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ABSTRACT  

In complex environments the modelling of outdoor sound propagation implies to take into account the 
mixed influence of ground characteristics (topography, obstacles, impedance, etc.) and atmospheric 
conditions (refraction and turbulence). During the last decade significant progress has been made in the 
modelling of sound propagation over distances ranging from hundreds meters to kilometres, and the 
agreement between calculated and measured fields has been greatly improved. New developments appear 
in the parabolic-equation method. In this paper we present a method which evaluates the propagation of 
an acoustic wave above uneven terrains including realistic meteorological parameters. In our approach 
the effects of the topography are modelled using appropriate rotated co-ordinates systems in order to treat 
the non-flat ground as a succession of flat domains. We also examine the influence of scale resolution on 
numerical simulation of long range sound propagation through the turbulent atmosphere. Currently, we 
generate the turbulence using a Random Fourier Modes technique, such that the turbulent fluctuation at 
any point in the medium (either scalar or vectorial in nature) is calculated from the sum of a chosen 
number of modes. Our model of outdoors sound propagation is validated both with classical numerical 
benchmark cases and recent outdoor experiments. 

1.0 INTRODUCTION 

In complex environments the modelling of outdoor sound propagation implies to take into account 
the mixed influence of ground characteristics (topography, obstacles, impedance, etc.) and atmospheric 
conditions (refraction and turbulence).  These phenomena have been studied in the literature ([1]). Sound 
waves are influenced by two principal characteristics: the sound speed (celerity) of the medium, and the 
velocity of the medium. For numerical simulations of outdoors sound propagation, parabolic equations have 
been derived using the approximation of the effective sound speed. In this conventional approach the real 
moving atmosphere is replaced by a hypothetical motionless medium with the effective sound speed 

xeff vcc +=  where xv  is the wind velocity component along the direction of propagation between source 

and receiver. When the source and receiver are close to the ground, the preferred direction of sound 
propagation is nearly horizontal, and standard parabolic equations can be used to predict sound pressure 
levels. However, in many problems of atmospheric acoustics, refracted sound waves and those scattered by 
turbulence propagate in directions which may significantly differ from the horizontal axis. A rigorous way 
to incorporate the effects of a velocity field is to begin with the fundamental equations of fluid mechanics 
and derive a wave equation which includes the velocity. In the limits of linear acoustic theory, such a wave 
equation can be derived as the sum of a d'Alembertian operator and additional terms depending on the 
nature of the velocity field. From such a wave equation, a corresponding ``vector'' parabolic equation can 
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be derived for monochromatic sound waves. Recently Ostashev & al. ([2]), Dallois & al. ([3]), derived new 
wide-angle parabolic equations which do maintain the vector properties of the velocity of the medium. 
Significant progresses have been made in the modelling of sound propagation over distances ranging from 
hundreds meters to kilometers, and the agreement between calculated and measured fields have been 
greatly improved ([4], [5]).  

In this paper we present a method which evaluates the propagation of an acoustic wave above an 
uneven terrain using a PE method and which includes realistic meteorological parameters. In our approach 
the effects of the topography are modelled using appropriate rotated co-ordinates systems in order to treat 
the ground as a succession of flat domains. We also examine the influence of scale resolution on numerical 
simulation of long range sound propagation through the turbulent atmosphere. Currently, we generate the 
turbulence using a Random Fourier Modes technique ([4], [6]), such that the turbulent fluctuation at any 
point in the medium (either scalar or vectorial in nature) is calculated from the sum of a chosen number of 
modes. Our model of outdoors sound propagation is validated both with classical numerical benchmark 
cases and recent experiments done in St-Berthevin where acoustical and meteorological measurements are 
performed simultaneously. 

