the magnitude of the radius vector from equation (2.38). This is true

when looking out from the origin of your inertial coordinate frame with |~r2| > |~rsite2|.

However, in this problem we are looking in towards the origin |~r2| < |~rsite2| and so

root selection varies slightly. Selecting the largest root of the polynomial will return

the position of the observing sensor. I found that the second largest positive real root

is, in fact, the correct value for the magnitude of r2. With that, it is then possible to

use this method to find three position vectors for the target satellite.

2.4.2 Calculating The Velocity Vector. Using the Gauss method discussed

in the previous section, it is possible to determine the position vector of the target

satellite at three different times. In order to gain a complete understanding of an orbit

in three dimensional space, the velocity vector at one of the three position vectors

must also be known. To determine the satellite velocity vector there are two primary
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techniques which are used depending on the spread of data, the Gibbs and Herrick-

Gibbs methods. The Gibbs solution relies on the geometry of the problem to solve for

the velocity vector and works best when the spread of data is greater than five degrees,

whereas the Herrick-Gibbs method relies on a Taylor series expansion and works best

when the spread of data is less than one degree. Between one and five degrees both

methods work reasonably well [15] and for the purposes of this thesis four degrees was

selected as the crossover point between the two methods. To check the separation

between the position vectors for the purposes of determining the appropriate technique

to use in determining the velocity vector the following equations were used.

cos (α12) =
~r1 · ~r2

|~r1| |~r2|
(2.39)

cos (α23) =
~r2 · ~r3

|~r2| |~r3|
(2.40)

By taking the sum of these two angles we can determine which method is more

appropriate to the data to use.

2.4.3 Gibbs Method. As mentioned earlier, the Gibbs method relies on a

geometric solution to solve for the velocity vector. The solution method presupposes

that we know three, non-zero, coplanar position vectors, which represent three se-

quential times of the target satellite in its orbit. From the Gauss method we have

the appropriate data on the satellites position and the associated sequential times.

When using this method, it is important to know the order of the position vectors in

time because it relies on several cross products in its solution. We begin by defining

a vector, ~D, as:

~D = ~r1 × ~r2 + ~r2 × ~r3 + ~r3 × ~r1 (2.41)
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So ~D is a vector which is perpendicular to the plane formed by the three position

vectors of the target satellite. We also need to define a second vector perpendicular

to the plane, ~N , as:

~N = r1 (~r2 × ~r3) + r2 (~r3 × ~r1) + r3 (~r1 × ~r2) = ρ ~D (2.42)

If the position vectors of the target satellite are not in the same plane then the

Gibbs method will fail. However, for non-maneuvering spacecraft, it is a reasonable

assumption that the motion is planar. Observational errors can still cause the vectors

to appear non-planar. A method of solving for the planar separation between the

position vectors is:

αcoplanar = 90o − cos−1

(

(~r2 × ~r3) · ~r1

|~r2 × ~r3| |~r1|

)

(2.43)

Since the observational data collected from the focal plane array contains error, this

value will never be exactly zero so it is necessary to choose a tolerance for this value.

Given the quality of the data analyzed, a tolerance of less than one degree proved to

be sufficient. Continuing on with the Gibbs method, we need to define one additional

vector quantity before we can find the velocity vector at the central time, ~S.

~S = r1 (~r2 − ~r3) + r2 (~r3 − ~r1) + r3 (~r1 − ~r2) (2.44)

Finally, we can calculate the velocity vector at the central time and obtain a complete

picture of the orbit at our selected epoch time.

~v2 =
1

r2

√

µ

ND
~D × ~r2 +

√

µ

ND
~S (2.45)

2.4.4 Herrick-Gibbs Method. The second method which was used to solve

for the velocity vector of the target satellite was the Herrick-Gibbs method. It is

used when the vectors are too close to one another for the Gibbs method to work
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successfully. This method also uses the three observation times associated with the

three sequential position vectors used in the Gibbs method. As in the Gibbs method,

it is necessary to conduct a coplanar check of the position vectors using equation

(2.43) to determine the validity of the data for use. Before calculating the velocity

the change in time between position vectors of the target can be defined as:

∆t31 = t3 − t1

∆t32 = t3 − t2

∆t21 = t2 − t1

(2.46)

Now using a truncated Taylor series expansion we can solve for the velocity vector at

the central epoch.

~v2 = −∆t32

(

1

∆21∆t31
+

µ

12r3
1

)

~r1 + (∆t32 − ∆t21)

(

1

∆21∆t32
+

µ

12r3
2

)

~r2

+∆t21

(

1

∆32∆t31
+

µ

12r3
3

)

~r3

(2.47)

The final result of the Gauss method is an estimate of the position and velocity

vectors of the target satellite. These values must be converted to the classical orbital

elements used in the state vector during the non-linear least squares process that will

be discussed in Chapter 3. All of the classical orbital elements are calculated from

the estimate provided by Gauss, but only the four values in the state vector are kept.

The full element set calculated by Gauss only becomes useful when the target is not

identified in the AFSPC catalog as discussed in Chapter 4.

2.4.5 Spherical Trigonometry. The second initial orbit determination tech-

nique utilizes a simpler approach to obtain an incomplete picture of the targets orbital

elements, but it is enough to identify it within the catalog. This method assumes that

the observed satellite is at or near the Earth’s surface in a circular orbit. This as-

sumption does introduce error, but it does not significantly affect the information
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Figure 2.5: Initial Orbit Determination Using Spherical Trigonometry

about the orbital plane, which is defined by right ascension of the ascending node

(RAAN), Ω , and inclination. It is these two elements that are initially used to find a

match in the AFSPC catalog. Using some simple spherical trigonometry it is possi-

ble to obtain enough information to begin the least squares iteration, see Figure 2.5.

This method relies on knowing the location of the reflected signature from a target

relative to the background of the Earth. Typically this is how fastwalkers are seen

on imagery taken from a platform. After being processed the imagery is fitted with a

latitude and longitude grid. Using the known location of the target fastwalker at two

closely related times we can find the angle between true North and the orbit plane,

the azimuth, by:

Az = atan

(

∆Latitude

∆Longitude

)

(2.48)

It is then possible to find the angle ∆ in Figure 2.5 if we define latitude at epoch as

δ through,

∆ = atan (sin (δ) tan (Az)) (2.49)
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We can use ∆ to find the RAAN. If we define λE as the longitude East of the meridian

and θGMST as the Greenwich mean sidereal time, then the the node can be found using

equation(2.50).

Ω = λE + θGMST − ∆ (2.50)

The argument of latitude, θ , can then be found using the latitude.

θ = acos (cos (∆) cos (δ)) (2.51)

The inclination of the orbit is then found easily.

i =
sin (δ)

sin (θ)
(2.52)

If we assume a small change in time between observations we can also find θ̇ by,

θ̇ ∼=

√

(∆Longitude)2 cos2 (Lat) + (∆Latitude)2

t2 − t1
(2.53)

Finally using θ̇ we can obtain an estimate of the satellite’s altitude above the Earth’s

surface. If we define µ as the gravitational constant of Earth, REarth as the radius of

the Earth, and h as the altitude we can find altitude using,

θ̇ =

√

µ

(REarth + h)3
(2.54)

which is related to the TLE set value of revolutions per day by Kepler’s third law.
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III. Non-Linear Least Squares

The method used to refine the initial state vector, found through either the

Gauss initial orbit determination or using the spherical trigonometry technique, is

non-linear least squares. The initial orbit determination techniques discussed earlier

are deterministic in their approach. Both methods use an equivalent amount of known

values to solve for a set of equivalent unknowns. What both of them lack is an ability

to account for less than perfect data and for additional observations outside those

necessary to obtain the unknowns. Non-linear least squares allows for the introduction

of noise into the data as well as for the incorporation of additional observations to

compensate for that noise.

Least squares dates back to the work of Legendre and Gauss at the beginning of

the 19th century [14]. Legendre first published a method recognizing the importance

of observational errors and proposed the least squares solution as a method for min-

imizing those errors in 1806. Gauss later published a probabilistic method for using

least squares in 1809, but claimed to have developed and used it as early as 1795

and so is given the credit for having originated the method. Regardless of whoever

originated the idea, it has undergone much refinement over the two centuries since it

was first developed.

3.1 General Method of Non-Linear Least Squares

Non-linear least squares was developed by Gauss to model the non-linearity of

real world systems. For the purposes of this thesis we have a non-linear dynamic

system and non-linear observation geometry which requires the use of this method.

Since the system dynamics are available as an explicit solution

x (t) = h (x (t0) , t) (3.1)
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which is a function of time and initial conditions, we can linearize the dynamics in

the following manner.

δx (t) = Φ (t, t0) δx (t0) (3.2)

Where the quantity δx will be small. Before the dynamics can be successfully lin-

earized an initial trajectory must be obtained to linearize about. The ’true’ value of

the system state, x0, is unobtainable so we use a reference trajectory xref , which is

hopefully close to the true system state. The reference trajectory is obtained from us-

ing either the Gauss initial orbit determination technique or by utilizing the spherical

trigonometry technique.

The condition of the available observational data must also be considered. This

data is a non-linear function of the system state at the current time and the observa-

tion geometry and can be written as,

zi (ti) = G (x (ti) , ti) (3.3)

The observation relation, described by equation (3.3), can be linearized in a manner

similar to equation (3.2). Since our sensor obtains very accurate observations, but

not perfect observations of the true state, it does not produce perfect data, z0. So we

can expect that as the error in the observations goes to zero the error in the state also

approaches zero. If the error is small enough than we can linearize the difference. If

we first describe the difference between the true state and calculated state as,

x = x0 + δx (3.4)

we can then describe the difference between the true error and the actual data.

e = z − z0 = G (x, t) − G (x0, t)

= G (x0 + δx, t) − G (x0, t) (3.5)

≈
∂G

∂x
δx (t)
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Since the observations are not perfect we can equate the true error to the residual in

the data, r. The residual has two parts. The first part comes from the error in the

reference trajectory from our initial orbit determination method and the second part

from the errors in the observations. Using our reference trajectory we can compute

the observations that would result from it.

ri = zi − G (xref (ti) , ti) (3.6)

The residual vector, ri, is a measure of the difference between the observation and

the expected observation. It is related to the change in the reference trajectory, δx,

which corrects the reference trajectory to a value close to the true trajectory of the

observed target. If we first define a matrix, Hi, which relates the error in the state

observation to the error in the reference trajectory as

Hi (ti) ≡
∂G

∂x
(xref (ti) , ti) (3.7)

The residuals in the observations can be related to the correction, δx by

ri ≈ Hiδx (ti) = HiΦ (t, t0) δx (t0)

= Tiδx (t0) (3.8)

Finally, a covariance matrix, Q, which compensates for unit compatibility and unit

conversions must be defined. Assuming each measurement taken by the sensor is

independent, Q can be written as

Q =

















σ2
1 0 · · · 0

0 σ2
2 · · · 0

· · · · · · · · · · · ·

0 0 · · · σ2
N

















(3.9)
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where σ is the statistical variance in each observation. Combining, we can write that

the correction to the reference trajectory can be written as

δx (t0) =
(

T T Q−1T
)−1

T T Q−1r (3.10)

The associated covariance can then be written.

Pδx =
(

T T Q−1T
)−1

(3.11)

Using equation (3.10), we can then obtain an estimate of the true trajectory.

x̄ (t0) = xref (t0) + δx (t0) (3.12)

A simple modifcation of the algorithm in Wiesel [17] can best describe the entire

method.

1. At each observation time ti, propagate the calculated state vector at that time

to the epoch time using the state transition matrix, Φ (ti, t0).

2. Calculate Hi for the current observation as well as the residual ri = zi − G (x).

3. Calculate HiΦ.

4. Add this Ti to previous ones to build the matrix T T
i Q−1

i Ti and the vector

T T
i Q−1

i ri which should be growing larger in dimension with each data point.

Repeat these steps for all data points at the epoch time.

5. Once complete with all data points calculate the covariance Pδx by using equa-

tion (3.11).

6. Then calculate the correction to the reference trajectory using equation (3.10).

7. Correct the reference trajectory using equation (3.12).
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8. Determine convergence after the second iteration based on the size of the cor-

rection. If the process has not converged continue to repeat the process with

the newly corrected reference trajectory until it does so.

Each of the several functions described here will now be developed in detail.

3.2 The State Transition Matrix

In order to improve upon the deterministic reference orbit found through the

initial orbit determination techniques, we must utilize a larger quantity of data. Least

squares allows us to do this but to do so our observations must be propagated to a

single epoch time. Let us begin by defining the state vector

X̄ =

















Ω

i

θ

θ̇

















(3.13)

Where, as before, Ω is the right ascension of the ascending node, i is the inclination

of the orbit and θ is the argument of latitude, which is equal to the mean anomaly in

a perfectly circular orbit. The value θ̇ can still be used to find an approximation of

altitude. Since all the values are constants except θ, which is a function of time, we

can define

˙̄X = F
(

X̄
)

=

















0

0

θ̇

0

















(3.14)
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The state transition matrix is then simply,

Φ (t, t0) =
∂F

∂X̄0

=

















1 0 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

















(3.15)

3.3 The Observation Function, G

This thesis does not use actual platform observations so they must be generated

separately. The observations are azimuth and elevation as measured from the sensor

platform in the sensor topocentric frame. Using a orbit modeling software called

Satellite Tool Kit developed by Analytical Graphics Incorporated we can obtain the

position of the target ~r and the sensor ~R in the Earth Centered Inertial frame. The

range between them can be found with

~ρECI = ~r − ~R (3.16)

This range then needs to be rotated into the sensor frame in order to simulate our

observations. The rotation matrix is given by

RECI→SEZ =











ŜT

ÊT

ẐT











(3.17)

where we define

Ẑ =
~R

|R|
(3.18)

Ê =
k̂ × ~R

|k × R|
(3.19)

Ŝ = Ê × Ẑ (3.20)
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and k̂ =
[

0 0 1
]

is the unit vector in the Ẑ direction in the ECI frame. The range

in the SEZ frame can then be found by

~ρSEZ = RECI→SEZ~ρECI (3.21)

Then if we separate out the components of the range in the SEZ frame as

~ρSEZ =











ρS

ρE

ρZ











(3.22)

we can write our observations of azimuth and elevation in terms of what we wish to

find, the range between our target and sensor.

