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Formally establishing safety properties of software presents a grand challenge to the

computer science community. Producing proof-carrying code, i.e., machine code with

machine-checkable specifications and proofs, is particularly difficult for system softwares

written in low-level languages. One central problem is the lack of verification theories

that can handle the expressive power of low-level code in a modular fashion. In partic-

ular, traditional type- and logic-based verification approaches have restrictions on either

expressive power or modularity.

This dissertation presents XCAP, a logic-based proof-carrying code framework for

modular machine code verification. In XCAP, program specifications are written as gen-

eral logic predicates, in which syntactic constructs are used to modularly specify some

crucial higher-order programming concepts for system code, including embedded code

pointers, impredicative polymorphisms, recursive invariants, and general references, all

in a logical setting. Thus, XCAP achieves the expressive power of logic-based approaches

and the modularity of type-based approaches. Its meta theory has been completely mech-

anized and proved.

XCAP can be used to directly certify system kernel code. This dissertation contains

a mini certified thread library written in x86 assembly. Every single instruction in the

library, including those for context switching and thread scheduling, has a formal XCAP

specification and a proof. XCAP is also connected to existing certifying compiler; a type-

preserving translation from a typed assembly language to XCAP is included.
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Chapter 1

Introduction

We begin this dissertation with the following code:

swapcontext:
; save old context ; load new context
mov eax, [esp+4] mov eax, [esp+8]
mov [eax+_eax], 0 mov esp, [eax+_esp]
mov [eax+_ebx], ebx mov ebp, [eax+_ebp]
mov [eax+_ecx], ecx mov edi, [eax+_edi]
mov [eax+_edx], edx mov esi, [eax+_esi]
mov [eax+_esi], esi mov edx, [eax+_edx]
mov [eax+_edi], edi mov ecx, [eax+_ecx]
mov [eax+_ebp], ebp mov ebx, [eax+_ebx]
mov [eax+_esp], esp mov eax, [eax+_eax]

ret

This 19 lines of x86 assembly code constitutes a common routine for machine-context

switching, omitting floating-point and special registers. The first (left) half of the code

saves the current machine context, whereas the second (right) half loads the new machine

context and resumes execution from there. Being executed virtually every millisecond on

most PCs, code sequences similar to this are a crucial part of modern OS.

Surprisingly, despite the simplicity and small size of this piece of code, to the author’s

knowledge, it has never been rigorous proved to be safe and correct, whether manually or

automatically. There is not even a rigorous statement on what this 19 lines of code should

and should not do. In fact, this seemingly simple code sequence turns out to be extremely

difficult to specify and reason about. The lack of safety guarantee at such a core of OS

kernel makes any claim about software safety and security a “wish” instead of reality.
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1.1 Machine Code Verification

Program correctness or, to a less degree, code safety, has long been one of the most de-

sired goals for computer programmers and users. With great dependency on information

technology in the modern world, individuals and businesses are getting more concerned

about the reliability and the security of the computing infrastructure than ever. Great

efforts and investments have been put into the research and development of software ver-

ification tools for a long time. In [32], formally establishing safety properties of software

has been identified as a grand challenge to the computer science community.

From the point of view of software engineering, there are many levels of program

abstractions. At the top level are algorithms and protocols, which normally get imple-

mented in various high-level programming languages (including domain-specific lan-

guages), the later of which often get translated into and are supported by intermediate

languages found either in compilers or in portable virtual machines. In the end there

is assembly and machine code, which carries out the actual computations and provides

critical runtime support.

Surprisingly, in the entire hierarchy of program verification there is one important

level that receives much less attention than the others. Despite the fact that all higher

level abstraction and verification efforts will eventually be based upon the machine code

level, there have been much fewer existing works done in machine code verification. The

direct result of the lack of machine code level verification support is that most of the safe

algorithms/protocols/programs usually lose their safety guarantees when being imple-

mented or translated into binary.

Recently, formal studies on critical code such as OS kernels are attracting growing in-

terests. Among other techniques, type systems and program logics have been widely ap-

plied in modern programming language and OS researches. One representative example

is the Singularity project [33], which aims to build a highly reliable OS using a type-safe

programming language (C#) and other techniques for program specification and verifi-

2



cation. Another example is the Verisoft project [23], which uses computer-aided logical

proofs to obtain assurance of the correctness of critical systems including OS kernels. Un-

fortunately, both fall short at the code for context switching at the beginning of this chap-

ter: Singularity uses unsafe assembly code for programming context switching; Verisoft

has not approached below the level of user processes in software verification.

The lack of work on self-contained verification of machine level context and thread

implementation reveals subtle limitations of traditional methods. For example, although

type systems provide excellent support for modularity and higher-order features, they

tend to be very specialized when dealing with low-level system code, raising both flexi-

bility and interoperability issues. As another example, many program logics suffer from

the weak support on higher-order features such as embedded code pointers [53], as will

be discussed in details in this dissertation.

The purpose of this thesis work is to advance the research of machine code verification.

In particular, we want to achieve a better balance between expressiveness and modularity

over existing methods for low-level system and application code verification. Although

theoretically one could apply any verification methods on machine code, expressiveness

and modularity are two extremely important criteria for machine code verification.

One of the main reasons that people write code in low-level languages instead of high-

level languages is the expressiveness of the low-level languages themselves. The speed,

flexibility, and precise control of machine resources are examples of the expressiveness

of machine languages. To verify such kind of code, the expressiveness of the verification

system has to be much more powerful than those used for high-level languages.

Separate compilation is important for high-level programs. While machine code does

not need to be compiled, in many cases it still needs to be linked together before execution.

Moreover, separate verification is even more important for machine code than high-level

programs, since machine code is generally larger in size and more tedious than a corre-

sponding high-level program. Its verification condition and process are also generally

much larger and slower than the high-level’s. For a machine code verification system to

3



be practical and efficient, it must have as good support of modularity as the high-level

verification systems.

1.2 Previous Work

In this section, we discuss existing efforts on low-level and machine code verification.

Typed assembly languages. Type system has been popular and proved successful in

programming languages. Thus, a natural way to address the machine and assembly level

program verification is to design a type system for assembly language. Partly inspired

by the Typed Intermediate Language (TIL) [57], Type Assembly Language (TAL) [41] is

a first effort to address the low-level code safety problem in the traditional type system

manner. The specification of TAL is written in syntactically defined types, including in-

teger, tuple, code pointer, polymorphic, and existential types. Since the type checking

of TAL is syntax directed and decidable, the verification process is fully automatic. By

using certifying compilation technology, many of the existing high-level programming

languages can be translated into TAL code with type annotation. Later improvement of

TAL includes stack and exception [40], modularity and dynamic linking [24], dependent

type and arrays [60], recursive type and connections with foundational proof-carrying

code [29], heterogeneous tuples and disjoint sums [13], low-level optimization [11].

However, there are lot safety policies which have not been supported by the above

work on TAL. For example, memory management are not handle in any of them. The fact

that most of TAL languages require a hard-wired “malloc” or “alloc” instruction, which

is generally a library function above the machine instruction level, is due to the inability

of them to type check precise memory management. To support these safety properties

in TAL, one would need to incorporate more and more features into the type system and

the interoperations between different versions of TALs may also be problematic.

4



Proof-carrying code. Traditionally, the code consumer receives binary from the code

producer and verify the code before executing it. To shift the burden of verification from

code consumer to code producer, Proof-Carrying Code (PCC) [45, 43, 44, 12] allows a

code producer to provide a machine (DEC Alpha) language program to a host along with

a formal proof of its safety. The specification language in PCC is typing predicates with

some universal logic connectors and the safety policy is expressed as pre/post conditions

of code sequences. The proofs are written in a logic extended with many language-specific

typing rules. By using verification-condition generator (VCgen), both the code producer

and the code consumer can automatically calculate the safety requirements (lemmas) at

each instruction from the safety policy. For those simple examples, the theorem prover can

automatically prove those lemmas. Code consumer would simply use a proof checker to

ensure that the proofs do prove those lemmas. By proving the soundness of the VCgen

algorithm, the code consumer can be sure that the safety policy has been satisfied. Since

the source language’s type system is somehow embedded in the logic, PCC can enjoy

most of the benefits of source type systems such as modularity and support more general

properties through logic formulas.

The VCgen and proof checker are inside the trusted computing base and are error-

prone since they all involve language-specific typing rules which themselves are not al-

ways error-free. For example, [36] discovered a serious bug in the typing rules. Another

difficulty of PCC is that language-specific typing rules makes interoperation between code

written in different languages ad hoc, if not hard at all.

Foundational proof-carrying code. Foundational Proof-Carrying Code (FPCC) [6, 5]

tackles the problems of PCC by constructing and verifying its proofs using strictly the

foundations of mathematical logic, with no type-specific axioms. The machine semantics

of Sun Sparc is formalized in the logic in the first place. VCgen can now be removed from

trusted computing base. Instead of directly verifying binaries in the machine level, exit-

ing work of FPCC all takes programs written in a slightly higher-level TAL-like language

5



and automatically general their corresponding FPCC according to the types and typing

derivations. In the case of semantic approach [6, 18, 3, 8] types, typing derivations, and

soundness proof are directly interpreted into foundational logic’s formula and proofs. The

syntactic approach [29] simply encodes the syntactic type system in the logic and obtain

the FPCC by mapping between machine and FTAL steps and utilizing the encoded FTAL

soundness proof.

Automated proofs of object code for a widely used microprocessor. Yu [65] uses a

limited first-order predicate logic (ACL) to define and specify the machine (Motorola

MC68020) and safety policy (Hoare-style pre/post-condition relation on binary encod-

ing of machine program segment). The proof of the safety properties is done by manually

specifying lemmas needed and their usage, and letting the Boyer-Moore Theorem Prover

(Nythm) to complete the whole proof. There the safety properties are mostly correctness

of functions, including those in a unix string library.

Cyclone / C-Cured / Vault. Cyclone [35], CCured [46], and Vault [16] are safe C-like lan-

guages which aim at providing verification support at a level close to assembly. They

could serve as the low-level system programming language connecting with machine

code verification system when a very expressive specification language is not required.

JVML / MSIL. Java Virtual Machine Language [27] and Microsoft Intermediate Lan-

guage [37] are intermediate-level portable languages for virtual machines. All Java and

C# programs are compiled to and distributed in these languages. These languages can be

further compiled to TAL-like languages.

1.3 Challenges and Contributions

The work in this dissertation lies within the PCC (and FPCC) framework. In principle,

PCC can be used to verify safety properties of arbitrary machine-language programs.

6



Existing PCC systems [12, 29, 11, 13], however, have focused on programs written in

type-safe languages [26, 38] or variants of typed assembly languages [41]. Type-based

approaches are attractive because they facilitate automatic generation of the safety proofs

(by using certifying compilers) and provide great support to modularity and higher-order

language features. But they also suffer from several serious limitations. First, types are

not expressive enough to specify sophisticated invariants commonly seen in the verifica-

tion of low-level system software. Recent works on logic-based type systems [61, 55, 14, 1, 4]

have made types more expressive but they still cannot specify advanced state invariants

and assertions [54, 63, 64] definable in a general-purpose predicate logic with inductive

definitions [58]. Second, type systems are too weak to prove advanced properties and

program correctness, especially in the context of concurrent assembly code [63, 20]. Fi-

nally, languages of different style often require different type systems, making it hard to

reason about interoperability.

An alternative to type-based methods is to use Hoare logic [22, 31]—a widely applied

technique in program verification. Hoare logic supports formal reasoning using very ex-

pressive assertions and inference rules from a general-purpose logic. In the context of

foundational proof-carrying code (FPCC) [5, 63], the assertion language is often unified

with the mechanized meta logic (following Gordon [25])—proofs for Hoare logic conse-

quence relation and Hoare-style program derivations are explicitly written out in a proof

assistant. For example, Touchstone PCC [44] used Hoare-style assertions to express com-

plex program invariants. Appel et al [6, 9] used Hoare-style state predicates to construct

a general semantic model for machine-level programs. Yu et al [63, 64, 20] recently de-

veloped a certified assembly programming framework that uses Hoare-style reasoning to

verify low-level system libraries and general multi-threaded assembly programs.

Unfortunately, Hoare logic, as Reynolds [54] observed, does not support higher-order

features such as embedded code pointers (ECPs) well. Similarly, features such as im-

predicative polymorphisms, recursive specifications, and weak update references, are not

handled well simultaneously in the logical setting. How to modularly support these fea-
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tures without sacrificing the expressive power of logic is the first and major challenge we

face when doing machine code verification.

The second challenge we face when doing machine code verification is whether the

verification method is applicable to real-world program verification on realistic system

kernel code.

The third challenge is whether the results of verification is an isolated one or can actu-

ally connect with other verification systems such as type systems.

The contributions of this dissertation can be summarized into the following aspects,

which corresponds to the structure of the dissertation.

Embedded code pointer and the basic XCAP framework. We designed the XCAP frame-

work, which provides the first simple and general solution to the ECP problem for Hoare-

logic verification systems. By “simple”, we mean that our method does not alter the struc-

ture of Hoare-style program derivations and assertions. By “general”, we mean that our

technique can indeed handle all kinds of machine-level ECPs, including those hidden in-

side higher-order closures. Relevant details can be found in Chapter 3.

Impredicative polymorphisms and recursive specifications. We extended the XCAP

framework to support impredicative polymorphisms and recursive specifications. Both

extensions cause very little change in the XCAP inference rules and meta theory. Thus,

they are light weight and proved sound. Using the extended XCAP, we solve the ECP

problem for separation logic [54] and present a verification of a destructive list-append

function, which is listed as an example in [54]. Relevant details can be found in Chapter 4.

Weak update and a translation from typed assembly language. Weak update, also

termed as “general reference”, is another higher-order feature that logic-based verifica-

tion methods fail to support well. We once again extended the XCAP framework to sup-

port weak update, using similar syntactic technique for the support of ECP in Chapter 3.
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We then explore the relationship between XCAP and typed assembly languages (TAL).

TAL and XCAP are suitable for different kinds of verification tasks. Previously, programs

verified in either one of them can not interoperate freely with the other, making it hard

to integrate them into a complete system. Moreover, the relationship between TAL and

CAP/XCAP lines of work has not been discussed extensively.

We compare the type-based and logic-based methods by presenting a type-preserving

translation from a TAL language to XCAP. The translation involves an intermediate step of

a “semantic” TAL language. Our translation supports polymorphic code, mutable refer-

ence, existential, and recursive types. Since we proved typing preservation for the transla-

tion from TAL to XCAP, there is a clear path to link and interoperate well-typed programs

from traditional certifying compilers with certified libraries by XCAP. Relevent details can

be found in Chapter 5.

A port of XCAP to the x86 architecture. We port XCAP to a faithful subset of the x86

architecture, which adds the support of instruction decoding, finite machine word, word-

aligned byte-addressed memory, conditional flags, built-in stack and push/pop instruc-

tions, and function call/return instructions. On top of it, we made practical adaptations

and built useful abstractions, particularly on the handling of the stack and function calls.

We demonstrate its usage and these abstractions for the verification of a polymorphic

queue module. Relevent details can be found in Chapter 6.

A certified mini thread library. We mechanically verified a thread implementation at

the machine level using the ported XCAP. Using the first mechanized proof for the safety

of a machine-level thread implementation, we demonstrate the power and practicality of

the XCAP framework, and thus the fact that the certification of complex machine-level

system code is not beyond reach. The specifications and proof of MTH modules and rou-

tines are modular. Each piece of the code is specified and proved with minimal reference

to external code. For example, in the verification of context module, there is no mention
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of thread at all. More details can be found in Chapter 7.

Mechanization. One key feature of the XCAP framework is mechanization. Not only

did we mechanize our machine syntax, machine semantics, assertion languages, interpre-

tations, inference rules, and program specifications and proofs in a general mathematic

logic, we also mechanized the complete meta theory of XCAP. Plus, we want to directly

obtain the power of higher-order predicate logic, through a shallow embedding. For these

reasons, our usage of the Coq proof assistant [58] is to treat it as both a mechanized logic

framework and a mechanized meta logic framework. More details can be found in Chap-

ter 8.
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Chapter 2

Background

Most of the theoretical presentations and discussions in this dissertation are based on a

same RISC-like ideal target machine (TM). Most of the verification systems and proofs in

this dissertation assume a same underlying formal meta logic—a variant of the Calculus

of Inductive Constructions (CiC) [50], upon which the Coq proof assistant is based. For

proof mechanization purpose, we refer to it as our “mechanized meta logic”. Certified

Assembly Programming (CAP) is the logic-based machine code verification framework

from which the work in this dissertation evolves. In this chapter, we prepare the reader

with the machine, the logic, and the baseline CAP.

2.1 The Target Machine

All theoretical results presented in this dissertation share a common raw target machine

TM, as defined in Figure 2.1. A TM program (P), an entire machine configuration, consists

of a code heap (C), a dynamic state component (S) made up of a register file (R) and a data

heap (H), and an instruction sequence (I) to be executed next. Code heap is a collection

of code labels (f) and the code sequence they points to. The register file is made up of 32

registers, while the data heap is a partial mapping from data labels (l) to machine words

(w). In essence, f, l, and w are all just plain natural numbers (i). Since TM has an infinite
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(Program) P ::= (C,S,I)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,R)

(Mem) H ::= {l ; w}∗

(Regfile) R ::= {r ; w}∗

(Reg) r ::= {rk}k∈{0...31}

(Word,Labels) w,f,l ::= i (nat nums)

(InstrSeq) I ::= c;I | jd f | jmp r

(Instr) c ::= add rd ,rsrt | addi rd ,rs, i | alloc rd, i | bgti rs, i,f
| free rs, i | ld rd,rs(i) | mov rd ,rs | movi rd, i | st rd(i),rs

Figure 2.1: Syntax of target machine

word size, we expects its data heap to be bounded but infinite—there is no upper limit on

how large a data heap can be, but at any program execution point, all the allocated heap

cells are below a certain boundary (this is because in TM one can only allocate a finite

amount of memory in each allocation).

TM follows the RISC style for simplicity. Its instruction set of TM is minimal but exten-

sions are straightforward. There are instructions (c) for arithmetic operations (add rd ,rsrt ,

addi rd ,rs, i), data movements (mov rd,rs and movi rd , i), memory allocation/deallocation

(alloc rd , i and free rs, i), memory accesses (ld rd ,rs(i) and st rd(i),rs), and condition jumps

(bgti rs, i,f). Each code block (instruction sequence) must end with either a direct jump

(jd f) or an indirect jump (jmp r).

The operational semantics of this language (see Figure 2.2) should pose no surprise.

The add instructions add values from source registers and immediate values and put

the sums into the destination registers. The data movement instructions take either the

source register value or an immediate value, and put it into the destination register. Heap

allocation instruction takes a required size i and allocates a continuous memory block of

that size, with its initial value undefined (so for safe execution of programs, these values

should not be used). To dispose a piece of memory, every cell in it must be previously

allocated. Similarly, to access a memory cell, it must be previously allocated. Whether
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if I= then (C,(H,R),I) 7−→
jd f (C,(H,R),C(f)) when f∈dom(C)
jmp r (C,(H,R),C(R(r))) when R(r)∈dom(C)
bgti rs, i,f;I′ (C,(H,R),I′) when R(rs)≤ i;

(C,(H,R),C(f)) when R(rs)> i
c;I′ (C,Nextc(H,R),I′)

where

if c = then Nextc(H,R) =
add rd,rsrt (H,R{rd ;R(rs)+R(rt)})
addi rd,rs, i (H,R{rd ;R(rs)+i})
mov rd,rs (H,R{rd ;R(rs)})
movi rd, i (H,R{rd ; i})
alloc rd , i (H{l; , . . . ,l+i−1; },R{rd ;l})

where l, . . . ,l+i−1 /∈ dom(H) and is a random value
free rs, i (H/{R(rs), . . . ,R(rs)+i−1},R)

when R(rs), . . . ,R(rs)+i−1∈dom(H)
ld rd ,rs(i) (H,R{rd ;H(R(rs)+i)}) when R(rs)+i ∈ dom(H)
st rd(i),rs (H{R(rd)+i;R(rs)},R) when R(rd)+i ∈ dom(H)

Figure 2.2: Operational semantics of target machine

directly jumping to an immediate code label or a register value, the target address must

point to a piece of code in the code heap. Branch instruction compares the register value

with an immediate value, and decides if it should continue with the next instruction or

jump to somewhere else. In all the above cases, when the side-conditions of instructions

are unsatisfied, the execution of TM gets “stuck.” To guarantee that a TM program will

never enter the “stuck” status is the minimum requirement for any verification systems.

2.2 Mechanized Meta Logic

Both the syntax and the operational semantics of TM, as well as all the verifications sys-

tems, program specifications, and proofs in this dissertation, are defined upon a formal

meta logic. In this dissertation we use a variant of the calculus of inductive constructions

(CiC) [50], which is a higher-order predicate logic extended with powerful inductive def-
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(Term) A,B ::= Set | Prop | Type | x | λx :A.B | A B | A→B | Πx :A.B | inductive definitions

(Prop) p,q ::= True | False | ¬p | p∧q | p∨q | p⊃ q | ∀x :A. p | ∃x :A. p | . . .

Figure 2.3: Mechanized meta logic

initions. We informally present our formal meta logic in Figure 2.3. Terms in CiC can

be sorts (Set, Prop, and Type), variables, function abstractions, function applications, non-

dependent products, dependent products, or inductive definitions. We omit the details

of inductive definitions and will instead use examples to explain them later. The logic

part of CiC contains terms of Prop sort, which provides common logic quantifiers and

connectives, and allows user expansions by inductively defined propositions.

Since one goal of the work in this dissertation is to generate machine-checkable proofs,

we want our formal meta logic to be a mechanized one. We select CiC based on the fact

that it is the underlying logic theory for the Coq proof assistant [58]. We use Coq for

two purposes. The first is to use it as a mechanized meta logic framework, in which

we can represent all the syntax, rules, and meta theory of our machine and verification

systems in the Set and Type sort of Coq. For example, to represent TM, machine state can

be embedded as a State type (which has Set sort in Coq); registers, machine instruction

sequences, commands, and execution semantics can be defined as inductive definitions.
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Inductive Register : Set := r0 | r1 | ... | r31.

Inductive Command : Set := add : Register -> Register -> Register -> Command
| addi : Register -> Register -> Word -> Command
| mov : Register -> Register -> Command
| ... .

Inductive InstrSeq : Set := iseq : Command -> InstrSeq -> InstrSeq
| jd : Word -> InstrSeq
| jmp : Register -> InstrSeq
| ... .

Inductive Next : Command -> State -> State -> Prop :=
| stp_add : forall rd rs rt H R,

Next (add rd rs rt) (H, R) (H, uR R rd (R rs + R rt))
| stp_mov : forall rd rs H R,

Next (mov rd rs) (H, R) (H, uR R rd (R rs))
| stp_ld : forall rd rs w H R w’,

lookup H (R rs + w) w’ ->
Next (ld rd rs w) (H, R) (H, uR R rd w’)

| ... .

Inductive STEP : Program -> Program -> Prop :=
| stp_iseq : forall C S S’ c I,

Next c S S’ ->
STEP (C, (S, iseq c I)) (C, (S’, I))

| stp_jd : forall C S l I,
lookup C l I ->
STEP (C, (S, jd l)) (C, (S, I))

| stp_jmp : forall C S r I,
lookup C (_R S r) I ->
STEP (C, (S, jmp r)) (C, (S, I))

| ... .

General safety policies can then be defined as meta logic predicates over the entire

machine configuration; they will have the Program→Prop type. For example, the simple

“non-stuckness” safety policy for TM can be defined as follows:

λP.∀n :Nat. ∃P′ :Program. P 7−→n P′.

Here 7−→n is the composition of “7−→” for n times. Under this setting, if Sa f e() denotes a

particular customized safety policy, a certified binary is just a pair of program P together

with a proof object of type Sa f e(P), all represented in the mechanized meta logic.

The second usage of CiC/Coq is to directly use its build-in higher-order predicate logic

(Prop) to serve as (part of) the assertion logics, which are used to write program specifi-
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cations. Thus there is no need to define a complete new general logic and its meta theory,

which makes the approaches in this paper lightweight. In other word, we use shallow

embedding instead of deep embedding for the higher-order predicate logic part of the as-

sertion languages in this dissertation. Actually, right in the next section, we will see how

the original CAP utilizes this technology and becomes an extremely simple framework.

It is important to note that, although the theory and implementation in this disserta-

tion are presented and done with CiC/Coq, we believe that the key ideas from our results

are applicable to other mechanized meta logics.

2.3 The Certified Assembly Programming Framework

As suggested by its name, certified assembly programming, CAP [63] is a logic-based

verification framework for machine code verification. In essence, CAP is a Hoare-logic

framework for reasoning about assembly programs. Note that the CAP framework pre-

sented in this section is slightly different from the original one, as we want to let it share

a very similar structure with the work in this dissertation.

Traditionally, Hoare-logic systems usually use the following judgment to reason about

program safety and correctness.

{precondition} statement {postcondition}

Where pre- and post-conditions are written in certain assertion logic, and describe the

state before and after the execution of statement.

In this dissertation, however, TM programs are often written in continuation-passing

style [7], as there are no instructions directly in correspondence with function call and re-

turn in a high-level language. Hence post-conditions in Hoare logic do not have explicit

counterparts in CAP; they are often interpreted as preconditions of the return continua-

tions. The basic form of judgment in CAP is

{a} I
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(CdH pSpec) Ψ ::= {f; a}∗

(Assertion) a ∈ State→ Prop

(AssertImp) a⇒a′ , ∀S.a S⊃ a′ S

(StepImp) a⇒c a′ , ∀S.a S⊃ a′ Nextc(S)

Figure 2.4: Assertion language of CAP

where I is the code block to be reasoned about, and a is an assertion describing the expec-

tation on machine states before executing I.

Assertion language. Following Gordon [25], CAP’s assertion language, as presented in

Figure 2.4, is directly unified with the underlying mechanized meta logic (i.e., shallow

embedding). CAP assertions (a) tracks the state component in the machine configuration,

so any terms of type State→ Prop are valid CAP assertions. For example, an assertion

specifying that the registers r1 and r2 store a same value and the register r3 contains a

non-NULL value can be written as:

λ(H,R).R(r1)=R(r2)∧R(r3) 6=NULL.

To simplify the presentation, we lift propositional implication (⊃) to assertion level (⇒).

In Figure 2.4, there is a construct named code heap specification (Ψ) for expressing

user-defined safety requirements on program. A code heap specification associates every

code label with an assertion, with the intention that the pre-condition of a code block is

described by the corresponding assertion.

Inference rules. CAP defines a set of inference rules for proving judgments for well-

formed programs, code heaps, and instruction sequences (see Figure 2.5).

Top-down, a TM program is well-formed (rule PROG) under assertion a if both the

global code heap and the current instruction sequence are well-formed and the machine

state satisfies assertion a.

To support separate verification of code modules, we have made some changes to
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ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG (a S) ΨG `{a}I
ΨG `{a}(C,S,I)

(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{ai}Ii ∀fi

ΨIN ` {f1 ;I1, . . . ,fn ;In} :{f1 ;a1, . . . ,fn ;an} (CDHP)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2

(LINK)

Ψ `{a}I (Well-formed Instruction Sequence)

a⇒c a′ Ψ `{a′}I c∈{add,addi,mov,movi,alloc, free, ld,st}
Ψ `{a}c;I

(SEQ)

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jd f

(JD)

(λ(H,R).R(rs)≤ i ∧ a (H,R))⇒ a′ Ψ `{a′}I
(λ(H,R).R(rs)> i ∧ a (H,R))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a}bgti rs, i,f;I
(BGTI)

a ⇒ (λ(H,R).a′(H,R) ∧ R(r)∈dom(Ψ) ∧ Ψ(R(r))=a′)
Ψ `{a} jmp r

(JMP)

Figure 2.5: Inference rules of CAP
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the inference rules for well-formed code heaps from the original CAP. A module is de-

fined as a small code heap which can contain as few as one code block. Each module is

associated with an “import” ΨIN interface and an “export” interface Ψ. A programmer

first establishes well-formedness of each individual module via the CDHP rule. Two

non-conflicting modules can then be linked together via the LINK rule. All code blocks

will eventually be linked together to form a single global code heap with specification

ΨG (which is used in the well-formed program rule). These two code heap rules provide

basic support for modular verification. However, as we will show in the next Chapter,

modularity breaks down when we reason about first-class code pointers passing across

the module’s boundary.

The intuition behind well-formed instruction sequence judgment is that if the instruc-

tion sequence I starts execution in a machine state which satisfies assertion a, then ex-

ecuting I is safe with respect to the specification Ψ. An instruction sequence preceded

by c is safe (rule SEQ) if we can find another assertion a′ which serves both as the post-

condition of c, (that is, a′ holds on the updated machine state after executing c), and as

the precondition of the tail instruction sequence.

A direct jump is safe (rule JD) if the current assertion can imply the precondition of

the target code block as specified in Ψ. An indirect jump is similar (rule JMP) except that it

refers to the register file for the target code label; unfortunately, this treatment of first class

code pointers requires reasoning about global control flow and breaks the modularity (see

the next chapter).

A programmer’s task, when proving the well-formedness of a code block, involves

mostly applying the appropriate inference rules, finding intermediate assertions like a′,

and proving all the assertion subsumption relations (which are implemented as logical

implications in the mechanized meta logic).

Soundness. The soundness theorem below guarantees that given a well-formed CAP

program, starting with its current instruction sequence, the machine will never get stuck.
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Theorem 2.1 (CAP Soundness)

If ΨG `{a}P, then for all natural number n, there exists a program P′ such that P 7−→n P′.

The proof for this theorem can be established following the syntactic approach of prov-

ing type soundness [59] by proving the progress and preservation lemmas.

Lemma 2.2 (CAP Progress)

If ΨG `{a}P, then there exists a program P′ such that P 7−→ P′.

Lemma 2.3 (CAP Preservation)

If ΨG `{a}P and P 7−→ P′ then there exists an assertion a′ such that ΨG `{a′}P′.

In order to address the new LINK rule, we need the following code heap typing

lemma, whose proof needs the instruction sequence weakening lemma below.

Lemma 2.4 (CAP Code Heap Typing)

If ΨIN ` C :Ψ and f∈dom(Ψ), then f∈dom(C) and ΨIN `{Ψ(f)}C(f).

Lemma 2.5 (CAP Instruction Sequence Weakening)

If Ψ `{a}I, Ψ⊆Ψ′, and a′⇒a then Ψ′ `{a′}I.

Yu et al [63, 64] have also shown that CAP can be easily extended to prove more gen-

eral safety properties by introducing invariant assertions into the inference rules. Further-

more, by mechanizing the CAP inference rules and the soundness proofs in Coq, we can

easily construct FPCC packages for CAP programs [63, 28].