2.0 THEORETICAL BACKGROUND 

During the last decade, propagation of sound above plane and heterogeneous grounds, including or 
not meteorological effects, has been extensively studied analytically, numerically and/or experimentally. 
Different numerical approaches such as Fast-Field Program without [7] and with turbulence [8], Boundary 
Element Methods [9,10, 11,12] and more recently, Meteo-BEM [13] have been successfully compared to 
analytical solutions and experiments for several usual situations. Nevertheless, when considering complex 
environments, mixed influence of terrain topography and atmospheric conditions has to be taken into 
account. In those particular situations where the propagation medium is not stationary with creation of 
mean motion or velocity fluctuations, numerical approaches based on parabolic equations seem to be well 
adapted to the problem. Different methods of resolution have been investigated. The main ones are: the 
Split-Step Fourier Method [14], the Crank-Nicholson scheme (CN-PE) [15, 16], the Green Function 
Parabolic Equation (GF-PE) [17, 18], the Generalized Terrain Parabolic Equation (GT-PE) [19], the 
Mean-Wind and Turbulent-Wind Wide-Angle Parabolic Equation (MW-WAPE, TW-WAPE) [2, 4].  

In the recent years several authors have developed numerical simulations of sound propagation in 
the atmosphere taking into account atmospheric models. To model sound propagation in the atmospheric 
boundary layer the basic idea recently introduced is to use a mesocale atmospheric model to simulate local 
wind and temperature profiles in an area with complex topography of the terrain. This atmospheric model 
is couple with an appropriate model for sound propagation ([20, 21, 22]. Recently a different approach has 
been considered to improve the modelling of sound propagation in an inhomogeneous moving atmosphere 
([23, 24]). These new numerical simulations are based on time–domain calculations performed with 
linearized equations of fluid dynamics. The interest of these finite-difference time-domain techniques are 
their ability to deal with complicated phenomena in outdoor sound propagation such as scattering by 
turbulence, 3D effects by buildings and topography ([41,42]). However a high computational effort is 
necessary to run these solvers and this approach is not yet appropriate to deal with long distance sound 
propagation problems. Among these techniques, a mixed method called "Split-Step Padé" has been 
validated [2, 25, 26]. It appeared to be reliable with respect to its obvious advantages in terms of angular 
aperture, CPU time and its capability to consider the main phenomena: from flat and homogeneous 
grounds to complex situations including mixed and/or uneven grounds. 

2.1 Parabolic equation 

The PE based methods seem to be the most appropriate to solve the problem of acoustic 
propagation above a mixed ground with topographical irregularities in a both refractive and turbulent 
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atmosphere. For numerical simulations of outdoor sound propagation, parabolic equations have been 
derived using the approximation of the effective sound speed to take into account the vectorial effect of 
the wind. In this conventional approach the real moving atmosphere is replaced by a hypothetical 
motionless medium with the effective sound speed ceff=c+vx, where vx is the wind velocity component 
along the direction of sound propagation between source and receiver. This approach is convenient 
because both source and receiver are close to the ground and the preferred direction of sound is nearly 
horizontal. However, in many problems of atmospheric acoustics, refracted sound waves propagate in 
directions which may significantly differ from the direction of propagation ([5,27,28]). We use a specific 
PE developed by Ostashev et al. ([2]) and Dallois et al. ([3]) which does maintain the vector properties of 
the velocity medium. 

We consider bi-dimensional (x, z) propagation of a monochromatic acoustic wave in a 
homogeneous and moving medium. If the length scale of the medium L is much greater than the acoustic 
length scale, λ<<L, an exact wave equation for this situation in the frequency domain is given by Ostashev 
et al. ([2]): 
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where: p is the acoustic pressure, ω=2πf, f is the frequency, k=ω/c, ε=(c0/c(r))2-1 is the variation of the 
standard refraction index, x and z are respectively the horizontal vertical directions, and υυυυ stands for the 
velocity of the medium. When υυυυ=0, this equation is reduced to the Helmholtz equation: 

[ ] 0),r(p)1(k 2
0 =++ ωε∆ .  , (Eq. 2) 