Az = atan

(

ρE

−ρS

)

(3.23)

El = asin

(

ρZ
√

ρ2
S + ρ2

E + ρ2
Z

)

(3.24)

3.4 Measurement Jacobi Matrix, H

From the derivation of the general method of non-linear least squares, in par-

ticular equation (3.7), we can see the need for a relationship between the error in the

state and the error in the reference trajectory. We can define this relationship with

regard to the observations (obs) as

H =
∂obs

∂~rECI

=
∂ ~obs

∂~ρSEZ

∂~ρSEZ

∂~ρECI

∂~ρECI

∂~rECI

(3.25)

where
∂~ρSEZ

∂~ρECI

= RECI→SEZ (3.26)
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which is the rotation matrix we found previously in equation (3.17) and

∂~ρECI

∂~rECI

= I (3.27)

is simply equal to an identity matrix. The challenge here is the first term which

cannot be directly related but must be further broken into,

∂ ~obs

∂~ρSEZ

=
∂obs

∂~rECI

∂~rECI

∂X̄
(3.28)

In order to find the relationship between the position vector in the ECI frame and

the state, which we will call, Φ̃ , we first need to define a rotation between the ECI

frame and the orbital frame in terms of the state vector. If we first define

~rpqw =











recos (θ)

resin (θ)

0











(3.29)

where with µ being the gravitational constant of Earth and re is the calculated distance

of the target from its center.

re = 3

√

µ

θ̇2
(3.30)

We can than find ~rECI

(

X̄
)

by rotating about the node and inclination.

~rECI

(

X̄
)

= R3 (−Ω) R1 (−i)~rpqw (3.31)

In explicit form

~rECI

(

X̄
)

=











cos (Ω) sin (Ω) 0

−sin (Ω) cos (Ω) 0

0 0 1





















1 0 0

0 cos (i) sin (i)

0 −sin (i) cos (i)





















cos (θ)

sin (θ)

0











3

√

µ

θ̇2

(3.32)
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the matrix Φ̃ is then

∂~rECI

∂X̄
= Φ̃3x4 =

[

∂~r
∂Ω

... ∂~r
∂I

... ∂~r
∂θ

... ∂~r

∂θ̇

]

3x4

(3.33)

∂~r

∂Ω
=











re (−sin (Ω) cos (θ) − cos (Ω) cos (i) sin (θ))

re (cos (Ω) cos (θ) − sin (Ω) cos (i) sin (θ))

0











(3.34)

∂~r

∂i
=











resin (Ω) sin (i) sin (θ)

−recos (Ω) sin (i) sin (θ)

recos (i) sin (θ)











(3.35)

∂~r

∂θ
=











re (cos (Ω) sin (θ) − sin (Ω) cos (i) cos (θ))

re (−sin (Ω) sin (θ) + cos (Ω) cos (i) cos (θ))

resin (i) cos (θ)











(3.36)

∂~r

∂θ̇
=

−2

3
(

u

θ̇2

) 2

3

·
u

θ̇3











cos (Ω) cos (θ) − sin (Ω) cos (i) sin (θ)

sin (Ω) cos (θ) + cos (Ω) cos (i) sin (θ)

sin (i) sin (θ)











(3.37)

Finally, we need the function ∂obs
∂~rECI

, which we will define as H̃ · RECI→SEZ .

H̃ =
[

H1

... H2

... H3

]

2x3

· RECI→SEZ (3.38)

H1 =







ρE

ρ2
E

+ρ2
S

−ρZ

(ρ2
E

+ρ2
S
+ρ2

Z)
3
2

·

ρS

1−ρ2
Z

(ρ2
E

+ρ2
S
+ρ2

Z)
1
2






(3.39)

H2 =







−ρS

ρ2
E

+ρ2
S

−ρZ

(ρ2
E

+ρ2
S
+ρ2

Z)
3
2

·

ρE

1−ρ2
Z

(ρ2
E

+ρ2
S
+ρ2

Z)
1
2






(3.40)
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H3 =













0
ρ2
E+ρ2

S

(ρ2
E

+ρ2
S

+ρ2
Z)

3
2

ρ2
E

+ρ2
S

(ρ2
E

+ρ2
S

+ρ2
Z)

1
2













(3.41)

We can then find and build T .

T = H̃ · Φ̃ · Φ (3.42)

This completes the functional derivation of the values needed to execute the

non-linear least squares algorithm. The actual implementation is more complicated

and as a reference the code is included in Appendix 2.
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IV. Data and Results

4.1 Data Accuracy and Precision

An important factor to consider in the development of any model for a real

world sensor is the accuracy of its measurements. In order to investigate the affect

of error in the measuring sensor on the ability of the method being developed to

accurately identify the target satellite, a range of reasonable values for this error

must be determined. The primary source of noise in the data was assumed to be the

resolution of the focal plane array of the sensor satellite, known as ground sample

distance (GSD).

To determine the effects of GSD on the data the position of the sensor is assumed

to be known to a level of precision, which for our purposes, we can assume to be

perfectly known. Another possible source of error that is assumed to be zero is known

as jitter, this refers to the pointing accuracy in the sensor. It exists in any man-

made optical platform but is small compared to the error in the known position of the

sensor, which is considered to be perfectly known. Since additional sources of error are

smaller or have no effect on the method or collection of data, all of these error sources

including dead pixels and dark current are ignored. Finally, any error generated

by sub pixel processing, centroiding or any other software method of increasing the

resolution of the focal plane array is considered to be small, and other than changing

the value of the GSD, is ignored.

Any satellite in a highly elliptical orbit spends most of its orbital period near the

apogee of its orbit. We will therefore calculate the range of error in the measurements

of azimuth and elevation from an altitude at or near apogee for a typical HEO orbit,

36,000 kilometers. The range of reasonable ground sample distances that will be

considered for investigation is one kilometer to one meter. Ground sample distance

is simply the area on the ground that a sensor sees from orbit for each pixel on the

focal plane array. So a ground sample distance of one meter means that each pixel on

the focal plane array of the sensor sees a one meter by one meter square of ground.

While many civilian sensors working in the visible light wavelengths regularly achieve
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ground sample distances of one meter or better, the technology of systems operating

outside the visible wavelengths lags far behind. Calculating the range of this error is

found simply by

Error = tan−1

(

GSD

Altitude

)

× 2 (4.1)

Using this calculation the magnitude of the errors induced by GSD is seen to be quite

small from 3.183e-3 to 3e-6 degrees. This level of error is unrealistically small for real

time data. Post processing of data can significantly improve the quality of the data to

an unknown degree, but may be unnecessary since the methods developed are valid

with as much as 1e-2 degrees of error in the data.

4.2 Test Case Selection

The selection of test cases and the validation of the method was done by ana-

lyzing the satellite catalog for inclination and right ascension of the ascending node

(RAAN). The third value being effectively solved for in the least squares process was

the argument of latitude. This value is a measure of where the satellite is in its orbit

which is constantly changing and so is not used in an initial search of the catalog for

the target satellite. To use the argument of latitude, each item in the catalog would

need to be propagated to the epoch time being used. This is simply not a realistic

method of conducting an initial search for the target satellite, but can yield useful

results once the field of candidate targets is narrowed significantly. Five test cases

were selected using satellites from various bands of inclination. Using Figure 4.2 we

can clearly see bands of crowded inclination and begin a selection of useful test cases.

This plot represents the entire catalog of satellites as generated by Air Force Space

Command as of 28 September 2007 and includes 11,231 objects in orbit ranging from

fully functional satellites to small pieces of debris.

For the sensor platform in HEO orbit, objects below 40 degrees of inclination

do not enter the useful field of view to any significant degree, so we will focus on

objects above this inclination for this sensor orbit. The three largest concentrations
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Figure 4.1: Distribution of Space Objects in the AFSPC by Right Ascension of the Ascending Node and Inclination
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of satellites can be seen at 83, 74 and 98 degrees of inclination, so a test case within

each of these bands was selected. Finally, one test case was selected within the 60-70

degree inclination region and one in the 40-60 degree region. The two line element

sets of the selected test cases for the HEO sensor are:

Test Case 1 HEO: 98 degrees inclination LEO

THOR BURNER 2 R/B

1 03271U 68042B 07269.97501982 .00000015 00000-0 29790-4 0 2392

2 03271 098.8574 065.9071 0051791 293.5969 065.9783 14.15994498 29159

Test Case 2 HEO: 82 degrees inclination LEO

COSMOS 2416

1 28908U 05048A 07270.55302940 .00000017 00000-0 40682-4 0 5277

2 28908 082.4733 359.0931 0005782 305.7944 054.2602 12.55368842 80898

Test Case 3 HEO: 74 degrees inclination LEO

SL-8 R/B

1 22676U 93036B 07270.31673174 .00000030 00000-0 20391-4 0 2997

2 22676 074.0421 190.2875 0018551 003.8531 356.2753 14.33042505746561

Test Case 4 HEO: 66 degrees inclination LEO

JASON

1 26997U 01055A 07269.49083870 -.00000038 +00000-0 +10000-3 0 08486

2 26997 066.0446 298.5464 0008096 264.5280 095.4809 12.80929963271384

Test Case 5 HEO: 51 degrees inclination LEO

ISS (ZARYA)

1 25544U 98067A 07270.64846184 .00007688 00000-0 54207-4 0 607

2 25544 051.6348 295.2535 0002708 045.3662 054.4413 15.75238918506947

When selecting test cases for use with a sensor in GEO orbit there are several

different factors that need to be investigated. Unlike a HEO orbit, a GEO sensor is

much more likely to observe a target that is also in GEO orbit and very close to the

sensor, so this case must be investigated. Additionally, a GEO sensor may see targets

crossing the equatorial plane that are in HEO or GEO and so they will not be near

the surface of the Earth when they are observed. A GEO sensor may also see targets
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in highly eccentric orbits and the ability of the model to determine their orbits must

be tested. Inclined LEO orbits and polar orbits must also be tested to show that the

method continues to work with these orbits as it does when the sensor is in a HEO

orbit. Finally, one unique orbit is tested, Chinasat 7 is a satellite with a 28 degree

inclination that has a near GEO altitude when it crosses the equatorial plane and its

solution is investigated.

Test Case 1 GEO: GEO, 0 degree inclination GEO

SPACEWAY 3

1 32018U 07036A 07268.23359173 -.00000182 +00000-0 +00000-0 0 00393

2 32018 000.1973 288.5111 1772164 041.4316 020.7444 01.00364884000543

Test Case 2 GEO: near GEO, 28 degrees inclination, eccentric orbit

CHINASAT 7

1 24282U 96048A 07264.78888470 -.00000229 00000-0 10000-3 0 1129

2 24282 028.1690 345.6951 3099610 354.9022 002.6532 01.06657574 45729

Test Case 3 GEO: high altitude apogee, 28 degrees inclination, eccentric orbit

N-2 R/B(2)

1 12787U 81012C 07270.74053674 .00006018 00000-0 64665-3 0 1367

2 12787 028.2407 310.6441 6437703 242.5277 039.3189 03.43267090274783

Test Case 4 GEO: 51 degrees inclination LEO

ISS (ZARYA)

1 25544U 98067A 07270.64846184 .00007688 00000-0 54207-4 0 607

2 25544 051.6348 295.2535 0002708 045.3662 054.4413 15.75238918506947

Test Case 5 GEO: 99 degrees inclination LEO

OPS 4467 A

1 00812U 64031A 07270.22049292 -.00000005 00000-0 21485-4 0 510

2 00812 099.8399 266.8336 0005731 143.8671 216.2893 14.23220549243754

Test Case 6 GEO: 20 degrees inclination LEO

DELTA 2 R/B

1 22015U 92039B 07270.49272632 .00000760 00000-0 22968-4 0 3947

2 22015 020.7183 320.6482 0076224 136.6272 224.0191 14.98105611855144
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4.3 Data Generation

The data for the analysis of each of these test cases was generated using version

7 of the Satellite Tool Kit (STK). Following the selection of a suitable test case, as

described in the previous section, a generic sensor platform was generated either in a

GEO or HEO orbit depending on the test case being run. The GEO sensor orbit had

an altitude of 36,000 km and exactly 0 degrees of inclination, while the HEO orbit

had an apogee of 36,000 km and an inclination of 63.4 degrees. The test case was

then propagated forward from the data listed in the AFSPC catalog entry until both

the sensor and the target were within a reasonable line of sight of each other with the

Earth as a background. The data then generated was the latitude and longitude of

the suborbital path of the target, the position of the target in the ECI frame, and the

position of the sensor in the ECI frame. The suborbital path data generated by STK

was perfectly nadir so care has been taken to explain the weakness of the spherical

trigonometry initial orbit determination technique which relies on this perfect data.

The positions of the sensor and the target were used to generate the Azimuth and

Elevation measurements from the sensor to the target as described in Chapter 3. With

this data, as well as the time at which each measurement was made, the analysis was

conducted.