There have been many works following the CAP framework: dynamic storage allo-

cation [63], interfacing with TAL [28], concurrent verification [64, 20], support of embed-

ded code pointers [47] (to be discussed in this dissertation), stack-based control abstrac-

tion [21], and open framework for interoperation [19].
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Chapter 3

Embedded Code Pointers and the

Basic XCAP Framework

In this chapter we present an important problem with CAP and other logic-based verifica-

tion methods: embedded code pointers (ECP). Being a crucial concept for programming,

the lack of modular and expressive ECP support prevents these methods from being used

to certify realistic system kernel code. We then present our solution for the ECP prob-

lem, a new XCAP framework evolved from CAP. We first discuss the idea of “extended

propositions,” which can be roughly viewed as a mixture of logic formulas and syntactic

constructs. We then discuss the basic structure of the new XCAP framework and show

how to use syntactic techniques to perform modular reasoning on ECPs while still retain-

ing the expressive power of Hoare logic. XCAP shares the same target machine TM (see

Figure 2.1 and 2.2) with CAP.

XCAP provides the first simple and general solution to the ECP problem for Hoare-

logic verification systems. Here, by “simple,” we mean that our method does not alter the

structure of Hoare-style program derivations and assertions. By “general”, we mean that

our technique can truly handle all kinds of machine-level ECPs, including those hidden

inside higher-order closures (together with next chapter).
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3.1 Embedded Code Pointers

ECPs, based on context and time, are often referred to as computed-gotos, stored proce-

dures, higher-order functions, indirect jumps, continuation pointers, and so on. As the

variations of its name suggest, ECP has long been an extensively used concept in pro-

gramming. Because of the ECP problem, PCC systems based on Hoare logic have to

either avoid supporting indirect jumps [44, 64], limit the assertions (for ECPs) to types

only [28], sacrifice the modularity by requiring whole-program reasoning [63], or resort

to construction of complex semantic models [9, 2]. In Reynolds [54], supporting ECPs is

listed as one of the main open problems for separation logic.

At the assembly level (as in TM), ECPs denote those memory addresses (labels) stored

in registers or memory cells, pointing to the start of code blocks. A special kind of ECPs is

the function return addresses; more general kinds of ECPs can also be found in closures.

Supporting ECPs is an essential part of assembly code verification. To understand better

the ECP problem, let’s take a look at the following example:

f1: mov r1, f1 // no assumption
jd f2

f2: jmp r1 // r1 stores an ECP with no assumption

Here we have defined two assembly code blocks. The first block, labeled f1, makes no

assumption about the state; it simply moves the code label f1 into register r1 and then

directly jumps to the other code block labeled f2. The f2 block requires that upon entering,

register r1 must contain a code pointer that has no assumption about the state; it simply

makes an indirect jump to this embedded code pointer and continues execution from

there. If the execution initially starts from f1, the machine will loop forever between the

two code blocks and never get stuck. It is important to note that both code blocks are

independently written so they are expected to not only just work with each other, but

with any other code satisfying their specifications as well.

We introduce a predicate, cptr(f,a), to state that value f is a valid code pointer with

precondition a. Following the notations in Section 2.3, we define the “no assumption”
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assertion as

aT , λS.True.

The preconditions for f1 and f2 can be written as

a1 , aT

and

a2 , λ(H,R).aT (H,R) ∧ cptr(R(r1),aT ).

But what should be the definition of cptr(f,a)?

Semantic approach. The semantic approach to this problem is to directly internalize the

Hoare derivations as part of the assertion language and to define cptr(f,a) as valid if there

exists a Hoare derivation for the code block at f with precondition a. Using the notation

from CAP, it can be informally written as:

cptr(f,a) , Ψ `{a}C(f).

This is clearly ill-formed since Ψ is not defined anywhere and it can not be treated as a

parameter of the cptr predicate—the assertion a, which is used to form Ψ, may refer to the

cptr predicate again.

Semantic approach: stratification. To break the circularity, one approach [49, 42] is to

internalize Hoare-logic derivations as part of the assertion language and stratify all ECPs

(as well as the code heaps and specifications that contain them) so that only the cptr def-

initions (and well-formedness proofs) for highly-ranked code blocks can refer to those of

lower-ranked ones. More specifically, a first order code pointer does not specify any ECP

in its precondition (its code does not make any indirect jump) so we can define cptr over

them first; an n-th order code pointer can only refer to those lower-order ECPs so we can

define cptr inductively following the same order. The cptr predicate definition becomes:
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cptr(f,a,k) , Ψk−1 `{a}Ck−1(f).

While the typing structures of well-formed instruction sequences would look like below.

Ψ0 `{a0} . . . ; jd . . .

...
. . .

Ψn−1 `{an−1} . . . ; jmp . . .
. . .

Ψn `{an} . . . ; jmp . . .

Stratification works for monomorphic languages with simple procedure parameters [49,

42], however, for machine-level programs where ECPs can appear in any part of the mem-

ory, tracking the orders of ECPs is impossible: ECPs can appear on the stack or in another

function’s closure (often hidden because closures are usually existentially quantified [39]).

Semantic approach: indexing. Another approach, by Appel et al [9, 2, 56], also intro-

duces an parameter k to the cptr predicate. Instead of letting k refer to the depth of nesting

ECPs as the stratification approach does, the “index” k now refers to the maximum num-

ber of safe future computation steps. Roughly speaking, cptr(f,a,k) means that it is “safe”

to execute the next (at most) k−1 instructions, starting from the code block at f with pre-

condition a.

cptr(f,a,k) , ∀i<k.Ψ `i {a}C(l)

Note that here a and Ψ are not defined as state predicates and mapping from code labels

to them. Instead, indexing must also be done for assertions and all the Hoare inference

rules. For example, the indirect jump rule would have the following shape:

a⇒ λ(H,R).a′ (H,R)∧ cptr(R(r),a′,k−1)
Ψ `k {a}jmp r .

Indexed assertions can only describe safety properties of finite steps. To establish

safety properties about infinite future executions, one needs to do induction over the in-

dex. Because of the pervasive uses of indices everywhere, indexing dramatically alters
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the structure of Hoare-logic program derivations and assertions. This makes it hard to

use together with other extensions such as separation logic [54] and rely-guarantee-based

reasoning [64, 20].

Syntactic approach. Rather than using the semantic methods, CAP takes a syntactic ap-

proach and is essentially reasoning about the control flow. Validity of ECPs is established

in two steps. In the first step, in indirect jump rule JMP it only requires that we look up

the assertion for the target code label stored in register r from the code heap specification

Ψ. (The equality of assertions used here is the Coq equality eq which is equivalent to the

Leibniz’ equality.)

a⇒ (λ(H,R).a′ (H,R) ∧ R(r)∈dom(Ψ) ∧ Ψ(R(r))=a′)
Ψ `{a} jmp r .

Then in the top-level PROG rule the well-formedness of global code heap is checked

(ΨG ` C :ΨG) to make sure that every assertion stored in ΨG (which is the union of all

local Ψ) is indeed a valid precondition for the corresponding code block. The effect of

these two steps, combined together, guarantees that the Hoare derivations internalized in

the semantic approach is still obtainable in the syntactic approach for the preservation of

the whole program. This approach is often used by type systems such as TAL.

But how do we know that such label indeed falls into the domain of Ψ? We reason

about the control flow. Take the code block of f2 for example, we need to prove:

a2 ⇒ (λ(H,R).a′ (H,R) ∧ R(r1)∈dom(Ψ) ∧ Ψ(R(r1))=a′)

which unfolds into

∀H,R.(aT (H,R) ∧ cptr(R(r1),aT )) ⊃ (a′ (H,R) ∧ R(r1)∈dom(Ψ) ∧ Ψ(R(r1))=a′).

Clearly we should require the following to hold:

∀H,R.cptr(R(r1),aT )⊃ (R(r1)∈dom(Ψ) ∧ Ψ(R(r1))=a′).
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If we let the cptr predicate directly refer to Ψ in its definition, assertion and specification

become cyclic definitions since Ψ consists of a mapping from code labels to assertions

(which can contain cptr).

Previous CAP implementation [63] transforms the above formula into:

∀H,R.cptr(R(r1),aT )⊃ R(r1)∈{ f | f∈dom(Ψ)∧Ψ(f)=aT }

and statically calculates the address set on the right side using the global code heap spec-

ification ΨG . It can then define:

cptr(f,a) , f∈{ f′ | f′∈dom(ΨG)∧ΨG(f′)=a}.

This is clearly not satisfactory as the actual definition of cptr(f,a) no longer refers to a!

Instead, it will be in the form of f∈{f1, . . . ,fn}, which is not modular and very hard to

reason about.

Taking the modularity issue more seriously, from the JMP rule again, we notice that

all ECPs it can jump to are those contained in the current local Ψ only. Since the CAP lan-

guage presented in previous section supports separate verification through linking rule

LINK, when checking each module’s code heap, we do not have the global specification

ΨG and only have the declared import interface ΨIN . For our example, checking the code

blocks under different organizations of modules would result in different a2 assertions:

λ(H,R).R(r1)∈{f1} when f1 and f2 are in a same module

and there is no other block with precondition aT in it;

λ(H,R).R(r1)∈{f1,f3} when f1 and f2 are in a same module

and there is a block f3 also with precondition aT in it;

λ(H,R).R(r1)∈{} when f1 and f2 are not in a same module

and there is no other block with precondition aT in f2 module;

λ(H,R).R(r1)∈{f3} when f1 and f2 are not in a same module

and there is a block f3 also with precondition aT in f2 module.
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Since we usually do not know the target addresses statically, we cannot put all possible

indirect code pointers into the import specification ΨIN . The syntactic approach used by

CAP cannot support general ECPs without resorting to the whole-program analysis. This

greatly limits CAP’s modularity and expressive power.

Challenges. Given the ECP problem explained so far, we can summarize some impor-

tant criteria for evaluating its possible solutions:

• Is it expressive? The new system should retain all expressive power from CAP. In

particular, we still want to write assertions as general logic predicates. Ideally, there

should be a “type-preserving” translation from CAP into the new system.

• Is it easy to specify? The specifications should be self-explanatory and can be used to

reason about safety properties directly. There should be no need of translating ECP

specifications into less informative forms such as indexed assertions or addresses

sets as found in approaches aforementioned.

• Is it modular? The specifications should be independently writable and ECPs can

be freely passed across the modular boundaries.

• Is it simple? The approach should better not involve overwhelming efforts in design

and implementation when compared to CAP. It should not alter or pollute the basic

structure of Hoare-style program derivations and assertions.

• Can it support extensions easily? The approach should work smoothly with com-

mon language features and popular extensions to Hoare logic.

3.2 Extended Propositions

To avoid the “circular specification” problem in the syntactic approach (to ECP), we break

the loop by adding a small amount of syntax to the assertion language, and then split

the syntax of assertions from their “meanings” (or validities). The key idea here is to
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delay the checking of the well-formedness property of ECPs. Instead of checking them

individually at the instruction sequence level using locally available specification ΨIN , we

collect all these checks into one global condition that would only need to be established

with respect to the global code heap specification ΨG when all code are finally linked

together before execution.

Basically cptr is now merely a syntactic constant and can appear in any assertion at

any time in the form of cptr(f,a). Its meaning (or validity) is not revealed during the

verification of local modules (i.e., the well-formed instruction sequence rules). An “inter-

pretation” will translate the ECP assertion syntax into its meaning (as a meta proposition)

when the global code heap specification ΨG is finally available in the top-level PROG rule.

The PROG rule will then complete the well-formedness check for the whole program. We

achieve modularity through this two-stage verification structure.

Note that requiring the global specification ΨG in the PROG rule does not break any

modularity, since at runtime all code (and their specifications) must be made available

before they can be executed. Besides, the top-level rule PROG only needs to be validated

once for the initial machine configuration.

Extended propositions. Figure 3.1 defines extended logical propositions (PropX). PropX can

be viewed as a lifted version of the meta logic propositions, extended with an additional

cptr constant: the base case 〈p〉 is just the lifted proposition p (thus PropX retains the full

expressive power of meta logic propositions); cptr is the constructor for specifying ECP

propositions. To interoperate lifted propositions and ECP propositions, we also lift all the

logical connectives and quantifiers.

For the universal and existential quantifications, we use higher-order abstract syn-

tax (HOAS) [52] to represent them. For example, ∀∀x :A.P is actually implemented as

∀∀(λx :A.P). The benefit here is that we can utilize the full expressive power of the mecha-

nized meta logic (CiC/Coq) and use a single quantifier to quantify over all possible types

(A) such as Prop, State, and even State→ Prop.
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(PropX) P,Q ::= 〈p〉 li f ted meta proposition

| cptr(f,a) embedded code pointer

| P∧∧Q con junction

| P∨∨Q dis junction

| P→→Q implication

| ∀∀x :A.P universal quanti f ication

| ∃∃x :A.P existential quanti f ication

(Assertion) a ∈ State→ PropX

Figure 3.1: Extended propositions

[[〈p〉 ]]Ψ , p

[[cptr(f,a) ]]Ψ , f∈dom(Ψ)∧Ψ(f)=a

[[P∧∧Q ]]Ψ , [[P ]]Ψ∧ [[Q ]]Ψ

[[P∨∨Q ]]Ψ , [[P ]]Ψ∨ [[Q ]]Ψ

[[P→→Q ]]Ψ , [[P ]]Ψ ⊃ [[Q ]]Ψ

[[∀∀x :A.P ]]Ψ , ∀B :A. [[P[B/x] ]]Ψ

[[∃∃x :A.P ]]Ψ , ∃B :A. [[P[B/x] ]]Ψ

Figure 3.2: Interpretations of extended propositions

Extended propositions can be used to construct “extended” predicates using the ab-

straction facility in the underlying meta logic. For example, the following extended state

predicate of type State→PropX says registers r1 and r2 store the same value, while r3

stores a non-NULL value:

λ(H,R).〈R(r1) = R(r2)∧R(r2) 6= NULL〉.

Extended predicates are not limited to be over machine states only. For example, the fol-

lowing extended value predicate resembles the code pointer type found in type systems.

(Here, a, the precondition of the code pointed to by f, is an extended state predicate.)

code a , λf.cptr(f,a)

Extended propositions adds a thin layer of syntax over meta propositions. Figure 3.2
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presents an interpretation of their validity in meta logic. It is defined as a meta function.

A lifted proposition 〈p〉 is valid if p is valid in the meta logic. Validity of ECP proposi-

tions can only be testified with a code heap specification Ψ (formally defined in the next

section), so we make it a parameter of the interpretation function; Ψ is typically instan-

tiated by (but not limited to) the global specification ΨG . Interpretation of cptr(f,a) tests

the equality of a with Ψ(f). Here we use the inductively defined Coq equality eq (equiv-

alent to the Leibniz’ equality) extended with extensionality of functions (a safe extension

commonly used in the Coq [30] community). Note that the use of equality predicate in

logic is different from the use of equality function in programming—a programmer must

supply the proper equality proofs in order to satisfy the ECP interpretation. Extended

logical connectives and quantifiers are interpreted in a straight-forward way. Note that

HOAS [52] is used in the interpretation of extended implications.

Interpretation of assertions can be trivially defined as

[[a ]]Ψ , λS. [[a S ]]Ψ

which turns “syntactic” program specifications in extended propositions into “real” pro-

gram invariants in the mechanized meta logic.

3.3 The XCAP Framework

In this section, we present a new XCAP framework, which is based on CAP and uses

PropX as its assertion language. We refer readers to Section 2.3 for more details on the

CAP framework and only highlight the difference between XCAP and CAP in this section.

Assertion Language. We present the assertion language of XCAP in Figure 3.3. The only

difference between it and Figure 2.4 is that assertions (a) are now defined as extended state

predicates. We also define code heap specifications (Ψ) and the assertion subsumption

relation (⇒) accordingly. Note that assertions are first turned into meta logical interpreta-

tions before doing subsumptions.
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(CdH pSpec) Ψ ::= {f; a}∗

(Assertion) a ∈ State→ PropX

(AssertImp) a⇒a′ , ∀Ψ,S. [[a ]]Ψ S⊃ [[a′ ]]Ψ S

(StepImp) a⇒c a′ , ∀Ψ,S. [[a ]]Ψ S⊃ [[a′ ]]Ψ Nextc(S)

Figure 3.3: Assertion language of XCAP

Inference rules. To reason about TM programs in XCAP, just as we did for CAP in Fig-

ure 2.5, we present a similar set of inference rules for well-formed programs, code heaps,

and instruction sequences in Figure 3.4. Other than the differences in the assertion lan-

guage, we only modified the PROG rule and the JMP rule, and added a new ECP rule

for introducing new ECP propositions into assertions on the fly. For the unchanged rules,

readers can refer to Section 2.3 for explanations.

The change for the PROG rule is minor but important. Here we use the global spec-

ification ΨG in the interpretation of assertions which may contain ECP propositions. For

state S to satisfy assertion a, we require a proof for the meta proposition ([[a ]]ΨG
S). This is

the only place in the XCAP inference rules where validity of assertions (with ECP proposi-

tions) needs to be established. Other rules only require subsumption between assertions.

For the JMP rule, instead of looking up the target code blocks’ preconditions a′ from

the current (local) specification Ψ, we require the current precondition a to guarantee that

the target code label R(r) is a valid ECP with a′ as its precondition. Combined with the

([[a ]]ΨG
S) condition established in the PROG rule, we can deduce that a′ is indeed the one

specified in ΨG .

If we call the JMP rule “consumer” of ECP propositions, then the ECP rule can be

called “producer.” It is essentially a “cast” rule—it allows us to introduce new ECP propo-

sitions cptr(f,Ψ(f)) about any code label f found in the current code heap specification Ψ

into the new assertion a′. This rule is often used when we move a constant code label into

a register to create an ECP.
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ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG ( [[a ]]ΨG
S) ΨG `{a}I

ΨG `{a}(C,S,I)
(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{ai}Ii ∀fi

ΨIN ` {f1 ;I1, . . . ,fn ;In} :{f1 ;a1, . . . ,fn ;an} (CDHP)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2

(LINK)

Ψ `{a}I (Well-formed Instruction Sequence)

a⇒c a′ Ψ `{a′}I c∈{add,addi,mov,movi,alloc, free, ld,st}
Ψ `{a}c;I

(SEQ)

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jd f

(JD)

(λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′ Ψ `{a′}I
(λ(H,R).〈R(rs)> i〉 ∧∧ a (H,R))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a}bgti rs, i,f;I
(BGTI)

a⇒ (λ(H,R).a′ (H,R) ∧∧ cptr(R(r),a′))

Ψ `{a} jmp r
(JMP)

(λS.cptr(f,Ψ(f))∧∧a S)⇒ a′ f∈dom(Ψ) Ψ `{a′}I
Ψ `{a}I (ECP)

Figure 3.4: Inference rules of XCAP
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Example. Combining the JMP and ECP rules, ECP knowledge can be built up by one

module at the time of ECP creation and be passed around and get used for indirect jumps

in other modules. For example, given the following code where we assume register r30

contains the return value and register r31 contains the return code pointer:

plus: add r30, r0, r1; // fun plus (a, b) = a + b
jmp r31

app2: mov r3, r0; // fun app2(f, a, b) = f(a, b)
mov r0, r1;
mov r1, r2;
jmp r3

we can assign them with the following XCAP specifications and make safe (higher-order)

function calls such as app2(plus,1,2).

{plus ; λ(H,R).∃∃a,b,ret.

〈R(r0)=a∧R(r1)=b∧R(r31)=ret〉
∧∧cptr(ret, λ(H′,R′).〈R′(r30)=a+b〉)}

{app2 ; λ(H,R).∃∃ f ,a,b,ret.

〈R(r1)=a∧R(r2)=b∧R(r0)= f ∧R(r31)=ret〉

∧∧cptr( f , λ(H′,R′).∃∃a′,b′,ret ′.

〈R′(r0)=a′∧R′(r1)=b′∧R′(r31)=ret ′〉

∧∧cptr(ret ′, λ(H′′,R′′).〈R′′(r30)=a′+b′〉))

∧∧cptr(ret, λ(H′,R′).〈R′(r30)=a+b〉)}

Soundness. The soundness of XCAP is proved in the same way as we did for CAP. We

give the main lemmas and a proof sketch here. More details can be found in Appendix B.

Lemma 3.1 (XCAP Progress)

If ΨG `{a}P, then there exists a program P′ such that P 7−→ P′.

Proof Sketch: Suppose P=(C,S,I), by inversion we obtain ΨG `{a}I. The proof is by

induction over this derivation. ¥
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Lemma 3.2 (XCAP Preservation)

If ΨG `{a}P and P 7−→ P′ then there exists an assertion a′ such that ΨG `{a′}P′.

Proof Sketch: Suppose P=(C,S,I); by inversion we obtain ΨG ` C :ΨG , ([[a ]]ΨG
S), and

ΨG `{a}I. We do induction over derivation ΨG `{a}I. The only interesting cases are the

JMP and ECP rules.

For the JMP rule case, let S be (H,R). By the implication a⇒ (λ(H,R).cptr(R(r),a′))

and the interpretation of cptr it follows that a′=ΨG(R(r)) and R(r)∈dom(ΨG). Then by

the same code heap typing lemma as discussed in Section 2.3, it follows that

ΨG `{a′}C(R(r)). Finally by a⇒ a′ it follows that a′(H,R).

For the ECP case, by the code heap typing lemma and by

(λS.cptr(f,ΨG(f))∧∧a S)⇒ a′ it follows that [[a′ S ]]ΨG
. Also we have ΨG `{a′}I. Then we

use the induction hypodissertation to finish the proof. ¥

Theorem 3.3 (XCAP Soundness)

If ΨG `{a}P, then for all natural number n, there exists a program P′ such that P 7−→n P′.

3.4 Discussion

The main idea of XCAP is to support Hoare-style reasoning of ECPs by extending the

assertion language with a thin layer of syntax. Next we review XCAP using the criteria

given in Section 3.1. The following theorem presents a simple “type-preserving” transla-

tion from CAP to XCAP and shows that XCAP is at least as powerful as CAP. To avoid

confusion, we use `CAP and `XCAP to represent CAP judgments (as defined in Figure 2.4)

and XCAP ones (as defined in Figure 3.4). See our implementation for detailed proofs.

Theorem 3.4 (CAP to XCAP Translation)

We define the lifting of CAP assertions and specifications as:

paq , λS.〈a S〉

and p{f1 ;a1, . . . ,fn ;an}q , {f1 ;pa1q, . . . ,fn ;panq}.
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1. If ΨG `CAP {a}P then pΨGq `XCAP {paq}P;

2. if ΨIN `CAP C :Ψ then pΨIN q `XCAP {C}pΨq;

3. if Ψ `CAP {a}I then pΨq `XCAP {paq}I.

Proof Sketch: (1) and (2) are straight forward and based on (3). For (3), as CAP’s JMP

rule only reasons about preconditions in the current Ψ, we use ECP rule on all pairs of

code label and precondition in Ψ and use XCAP’s JMP rule to finish the proof. ¥

The specification written in XCAP assertion language is close to a typical Hoare asser-

tion and thus is easy to write and reason about. From a user perspective, there is no need

to worry about the “meaning” of the ECP propositions because they are treated abstractly

almost all the time.

XCAP is still lightweight because the lifted propositions 〈p〉 and their reasoning are

shallowly embedded into the meta logic, which is the same as CAP. The added component

of ECP propositions as well as other lifted connectives and quantifiers are simple syntactic

constructs and do not involve complex constructions.

As we will show in later chapters, the XCAP framework can be easily extended to

support other language features and popular extensions of Hoare logic.
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Chapter 4

Impredicative Polymorphisms and

Recursive Specifications

The XCAP system presented in the previous chapter enjoys great expressive power from

its underlying meta logic. As the mini examples shown before, features such as data

polymorphism can be easily supported. However, to support modular verification, when

composing specifications, it is important to be able to abstract out and quantify over (part

of) the specifications themselves. This is especially important for ECPs, since very often

the specification for the target code is only partially disclosed to the callers. We extend the

XCAP from the previous chapter to support this kind of impredicative polymorphism.

Using the extended XCAP, we solve the ECP problem for separation logic [54] and

present a verification of a destructive list-append function listed as an example in [54].

Recursive specifications are very useful in describing complex invariants. Simple re-

cursive data structures such as link-list are already supported by XCAP. However, for

the recursive types (µα.τ) found in type systems, their counterpart in logic, “recursive

predicates”, can not be easily defined in XCAP. We follow the extension for impredicative

polymorphisms and extended XCAP to support recursive specifications.

Both the extensions cause very little change in the XCAP inference rules and meta

theory. Thus they are light-weight and proved sound.
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4.1 Impredicative Polymorphisms and Recursive Specifications

Impredicative polymorphisms and recursive types can be easily supported in type sys-

tems. Take TAL [41] for example, it allows quantifications over value types, which corre-

spond to value predicates in XCAP. Since XCAP predicates are much more flexible than

types, we choose to support universal and existential quantifications over arbitrary ex-

tended predicates of type A→PropX (where A does not contain PropX). We reuse the

quantifiers defined in XCAP in Section 3.3 and write impredicative extended proposi-

tions as follows:

∀∀α :A→PropX.P and ∃∃α :A→PropX.P.

In the implementation of these impredicative quantifiers, the HOAS technique used

for predicative ones no longer works because of the negative-occurrence restriction for

inductive definitions. We use the de Bruijn notations [15] to encode the impredicative

quantifiers. For more details, see Appendix 8.

The next task is to find a way to establish the validity of impredicative extended

propositions. One obvious idea is to take the previously defined interpretation function

in Figure 3.2 and directly apply it to the impredicative quantification cases as follows:

[[∀∀α :A→PropX.P ]]Ψ , ∀a :A→PropX. [[P[a/α] ]]Ψ

[[∃∃α :A→PropX.P ]]Ψ , ∃a :A→PropX. [[P[a/α] ]]Ψ

Unfortunately (but not surprisingly), the recursive call parameter P[a/α] may be larger

than the original ones as a can bring in unbounded new sub-formulas. The interpretation

function no longer terminates, and thus is not definable in the meta logic.

Our solution is to define the interpretation of extended propositions as the set of induc-

tively defined validity rules shown in Figure 4.1. We define an environment of extended

propositions as

(env) Γ := · | Γ,P
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Γ `Ψ P (Validity of Extended Propositions)

(The following presentation omits the Ψ in judgment Γ `Ψ P.)

P ∈ Γ
Γ `P (ENV)

p
Γ `〈p〉 (〈〉-I) Γ `〈p〉 p ⊃ (Γ `Q)

Γ `Q (〈〉-E)

Ψ(f)=a

Γ `cptr(f,a)
(CP-I)

Γ `cptr(f,a) (Ψ(f)=a) ⊃ (Γ `Q)
Γ `Q (CP-E)

Γ `P Γ `Q
Γ `P∧∧Q (∧∧-I)

Γ `P∧∧Q
Γ `P (∧∧-E1)

Γ `P∧∧Q
Γ `Q (∧∧-E2)

Γ `P
Γ `P∨∨Q (∨∨-I1) Γ `Q

Γ `P∨∨Q (∨∨-I2)
Γ `P∨∨Q Γ,P `R Γ,Q `R

Γ `R (∨∨-E)

Γ,P `Q
Γ `P→→Q

(→→-I)
Γ `P→→Q Γ `P

Γ `Q (→→-E)

Γ `P[B/x] ∀ B :A
Γ `∀∀x :A.P

(∀∀-I1)
Γ `∀∀x :A.P B :A

Γ `P[B/x]
(∀∀-E1)

B :A Γ `P[B/x]
Γ `∃∃x :A.P

(∃∃-I1)
Γ `∃∃x :A.P Γ,P[B/x] `Q ∀ B :A

Γ `Q (∃∃-E1)

Γ `P[a/α] ∀ a :A→PropX
Γ `∀∀α :A→PropX.P

(∀∀-I2)
a :A→PropX Γ `P[a/α]

Γ `∃∃α :A→PropX.P
(∃∃-I2)

Figure 4.1: Validity rules for impredicative extended propositions

The judgment, Γ `Ψ P, means that P is valid under environment Γ and code heap speci-

fication Ψ. An extended proposition is valid if it is in the environment. Constructors of

extended propositions have their introduction and elimination rules. The introduction

rules of lifted proposition 〈p〉 and ECP proposition cptr(f,a) require that p and Ψ(f)=a

be valid in the meta logic. Their elimination rules allow full meta-implication power in

constructing derivations of validity of the new extended propositions. The rules for other

constructors are standard and require little explanation.

The interpretation of extended propositions can be now be simply defined as their

validity under the empty environment.
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[[P ]]Ψ , · `Ψ P

Given the above definitions of interpretation and validity, we have proved the follow-

ing soundness theorem (with respect to CiC/Coq) using the syntactic normalization proof

method by Pfenning [51]. For proof details, see Appendix A.

Theorem 4.1 (Soundness of PropX Interpretation)

1. If [[〈p〉 ]]Ψ then p;

2. if [[cptr(f,a) ]]Ψ then Ψ(f) = a;

3. if [[P∧∧Q ]]Ψ then [[P ]]Ψ and [[Q ]]Ψ;

4. if [[P∨∨Q ]]Ψ then either [[P ]]Ψ or [[Q ]]Ψ;

5. if [[P→→Q ]]Ψ and [[P ]]Ψ then [[Q ]]Ψ;

6. if [[∀∀x :A.P ]]Ψ and B :A then [[P[B/x] ]]Ψ;

7. if [[∃∃x :A.P ]]Ψ then there exists B :A such that [[P[B/x] ]]Ψ;

8. if [[∀∀α :A→PropX.P ]]Ψ and a :A→PropX then [[P[a/α] ]]Ψ;

9. if [[∃∃α :A→PropX.P ]]Ψ then there exists a :A→PropX such that [[P[a/α] ]]Ψ.

Corollary 4.2 (Consistency) [[〈False〉 ]]Ψ is not provable.

To make impredicative extended propositions easy to use, in the implementation of

PropX and its interpretation, we define additional concrete syntax and proof tactics to hide

the de Bruijn representation and the interpretation detail. A user can mostly manipulate

PropX objects in the same way as with Prop objects in Coq. See Chapter 8 for more details.

Inference rules and soundness. The XCAP indirect jump rule JMP from the one pre-

sented in Figure 3.4 can now be viewed as:
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a⇒ (λ(H,R). ∃∃a′. (a′ (H,R) ∧∧ cptr(R(r),a′)))
Ψ `{a} jmp r

(JMP).

The existential quantification over the assertion a′ (for the target code block) is moved

from beging (implicitly) over the whole rule to being after the assertion subsumption

(⇒). This change is important to support polymorphic code—the target assertion a′ can

now depend on the current assertion a.

All other inference rules of XCAP remain unchanged. The soundness of XCAP infer-

ence rules (Theorem 3.3) and the CAP to XCAP translation (Theorem 3.4) only need trivial

modifications in the case of indirect jump. We do not restate them here.

Example. With impredicative quantifications, ECP can now be specified and used with

great flexibility. For example, the app2 function in Section 3.3 can now be assigned with

the following more general specification. Instead of being restricted to an argument with

the “plus” functionality, any functions that take two arguments a and b and return a value

satisfying (unrestricted) assertion aret(a,b) can be passed to app2.

{app2 ; λ(H,R).∃∃ f ,a,b,ret,aret .

〈R(r1)=a∧R(r2)=b∧R(r0)= f ∧R(r31)=ret〉

∧∧cptr( f , λ(H′,R′).∃∃a′,b′,ret ′.