The additional terms in Eq. (1) compared to Eq. (2) contain the effects of the moving medium. Ostashev et 
al. ([2]) and Dallois et al. ([3]) reduced Eq. (1) to wide-angle parabolic equation. The first step is to write 
the 2D equation for forward propagation ([2,3]): 
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From here, the pseudo-operator Q is simplified using a Padé approximation to yield: 
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where L=Q-1, p=3/4 and q=1/4. Considering the envelope of the pressure field defined as φ(r)=p(r)exp(-
ikx), the parabolic equation turn to mean-wind wide-angle parabolic equation (MW-WAPE): 
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where: 
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If all velocities in Eq. (5) are set to zero, this equation is reduced to the classical Padé (1, 1) PE (WAPE) 
derived from Helmholtz equation (2): 
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with 

.1/1 22
0

2 −=−= effeffeff ccnε (Eq. 8) 

Eq. (3) and Eq. (5) are discretized on a uniform mesh (i∆x, j∆z) using a standard finite difference method. 
z-derivatives are evaluated by centered difference approximations, and Crank-Nicholson scheme is 
implemented as a marching algorithm which takes the following form: 

),(),( zxBzxxA φφ =∆+ , (Eq. 9) 

where A and B are pentadiagonal (MW-WAPE) or triagonal (WAPE) matrices. In our computations, the 
ground is modeled as a locally reacting surface with finite complex impedances calculated using the one 
parameter approximation from Delany and Bazley ([29]). Reflexions at the top of the numerical grid are 
controlled by introducing a thin artificial absorption layer in the upper part of the computation domain. 
The uneven terrain is treated as a succession of flat domains ([26, 30, 31]). After each flat domain the 
coordinate system (x,z) is rotated so that the x axis remains parallel to the ground ( figure 1) .The 
calculation above each domain needs an initial solution. The values of the initial solution for the domain 
n+1 are obtained from the interpolated values of the pressure field of the domain n, except for the first 
domain where the source is initialized by a Gaussian starter which has an adjustable width and takes into 
account the image source weighed by a complex reflection coefficient. 

In order to validate the method, we consider the propagation above a wedge. A reference solution 
can be established analytically as the sum of a geometrical field and a diffracted field ([26]).  We consider 
the case of a positive slope and of a negative slope. We chose d1=60 metres, d2=40 meters and alpha=20 
degrees. The unit point source is located at 2 meters above the ground. The acoustic frequency is 340 Hz. 
On figures 2 and 3 we compare two analytical solutions and the PE solution. We evaluate the pressure 
amplitude on the same benchmark case on a line L perpendicular to the slope at 40 meters of the bottom 
discontinuity. 
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Figure 1 - Definition of the computational domains.  

 

 

 

 

Figure 2: Sound propagation for an upslope wedge (hs =2 m.;d1=60 m. , d2=40m.).  

 

The first analytical solution is the geometrical part of the pressure; the second is the total analytical 
pressure field (geometrical plus diffracted). The agreement between the PE solution and the first analytical 
solution (geometrical plus diffracted field) is excellent in both cases (upslope and downslope). The 
difference between the two analytical solutions is due to diffracted part of the pressure field. We conclude 
that the rotated PE method calculates accurately the diffracted part of the field above the wedge.  Others 
numerical comparisons in the cases of the curved surfaces have been done ([26,30]) : the rotated PE 
method gives accurate results until a angle of 40 degrees and for frequencies between 100 and 3200 Hz.  
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Figure 3: Sound propagation for a downslope wedge (h s=2 m. ,d1=60 m., d2=40 m..) 

 