4.4 Debris

Debris in orbit is a well known fact. Tracking and accounting for debris has

become a significant field of research. The obvious danger that these objects pose to

functional satellites in orbit is of great concern. A fundamental assumption of this

thesis is that observed fastwalkers are in low Earth orbit. The possibility that debris

could represent a fastwalker must be explored.

Only one version of the Space Command catalog was used for this thesis. This

issue of the catalog was for the period between 26 and 28 September, 2007 and

contained 11,231 total entries. Of these entries 6,294 were classified explicitly as

debris, or about 56 percent. Defining what constitutes debris is difficult. Space
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Command currently tracks all debris larger than 10 cm in diameter which provides

a bottom limit on the size of debris. However, the upper limit remains undefined.

Rocket bodies and other large objects are not identified as debris so we can assume

that those items classified as debris are items that represent a piece of what was once

a single tracked object. One clear and obvious example is the Fengyun 1C satellite.

On January 17, 2007 China tested an anti-satellite missile on this satellite. The test

was successful and the satellite broke into many smaller pieces. Over 2,000 pieces of

debris from this single satellite are being tracked in orbit. If none of these pieces are

smaller than 10 cm in diameter, then we can safely assume that not very many of

the pieces of this one satellite remaining in orbit are too much larger than that. The

possibility that one of these many small pieces of debris could represent a fastwalker

observed by our sensor must be investigated.

A fastwalker is defined as a bright object moving across the focal plane array

of an Earth observing sensor at a velocity too great to represent an object within

the atmosphere. The key word in this definition is the term bright. It means an

object that is reflecting enough sunlight in the direction of the sensor to be visible

against the background of the Earth. If we assume that the objects remaining from

the Fengyun 1C satellite are larger than 10cm in diameter but are irregularly shaped

then we can begin to build a picture of their behavior in orbit. Since these objects

are no longer stabilized in any way they will rotate about their major axis or align

in the orientation which produces the least drag from the atmosphere. Outside the

atmoshpere, if a portion of these objects have a reflective surface they will in fact

reflect sunlight when exposed to the sun for an amount of time dependent on the

period of the object’s rotation about it’s major axis. This period of time will be

very brief and the reflection will be in an irregular direction as the orbit of the debris

changes so does it’s position in relation to the sun. It is therefore possible for these

objects to reflect visible light in the direction a sensor, but it is unlikely that they

will do so for a length of time necessary to develop a data track in the absence of

drag. If the orbit is not at a high altitude significant drag is present and the object
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will align itself in the orientation which produces the least drag. This will create

a situation where observation is possible but the small size and irregular reflecting

surface of debris will make this unlikely.

As mentioned previously, the catalog has a large number of items classified as

debris listed. The surprising fact is that the majority of these listings can be accounted

for as pieces of debris from just a handful of satellites like the Fengyun 1C. Many of the

items listed as debris must also be the result of debris created during the staging and

boosting phases of certain classes of rockets. However, the rocket bodies themselves

are not classified as debris and are not eliminated as possible fastwalkers. The reason

for this rests in the size and regular shape of a typical rocket body. Since most

rocket bodies will be cylindrical and unstabilized they will rotate about their major

axis. During a single rotation the cylindrical shape will reflect light once towards any

arbitrary point. For this reason, observers will see them not as a constant reflection

but they will appear to wink. Due to this ability, as well as the surface area available

to reflect sunlight, rocket bodies cannot be discounted as possible targets as we can

debris fields like that of the Fengyun 1C satellite.

4.5 Test Case Results

This section will discuss the results using the test cases previously mentioned

and the models previously developed. In developing data, several assumptions about

the length of time in which the sensor would be able to view the target had to be

made. From apogee, a one degree field of view for the sensor allowed it to see a

circular area with a diameter of over 1350 kilometers on the Earth’s surface. This

was assumed to be a reasonable field of view. Hence, the maximum amount of time a

target would be visible was for about four minutes assuming the target was detected

and tracked early in the field of view. The time between observations was set at one

second, although any time period between observations is acceptable as long as they

lie within the field of view. A minimum of two observations was required for the

spherical trigonometry initial orbit determination technique and three observations
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for the Gauss technique. In order for the least squares process to have any significant

value we must have more observations than are used in the initial orbit determination

technique. Additionally, the Air Force Space Command catalog used was assumed to

be the one published nearest the time of the observed fastwalker. Since inclination is

essentially constant, but the node changes slowly due to the oblateness of the Earth,

they can be considered constant for the duration of the data track. These values are

also treated as constants when searching the AFSPC catalog so it is necessary to use

the catalog published closest to the epoch time of the observed fastwalker so that the

error in node made by this assumption is small. It is not necessary to propagate each

TLE in the catalog to the epoch time being considered to successfully identify the

target.

4.5.1 Test Case 1 HEO - Thor Rocket Body. The method of using the slope

between two points and the geometry of the Earth’s surface resulted in an estimate of

the state vector which was very good at nadir, an elevation of -90 degrees, for three of

the four values in the state vector with two data points one second apart. The state

vector consisted of four elements: right ascension of the ascending node, inclination,

argument of latitude, and altitude. This method resulted in an estimate of the node

as 68.12 degrees and inclination of 100.03. From the two line element set in the

previous section, we see that these values are within two degrees of the values needed.

The value of the argument of latitude, as discussed previously, is not a constant and

need only be used to check that the satellite selected as the target from the catalog

is in fact the correct satellite by propagating the element set to the epoch time of

the solution. Altitude is necessary for the least squares process, but the accuracy

of its value is not critical. However, the trigonometry technique produces extremely

poor estimates of the altitude which are too poor to allow the convergence of least

squares. While increasing the time between observations improves the estimate of this

value, it greatly decreases the accuracy of the other three values. Additionally, the

improvement in the estimate of the altitude still remains relatively poor in comparison
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to the accuracy of the other three values. The estimate is usually more than several

hundred kilometers off of the actual altitude. Relying on an earlier assumption, that

the viewed satellite is in a low earth orbit, an average value for these satellites can be

selected which is adequate for least squares to function. A value of 500 km was used

which is a θ̇ of about 0.0011 radians per second. The values for the performance of

the spherical trigonometry technique being discussed here are from nadir observations.

Nadir observations are ideal data for this method, but are unlikely to ever be obtained

by a real platform. This method suffers greatly from off nadir angles and its usefulness

will be discussed along with the least squares process and its ability to compensate

for poor observations.

XTrig =
[

RAAN = 68.1209◦ I = 100.0316◦ θ = 57.6837◦ θ̇ = 0.00001 rad/sec
]

XTrig − XTruth =
[

RAAN = 2.2138◦ I = 1.1746◦ θ = −.6857◦
]

The Gauss initial orbit determination technique uses the same angular data

necessary for the least squares process. It can be adapted to use the same latitude

and longitude of the background data as the previous method, but is no more accurate

with that data than using simple trigonometry. When adapted to using azimuth and

elevation data, the Gauss technique eliminates the inability to directly observe the

altitude of the target as a problem. This method provided an excellent estimate of

all four states. The estimated values of the state vector were:

XGauss =
[

RAAN = 67.6875◦ I = 99.0811◦ θ = 50.8519◦ θ̇ = 0.00108 rad/sec
]

XGauss − XTruth =
[

RAAN = 1.7804◦ I = .2241◦ θ = −6.1461◦
]

It can be quickly seen from the correct values that Gauss has given us an estimate

of inclination accurate to within one degree. It is not as obvious that the value

of altitude is also extremely accurate in comparison to the previous technique. The

difference between the true altitude of the target and the calculated value was 17.9 km.
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Figure 4.2: Azimuth Residuals With 3.18e-3 Noise for Thor Rocket Body

In comparison to traditional techniques of satellite tracking using radar to calculate

range, this is very poor but for our purposes it is more than adequate.

The purpose of the non-linear least squares process is to account for additional

observations given an initial estimate of the state in order to reduce the effect of sensor

errors. The accuracy of that state estimate is important in that a poor estimate of

the initial state vector cannot always be corrected for by the least squares process.

On the other extreme, with a very accurate estimate, it does not always improve on

the initial guess. This is because the developed non-linear least squares relies on a

two-body formulation of the system dynamics, which was judged to be more than

adequate for the short time period over which observations occur. Using the results

from Gauss as our initial guess the least squares process returns:

XNLLS =
[

RAAN = 65.3317◦ I = 99.1120◦ θ = 52.0130◦ θ̇ = 0.000961 rad/sec
]

XNLLS − XTruth =
[

RAAN = −.7830◦ I = .2130◦ θ = −4.985◦
]

These values were obtained with random noise in the data with a standard deviation

of 3.18e-3 degrees which was shown earlier to represent a one kilometer ground sample
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Figure 4.3: Elevation Residuals With 3.18e-3 Noise for Thor Rocket Body

distance. The difference from truth represents the values that would be searched for

in the catalog, meaning that the -.7830 degree difference in RAAN represents the

difference between the listed value and that in the catalog, not the difference between

the RAAN at epoch and this value which is smaller. However, the difference value for

θ does represent the error from the θ at epoch since this value is otherwise meaningless.

The residuals can be seen to be very small in Figure 4.2 and Figure 4.3. The regular

shape of the plot shows that model error is much more significant than sensor data

error. Also, using the root mean square as the convergence criteria, we can see the

rate of convergence in Figure 4.4 as well as the magnitude of the corrections being

made to the initial state. The least squares process converged in 33 iterations in this

scenario and as noise increased this number went up slowly, staying below 100 for a

successful convergence. One factor to note is that the good initial guess resulted in a

least squares data run which was only slightly more accurate than the initial guess.

The covariance matrix is very small, due to the small errors associated with

the observations. It was found that the covariance was not a good predictor of the

actual error. This is consistent with the fact that the least squares dynamics model

used was not as accurate as the model used to generate data. As a result, the search
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Figure 4.4: Convergence

of the catalog for objects matching the estimate had to look well beyond the range

suggested by the covariance values.

P =

















0.19080 −0.06540 −0.14544 0.00096

−0.06540 0.03046 0.05619 −0.00032

−0.14544 0.05612 0.11589 −0.00077

0.00096 −0.00032 −0.00077 0.00011

















× 1e − 3 (4.2)

Taking the values from the spherical trigonometry initial orbit determination

technique that were more than two degrees off with perfect nadir data, we find that

the least squares process with same amount of noise in the data returns the same

results for the value of the state as seen above with the Gauss inputs. Investigating

the data sets generated for this thesis for a sensor in HEO, the largest off nadir angle

of elevation was found to be 5.2 degrees. Since the sensor cannot look at an angle

too far off nadir before creating significant orthorectification effects on the imagery

from the curvature of the Earth, we can assume a 10 degree off nadir look angle as

being the greatest allowable. Using this angle the largest amount of error possible in

both latitude and longitude is less than one degree, which will translate into nearly
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the same amount of error in the values of node and inclination for the target satellite.

The least squares process was found to easily compensate for as much as 5 degrees

of random error in the first three states, when the estimate of altitude remained at a

fixed 500 km and the level of noise in the data at 3.18e-3 degrees.

The results when we lower the GSD to one meter are worth noting. Both Gauss

and the least squares process return answers that are more accurate than with a one

kilometer GSD but these improvements are small for the least squares process. Gauss

improves significnatly when used with more accurate data. We can see below that the

results are nearly similar for Gauss and least squares. What becomes more apparent

when the GSD is lowered to one meter is shown by the plots of the residuals. The

regular shape of the residuals shown in Figure 4.5 and Figure 4.6 is the result of model

error being greater than the error due to noise in the data. This helps explain the

poor results from the covariance matrix which fails to account for the model error, a

significant factor that is not readily apparent when the noise in the data is 3.18e-3

degrees.

XGauss =
[

RAAN = 66.1549◦ I = 98.8411◦ θ = 51.4038◦ θ̇ = 0.00103 rad/sec
]

XGauss − XTruth =
[

RAAN = .2478◦ I = −.0159◦ θ = −5.5942◦
]

XNLLS =
[

RAAN = 65.8516◦ I = 99.0382◦ θ = 51.7056◦ θ̇ = 0.000999 rad/sec
]

XNLLS − XTruth =
[

RAAN = −.0555◦ I = .1808◦ θ = −5.2924◦
]

Concerning noise, one final look at the robustness of the non-linear least squares

process is warranted. Due to requests from the sponsor, the effect of ground sample

distance was investigated with all other sources of error assumed to be small in com-

parison. If these assumptions are relaxed and the level of random noise is raised to

10e-3 degrees, representing a GSD of 12.65 km, the least squares process was found to

still converge to a reasonable guess at the state, allowing for a match to be found in
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Figure 4.5: Azimuth Residuals With 3e-6 Noise for Thor Rocket Body
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Figure 4.6: Elevation Residuals With 3e-6 Noise for Thor Rocket Body
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Figure 4.7: Azimuth Residuals With 10e-3 Noise for Thor Rocket Body

the catalog. The limiting factor at this level of noise is the use of Guass as an initial

orbit determination technique, 10e-3 represents the error point at which Gauss would

begin returning unreasonable estimates of the slant range.

XNLLS =
[

RAAN = 62.3955◦ I = 100.0189◦ θ = 53.9412◦ θ̇ = 0.000749 rad/sec
]

XNLLS−Truth =
[

RAAN = 3.5116◦ I = 1.1615◦ θ = −3.0568◦
]

While still small, the residuals show again that the level of noise in the data has

overcome the model error, see Figure 4.7 and Figure 4.8.