〈R′(r0)=a′∧R′(r1)=b′∧R′(r31)=ret ′〉

∧∧cptr(ret ′, aret(a′,b′)))

∧∧cptr(ret, aret(a,b))}

Subtyping on ECP propositions. The ECP proposition has a very rigid interpretation.

To establish the validity of cptr(f,a), Ψ(f) must be “equal” to a. This is simple for the

system, but is restrictive in usage and differs from typical type systems where subtyping

can be used to relax code types. With the support of impredicative quantifications, instead

of directly using cptr, we can define a more flexible predicate for ECPs:

codeptr(f,a) , ∃∃a′.(cptr(f,a′)∧∧∀∀S.a S→→a′ S).
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We can define the following subtyping lemma for ECP predicates.

Lemma 4.3 (Subtyping of ECP Propositions)

If [[codeptr(f,a′) ]]Ψ and [[∀∀S.a S→→a′ S ]]Ψ then [[codeptr(f,a) ]]Ψ.

Proof: From [[codeptr(f,a′) ]]Ψ it follows that

[[∃∃a′′.(cptr(f,a′′)∧∧∀∀S.a′ S→→a′′ S) ]]Ψ.

By the soundness of interpretation theorem it follows that

∃a′′. [[cptr(f,a′′) ]]Ψ∧ [[∀∀S.a′ S→→a′′ S ]]Ψ.

Using the ∀∀-I1, ∀∀-E1, →→ -I, and →→ -E rules it follows that

[[∀∀S.a S→→a′′ S ]]Ψ.

Using the ∧∧ -I and ∃∃-I2 rules it follows that

[[∃∃a′′.(cptr(f,a′′)∧∧∀∀S.a S→→a′′ S) ]]Ψ.

Which is [[codeptr(f,a) ]]Ψ. ¥

4.2 Solving Reynolds’s ECP Problem

Separation logic [54] is a recent Hoare-logic framework designed for reasoning about

shared mutable data structures. Reynolds [54] listed supporting ECPs as a major open

problem for separation logic. In this section, we show how to solve this problem within

the XCAP framework (with impredicative polymorphisms support).

XCAP directly supports separation logic specifications and reasoning by defining their

constructs and inference rules in the assertion language and meta logic as macros and

lemmas. For example, the following are some separation logic primitives defined over

the data heap (assuming ] is the disjoint union):
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emp , λH.〈dom(H)={}〉

l 7→w , λH.〈dom(H)={l}∧H(l)=w〉

l 7→ , λH.〈∃w.(l 7→w H)〉

a1 ∗a2 , λH.∃∃H1,H2.〈H1]H2 =H〉∧∧a1 H1∧∧a2 H2

l 7→w1, . . . ,wn , l 7→w1 ∗ . . . ∗ l+n−1 7→wn

The frame rule can be defined as lemmas (derived rules) in XCAP:

a ⇒ (a′ ◦Nextc)
(a∗a′′) ⇒ ((a′ ∗a′′)◦Nextc)

(FRAME-INSTR)

{f1 ;a1, . . . ,fn ;an} `{a}I
{f1 ;a1 ∗a′, . . . ,fn ;an ∗a′} `{a∗a′}I (FRAME-ISEQ)

ECP formulas can appear freely in these assertions and rules, thus it is very convenient to

write specifications and reason about shared mutable data structures and embedded code

pointers simultaneously. Note that it is assumed that in the derivations in the FRAME-

ISEQ rule, there is no ECP or JMP rules being used.

Example: destructive list-append function in CPS. To demonstrate the above point,

we verify a destructive version of the list-append example which Reynolds [54] used to

define the ECP open problem. Following Reynolds, our destructive list-append function

is written in continuation passing style (CPS):

append (x , y , rk ) =
if x == NULL then rk (y )
else let k (z ) = ([x +1] := z ; rk (x ))

in append ([x +1], y , k )

Here the append function takes three arguments: two lists x and y and a return contin-

uation rk. If x is an empty list, it calls rk with list y. Otherwise, it first creates a new

continuation function k which takes an (appended) list z, makes list x’s head node link to

z, and passes the newly formed list (which is pointed to by x) to the return continuation rk.

Variables x and rk form the closure environment for continuation function k. The append
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function then recursively calls itself with the tail of list x, list y, and the new continuation

k. For node x, [x] is its data and [x+1] is the link to the next node.

We do closure conversion and translate append into TM assembly code. In the presen-

tation, we often write a for assertion λ(H,R).∃∃x1 :A1, . . . ,xn :An.a, so all free variables in a

are existentially quantified right after the lambda abstraction. Formulas such as (a∗a′ H)

and R(r)=w are also simplified to be written as a∗a′ and r=w.

Predicate (list ls l) describes a linked list pointed to by l where the data cell of each

node stores the value in ls respectively. Here ls is a mathematical list where nil, w :: ls and

ls++lt stand for the cases of empty list, cons, and append, respectively.

list nil l , emp ∧∧ 〈l=NULL〉

list (w :: ls) l , ∃∃l′.l 7→w,l′ ∗ list ls l′

nth (ls , 1 )
l'

n th ( ls , 2 )
l'’-

n th ( ls , n )
N U L L-… ...l

Predicate (cont aenv ls f) requires f to point to a continuation code block which expects

an environment of type aenv and a list which stores ls.

cont aenv ls f , codeptr(f, λS.∃∃env,z. 〈r0 =env ∧ r1 =z〉∧∧ aenv env ∗ list ls z)

                                                                        co ntin ua tio n  code  b lo cken v iron m e nt o f type a e nvr0
r1

en v
z lin ked lis t sto res  lsf

Predicate (clos ls l) describes a continuation closure pointed to by l; this closure is a

pair (cnt,env) where cnt is a continuation function pointer and env points to an environ-

ment for cnt. The environment predicate aenv is hidden inside the closure predicate.

clos ls l , ∃∃aenv,cnt,env. l 7→cnt,env ∗ aenv env ∧∧cont aenv ls cnt

e nv iron m ent o f ty pe  a en v

co ntinua tio n  co de b lo ck  
ex pecting  an  e nv iron m ent 

a en v  and a  lis t s to res ls
cn t
e nv

l

In Figure 4.2 and Figure 4.3, we list the precondition for each instruction on its right

side. The instruction determines which well-formed instruction rule to use at each step.

State diagrams are drawn before all the interesting steps.
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r0
r1

en v
z lin ked  list s to re s ls

x
rk

a
_c lo su re  e x p ecting  a  list s to res  a ::ls

{〈r0 =env ∧r1 =z 〉∧∧ list ls z ∗ x 7→a,_ ∗ clos (a :: ls) rk ∗ env 7→x,rk }
k : ld r2, r0(0)
{〈· · · · · · · · · · · · · · · · · · ·∧r2 =x 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ env 7→_,rk}

ld r3, r0(1)
{〈· · · · · · · · · · · · · · · · · · · · · · · · · · · ·∧r3 =rk 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ env 7→_,_}

free r0, 2
{〈 · · · · · · · · · · · · · · · · · · · · · · · · · ·〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·}

st r2(1), r1
{〈 · · · · · · · · · · · · · · · · ·〉∧∧ · · · · · · · ∗ x 7→a,z ∗ · · · · · · · · · · · · · ·}

mov r1, r2

r1
r3

x
rk linked list stores ls

a
z

                closure expecting a list stores a::ls                          linked list stores a::ls

environment of type aenv

continuation code block 
expecting an environment 
aenv and a list stores a::ls

cnt
env'

{〈 r1 =x∧r3 =rk 〉∧∧ list (a :: ls) x ∗ aenv env’∧∧cont aenv (a :: ls) cnt ∗ rk 7→cnt,env’}
ld r31, r3(0)

{〈 · · · · · · · · · · · · · · · ·∧r31 =cnt〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,env’}
ld r0, r3(1)

{〈r0 =env’∧·· · · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,_}
free r3, 2

r0
r1

env '
x linked list stores a::ls

env ironm ent o f type aenv

r31 cnt

                                                                 continuation code b lockenv ironm ent o f type aenvr0
r1

env '
x linked list stores a::ls

{〈r0 =env’∧r1 =x ∧r31 =cnt〉∧∧ list (a :: ls) x ∗ aenv env’∧∧cont aenv (a :: ls) cnt}
jmp r31

Figure 4.2: Code, specification, and illustration of the list append function
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r0
r1

x
y linked list stores lt

closure expecting a list stores ls++ltr2 rk

linked list stores ls

{〈r0 =x ∧r1 =y∧r2 =rk 〉∧∧ list ls x ∗ list lt y ∗ clos (ls++lt) rk}
// the following ‘‘then’’ branch is almost same as the second half of function k

append : bgti r0, 0, else

{〈 r1 =y∧r2 =rk 〉∧∧ list lt y ∗ aenv env ∧∧ cont aenv lt cnt ∗ rk 7→cnt,env}
ld r31, r2(0)

{〈 · · · · · · · · · · · · · · · ·∧r31 =cnt〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,env}
ld r0, r2(1)

{〈r0 =env∧·· · · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,_}
free r2, 2

{〈r0 =env∧r1 =y ∧r31 =cnt〉∧∧ list lt y ∗ aenv env ∧∧ cont aenv lt cnt}
jmp r31

r0
r1

x
y linked list stores lt

closure expecting a list stores a::ls++ltr2 rk
linked list stores ls

a
b

                     linked list stores a::ls

{〈r0 =x∧r1 =y∧r2 =rk 〉∧∧ list ls b∗ list lt y∗ clos (a :: ls++lt) rk ∗ x 7→a,b}
else : alloc r3, 2
{〈· · · · · · · · · · · · · · · · · · · · · · ∧r3 =env〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ env 7→_,_}

st r3(0), r0
{〈· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ env 7→x,_}

st r3(1), r2
{〈· · · · · · · · · · · · · · · ∧ · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ env 7→x,rk}

ld r0, r0(1)
{〈r0 =b∧·· · · · · ∧ · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ x 7→a,_∗· · · · · · · · · · ·}

alloc r2, 2
{〈· · · · · · · · · · · · · · ·∧r2 =nk∧·· · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗nk 7→_,_}

st r2(1), r3
{〈· · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗nk 7→_,env}

movi r3, k

{〈· · · · · · · · · · · · · · · · · · · · · · · · ·∧r3 =k〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·}
st r2(0), r3

r0
r1

b
y linked list stores lt

closure expecting a list stores a::ls++ltr2 nk

linked list stores ls
a
_

x
rk

k
env

environment (a env env)

{〈r0 =b∧r1 =y∧r2 =nk〉∧∧ list ls b ∗ list lt y ∗ clos (a :: ls++lt) rk ∗ x 7→a,_ ∗env 7→x,rk ∗ nk 7→k,env}
// (ecp) rule

r0
r1

b
y linked list stores lt

env ironment o f type a envr2 nk

linked list stores ls
k

env
continuation code block 

expecting an env ironment 
aenv and a list stores ls++lt

                closure expecting a list stores ls++lt     

{〈r0 =b∧r1 =y∧r2 =nk〉∧∧ list ls b ∗ list lt y ∗ clos (ls++lt) nk}
// where aenv being packed is defined as aenv env , clos (a :: ls++lt) rk ∗ x 7→a,_∗env 7→x,rk

jd append

Figure 4.3: Code, specification, and illustration of the list append function (continued)

46



Our specification of the append function guarantees that the return continuation rk will

get a correctly appended list (i.e., the list contents are exactly the same as the two input

lists). Furthermore, even though the function contains a large amount of heap allocation,

mutation, and deallocation (which are used to build and destroy continuation closures

and to append two lists on the fly), memory safety is fully guaranteed (no garbage, no

illegal free operation).

4.3 Recursive Specifications

Recursive specifications are very useful in describing complex invariants. Simple recur-

sive data structures such as link-list are already supported by the inductive definition

found in Prop. However, for the recursive types (µα.τ) found in TAL, where things such

as embedded code pointers can be nested inside an inductive definition, their counterpart

in logic, “recursive predicates”, can not be easily defined in XCAP. We extend PropX to

support recursive predicates and use syntactic methods to establish validity.

We define the recursive predicate constructor as follows.

(PropX) P,Q ::= . . . | (µµ α :A→PropX.λx :A.P B)

To understand the formation of recursive predicate, we will start from the innermost

proposition P. λx :A.P is a predicate of type A→PropX . So µµα :A→PropX .λx :A.P is meant

to be a recursive predicate of type A→PropX , which corresponds to recursive types found

in type systems. Since the basic unit of definition is extended proposition instead of ex-

tended predicate, we apply it with a term B of type A, and make (µµ α :A→PropX.λx :A.P B)

the basic shape of recursive predicates formula. When using recursive predicates formu-

las, we often use its predicate form, and use the notation µµα :A→ PropX .λx :A.P to repre-

sent predicate λy :A.(µµ α :A→PropX.λx :A.P y).

To establish validity of recursive predicate formulas, we add the following rule to the

validity rules in Figure 4.1. It is essentially a fold rule for recursive types.
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B :A Γ ` P[B/x][µµα :A→ PropX .λx :A.P/α]
Γ ` (µµ α :A→PropX.λx :A.P B)

(µ-I)

We extend PropX interpretation soundness (Theorem 4.1) with the following case:

If [[ (µµ α :A→PropX .λx :A.P B) ]]Ψ then [[P[B/x][µµα :A→ PropX .λx :A.P/α] ]]Ψ.

4.4 Discussion

In Figure 4.1 we have only included the introduction rules for the two impredicative quan-

tifiers. This could cause confusion because from the logic perspective, missing the two

elimination rules would raise questions related to the completeness of the logic. How-

ever, despite its name, PropX is not designed to be a general (complete) logic; it is purely

a level of syntax laid upon the meta logic. While its expressive power comes from the

lifted propositions 〈p〉, the modular handling of ECPs and impredicative polymorphism

follows syntactic types.

To certify the examples in this dissertation (or any polymorphic TAL programs), what

we need is to establish the assertion subsumption relation ⇒ between XCAP assertions.

According to its definition, assertion subsumption is merely a meta-implication between

validities of XCAP propositions. Although in certain cases it is possible to first do all the

subsumption reasoning in PropX and prove [[P→→Q ]]Ψ, and then obtain the subsumption

proof [[P ]]Ψ ⊃ [[Q ]]Ψ by Theorem 4.1, it is not always possible due to the lack of complete-

ness for PropX, and is not the way PropX should be used. Instead, one can always follow

the diagram below in proving subsumption relations (we use the impredicative existential

quantifier as an example):

[[∃∃α.P ]]Ψ
implication

//____________

Theorem
4.1®¶

[[∃∃α.Q ]]Ψ

∃a. [[P[a/α] ]]Ψ
meta-implication

// ∃a. [[Q[a/α] ]]Ψ

ru
le
∃∃-

I2

KS
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To prove the intended “implication” relation (the top one), we first use Theorem 4.1 to turn

the source proposition’s existential quantification into the meta one, from which we can

do (flexible) meta implications. Then we reconstruct the existential quantification of the

target proposition via the introduction rule. This way, the construction of subsumption

proof in meta logic does not require the reasoning at the PropX level.

In fact, the subtyping relation found in TAL can be simulated by the subsumption re-

lation in XCAP (with only the introduction rules for the two impredicative quantifiers).

What the missing “elimination rules” would add is the ability to support a notion of

“higher-order subtyping” between “impredicative types”, which does not appear in prac-

tical type systems such as TAL, FLINT, or ML. Although it could be nice to include such

a feature in XCAP, we did not do so since that would require a complex semantic normal-

ization proof instead of the simple syntactic one used for Theorem 4.1.

As we will show in the next Chapter, this is enough for reasoning about impredicative

polymorphism available in typical type systems. Translations from polymorphic type

systems such as TAL to XCAP also do not require the elimination rules.

Similarly explanation applies to recursive specifications, for which only the introduc-

tion rules are defined, too.
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Chapter 5

Weak Updates and a Translation from

Typed Assembly Language

Weak update, also termed as “general reference”, is another higher-order features that

logic-based verification methods failed to support well. In this chapter we first show how

to extend the XCAP framework to support weak update, using similar syntactic technique

for the support of ECP in Chapter 3.

We then explore the relationship between XCAP and typed assembly languages (TAL).

TAL and CAP/XCAP are suitable for different kinds of verification tasks. Previously,

programs verified in either one of them can not interoperate freely with the other, making

it hard to integrate them into a complete system. Moreover, the relationship between TAL

and CAP lines of work has not been discussed extensively.

In this chapter, we compare the type-based and logic-based methods by presenting a

type-preserving translation from a TAL language to XCAP. The translation involves an

intermediate step of a “semantic” TAL language. Our translation supports polymorphic

code, mutable reference, existential, and recursive types. Since we proved typing preser-

vation for the translation from TAL to XCAP, there is a clear path to link and interoper-

ate well-typed programs from traditional certifying compilers with certified libraries by

CAP-like systems.
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5.1 Weak Update in the Logical Setting

Weak update (also termed as “mutable reference” or “general references”) is a commonly

used memory mutation model. Examples of weak update include ML reference cells

(int ref) and managed data pointers (int gc*) in .NET common type system. In the weak

update model, the value of each memory cell must satisfy a certain fixed value type. The

tuple type in TAL (such as the one to be shown in next section) is also a weak update

reference cell types.

Unfortunately, weak update is not well-supported by CAP and other Hoare-logic-

based verification systems. The problem is due to the lack of a global data heap invariant

that local assertions about heap cells can be checked upon. Existing Hoare-logic-based

systems either avoid supporting weak update [44, 64], limit the assertions (for reference

cells) to types only [28], or resort to heavyweight techniques that require the construction

of complex semantic models [9, 2]. In this section, we present a weak update extension of

the XCAP using the similar syntactic technique for ECPs.

Following cptr for ECP, We add a reference cell proposition ref(l,t) to the extended

propositions. It associates word type t (a value predicate) with data label l.

(PropX) P,Q ::= . . . | ref(l,t)

(WordTy) t ∈ Word→ PropX

We can use the following macro to describe a record of n cells.

record(l,t1, . . . ,tn) , ref(l,t1)∧∧ . . . ∧∧ ref(l+n−1,tn)

To testify the validity of reference cell propositions, in the interpretation [[P ]]Ψ,Φ we

need an additional “data heap specification” parameter Φ which, similar to the code heap

specification Ψ, is a partial mapping from data labels to word types.

(DtHpSpec) Φ ::= {l ; t}∗

To establish validity of ref(l,t), data label l and word type t need to be in Φ.
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Φ(l)=t

Γ `Ψ,Φ ref(l,t)
(RF-I)

Γ `Ψ,Φ ref(l,t) (Φ(l)=t)⊃(Γ `Q)
Γ `Ψ,Φ Q

(RF-E)

Validity rules of other cases remain unchanged other than taking an extra Φ argument.

Validity soundness of those cases also holds, with the following additional case.

If [[ ref(l,t) ]]Ψ,Φ then Φ(l) = t;

Different from code heap, the data heap is dynamic. Its specification can not be ob-

tained statically. Instead, we need to find it out in each execution steps. So the assertion

interpretation is changed to:

[[a ]]Ψ , λ(H,R).∃Φ,Hs,Hw.H=Hs]Hw∧ [[a (Hs,R) ]]Ψ,Φ∧DH Ψ Φ Hw

There should exist a data heap specification Φ describing the weak update part of current

data heap. Other than checking validity of (a (H,R)) using Ψ and Φ, we also need to

checking validity of Φ.

For a data heap specification Φ to be valid, each reference cell must contain a value

that matches its word type.

DH Ψ Φ H , ∀l∈dom(Φ)=dom(H). [[Φ(l) H(l) ]]Ψ,Φ

The extension of XCAP to support weak update requires minor changes to the as-

sertion languages and interpretations, and zero change to the inference rules. Thus the

soundness of XCAP is easily preserved.

Based on the weak update memory model defined above, we can derive many useful

“macro” inference rules as shown below. These rules can help guide the proof process

for the programmer. (insens(a,r) asserts predicate is insensitive to register r, i.e., does not

talk about register r. Its definition is omitted here.)

Ψ `{(λ(H,R).a(H,R)∧∧t R(rd))}I insens(a,rd)
Ψ `{(λ(H,R).a(H,R)∧∧ ref(R(rs)+w,t))} ld rd,rs(w);I

(W-LD)

Ψ `{a}I
Ψ `{(λ(H,R).a(H,R)∧∧ ref(R(rd)+w,t)∧∧t R(rs))}st rd(w),rs;I

(W-ST)
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Example. Below is a “mini object”, using the recursive predicates and weak update ex-

tensions presented in previous sections.

classs c {
void f (c x) { x.f(x) }

}

c , µµ α :Word →PropX .λx :Word. ref(x, λy :Word.cptr(y, λ(H,R).(α R(r1))))

The above example may look similar to what one would normally write in a syntactic

type system. However, given the ability to write general logic predicate in the specifi-

cations, it is possible to compose interesting data structures and properties. Below is an

example: a record pointer l which points to an even number, a data pointer to a reference

cell storing an odd number, and a code pointer which, among other things, expects reg-

ister r1 to be an unaliased pointer to a prime number. (here we used the separation logic

primitives embedded in Coq, as discussed in Section 4.2).

record(l, even, λw. ref(w,odd), λw.cptr(w, λ(H,R).(∃∃w.R(r1) 7→w∧prime w)∗ . . .))

5.2 Typed Assembly Language (TAL)

The TAL language presented here follows the principle of the original typed assembly

languages [41]. However, due to the usage of TM, a untyped raw machine, the shape of

typing judgments and rules are slightly different. To simplify our presentation, the TAL

in this chapter does not directly deal with heap allocation/deallocation.

Type definitions. Figure 5.1 presents the type definitions in TAL. Machine word is clas-

sified as of value type (τ) including integer, code, tuple, existential package, and recursive

data structures. A code heap specification (Ψ) is a partial environment that maps a code

label to a “precondition” type ([∆].Γ) for its corresponding code block. Here ∆ is a type

variable environment and Γ is a register file type which specifies the type for each regis-

ter. Similarly, a data heap specification (Φ) is a partial environment that maps from a data

label to a value type for its corresponding heap cell.
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(CdHpSpec) Ψ ::= {f ; [∆].Γ}∗

(RfileTy) Γ ::= {r ; τ}∗

(TyVarEnv) ∆ ::= · | α,∆

(WordTy) τ ::= α | int | code [∆].Γ | 〈τ1, . . . ,τn〉 | ∃α.τ | µα.τ

(DtHpSpec) Φ ::= {l ; τ}∗

Figure 5.1: Type definitions of TAL

Static semantics. The top-level semantic rules of TAL are presented in Figure 5.2. A pro-

gram is well-formed if each of its components is. For a code heap to be well-formed, each

block in it must be well-formed. The intuition behind well-formed instruction sequence

judgment is that if the state satisfies the precondition [∆].Γ, then executing I is safe with

respect to Ψ. Weakening is allowed to turn one precondition into another provided that

they satisfy the subtyping relation. A instruction sequence c;I is safe if one can find an-

other register file type which serves as both the post-condition of c and the precondition

of I. A direct jump is safe if the current precondition implies the precondition of the target

code block specified in Ψ. An indirect jump is safe when the target register is of a code

type with a weaker precondition. Constant code labels can be moved into registers.

The subtyping and instruction typing rules for TAL is presented in Figure 5.3. Valid

subtypings include dropping registers, instantiation of code type, packing and unpacking

of existential packages, and folding and unfolding of recursive types. It allows jumping

to code blocks with stronger preconditions than required.

For each non-control-flow-transfer instruction there is a pre/post-condition relation

defined. When a register is updated by an instruction, the register file type is also updated

by a new value type. Arithmetic instruction only operates on two registers with integer

types. Since there is no static data heap, a constant value can only be well-formed under

an empty Heap type before it can be moved to a register. For simple instructions, their

pre- and post-conditions do not involve a change of type variable environment, thus we

only specify the register file types before and after their execution. The instruction-level

55



ΨG `{[∆].Γ}P (Well-formed Program)

ΨG ` C :ΨG ΨG ` S : [∆].Γ ΨG `{[∆].Γ}I
ΨG `{[∆].Γ}(C,S,I)

(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{Ψ(f)}C(f) ∀f∈dom(Ψ)
ΨIN ` C :Ψ (CDHP)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2

(LINK)

Ψ `{[∆].Γ}I (Well-formed Instruction Sequence)

`{Γ}c{Γ′} Ψ `{[∆].Γ′}I c∈{add,addi,mov,movi, ld,st}
Ψ `{[∆].Γ}c;I

(SEQ)

f∈dom(Ψ) ` [∆].Γ≤Ψ(f)
Ψ `{[∆].Γ} jd f

(JD)

Γ(r)=code [∆′].Γ′ ` [∆].Γ≤ [∆′].Γ′

Ψ `{[∆].Γ} jmp r
(JMP)

f∈dom(Ψ) Γ(rs)= int Ψ `{[∆].Γ}I ` [∆].Γ≤Ψ(f)
Ψ `{[∆].Γ}bgti rs, i,f;I

(BGTI)

f∈dom(Ψ) Ψ `{[∆].Γ{rd ;code Ψ(f)}}I
Ψ `{[∆].Γ}movi rd,f;I

(MOVF)

` [∆].Γ≤ [∆′].Γ′ Ψ `{[∆′].Γ′}I
Ψ `{[∆].Γ}I (WEAKEN)

Figure 5.2: Top-level static semantics of TAL
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` [∆].Γ≤ [∆′].Γ′ (Subtyping)

∆⊇ ∆′ ∀ r∈dom(Γ′) Γ(r)=Γ′(r) ∆′ ` Γ′(r)
` [∆].Γ≤ [∆′].Γ′

(SUBT)

Γ(r)=code [α,∆′].Γ′ ∆ ` τ′

` [∆].Γ≤ [∆].Γ{r :code [∆′].Γ′[τ′/α]} (TAPP)

Γ(r)=τ[τ′/α] ∆ ` τ′

` [∆].Γ≤ [∆].Γ{r :∃α.τ} (PACK)

Γ(r)=∃α.τ
` [∆].Γ≤ [α,∆].Γ{r :τ} (UNPACK)

Γ(r)=τ[µα.τ/α]
` [∆].Γ≤ [∆].Γ{r :µα.τ} (FOLD)

Γ(r)=µα.τ
` [∆].Γ≤ [∆].Γ{r :τ[µα.τ/α]} (UNFOLD)

`{Γ}c{Γ′} (Well-formed Instruction)

Γ(rs) = Γ(rt) = int

`{Γ}add rd,rsrt {Γ{rd : int}} (ADD)

Γ(rs) = int

`{Γ}addi rd,rs, i{Γ{rd : int}} (ADDI)

Γ(rs) = τ
`{Γ}mov rd,rs {Γ{rd :τ}} (MOV)

`{Γ}movi rd,w{Γ{rd : int}} (MOVI)

Γ(rs)=〈τ1, . . . ,τw+1, . . . ,τn〉
`{Γ} ld rd ,rs(w){Γ{rd :τw+1}} (LD)

Γ(rd)=〈τ1, . . . ,τw+1, . . . ,τn〉 Γ(rs)=τw+1

`{Γ}st rd(w),rs {Γ} (ST)

Figure 5.3: Static semantics of TAL (subtyping and instruction typing)
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typing rules is not very flexible and expressive, e.g., pointer arithmetic is not possible.

The typing rules for value types, machine state, register file, data heap, and machine

word values are presented in Figure 5.4. A value type is well-formed only when it contains

no free type variable and, thus, is a ground type. The well-formed state rule instantiates

the current type variable environment and requires a current data heap specification to be

supplied and checked. State typing is done by checking the Heap and register file’s well-

formednesses separately under this heap specification. Heap and register file typing fur-

ther break heap and register file into single word values, and check their well-formedness

individually. Any machine word value can be typed as an integer. A label can be typed

as a tuple pointer if the cell types in the heap type starting from the label match the cor-

responding value types in the tuple type. For a label to be considered a code pointer, the

code precondition in it has to match the precondition listed in the global context.

Soundness. The soundness theorem guarantees that given a well-formed program, the

machine will never get stuck. It is proved following the syntactic approach of proving

type soundness [59]. We also list a few key lemmas below.

Theorem 5.1 (TAL Soundness)

If Ψ `{[∆].Γ}P, for all natural number n, there exists a program P′ such that P 7−→n P′.

Lemma 5.2 (TAL State Weakening)

If Ψ ` S : [∆].Γ and ` [∆].Γ≤ [∆′].Γ′ then Ψ ` S : [∆′].Γ′.

Lemma 5.3 (TAL Instruction Typing)

If Ψ ` S : [∆].Γ and ` {Γ}c{Γ′} then Ψ ` Nextc(S) : [∆].Γ′.

5.3 A “Semantic” TAL Language

Instead of doing translation from TAL to XCAP directly, we create a new “Semantic” TAL

language (STAL) to serve as an intermediate step between them. Let us revisit the static
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∆ ` τ Ψ ` S : [∆].Γ Ψ `H :Φ Ψ;Φ ` R :Γ

(Well-formed Type, State, Heap, and Register file)

FTV (τ)⊆∆
∆ ` τ (TYPE)

· ` τi ∀ i Ψ `H :Φ Ψ;Φ ` R :Γ[τ1, . . . ,τn/α1, . . . ,αn]
Ψ ` (H,R) : [α1, . . . ,αn].Γ

(STATE)

Ψ;Φ `H(l) :Φ(l) ∀ l∈dom(Φ)=dom(H)
Ψ `H :Φ (HEAP)

Ψ;Φ ` R(r) :Γ(r) ∀ r∈dom(Γ)
Ψ;Φ ` R :Γ (RFILE)

Ψ;Φ ` w :τ (Well-formed Word Value)

Ψ;Φ ` w : int
(INT)

f∈dom(Ψ)
Ψ;Φ ` f :code Ψ(f)

(CODE)

· ` τ′ Ψ;Φ ` f :code [α,∆].Γ
Ψ;Φ ` f :code [∆].Γ[τ′/α]

(POLY)

Φ(l+i−1)=τi ∀ i
Ψ;Φ ` l :〈τ1, . . . ,τn〉 (TUP)

· ` τ′ Ψ;Φ ` w :τ[τ′/α]
Ψ;Φ ` w :∃α.τ (EXT)

Ψ;Φ ` w :τ[µα.τ/α]
Ψ;Φ ` w :µα.τ (REC)

Figure 5.4: Static semantics of TAL (state and value typing)
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semantics of TAL in Figure 5.3 and the lemmas used in TAL soundness proof.

First, look at the set of subtyping rules between preconditions (` [∆].Γ≤ [∆′].Γ′). If we

also look at the State Weakening lemma (Lemma 5.2) in TAL soundness proof, it is easy

to see that all of those syntactic rules are just used for the meta implication between the

two state typings in the soundness proof. Given a mechanized meta logic, we can replace

these rules with a single one,

Ψ ` S : [∆].Γ ⊃ Ψ ` S : [∆′].Γ′ ∀ S,Ψ
` [∆].Γ≤ [∆′].Γ′

(SUBT)

which explicitly requests the meta implications between two state typing. By doing so, not

only did we remove the fixed syntactic subtyping rules from TAL, but the State Weakening

lemma is no longer part of the soundness proof. More importantly, the subtyping between

preconditions is no longer limited to the built-in rules. Any valid implication relation

between state typing is allowed. This is much more flexible and powerful.