2.2. Atmospheric model 

There are several ways of modelling the vertical wind and temperature profiles near the ground: linear, 
logarithmic, multi-linear, linear-logarithmic, hybrid, etc. As first order approximations, temperature and 
wind profiles are set constant with distance (non range dependent) on each flat domain. Likewise the 
profiles are slightly rotated with each corresponding domain, since the angles between the rotated systems 
of coordinates are very small (inferior to 5°). Moreover, following Panofsky & Dutton ([32]) and Gilbert 
& White ([15]), temperature and wind profiles are assumed to be logarithmically shaped and expressed as: 
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where d is the displacement length, z0 is the roughness parameter, aT and av are refraction parameters 
related to temperature and wind respectively. The effective sound speed ceff used in the classical Padé (1,1) 
PE [Eq. (8)] is defined from wind and temperature fields as: 
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where c0 is the sound speed for T=273.15K (≈331m/s) and θ is the angle between wind direction and the 
direction of sound propagation. We can define an effective refraction parameter aeff as follow: 
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This effective refraction parameter is used with WAPE while temperature and wind refraction parameters 
are used with MW-WAPE. Our MW-WAPE code needs accurate propagation conditions as input data for 
calculations. Vertical sound speed profiles could be determined from wind and temperature profiles 
through data post-processing of experimental data. Those profiles can be also numerically synthesized by 
a micrometeorological model. This has been carried out in the context of road traffic noise using an 
atmospheric code called SUBMESO ([22]). MW-WAPE can also deal with turbulence; we generate the 
turbulence using a Random Fourier Modes technique, such that the turbulent fluctuation at any point in the 
medium (either scalar or vectorial in nature) is calculated from the sum of a chosen number of modes with 
an amplitude distributed according to a prescribed energy spectrum ([4, 6, 33]). 

2.3 Sound scattering in an upward-refracting turbulent atmosphere 

In an upward-refracting atmosphere, acoustic energy is scattered into the shadow zone due to 
temperature and wind fluctuations. The strength of this scattering not only depends on turbulence 
parameters (i.e. turbulence scales and variance of refractive-index fluctuations) but also on the acoustic 
frequency and geometry (range, source and receiver heights) considered. As shown in previous studies 
([33,34,35,37]), there is a coupling between turbulence parameters, acoustic frequency and geometry, 
which means that the turbulence scales involved in the scattering of acoustic energy into the shadow zone 
also depend on acoustic frequency and geometry. The smallest turbulent structures involved in acoustic 
scattering into the shadow zone can be found using Bragg’s relation, which links angle of diffraction of 
acoustic energy with acoustic frequency and turbulent structure/eddy size. The range of acoustic 
frequencies of interest is thus relatively large (from 50Hz to 4kHz), and the range relatively long (up to 
1km). To predict sound pressure levels given these constraints, numerical simulations are realized using a 
wide-angle PE code including turbulence effects [4, 31, 33]. Turbulence is generated using a Random 
Fourier Mode (RFM) technique assuming frozen turbulent fluctuations. Mode orientations and phases are 
independent random variables chosen to yield homogeneous isotropic fields. For each realization, 
temperature (or velocity) fluctuations are obtained by summing over a limited number of random Fourier 
modes. In the simulations the sound pressure level is averaged over 30 realizations, which is enough to 
obtain accurate results [4]. In this paper the simulations are done in a two-dimensional space, and only 

temperature fluctuations are considered. Temperature is decomposed into a mean part 0TT =  and a 

fluctuating part 'T : '0 TTT += . The turbulent thermal energy spectrum G  is modelled by a modified 

von Kármán spectrum of the form [4, 33, 40]: 
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(14b) 

in three- and two-dimensions, respectively, with K  the turbulent wave number, 092.5 lK m = , 0L  and 

0l  the outer and inner scales of turbulence, respectively, 0330.0≈A , and 3/2
0

22 '91.1 LTCT ≈ . 

Expressions can also be written in terms of the index of refraction n , µ+= nn , where µ  is the 

fluctuating part. For small fluctuations µ  is written as: 02' TT≈µ . In the PE code, the spectrum given 

by Equation (14b) is used for consistency with two-dimensional geometry. Turbulence parameters for all 

simulations are: mL 50 = , ml 05.00 = , and 52 10−≈µ  (corresponding to a temperature standard 
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deviation of 1.8K). 