The final step in validating the search for the target is to actually determine

if the data developed by the methods discussed above is accurate enough to identify

the target satellite. As mentioned above, the covariance matrix was extremely small

so we need to begin looking in a much larger range. If we look simply at inclinations

within one degree of our estimated value from our results with 3.18e-3 degrees of noise

a search of the catalog returns 2,276 matches. If we include the right ascension of the

ascending node in that search we find only one match, which is our target satellite.
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Figure 4.8: Elevation Residuals With 10e-3 Noise for Thor Rocket Body

In this case it proved unnecessary to propagate the orbit to find that this is indeed

the correct target, but doing so confirms that it is.

4.5.2 Test Case 2 HEO - Cosmos. This test case dealt with the 82 degree in-

clination orbit. Both initial orbit determination techniques worked fairly well, with the

Gauss technique once again proving to be far superior than the spherical trigonometry

technique even when provided with nadir data. The spherical trigonometry technique

continued to have extremely poor estimates of the target’s altitude. When a search

of the catalog was conducted three objects were found to be close matches in both

inclination and RAAN. After propagating, the Cosmos satellite was easily identified

by the argument of latitude at epoch.

XTrig =
[

RAAN = 361.839◦ I = 83.999◦ θ = 125.469◦ θ̇ = 0.00000895 rad/sec
]

XGauss =
[

RAAN = 358.2412◦ I = 81.6152◦ θ = 122.0505◦ θ̇ = .000828 rad/sec
]

XNLLS =
[

RAAN = 359.1751◦ I = 82.1518◦ θ = 121.9621◦ θ̇ = .000901 rad/sec
]

XNLLS − XTruth =
[

RAAN = .2471◦ I = −.3162◦ θ = .0111◦
]
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4.5.3 Test Case 3 HEO - SL-8 Rocket Body. This test case was in the 74

degree inclination band. Here least squares improved on Gauss significantly and the

result was very close to the actual values. The search of the catalog resulted in three

matches within one degree of these values. Only one of which matched after including

argument of latitude following propagation to epoch.

XTrig =
[

RAAN = 191.3505◦ I = 74.6582◦ θ = 65.5391◦ θ̇ = 0.00000897 rad/sec
]

XGauss =
[

RAAN = 189.3430◦ I = 74.3784◦ θ = 58.9821◦ θ̇ = 0.00099 rad/sec
]

XNLLS =
[

RAAN = 189.4768◦ I = 74.4999◦ θ = 58.9529◦ θ̇ = 0.001005 rad/sec
]

XNLLS − XTruth =
[

RAAN = −.3012◦ I = −.3311◦ θ = −6.932◦
]

4.5.4 Test Case 4 HEO - Jason. The inclination tested here was 66 degrees.

In this test case the Gauss technique provided a poor answer in both RAAN and

inclination but the least squares process was easily able to converge on the correct

solution. As the catalog was searched outward from the least squares results, the first

match proved to be the correct target after propagating to confirm the argument of

latitude at epoch.

XTrig =
[

RAAN = 295.9209◦ I = 67.1962◦ θ = 122.2495◦ θ̇ = 0.00000790 rad/sec
]

XGauss =
[

RAAN = 301.4431◦ I = 62.7412◦ θ = 113.8477◦ θ̇ = 0.001165 rad/sec
]

XNLLS =
[

RAAN = 297.6072◦ I = 65.9347◦ θ = 115.1594◦ θ̇ = .0009512 rad/sec
]

XNLLS − XTruth =
[

RAAN = −.2959◦ I = −.0643◦ θ = −6.193◦
]

4.5.5 Test Case 5 HEO - International Space Station. This test case repre-

sented the lowest inclination tested at 51 degrees. It begins to show a slight failing of

the use of azimuth and elevation data as the portion of the observed orbit is nearly flat

with respect to the Equator and low on the sensor horizon. This resulted in only small

51



changes in the recorded values for elevation, which resulted in the poor performance

of least squares. In this case the spherical trigonometry technique proved to be su-

perior in RAAN and inclination though the least squares and Gauss techniques both

still worked well enough to identify the target. A search of the catalog around these

values revealed five objects. Two of these objects were debris from the Space Station

itself and could be ignored. The other two did not fit when propagated forward. The

final object was the target.

XTrig =
[

RAAN = 294.1198◦ I = 51.6595◦ θ = 81.5910◦ θ̇ = 0.00000713 rad/sec
]

XGauss =
[

RAAN = 293.5153◦ I = 51.7434◦ θ = 73.9015◦ θ̇ = 0.001132 rad/sec
]

XNLLS =
[

RAAN = 293.7612◦ I = 51.9402◦ θ = 73.7151◦ θ̇ = .001125 rad/sec
]

XNLLS − XTruth =
[

RAAN = .2042◦ I = .3662◦ θ = −14.115◦
]

4.5.6 Test Case 1 GEO - Spaceway 3. When using a sensor in GEO the

problem of identifying a target becomes more difficult. A key assumption that was

made when working with a sensor in HEO no longer applies. No longer can we assume

that the object being viewed is in a LEO orbit. We must also consider whether the

object is also in GEO or in a Medium Earth Orbit (MEO). Spaceway 3 is a GEO

satellite that allowed us to explore the problem of another satellite passing directly in

front of a GEO sensor and here we see the method fail. The spherical trigonometry

technique results appear to be close in inclination, but it must be remembered that

those results were generated using perfectly nadir data. Nadir data is extremely un-

likely in any scenario and becomes even more so as the distance between the observer

and the target decreases. The spherical trigonometry method remained valid only

when the target was near the Earth’s surface and the sensor was in a high enough

altitude orbit so as to make errors from viewing at non-nadir angles small. When

viewing an object very near the sensor, these non-nadir angles can span the entire
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region of space visible to the sensor.

XTrig =
[

RAAN = −293.188◦ I = 0.1923◦ θ = 70.8042◦ θ̇ = 0.00002796 rad/sec
]

XTrig − XTruth =
[

RAAN = −221.699◦ I = 0.0005◦ θ = 1.541◦
]

Identifying the altitude of the target is impossible with the spherical trigonom-

etry technique but Gauss gives us an estimate of the target satellite’s altitude that is

at least accurate enough to determine that it is also in a GEO or near GEO orbit. In

this case, using Gauss, we can determine that the altitude of the target was greater

than 30,000 kilometers, making it a target which we will be unable to identify.

XGauss =
[

RAAN = 182.2929◦ I = 171.2489◦ θ = 171.5152◦ θ̇ = 0.00009442 rad/sec
]

XGauss−Truth =
[

RAAN = −106.218◦ I = 8.5538◦ θ = 99.1702◦
]

The problem of attempting to identify satellites in GEO from GEO was attempted in

much greater detail in Osedacz [9]. One difference must be noted. Osedacz declared

that it was impossible to determine if the object being viewed was in GEO or LEO.

The Gauss method used here was able to provide an estimate of the position vector

of the target that was more than adequate to determine the difference between a

GEO and a LEO satellite. Since we can differentiate the two using Gauss, either of

the initial orbit determination techniques provides an adequate enough estimate of

the state vector for a LEO target to apply the least squares process. In fact, while

the method performs poorly with all satellites in GEO orbit, it performs very well

with low inclination circular orbits near LEO. Finally, when attempting to use the

initial estimates of the state calculated above for the target in GEO the least squares

algorithm failed to converge. Based on this case, it is clear that the methods being

developed in this thesis cannot be used to identify GEO or near GEO satellites.
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4.5.7 Test Case 2 GEO - Chinasat 7. Chinasat 7 is a unique satellite in that

it was the highest inclined orbit with a GEO altitude in the catalog that was used. It

was selected to test the response of Gauss and the least squares process to an inclined

GEO orbit. Once again the spherical trigonometry technique is unreliable for the

reasons stated earlier but Gauss was somewhat surprising. The Gauss method failed

to identify the satellite as being in an elliptical orbit and found the satellite to have

a parabolic path. With the failure of both initial orbit determination methods the

use of the least squares process is no longer possible. The Chinasat 7 test case shows

that identifying any object too close to the sensor with angles-only data is extremely

difficult no matter what inclination it is at.

4.5.8 Test Case 3 GEO - N-2 R/B(2). This test case represented a target

satellite with a relatively low inclination, a high altitude apogee, and large eccentricity.

At the point in which it crosses the equatorial plane, the satellite is close to LEO

altitudes, but still several thousand kilometers from the surface of the Earth. In this

test case, the method barely succeeds. As you can see below, the least squares process

returned an answer that was actually farther from the truth than Gauss due to the

failure of the circular orbit assumption upon which the least squares method relies.

Using Gauss, we can quickly identify it but with the poor estimate of inclination

provided by the least squares process 15 possible targets had to be propagated before

the target satellite could be identified by the mean anomaly.

XTrig =
[

RAAN = 309.756◦ I = 30.6425◦ θ = 175.8093◦ θ̇ = 0.000797 rad/sec
]

XGauss =
[

RAAN = 313.8226◦ I = 27.7682◦ θ = 169.1596◦ θ̇ = 0.0009025 rad/sec
]

XNLLS =
[

RAAN = 309.4777◦ I = 34.0038◦ θ = 176.0905◦ θ̇ = 0.0007839 rad/sec
]

XNLLS − XTruth =
[

RAAN = −.6063◦ I = 5.7978◦ θ = 1.0965◦
]
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4.5.9 Test Case 4 GEO - ISS(Zarya). In this test case Gauss provided us

with a better estimate of the true value of inclination than the least squares process,

but the target was easily identified using either method. For the HEO test cases, the

ISS represented the lowest inclination test case and in that situation we saw Gauss

and least squares perform equally well. With accurate data, Gauss has proved to be

an excellent initial orbit determination technique, but it is deterministic, and a single

piece of poor data would greatly affect its result.

XTrig =
[

RAAN = 294.224◦ I = 54.2655◦ θ = 19.1739◦ θ̇ = 0.001088 rad/sec
]

XGauss =
[

RAAN = 292.9583◦ I = 51.6694◦ θ = 14.1904◦ θ̇ = 0.001176 rad/sec
]

XNLLS =
[

RAAN = 292.8512◦ I = 52.0571◦ θ = 22.1802◦ θ̇ = 0.001314 rad/sec
]

XNLLS − XTruth =
[

RAAN = −.0161◦ I = .448◦ θ = 2.188◦
]

4.5.10 Test Case 5 GEO - OPS 4467 A. In this test case we see significant

improvement using the least squares process. This follows with what we saw in the

HEO test cases. The target was easily identified with the given state vector. The

ability of this method to identify the target has been aided by the fact that the

method performs very well at higher inclinations where the orbits are much more

crowded than at lower inclinations but tend to be more circular.

XTrig =
[

RAAN = 268.6538◦ I = 103.1968◦ θ = 22.7718◦ θ̇ = 0.001044 rad/sec
]

XGauss =
[

RAAN = 267.3318◦ I = 100.0285◦ θ = 15.0649◦ θ̇ = 0.001011 rad/sec
]

XNLLS =
[

RAAN = 267.4795◦ I = 98.6737◦ θ = 20.4633◦ θ̇ = 0.000931 rad/sec
]

XNLLS−Truth =
[

RAAN = .3515◦ I = −1.119◦ θ = −1.6118◦
]
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4.5.11 Test Case 6 GEO - DELTA 2 R/B. This test case shows the ability

of both initial orbit determination techniques and the least squares process to work

well with a LEO satellite at low inclination. Using Gauss, the approximate altitude

of the orbit can be used to determine that the target is not at or near GEO. Once

it has been determined to be in a LEO orbit, the target can be identified. There are

only 49 satellites in LEO at inclinations below 28 degrees, the highest inclination at

which we are likely to see an object near GEO. This is a small number of satellites

in comparison with the total number of objects being tracked from 0 to 28 degrees of

inclination. It is likely that because most objects in this inclination rage are not in

LEO most observed fastwalkers in this inclination range will be unidentifiable.

XTrig =
[

RAAN = 317.111◦ I = 22.0569◦ θ = 15.7482◦ θ̇ = 0.00101 rad/sec
]

XGauss =
[

RAAN = 315.5738◦ I = 20.6494◦ θ = 9.6695◦ θ̇ = 0.00114 rad/sec
]

XNLLS =
[

RAAN = 316.3434◦ I = 20.6253◦ θ = 15.9865◦ θ̇ = 0.0000103 rad/sec
]

XNLLS−Truth =
[

RAAN = −4.3046◦ I = −.0927◦ θ = −1.4085◦
]

4.5.12 Direct Orbit Prediction. It has been made clear several times that

the general method being developed is dependent entirely on the assumption that the

target object is located in the catalog. However, since mistakes and omissions can

be made, what can be done in the case where the object is not located within the

catalog to identify its orbit? We have developed Gauss to provide us with a specific

state vector, but it can also provide us with an estimate of the orbital elements of

the target object. As has been shown in the test cases previously mentioned, Gauss

can provide us with results that are accurate enough to determine the identity of the

target using the catalog and given a data track spread over more than 30 seconds for

a LEO object, about .5 degrees of arc. Gauss however, provides us with a poor direct

estimate of the orbital position of a satellite.
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ISS Orbital Element Comparison
Element ISS Actual ISS Gauss Difference
Semi-major Axis (km) 6716.786 6760.078 -43.292
Eccentricity 0.000482 0.008314 -.007832
Inclination (deg) 51.574 51.545 .029
RAAN (deg) 293.557 293.530 .027
Arg of Perigee (deg) 87.830 90.634 2.804
Mean Anomaly (deg) 354.044 343.568 10.476

Table 4.1: ISS Orbital Element Comparison

Table 4.1 is an example of the quality of the orbital elements estimate provided

by Gauss. These results show that the largest error lies in the argument of perigee

and the mean anomaly. The net effect of these errors is that the predicted position

of the target satellite will lag far behind that of the actual. Initially, there are 930

km separating the calculated versus actual position, though they are following very

similar suborbital paths. This error grows with each orbit as the error in the periods

between the predicted and actual satellite orbits increases. After one full day, the

error between the predicted and actual position is nearly 1/4 of an orbit. While the

direct calculation of the orbit does not provide us with an accurate position of the

target, it does provide enough information to reacquire the target after only a few

orbits. As the entire method relies on the fact that very few satellites share both an

inclination and a RAAN, it would be possible to reacquire the target and develop

additional tracking data to refine the orbit. While this would require the dedication

of satellite resources to reacquiring the target, it would be possible with an additional

data track to develop a far superior direct calculation of the orbital elements by using

either the methods developed by Gooding [5] or Osedacz [9].
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V. Conclusions

Fastwalker orbit determination can be performed with a single data set from a

HEO orbit and, with some limitations, a GEO orbit. Contrary to the broad assertions

in a previous thesis on the topic that orbit determination of fastwalkers is not possible

with a single data set [9], it is possible to characterize LEO orbits from a sensor

platform in a HEO and GEO orbit using orbit matching. Data collected from future

occurrences can be used to determine the orbit of the target object.