Now let us look at the set of instruction typing rules (` {Γ}c{Γ′}). Also look at the

Instruction Typing lemma (Lemma 5.3) in TAL soundness proof. Again all these syntactic

rules are just used for the meta implication between two state typings in the soundness

proof. (The difference this time is that the two states are now different and are states

before and after the execution of an instruction, respectively.) Applying our trick again,

we can replace these rules with a single one,

Ψ ` S : [∆].Γ ⊃ Ψ ` Nextc(S) : [∆].Γ′ ∀ S,Ψ
` {Γ}c{Γ′} (INSTR).

We also successfully removed the fixed syntactic instruction typing rules as well as he

Instruction Typing lemma from TAL. The new form of instruction typing is much more

flexible and powerful.

Of course, in composing the actual meta proof supplied to the new SUBT and IN-

STR rules, it is most likely that those disappeared lemmas will still be used. Nevertheless,

making them separate from the type language and its meta theory is important because

it reduces the size of the type language, while allowing more flexible reasoning. By intro-
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ducing meta implication into TAL, we made one step forward so now there is a mixture

of syntactic types and logic proofs.

We call this version of TAL a semantic TAL (STAL). STAL and TAL share the exactly

same syntax and top-level static semantics (Figure 5.2), as well as the same state and value

typing rules (Figure 5.4). While STAL has much more reasoning power than TAL do, as

the soundness of STAL is simpler than TAL’s. Nevertheless, instead of merely supplying

type signatures to their code, now the programmers have to also supply meta logic proof.

As an intermediate step from TAL toward XCAP, STAL only upgrades TAL’s expres-

siveness by using general logic implications in the subtyping and instruction typing rules.

STAL program specifications are still fully syntactic types and thus are not as expressive

as general logic predicate.

It is obvious to obtain the following TAL-to-STAL typing translation theorem. (We

ignore the trivial cases of those judgments where TAL and STAL share the same rules.)

Theorem 5.4 (Typing Preservations from TAL to STAL)

1. if `TAL [∆].Γ≤ [∆′].Γ′ then `STAL [∆].Γ≤ [∆′].Γ′;

2. if Ψ `TAL {Γ}c{Γ′} then Ψ `STAL {Γ}c{Γ′}.

If we follow the direction of STAL and make one more step by trying to bring in gen-

eral logic predicates into the types, we can obtain an even better TAL. In fact, XCAP is

such a system in some sense, as the translation in the next section will show.

5.4 Translations from TAL/STAL to XCAP

The gap between STAL and XCAP is mainly on the specification language and the various

state and value typing. At the core of the translation from STAL to XCAP is the transla-

tions from TAL/STAL types and typings into XCAP predicates, which we discuss first.

Our translations preserve the typing structure and well-formedness of TM programs.
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Translation from TAL WordTy to XCAP WordTy

pintq , λw.True

pcode [∆].Γq , λw.codeptr(w,p[∆].Γq)

p〈τ1, . . . ,τn〉q , λw. record(w,pτ1q, . . . ,pτnq)

p∃α.τq , λw.∃∃α :Word →PropX .pτq w

pµα.τq , λw.(µµ α :Word →PropX .λx :Word.(pτq x) w)

Translation from TAL Precondition to XCAP Assertion

p[α1, . . . ,αm].{r1 ;τ1, . . . ,rn ;τn}q
, λ(H,R).∃∃α1, . . . ,αm : Word →PropX .(pτ1q R(r1))∧∧ . . . ∧∧(pτnq R(rn))

Translation from TAL CdHpSpec to XCAP CdHpSpec

p{l1 ; [∆1].Γ1, . . . ,ln ; [∆n].Γn}q , {l1 ;p[∆1].Γ1q, . . . ,ln ;p[∆n].Γnq}

Translation from TAL DtHpSpec to XCAP DtHpSpec

p{l1 ;τ1, . . . ,ln ;τn}q , {l1 ;pτ1q, . . . ,ln ;pτnq}

Figure 5.5: Translations from TAL types to XCAP predicates

Translation of TAL types We present the type translations from TAL/STAL to XCAP in

Figure 5.5. Various p·q translate TAL types into XCAP assertions and specifications.

In the word type translation, integer type becomes a tautology as any machine word

can be treated as an integer. Code type is translated into ECP formulas. Tuple types in

TAL is translated into record type in XCAP. Existential types and recursive types in TAL

are also translated into their XCAP counterparts.

The translation of a TAL precondition, which is a type variable environment plus a

register file type, is an XCAP assertion. The type variables in the environment are now

existentially quantified over XCAP word types at the outmost of the target assertion. The

register file typing corresponds to a bunch of conjunctions of register value testing.

The translations of TAL code and data heap specifications are carried out by simply

translating each element’s type in them into XCAP assertions or word types, and preserv-

ing the partial mapping.
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Typing Preservations An important property of the previous translations is whether

they preserve the typing structure and well-formedness of TM program in XCAP. This

breaks down to whether all well-formed TAL/STAL entities are still well-formed in XCAP

after the translations. As the following typing preservation lemma shows, all STAL typing

derivations indeed get preserved in XCAP after the translations.

Theorem 5.5 (Typing Preservations from STAL to XCAP)

1. If Ψ `STAL {[∆].Γ}P then pΨq `XCAP {p[∆].Γq}P;

2. if Ψ `STAL C :Ψ′ then pΨq `XCAP C :pΨ′q;

3. if Ψ `STAL {[∆].Γ}I then pΨq `XCAP {p[∆].Γq}I;

4. if Ψ `STAL S : [∆].Γ then [[p[∆].Γq ]]pΨq S;

5. if Ψ `STAL H :Φ then DH pΨq pΦq H;

6. if Ψ;Φ `STAL R :Γ then [[p[].Γq (H,R) ]]pΨq,pΦq;

7. if Ψ;Φ `STAL w :τ then [[pτq w ]]pΨq,pΦq;

8. if `STAL [∆].Γ≤ [∆′].Γ′ then p[∆].Γq⇒ p[∆′].Γ′q;

9. if Ψ `STAL {Γ}c{Γ′} then p[∆].ΓqΨ ⇒c p[∆].Γ′q.

Proof. We show selected cases for (3). By induction over the structure of Ψ `TAL {[∆].Γ}I.

case WEAKEN.

` [∆].Γ≤ [∆′].Γ′ Ψ `{[∆′].Γ′}I
Ψ `{[∆].Γ}I

By induction hypodissertation it follows that pΨq `XCAP {p[∆′].Γ′q}I. The following weak-

ening lemma easily holds for XCAP: “if Ψ `{a′}I and a⇒ a′ then Ψ `{a}I”. By (8) it

follows that p[∆].Γq⇒ p[∆′].Γ′q. Thus it follows that pΨq `XCAP {p[∆].Γq}I.

case SEQ.
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`{Γ}c{Γ′} Ψ `{[∆].Γ′}I c∈{add,addi,mov,movi, ld,st}
Ψ `{[∆].Γ}c;I

By induction hypodissertation it follows that pΨq `XCAP {p[∆].Γ′q}I. By (9) it follows that

p[∆].ΓqΨ ⇒c p[∆].Γ′q. By rule SEQ it follows that pΨq `XCAP {p[∆].Γq}c;I.

case JD.

f∈dom(Ψ) ` [∆].Γ≤Ψ(f)
Ψ `{[∆].Γ} jd f

By (8) it follows that p[∆].Γq⇒ pΨ(f)q, and then p[∆].Γq⇒ pΨq(f). By rule JD it follows

that pΨq `XCAP {p[∆].Γq}jd f.

case JMP.

Γ(r)=code [∆′].Γ′ ` [∆].Γ≤ [∆′].Γ′

Ψ `{[∆].Γ} jmp r

By translation it follows that p[∆].Γq⇒ λ(H,R).cptr(R(r),p[∆′].Γ′q). By (8) it follows that

p[∆].Γq⇒ p[∆′].Γ′q. By rule JMP it follows that pΨq `XCAP {p[∆].Γq}jmp r.

case MOVF.

f∈dom(Ψ) Ψ `{[∆].Γ{rd ;code Ψ(f)}}I
Ψ `{[∆].Γ}movi rd ,f;I

By induction hypodissertation it follows that pΨq `XCAP {p[∆].Γ{rd ;code Ψ(f)}q}I. By

rule ECP and SEQ it follows that pΨq `XCAP {p[∆].Γq}movi rd ,f;I. ¥

5.5 Discussion

We discussed the relationship between TAL and XCAP by showing a translation from

TAL to XCAP. However, it is by no means limited to the translation itself.

For example, one can treat the translation as a shallow embeddeding of TAL types and

typing rules in XCAP, which means there is no need to build meta theory for TAL while

still letting the programmer work at the TAL level.

One interesting way to view the XCAP system is from TAL programmer’s perspective.

When writing programs that will interact with XCAP code that involve complex logical

64



specification not expressible in TAL, so long as the interfaces abstract and hide that part of

“real” logical specification (e.g., by using existential packages), and local code behavior is

simple enough (which is usually the case), the programmers can “pretend” that they are

dealing with external TAL code instead of XCAP ones, by using the macros and lemmas

defined for the translations. This lowers the requirement on programmers, as they do not

need to learn XCAP, even if they are dealing with external XCAP code.

65



66



Chapter 6

A Port to x86 Machine

To demonstrate the potential of the XCAP framework, we want to use it to reason about

realistic system code that actually runs the x86 machine, which is different from and more

complex than the RISC-like target machine used in previous chapters. In this chapter, we

present XCAP86, a port of the XCAP framework on Mini86, a faithful subset of the x86

architecture. XCAP86 and Mini86 adds the support of instruction decoding, finite ma-

chine word, word-aligned byte-addressed memory, conditional flags, built-in stack and

push/pop instructions, and function call/return instructions.

The Mini86 machine is realistic, which brings additional complexities and proof engi-

neering issues. Therefore, on top of XCAP86, we made practical adaptations and built use-

ful abstractions, particularly on the handling of the stack and function calls. We demon-

strate the usage of the XCAP86 and these abstractions for the verification of a polymorphic

queue module, which is going to be used by the mini thread library in the next chapter.

6.1 Mini86: a Subset of the x86 Architecture

The execution environment of Mini86 (Figure 6.1) consists of a memory, a register file of

eight general-purpose registers, a flags register made up of a carry bit and a zero bit, and

a program counter. Following the x86 Flat Model [34], the memory of Mini86 appears
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eax
ebx
ecx
edx

esi
edi
ebp
esp

pc
cf zf

Stack
unavailable

Code
Static
Heap

system break

H
F

R

ss_start
ss_end

hp_start

Figure 6.1: Mini86 execution environment

to a program as a single, continuous address space. Code, data (static and dynamic), and

system stack all reside in this address space. Mini86 has a word size of 32 bits. Its memory

is finite and ultimately restricted by the word size. The non-code part of the memory, the

register file, and the flags register are referred to collectively as the machine state.

In comparison, the actual x86 execution environment uses an EFLAGS register to record

a group of status and control flags including those mentioned above, and the eip (pro-

grammer counter) register can also be controlled implicitly by interrupts and exceptions,

which we omit. We also omit the segment registers in x86, because they play no role in

the Flat memory model.

The syntax of Mini86 is shown in Figure 6.2. In Mini86, two memory addressing

modes are supported: a “direct” mode uses an immediate value as the absolute address; a

“base indexed” mode uses a register value as the base address and an immediate value as

the offset. Common instructions are included for arithmetic, data movement, comparison,

control flow transfer, and stack manipulation.

An operand (o) is either an immediate value or a register. When an instruction takes

two operands, the first one is the target operand. Conditional jumps are supported with

help of conditional codes (a, b, and e stands for above, below, and equal respectively), which

are represented by different combinations of cf and zf, and set by arithmetic and compari-

son instructions.

We present the operational semantics of Mini86 in Figure 6.3. All instructions are
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(Program) P ::= (S, pc)

(State) S ::= (H,R,F)

(Mem) H ::= {l ; w}∗

(R f ile) R ::= {r ; w}∗

(FReg) F ::= {cf ; b,zf ; b}
(Word) w ::= i (unsigned 32 bit integers)

(Labels) l ::= i (unsigned 32 bit integers, i%4=0)

(CdLbl) f ::= i (unsigned 32 bit integers)

(Reg) r ::= eax | ebx | ecx | edx | esi | edi | ebp | esp

(Bool) b ::= tt | f f

(Cond) cc ::= a | ae | b | be | e | ne

(Addr) d ::= i | r±i

(Opr) o ::= i | r
(Instr) c ::= add r,o | sub r,o | mov r,o | mov r, [d] | mov [d],o

| cmp r,o | jcc f | jmp o | push o | pop r | pop | call o | ret

Figure 6.2: Mini86 syntax

encoded as machine words and stored in the memory; at each step, the machine has to

decode the instruction from the memory at pc. During execution, the machine would

fetch words based on the program counter pc and decode the words before executing it.

We use Dc to fetch and decode an instruction out of the memory H given a program

counter pc. The result of Dc is an instruction c and a new program counter npc. We

also use a macro Nextc(S) to define the transition of the machine state on some of the

instructions. It is worth noting that this macro provides only a partial mapping: there are

cases where no valid next states are defined. Examples include accessing invalid memory

or stack locations. The Mini86 machine gets stuck in these cases.

The stack instructions of Mini86 assume that the stack pointer is held by esp. As a

general rule, esp should not be used for any other purposes. For example, the push o

instruction decrements esp by 4 and writes the value of o onto the new top of the stack.

The pop r instruction reads a value from the top of the stack, puts it into r, and increments

esp by 4.
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Suppose Dc(H, pc)=(c,npc)
if c= then ((H,R,F), pc) 7−→
jmp o (H,R)R̂(o)
jcc f if F̂(cc) then (H,R)f else (H,R)npc

where suppose F={cf ; c f ,zf ; z f}, we have
F̂(a),¬c f ∧¬z f , F̂(ae),¬c f , F̂(b),c f ,
F̂(be),c f ∨ z f , F̂(e),z f , F̂(ne),¬z f

call o (Nextpush npc(H,R,F), R̂(o))
ret (Nextpop(H,R,F),H(sp)) when sp∈dom(H)
c (Nextc(H,R,F),npc)

where

if c= then Nextc(H,R,F)=
add r,o (H,R{r;R(r)+R̂(o)},CalcF(R(r)+R̂(o)))

when 0≤R(r)+R̂(o)<232

sub r,o (H,R{r;R(r)−R̂(o)},CalcF(R(r)−R̂(o)))
when 0≤R(r)−R̂(o)<232

cmp r,o (H,R,CalcF(R(r)−R̂(o)))
mov r,o (H,R{r; R̂(o)},F)
mov r, [d] (H,R{r;H(R̂(d))},F) when R̂(d)∈dom(H)
mov [d],o (H{R̂(d); R̂(o)},R,F) when R̂(d)∈dom(H)
push o (H{sp−4; R̂(o)}, R{esp;sp−4},F)

when sp−4∈dom(H)
pop r (H,R{r;H(sp)}{esp;sp+4}, F)

when sp∈dom(H) and 0≤sp+4<232

pop (H,R{esp;sp+4}, F)
when 0≤sp+4<232

Dc() is the instruction decoding function

R̂(i), i R̂(r),R(r) R̂(r±i),R(r)±i

CalcF(i) , {cf 7→ i<0,zf 7→ i=0}

Figure 6.3: Dynamic semantics of Mini86
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The call instruction pushes the return address (calculated from pc) onto the stack and

transfers the control to the callee (by updating pc). The ret instruction bump the stack

pointer by 4 and transfer the control to the return address. Note that the ret instruction

does not necessarily transfer the control back to the caller, as the program may modify

the stack in arbitrary ways. Such maneuver is indeed commonly used in implementing

thread primitives.

6.2 XCAP86: a Port of XCAP on Mini86

In this section we first introduce the XCAP86 language, where most of the constructs and

rules are the same as XCAP. We then discuss how to abstract and reason about memory,

stack, function call/return interfaces.

Assertion language. The syntax of XCAP86 is given in Figure 6.4. We abstract a code

heap C out of the actual memoryH of Mini86. Although the code heap is presented in the

syntax as a mapping from code labels to instruction sequences, it is actually embedded in

the memory by encoding instructions as machine words. XCAP86 includes features such

as embedded code pointers, impredicative polymorphisms, and recursive specifications.

We present the validity rules of XCAP86 extended propositions in Figure 6.5. Follow-

ing XCAP, the interpretation of extended propositions is defined as their validity under

the empty environment:

[[P ]]Ψ , · `Ψ P

Following XCAP, we establish the following soundness theorem of the interpretation

of extended propositions (with respect to CiC/Coq).

Theorem 6.1 (Soundness of XCAP86 PropX Interpretation)

1. If [[〈p〉 ]]Ψ then p;

2. if [[cptr(f,a) ]]Ψ then Ψ(f) = a;
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(CodeHeap) C ::= {f ; I}∗

(InstrSeq) I ::= c | c; [f] | c;I

(PropX) P,Q ::= 〈p〉 li f ted meta proposition

| cptr(f,a) embedded code pointer

| P∧∧Q con junction

| P∨∨Q dis junction

| P→→Q implication

| ∀∀x :A.P universal quanti f ication

| ∃∃x :A.P existential quanti f ication

| ∀∀a :A→PropX.P imp. universal quan.

| ∃∃a :A→PropX.P imp. existential quan.

| (µµ α.λx :A.P B) recursive de f inition

(CdH pSpec) Ψ ::= {f; a}∗

(Assertion) a ∈ State→ PropX

(AssertImp) a⇒a′ , ∀Ψ,S. [[a ]]Ψ S⊃ [[a′ ]]Ψ S

(StepImp) a⇒c a′ , ∀Ψ,S. [[a ]]Ψ S⊃ [[a′ ]]Ψ Nextc(S)

Figure 6.4: Syntax of XCAP86
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Γ `Ψ P (Validity of Extended Propositions) (env) Γ := · | Γ,P

(The following presentation omits the Ψ in judgment Γ `Ψ P.)

P ∈ Γ
Γ `P (ENV)

p
Γ `〈p〉 (〈〉-I) Γ `〈p〉 p⊃ (Γ `Q)

Γ `Q (〈〉-E)

Ψ(f)=a

Γ `cptr(f,a)
(CP-I)

Γ `cptr(f,a) (Ψ(f)=a)⊃(Γ `Q)
Γ `Q (CP-E)

Γ `P Γ `Q
Γ `P∧∧Q (∧∧-I)

Γ `P∧∧Q
Γ `P (∧∧-E1)

Γ `P∧∧Q
Γ `Q (∧∧-E2)

Γ `P
Γ `P∨∨Q (∨∨-I1) Γ `Q

Γ `P∨∨Q (∨∨-I2)
Γ `P∨∨Q Γ,P `R Γ,Q `R

Γ `R (∨∨-E)

Γ,P `Q
Γ `P→→Q

(→→-I)
Γ `P→→Q Γ `P

Γ `Q (→→-E)

Γ `P[B/x] ∀ B :A
Γ `∀∀x :A.P

(∀∀-I1)
Γ `∀∀x :A.P B :A

Γ `P[B/x]
(∀∀-E1)

B :A Γ `P[B/x]
Γ `∃∃x :A.P

(∃∃-I1)
Γ `∃∃x :A.P Γ,P[B/x] `Q ∀ B :A

Γ `Q (∃∃-E1)

Γ `P[a/α] ∀ a :A→PropX
Γ `∀∀α :A→PropX.P

(∀∀-I2)
a :A→PropX Γ `P[a/α]

Γ `∃∃α :A→PropX.P
(∃∃-I2)

B :A Γ ` P[B/x][µµα :A→ PropX .λx :A.P/α]
Γ ` (µµ α :A→PropX.λx :A.P B)

(µ-I)

Figure 6.5: Validity rules of XCAP86 extended propositions
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3. if [[P∧∧Q ]]Ψ then [[P ]]Ψ and [[Q ]]Ψ;

4. if [[P∨∨Q ]]Ψ then either [[P ]]Ψ or [[Q ]]Ψ;

5. if [[P→→Q ]]Ψ and [[P ]]Ψ then [[Q ]]Ψ;

6. if [[∀∀x :A.P ]]Ψ and B :A then [[P[B/x] ]]Ψ;

7. if [[∃∃x :A.P ]]Ψ then there exists B :A such that [[P[B/x] ]]Ψ;

8. if [[∀∀α :A→PropX.P ]]Ψ and a :A→PropX then [[P[a/α] ]]Ψ;

9. if [[∃∃α :A→PropX.P ]]Ψ then there exists a :A→PropX such that [[P[a/α] ]]Ψ;

10. if [[ (µµ α.λx :A.P B) ]]Ψ then [[P[B/x][(µµ α.λx :A.P )/α] ]]Ψ.

Corollary 6.2 (XCAP86 Consistency) [[〈False〉 ]]Ψ is not provable.

Inference rules. The major difference between XCAP86 and XCAP is on the inference

rules, which is presented in Figure 6.6. In the top-level well-formed program rule, DC(C)

is a predicate that establishes the proper instruction decoding relation between the code

heap C and the memory H. Its implementation makes use of the single-instruction de-

coding function Dc() that appears in the previous section. lookup(C,f,I) is a macro that

checks whether the instruction sequence I is inside code heap C at location f.

Using cptr, XCAP86 supports the reasoning of embedded code pointers (ECP) in gen-

eral. The idea can be naturally adapted according to the x86 additional instructions that

use ECPs. In particular, there are now three new rules for the function call and return in-

structions of Mini86, assuming a built-in stack. A call instruction pushes a return address

onto the stack and transfers the control to the target code. In our actual implementation,

the return address is calculated from the pc. To avoid obfuscating the presentation, we

used an explicit [fret ] in the above Rule CALLI. This rule says, if a holds on the current

state, then Ψ(f) holds on the updated state after executing the stack push. The Rule RET
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ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG ((DC(C)∗ [[a ]]ΨG
) S) lookup(C, pc,I) ΨG `{a}I

ΨG `{a}(S, pc)
(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{ai}Ii ∀fi

ΨIN ` {f1 ;I1, . . . ,fn ;In} :{f1 ;a1, . . . ,fn ;an} (CDHP)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2

(LINK)

Ψ `{a}I (Well-formed Instruction Sequence)

a⇒c a′ Ψ `{a′}I c∈{add,sub,cmp,mov,push,pop}
Ψ `{a}c;I

(SEQ)

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jmp f

(JMPI)

(λ(H,R,F).〈¬F̂(cc)〉 ∧∧ a (H,R,F))⇒ a′ Ψ `{a′}I
(λ(H,R,F).〈F̂(cc)〉 ∧∧ a (H,R,F))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a} jcc f;I
(JCC)

a⇒ λ(H,R,F). cptr(R(r),a′) a⇒ a′

Ψ `{a} jmp r
(JMPR)

(λS.cptr(f,Ψ(f))∧∧a S)⇒ a′ f∈dom(Ψ) Ψ `{a′}I
Ψ `{a}I (ECP)

a⇒push fret
Ψ(f) f∈dom(Ψ)

Ψ `{a}call f; [fret ]
(CALLI)

a⇒ λ(H,R,F).cptr(R(r),a′) a⇒push fret
a′

Ψ `{a}call r; [fret ]
(CALLR)

a⇒ λ(H,R,F).cptr(H(R(esp)),a′) a⇒pop a′

Ψ `{a} ret
(RET)

Figure 6.6: Inference rules of XCAP86
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says, the top of the stack is a code pointer with pre-condition a′ and, if a holds on the

current state, a′ holds on the updated state after popping out the return address.

It is worth noting that Rule CALLI does not enforce the validity of the return address.

This allows some “fake” function calls that never return, a pattern indeed used in the

thread library in the next chapter. Specialized derived rules can be built as lemmas to

reflect regular function calls.

Soundness. Following XCAP, we establish the soundness of these inferences rules with

respect to the Mini86 operational semantics.

Lemma 6.3 (XCAP86 Progress)

If ΨG `{a}P, then there exists a program P′ such that P 7−→ P′.

Lemma 6.4 (XCAP86 Preservation)

If ΨG `{a}P and P 7−→ P′ then there exists an assertion a′ such that ΨG `{a′}P′.

Theorem 6.5 (XCAP86 Soundness)

If ΨG `{a}P, then for all natural number n, there exists a program P′ such that P 7−→n P′.

For the presentation of the rest of this chapter and the next chapter, we ignore the

difference between Prop and PropX , and always use the syntax of Prop terms for PropX

terms and µ for µµ.

Reasoning about memory. The reasoning on memory (data heap and stack) operations

is largely carried out following separation logic [48, 53]. In particular, the primitives of

separation logic are defined as shorthands using the primitives of the underlying logic in

XCAP (a shallow embedding of separation logic in the assertion language). Some repre-

sentative cases are given as follows.
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emp , λH.H={}

l 7→w , λH.l 6=NULL∧H={l;w}

l 7→ , λH.∃w.(l 7→w H)

a1 ∗a2 , λH.∃H1,H2.H1]H2 =H∧a1 H1∧a2 H2

l 7→w1, . . . ,wn , l 7→w1 ∗ l+4 7→w2 ∗ . . . ∗ l+4(n−1) 7→wn

l 7→ [n] , l 7→ , . . . , (the number of is n/4)

emp asserts that the memory is empty. l 7→w asserts that the memory contains exactly

one word at address l with the value w; when the value is not important, a wildcard

is used as in l 7→ . Separating conjunction a ∗ a′ asserts that the memory can be split

into two disjoint parts in which a and a′ hold respectively (] represents disjoint union).

l 7→w1, . . . ,wn asserts that l is the starting address of a sequence of words w1, . . . ,wn; our

memory is addressed by bytes, hence the number 4 (one word is 4 bytes). Finally, l 7→ [n]

means that l points to n bytes. For conciseness, we sometimes omit lambda and existential

bindings of variables, thus writing λx1, . . . ,xn.∃∃y1, . . . ,ym.P simply as P when there is no

confusion. We also sometimes simplify (a∗a′ H) as a∗a′.

Stack and calling convention. Besides specializing XCAP for our machine model, we

also built key abstractions to help manage the complexity of the reasoning, such as the

handling of the stack and calling convention.

Most Mini86 code follows the convention illustrated in Figure 6.7. The return address

is on stack top [esp]. Function arguments follow in [esp+4], [esp+8], etc.. The return value

is stored in eax. Unless specified otherwise, ebx,esi,edi and ebp are callee-save registers.

It is therefore convenient to built a specification template reflecting this convention.

For a function with n arguments a1 . . .an, we write its specification (i.e., a pre-condition in

the form of an assertion) as:

Fn a1, . . . ,an {Aux : x1, . . . ,xm; Local : [ f s]; Pre : apre; Post : apost}

The intention of this macro is that x1, . . . ,xm are “auxiliary variables” commonly used in
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argument 1
return addr

…
argument n

Caller frames

local storage

excess space

Heap Data

esp

user handled
auto enforced

Figure 6.7: Function calling convention

Hoare-logic style reasoning, f s is the size of required free space on the stack, and apre and

apost are the pre- and post-conditions of the function. We sometimes refer to the variables

collectively as ~a and~x. This macro is defined as follows:

∃a1, . . . ,an,cs,sp,ss,ret,x1, . . . ,xm,aprv.

reg(cs,sp) ∧ ss≥ f s

∧ stack(sp,ss,ret,a1, . . . ,an) ∗ aprv ∗ apre

∧ cptr(ret, ∃retv. reg(cs,sp+4)∧eax=retv

∧ stack(sp+4,ss+4,a1, . . . ,an) ∗ aprv ∗ apost)

The first line of this definition quantifies over the values of (1) function arguments

a1, . . . ,an, (2) callee-save registers cs (a 4-tuple), (3) the stack pointer sp, (4) the size of

available space on stack ss, (5) the return address ret, (6) auxiliary variables x1, . . . ,xm, and

(7) some hidden private data expressed as the predicate aprv.

The second line relates the register file with the callee-save values cs (4-tuple) and the

stack pointer sp using the macro below. It also makes sure that there is enough space

available on the stack.

reg(ebx,esi,edi,ebp,esp) , ebx=ebx∧esi=esi∧edi=edi∧ebp=ebp∧esp=esp

The third line describes (1) the stack frame upon entering the function using the macro
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below, (2) the private data hidden from the function, and (3) the user customized pre-

condition apre, which does not directly talk about register files and the current stack frame,

since they have already been handled by the calling convention.

stack(sp,ss,w1, . . . ,wn) , sp−ss 7→ [ss] ∗ sp 7→w1, . . . . ,wn.

The last two lines of the Fn definition specify the return address ret as an embedded

code pointer using cptr. When a function returns, the callee-save registers, stack frame,

and private data must all be preserved, and the post-condition apost must be established.

Note that (1) eax may contain a return value retv, and (2) the return instruction automati-

cally increases the stack pointer by 4.

We built another abstractions to help manage the complexity of verification. It is a

finer-grained version of Fn which, besides following the convention above, also specifies

local variables on the stack by extending the “Local : [ f s];” part to “Local : [ f s],v1, . . . ,vk;”,

where vi are the local values on the stack. The definition of this new Fn is:

∃a1, . . . ,an,v1, . . . ,vk,cs,sp,ss,ret,x1, . . . ,xm,aprv.

reg(cs,sp) ∧ ss≥ f s

∧ stack(sp,ss,v1, . . . ,vk,ret,a1, . . . ,an) ∗ aprv ∗ apre

∧ cptr(ret, ∃retv. reg(cs,sp+4)∧eax=retv

∧ stack(sp+4+4k,ss+4+4k,a1, . . . ,an) ∗ aprv ∗ apost)

We define many derived rules (implemented as lemmas) to facilitate the reasoning related

to functions specified using the new Fn. We provide the following examples:

apre ⇒c a Ψ `{Fn ~a {Aux :~x;Local : [ f s],~v;Pre :a;Post :apost}}I
Ψ `{Fn ~a {Aux :~x;Local : [ f s],~v;Pre :apre;Post :apost}}c;I

(FN-SEQ)

f s≥4 Ψ `{Fn ~a {Aux :~x;Local : [ f s−4],w,~v;Pre :apre;Post :apost}}I
Ψ `{Fn ~a {Aux :~x;Local : [ f s],~v;Pre :apre;Post :apost}}push w;I

(FN-PUSH)
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Ψ(f)=Fn ~a′ {Aux :~x′;Local : [ f s′];Pre :apre
′;Post :apost

′}
Ψ(fret)=Fn ~a {Aux :~x;Local : [ f s],~v;Pre :a;Post :apost}
apre ⇒ (aprv ∗apre

′∧ (aprv ∗apost
′⇒ a))

f s−4> f s′ f∈dom(Ψ) fret ∈dom(Ψ)
Ψ `{Fn ~a {Aux :~x;Local : [ f s],~v;Pre :apre;Post :apost}}call f; [fret ]

(FN-CALLI)

apre ⇒apost

Ψ `{Fn ~a {Aux :~x;Local : [ f s];Pre :apre;Post :apost}} ret
(FN-RET)

6.3 Verification of a polymorphic queue module

We demonstrate some of those macros defined in the previous section with the specifica-

tion and verification of a polymorphic queue module, which will be used by the thread

library in the next chapter. Our queue module’s C specification as follows.

typedef struct node_st *node_t;
struct node_st node_t next;

void queue_insert (node_t *q, node_t t);
node_t queue_delete (node_t *q);

The modules defines a node data structure and functions for queue insertion and remove.