2.3.1. Scattering cross-section 

The scattering cross-section characterizes the amount of acoustic power scattered by a volume of 
inhomogeneities (or scattering volume) per unit incident acoustic intensity and per unit volume: 

VIIr S
D

0
23 =σ , with the notations of Figure 1, SI  the mean scattered acoustic intensity, and 0I  the 

incident acoustic intensity. The scattering cross-section characterizes the angular dependence of acoustic 
scattering by turbulence; it has the dimension of m-1. When considering temperature and velocity 
fluctuations, the scattering cross-section for homogeneous turbulence is written [36]: 
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where k  is the acoustic wave number, 0T  and 0c  are the mean temperature and sound speed, 

respectively, and D
T
3Φ  and D

ij
3Φ  are the three-dimensional spectral densities of the fluctuations of 

temperature and of the ith and jth components of velocity, respectively. This expression is obtained 
assuming that the propagation distances r0 and r are large with respect to the scale of the inhomogeneities 
L, and L is large with respect to the acoustic wavelength λ. Writing Tσ  the scattering cross-section only 
due to temperature fluctuations, it comes for homogeneous and isotropic turbulence in three- and two-
dimensions: 
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Figure 4: Geometry of source S, receiver R, scatteri ng volume V and scattering angle θ. 

Equations (16a) and (16b) show that scattering at the angle θ only depends on spectral components of the 
turbulence with wave numbers 2sin22 θπ kL = . This can be rewritten: 

2sin2 θλ L=  , (17) 

which satisfies Bragg’s condition . Bragg’s relation given in Equation (17) is useful since it estimates the 
main turbulent structure size L responsible for the scattering at the angle θ for a given acoustic wavelength 
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λ. Several authors already used this relation to interpret numerical results of acoustic scattering by 
turbulence [33, 34, 35, 37]. In Figure 5 we compare the scattering cross-sections in 2D and 3D calculated 
at two different acoustic frequencies. The scattering cross-sections are seen to reach their maximum at θ 
equal to zero (forward-scattering). For the higher acoustic frequency of 1600Hz, small scattering angles 
(below 5 to 10 degrees) contain most of the scattered energy. This is less pronounced at the lower acoustic 
frequency of 100Hz. It also appears that 2D expressions are lower than 3D ones, although there is a simple 
relation of proportionality between the two. As a result the normalized scattering cross-sections are the 
same in the two- and three-dimensional case. 
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Figure 5: Scattering cross-sections at 100Hz (black)  and 1600Hz (red) in three- (solid lines) and 

two- (dashed lines) dimensional space. Temperature fluctuations are modeled with the modified 
von Kármán spectrum . 

2.3.2. Influence of cut-off turbulent wave numbers on sound propagation 

Let ( )22
10log10 freeppL =∆  be the relative sound pressure level, where p  is the acoustic pressure 

calculated, and freep  is the acoustic pressure in free space and in homogeneous propagation conditions. In 

order to obtain the third octave band spectrum of the sound pressure level between 50Hz and 1600Hz, 46 
frequencies are calculated to have a 1dB maximum error. All simulations are run with a source height of 
2m, a porous ground with an effective flow resistivity of 200kN.s.m-4, typical of grassland, and a 
logarithmic sound speed profile ( ) ( )0log0 1ln zzaczc ++= , with smc /3400 = , sma /1.2log −= , and 

mz 1.00 = . This sound speed profile is representative of a strong sound speed gradient. We focus on the 

influence of the small turbulent structures. Part of the approach presented here follows Wert et al. [33]. 
From the scattering cross-sections plotted in Figure 5, we expect that only small scattering angles have a 
significant effect on scattering into the shadow zone. Using Bragg’s relation of Equation 17, smaller and 
smaller structures are likely to be involved when the acoustic frequency increases. This qualitative 
reasoning is confirmed by numerical simulations. In the PE simulations, different maximum turbulent 
wave numbers maxCK , from 1m-1 to 32m-1, are considered. Figure 6 shows the difference in the 800Hz 

third octave band relative sound pressure level between simulations with maxCK  equal to 32m-1 (taken as 

the reference simulation) and 2m-1. Clearly in the latter case the sound pressure level in the shadow zone is 
smaller, which shows that turbulent wave numbers between 2 and 32m-1 are important.  
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Figure 6: Relative sound pressure level L∆  for 
1

max 32 −= mK C  (top) and 
1

max 2 −= mK C  
(bottom) on the 800Hz third octave band. 
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Figure 7: Third octave band spectrum of the relativ e sound pressure level L∆  at a receiver 

located at (r0,z0) (as given on top of each plot) w ith maxCK  as given. A black vertical line is 
plotted at 400Hz. 