Two different initial orbit determination techniques were discussed. Both were

successful in determining an estimate of the state vector necessary for additional

analysis. The Gauss method was far more accurate than the spherical trigonometry

technique over data sets that spanned several minutes, but as the observation time

decreased the accuracy of the Gauss method dropped off sharply. Gauss suffered from

poor estimates of the slant range when the noise level in the data was as large as .01

degrees. Over data sets spanning less than .5 degrees of arc the Gauss technique began

to fail entirely and it becomes necessary to use the spherical trigonometry technique.

The spherical trigonometry technique did suffer from poor results when looking off

nadir, but as long as measurements remained within 10 degrees of nadir the least

squares process was easily able to compensate.

The effects of ground sample distance on the ability of these methods to ef-

fectively determine the orbit of a fastwalker was also analyzed. It was found that

for any reasonable value the level of noise in the data that would be imparted by a

large ground sample distance did not have a significant affect on the results. Since

commercially available platforms operating in the near infrared spectrum are avail-

able with ground sample distances of 10 meters or less from LEO, it is reasonable to

assume that future platforms placed in a HEO or GEO orbit will not have ground

sample distances much larger than one kilometer. In fact, the level of noise imparted

by large ground sample distance does not prevent identification of the target satellite

until these values are greater than 12.65 kilometers.
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Non-linear least squares proved to be an effective method of refining the estimate

of the state obtained from the initial orbit determination process. It allowed for the

use of additional data and proved robust enough, even with very short data sets, to

correct for several degrees of error in the initial guess of the state. Although the

Gauss initial orbit determination method sometimes provided an initial guess that

was very accurate over data sets spanning several minutes, its accuracy could not be

confirmed without taking into account the additional data through the least squares

process. This made the non-linear least squares process necessary to confirm the

accuracy of the state vector developed using Gauss. When the target was in a highly

eccentric orbit, the method did not fail but performed poorly even when the target

was relatively close to the surface of the Earth. The method was unsuccessful in

identifying targets at or near GEO.

Searching for a fastwalker target based on its right ascension of the ascending

node and its inclination proved to be an effective way of identifying the orbit. This

method is heavily dependent on using an Air Force Space Command catalog published

during the period that the fastwalker was observed. While inclination is nearly con-

stant, the node is not, and using a catalog published even days apart could invalidate

the method. However, these catalogs are published several times a week and older

copies are readily available. The argument of latitude was effective as the final step

in confirming the identity of the fastwalker and even at the most crowded inclinations

there was no difficulty in identifying the target.

The method developed was not intended to determine the orbit of the target

alone. It was effective in identifying the target fastwalker from the data in the Space

Command catalog. In not attempting to fully determine the orbital elements of the

target fastwalker directly, this method circumvented some of the problems which could

have arisen. Over very short data tracks with only angular data, an accurate estimate

of the orbital elements of the target would have been impossible. In the recent paper

by the Chinese National Defense Institute [7] over 30 minutes of data was needed

in order to obtain even a poor independent estimate of the target satellite from a
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HEO or GEO orbit, excluding the fact that it is unlikely that a LEO satellite would

be visible to a satellite in HEO orbit for that amount of time. Using much shorter

data spans, it was possible to take advantage of the existence and accuracy of the

Space Command catalog and using only a few orbital elements identify the correct

satellite in the catalog when the orbit is determined to be near LEO. From the two

line element set in the catalog the orbit is then known to an acceptable standard.

5.1 Recommendations

The topic of fastwalker orbit determination has not received much attention in

recent years. It was determined to be impossible for single data tracks in a geosyn-

chronous orbit and no other orbit types were investigated. The advantage in working

in a HEO orbit was the fact that these orbits are not crowded by other platforms, so

the key assumption that the object was located near the Earth’s surface was made.

In Osedacz’s thesis [9], he determined that the majority of fastwalkers visible to the

platform he was working with were in fact also in geosynchronous orbit. This led to

his inability to determine the range between the sensor and the target.

The focus of this thesis was on determining the orbit of the target fastwalker.

Very little attention was given to the actual nature of the fastwalker phenomenon.

Fastwalkers represent objects large enough to reflect enough light in one direction to

be clearly visible from a HEO or GEO orbit. When these events are likely to occur

and under what circumstances needs further analysis. In order to do so, significant

amounts of data on actual fastwalker observations would be necessary. The time of

the observation and the location of the observer would be the needed to even begin a

thorough analysis. Since this data was not available for this thesis the topic was only

briefly discussed. This is an area where a significant amount of future work could be

conducted.

There are several areas where future work could be conducted to further the

results obtained here. Obtaining actual fastwalker data and attempting to conduct

a successful orbit matching using the techniques developed in this thesis would be a

60



useful follow on project. Additionally, future work could be conducted by attempting

to use the same orbit matching idea and developing a matching technique which

accounts for model error. This would improve the values of the covariance matrix.

If the accuracy of these values is improved than the entire process from data entry

into the system until target identification could be automated removing the need for

a user search of the catalog.

During the development of this thesis, I was also impressed by the almost com-

plete lack of modern research into angles-only initial orbit determination techniques.

Gooding, [4, 5] is the only person currently active in researching new techniques, al-

though Chris Sabol [11, 12] is working on applications in improving the accuracy of

entries in the Air Force Space Command catalog with angular data. For my purposes,

I found the Gauss method when used in conjunction with the Herrick-Gibbs method

provided an estimate of the location of the orbit which was more than adequate. Ad-

ditional experimentation on refining the least squares process is needed to attempt to

account for model error in the covariance matrix. With model error accounted for, it

would be possible to automate the entire process and remove the manual searching

of the catalog currently necessary by the user to characterize the target. Despite the

success of this method, determining the exact orbit of another satellite in GEO from

a GEO sensor using angles-only data may still remain impossible. As it currently

stands this method allows for the identification of over 82 percent of the objects listed

in the AFSPC catalog.
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Appendix A. Residual Plots

This Appendix includes all of the residual charts referenced in chapter 4. The residual

plots shown are all with 10e-7 degrees of error. For examples of residual plots with

larger errors please refer to chapter 4.
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Figure A.1: Azimuth Residuals With 3.18e-3 Noise for Cosmos
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Figure A.2: Elevation Residuals With 3.18e-3 Noise for Cosmos
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Figure A.3: Azimuth Residuals With 3.18e-3 Noise for SL-8 R/B
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Figure A.4: Elevation Residuals With 3.18e-3 Noise for SL-8 R/B
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Figure A.5: Azimuth Residuals With 3.18e-3 Noise for Jason
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Figure A.6: Elevation Residuals With 3.18e-3 Noise for Jason
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Figure A.7: Azimuth Residuals With 3.18e-3 Noise for ISS
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Figure A.8: Elevation Residuals With 3.18e-3 Noise for ISS
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Figure A.9: Azimuth Residuals With 3.18e-3 Noise for N2 RB
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Figure A.10: Elevation Residuals With 3.18e-3 Noise for N2 RB

0 50 100 150 200
−8

−6

−4

−2

0

2

4

6

8

10
x 10

−3

Observation #

D
eg

re
es

 E
rr

or

Azimuth Residuals

Figure A.11: Azimuth Residuals With 3.18e-3 Noise for ISS
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Figure A.12: Elevation Residuals With 3.18e-3 Noise for ISS
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Figure A.13: Azimuth Residuals With 3.18e-3 Noise for OPS 4467 A
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Figure A.14: Elevation Residuals With 3.18e-3 Noise for OPS 4467 A
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Figure A.15: Azimuth Residuals With 3.18e-3 Noise for Delta 2 R/B
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Figure A.16: Elevation Residuals With 3.18e-3 Noise for Delta 2 R/B
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Appendix B. Matlab core code

This appendix contains the core code elements. All code was written and functions

in Matlab
r .

B.1 Gauss Initial Orbit Determination

Listing B.1: The Gaussian initial orbit determination code.
(appendix2/GaussIOD.m)

1 % ...

-----------------------------------------------------------------------------...

%

% Gauss_IOD.m

%

% this code is the Gauss initial orbit determination

6 %

% inputs description range / units

% year Of observation Time

% month " "

% day

11 % hour1 -3 3 hours of observation

% s1 -3 3 seconds of observation

% alpha Azimuth radians

% sigma Elevation radians

% r_site1 -3 location of sensor ECI kms

16 %

% outputs r2 ,v2 , km/ km/s

% argument of lat ,omega (RAAN) degrees

% i (inclination),

% Thetadot (alt) NLLS input term

21 % ...

-----------------------------------------------------------------------------...

clc

clear all

close all

26 %Constants

u_earthkm3persec2 =398600.4415;

radius_earth =6378.1363

%for Cosmos

31 %Time of Observations

year =2007; month =9; day =27;

hour1 =15; hour2 =15; hour3 =15;

min1 =48; min2 =49; min3 =51;

s1 =0.74; s2 =59.74; s3 =0.74;

36 %R_site

%data

%Azimuth
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alpha =[0.601631211134485;1.057947399382605;1.306829387830625];

%Elevation

41 sigma =[ -1.498307748963798; -1.506215139106105; -1.504976881780819];

r_site1 =[ -17470.7644479361 12124.4096188952 ...

27495.1031194714] ’;

r_site2 =[ -17582.718937935 11991.5070697076 ...

27779.4780612869] ’;

r_site3 =[ -17639.2080231445 11922.7654824776 ...

27923.8294989853] ’;

46 %Line of Sight Unit Vector

L1=[-cos(sigma (1,1))*cos(alpha (1,1));cos(sigma (1,1))*sin(alpha...

(1,1));sin(sigma (1,1))];

L2=[-cos(sigma (2,1))*cos(alpha (2,1));cos(sigma (2,1))*sin(alpha...

(2,1));sin(sigma (2,1))];

L3=[-cos(sigma (3,1))*cos(alpha (3,1));cos(sigma (3,1))*sin(alpha...

(3,1));sin(sigma (3,1))];

51 r_site =[r_site1 ,r_site2 ,r_site3 ];

%----------------------------------------------------

%Quadrant check of sensor platform in ECI frame (assumeing all ...

r_sites are

%in same quadrant)

if r_site1 (1,1) < 0 && r_site1 (2,1) < 0

56 display(’Sensor in quadrant 3’)

modifier =1;

elseif r_site1 (1,1) > 0 && r_site1 (2,1) > 0

display(’Sensor in quadrant 1’)

modifier =0;

61 elseif r_site1 (1,1) < 0 && r_site1 (2,1) > 0

display(’Sensor in quadrant 2’)

modifier =0;

elseif r_site1 (1,1) > 0 && r_site1 (2,1) < 0

display(’Sensor in quadrant 4’)

66 modifier =1;

end

%----------------------------------------------------

% CONVERSION OF AZ EL TO RIGHT ASCENSION AND DECLINATION

71 if modifier == 0

x=[1,0,0]’;

r_site1xy =[ r_site1 (1,1),r_site1 (2,1) ,0]’;

phi=acos(dot(r_site1xy ,r_site1)/(( norm(r_site1xy)*norm(r_site1))))...

;

76 theta=acos(dot(r_site1xy ,x)/(( norm(r_site1xy)*norm(x))));

SEZ=[sin(phi)*cos(theta),-sin(theta),cos(theta)*cos(phi);...

sin(phi)*sin(theta),cos(theta),sin(theta)*cos(phi);...

-cos(phi),0,sin(phi)];

L1=SEZ*L1;

81 r_site2xy =[ r_site2 (1,1),r_site2 (2,1) ,0]’;

72



phi=acos(dot(r_site2xy ,r_site2)/(( norm(r_site2xy)*norm(r_site2))))...

;

theta=acos(dot(r_site2xy ,x)/(( norm(r_site2xy)*norm(x))));

SEZ=[sin(phi)*cos(theta),-sin(theta),cos(theta)*cos(phi);...

86 sin(phi)*sin(theta),cos(theta),sin(theta)*cos(phi);...

-cos(phi),0,sin(phi)];

L2=SEZ*L2;

r_site3xy =[ r_site3 (1,1),r_site3 (2,1) ,0]’;

phi=acos(dot(r_site3xy ,r_site3)/(( norm(r_site3xy)*norm(r_site3))))...