We define the XCAP86 data type for the queue noder pointer as follows:

node t ref(a,nil,q) , q 7→NULL

node t ref(a, t :: tl,q) , q 7→ t ∗ a(t) ∗ node t ref(a, tl, t)

This defines a data structure of polymorphic queues, where the link field of a queue node

is always stored in the first word of the node. More specifically, node t ref(a, [t],q) repre-

sents that q is a pointer to a queue; the locations of the queue nodes are collected as a list

[t], and every queue node satisfies the predicate a. The definition is inductive. In the base

case, an empty queue specifies just the queue pointer q itself, which points to NULL. In

the inductive case, a queue comprises of a head node at t satisfying a and a tail queue of

node t ref(a, tl, t).
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queue insert will insert a properly shaped node into the end of the queue. queue delete()

returns NULL when the queue is empty, otherwise, it returns the first node of the queue

and removes it from the queue. We present the code and verification of queue insert()

and queue delete() in Figure 6.8 and Figure 6.9. In the figures, there are assembly code,

comments, function interfaces, and assertions at each key program point.

As the next chapter will show, the polymorphic queue module can be used by multiple

modules, which demonstrates the modularity of its specifications.
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Fn q, t { Aux: a, tl; Local: [0]
Pre: node t ref(a, tl,q)∗ t 7→ ∗a t;
Post: node t ref(a, tl@[t],q)}

queue insert: // void queue insert (node t *q, node t t);
Local: [0]; Pre: node t ref(a, tl,q)∗ t 7→ ∗a(t)

mov ecx, [esp+4]
mov edx, [esp+8]
mov [edx+ next], NULL // t->next = NULL;
mov eax, [ecx] // node t p = *q;

Local: [0]; Pre: node t ref(a, tl,q)∗node t ref(a, [], t)∗a t ∧eax=head(tl)∧ecx=q∧edx= t

cmp eax, NULL // if (p == NULL) // add as first element
jne qi els

Local: [0]; Pre: node t ref(a, tl,q)∗node t ref(a, [], t)∗a t
∧eax=head(tl)=NULL∧ecx=q∧edx= t

// unfold, cast
Local: [0]; Pre: q 7→ ∗a t ∗node t ref(a, [], t)∧ecx=q∧edx= t ∧ tl =[]

mov [ecx], edx // *q = t;
Local: [0]; Pre: q 7→ t ∗a t ∗node t ref(a, [], t)∧ecx=q∧edx= t ∧ tl =[]

// fold, cast
Local: [0]; Pre: node t ref(a, tl@[t],q)

ret // return;

qi els:
Local: [0]; Pre: node t ref(a, tl,q)∗node t ref(a, [], t)∗a t

∧eax=head(tl) 6=NULL∧ecx=q∧edx= t

// cast
Local: [0]; Pre: node t ref(a, tl,q)∗node t ref(a, [], t)∗a t

∧eax= last(tl1)∧edx= t ∧ tl = tl1@tl2

mov ecx, eax // while (p->next != NULL) // insert at the tail
mov eax, [eax+ next] // p = p->next;

Local: [0]; Pre: node t ref(a, tl,q)∗node t ref(a, [], t)∗a t
∧eax=head(tl2)∧ecx= last(tl1)∧edx= t ∧ tl = tl1@tl2

cmp eax, NULL
jne qi els

Local: [0]; Pre: node t ref(a, tl,q)∗node t ref(a, [], t)∗a t
∧eax=head(tl2)=NULL∧ecx= last(tl1)∧edx= t ∧ tl = tl1@tl2

// cast
Local: [0]; Pre: node t ref(a, tl,q)∗node t ref(a, [], t)∗a t ∧ecx= last(tl)∧edx= t

mov [ecx+ next], edx // p->next = t;
Local: [0]; Pre: node t ref(a, tl@[t],q)

ret // return;

Figure 6.8: Verification of queue insertion82



Fn q { Aux: tl,a; Local: [0]
Pre: node t ref(a, tl,q);
Post: node t ref(a, tl′, ,q)∧ ((retv=NULL∧ tl = tl′=[])

∨(retv 6=NULL∧ tl =retv :: tl′∧ retv 7→ ∗a retv))}
queue delete: // node t queue delete (node t *q);
Local: [0]; Pre: node t ref(a, tl,q)

mov ecx, [esp+4]
mov eax, [ecx] // node t t = *q;

Local: [0]; Pre: node t ref(a, tl,q)∧eax=head(tl)∧ecx=q

cmp eax, NULL // if (t != NULL)
je qd ret

Local: [0]; Pre: node t ref(a, tl,q)∧eax=head(tl)∧ecx=q∧eax 6=NULL

// unfold, cast
Local: [0]; Pre: q 7→ t ∗a t ∗node t ref(a, tl′, t)∧eax= t ∧ecx=q∧eax 6=NULL∧ tl = t :: tl′

mov edx, [eax+ next] // *q = t->next;
mov [ecx], edx

Local: [0]; Pre: t 7→ ∗a t ∗node t ref(a, tl′,q)∧eax= t ∧eax 6=NULL∧ tl = t :: tl′

ret // return t;

qd ret:
Local: [0]; Pre: node t ref(a, tl,q)∧eax=head(tl)∧ecx=q∧eax=NULL

ret // return t;

Figure 6.9: Verification of queue deletion
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Chapter 7

A Certified Mini Thread Library

In this chapter, we describe the mechanized verification of a thread implementation at ma-

chine level using XCAP86. Using the first mechanized proof for the safety of a machine-

level thread implementation, we want to demonstrate the power and practicality of the

XCAP framework, and that the certification of complex machine-level system code is not

beyond reach. Our mini thread library, MTH, written in Mini86, is divided into mod-

ules for polymorphic queue (presented in the previous chapter), memory management,

machine context, and threading.

All MTH code are at the same realistic level as the context switching example, follow-

ing the Windows/Unix style. MTH and its verification involve neither change of system

programming style nor disposal of existing system code base. There is no performance

penalty, nor is any compatibility issue.

The specifications and proof of MTH modules and routines are modular. Each piece

of code is specified and proved with minimal reference to external code. For example, in

the verification of context module, there is no mentioning of thread at all.

We first give an overview of MTH structure, threading model, and threading features.

Then we present the verifications of the machine context module and the threading mod-

ule independently.
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7.1 MTH: A Mini Thread Library

MTH is a minimal thread library initially modeled after the GNU Portable Threads (Pth) [17].

, a portable POSIX/ANSI-C based library for Unix. MTH supports non-preemptive schedul-

ing for cooperative multi-threading. While sharing the same address space, every thread

has its own program counter, register set, and stack. For simplicity, MTH omits some

advanced features from Pth, including priority-based scheduling and events and sig-

nals, and adopts some small changes in the library structures. Nonetheless, the handling

of machine contexts and thread management reflects sophisticated invariants of multi-

threading and suffices in demonstrating the difficulty of verifying machine-level thread

implementation.

MTH structures. Figure 7.1 divides MTH into several modules. Thread primitives visi-

ble to the user are implemented in the threading module, which refers to three other mod-

ules: machine context, memory and queue. The queue module is the one discussed in the

previous chapter. Pseudo-code interfaces of these modules are provided for the ease of

understanding. In later sections, we will develop more accurate specifications for verifi-

cation purposes.

The memory module is a miniature library for dynamic storage allocation. It provides

routines for heap allocation and deallocation. The queue module supports insertion and

removal of queue elements in the expected way. Its routines are polymorphic and can be

applied to different types of queues, as long as every queue element stores its link pointer

in its first word.

The machine context module deserves some attention. A machine context (type mctx st)

stores the values of general-purpose registers, where the stack pointer esp should point

to a stack with a valid return address on top. Context switching swapcontext() saves

the current context as old, and loads a new one from new for further execution. Context

loading loadcontext() loads a new context and executes from there. Context creation
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machine context module
typedef struct mctx_st *mctx_t;
struct mctx_st {int eax, int ebx, int ecx, int edx, int esi, int edi, int ebp, int esp};
void loadcontext (mctx_t mctx);
void makecontext (mctx_t mctx, char *sp, void *lnk, void *func, void *arg);
void swapcontext (mctx_t old, mctx_t new);

memory module
void *flist = NULL;
void *malloc (int size);
void free (void *ptr);

queue module
typedef struct node_st *node_t;
struct node_st {node_t next};
void queue_insert (node_t *q, node_t t);
node_t queue_delete (node_t *q);

threading module
enum mth_state_t {READY, DEAD};
typedef struct mth_st *mth_t;                               
struct mth_st {mth_t next, mth_state_t state, mctx_st mctx};
mth_t mth_current, mth_rq;
mctx_t mctx_sched;
void mth_start (int stacksize, void *(*main)(void *), void *arg);
void mth_spawn (int stacksize, void *(*func)(void *), void *arg);
void mth_exit (void *value);
void mth_yield (void);
void mth_scheduler (void);

Figure 7.1: Module structure and pseudo-C specification of MTH
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Figure 7.2: Threading model of MTH

makecontext() initializes a new context based on its arguments (location of new context,

stack pointer, return link, address of target function, and argument for it); the stack pointer

of the new context points to a stack frame prepared for the target function.

Threading model. The threading module provides interfaces for all the “visible” func-

tionalities of MTH. The threading model is illustrated in Figure 7.2 When a new thread is

spawned, it is put into a ready queue. A central scheduler removes a thread from the ready

queue and makes it the current thread using context switching. The current thread may

exit execution and become dead or yield execution and be put back into the ready queue.

A user program starts multi-threading by calling mth start(), which will set up the

threading data structures, spawn the first user thread, and call mth scheduler() to initiate

the scheduling. All these happen on the statically allocated system stack, which is differ-

ent from the thread stacks to be allocated on the heap. The scheduler is essentially a loop

implementing simple FIFO scheduling.

The thread creation function mth spawn() takes three arguments describing the new

thread: the stack size, the location of the thread code, and the thread arguments. It al-

locates a thread stack and a thread control block (TCB), creates a machine context for the
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thread, and puts the TCB into the ready queue. Once made current (or running), a thread’s

execution will not be interrupted unless it explicitly yields control using mth yield(), which

transfers the control to the scheduler using context switching. When the main function of

a thread returns, mth exit is invoked to mark the thread as dead and yield control to the

scheduler. Then, the scheduler will reclaim the resources and terminate the dead thread.

Machine-level thread implementations like MTH pose many challenges for verifica-

tion. The complex and subtle behaviors of the routines are difficult to model. The control

flow is complex with the extensive use of embedded code pointers stored in machine con-

texts and TCBs. Furthermore, the invariants maintained by the threads are recursive by

nature, because the threads have mutual expectations from each other.

The memory module. The memory module is self-contained, as described by the spec-

ification below. It makes use of a free list ( f list) of memory blocks implemented using

the queue data type. Its verification is adapted from that of a malloc/free library by Yu et

al. [63]. We omit the details and instead only point out that there is a memory invariant

Imem (essentially stating the existence of the free list) that must be maintained during the

execution of client programs of this module. Its use will be illustrated in later sections.

mblk t t , ∃size. t−4 7→size ∗ t+4 7→ [size−4] ∧ size≥ 4

Imem , ∃tl. node t ref(mblk t, tl, f list)

malloc : Fn size {Aux :; Local : [28];

Pre : Imem;

Post : Imem ∗ retv−4 7→size ∗ retv 7→ [size]}

f ree : Fn ptr {Aux :; Local : [8];

Pre : Imem ∗ ptr−4 7→size ∗ ptr 7→ [size];

Post : Imem}
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7.2 Verification of the Machine Context Module

Machine context is a primitive concept for low-level programming. It offers the basis

for higher-order control-flow transfers, such as call/cc and threading. As is the case of

the queue and memory modules, the machine context module is specified and verified

separately without any knowledge about its client—the threading module.

What is a machine context? Although the pseudo-C specification in Figure 7.1 seems to

indicate that a context is merely eight words, the actual assumptions behind it are rather

complex. As illustrated in Figure 7.3, the eight words represent a return value retv, six

registers referred to collectively as cs, (the cs convention for context is different than that

of , there are six of them, instead of the normal four), and a stack pointer sp. sp points to

a return address ret typically found on top of a stack frame. (A machine context does not

really care about other part of the stack, or if there is a stack at all). The six saved registers

may point to some private data. (which could contains the other part of the stack), There

may also be some environment data shared with external code. Eventually, a context

is consumed when invoked. A proper invocation by jumping to the return address ret

requires (1) the saved register contents be restored into the register file, (2) the stack and

private data be preserved, and (3) the shared environment be available. In other words, it

is only safe to load a context when its global shared data is available.

All these requirements make it difficult to specify and verify the seemingly simple

90



manipulations on machine contexts. To facilitate the reasoning, we define a macro for the

context data structure mctx t(aenv,mctx), parametric to the environment described as aenv.

∃retv,cs,sp,ret,aprv. mctx 7→retv,cs,sp ∗ sp 7→ret ∗ aprv

∧ cptr(ret, reg6(cs,sp+4) ∧ eax=retv ∧ aenv ∗ mctx 7→retv,cs,sp ∗ sp 7→ret ∗ aprv)

where aprv describes the private data, and reg6 describes the 6 saved registers and esp:

reg6(ebx,ecx,edx,esi,edi,ebp,esp) , ebx=ebx∧ecx=ecx∧edx=edx

∧esi=esi∧edi=edi∧ebp=ebp∧esp=esp

Context switching. swapcontext() expects two pointers (old and new contexts) as argu-

ments and performs three tasks: to save registers to old context, to load registers from new

context, and to transfer control to new context. Observations from inside and outside of

swapcontext() are very different. From the code of swapcontext(), it gets called by one client

and “returns” to another. However, this is transparent to the clients—when swapcontext()

returns to a client, the stack and private data of the client are kept intact.

The specification and proof outline of swapcontext() is given in Figure 7.4. It uses a

macro Fn6, a variant of Fn obtained by replacing reg with reg6 and changing cs from refer-

ring to 4 registers to 6. Similarly to Fn, Fn6 helps to manage the preservation of the stack

and private data. In addition, the pre-condition of the specification dictates the shape of

three pieces of memory: (1) the old context pointed to by old—at the beginning of the rou-

tine it is simply 32 bytes of memory available for use, (2) the shared data aenv, and (3) the

new context pointed to by new. The new context is specified with help of the macro mctx t.

The environment parameter of this macro consists of two parts: the shared data aenv and

another mctx t macro describing the old context. This is because the old context will be

properly set up by the routine before switching to the new one. A tricky point is that the

old context will be expecting a new (existentially quantified) shared environment anewenv.

Although some may expect the new environment to be simply the old shared aenv together

with the new context at new, this may not necessarily be the case. For instance, the new

context may not be still alive when the old context regains control. The post-condition of
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swapcontext() is relatively simple: the space for the old context would be available together

with the new shared data anewenv.

An interesting proof step is the one after the old context is packed but before the new

one is unpacked. At this point, there is no direct notion of stack or function. The relevant

machine state essentially comprises of two contexts and one environment:

eax=new ∧ mctx t(anewenv,old)∗aenv

∗mctx t(mctx t(anewenv,old)∗aenv,new)

It is therefore safe to load the new context from eax and switch to it. More proof steps are

available in Figure 7.4.

Context loading. loadcontext() essentially performs half of the tasks of swapcontext(),

with some slight difference in the stack layout. Although we call it a “function”, it actu-

ally never returns and does not require the stack top to be a valid return address. Instead

of using Fn macro, we only write the following as its complete pre-condition. We present

the verification of loadcontext() in Figure 7.5.

Context creation. We present the specification and proof outline of makecontext() in Fig-

ure 7.6. The intermediate assertions are organized using the Fn macro. For conciseness,

we omitted common parts of these macros, thus emphasizing only the changing parts:

the stack frame Local and the current pre-condition Pre.

The pre-condition of the routine specifies (1) an empty context at mctx, (2) a stack nsp

with available space of size nss, (3) some private data of the target context (potentially

accessible from the argument arg of the function f unc() of the target context, (4) a link

(return address) lnk to be used when the target context finishes execution, and (5) a func-

tion pointer f unc() for the code to be executed in the target context. It also specifies the

exact requirements on the code at pointers lnk and f unc: (1) aret occurs both in the post-

condition of f unc() and in the pre-condition of lnk, indicating that the code at the return

address lnk may expect some results from the context function f unc(); (2) the stack should
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Fn6 old,new { Aux: anewenv; Local: [0];
Pre: old 7→ [32]∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new);
Post: old 7→ [32]∗anewenv∧eax=0}

swapcontext: // void swapcontext (mctx t old, mctx t new);
reg6(cs,sp) ∧ ss≥0 ∧ stack(sp,ss,ret,old,new) ∗old 7→ [32] ∗aprv ∗aenv

∗mctx t(mctx t(anewenv,old)∗aenv,new)
∧cptr(ret, reg6(cs,sp+4)∧eax=0∧ stack(sp+4,ss+4,old,new)∗old 7→ [32] ∗aprv ∗anewenv)

mov eax, [esp+4] // load address of the context data structure we save in
mov [eax+ eax], 0 // all registers preserved except eax
mov [eax+ ebx], ebx
mov [eax+ ecx], ecx
mov [eax+ edx], edx
mov [eax+ esi], esi
mov [eax+ edi], edi
mov [eax+ ebp], ebp
mov [eax+ esp], esp
mov eax, [esp+8] // load address of the context data structure we have to load
eax=new ∧ ss≥0 ∧ stack(sp,ss,ret,old,new) ∗old 7→0,cs,sp∗aprv ∗aenv

∗mctx t(mctx t(anewenv,old)∗aenv,new)
∧cptr(ret, reg6(cs,sp+4)∧eax=0∧ stack(sp+4,ss+4,old,new)∗old 7→ [32] ∗aprv ∗anewenv)

// shuffle and cast
eax=new ∧ old 7→0,cs,sp∗ sp 7→ret ∗ stack(sp,ss)∗ sp+4 7→old,new∗aprv

∧cptr(ret, reg6(cs,sp+4)
∧eax=0∧anewenv ∗old 7→0,cs,sp∗ sp 7→ret ∗ stack(sp,ss)∗ sp+4 7→old,new∗aprv)

∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)
// pack old context

eax=new ∧mctx t(anewenv,old)∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)
// unpack new context

eax=new ∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv

∧cptr(ret ′, reg6(cs′,sp′+4)
∧eax=retv′∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv)

mov esp, [eax+ esp] // load the new stack pointer.
mov ebp, [eax+ ebp]
mov edi, [eax+ edi]
mov esi, [eax+ esi]
mov edx, [eax+ edx]
mov ecx, [eax+ ecx]
mov ebx, [eax+ ebx]
mov eax, [eax+ eax]

reg6(cs′,sp′)∧eax=retv′∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv

∧cptr(ret ′, reg6(cs′,sp′+4)
∧eax=retv′∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv)

ret

Figure 7.4: Verification of machine context switching
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loadcontext: // void loadcontext (mctx t mctx);
reg(cs,sp)∧ stack(sp,ss,ret,mctx)∗aenv ∗mctx t(stack(sp,ss,ret,mctx)∗aenv,mctx)

mov eax, [esp+4]

eax=mctx∧ stack(sp,ss,ret,mctx)∗aenv ∗mctx t(stack(sp,ss,ret,mctx)∗aenv,mctx)
// unpack context

eax=mctx ∧anewenv ∗mctx t(anewenv,mctx)
// unpack context

eax=mctx ∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv

∧cptr(ret ′, reg6(cs′,sp′+4)∧eax=retv′∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv)
mov esp, [eax+ esp] // load the new stack pointer.
mov ebp, [eax+ ebp]
mov edi, [eax+ edi]
mov esi, [eax+ esi]
mov edx, [eax+ edx]
mov ecx, [eax+ ecx]
mov ebx, [eax+ ebx]
mov eax, [eax+ eax]

reg6(cs′,sp′+4)∧eax=retv′∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv

∧cptr(ret ′, reg6(cs′,sp′+4)∧eax=retv′∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv)
ret

Figure 7.5: Verification of machine context loading
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Fn mctx,nsp, lnk, f unc,arg { Aux: aenv; Local: [0];
Pre: mctx 7→ [32]∗ stack(nsp,nss)∗aprv∧nss≥12

∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr( f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx 7→ [32]∗aprv;
Post: aret });

Post: mctx t(aenv,mctx)}
makecontext: // void makecontext (mctx t mctx, char *sp, void *lnk, void *func, void *arg);
Local: [0]; Pre: mctx 7→ [32]∗ stack(nsp,nss)∗aprv∧nss≥12

∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr( f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx 7→ [32]∗aprv;
Post: aret });

mov eax, [esp+4] // load address of the context data structure.
mov ecx, [esp+8] // load new stack top
mov edx, [esp+20] // push the function’s argument into new stack
mov [ecx-4], edx
mov edx, [esp+12] // push link (return address for the function) into new stack
mov [ecx-8], edx
mov edx, [esp+16] // push the function as return IP into new stack
mov [ecx-12], edx
sub ecx, 12
mov [eax+ esp], ecx // only the stack pointer matters for a fresh new context

Local: [0]; Pre: mctx 7→ [28],nsp−12∗ stack(nsp−12,nss−12, f unc, lnk,arg)∗aprv

∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr( f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx 7→ [32]∗aprv;
Post: aret });

// unfold, shuffle, and cast
Local: [0]; Pre: mctx 7→retv′,cs′,nsp−12∗nsp−12 7→ f unc

∗stack(nsp−12,nss−12)∗nsp−8 7→ lnk,arg∗aprv

∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr( f unc, reg6(cs′,nsp−8)∧eax=retv′∧aenv ∗mctx 7→retv′,cs′,nsp−12∗nsp−12 7→ f unc

∗stack(nsp−12,nss−12)∗nsp−8 7→ lnk,arg∗aprv

∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret));
// pack the fresh context

Local: [0]; Pre: mctx t(aenv,mctx);
ret

Figure 7.6: Verification of machine context creation
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be properly maintained upon returning to lnk.

The post-condition of the routine simply states that, when makecontext() returns, mctx

will point to a proper context where the shared environment is aenv.

Our interface of makecontext() is faithful to the Unix/Linux implementations. The

heavy usage of embedded code pointers and function pointers in this case shows how

crucial XCAP’s support of ECP is. As the proof shows, the most complex step is again on

casting code pointers’ pre-conditions and pack all the resource into a complete context.

7.3 Verification of the Threading Module

With all the other modules verified, we are now ready to tackle the threading module.

Thread control blocks and thread queues. The main data structure for MTH threading

is the thread control block (TCB). Figure 7.7 presents a queue of TCB’s. Every TCB com-

prises of three parts: (1) the first word is a link field for the queue, (2) the second word

stores the status of the thread (READY or DEAD), and (3) a machine context is embedded in

the next eight words. The TCB’s of all ready but non-running threads are put into a ready

queue, implemented as an instance of the polymorphic queue introduced in Section 6.3.

mth t ref(st,ainv, tl,q) , node t ref(mth t(st,ainv), tl,q).

As a reminder, node t ref requires three parameters: a predicate describing the queue

nodes, a list of node locations, and a queue pointer. mth t ref requires 4 parameters: (1)
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every thread in the queue has the same thread state st, (2) a certain threading invariant

ainv that must be established before any thread in the queue takes control, (3) a list tl of

TCB handles in the queue, and (4) the queue pointer. Note that there should be a threading

invariant expected by each thread’s context when being switched to. Since this invariant

is not yet known, we name it as ainv. These arguments are organized properly to feed the

node t ref macro. In particular, the content of a TCB (excluding the link field) must satisfy

mth t(st,ainv), which is defined as:

λmth. mth+4 7→st ∗mctx t(Imem ∗ainv(mth),mth+8)

In short, a TCB at mth satisfies the mth t macro if the state st is located at offset 4 and a

valid context is located at offset 8. Besides the threading invariant ainv (to be provided by

the current thread), the context also expects the invariant Imem of the memory module.

Threading invariant. Figure 7.8 illustrates the run-time threading data structures and

invariants. There are three entities involved: a scheduler context, a TCB of the running

thread, and a ready queue, each pointed to by a global memory address. When a thread

yields or exits, the scheduler context is invoked to do the scheduling.

A thread expects such an environment to be properly maintained before taking con-

trol. Meanwhile, itself is also part of such kind of environment for other threads. There-

fore, the threading invariant is inherently recursive, as modelled in the following:

97



Icore , µα.λst,cur. ∃sched, tl.

mctx sched 7→sched ∗ mctx t(sched env(α),sched)

∗ mth cur 7→cur ∗ cur 7→ ,st

∗ mth t ref(READY,α(READY), tl,mth rq)

The last three lines correspond to the three items in Figure 7.8, respectively. The recursive

variable α essentially represents Icore itself, which is exactly the threading invariant that

every TCB expects. Note that this invariant only describes the parts inside the dashed

lines in Figure 7.8—the context of the current thread is not part of its own shared environ-

ment (nevertheless, each thread’s context considers all other threads’ contexts as part of

its shared environment).

The environment of the scheduler’s context, described above using sched env, de-

serves further explanation. We use the macro sched env(ainv) to represent:

∃st,cur. Imem ∗ mctx sched 7→sched

∗ mth cur 7→cur ∗ cur 7→ ,st

∗ mth t ref(READY,ainv(READY), tl,mth rq)

∗ ((st =READY ∧ mctx t(Imem ∗ ainv(READY,cur),cur+8)) ∨
(st =DEAD ∧ ∃size. cur−4 7→size ∗ cur+8 7→ [size−8])).

The first three lines describe the existence of the scheduler pointer (not the scheduler

context), the running thread, and the ready queue. When the scheduler takes control,

there must have been a user thread that yielded. The last two lines describe the context of

that yielding thread—based on whether the thread is still alive as indicated by the state

field st, there would be either a proper context or the corresponding space available.

The Icore macro is instantiated with the READY state and a running thread before used

as the invariant of the threading module:

Ifull(cur) , Icore(READY,cur) ∗ cur+8 7→ [32]

The cur pointer of the running thread is irrelevant to the clients of the threading module.

The external invariant used when importing the threading module is simply
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Imth , Ifull( )

where is a wildcard. We also define a syntactic sugar to describe the ready queue:

ready queue(tl,mth rq) , mth t ref(READY, Icore(READY), tl,mth rq).

Thread yielding. The most frequently used threading routine should be mth yield(), im-

plemented as a context switch from the current (running) thread to the scheduler. Fig-

ure 7.9 gives its specification and proof outline. Similar to swapcontext(), Fn6 is used here.

After unpacking the threading invariant, pointers to the contexts of the current thread

and the scheduler are pushed onto the stack. A call to swapcontext() completes the yield-

ing. As indicated in the assertions, the thread’s context expects both the memory and

the threading invariants to be maintained before it takes control again. Interested readers

could refer to Figure 7.4 to better understand the verification.

Thread creation. Dynamic thread creation is also a basic requirement for thread imple-

mentations. Just as mth yield() relies on swapcontext() to perform switching, mth spawn()

creates a new thread with the help of makecontext(). When creating a new thread, one

should specify the size (stacksize) of the thread stack, a pointer ( f unc) to the thread code,

and an argument pointer (arg) for the thread code. The data at arg is described by an

existentially quantified predicate apre that describes the private data prepared for f unc().

mth spawn() will call malloc() to allocate a big chunk of memory, divide it into the TCB

and the stack of the new thread, initialize TCB, call makecontext() to build the new thread

context, and call queue insert() to append the new thread onto the ready queue. The veri-

fication of mth spawn() is presented in Figure 7.10 and Figure 7.11.

The pre- and post-conditions of mth spawn() require that the memory and threading

invariants be maintained, which is necessary for verifying the memory allocation and

threading operations in the code. The pre- and post-conditions of f unc(), as asserted with

cptr, also maintain the same invariants. In addition, f unc() is to be invoked with the given

argument arg. The post-condition of f unc() involves the invariants only. This indicates
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Fn6 { Aux: ; Local : [12];
Pre: Imem ∗ Imth;
Post: Imem ∗ Imth }

mth yield: // void mth yield (void);
Local: [12]; Pre: cur+8 7→ [32]

∗ Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,READY∗ ready queue(tl,mth rq)
∗mctx t(sched env(Icore),sched)

mov eax, [mctx sched] // eax not preserved
push eax
mov eax, [mth cur]
add eax, 8
push eax

Local: [4],cur+8,sched; Pre: cur+8 7→ [32]
∗ Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,READY∗ ready queue(tl,mth rq)

∗mctx t(sched env(Icore),sched)
// unfold, shuffle, cast

Local: [4],cur+8,sched; Pre: cur+8 7→ [32]
∗ Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,READY∗ ready queue(tl,mth rq)

∗mctx t(Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,READY∗ ready queue(tl,mth rq)
∗mctx t(Imem ∗ Icore(READY,cur),cur+8),sched)

call swapcontext // swapcontext(&mth cur->mctx, mctx sched);
Local: [4],cur+8,sched; Pre: cur+8 7→ [32]∗ Imem ∗ Icore(READY,cur)

add esp, 8

Local: [12]; Pre: cur+8 7→ [32]∗ Imem ∗ Icore(READY,cur)
// fold, shuffle, cast

Local: [12]; Pre: Imem ∗ Imth

ret

Figure 7.9: Verification of thread yielding
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Fn stacksize, f unc,arg { Aux: ; Local : [56];
Pre: Imem ∗ Imth ∗apre∧ stacksize≥12∧ cptr( f unc, Fn arg′ { Local : [stacksize−8];

Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

Post: Imem ∗ Imth }
// cast (above is external interface, below is internal interface)

Fn stacksize, f unc,arg { Aux: tl; Local : [56];
Pre: Imem ∗ ready queue(tl,mth rq)∗apre∧ stacksize≥12

∧ cptr( f unc, Fn arg′ { Local : [stacksize−8];
Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

Post: Imem ∗ ready queue(tl@[retv],mth rq)}
mth spawn: // mth t mth spawn (int stacksize, void *(*func)(void *), void *arg);
Local: [56]; Pre: Imem ∗ ready queue(tl,mth rq)∗apre∧ stacksize≥12

∧ cptr( f unc, Fn arg′ { Local : [stacksize−8];
Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

mov ecx, [esp+8]
add ecx, size of mth st
push ecx // allocate a new thread control block

Local: [52],40+stacksize; Pre: Imem ∗ ready queue(tl,mth rq)∗apre∧ stacksize≥12
∧ cptr( f unc, Fn arg′ { Local : [stacksize−8];

Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

call malloc // mth t t = (mth t)malloc(sizeof(mth st)+stacksize);
Local: [52],40+stacksize; Pre: Imem ∗ ready queue(tl,mth rq)∗apre ∗ t−4 7→40+stacksize

∗ t 7→ [40+stacksize]∧eax= t ∧ stacksize≥12
∧ cptr( f unc, Fn arg′ { Local : [stacksize−8];

Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

pop ecx
mov [eax+ state], READY // t->state = READY;
mov edx, [esp+16]
push edx
mov edx, [esp+12]
push edx
push mth exit
add ecx, eax
push ecx
add eax, mctx
push eax

Figure 7.10: Verification of thread creation
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Local: [36], t+8, t+40+stacksize,mth exit, f unc,arg;
Pre: Imem ∗ ready queue(tl,mth rq)∗apre ∗ t−4 7→40+stacksize∗ t 7→ ,READY∗ t+8 7→ [32]

∗ stack(t+40+stacksize,stacksize)∧ stacksize≥12
∧ cptr(mth exit, esp=sp∧ stack(sp,ss)∗ Imem ∗ Ifull(cur)∗ cur−4 7→size

∗ sp 7→ [size−40− ss]∧ ss=sp−cur−40)
∧ cptr( f unc, Fn arg′ { Local : [stacksize−8];

Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

call makecontext // makecontext(&t->mctx, t+sizeof(mth st)+stacksize,
// mth exit,func,arg);

Local: [36], t+8, t+40+stacksize,mth exit, f unc,arg;
Pre: Imem ∗ ready queue(tl,mth rq)∗ t 7→ ,READY∗mctx t(Imem ∗ Icore(READY, t), t+8)

pop eax
add esp, 16
sub eax, mctx
push eax
push mth rq

Local: [48],mth rq, t;
Pre: Imem ∗ ready queue(tl,mth rq)∧ t 7→ ∗mth t(READY, Icore(READY), t)

call queue insert // queue insert(&mth rq, t);
Local: [48],mth rq, t; Pre: Imem ∗ ready queue(tl@[t],mth rq)

add esp, 4
pop eax

Local: [56]; Pre: Imem ∗ ready queue(tl@[t],mth rq)
ret

Figure 7.11: Verification of thread creation (continued)

that the data of apre must be properly deallocated before f unc() finishes, leaving no possi-

bility of space leaks. Finally, the post-condition of mth spawn() does not explicitly refer to

the newly spawned thread, which would be in the ready queue as part of Imth.