To be more specific, we compare the third octave band spectra of the relative sound pressure level from 
the simulations with different maxCK  at a range of 500m and at two heights in Figure 7. Below 100Hz 

approximately, the receiver is still located in the illuminated region and all simulations give the same 
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results. When acoustic frequency increases above 100Hz, maxCK  needs to be increased to reach the 

reference simulation. For instance in the 400Hz band (see the black vertical lines in Figure 7), only 

simulations with 1
max 8 −≥ mKC  are acceptable at a height of 1m. At a height of 10m, the simulation with 

maxCK  equal to 4m-1 is also acceptable. At greater heights the receiver is not as deep in the shadow zone, 

thus sound pressure levels are higher and the condition on the maximum turbulent wave number is not as 
critical as at a lower height. These results show that the maximum cut-off turbulent wave number 
increases with acoustic frequency. From the 1m height plot we see that simulations with maxCK  equal to 

1m-1, 2m-1, 4m-1 , 8m-1, 16m-1 are roughly valid up to the 63Hz, 125Hz, 250Hz, 500Hz and 1kHz third 
octave bands, respectively, where validity is understood here as closeness to the reference simulation. 
Thus there appears to be a more or less linear dependence between the two quantities: fKC ∝max . This 

is consistent with Bragg’s relation considering a maximum scattering angle that is constant with respect to 
acoustic frequency. 

3.0 SOUND PROPAGATION  IN A COMPLEX REALISTIC  ENVIRONMENT  

An outdoor site near Saint Berthevin (France) has been selected to study the influence of 
meteorological conditions on sound propagation. This offers the possibility of simultaneous detailed 
measurement of meteorological and noise propagation data as indicated on figure 8. The meteorological 
data are collected on towers M1 to M7 and the sound pressure levels are measured on towers A1 to A5. 
Meteorological data and sound levels at the receivers are recorded simultaneously. (Additional details are 
available in [22, 26]). This survey provides a database of noise level variations in a complex environment  
(non flat terrain, mixed ground) and thus allow us to validate our numerical simulation of outdoors sound 
propagation.  

 

 

Figure 8 View of St Berthevin and schematic illustra tion of the experimental set-up  

 

The terrain is modelled using a succession of six flat domains with finite complex impedance Z. Z is 
calculated using the one-parameter formula of Delany-Bazley ([29]): 

 

Outdoor Sound Propagation Modelling in Complex 
Environments: Recent Developments in the Parabolic Equation Method 

RTO-MP-SET-107 21 - 11 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

145m

375m

A1

 A2

 A3

 A4
 A5

30m

A 81

SNCF
 M2

 M5

 M6

 M1

 M7

 M3

 M4

230m

280m

 



 

 

 





















+






+=
−− 732.0

0

754.0

0
00 087.00571.01

σ
ρ

σ
ρρ f

i
f

cZ , (Eq. 18) 

where f is the frequency and σ is the flow resistivity. A broadband source is located at 2m from the 
ground, the reference level is calculated in front of the source at a distance of 1m (see figure 9). In order to 
evaluate the micrometeorological conditions, we used an equipped tower located on the slope but far 
enough from the measurement line not to disturb acoustic propagation. The tower is equipped with 
ventilated air thermometers (YOUNG 41342VC) and accurate wind direction and wind speed sensors 
(YOUNG 05305AQ), using a YOUNG 26700 station. The accuracy is about 0.1°C, 2° and 0.1m/s 
respectively. The sampling rates of the temperature and wind measurements are too low as to derive 
turbulence parameters. These sensors are located at 3 different heights: 1, 3 and 10m. Temperature and 
wind profiles are modelled following Eq. (10), where aT and av are deduced from micrometeorological 
measurements (10min average). For each acoustical measurement, the signal has been averaged over 10 
gun shots, which is a sufficient number to determine a reliable average value for acoustical measurements. 
Results are given in terms of relative Sound Pressure Level coming from the difference between the 
spectrum at microphone M1, M2, M3, M4 or M5 and the spectrum at the reference microphone Mref.   