;

91 theta=acos(dot(r_site3xy ,x)/(( norm(r_site3xy)*norm(x))));

SEZ=[sin(phi)*cos(theta),-sin(theta),cos(theta)*cos(phi);...

sin(phi)*sin(theta),cos(theta),sin(theta)*cos(phi);...

-cos(phi),0,sin(phi)];

L3=SEZ*L3;

96 elseif modifier == 1

x=[1,0,0]’;

r_site1xy =[ r_site1 (1,1),r_site1 (2,1) ,0]’;

phi=acos(dot(r_site1xy ,r_site1)/(( norm(r_site1xy)*norm(r_site1))))...

;

101 theta =2*pi -acos(dot(r_site1xy ,x)/(( norm(r_site1xy)*norm(x))));

SEZ=[sin(phi)*cos(theta),-sin(theta),cos(theta)*cos(phi);...

sin(phi)*sin(theta),cos(theta),sin(theta)*cos(phi);...

-cos(phi),0,sin(phi)];

L1=SEZ*L1;

106 r_site2xy =[ r_site2 (1,1),r_site2 (2,1) ,0]’;

phi=acos(dot(r_site2xy ,r_site2)/(( norm(r_site2xy)*norm(r_site2))))...

;

theta =2*pi -acos(dot(r_site2xy ,x)/(( norm(r_site2xy)*norm(x))));

SEZ=[sin(phi)*cos(theta),-sin(theta),cos(theta)*cos(phi);...

111 sin(phi)*sin(theta),cos(theta),sin(theta)*cos(phi);...

-cos(phi),0,sin(phi)];

L2=SEZ*L2;

r_site3xy =[ r_site3 (1,1),r_site3 (2,1) ,0]’;

%x=[ r_site3 (1,1) ,0,0]’;

116 phi=acos(dot(r_site3xy ,r_site3)/(( norm(r_site3xy)*norm(r_site3))))...

;

theta =2*pi -acos(dot(r_site3xy ,x)/(( norm(r_site3xy)*norm(x))));

SEZ=[sin(phi)*cos(theta),-sin(theta),cos(theta)*cos(phi);...

sin(phi)*sin(theta),cos(theta),sin(theta)*cos(phi);...

-cos(phi),0,sin(phi)];

121 L3=SEZ*L3;

end

%---------------------------------------------------------

L=[L1 ,L2 ,L3];

%-Figure out angles -

126 dec=asin(L3(3,1))*180/pi;

csigmat=sqrt(1-L3(3,1));

ra=asin(L3(2,1)/csigmat)*180/pi;
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%Beginning Gaussian Method

131 tau1=( hour1 *60+ min1+s1/60) -(hour2 *60+ min2+s2/60);

tau3=( hour3 *60+ min3+s3/60) -(hour2 *60+ min2+s2/60);

tau1_sec=tau1 *60;

tau3_sec=tau3 *60;

136 a1=tau3/(tau3 -tau1);

a3=-tau1/(tau3 -tau1);

%----------------

%convert time to seconds

a1u=( tau3_sec *(( tau3_sec -tau1_sec)^2-tau3_sec ^2))/(6*( tau3_sec -...

tau1_sec));

141 a3u=-(tau1_sec *(( tau3_sec -tau1_sec)^2-tau1_sec ^2))/(6*( tau3_sec -...

tau1_sec));

invL=inv(L);

M=invL*r_site;

d1=M(2,1)*a1 -M(2,2)+M(2,3)*a3;

146 d2=M(2,1)*a1u+M(2,3)*a3u;

C=L2 ’*( r_site2);

%Calculate the 8th order polynomial ’s roots

poly =[1 0 -(d1 ^2+2*C*d1+(r_site2 ’* r_site2)) 0 0 (-2*...

u_earthkm3persec2 *(C*d2+d1*d2)) 0 0 -u_earthkm3persec2 ^2*d2^2];

r2=roots(poly);

151 format long

display(r2)

r2=input(’Enter the correct root choice numerically: ’);

u1=u_earthkm3persec2/r2^3;

c=[a1+a1u*u1;-1;a3+a3u*u1];

156 p=inv([c(1,1) 0 0;0 c(2,1) 0;0 0 c(3,1)])*M*-c;

pcheck=inv([c(1,1) 0 0;0 c(2,1) 0;0 0 c(3,1)])*M*-c;

magp=(sqrt(p(1,1)^2+p(2,1)^2+p(3,1)^2));

%we now have first guess at position vectors r1 ,r2 ,r3

161 r=[p(1,1)*L1+r_site1 ,p(2,1)*L2+r_site2 ,p(3,1)*L3+r_site3 ];

r1=r(:,1);

r2=r(:,2);

r3=r(:,3);

166

%We now use either the Gibbs or Herrick -Gibbs method to calculate ...

the velocity vector

alpha1=acos((r1 ’*r2)/(( sqrt(r2(1,1)^2+r2(2,1)^2+r2(3,1)^2))*(sqrt(...

r1(1,1)^2+r1(2,1)^2+r1(3,1)^2))));

alpha3=acos((r3 ’*r2)/(( sqrt(r2(1,1)^2+r2(2,1)^2+r2(3,1)^2))*(sqrt(...

r3(1,1)^2+r3(2,1)^2+r3(3,1)^2))));

alpha_total=alpha1 *180/pi+alpha3 *180/pi;

171

if alpha_total < 5 %Herrick -Gibbs

tau31 =( hour3 *3600+ min3 *60+s3) -(hour1 *3600+ min1 *60+s1);

tau21=( hour2 *3600+ min2 *60+s2)-(hour1 *3600+ min1 *60+s1);

Z23=cross(r2,r3);
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176 magr1=(sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2));

magr2=sqrt(r2(1,1)^2+r2(2,1)^2+r2(3,1)^2);

magr3 =(sqrt(r3(1,1)^2+r3(2,1)^2+r3(3,1)^2));

%coplanar check

alphacoplanar =90*pi/180- acos((Z23 ’*r1)/(( sqrt(Z23(1,1)^2+ Z23...

(2,1)^2+ Z23(3,1)^2))*(sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2)))...

);

181 if alphacoplanar > .001

display(’Vectors are not Coplanar!’)

break

end

v2=-tau3 *(1/( tau21*tau31)+u_earthkm3persec2 /(12* magr1 ^3))*r1+(...

tau3 -tau21)*(1/( tau21*tau3)+u_earthkm3persec2 /(12* magr2 ^3))...

*r2+tau21 *(1/( tau3*tau31)+u_earthkm3persec2 /(12* magr3 ^3))*...

r3

186

elseif alpha_total >= 5 %Gibbs

Z12=cross(r1,r2);

Z23=cross(r2,r3);

Z31=cross(r3,r1);

191 %coplanar check

alphacoplanar =90*pi/180- acos((Z23 ’*r1)/(( sqrt(Z23(1,1)^2+ Z23...

(2,1)^2+ Z23(3,1)^2))*(sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2)))...

);

if alphacoplanar > .001

display(’Vectors are not Coplanar!’)

break

196 end

N=(( sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2))*Z23+(sqrt(r2(1,1)^2+...

r2(2,1)^2+r2(3,1)^2))*Z31+(sqrt(r3(1,1)^2+r3(2,1)^2+r3(3,1)...

^2))*Z12); %ER^3

magr1 =(sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2));

magr2=sqrt(r2(1,1)^2+r2(2,1)^2+r2(3,1)^2);

magr3 =(sqrt(r3(1,1)^2+r3(2,1)^2+r3(3,1)^2));

201 D=Z12+Z23+Z31;

S=(magr2 -magr3)*r1+(magr3 -magr1)*r2+(magr1 -magr2)*r3;

B=cross(D,r2);

Lg=sqrt(u_earthkm3persec2 /(N’*D));

v2=(Lg/magr2)*B+Lg*S; %ER/TU

206 end

%needed orbital elements from r and v to get p1

h=cross(r2 ,v2); %angular momentum

magv2=(sqrt(v2(1,1)^2+v2(2,1)^2+v2(3,1)^2));

211 sigma =(( magv2 ^2) /2) -(u_earthkm3persec2/magr2);

e=1/ u_earthkm3persec2 *(( magv2 ^2-( u_earthkm3persec2/magr2))*r2 -(r2...

’*v2)’*v2);

mage=(sqrt(e(1,1)^2+e(2,1)^2+e(3,1)^2));

a=1;

p1=1;

216 if mage < 1

a=-u_earthkm3persec2 /(2* sigma);

75



p1=a*(1-mage ^2);

elseif e >= 1

display(’Orbit is parabolic with eccentricity equal to or ...

greater than 1’);

221 end

%now that we can determine the semi -parameter p1 we can get a new ...

estimate

226 %of the slant range

deltav1=-acos((r1/magr1)’*r2/magr2);

deltav3=acos((r3/magr3)’*r2/magr2);

v11=acos((e’*r1)/(mage*magr1));

v22=acos((e’*r2)/(mage*magr2));

231 v33=acos((e’*r3)/(mage*magr3));

f1=1-( magr1/p1)*(1-cos(deltav1));

f3=1-( magr3/p1)*(1-cos(deltav3));

g1=(( magr1)*( magr2)*sin(deltav1))/sqrt(u_earthkm3persec2*p1);

g3=(( magr3)*( magr2)*sin(deltav3))/sqrt(u_earthkm3persec2*p1);

236 c1=g3/(f1*g3 -f3*g1);

c3=-g1/(f1*g3 -f3*g1);

p=inv([c1 0 0;0 c(2,1) 0;0 0 c3])*M*-c;

pcheck1=inv([c1 0 0;0 c(2,1) 0;0 0 c3])*M*-c

magp1=(sqrt(p(1,1)^2+p(2,1)^2+p(3,1)^2));

241

%now that we have two guesses at slant range we need to iterate to...

refine

%the initial estimate of slant ranges

count =1;

246 while abs(pcheck (1,1)-pcheck1 (1,1)) > .1 && abs(pcheck (3,1)-...

pcheck1 (3,1)) > .1

pcheck1=pcheck;

r=[p(1,1)*L1+r_site1 ,p(2,1)*L2+r_site2 ,p(3,1)*L3+r_site3 ];

r1=r(:,1);

r2=r(:,2);

251 r3=r(:,3);

%We now use either the Gibbs or Herrick -Gibbs method to ...

calculate the velocity vector

alpha1=acos((r1 ’*r2)/(( sqrt(r2(1,1)^2+r2(2,1)^2+r2(3,1)^2))*(...

sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2))));

alpha3=acos((r3 ’*r2)/(( sqrt(r2(1,1)^2+r2(2,1)^2+r2(3,1)^2))*(...

sqrt(r3(1,1)^2+r3(2,1)^2+r3(3,1)^2))));

alpha_total=alpha1 *180/pi+alpha3 *180/pi;

256

if alpha_total < 5 %Herrick -Gibbs

tau31 =( hour3 *3600+ min3 *60+s3)-(hour1 *3600+ min1 *60+s1);

tau21 =( hour2 *3600+ min2 *60+s2)-(hour1 *3600+ min1 *60+s1);

Z23=cross(r2 ,r3);

261 %coplanar check
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alphacoplanar =90*pi/180- acos((Z23 ’*r1)/(( sqrt(Z23(1,1)^2+...

Z23(2,1)^2+ Z23(3,1)^2))*(sqrt(r1(1,1)^2+r1(2,1)^2+r1...

(3,1)^2))));

if alphacoplanar > .0001

display(’Vectors are not Coplanar!’)

break

266 end

v2=-tau3 *(1/( tau21*tau31)+u_earthkm3persec2 /(12* magr1 ^3))*...

r1+(tau3 -tau21)*(1/( tau21*tau3)+u_earthkm3persec2 /(12*...

magr2 ^3))*r2+tau21 *(1/( tau3*tau31)+u_earthkm3persec2...

/(12* magr3 ^3))*r3

elseif alpha_total >= 5 %Gibbs

Z12=cross(r1 ,r2);

271 Z23=cross(r2 ,r3);

Z31=cross(r3 ,r1);

%coplanar check

alphacoplanar =90*pi/180- acos((Z23 ’*r1)/(( sqrt(Z23(1,1)^2+...

Z23(2,1)^2+ Z23(3,1)^2))*(sqrt(r1(1,1)^2+r1(2,1)^2+r1...

(3,1)^2))));

if alphacoplanar > .0001

276 display(’Vectors are not Coplanar!’)

break

end

N=(( sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2))*Z23+(sqrt(r2(1,1)...

^2+r2(2,1)^2+r2(3,1)^2))*Z31+(sqrt(r3(1,1)^2+r3(2,1)^2+...

r3(3,1)^2))*Z12); %ER^3

magr1 =(sqrt(r1(1,1)^2+r1(2,1)^2+r1(3,1)^2));

281 magr2=sqrt(r2(1,1)^2+r2(2,1)^2+r2(3,1)^2);

magr3 =(sqrt(r3(1,1)^2+r3(2,1)^2+r3(3,1)^2));

D=Z12+Z23+Z31;

S=(magr2 -magr3)*r1+(magr3 -magr1)*r2+(magr1 -magr2)*r3;

B=cross(D,r2);

286 Lg=sqrt(u_earthkm3persec2 /(N’*D));

v2=(Lg/magr2)*B+Lg*S; %ER/TU

end

%needed orbital elements from r and v to get p1

h=cross(r2 ,v2); %angular momentum

291 magv2 =(sqrt(v2(1,1)^2+v2(2,1)^2+v2(3,1)^2));

sigma =(( magv2 ^2) /2) -(u_earthkm3persec2/magr2);

e=1/ u_earthkm3persec2 *(( magv2^2-( u_earthkm3persec2/magr2))*r2...