Thread termination. mth exit is a routine that mth spawn() supplies as the return link

for newly created contexts. It is invoked when a thread finishes execution and returns

from its main function. The verification of mth exit is presented in Figure 7.12. The code

simply sets the state of the current thread to be DEAD and transfers the control to the

scheduler with loadcontext(). Since it is not a function, we can not use Fn syntax to present

its pre-condition. The proof involves the common packing and unpacking of the thread-
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mth exit:
esp=sp∧ stack(sp,ss)∗ Imem ∗ Ifull(cur)∗ cur−4 7→size∗ sp 7→ [size−40− ss]

∧ss=sp−cur−40∧ ss≥8

// unfold, shuffle
esp=sp∧ stack(sp,ss)

∗cur−4 7→size∗ cur+8 7→ [32]∗ sp 7→ [size−40− ss]∧ ss=sp−cur−40∧ ss≥8
∗Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,READY∗ ready queue(tl,mth rq)

∗mctx t(sched env(Icore),sched)
mov eax, [mth cur]
mov [eax+ state], DEAD // mth cur->state = DEAD;
mov eax, [mctx sched]
push eax

esp=sp−4∧ stack(sp−4,ss−4,sched)
∗cur−4 7→size∗ cur+8 7→ [32]∗ sp 7→ [size−40− ss]∧ ss=sp−cur−40∧ ss≥8
∗Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,DEAD∗ ready queue(tl,mth rq)

∗mctx t(sched env(Icore),sched)
// unfold, shuffle, cast

esp=sp−4∧ stack(sp−4,ss−4,sched)
∗cur−4 7→size∗ cur+8 7→ [32]∗ sp 7→ [size−40− ss]∧ ss=sp−cur−40∧ ss≥8
∗Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,DEAD∗ ready queue(tl,mth rq)

∗mctx t(Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,DEAD∗ ready queue(tl,mth rq)
∗cur−4 7→size∗ cur+8 7→ [size−8],sched)
call loadcontext // loadcontext(mctx sched);

Figure 7.12: Verification of thread termination

ing invariant. In addition, it combines the TCB and stack of the dead thread into one

continuous memory block, which is to be freed by the scheduler.

Threading initialization. Multi-threading is started by calling mth start(). This function

spawns the main thread, allocates the scheduler context, and establishes the global data

structures used in the threading invariant of Figure 7.8. It starts thread scheduling by

invoking mth scheduler(), which will return only after all threads are dead and deallocated.

mth start() then deallocates the scheduler context and returns to the user program. We

present the verification of mth start() in Figure 7.13.
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Fn stacksize,main,arg { Aux: ; Local : [72];
Pre: Imem ∗mctx sched 7→ ∗mth cur 7→ ∗mth rq 7→ ∗apre∧ stacksize≥12

∧cptr(main, Fn arg′ { Local : [stacksize−8];
Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

Post: Imem ∗mctx sched 7→ ∗mth cur 7→ ∗mth rq 7→ }
mth start: // void mth start (int stacksize, void *(*main)(void *), void *arg);
Local: [72]; Pre: Imem ∗mctx sched 7→ ∗mth cur 7→ ∗mth rq 7→ ∗apre∧ stacksize≥12

∧cptr(main, Fn arg′ { Local : [stacksize−8];
Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

mov [mth rq], NULL // mth rq = NULL;
Local: [72]; Pre: Imem ∗mctx sched 7→ ∗mth cur 7→ ∗ ready queue([],mth rq)∗apre

∧stacksize≥12∧ cptr(main, Fn arg′ { Local : [stacksize−8];
Pre: arg′=arg∧ Imem ∗ Imth ∗apre;
Post: Imem ∗ Imth });

mov eax, [esp+12] // initialize the ready thread queues
push eax
mov eax, [esp+8]
push eax
mov eax, [esp+4]
push eax
call mth spawn // mth spawn(stacksize, main, arg);
add esp, 12 // spawn a thread for the main program

Local: [72]; Pre: Imem ∗mctx sched 7→ ∗mth cur 7→ ∗ ready queue([main],mth rq)
push size of mctx st
call malloc // mctx sched = (mctx t)malloc(sizeof(mctx st));
add esp, 4
mov [mctx sched], eax

Local: [72];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue([main],mth rq)

call mth scheduler // mth scheduler(); // do the threading
Local: [72];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue([],mth rq)

mov eax, [mctx sched]
push eax
call free // free(mctx sched);
add esp, 4

Local: [72]; Pre: Imem ∗mctx sched 7→sched ∗mth cur 7→ ∗ ready queue([],mth rq)
// cast

Local: [72]; Pre: Imem ∗mctx sched 7→ ∗mth cur 7→ ∗mth rq 7→
ret

Figure 7.13: Verification of thread initialization

104



Fn { Aux: ; Local : [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue(tl,mth rq);
Post: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue([],mth rq)}

mth scheduler: // void mth scheduler (void);
Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue(tl,mth rq)

push mth rq // while (mth cur = queue delete(&mth rq)) != NULL)
call queue delete
add esp, 4

Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue(tl′,mth rq)

∧eax=retv∧ ((retv=NULL∧ tl = tl′=[])∨
(retv 6=NULL∧ tl =retv :: tl′∧ retv 7→ ∗mth t(READY, Icore(READY),retv)))

cmp eax, NULL
je sc ret

Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue(tl′,mth rq)

∧eax=retv∧ retv 6=NULL∧ tl =retv :: tl′∧ retv 7→ ∗mth t(READY, Icore(READY),retv)
mov [mth cur], eax // Found next ready thread
add eax, mctx
push eax
mov eax, [mctx sched]
push eax // ENTERING THREAD - by switching the machine context

Local: [8],sched,retv+8;
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→retv∗ ready queue(tl′,mth rq)

∧eax=retv∧ retv 6=NULL∧ tl =retv :: tl′∧ retv 7→ ∗mth t(READY, Icore(READY),retv)
// unfold, shuffle, cast, rename

Local: [8],sched,retv+8;
Pre: sched 7→ [32]

∗Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,READY∗ ready queue(tl′,mth rq)
∗mctx t(Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,READY∗ ready queue(tl′,mth rq)

∗mctx t(sched env(Icore),sched),cur+8)
call swapcontext // swapcontext(mctx sched, &mth cur->mctx);

Local: [8],sched,retv+8;
Pre: sched 7→ [32]

∗Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ cur 7→ ,st ∗ ready queue(tl,mth rq)
∗((st =READY∧mctx t(Imem ∗ Icore(READY,cur),cur+8))∨

(st =DEAD ∧∃size.cur−4 7→size∗ cur+8 7→ [size−8]))
add esp, 8
mov eax, [mth cur] // If previous thread is now marked as dead, kick it out
mov ecx, [eax+ state]
cmp ecx, DEAD // if (mth cur->state == DEAD)
jne sc els

Figure 7.14: Verification of thread scheduler
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Local: [16];
Pre: sched 7→ [32]∗ Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ ready queue(tl,mth rq)

∧st =DEAD∧ cur 7→ ,st ∗ cur−4 7→size∗ cur+8 7→ [size−8]∧eax=cur

// cast
Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→cur ∗ ready queue(tl,mth rq)

∧cur−4 7→size∗ cur 7→ [size]∧eax=cur

push eax
call free // free(mth cur); // No stack from now on
add esp, 4

Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→cur ∗ ready queue(tl,mth rq)

jmp mth scheduler

Local: [16];
Pre: sched 7→ [32]∗ Imem ∗mctx sched 7→sched ∗mth cur 7→cur ∗ ready queue(tl,mth rq)

∧st =READY∧ cur 7→ ,st ∗mctx t(Imem ∗ Icore(READY,cur),cur+8)∧eax=cur

sc els: // cast
Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→cur ∗ ready queue(tl,mth rq)

∧cur 7→ ∗mth t(READY, Icore(READY),cur)∧eax=cur

push eax // else
push mth rq // insert last running thread back into this queue
call queue insert // queue insert(&mth rq, mth cur);
add esp, 8

Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→cur ∗ ready queue(tl@[cur],mth rq)

jmp mth scheduler

Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue(tl′,mth rq)

∧eax=retv∧ retv=NULL∧ tl = tl′=[]
sc ret: // cast
Local: [16];
Pre: Imem ∗mctx sched 7→sched ∗ sched 7→ [32]∗mth cur 7→ ∗ ready queue([],mth rq)

ret

Figure 7.15: Verification of thread scheduler (continued)
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Thread scheduler. mth scheduler() is essentially a loop implementing FIFO scheduling.

It is directly invoked only by mth start(). Upon entering mth scheduler(), the scheduler

context and some other threading data structures are already in place. If the ready queue

is not empty, mth scheduler() removes the first thread, sets it as the current thread, and

switches to it using swapcontext(). The scheduler resumes execution when the current

thread yields or exits, at which point the scheduler either puts the yielding thread into

the ready queue or deallocates it based on the thread state. The scheduler finally returns

when the ready queue becomes empty. We give the specification of mth scheduler() as fol-

lows, again omitting the details for space. The post-condition of mth scheduler preserves

everything, except that there no thread in the ready queue.

We present the verification of mth scheduler() in Figure 7.14 and Figure 7.15. The sched-

uler context to be stored in the threading invariant is captured by swapcontext() when the

scheduler calls it to switch to the new current thread.

7.4 Discussion

First, we want to emphasize that the threading module refers to other utility modules only

through the interfaces. For example, the memory invariant Imem is used in the thread-

ing specifications, but only propagated abstractly during the verification in the local-

reasoning style of separation logic. It is therefore safe to upgrade the implementations

of the utility modules without affecting the threading verification. Within the threading

module, one may upgrade the FIFO scheduler without affecting other threading routines.

In fact, one may even have mth start() be parameterized by a scheduler function with only

minor changes in the proof structure.

The large and complex proof naturally raises practicality concerns. However, when

being compared with other verification methods and judging practicalities, there are two

aspects of our method that need to be taken into consideration.

For comparison with analysis- and test-based software verification methods in gen-
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eral, the important question to ask is what kind of guarantee it can deliver. Many of

these tools can automatically find bugs in millions of line of system code, but only in a

“best-effort” fashion—both the programmer and the end user expect bugs to appear and

patches to be released. In our case, we want to completely exclude certain categories of

bugs, as guaranteed by the language-based approach used in this dissertation. So the first

choice programmers should make is whether they just want to find bugs in applications

or make rigorous claims and provide warranty about kernels.

For comparison with other language-based methods, such as traditional type systems,

the important question to ask is what kind of target code is actually supported. Since there

is no sound type systems for C and assembly, there have been many efforts on building

the complete system kernels in higher-level type safe languages, all with trade-offs in effi-

ciency and/or compatibility, some even with significant changes in programming style. In

our case, we require no change to the existing system programming style and code base,

thus expect no performance or compatibility issue when putting into real use. In general,

we believe that low-level system code, mid-level infrastructure code, and high-level ap-

plication code require different levels of safety guarantees. Thus their verifications will

naturally result in different levels of productivity. In fact, the 6 person-month spent may

be a fair price to pay, considering that the code is critical and heavily relied upon.

By targeting at a thread library, a piece of system code that is commonly recognized as

complex and never fully verified with traditional approaches, we demonstrate the feasi-

bility of using XCAP frameworks for the mechanical verification of realistic machine-level

code. That being said, at the current stage, the abstraction level used in this dissertation is

best suited for verifying critical small-scale software such as core system libraries. Much

further study is needed to scale the basic framework for better productivity. One direc-

tion is to scale the verification from assembly level to C level, which should dramatically

increase the productivity of verifications.
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Chapter 8

The Coq Implementations

One key feature of the XCAP framework is mechanization. We mechanize not only our

machine syntax, machine semantics, assertion languages, interpretations, inference rules,

and program specifications and proofs, but also the complete meta theory of XCAP, in a

general mathematic logic. Furthermore, we want to direct have the power of higher-order

predicate logic, through a shallow embedding. For these reasons, our usage of the Coq

proof assistant [58] is to treat it as both a mechanized logic framework and a mechanized

meta logic framework, as explained in Section 2.2.

In this chapter, we first discuss our Coq implementations for the meta theory of PropX

interpretation, for both predicative and impredicative versions. Then we discuss the im-

plementation of XCAP inference rules and meta theory. Based on that, we present the

difference with the implementation of XCAP86. Finally, we discuss our implementation

for the certified mini thread library in the previous chapter.

We point out that although our implementation and presentation in this dissertation

use CiC/Coq as the mechanized meta logic, in theory it is possible to implement XCAP

upon other mechanized meta logics.
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8.1 Implementation of PropX

For the extended propositions in Section 3.2, we define it as the following.

Inductive PropX : Type
:= cptr: Word -> (State -> PropX) -> PropX
| prop: Prop -> PropX
| andx: PropX -> PropX -> PropX
| orx : PropX -> PropX -> PropX
| impx: PropX -> PropX -> PropX
| allx: forall A, (A -> PropX) -> PropX
| extx: forall A, (A -> PropX) -> PropX.

The encoding uses higher-order abstract syntax (HOAS) [52] to represent extended

predicates. Interpretation of extended propositions is defined as a recursive function.

Definition Assertion := State -> PropX.

Definition CdHpSpec := Map Label Assertion.

Fixpoint Itp (P : PropX) (Si : CdHpSpec) {struct P} : Prop
:= match P with

| cptr l a => lookup Si l a
| prop p => p
| andx P Q => Itp P Si /\ Itp Q Si
| orx P Q => Itp P Si \/ Itp Q Si
| impx P Q => Itp P Si -> Itp Q Si
| allx A P => forall x, Itp (P x) Si
| extx A P => exists x, Itp (P x) Si
end.

And the interpretation of assertions is a simple lift.

Definition ItP a Si S := Itp (a S) Si.

For the XCAP with impredicative polymorphism defined in Section 4.1 and Section 4.3

the HOAS encoding of extended propositions no longer works. The positivity require-

ment in Coq inductive definition limits the type A of the quantified terms to be of lower

level than PropX, which can not be used for impredicative quantifications. We use de

Bruijn notations [15] to encode them, but keep using HOAS for all other constructors.
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Inductive PropX : list Type -> Type :=
| var : forall L A, A -> PropX (A :: L)
| lift: forall L A, PropX L -> PropX (A :: L)
| cptr: forall L, Word -> (State -> PropX L) -> PropX L
| ref : forall L, Word -> (Word -> PropX L) -> PropX L
| prop: forall L, Prop -> PropX L
| andx: forall L, PropX L -> PropX L -> PropX L
| orx : forall L, PropX L -> PropX L -> PropX L
| impx: forall L, PropX L -> PropX L -> PropX L
| allx: forall L A, (A -> PropX L) -> PropX L
| extx: forall L A, (A -> PropX L) -> PropX L
| allv: forall L A, PropX (L ++ A :: nil) -> PropX L
| extv: forall L A, PropX (L ++ A :: nil) -> PropX L
| mu : forall L A, (A -> PropX (L ++ A :: nil)) -> A -> PropX L.

We can also define some syntactic sugars for PropX .

Notation "<< p >>" := (prop _ p ) (at level 40).
Notation "P ./\ Q" := (andx _ P Q) (at level 51, right associativity).
Notation "P .\/ Q" := (orx _ P Q) (at level 70, right associativity).
Notation "P .-> Q" := (impx _ P Q) (at level 100, right associativity).

The following auxiliary definitions are straight-forward.

Definition Assertion := State -> PropX nil.

Definition WordTy := Word -> PropX nil.

Definition CdHpSpec := Map Label Assertion.

Definition DtHpSpec := Map Label WordTy.

Definition Env := list (PropX nil).

When weak update reference is supported, the interpretation of XCAP assertions can

be defined as the following.

Definition Itp P Si Fi := OK nil Si Fi P.

Definition DH Si Fi H :=
forall l t, lookup Fi l t -> exists w, lookup H l w /\ Itp (t w) Si Fi.

Definition ItP a Si S :=
match S with (H, R) =>

exists Fi, exists H1, exists H2,
disjoint H1 H2 /\ merge H1 H2 = H /\ Itp (a (H1,R)) Si Fi /\ DH Si Fi H2

end.

Notation "p ==> q" := (forall Si S, ItP p Si S -> ItP q Si S)
(at level 130, right associativity).

Itp is the interpretation of extended propositions, defined using the PropX validity

below. ItP is the assertion interpretation, as discussed in Section 5.1.
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Inductive OK : Env -> CdHpSpec -> DtHpSpec -> PropX nil -> Prop :=
| ok_env : forall E Si Fi p, In p E -> OK E Si Fi p
| ok_cptr_i : forall E Si Fi l P, lookup Si l P -> OK E Si Fi (cptr nil l P)
| ok_cptr_e : forall E Si Fi l P q,

OK E Si Fi (cptr nil l P) ->
(lookup Si l P -> OK E Si Fi q) -> OK E Si Fi q

| ok_ref_i : forall E Si Fi l P, lookup Fi l P -> OK E Si Fi (ref nil l P)
| ok_ref_e : forall E Si Fi l P q,

OK E Si Fi (ref nil l P) ->
(lookup Fi l P -> OK E Si Fi q) -> OK E Si Fi q

| ok_prop_i : forall E Si Fi (p : Prop), p -> OK E Si Fi (<< p >>)
| ok_prop_e : forall E Si Fi (p : Prop) q,

OK E Si Fi (<< p >>) ->
(p -> OK E Si Fi q) -> OK E Si Fi q

| ok_and_i : forall E Si Fi p q, OK E Si Fi p ->
OK E Si Fi q -> OK E Si Fi (p ./\ q)

| ok_and_e1 : forall E Si Fi p q,
OK E Si Fi (p ./\ q) -> OK E Si Fi p

| ok_and_e2 : forall E Si Fi p q,
OK E Si Fi (p ./\ q) -> OK E Si Fi q

| ok_or_i1 : forall E Si Fi p q, OK E Si Fi p -> OK E Si Fi (p .\/ q)
| ok_or_i2 : forall E Si Fi p q, OK E Si Fi q -> OK E Si Fi (p .\/ q)
| ok_or_e : forall E Si Fi p q r,

OK E Si Fi (p .\/ q) ->
OK (cons p E) Si Fi r ->
OK (cons q E) Si Fi r -> OK E Si Fi r

| ok_imp_i : forall E Si Fi p q,
OK (cons p E) Si Fi q -> OK E Si Fi (p .-> q)

| ok_imp_e : forall E Si Fi p q,
OK E Si Fi p ->
OK E Si Fi (p .-> q) -> OK E Si Fi q

| ok_allx_i : forall E Si Fi A
(P : A -> PropX nil),
(forall x, OK E Si Fi (P x)) -> OK E Si Fi (allx nil A P)

| ok_allx_e : forall E Si Fi A P,
OK E Si Fi (allx nil A P) ->
forall B : A, OK E Si Fi (P B)

| ok_extx_i : forall E Si Fi A
(P : A -> PropX nil) x,
OK E Si Fi (P x) -> OK E Si Fi (extx nil A P)

| ok_extx_e : forall E Si Fi A P q,
OK E Si Fi (extx nil A P) ->
(forall B : A,

OK (cons (P B) E) Si Fi q) -> OK E Si Fi q
| ok_allv_i : forall E Si Fi A p,

(forall x : A -> PropX nil,
OK E Si Fi (Subst nil A p x)) -> OK E Si Fi (allv nil A p)

| ok_extv_i : forall E Si Fi A p
(q: A -> PropX nil),
OK E Si Fi (Subst nil A p q) -> OK E Si Fi (extv nil A p)

| ok_mu_i : forall E Si Fi A p (v:A),
OK E Si Fi (Subst nil A (p v)

(mu nil A p)) -> OK E Si Fi (mu nil A p v).
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Soundness of PropX validity rules is implemented as the following lemma. It takes

around 4,000 lines of Coq tactics to prove this theorem.

Lemma Validity_Soundness :
forall L Si Fi (p : PropX L),

match L as t return forall p : PropX t, Prop with
nil => fun p => OK nil Si Fi p ->

match p in PropX t return t = nil -> Prop with
| var _ _ _ => fun pf => False
| lift _ _ _ => fun pf => False
| cptr _ l P => fun pf => lookup Si l (fun S => eq_rect _ _ (P S) _ pf)
| ref _ l P => fun pf => lookup Fi l (fun S => eq_rect _ _ (P S) _ pf)
| prop _ p => fun pf => p
| andx _ p q => fun pf => OK nil Si Fi (eq_rect _ _ p _ pf) /\

OK nil Si Fi (eq_rect _ _ q _ pf)
| orx _ p q => fun pf => OK nil Si Fi (eq_rect _ _ p _ pf) \/

OK nil Si Fi (eq_rect _ _ q _ pf)
| impx _ p q => fun pf => OK nil Si Fi (eq_rect _ _ p _ pf) ->

OK nil Si Fi (eq_rect _ _ q _ pf)
| allx _ A P => fun pf => forall x, OK nil Si Fi (eq_rect _ _ (P x) _ pf)
| extx _ A P => fun pf => exists x, OK nil Si Fi (eq_rect _ _ (P x) _ pf)
| allv _ A p => fun pf => forall x, OK nil Si Fi

(Subst _ _ (eq_rect _ _ p _ (trans_eq (eq_app_eq _ _ _ pf)
(sym_eq (nil_app_eq _))))

x)
| extv _ A p => fun pf => exists x, OK nil Si Fi

(Subst _ _ (eq_rect _ _ p _ (trans_eq (eq_app_eq _ _ _ pf)
(sym_eq (nil_app_eq _))))

x)
| mu _ _ P v => fun pf => OK nil Si Fi

(Subst _ _ (eq_rect _ _ (P v) _ (trans_eq (eq_app_eq _ _ _ pf)
(sym_eq (nil_app_eq _))))

(mu nil _ (fun v => (eq_rect _ _ (P v)
_ (eq_app_eq _ _ _ pf)))))

end (refl_equal _)
| _ => fun _ => True
end p.

To allow more Prop-like handling of proofs, we build many tactics for PropX reason-

ing. Below are a selection of them.
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Definition okvalid := Validity_Soundness nil.

Ltac des H :=
generalize (okvalid _ _ H); clear H; intro; unfold eq_rect in * |-.

Ltac dest H :=
generalize (okvalid _ _ H); clear H; destruct 1; unfold eq_rect in * |-.

Ltac destx H v :=
generalize (okvalid _ _ H); clear H; destruct 1 as [v]; unfold eq_rect in * |-.

Ltac splitx := apply ok_and_i.

Ltac leftx := apply ok_or_i1.

Ltac rightx := apply ok_or_i2.

Ltac introx := apply ok_allx_i.

Ltac existsx x := apply ok_extx_i with x.

Ltac introv := apply ok_allv_i.

Ltac existsv a := apply ok_extv_i with a.

Ltac propx := apply ok_prop_i.

Ltac cptrx := apply ok_cptr_i.

8.2 Implementation of XCAP

We implemented XCAP inference rules as the following inductive definitions.
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Inductive WFiseq : CdHpSpec -> Assertion -> InstrSeq -> Prop :=
| wfiseq : forall Si a c I a’,

(forall Si s, ItP a Si s ->
exists s’,

Next c s s’ /\ ItP a’ Si s’) ->
WFiseq Si a’ I -> WFiseq Si a (iseq c I)

| wfbgti : forall Si a rs w l I a’ a’’,
((fun s => << _R s rs <= w >> ./\ a s) ==> a’’) ->
((fun s => << _R s rs > w >> ./\ a s) ==> a’ ) ->
lookup Si l a’ ->
WFiseq Si a’’ I -> WFiseq Si a (bgti rs w l I)

| wfjd : forall Si a l a’,
lookup Si l a’ ->
(a ==> a’) -> WFiseq Si a (jd l)

| wfjmp : forall Si a r,
(a ==> fun S => extv _ _

(eq_rect _ _ (cptr _ (_R S r) (var _ _)
./\ var _ _ S)

_ (nil_app_eq _))) -> WFiseq Si a (jmp r)
| wfecp : forall Si a l a’ a’’ I,

WFiseq Si a’ I ->
lookup Si l a’’ ->
((fun s => cptr _ l a’’ ./\ a s) ==> a’) -> WFiseq Si a I.

Inductive WFcode : CdHpSpec -> CodeHeap -> CdHpSpec -> Prop :=
| wfcdhp : forall Si Si’ C,

(forall l a, lookup Si’ l a ->
exists I, lookup C l I /\ WFiseq Si a I) -> WFcode Si C Si’

| wflink : forall Si1 Si2 Si’1 Si’2 C1 C2,
WFcode Si1 C1 Si’1 ->
WFcode Si2 C2 Si’2 ->
Map.disjoint C1 C2 ->
subseteq Si1 (merge Si1 Si2) ->
subseteq Si2 (merge Si1 Si2)

-> WFcode (merge Si1 Si2) (merge C1 C2) (merge Si’1 Si’2).

Definition WFprogram Si a P := match P with (c, (s, i)) =>
WFcode Si c Si /\ ItP a Si s /\ WFiseq Si a i

end.

Selected soundness theorem and lemmas of XCAP are presented as follows. It takes

around 700 Coq tactics to prove these theorem. This confirms that XCAP is a lightweight

framework.
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Lemma InstrSeqWeakening :
forall Si Si’ a a’ I,
WFiseq Si a’ I -> subseteq Si Si’ -> (a ==> a’) -> WFiseq Si’ a I.

Lemma CodeHeapTyping :
forall C Si l a,
WFcode Si C Si -> lookup Si l a -> exists I, lookup C l I /\ WFiseq Si a I.

Theorem Soundness :
forall Si a P, WFprogram Si a P ->
exists a’, exists P’, STEP P P’ /\ WFprogram Si a’ P’.

8.3 Implementation of XCAP86

XCAP86’s machine model, Mini86, is quite different from TM used in XCAP. Its Coq im-

plementation is complicated by new details such as byte-addressed word-aligned mem-

ory, fixed machine word size, and machine instruction decoding. For example, the follow-

ing are the macros to test if a byte or word is stored in the memory. (To keep our machine

model close to TM, the memory is modeled as a mapping from aligned addresses to ma-

chine words.)

Definition byte h l :=
match (Z_eq_dec (l mod 4) 0) with
| left _ => match (h l) with

| Some w => Some (w mod 256)
| None => None
end

| _ => match (Z_eq_dec (l mod 4) 1) with
| left _ => match (h (l-1)) with

| Some w => Some ((w / 256) mod 256)
| None => None
end

| _ => match (Z_eq_dec (l mod 4) 2) with
| left _ => match (h (l-2)) with

| Some w => Some ((w / 65536) mod 256)
| None => None
end

| _ => match (h (l-3)) with
| Some w => Some ((w / 65536) / 256)
| None => None
end

end
end

end.
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Definition dword h l w := byte h l = Some (w mod 256)
/\ byte h (l+1) = Some (w / 256 mod 256)
/\ byte h (l+2) = Some (w / 65536 mod 256)
/\ byte h (l+3) = Some (w / 65536 / 256).

We carefully designed Mini86 and its implementation so that they stay as close to TM

as possible. For example, below are selected implementations details of Mini86, which

look similar to TM’s in Section 2.2.

Inductive Next : Instr -> State -> State -> Prop :=
| stp_add : forall r o H R F R’ F’,

Dword (R r + Ro R o) ->
uR R R’ r (R r + Ro R o) ->
CalcF F’ (R r + Ro R o) ->
Next (add r o) (H, R, F) (H, R’, F’)

| stp_mov : forall r o H R F R’,
uR R R’ r (Ro R o) ->
Next (mov r o) (H, R, F) (H, R’, F)

| stp_movrm : forall r d H R F w R’,
lookup H (Ra R d) w ->
uR R R’ r w ->
Next (movrm r d) (H, R, F) (H, R’, F)

| ... .

Inductive STEP : Program -> Program -> Prop :=
| stp_iseq : forall H R F H’ R’ F’ pc c npc,

Dc H pc c npc ->
Next c (H, R, F) (H’, R’, F’) ->
STEP ((H, R, F), pc) ((H’, R’, F’), npc)

| stp_jmp : forall o H R F pc npc,
Dc H pc (jmp o) npc ->
STEP ((H, R, F), pc) ((H, R, F), Ro R o)

| ... .

Other than the difference in machine model, XCAP86 also mainly differs in instruction-

level inference rules.
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Inductive WFiseq : CdHpSpec -> Assertion -> InstrSeq -> Prop :=
| wfiseq : forall Si a c I a’,

(a ==> (fun s => Ex s’ .
<<Next c s s’>> ./\ a’ s’)) ->

WFiseq Si a’ I -> WFiseq Si a (iseq c I)
| wfjcc : forall Si a cc f I a’ a’’,

((fun s => <<~(Fcc (_F s) cc)>> ./\ a s) ==> a’’) ->
((fun s => <<Fcc (_F s) cc>> ./\ a s) ==> a’) ->
lookup Si f a’ ->
WFiseq Si a’’ I -> WFiseq Si a (iseq (jcc cc f) I)

| wfjmpi : forall Si a f a’,
lookup Si f a’ ->
(a ==> a’) -> WFiseq Si a (instr (jmp (word f)))

| wfjmpr : forall Si a r,
(a ==> fun S => extv _ _

(eq_rect _ _ (cptr _ (_R S r) (var _ _)
./\ var _ _ S)

_ (nil_app_eq _)))
-> WFiseq Si a (instr (jmp (reg r)))

| wfcalli : forall Si a f fret a’,
lookup Si f a’ ->
(a ==> (fun s => Ex s’.