 
 

Ref R1

R2

R3

R4
R5

 

Meteo tower

R2

R5

 
 

Figure 9 Experimental set-up .The source and the re ceivers R1 – R5 are located 2 m above the 
ground, the angle between the wind direction and th e axis of propagation is 20°.  

Figure 10 gives a comparison between experimental data measures at St Berthevin and numerical 
simulations calculated with PE. In the results presented here, the micrometeorological parameters deduced 
from experimental data are : the angle between wind direction and the direction of sound propagation θ 
=20°, the refraction parameters related to temperature and wind respectively aT=0.20 and av=0.65 , and the 
effective refraction parameter aeff=0.73. The characteristic impedance value of each domain of the ground 
surface has been determined according to the grazing incidence technique developed by Bérengier and 
Garai ([38]). This measurement technique requires a set of two microphones located 4 m away from an 
impulse source. The estimation of the airflow resistivity value of the ground to be qualified is obtained 
through a Levenberg-Marquardt inverse fitting algorithm applied to the experimental narrow-band excess 
attenuation between the two microphones ([39]). The results of the fitting procedures for downslope 
propagation are : σ =  600 Pa�s�m-2 around the source, σ = 90 Pa�s�m-2 around M1, σ = 160 Pa�s�m-2 around 
M2 and σ = 200 Pa�s�m-2 around M4. The distances of propagation are respectively 25 m for the receiver 
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R2 and 75m for the receiver R5. At the receiver R5 placed down the hill we clearly observed the influence 
of the wind (see figure10). If the mean wind profile is not taken into account in the numerical simulation 
we noted large differences between the measured data and the estimated sound pressure level; at large 
distance of propagation (R5) and for high frequencies (above 500 Hz) the difference is of the order of 
15dB. When the mean velocity profile is taken into account in the PE simulation, the agreement between 
calculated and measured values is reasonable. The differences could be attributed to the variations of the 
local impedance, and to the fluctuations of the meteorological parameters (mainly the wind direction and 
the turbulence). Concerning the back-scattered sound energy by slopes, Blairon ([26]) showed that the 
ratio between the scattered and the total acoustic energy is less than 0.1 % for a frequency of 500 Hz and a 
slope of 40 degrees. 
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Figure 10 Relative sound pressure levels measured a t two receivers R2 and R5. Comparisons 

with numerical estimated calculated using the PE meth od: influence of the mean wind. 
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4.0 CONCLUSION 

In this paper we have presented a method which evaluates the propagation of an acoustic wave 
above an uneven terrain using wide-angle parabolic equations which do maintain the vector properties of 
the velocity of the medium and which includes realistic meteorological parameters. In our approach the 
effects of the topography are modelled using appropriate rotated co-ordinates systems in order to treat the 
ground as a succession of flat domains. We also examine the influence of scale resolution on numerical 
simulation of long range sound propagation through the turbulent atmosphere. Currently, we generate the 
turbulence using a Random Fourier Modes technique ([4], [6]), such that the turbulent fluctuation at any 
point in the medium (either scalar or vectorial in nature) is calculated from the sum of a chosen number of 
modes. An outdoor site near Saint-Berthevin (France) has been selected to study the influence of 
meteorological conditions on noise traffic. Acoustical and meteorological measurements are performed 
simultaneously. This survey provides a database of noise level variations in a complex environment (non-
flat terrain, mixed ground). The agreement we obtained between our numerical simulation based on a PE 
model and the measured data can be considered as very promising. Work is currently in progress to study 
over long time periods the statistical effects of meteorology on long range sound propagation. 
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