-(r2 ’*v2)’*v2);

mage=(sqrt(e(1,1)^2+e(2,1)^2+e(3,1)^2));

a=1;

296 p1=1;

if mage < 1

a=-u_earthkm3persec2 /(2* sigma);

p1=a*(1-mage ^2);

elseif e >= 1

301 display(’Orbit is parabolic with eccentricity equal to or ...

greater than 1’);

end
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%now that we can determine the semi -parameter p1 we can get a ...

new estimate

%of the slant range

deltav1=-acos((r1/magr1)’*r2/magr2);

306 deltav3=acos((r3/magr3) ’*r2/magr2);

v11=acos((e’*r1)/(mage*magr1));

v22=acos((e’*r2)/(mage*magr2));

v33=acos((e’*r3)/(mage*magr3));

f1=1-( magr1/p1)*(1-cos(deltav1));

311 f3=1-( magr3/p1)*(1-cos(deltav3));

g1=(( magr1)*( magr2)*sin(deltav1))/sqrt(u_earthkm3persec2*p1);

g3=(( magr3)*( magr2)*sin(deltav3))/sqrt(u_earthkm3persec2*p1);

c1=g3/(f1*g3-f3*g1);

c3=-g1/(f1*g3 -f3*g1);

316 p=inv([c1 0 0;0 c(2,1) 0;0 0 c3])*M*-c;

pcheck1=inv([c1 0 0;0 c(2,1) 0;0 0 c3])*M*-c

magp1 =(sqrt(p(1,1)^2+p(2,1)^2+p(3,1)^2));

count=count +1;

end

321 [p,a,ecc ,incl ,omega ,argp ,nu ,m,m_arglat] = rv2coe (r2 ,v2);

incl=incl *180/pi

omega=omega *180/pi

m=m*180/pi

argp=argp *180/pi

326 m_arglat=m_arglat *180/pi

%calc estimated alt

h_target=norm(r2)

thetadot=sqrt(u_earthkm3persec2 /( h_target)^3)

B.2 Spherical Trigonometry Initial Orbit Determination

Listing B.2: The spherical trigonometry initial orbit determination code.
(appendix2/SphericaltrigIODm.m)

1 % ...

-----------------------------------------------------------------------------...

%

% Spherical_trig_IOD.m

%

% this code is the initial orbit determination method using lat ...

long data.

6 %

% inputs description range / units

% day=dataimport (:,1);

% month=dataimport (:,2);

% year=dataimport (:,3);

11 % hour=dataimport (:,4); TIME

% min=dataimport (:,5);

% sec=dataimport (:,6);

% Lat=dataimport (:,7); GEODEDIC

% Long=dataimport (:,8);

16 % CASE1: Circular ascending SYMBOL
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% CASE2: Circular descending

% CASE3: Polar ascending

% CASE4: Polar desending

% outputs :Omega = node

21 % I= inclination

% Theta=Argument of latitude

% Thetadot=change in theta

% INITIAL STATE

% [Omega I Theta Thetadot]

26 %need JDAY.M, GSTIME.M, MODULO.M

% ...

-----------------------------------------------------------------------------...

clc

format long

31

fid=fopen(’ThorRB_latlong .txt’,’r’);

dataimport = fscanf(fid , ’%g %g %g %g %g %g %g %g’, [8 inf]);

dataimport=dataimport ’;% It has two rows now.

fclose(fid)

36 day=dataimport (:,1);

month=dataimport (:,2);

year=dataimport (:,3);

hour=dataimport (:,4);

min=dataimport (:,5);

41 sec=dataimport (:,6);

Lat=dataimport (:,7);

Long=dataimport (:,8);

46 for i=1: length(Lat)

degree_lat=Lat(i,1);

degree_lat=degree_lat*pi /180;

flatening =1/298.257223563;

u=degree_lat;

51 geocentric_lat =atan((1- flatening)^2* tan(u));

geocentric_lat1=geocentric_lat *180/pi;

Lat(i,1)=geocentric_lat1;

end

56 %There are 4 cases of data that we can consider using here. We ...

have

%CASE1: Circular ascending

%CASE2: Circular descending

%CASE3: Polar

61 % These cases are defined in terms of the track crossing the ...

equator in the

% northern hemisphere

i=1;
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A=zeros(( length(Long) -1) ,4);

66 b=[];

%----------------CHOOSE ORBIT DATA TYPE ------------------

%syms case1 case2 case3

% ie choice=case1;

choice =3

71 %--------------------------------------------------------

if choice ==1

for i=1:( length(Long) -1)

76 deltalat=Lat(i+1,1)-Lat(i,1);

deltalong =(Long(i+1,1)-Long(i,1))*cos(Lat(i,1)*pi /180);

alpha=atan2(deltalat ,deltalong);

b(i,5)=alpha;

az=90-( alpha *180/pi);

81 b(i,3)=az;

az=az*pi /180;

%step 1 %Omega calc here

delta=atan(sin(Lat(i,1)*pi /180)*tan(az));

86 JD = JDAY(year(i,1), month(i,1), day(i,1), hour(i,1), min(i,1)...

, sec(i,1));

[gst] = GSTIME (JD);

b(i,1)=gst *180/pi;

b(i,2)=delta *180/pi;

%need JDAY.M, GSTIME.M, MODULO.M

91 Omega=Long(i,1)+gst *180/pi -delta *180/pi;

A(i,1)=Omega;

b(i,4)=Omega;

%step 2

theta=acos(cos(delta)*cos(Lat(i,1)*pi /180));

96 theta=theta *180/pi;

A(i,3)=theta;

%step 3

inclination=asin(sin(Lat(i,1)*pi /180)/sin(theta*pi /180));

101 inclination=inclination *180/pi;

A(i,2)=inclination;

%step 4

thetadot=sqrt(( deltalong*pi /180) ^2*( cos(Lat(i,1)*pi /180))^2+(...

deltalat*pi /180) ^2) /(( hour(i+1,1) *3600+ min(i+1,1) *60+ sec(i...

+1,1))-(hour(i,1) *3600+ min(i,1) *60+ sec(i,1)));

106 A(i,4)=thetadot;

i=i+1;

end

elseif choice ==2

for i=1:( length(Long) -1)

111 deltalat=Lat(i+1,1)-Lat(i,1);

deltalong =(Long(i+1,1)-Long(i,1))*cos(Lat(i,1)*pi /180);

alpha=atan2(deltalat ,deltalong);
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b(i,5)=alpha *180/pi;

az=90-( alpha *180/pi);

116 beta =90+( alpha *180/pi);

b(i,6)=beta;

b(i,3)=az;

az=az*pi /180;

121 %step 1 %Omega calc here

delta=atan(sin(Lat(i,1)*pi /180)*tan(beta*pi /180));

delta=pi -delta;

JD = JDAY(year(i,1), month(i,1), day(i,1), hour(i,1), min(i,1)...

, sec(i,1));

[gst] = GSTIME (JD);

126 b(i,1)=gst *180/pi;

b(i,2)=delta *180/pi;

%need JDAY.M, GSTIME.M, MODULO.M

Omega=Long(i,1)+gst *180/pi -delta *180/pi;

A(i,1)=Omega;

131 b(i,4)=Omega;

%step 2

theta_tilde=acos(cos(delta)*cos(Lat(i,1)*pi /180));

theta=theta_tilde *180/pi;

A(i,3)=theta;

136

%step 3

inclination=asin(sin(Lat(i,1)*pi /180)/sin(theta_tilde));

inclination=inclination *180/pi;

A(i,2)=inclination;

141

%step 4

thetadot=sqrt(( deltalong*pi /180) ^2*( cos(Lat(i,1)*pi /180))^2+(...

deltalat*pi /180) ^2) /(( hour(i+1,1) *3600+ min(i+1,1) *60+ sec(i...

+1,1))-(hour(i,1) *3600+ min(i,1) *60+ sec(i,1)));

A(i,4)=thetadot;

i=i+1;

146 end

elseif choice == 3

for i=1:( length(Long) -1)

deltalat=Lat(i+1,1)-Lat(i,1);

deltalong =(Long(i+1,1)-Long(i,1))*cos(Lat(i,1)*pi /180);

151 alpha=atan2(deltalat ,deltalong);

b(i,5)=alpha;

az=90-( alpha *180/pi);

b(i,3)=az;

az=az*pi /180;

156

%step 1 %Omega calc here

delta=atan(sin(Lat(i,1)*pi /180)*tan(az));

JD = JDAY(year(i,1), month(i,1), day(i,1), hour(i,1), min(i,1)...

, sec(i,1));

[gst] = GSTIME (JD);

161 b(i,1)=gst *180/pi;

81



b(i,2)=delta *180/pi;

%need JDAY.M, GSTIME.M, MODULO.M

Omega=Long(i,1)+gst *180/pi -delta *180/pi;

A(i,1)=Omega;

166 b(i,4)=Omega;

%step 2

theta=acos(cos(delta)*cos(Lat(i,1)*pi /180));

theta=theta *180/pi;

A(i,3)=theta;

171

%step 3

inclination=asin(sin(Lat(i,1)*pi /180)/sin(theta*pi /180));

inclination =180- inclination *180/pi;

A(i,2)=inclination;

176

%step 4

thetadot=sqrt(( deltalong*pi /180) ^2*( cos(Lat(i,1)*pi /180))^2+(...

deltalat*pi /180) ^2) /(( hour(i+1,1) *3600+ min(i+1,1) *60+ sec(i...

+1,1))-(hour(i,1) *3600+ min(i,1) *60+ sec(i,1)));

A(i,4)=thetadot;

i=i+1;

181 end

end% end if loop for choice

display(A(i-1,:))

display ([’The epoch time is ’ ,num2str(hour(i-1,1)), ’:’,num2str(...

min(i-1,1)), ’:’ ,num2str(sec(i-1,1)) ,])

B.3 Non-Linear Least Squares

Listing B.3: The least squares code.(appendix2/NLleastsquares.m)
% ...

-----------------------------------------------------------------------------...

%

% Non_linear_leastsquares .m

4 %

% this code is the master Non -Linear Least Squares

%

% inputs description range / units

% day=dataimport (:,1);

9 % month=dataimport (:,2);

% year=dataimport (:,3);

% hour=dataimport (:,4); TIME

% min=dataimport (:,5);

% sec=dataimport (:,6);

14 % Xo = INITIAL STATE=[ Omega I Theta Thetadot]

% EPOCH TIME

% outputs :Omega = node

% I= inclination

% Theta=Argument of latitude

19 % Thetadot=change in theta
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% INITIAL STATE

% [Omega I Theta Thetadot]

% FILES REQUIRED TO

% RUN;testdatasensor4.txt;testdatatarget4.txt;G.M;r_target.M;...

cooridnate_tra

24 % nsform.m

% ...

-----------------------------------------------------------------------------...

close all

clear all

clc

29 meanr =10;

%Cosmos

Xo =[358.9086913581474* pi /180 ,82.491055652040558* pi...

/180 ,121.9992275169298* pi /180 ,.0009138421573219655];

hour_epoch =15;

min_epoch =49;

34 sec_epoch =59.74;

Xo=Xo ’;

%Gather Data

39 % Target

fid = fopen(’Cosmos_p.txt’, ’r’);

dataimport = fscanf(fid , ’%g %g %g %g %g %g %g %g %g’, [9 inf]);

dataimport=dataimport ’;% It has two rows now.

fclose(fid)

44 day=dataimport (:,1);

month=dataimport (:,2);

year=dataimport (:,3);

hour=dataimport (:,4);

min=dataimport (:,5);

49 sec=dataimport (:,6);

rx=dataimport (:,7);

ry=dataimport (:,8);

rz=dataimport (:,9);

54 %Sensor

fid = fopen(’Cosmos_sensor_p.txt’, ’r’);

dataimport = fscanf(fid , ’%g %g %g %g %g %g %g %g %g’, [9 inf]);

dataimport=dataimport ’;% It has two rows now.

fclose(fid)

59 day=dataimport (:,1);

month=dataimport (:,2);

year=dataimport (:,3);

hour=dataimport (:,4);

min=dataimport (:,5);

64 sec=dataimport (:,6);

Rx=dataimport (:,7);

Ry=dataimport (:,8);

Rz=dataimport (:,9);
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69 [Az_ob , El_ob ]=G(rx,ry ,rz ,Rx ,Ry ,Rz);

max_count =200;

count =1;

res_norm_old =100000;

res_norm_hist =[];

74 temp=size(Az_ob);

sigma = 0.0000001;

nvec1=sigma*randn(temp);

nvec2=sigma*randn(temp);

Az_ob=Az_ob+nvec1;

79 El_ob=El_ob+nvec2;

Q=diag(sigma ^2* ones(length(Az_ob)*2,1));

Qinv=inv(Q);

ANS=2

while ANS > 1

84 count=count+1

%Begin Non Linear Least Squares

for i=1: length(Az_ob)

% Compute current state from inital state & delta_t (time ...

since epoch)

89 delta_t=-( hour_epoch *3600+ min_epoch *60+ sec_epoch)+(hour(i,1)...

*3600+ min(i,1) *60+ sec(i,1));

phi =[1 0 0 0;0 1 0 0;0 0 1 delta_t ;0 0 0 1];

Xn=phi*Xo;

%Calculate pseudo_phi using Xn

94 Omega=Xn(1,1);

I=Xn(2,1);

Theta=Xn(3,1);

Thetadot=Xn(4,1);

t=delta_t;

99 mue= 398601; % Earth Gravitational Parameter (km^3/ sec ^2)

x1=Omega;

x2=I;

x3=Theta;

x4=Thetadot;

104 pseudo_phi = [(mue/x4^2) ^(1/3)*(-sin(x1)*cos(x3)-cos(x1)*cos(...

x2)*sin(x3)) ,...