<<Next (push (word fret)) s s’>>
./\ a’ s’))

-> WFiseq Si a (instr’ (call (word f)) fret)
| wfcallr : forall Si a r fret,

(a ==> (fun S => extv _ _
(eq_rect _ _ (cptr _ (_R S r) (var _ _)

./\ Ex s’. <<Next (push (word fret)) S s’>>
./\ var _ _ s’)

_ (nil_app_eq _))))
-> WFiseq Si a (instr’ (call (reg r)) fret)

| wfret : forall Si a,
(a ==> (fun S => Ex fret.

<<lookup (_H S) (_R S esp) fret>>
./\ extv _ _

(eq_rect _ _ (cptr _ fret (var _ _)
./\ Ex s’. <<Next pop’ S s’>>

./\ var _ _ s’)
_ (nil_app_eq _))))

-> WFiseq Si a (instr ret)
| wfecp : forall Si a f a’ a’’ I,

WFiseq Si a’ I ->
lookup Si f a’’ ->
((fun s => cptr _ f a’’ ./\ a s) ==> a’) -> WFiseq Si a I.

The implementation of Mini86 takes about 400 lines of Coq code. The implementation

of XCAP86 meta theory takes about 1,000 lines of Coq code.
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8.4 Implementation of MTH

Every MTH module is specified and verified separately from its clients. During the cer-

tification of MTH, we collected a large number of lemmas, including some on generic

separation-logic reasoning and others on common code patterns. Our Coq implemen-

tation consists of approximately 34,000 lines of Coq code (about 5,000 lines are common

lemmas, 3,000 lines are for the queue module, 8,000 lines are for the machine context mod-

ule, and 18,000 lines are for the threading module). The full compilation of XCAP86 and

MTH implementation in Coq (proof-script checking and proof-binary generation) takes

about 4 hours on an Intel Pentium M 1.6Ghz CPU with 2GB memory.

The development of the code took nearly six person-month. There are several reasons

for the large proof size. First of all, this is the first time we are doing this kind of realistic

proof, so a lot of infrastructural code and experience need to be developed and learned.

For example, the first procedure we certified, swapcontext(), took one person-month and

5,000 lines of Coq code, even though it consists of only 19 lines of assembly code. Sec-

ond, the relatively low level of proof reuse caused much redundancy. The third reason is

the complexity of x86 machine, where features such as finite integer and byte-addressed

word-aligned memory are not support very well in Coq yet. Nevertheless, the biggest

reason, we believe, is the complexity of the actual machine code, which is obvious based

on the discussions in the previous chapter.

For example, the machine context data type in Section 7.2 is implemented as the fol-

lowing, which is more complex than what its meta presentation looks like.
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Definition mctx_t L aenv mctx : Heap -> PropX L :=
fun H =>
Ex retv, bx, cx, dx, si, di, bp, sp, ret.

star (ptolist _ mctx (retv::bx::cx::dx::si::di::bp::sp::nil))
(star (pto _ sp ret)

(fun H => extv _ _ (eq_rect _ _
(Lift _ _ (var tO _ H)

./\ codeptr _ ret
(fun S’ => match S’ with ((H’,R’),F’) in

reg6 _ bx cx dx si di bp (sp+4) R’ ./\ << R’ eax = retv>>
./\ star (fun H => Shift _ _

(eq_rect _ _ (aenv H) _ (app_nil_eq _)) _)
(star (ptolist _ mctx (retv::bx::cx::dx::si::di::bp::sp::nil))
(star (pto _ sp ret)

(fun H => Lift _ _ (var tO _ H))))
H’

end))
_ (nil_app_eq _))))

H.

On the other hand, since we have used a lot of abstraction and composition in the

verification and implementation, we are still able to achieve very abstract and modular

specifications and reasoning, such as the thread yielding function interface shown below.

Definition Amth_yield : Assertion := Fn6 {Aux : ; Local : [12] ;
Pre: star (Imem _) (Imth _);
Post: star (Imem _) (Imth _)}.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The formal establishment of low-level system code safety poses great challenges to ex-

isting language-based security methods. In particular, generating proof-carrying code

for realistic machine binary requires a verification framework that is both expressive and

modular. Previously, neither traditional type systems nor Hoare-logic systems can achieve

both of these goals without comprise. Type systems in general lacks support of general

logic predicate, while ordinary logic assertions can not modularly talk about higher-order

programming concepts such as embedded code pointers.

In this dissertation, we propose a hybrid approach to achieve modular and expressive

machine code verification. By combining the general logic and semantic subsumptions

with syntactic type-like constructs and inference rules, our new framework, XCAP, can

be used to write program specification in arbitrary logical predicates, in which higher-

order features such as embedded code pointers, impredicative polymorphisms, recursive

specifications, and weak update references can be expressed as primitive propositions.

Thus, XCAP achieves the expressive power of logic-based approaches and the modularity

of type-based approaches.

XCAP is not an isolated result. It can be used as a target of existing certifying com-
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piler, since there is a straight-forward type-preserving translation from a typed assembly

language to XCAP. The interaction of TAL and XCAP code is very flexible, as the transla-

tion is essentially a shallow embedding of TAL in XCAP’s assertion language, PropX . For

application and system code written in type-safe languages, XCAP is a good platform for

these code to interoperate with each other, as well as other certified system kernel module.

The most important goal for XCAP is to support direct verification of realistic system

kernel assembly code with the help of an interactive proof assistant. XCAP is ported to

XCAP86, with a realistic machine model following the x86 architecture. We show how

to use XCAP86 to certify a mini thread library, which could serve as a basis for realistic

certified system kernel. Such kind of code is not certifiable with traditional type safe

languages, thus our verification is the first of this kind.

One key aspect of the XCAP framework is mechanization. Not only are the machine

model, specification languages, and proof of assembly programs fully mechanized in the

Coq proof assistant, but the entire meta theory of XCAP and its various extensions are

fully implemented in Coq as well. In the end, the only things that need to be trusted by

the programmers and users are merely the machine model, mathematical logic, and a tiny

proof-checker.

In summary, XCAP is a simple, general, expressive, and modular framework for veri-

fication of realistic machine code found in both application and system programs.

9.2 Trusted Computing Base

Given the mixed presentation of the theoretical framework and mechanized implemen-

tation in the previous chapters, it may not be obvious what exactly are trusted and un-

trusted for XCAP and its applications. In this section we discuss the trusted computing

base (TCB) from the point of view of a programmer.
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Trusted: meta logic. To do any formal reasoning, the programmer has to choose a (mech-

anized) meta logic, and trust it with respect to his intuition, i.e., agree with the represen-

tations and reasoning in it. In our case, the variant of Calculus of Inductive Constructions

(CiC), a.k.a., higher-order predicate logic with inductive definitions, is the mechanized

meta logic theory that needs to be trusted. The programmer should treat this logic as a

consistent one. Yet its consistency is not provable inside itself. In practice, it is usually not

a big concern, as the meta theory of the logic has been published and can be examined by

any logicians.

Trusted: machine model. First of all, the programmer has to trust the mathematical

modeling of the actual hardware, namely, the CPU and the memory. The machine rep-

resentation on paper and encoding in Coq are merely symbols, while the actual compu-

tation is a physical process. Without including formal hardware verification results, it is

impossible to prove the correspondence between the symbols and the hardware state. In

practice, it is usually not a concern though, as the hardware specifications are publically

available and considered correct in general.

Trusted: proof checker. In terms of mechanization, the programmer needs to have a

proof checker to mechanically check the validity of proofs with respect to specifications.

The proof checker has to be trusted unless it is verified again using some other formal

method (which again will have the question of TCB). Note that the proof checker is not

equal to the entire Coq proof assistant; only a small part of Coq does the job of proof

checking. The majority of Coq source code, such as those dealing with proof searching,

do not need to be trusted. This is similar to the “certifying compiler” concept. Although

we do not have a stand-alone proof checker for CiC, building one should not take more

than a few thousand lines of code. One easy way to raise assurance of the proof checker is

to independently develop multiple checkers. This way, even if each checker has bugs that

occur 20% of the time, the chance of a faulty proof passing three checkers is less than 1%.
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Untrusted: PropX and XCAP theory. Since the entire PropX and XCAP meta theory

have been mechanized and proved consistent inside Coq, they do not need to be trusted at

all. As shown by the various expansions done in this dissertation, as long as the expanded

framework is proved sound in Coq, these extensions are safe.

Trusted: program specifications and safety polices. Whether the program specifica-

tions and safety polices are trusted or not is perhaps the most confusing question. The

programmer has to realize that, in the end, he has to trust that the program specifica-

tions do reflect what is expected of the program’s behavior. However, for traditional type

systems, one often has to ask “what kind of properties are actually supported”. This is be-

cause there is a gap between program specifications—types—and the meta logical safety

polices. In other words, what a programmer sees (types) is not exactly what he gets (safety

policy). He has to trust two things: (1) the program specification reflects the safety policy;

and (2) the safety policy is what he wants.

For XCAP, however, we support WYSWYG (What You See is What You Get), as the

program specifications are written in logic formulas. The code heap specification con-

tains the safety polices at each key program point. (Strictly speaking, XCAP specifications

are not meta logic formulas, as they may contain PropX syntactic constructs such as cptr;

however, the soundness theorem of PropX interpretation guarantees that PropX level con-

structors and quantifiers can be treated as meta logic ones.) Thus it is meaningless to ask

“what kind of properties are actually supported”, as all possible state-based safety policies

definable in CiC are supported in XCAP. When we refer to an XCAP program specifica-

tion as “trusted”, we only mean that we believe the meta logic safety policy (same as the

program specification) is what we really want.

Untrusted: safety proof. Once the program specification is set, the safety proof can be

constructed through many different ways, such as theorem provers, interactive proof

assistants, and certifying compilers. None of these details matters, though, as the pro-
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grammer does not need to trust these proof—either they are correct and accepted by the

checker, or they are incorrect and rejected by the checker.

Based on the above discussions, it is clear that the trusted computing base for XCAP

is really small. In the author’s opinion, the only further reducible part of the TCB is the

proof checker, which can always be replaced by smaller and smarter implementations, so

that they can be verified by hand.

9.3 Comparison with the Indexed Approach

One line of work closely related to the approach in this dissertation is the “index-based

semantic model” approach [6, 18, 3, 8, 9, 2, 56, 10]. In this section we refer to that approach

as the indexed approach.

The indexed approach and XCAP share a lot of similarities as both of them belong to

the foundational proof-carrying code architecture. Both are based on mechanized meta

logics. While XCAP uses higher-order predicate logic with inductive definitions, the in-

dexed approach has used the same higher-order predicate logic as well as another higher-

order logic. Both want to produce foundational proof for well-typed programs and face

the same problem of how to modularily express higher-order type-oriented features such

as embedded code pointers, general references, impredicative polymorphisms, and recur-

sive types in the meta logic.

The theoretical difference between the indexed approach and the XCAP approach is

mainly on whether to use an extra natural number as “index” in “world” and judgments,

or to use an extra thin layer of syntax and interpretation to solve the above problem. In

the most recent version of the indexed approach, Appel et al [10] proposed a new modal

model for expressing recursive and impredicative quantified types with mutable refer-

ence. Their method uses a Kripke semantics of the Godel-Lob logic of provability. To sup-

port mutable reference, they include the memory mapping information in the “world”.

At the top level, the difference seems to be rather big considering the similarity be-
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tween the two approaches. There are several reasons for the different solutions the two

approaches have reached as of today.

For the indexed approach, they initially chose to work upon a logic framework (LF),

formalize the meta logic (HOL) in it, and build semantic models for types in HOL. This

approach turned out to be quite heavyweight, as one has to first build an entire mecha-

nized meta logic through deep embedding. Even that, since there is no built-in inductive

definition in the meta logic, one has to use Gödel numbers to simulate simple inductive

definitions. While for the CAP/XCAP approach, the work has been based on CiC / Coq,

which act as both a logic framework and a meta logic framework (through shallow em-

bedding), and have built-in support of inductive definitions. This allows light-weight

implementation, as shown by the hundreds of lines of code for CAP and the thousands

of lines of code for PropX and XCAP. Later on, the indexed approach has switched to use

CiC/Coq and can now offload the burden of building meta logics and simulating induc-

tive definitions. Since this switch is relatively new, it is still too early to make detailed

comparison between the implementations of the latest indexed approach and XCAP.

One major reason is the different guarantee of these two approaches. For XCAP, it is

designed to support more than ”type safety” at each program point. The code heap spec-

ification specifies the safety policy in general logic predicates (safety policy), and is com-

pletely customizable. Meta theory of XCAP guarantees that these safety policies are actu-

ally observable. While for the indexed approach, the definition of “codeptr” has always

been based on a non-stuckness safety (when the program jumps to an indirect address,

the meta theory can only guarantee that the future execution of the program will never

get stuck). Thus, there the safety guarantee is more like the traditional notion of type

safety and memory safety. It remains unclear how to change the definition of “codeptr”

in order to support customizable and observable safety policies without rebuilding the

meta theory of the indexed approach.

Another reason is the difference between the verification targets of these approaches.

XCAP is designed to support direct verification of assembly programs with non-trivial
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properties not expressible in traditional types. Besides the examples discussed in this

dissertation, various examples of CAP/XCAP programs have been mechanically certi-

fied [62, 64, 20, 21, 19]. While the indexed approach has been focusing on type-preserving

compilations from high-level languages, thus having few applications of direct verifica-

tion at assembly level now. It important to note that the XCAP approach also fits into the

type-preserving compilation process, as shown by the previous chapters.

We believe that both the indexed approach and the XCAP approach have a long way to

go before reaching a fully practical FPCC framework. There are recent trends which show

the possibility of these two approaches meeting and merging in the future development.

9.4 Future Work

Given the comprehensive nature of the XCAP framework, there can be many possible fu-

ture work on type theory, logic theory, verification framework and tools, certifying com-

pilers, safe languages, certified software components, and software security.

General support of higher-order logic specifications One observation from the hybrid

type/logic approach being used in XCAP is that, although it currently requires two dif-

ferent forms of syntactic higher-order specifications, for code pointer and data pointer,

respectively, there is great similarity in their formation, interpretation, and usage. One

idea is to investigate if there is any profound relationship between them, and hopefully to

find out a more general way to describe higher-order logic specifications. The intuition is

to build a PropX level facility whose role and functionality is similar to the inductive defi-

nition facility in Prop. However, that will raise the question of what exactly the additional

layer of syntax does, which we do not have a crystal clear understanding yet. The result

here could be very useful for specification and verification of synchronization primitives

and garbage collection.
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Integrating logic specifications into type systems A different angle to view the frame-

work is to keep existing type systems and add logic-based specifications into them for the

additional expressive power. There are already some recent works along this line. How-

ever, the goal here is not to define one or a few particular logic-enriched type systems, but

to develop a systematic method to inject (partial) logic-power into existing type systems.

Hopefully, the effort that is needed to enhance existing typed codes safety guarantee will

then be much less.

Infrastructure support for logic-based verification This part includes the selection, eval-

uation, and potentially development of mathematical logic, binary format, concrete syn-

tax, proof checker, theorem prover, proof assistant, as well as the optimization and deliv-

ery of proof. Another important long-term effort will be on building up proof libraries

and macros that can be reused. This includes machine architecture, mathematic theory,

type theory, logic theory, proof-searching tools, proof-abstraction tools, etc.

Compare various works on type/logic theory The integration of type and logic power

into a formal system has been an active area in the past few years. Other than the works

on CAP/XCAP, there are works such as Princetons indexed model for types, Harvards hy-

brid type/logic system, etc. Investigating these works and conducting an comprehensive

comparison of them can be useful and might yield interesting results.

General memory management Memory management has been active field in the past

decades. In type system world, there are regions, linear types, stack types, etc.; while in

the logic system world, there are separation logic, BI logic, state logic, CAP/XCAP, etc.

Apart from the specific research on certifying garbage collection, it will be interesting to

explore the more general memory management models in the logic-based context. For

example, it might be eventually possible to let users mix the usage of “managed” and

“unmanaged” data pointers and even do intensional analysis of the kind of data pointers.
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C-level logic-based language To write system components in a safe language, assembly

level is apparently too low, while high level languages might be a bit too high for some

cases, especially for legacy systems. The major technical gap between assembly and C lies

in: 1) C stack abstraction; 2) register allocation; 3) specification of complex control flow;

and 4) preservation after compiler optimization. As the first step, 4) could be ignored or

naively handled, since it belongs to the more general question of the interaction between

logic-based specification and type-based compilation.

Dynamic code generation / loading / linking As a common runtime feature, dynamic

code generation, loading, and linking are difficult to establish their safety, which are cru-

cial for extensible OS and other software. Dynamic linking for type-safe code has been

relatively clear by now. However, with components such as runtime being certified using

logic-based approach, how safe linking can be automatically and dynamically carried out

is still unclear. The most extreme case will be self-modifying code.

Binary compatibility for certified and legacy code One possible and interesting ques-

tion to ask is whether both certified and legacy code can be compatible with each other.

There are two scenarios. The first is to have certified component being deployed in a

legacy system, knowing that internally the component should not contain any bug, to

increase the overall dependability of systems, as well as to help debugging other legacy

components. This is relatively easy to do. The second scenario is to have certified run-

time create protected virtual machine to load and run uncertified legacy code, and enforce

strict check upon its interface, thus achieving a safe and legacy-friendly system. Commu-

nications between certified and legacy code in such systems will be interesting, too.

BIOS / firmware / boot loader No matter how the OS and software stack are verified,

the layer between software and the actual “safe” hardware, however thin it is, is still a

major venerable part of the entire system. Given the ability to update firmware in most of

129



the modern computing devices, it is difficult to maintain the system integrity. Very likely,

emerging security features such as TPM and DRM will also require safety guarantees of

firmware to prevent them from being compromised by all possible software-based attacks.

These code are suitable for the low-level logic-based verification. Also, there are many

interesting non-safety properties for these code. For example, for a firmware, one of the

most important features is that it will allow future update what so ever. It is interesting to

certify this particular property in the case of power loss during an update.

Preemptive threading (interrupts, I/O, etc.) In the work on verifying threading in this

dissertation, as there are no interrupts, only co-operative non-preemptive scheduling is

supported. One argument is that preemptive scheduling can be treated as a special case

of non-preemptive threading, by inserting a virtual yield instruction between every in-

struction that has the interrupt bit enabled. It will be interesting to see what kind of

re-structuring is necessary to make the specification and proof reasonably simple. I/O

will be then meaningful to support with the presence of hardware interrupts.

Device driver Following up work will naturally be device drivers, which currently are

either unsafe (Windows) or restricted (Singularity). The vision is that, even for device

drivers as complex as self-modifying ones, they can indeed be certified without any com-

promise. Properties such as temporal ones might need to be introduced here if correctness

is a concern. Domain-specific type/logic languages might be defined to utilize the com-

monality of device drivers. Partial correctness and simple liveness properties might need

insights from existing work on device-driver verification, such as model checking.

Garbage collectors It is expected that verification of partial-correctness of a garbage col-

lection process requires more than the plain type safety provided by typical typed lan-

guages. Under the hood, one major problem for verification of garbage collection is that

traditionally we do not know how to flexibly describe and cast between both strong and
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weak update reference cell, as well as any reference cell with mixed properties between

strong and weak update, e.g., a reference cell with at most n alias.

High-level logic-based language It may be desirable to write the majority of the sys-

tem kernel and service in high-level languages. It will be interesting to discover how to

1) increase the expressive power of specification languages so more advanced code and

properties can be included; 2) increase the level of assurance by using sound logic and

checker; 3) integrate the work with other levels of logic-based verification, such as those

used by runtime.

Synchronization primitives (mutex, channel, etc.) In the work on verifying thread-

ing in this dissertation, only basic services such as creation, yielding, and termination

of threads are supported. However, in practice, the most interesting feature of thread li-

braries for concurrent programming is the set of synchronization primitives it provides.

Which set of primitives to support and how they are implemented depends heavily on

the concurrent programming model, machine mode, requirement on throughput and re-

sponse time, as well as the external module interface to be used together with the library.

The work will not only yield a set of certified implementations of synchronization prim-

itives, but also track down the precise interfaces of them, which will be interesting by

themselves. It might also be connected to existing works on different synchronization and

communication methods, such as TLA, allowing us to do an exact comparison of differ-

ent concurrency models and potentially make code that is based on different concurrency

models work together.

Security properties As an important feature of system APIs, security features and the

properties they guarantee have traditionally been enforced using either dynamic machine

semantics or static semantics of security types. With the runtime and other kernel service

being certified with logic specifications, it is possible to use logic formulas to describe
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security policies, thus allowing security guarantees that are much more flexible.

Logic specifications in certifying compiler Even if we have a higher-level language

with logic specifications, right now it is unclear how it would fit into the certifying com-

piler. Once decidable type checking and typing derivation are replaced by logic proofs,

the optimization process will lose the crucial structural information it need to transform

the proof. On the other hand, the ability to use arbitrary logic specifications during the

compilation process might eventually provide more expressive power on the kinds of

optimizations supported comparing with the traditional type-preserving compilation ap-

proach, thus producing better optimized certifying compiler.
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Appendix A

PropX Validity Soundness Proof

In this section we give the proof structure for the soundness of PropX validity rules, as

introduced in Section 4.1, Section 4.3, Section 5.1, and Section 6.2. To avoid confusions,

we first present the complete PropX definition in Figure A.1 and the complete set of PropX

validity rules in Figure A.2.

We present the soundness of PropX interpretation (validity rules), as previously dis-

cussed in Theorem 4.1 and Theorem 6.1, as follows.

Theorem A.1 (Soundness of XCAP PropX Interpretation)

1. If [[〈p〉 ]]Ψ,Φ then p;

2. if [[cptr(f,a) ]]Ψ,Φ then Ψ(f) = a;

3. if [[ ref(l,t) ]]Ψ,Φ then Φ(l) = t;

4. if [[P∧∧Q ]]Ψ,Φ then [[P ]]Ψ,Φ and [[Q ]]Ψ,Φ;

5. if [[P∨∨Q ]]Ψ,Φ then either [[P ]]Ψ,Φ or [[Q ]]Ψ,Φ;

6. if [[P→→Q ]]Ψ,Φ and [[P ]]Ψ,Φ then [[Q ]]Ψ,Φ;

7. if [[∀∀x :A.P ]]Ψ,Φ and B :A then [[P[B/x] ]]Ψ,Φ;

8. if [[∃∃x :A.P ]]Ψ,Φ then there exists B :A such that [[P[B/x] ]]Ψ,Φ;
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(PropX) P,Q ::= 〈p〉 li f ted meta proposition

| cptr(f,a) embedded code pointer

| ref(l,t) re f erencecell pointer

| P∧∧Q con junction

| P∨∨Q dis junction

| P→→Q implication

| ∀∀x :A.P universal quanti f ication

| ∃∃x :A.P existential quanti f ication

| ∀∀α :A→PropX.P impredicative universal quanti f ication

| ∃∃α :A→PropX.P impredicative existential quanti f ication

| (µµ α :A→PropX.λx :A.P B) recursive speci f ication

(CdH pSpec) Ψ ::= {f; a}∗

(DtH pSpec) Φ ::= {l ; t}∗

(Assertion) a ∈ State→ PropX

(WordTy) t ∈ Word→ PropX

(Env) Γ ::= · | Γ,P

Figure A.1: Assertion language of the full-featured XCAP
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Γ `Ψ,Φ P (Validity of Extended Propositions)

(The following presentation omits the Ψ and Φ in judgment Γ `Ψ,Φ P.)

P ∈ Γ
Γ `P (ENV)

p
Γ `〈p〉 (〈〉-I) Γ `〈p〉 p⊃ (Γ `Q)

Γ `Q (〈〉-E)

Ψ(f)=a

Γ `cptr(f,a)
(CP-I)

Γ `cptr(f,a) (Ψ(f)=a)⊃(Γ `Q)
Γ `Q (CP-E)

Φ(l)=t

Γ ` ref(l,t)
(RF-I)

Γ ` ref(l,t) (Φ(l)=t)⊃(Γ `Q)
Γ `!Q

(RF-E)

Γ `P Γ `Q
Γ `P∧∧Q (∧∧-I)

Γ `P∧∧Q
Γ `P (∧∧-E1)

Γ `P∧∧Q
Γ `Q (∧∧-E2)

Γ `P
Γ `P∨∨Q (∨∨-I1) Γ `Q

Γ `P∨∨Q (∨∨-I2)
Γ `P∨∨Q Γ,P `R Γ,Q `R

Γ `R (∨∨-E)

Γ,P `Q
Γ `P→→Q

(→→-I)
Γ `P→→Q Γ `P

Γ `Q (→→-E)

Γ `P[B/x] ∀ B :A
Γ `∀∀x :A.P

(∀∀-I1)
Γ `∀∀x :A.P B :A

Γ `P[B/x]
(∀∀-E1)

B :A Γ `P[B/x]
Γ `∃∃x :A.P

(∃∃-I1)
Γ `∃∃x :A.P Γ,P[B/x] `Q ∀ B :A

Γ `Q (∃∃-E1)

Γ `P[a/α] ∀ a :A→PropX
Γ `∀∀α :A→PropX.P

(∀∀-I2)
a :A→PropX Γ `P[a/α]

Γ `∃∃α :A→PropX.P
(∃∃-I2)

B :A Γ ` P[B/x][µµα :A→ PropX .λx :A.P/α]
Γ ` (µµ α :A→PropX.λx :A.P B)

(µ-I)

Figure A.2: Validity rules for extended propositions of the full-featured XCAP
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9. if [[∀∀α :A→PropX.P ]]Ψ,Φ and a :A→PropX then [[P[a/α] ]]Ψ,Φ;

10. if [[∃∃α :A→PropX.P ]]Ψ,Φ then there exists a :A→PropX such that [[P[a/α] ]]Ψ,Φ;

11. if [[ (µµ α.λx :A.P B) ]]Ψ,Φ then [[P[B/x][(µµ α.λx :A.P )/α] ]]Ψ,Φ.

Corollary A.2 (XCAP Consistency) [[〈False〉 ]]Ψ,Φ is not provable.

For the proof, we follow the syntactic normalization proof methods in Pfenning [51].

The validity of extended propositions rules of form Γ `Ψ,Φ P in Figure A.2 are natural

deduction rules. We classify them into the following two kinds (and call them altogether

as normal natural validity rules) as shown in Figure A.3.

Γ `Ψ,Φ P ⇑ Extended Proposition P has a normal deduction, and

Γ `Ψ,Φ P ↓ Extended Proposition P is extracted from a hypodissertation.

We define the annotated natural deduction rules by annotating each normal validity rules

with a “+” symbol as Γ `+
Ψ,Φ P ⇑ and Γ `+

Ψ,Φ P ↓ and adding the following coercion rule.

Γ `+
Ψ,Φ P ⇑

Γ `+
Ψ,Φ P ↓ (COER’)

We then define the sequent style validity rules of form Γ =⇒Ψ,Φ P in Figure A.4 and

extend the sequent rules by annotating sequent judgments with a “+” as Γ =⇒+
Ψ,Φ P and

adding the cut rule.

Γ =⇒+
Ψ,Φ P Γ,P =⇒+

Ψ,Φ Q

Γ =⇒+
Ψ,Φ Q

(CUT)

The normalization proof process is:

Γ `Ψ,Φ P A.5−→ Γ `+
Ψ,Φ P ⇑ A.9−→ Γ =⇒+

Ψ,Φ P A.11−−→ Γ =⇒Ψ,Φ P A.6−→ Γ `Ψ,Φ P ⇑ .

First, natural deduction derivations are mapped to derivations in sequent validity

rules with cut. Then we do cut-elimination in sequent rules, and map the new cut-free

sequent derivation back to a normal natural deduction derivation. Soundness of PropX

interpretation can then be proved, since the last rule in a normal natural deduction deriva-

tion must be one of the introduction rules. We prove the following theorems to construct
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Γ `Ψ,Φ P ⇑ Γ `Ψ,Φ P ↓ (Validity of Extended Propositions)

(The following rules omits the Ψ and Φ in judgments Γ `Ψ,Φ P ⇑ and Γ `Ψ,Φ P ↓.)

Γ `P ↓
Γ `P ⇑ (COER) P ∈ Γ

Γ `P ↓ (ENV)

p
Γ `〈p〉 ⇑ (〈〉-I) Γ `〈p〉 ↓ p ⊃ (Γ `Q ⇑)

Γ `Q ⇑ (〈〉-E)

Ψ(f)=a

Γ `cptr(f,a) ⇑ (CP-I)
Γ `cptr(f,a) ↓ (Ψ(f)=a) ⊃ (Γ `Q ⇑)

Γ `Q ⇑ (CP-E)

Φ(l)=t

Γ ` ref(l,t) ⇑ (RF-I)
Γ ` ref(l,t) ↓ (Φ(l)=t) ⊃ (Γ `Q ⇑)

Γ `Q ⇑ (RF-E)

Γ `P ⇑ Γ `Q ⇑
Γ `P∧∧Q ⇑ (∧∧-I)

Γ `P∧∧Q ↓
Γ `P ↓ (∧∧-E1)

Γ `P∧∧Q ↓
Γ `Q ↓ (∧∧-E2)

Γ `P ⇑
Γ `P∨∨Q ⇑ (∨∨-I1)

Γ `Q ⇑
Γ `P∨∨Q ⇑ (∨∨-I2)

Γ `P∨∨Q ↓ Γ,P `R ⇑ Γ,Q `R ⇑
Γ `R ⇑ (∨∨-E)

Γ,P `Q ⇑
Γ `P→→Q ⇑ (→→-I)

Γ `P→→Q ↓ Γ `P ⇑
Γ `Q ↓ (→→-E)

Γ `P[B/x] ⇑ ∀ B :A
Γ `∀∀x :A.P ⇑ (∀∀-I1)

Γ `∀∀x :A.P ↓ B :A
Γ `P[B/x] ↓ (∀∀-E1)

B :A Γ `P[B/x] ⇑
Γ `∃∃x :A.P ⇑ (∃∃-I1)

Γ `∃∃x :A.P ↓ Γ,P[B/x] `Q ⇑ ∀ B :A
Γ `Q ⇑ (∃∃-E1)

Γ `P[a/α] ⇑ ∀ a :A→PropX
Γ `∀∀α :A→PropX.P ⇑ (∀∀-I2)

a :A→PropX Γ `P[a/α] ⇑
Γ `∃∃α :A→PropX.P ⇑ (∃∃-I2)

B :A Γ ` P[B/x][µµα :A→ PropX .λx :A.P/α] ⇑
Γ ` (µµ α :A→PropX.λx :A.P B) ⇑ (µ-I)

Figure A.3: Normal natural deduction validity rules
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Γ =⇒Ψ,Φ P (Validity of Extended Propositions)

(The following rules omits the Ψ and Φ in judgment Γ =⇒Ψ,Φ P.)