(mue/x4^2) ^(1/3)*sin(x1)*sin(x2)*sin(x3) ,(mue/x4^2) ^(1/3)...

*...

(-cos(x1)*sin(x3)-sin(x1)*cos(x2)*cos(x3)), -2/3/( mue/x4...

^2) ^(2/3) ...

*(cos(x1)*cos(x3)-sin(x1)*cos(x2)*sin(x3))*mue/x4 ^3;...

(mue/x4^2) ^(1/3) *(cos(x1)*cos(x3)-sin(x1)*cos(...

x2)*sin(x3)) ,...

109 -(mue/x4^2) ^(1/3)*cos(x1)*sin(x2)*sin(x3), (mue...

/x4^2) ^(1/3) ...

*(-sin(x1)*sin(x3)+cos(x1)*cos(x2)*cos(x3)) ,...

-2/3/( mue/x4^2) ^(2/3) *(sin(x1)*cos(x3)+cos(x1)...

...
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*cos(x2)*sin(x3))*mue/x4 ^3;...

0, (mue/x4^2) ^(1/3)*cos(x2)*sin(x3) ,...

114 (mue/x4^2) ^(1/3)*sin(x2)*cos(x3) ,...

-2/3/( mue/x4^2) ^(2/3)*sin(x2)*sin(x3)*mue/x4...

^3];

%Using Xn calculate r_target

r_target1 = r_target(Xn);

119 Ro=[Rx(i,1);Ry(i,1);Rz(i,1)];

rho_eci=r_target1 -Ro;

R=Ro;

R_transform = coordinate_transform(R);

rho_sez=R_transform*rho_eci;

124 ps=rho_sez (1,1);

pe=rho_sez (2,1);

pz=rho_sez (3,1);

%Obtain Az_calc and El_calc

129 Az=atan2(pe ,-ps);

El=asin(pz/sqrt(ps^2+pe^2+pz^2));

Az_calc(i,1)=Az;

El_calc(i,1)=El;

134 %Calculate H

H_tilde= [pe/(pe^2+ps^2), -ps/(pe^2+ps^2), 0;...

-pz/(pe^2+ps^2+pz^2) ^(3/2)*ps/(1-pz^2/(pe^2+ps^2+pz...

^2))^(1/2) , -pz/(pe^2+ps^2+pz^2) ^(3/2)*pe/(1-pz...

^2/(pe^2+ps^2+pz^2))^(1/2) ,(pe^2+ps^2)/(pe^2+ps^2+...

pz^2) ^(3/2) /((pe^2+ps^2)/(pe^2+ps^2+pz^2))^(1/2) ];

H=H_tilde*R_transform;

139 %Calculate T

T=H*pseudo_phi*phi;

if i==1

BigT=T;

else

144 BigT=[BigT;T];

end;

%Calculate residuals

residual=zeros (2,1);

149 residual (1,1)=Az_ob(i,1)-Az_calc(i,1);

residual (2,1)=El_ob(i,1)-El_calc(i,1);

if i==1

BigR=residual;

else

154 BigR=[BigR;residual ];

end

end

% Update State Estimate (at epoch)

159 P=inv(BigT ’*Qinv*BigT);
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delta_X=P*BigT ’*Qinv*BigR;

Xo=Xo+delta_X .*[0.2 0.2 0.2 0.2]’;

% Check for convergence by looking at percent change in the ...

residual norm

164 res_norm=norm(BigR)

res_norm_hist =[ res_norm_hist;res_norm ];

if abs(res_norm -res_norm_old)/res_norm <0.0001

ANS =1;

disp(’converged ’)

169 end

if count >max_count

ANS =1;

disp(’Exceeded Max Count’)

174 end

res_norm_old=res_norm;

end

179 Xo(1,1)=Xo(1,1) *180/pi;

Xo(2,1)=Xo(2,1) *180/pi;

Xo(3,1)=Xo(3,1) *180/pi;

display(Xo)

display(P)

184

%The loops below are seperating out azimuth and elevation ...

residuals

for i=1: length(BigR)

odd=i*2-1;

odd1(i,1)=odd;

189 even=i*2-2;

even1(i,1)=even;

end

for i=1: length(BigR)

194 for a=1: length(even1)

if i== even1(a,1)

el=BigR(i,1);

el1(a,1)=el;

end

199 end

end

for i=1: length(BigR)

for a=1: length(odd1)

if i==odd1(a,1)

204 Az=BigR(i,1);

Az1(a,1)=Az;

end

end

end
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Appendix C. Matlab Functions

This appendix contains all function code referenced in the core code in appendix 1.

C.1 Observation Function

Listing C.1: The observation function G used in NLleastsquares.m.
(appendix3/G.m)
% ...

-----------------------------------------------------------------------------...

2 %

% function G.m

%

% this is the observation funtion for least squares.

%

7 % inputs description range / units

% rx ,ry ,rz - position of target ECI KM

% Rx ,Ry ,Rz -position of sensor ECI KM

% outputs :

% Az_ob Observed Azimuth radians

12 % El_ob Observed Elevation radians

% [Az_ob , El_ob]=G(day ,month ,year ,hour ,sec ,rx,ry,rz ,Rx ,Ry ,Rz)

% files needed to run: coordinate_transform

17 %[Az_ob , El_ob]=G(rx ,ry ,rz ,Rx ,Ry,Rz)

% ...

-----------------------------------------------------------------------------...

function [Az_ob , El_ob ]=G(rx ,ry ,rz ,Rx,Ry,Rz)

22

%Form vectors in ECI

R=[Rx ,Ry ,Rz];

r=[rx ,ry ,rz];

27

%rho in the eci

for i=1: length(R)

A=r(i,:)-R(i,:);

rho_eci(i,:)=A;

32 end

%rho in the sez frame

for i=1: length(rho_eci)

R_transform = coordinate_transform(R(i,:) ’);

37 B=R_transform*rho_eci(i,:) ’;

rho_sez(i,:)=B;

end
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%generate az and el data

42 ps=rho_sez (:,1);

pe=rho_sez (:,2);

pz=rho_sez (:,3);

for i=1: length(rho_sez)

F=atan2(pe(i,1) ,-ps(i,1));

47 Az(i,1)=F;

end

for i=1: length(rho_sez)

B=asin(pz(i,1)/sqrt(ps(i,1) ^2+pe(i,1)^2 + pz(i,1) ^2));

52 El(i,1)=B;

end

Az_ob=Az;

El_ob=El;

C.2 Target function

Listing C.2: The target function.(appendix3/rtarget.m)
% ...

-----------------------------------------------------------------------------...

2 %

% function r_target.m

%

% this function finds the calculated position of the target ...

Satellite from Xn.

%

7 % inputs description range / units

% Xn State Vector at time n varied

% r height value being used KM

%

% outputs :

12 % r_target target position in ECI fram KM

% r_target = r_target(Xn ,r,mue)

% ...

-----------------------------------------------------------------------------...

17

function r_target1 = r_target(Xn)

mue =398601;

Omega=Xn(1,1);

22 I=Xn(2,1);

Theta=Xn(3,1);

Thetadot=Xn(4,1);

RIn =[1 0 0;

0 cos(I) -sin(I);

27 0 sin(I) cos(I)];

88



ROmegan =[cos(Omega) -sin(Omega) 0;

sin(Omega) cos(Omega) 0;

0 0 1];

R_pqw=[cos(Theta);

32 sin(Theta);

0];

n=(mue/Thetadot ^2) ^(1/3);

r_target1=ROmegan*RIn*R_pqw*n;

C.3 Julian Day

Listing C.3: The julian day function for reference.(appendix3/JDAY.m)
% ...

-----------------------------------------------------------------------------...

%

% function jday.m

%

5 % this function finds the julian date given the year , month , day ,...

and time.

%

% inputs description range / units

% year - year 1900 .. 2100

% mon - month 1 .. 12

10 % day - day 1 .. 28,29,30,31

% hr - universal time hour 0 .. 23

% min - universal time min 0 .. 59

% sec - universal time sec 0.0d0 .. 59.999...

d0

%

15 % outputs :

% jd - julian date days from 4713 ...

bc

% jd = jday(year , month , day , hour , min , sec)

% ...

-----------------------------------------------------------------------------...

20

function JD = jday(year , month , day , hour , min , sec)

JD =367*year -floor ((7*( year+floor(( month +9) /12)))/4)+floor ((275*...

month)/9)+day +1721013.5+(((( sec /60)+min)/60)+hour)/24;

C.4 Greenwich Mean Sidereal Time

Listing C.4: The θGMST function .(appendix3/GSTIME.m)
% ...

-----------------------------------------------------------------------------...

% function gstime
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%

4 % this function finds the greenwich sidereal time.

%

% inputs description range / units

% jdut1 - julian date of ut1 days from 4713 ...

bc

%

9 % outputs :

% gst - greenwich sidereal time 0 to 2pi rad

%

% locals :

% temp - temporary variable for reals rad

14 % tut1 - julian centuries from the

% jan 1, 2000 12 h epoch (ut1)

% references :

% vallado 2001, 191, eq 3-45

% gst = gstime(JD);

19 % ...

-----------------------------------------------------------------------------...

function gst = gstime(JD);

twopi = 2.0*pi;

deg2rad = pi /180.0;

24

% ------------------------ implementation ...

------------------

tut1= ( JD - 2451545.0 ) / 36525.0;

temp = - 6.2e-6 * tut1 * tut1 * tut1 + 0.093104 * tut1 * ...

tut1 ...

29 + (876600.0 * 3600.0 + 8640184.812866) * tut1 + ...

67310.54841;

temp = modulo( temp*deg2rad /240.0 , twopi );

% ------------------------ check quadrants ...

--------------------

34 if ( temp < 0.0 )

temp = temp + twopi;

end

gst = temp;

C.5 Coordinate Transform

Listing C.5: The coordinate transform function.
(appendix3/coordinatetransform.m)

1 % ...

-----------------------------------------------------------------------------...

%
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% function coordinate_transform.m

%

% this function finds the coordinate transform from ECI to SEZ.

6 %

% inputs description range / units

% R position vector of sensor KM ECI

%

% outputs :

11 % R_transform coordinate transfrom unitless

% R_transform = coordinate_transform(R)

% ...

-----------------------------------------------------------------------------...

16 function R_transform = coordinate_transform(R)

%Coordinate Transform

z=R/norm(R);

kvec =[0;0;1];

21 b=cross(kvec ,R);

b1=norm(b);

e=b/b1;

s=cross(e,z);

C=[s’;e’;z’];

26 R_transform=C;

C.6 Modulus

Listing C.6: Simple but necessary modulus function.(appendix3/modulo.m)
% ...

----------------------------------------------------------------------------...

2 %

% modulo function

%

% this function finds the modulous value. The result is positive ...

or negative.

%

7 % inputs description range / units

% x - input argument

% xv - input argument to mod with

%

% outputs :

12 % y - answer

% y = modulo (x,xv);

% ...

----------------------------------------------------------------------------...

function y = modulo (x,xv);

17 y = x - xv * fix(x / xv);
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C.7 Search Algorithm

Listing C.7: The search algorithm uses a modified single line version of the catalog.
(appendix3/simplesearch.m)
clear all

2 clc

format long

%fid = fopen(’2 ndlinecatalog.txt ’, ’r’);%the one without debris

fid = fopen(’catalog2ndlinewdebris.txt’, ’r’);%the one with debris

7 dataimport = fscanf(fid , ’%g %g %g %g %g %g %g %g’, [8 inf]);

dataimport=dataimport ’;% It has two rows now.

fclose(fid)

line=dataimport (:,1);

designator=dataimport (:,2);

12 inclination=dataimport (:,3);

raan=dataimport (:,4);

eccentricity=dataimport (:,5);

argument_of_perigee =dataimport (:,6);

mean_anomaly=dataimport (:,7);

17 mean_motion=dataimport (:,8);

fid = fopen(’2ndlinecatalog_epoch .txt’, ’r’);

dataimport = fscanf(fid , ’%14g’, [1 inf]);

dataimport=dataimport ’;% It has two rows now.

22 fclose(fid)

Epoch=dataimport (:,1);

figure

hold on

plot(inclination ,raan ,’.’)

27 title(’Inclination vs RAAN’)

xlabel(’Inclination ’)

ylabel(’RAAN’)

set(gca ,’XTick ’ ,0:10:150)

hold off

32

found =0;

for i=1: length(line)

if inclination(i,1) > 98.5 && inclination(i,1) < 99.5 && raan(...

i,1) > 65.4 && raan(i,1) < 66.4

37 found=found +1;

match(found)=i;

end

end

if found ==0, disp(’No matches ’),end

42 if found ~=0

disp([’Found ’,num2str(found),’ matches.’])

disp([’ ’])

for i=1: found

disp([’Satellite Number: ’, num2str(designator(match(1,i...

) ,1))])
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47 disp([’Inclination: ’, num2str(inclination(match(1,...

i) ,1))])

disp([’RAAN: ’, num2str(raan(match(1,i) ,1))...

])

disp([’Eccentricity: ’, num2str(eccentricity(match...

(1,i) ,1))])

disp([’Argument of Perigee:’, num2str(argument_of_perigee (...

match(1,i) ,1))])

disp([’Mean Anomaly: ’, num2str(mean_anomaly(match...

(1,i) ,1))])

52 disp([’Mean Motion: ’, num2str(mean_motion(match(1,...

i) ,1),’%2.8f’)])

disp([’ ’])

end

end
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