P ∈ Γ
Γ =⇒ P

(INIT)
p

Γ =⇒ 〈p〉 (〈〉-R) p ⊃ (Γ,〈p〉=⇒ Q)
Γ,〈p〉=⇒ Q

(〈〉-L)

Ψ(f)=a

Γ =⇒ cptr(f,a)
(CP-R)

(Ψ(f)=a) ⊃ (Γ,cptr(f,a) =⇒ Q)
Γ,cptr(f,a) =⇒ Q

(CP-L)

Φ(l)=t

Γ =⇒ ref(l,t)
(RF-R)

(Φ(l)=t) ⊃ (Γ, ref(l,t) =⇒ Q)
Γ, ref(l,t) =⇒ Q

(RF-L)

Γ =⇒ P Γ =⇒ Q
Γ =⇒ P∧∧Q (∧∧-R)

Γ,P∧∧Q,P =⇒ R
Γ,P∧∧Q =⇒ R

(∧∧-L1)
Γ,P∧∧Q,Q =⇒ R
Γ,P∧∧Q =⇒ R

(∧∧-L2)

Γ =⇒ P
Γ =⇒ P∨∨Q (∨∨-R1) Γ =⇒ Q

Γ =⇒ P∨∨Q (∨∨-R2)
Γ,P∨∨Q,P =⇒ R Γ,P∨∨Q,Q =⇒ R

Γ,P∨∨Q =⇒ R
(∨∨-L)

Γ,P =⇒ Q
Γ =⇒ P→→Q

(→→-R)
Γ,P→→Q =⇒ P Γ,P→→Q,P =⇒ R

Γ,P→→Q =⇒ R
(→→-L)

Γ =⇒ P[B/x] ∀ B :A
Γ =⇒∀∀x :A.P

(∀∀-R1)
Γ,∀∀x :A.P,P[B/x] =⇒ Q B :A

Γ,∀∀x :A.P =⇒ Q
(∀∀-L1)

B :A Γ =⇒ P[B/x]
Γ =⇒∃∃x :A.P

(∃∃-R1)
Γ,∃∃x :A.P,P[B/x] =⇒ Q ∀ B :A

Γ,∃∃x :A.P =⇒ Q
(∃∃-L1)

Γ =⇒ P[a/α] ∀ a :A→PropX
Γ =⇒∀∀α :A→PropX.P

(∀∀-R2)
a :A→PropX Γ =⇒ P[a/α]

Γ =⇒∃∃α :A→PropX.P
(∃∃-R2)

B :A Γ =⇒ P[B/x][µµα :A→ PropX .λx :A.P/α]
Γ =⇒ (µµ α :A→PropX.λx :A.P B)

(µ-R)

Figure A.4: Sequent style validity rules
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the proof. We use structural induction in most of the proof. The full proof has been mech-

anized in the Coq proof assistant.

Theorem A.3 (Soundness of Normal Deductions)

1. If Γ `Ψ,Φ P ⇑ then Γ `Ψ,Φ P, and

2. if Γ `Ψ,Φ P ↓ then Γ `Ψ,Φ P.

Theorem A.4 (Soundness of Annotated Deductions)

1. If Γ `+
Ψ,Φ P ⇑ then Γ `Ψ,Φ P, and

2. if Γ `+
Ψ,Φ P ↓ then Γ `Ψ,Φ P.

Theorem A.5 (Completeness of Annotated Deductions)

1. If Γ `Ψ,Φ P then Γ `+
Ψ,Φ P ⇑, and

2. if Γ `Ψ,Φ P then Γ `+
Ψ,Φ P ↓.

Theorem A.6 (Soundness of Sequent Calculus)

If Γ =⇒Ψ,Φ P then Γ `Ψ,Φ P ⇑.

Theorem A.7 (Completeness of Sequent Derivations)

1. If Γ `Ψ,Φ P ⇑ then Γ =⇒Ψ,Φ P, and

2. if Γ `Ψ,Φ P ↓ and Γ,P =⇒Ψ,Φ Q then Γ =⇒Ψ,Φ Q.

Theorem A.8 (Soundness of Sequent Calculus with Cut)

If Γ =⇒+
Ψ,Φ P then Γ `+

Ψ,Φ P ⇑.

Theorem A.9 (Completeness of Sequent Calculus with Cut)

1. If Γ `+
Ψ,Φ P ⇑ then Γ =⇒+

Ψ,Φ P, and

2. if Γ `+
Ψ,Φ P ↓ and Γ,P =⇒+

Ψ,Φ Q then Γ =⇒+
Ψ,Φ Q.
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Theorem A.10 (Admissibility of Cut)

If Γ =⇒Ψ,Φ P and Γ,P =⇒Ψ,Φ Q then Γ =⇒Ψ,Φ Q.

Theorem A.11 (Cut Elimination)

If Γ =⇒+
Ψ,Φ P then Γ =⇒Ψ,Φ P.

Theorem A.12 (Normalization for Natural Deduction)

If Γ `Ψ,Φ P then Γ `Ψ,Φ P ⇑.

A special form of the above theorem is “if [[P ]]Ψ,Φ then · `Ψ,Φ P ⇑”. The soundness of

PropX interpretation (Theorem A.1) can be proved using this theorem.
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Appendix B

XCAP Soundness Proof

Due to the usage of simple semantic subsumptions (⇒ and ⇒c, defined using logical im-

plication ⊃, as in Figure 3.3 and Figure 6.4), it is straight-forward to prove the soundness

of XCAP inference rules using the syntactic soundness approach proposed by Wright and

Felleisen [59]. In this section, we present the proof sketch for the soundness of XCAP, as

discussed in Chapter 3, Chapter 4, and Chapter 5.

Lemma B.1 (XCAP Instruction Sequence Weakening)

If Ψ `{a}I, Ψ⊆Ψ′, and a′⇒a then Ψ′ `{a′}I.
Proof Sketch. The proof is by induction over the derivation Ψ `{a}I, named as D.

Case SEQ. The derivation D has the form

a⇒c a′′ Ψ `{a′′}I′
Ψ `{a}c;I′

We have

1. from a⇒a′ and a⇒c a′′ it follows that a′⇒c a′′;

2. from Ψ `{a′′}I′ by the induction hypodissertation it follows that Ψ′ `{a′′}I′.

Case JD. The derivation D has the form

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jd f
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From a⇒a′ and a⇒Ψ(f) it follows that a′⇒Ψ(f).

Case BGTI. The derivation D has the form

(λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′′ Ψ `{a′′}I′
(λ(H,R).〈R(rs)> i〉 ∧∧ a (H,R))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a}bgti rs, i,f;I′

We have

1. from a⇒a′ and (λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′′ it follows that

(λ(H,R).〈R(rs)≤ i〉 ∧∧ a′ (H,R))⇒ a′′;

2. from Ψ `{a′′}I′ and the induction hypodissertation it follows that Ψ′ `{a′′}I′;

3. from a⇒a′ and (λ(H,R).〈R(rs)> i〉 ∧∧ a (H,R))⇒Ψ(f) it follows that

(λ(H,R).〈R(rs)> i〉 ∧∧ a′ (H,R))⇒Ψ(f).

Case JMP. The derivation D has the form

a⇒ (λ(H,R).a′′ (H,R) ∧∧ cptr(R(r),a′′))
Ψ `{a} jmp r

From a⇒a′ and a⇒ (λ(H,R).a′′ (H,R) ∧∧ cptr(R(r),a′′)) it follows that

a′⇒ (λ(H,R).a′′ (H,R) ∧∧ cptr(R(r),a′′)).

Case ECP. The derivation D has the form

(λS.cptr(f,Ψ(f))∧∧a S)⇒ a′′ f∈dom(Ψ) Ψ `{a′′}I
Ψ `{a}I

We have

1. from a⇒a′ and (λS.cptr(f,Ψ(f))∧∧a S)⇒ a′′ it follows that

(λS.cptr(f,Ψ(f))∧∧a′ S)⇒ a′′;

2. from Ψ `{a′′}I by the induction hypodissertation it follows that Ψ′ `{a′′}I. ¥

Lemma B.2 (XCAP Code Heap Typing)

If ΨIN ` C :Ψ and f∈dom(Ψ) then f∈dom(C) and ΨIN `{Ψ(f)}C(f).

Proof Sketch. The proof is by induction over the derivation ΨIN ` C :Ψ.

Case CDHP. The derivation has the form
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ΨIN `{ai}Ii ∀fi

ΨIN ` {f1 ;I1, . . . ,fn ;In} :{f1 ;a1, . . . ,fn ;an}

From f∈dom(Ψ) it follows that f∈dom(C) and ΨIN `{Ψ(f)}C(f).

Case LINK. The derivation has the form

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2

From dom(C1)∩dom(C2)= /0 it follows that dom(Ψ1)∩dom(Ψ2)= /0. Then from f∈dom(Ψ)

it follows that f∈dom(Ψi), where i could be either 1 or 2. From ΨIN i ` Ci :Ψi by the

induction hypodissertation it follows that f∈dom(Ci) and ΨIN i `{Ψi(f)}Ci(f).

From f∈dom(Ci) it follows that f∈dom(C1∪C2).

From ΨIN i `{Ψi(f)}Ci(f) and Instruction Sequence Weakening (Lemma B.1) it

follows that ΨIN 1∪ΨIN 2 `{Ψ1∪Ψ2(f)}C1∪C2(f). ¥

Lemma B.3 (XCAP State Typing)

If ΨIN ` C :Ψ and [[cptr(f,a) ]]Ψ then f∈dom(C) and ΨIN `{a}C(f).

Proof Sketch. From [[cptr(f,a) ]]Ψ by PropX Validity Soundness (Lemma A.1) it follows that

f∈dom(Ψ) and Ψ(f)=a. By Code Heap Typing (Lemma B.2) it follows that f∈dom(C)

and ΨIN `{a}C(f). ¥

Lemma B.4 (XCAP Progress)

If ΨG `{a}P, then there exists a program P′ such that P 7−→ P′.

Proof Sketch. Derivation ΨG `{a}P has the following form.

ΨG ` C :ΨG ([[a ]]ΨG
S) ΨG `{a}I

ΨG `{a}(C,S,I)

The proof is by induction over derivation ΨG `{a}I.
Case SEQ, JD, BGTI and JMP. the proof is by simple inspections.

Case ECP. The proof is by the induction hypodissertation. ¥

Lemma B.5 (XCAP Preservation)

If ΨG `{a}P and P 7−→ P′ then there exists an assertion a′ such that ΨG `{a′}P′.
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Proof Sketch. Suppose P= (C,(H,R),I). We name derivation ΨG `{a}P as D , which has

the following form.

ΨG ` C :ΨG ([[a ]]ΨG
(H,R)) ΨG `{a}I

ΨG `{a}(C,(H,R),I)

The proof is by induction over the derivation ΨG `{a}I, named as E .

Case SEQ. The derivation E has the form

a⇒c a′ ΨG `{a′}I′
ΨG `{a}c;I′

By the operational semantics, P′ = (C,Nextc(H,R),I′). Then

1. ΨG ` C :ΨG is in D;

2. from ([[a ]]ΨG
(H,R)) and a⇒c a′ it follows that ([[a′ ]]ΨG

Nextc(H,R));

3. ΨG `{a′}I′ is in E .

Case JD. The derivation E has the form

a⇒ΨG(f) f∈dom(ΨG)
ΨG `{a} jd f

By the operational semantics, P′ = (C,(H,R),C(f)). Then

1. ΨG ` C :ΨG is in D;

2. from ([[a ]]ΨG
(H,R)) and a⇒ΨG(f) it follows that ([[ΨG(f) ]]ΨG

(H,R));

3. by ΨG ` C :ΨG , f∈dom(ΨG), and Code Heap Typing (Lemma B.2) it follows that

ΨG `{ΨG(f)}C(f).

Case BGTI. The derivation E has the form

(λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′ ΨG `{a′}I′
(λ(H,R).〈R(rs)> i〉 ∧∧ a (H,R))⇒ΨG(f) f∈ dom(ΨG)

ΨG `{a}bgti rs, i,f;I′

By the operational semantics, when R(rs)> i, P′ = (C,(H,R),C(f)). Then
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1. ΨG ` C :ΨG is in D;

2. from ([[a ]]ΨG
(H,R)) and (λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′ it follows that

([[ΨG(f) ]]ΨG
(H,R));

3. by ΨG ` C :ΨG , f∈dom(ΨG), and Code Heap Typing (Lemma B.2) it follows that

ΨG `{ΨG(f)}C(f).

By the operational semantics, when R(rs)≤ i, P′ = (C,(H,R),I′). Then

1. ΨG ` C :ΨG is in D;

2. from ([[a ]]ΨG
(H,R)) and (λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′ it follows that

([[a′ ]]ΨG
(H,R));

3. ΨG `{a′}I′ is in E .

Case JMP. The derivation E has the form

a⇒ (λ(H,R).a′ (H,R) ∧∧ cptr(R(r),a′))
ΨG `{a} jmp r

From ([[a ]]ΨG
(H,R)) and a⇒ (λ(H,R).a′ (H,R) ∧∧ cptr(R(r),a′)) it follows that

[[a′ ]]ΨG
(H,R) and [[cptr(R(r),a′) ]]ΨG

.

By the operational semantics, P′ = (C,(H,R),C(R(r))). Then

1. ΨG ` C :ΨG is in D;

2. ([[a′ ]]ΨG
(H,R)) is from above;

3. by ΨG ` C :ΨG , [[cptr(R(r),a′) ]]ΨG
, and State Typing (Lemma B.3) it follows that

ΨG `{a′}C(R(r)).

Case ECP. The derivation E has the form

(λS.cptr(f,APPΨGf)∧∧a S)⇒ a′ f∈dom(ΨG) ΨG `{a′}I
ΨG `{a}I
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From ([[a ]]ΨG
(H,R)), (λS.cptr(f,ΨG(f))∧∧a S)⇒ a′, and f∈dom(ΨG) it follows that

([[a′ ]]ΨG
(H,R)). Together with ΨG `{a′}I, the prove is completed by using the induction

hypodissertation. ¥

Theorem B.6 (XCAP Soundness)

If ΨG `{a}P, then for all natural number n, there exists a program P′ such that P 7−→n P′.

Proof Sketch. By simple induction on n and using Progress (Lemma B.4) and Perservation

(Lemma B.5). ¥
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Appendix C

TAL to XCAP Translation Typing

Preservation Proof

In this section, we present the proof for the typing preservation theorem of the translation

from TAL to XCAP in Chapter 5. Here TAL is as defined in Section 5.2, not the “semantic”

one in Section 5.3.

Lemma C.1 (Value Typing Preservation)

If Ψ;Φ `TAL w :τ then [[pτq w ]]pΨq,pΦq.

Proof Sketch. By induction on derivation Ψ;Φ `TAL w :τ.

Case INT. The derivation has the form

Ψ;Φ `TAL w : int

We have pintq = λw.True, Trivial.

Case CODE. The derivation has the form

f∈dom(Ψ)
Ψ;Φ `TAL f :code Ψ(f)

We have pcode Ψ(f)q = λw.codeptr(w,pΨ(f)q) = λw.codeptr(w,pΨq(f)), Trivial.

Case POLY. The derivation has the form

· ` τ′ Ψ;Φ `TAL f :code [α,∆].Γ
Ψ;Φ `TAL f :code [∆].Γ[τ′/α]
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We have pcode [∆].Γ[τ′/α]q = λw.codeptr(w,p[∆].Γ[τ′/α]q) = λw.codeptr(w,∃∃∆.pΓ[τ′/α]q).

By the induction hypodissertation it follows that [[pcode [α,∆].Γq w ]]pΨq,pΦq, and then

[[codeptr(w,∃∃α,∆.pΓq) ]]pΨq,pΦq.

It is easy to show [[∀∀S.∃∃∆.pΓ[τ′/α]q S →→ ∃∃α,∆.pΓq S ]]pΨq,pΦq. IT then follows that

[[codeptr(w,∃∃∆.pΓ[τ′/α]q) ]]pΨq,pΦq.

Case TUPLE. The derivation has the form

Φ(l+i−1)=τi ∀ i
Ψ;Φ `TAL l :〈τ1, . . . ,τn〉

We have p〈τ1, . . . ,τn〉q = λw. record(w,pτ1q, . . . ,pτnq)

= λw. ref(w,pτ1q)∧∧ . . . ∧∧ ref(w+n−1,pτnq).

= λw. ref(w,pΦ(w)q)∧∧ . . . ∧∧ ref(w+n−1,pΦ(w+n−1)q).

= λw. ref(w,pΦq(w))∧∧ . . . ∧∧ ref(w+n−1,pΦq(w+n−1)).

Trivial.

Case EXT. The derivation has the form

· ` τ′ Ψ;Φ `TAL w :τ[τ′/α]
Ψ;Φ `TAL w :∃α.τ

We have p∃α.τq = λw.∃∃α.pτq w. By the induction hypodissertation it follows that

[[pτ[τ′/α]q w ]]pΨq,pΦq. It then follows that [[∃∃α.pτq w ]]pΨq,pΦq.

Case ALL. The derivation has the form

Ψ;Φ `TAL w :τ[µα.τ/α]
Ψ;Φ `TAL w :µα.τ

We have pµα.τq = λw.(µµ α.λx.(pτq x) w). By the induction hypodissertation it follows

that [[pτ[µα.τ/α]q w ]]pΨq,pΦq. It then follows that [[ (µµ α.λx.(pτq x) w) ]]pΨq,pΦq. ¥

Lemma C.2 (Register File Typing Preservation)

If Ψ;Φ `TAL R :Γ then [[p[].Γq (H,R) ]]pΨq,pΦq.

Proof Sketch. Derivation Ψ;Φ `TAL R :Γ has the form

Ψ;Φ `TAL R(ri) :τi ∀ i
Ψ;Φ `TAL R :{r1 ;τ1, . . . ,rn ;τn}
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We have p[].Γq = λ(H,R).(pτ1q R(r1))∧∧ . . . ∧∧(pτnq R(rn)).

From Ψ;Φ `TAL R(ri) :τi by Value Typing Preservation (Lemma C.1) it follows that

[[pτiq R(ri) ]]pΨq,pΦq. ¥

Lemma C.3 (Data Heap Typing Preservation)

If Ψ `TAL H :Φ then DH pΨq pΦq H.

Proof Sketch. Derivation Ψ `TAL H :Φ has the form

Ψ;Φ `TAL H(l) :Φ(l) ∀ l∈dom(Φ)=dom(H)
Ψ `TAL H :Φ

We have DH pΨq pΦq H = ∀l∈dom(Φ)=dom(H). [[Φ(l) H(l) ]]Ψ,Φ.

From Ψ;Φ `TAL H(l) :Φ(l) by Value Typing Preservation (Lemma C.1) it follows that

[[pΦ(l)q H(l) ]]pΨq,pΦq. ¥

Lemma C.4 (State Typing Preservation)

If Ψ `TAL S : [∆].Γ then [[p[∆].Γq ]]pΨq S.

Proof Sketch. Derivation Ψ `TAL S : [∆].Γ has the form

· ` τi ∀ i Ψ `TAL H :Φ Ψ;Φ `TAL R :Γ[τ1, . . . ,τn/α1, . . . ,αn]
Ψ `TAL (H,R) : [α1, . . . ,αn].Γ

From Ψ `TAL H :Φ by Data Heap Typing Preservation (Lemma C.3) it follows that

DH pΨq pΦq H.

From Ψ;Φ `TAL R :Γ[τ1, . . . ,τn/α1, . . . ,αn] by Register File Typing Preservation

(Lemma C.2) it follows that [[pΓ[τ1, . . . ,τn/α1, . . . ,αn]q ({},R) ]]pΨq,pΦq. It then follows that

[[p[α1, . . . ,αn].Γq ({},R) ]]pΨq,pΦq.

Finally, it follows that [[p[α1, . . . ,αn].Γq ]]pΨq (H,R). ¥

Lemma C.5 (Subtyping Preservation)

If `TAL [∆].Γ≤ [∆′].Γ′ then p[∆].Γq⇒ p[∆′].Γ′q.

Proof Sketch. By casing derivation `TAL [∆].Γ≤ [∆′].Γ′.

Case SUBT. The derivation has the form
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∆⊇ ∆′ ∀ r∈dom(Γ′) Γ(r)=Γ′(r) ∆′ ` Γ′(r)
`TAL [∆].Γ≤ [∆′].Γ′

We have p[∆].Γq = λS.∃∃∆.pΓq S and p[∆′].Γ′q = λS.∃∃∆′.pΓ′q S. Trivial.

Case TAPP. The derivation has the form

Γ(r)=code [α,∆′].Γ′ ∆ ` τ′

`TAL [∆].Γ≤ [∆].Γ{r :code [∆′].Γ′[τ′/α]}

Suppose Γ = Γ′′∪{r ; code [α,∆′].Γ′}.

We have p[∆].Γq = λS.∃∃∆.pΓq S= λS.∃∃∆.pΓ′′q S∧ codeptr(S.R(r),∃∃α,∆′.Γ′) and

pcode [∆′].Γ′[τ′/α]q = λS.∃∃∆.pΓq S= λS.∃∃∆.pΓ′′q S∧ codeptr(S.R(r),∃∃∆′.Γ′[τ′/α]).

It is easy to show [[∀∀S.∃∃∆′.pΓ′[τ′/α]q S →→ ∃∃α,∆′.pΓ′q S ]]pΨq,pΦq. Trivial.

Case PACK. The derivation has the form

Γ(r)=τ[τ′/α] ∆ ` τ′

`TAL [∆].Γ≤ [∆].Γ{r :∃α.τ}

Suppose Γ = Γ′′∪{r ; τ[τ′/α]}.

We have p[∆].Γq = λS.∃∃∆.pΓ′′q S∧pτ[τ′/α]q S.R(r) and

p[∆].Γ{r :∃α.τ}q = λS.∃∃∆.pΓ′′q S∧∃∃α.pτq S.R(r). Trivial.

Case UNPACK. The derivation has the form

Γ(r)=∃α.τ
`TAL [∆].Γ≤ [α,∆].Γ{r :τ}

Suppose Γ = Γ′′∪{r ; ∃α.τ}.

We have p[∆].Γq = λS.∃∃∆.pΓ′′q S∧∃∃α.pτq S.R(r) and

p[α,∆].Γ{r :τ}q = λS.∃∃α,∆.pΓ′′q S∧pτ[τ′/α]q S.R(r). Trivial.

Case FOLD. The derivation has the form

Γ(r)=τ[µα.τ/α]
`TAL [∆].Γ≤ [∆].Γ{r :µα.τ}

Suppose Γ = Γ′′∪{r ; τ[µα.τ/α]}.

We have p[∆].Γq = λS.∃∃∆.pΓ′′q S∧pτ[µα.τ/α]q S.R(r) and

p[∆].Γ{r :µα.τ}q = λS.∃∃∆.pΓ′′q S∧ (µµ α.λx.pτq x S.R(r)). Trivial.

Case UNFOLD. The derivation has the form
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Γ(r)=µα.τ
`TAL [∆].Γ≤ [∆].Γ{r :τ[µα.τ/α]}

Suppose Γ = Γ′′∪{r ; µα.τ}.

We have p[∆].Γq = λS.∃∃∆.pΓ′′q S∧ (µµ α.λx.pτq x S.R(r)) and

pΓ{r :τ[µα.τ/α]}q = λS.∃∃∆.pΓ′′q S∧pτ[µα.τ/α]q S.R(r). Trivial. ¥

Lemma C.6 (Instruction Typing Preservation)

If Ψ `TAL {Γ}c{Γ′} then p[∆].ΓqΨ ⇒c p[∆].Γ′q.

Proof Sketch. By casing on derivation Ψ `TAL {Γ}c{Γ′}. Trivial. ¥

Lemma C.7 (Instruction Sequence Typing Preservation)

If Ψ `TAL {[∆].Γ}I then pΨq `XCAP {p[∆].Γq}I.
Proof Sketch. By induction over derivation Ψ `TAL {[∆].Γ}I.
case WEAKEN. The derivation has the form

`TAL [∆].Γ≤ [∆′].Γ′ Ψ `TAL {[∆′].Γ′}I
Ψ `TAL {[∆].Γ}I

By induction hypodissertation it follows that pΨq `XCAP {p[∆′].Γ′q}I. By Subtyping

Preservation (Lemma C.5) it follows that p[∆].Γq⇒ p[∆′].Γ′q. The by XCAP Instruction

Sequence Weakening (Lemma B.1) it follows that pΨq `XCAP {p[∆].Γq}I.
case SEQ. The derivation has the form

Ψ `TAL {Γ}c{Γ′} Ψ `TAL {[∆].Γ′}I c∈{add,addi,mov,movi, ld,st}
Ψ `TAL {[∆].Γ}c;I

By induction hypodissertation it follows that pΨq `XCAP {p[∆].Γ′q}I. By Instruction

Typing Preservation (Lemma C.6) it follows that p[∆].ΓqΨ ⇒c p[∆].Γ′q. By XCAP rule

SEQ it follows that pΨq `XCAP {p[∆].Γq}c;I.

case JD. The derivation has the form

f∈dom(Ψ) `TAL [∆].Γ≤Ψ(f)
Ψ `TAL {[∆].Γ}jd f

By Subtyping Preservation (Lemma C.5) it follows that p[∆].Γq⇒ pΨ(f)q, and then

p[∆].Γq⇒ pΨq(f). By XCAP rule JD it follows that pΨq `XCAP {p[∆].Γq}jd f.

case JMP. The derivation has the form
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Γ(r)=code [∆′].Γ′ `TAL [∆].Γ≤ [∆′].Γ′

Ψ `TAL {[∆].Γ}jmp r

By translation it follows that p[∆].Γq⇒ λ(H,R).cptr(R(r),p[∆′].Γ′q). By Subtyping

Preservation (Lemma C.5) it follows that p[∆].Γq⇒ p[∆′].Γ′q. By XCAP rule JMP it

follows that pΨq `XCAP {p[∆].Γq}jmp r.

case MOVF. The derivation has the form

f∈dom(Ψ) Ψ `TAL {[∆].Γ{rd ;code Ψ(f)}}I
Ψ `TAL {[∆].Γ}movi rd ,f;I

By induction hypodissertation it follows that pΨq `XCAP {p[∆].Γ{rd ;code Ψ(f)}q}I. By

XCAP rule ECP and SEQ it follows that pΨq `XCAP {p[∆].Γq}movi rd ,f;I. ¥

Lemma C.8 (Code Heap Typing Preservation)

If ΨIN `TAL C :Ψ then pΨIN q `XCAP C :pΨq.

Proof Sketch. By induction on derivation ΨIN `TAL C :Ψ.

case CDHP. The derivation has the form

ΨIN `TAL {Ψ(f)}C(f) ∀f∈dom(Ψ)
ΨIN `TAL C :Ψ

From ΨIN `TAL {Ψ(f)}C(f) by Instruction Sequence Typing Preservation (Lemma C.7) it

follows that pΨIN q `XCAP {pΨq(f)}C(f).

case LINK. The derivation has the form

ΨIN 1 `TAL C1 :Ψ1 ΨIN 2 `TAL C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 `TAL C1∪C2 :Ψ1∪Ψ2

From ΨIN i `TAL Ci :Ψi by Instruction Sequence Typing Preservation (Lemma C.7) it

follows that pΨIN iq `XCAP Ci :pΨiq. By XCAP rule LINK it follows that

pΨIN 1∪ΨIN 2q `XCAP C1∪C2 :pΨ1∪Ψ2q. ¥

Theorem C.9 (Program Typing Preservation)

If Ψ `TAL {[∆].Γ}P then pΨq `XCAP {p[∆].Γq}P.

Proof Sketch. Derivation Ψ `TAL {[∆].Γ}P has the form
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ΨG `TAL C :ΨG ΨG `TAL S : [∆].Γ ΨG `TAL {[∆].Γ}I
ΨG `TAL {[∆].Γ}(C,S,I)

From ΨG `TAL C :ΨG by Code Heap Typing Preservation (Lemma C.8) it follows that

pΨGq `XCAP C :pΨGq.

From ΨG `TAL S : [∆].Γ by State Typing Preservation (Lemma C.4) it follows that

[[p[∆].Γq ]]pΨGq S.

From ΨG `TAL {[∆].Γ}I by Instruction Sequence Typing Preservation (Lemma C.7) it

follows that ΨG `XCAP {[∆].Γ}I. ¥
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Appendix D

XCAP86 Soundness Proof

Following the soundness proof of the XCAP in Appendix B, we present the soundness

proof of XCAP86 discussed in Chapter 6.

Lemma D.1 (XCAP86 Instruction Sequence Weakening)

If Ψ `{a}I, Ψ⊆Ψ′, and a′⇒a then Ψ′ `{a′}I.
Proof Sketch. The proof is by induction over the derivation Ψ `{a}I, named as D.

Case SEQ. The derivation D has the form

a⇒c a′′ Ψ `{a′′}I′
Ψ `{a}c;I′

We have

1. from a⇒a′ and a⇒c a′′ it follows that a′⇒c a′′;

2. from Ψ `{a′′}I′ by the induction hypodissertation it follows that Ψ′ `{a′′}I′.

Case JMPI. The derivation D has the form

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jmp f

From a⇒a′ and a⇒Ψ(f) it follows that a′⇒Ψ(f).

Case JCC. The derivation D has the form
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(λ(H,R,F).〈¬F̂(cc)〉 ∧∧ a (H,R,F))⇒ a′′ Ψ `{a′′}I′

(λ(H,R,F).〈F̂(cc)〉 ∧∧ a (H,R,F))⇒Ψ(f) f∈ dom(Ψ)
Ψ `{a} jcc f;I′

We have

1. from a⇒a′ and (λ(H,R,F).〈¬F̂(cc)〉 ∧∧ a (H,R,F))⇒ a′′ it follows that

(λ(H,R,F).〈¬F̂(cc)〉 ∧∧ a′ (H,R,F))⇒ a′′;

2. from Ψ `{a′′}I′ and the induction hypodissertation it follows that Ψ′ `{a′′}I′;

3. from a⇒a′ and (λ(H,R,F).〈F̂(cc)〉 ∧∧ a (H,R,F))⇒Ψ(f) it follows that

(λ(H,R,F).〈F̂(cc)〉 ∧∧ a′ (H,R,F))⇒Ψ(f).

Case JMPR. The derivation D has the form

a⇒ λ(H,R,F). cptr(R(r),a′′) a⇒ a′′

Ψ `{a} jmp r

From a⇒a′, a⇒ λ(H,R,F). cptr(R(r),a′), and a⇒ a′′ it follows that

a′⇒ λ(H,R,F). cptr(R(r),a′), and a′⇒ a′′.

Case ECP. The derivation D has the form

(λS.cptr(f,Ψ(f))∧∧a S)⇒ a′′ f∈dom(Ψ) Ψ `{a′′}I
Ψ `{a}I

We have

1. from a⇒a′ and (λS.cptr(f,Ψ(f))∧∧a S)⇒ a′′ it follows that

(λS.cptr(f,Ψ(f))∧∧a′ S)⇒ a′′;

2. from Ψ `{a′′}I by the induction hypodissertation it follows that Ψ′ `{a′′}I.

Case CALLI. The derivation D has the form

a⇒push fret
Ψ(f) f∈dom(Ψ)

Ψ `{a}call f; [fret ]

From a⇒a′ and a⇒push fret
Ψ(f), it follows that a′⇒push fret

Ψ(f).

Case CALLR. The derivation D has the form
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a⇒ λ(H,R,F).cptr(R(r),a′′) a⇒push fret
a′′

Ψ `{a}call r; [fret ]

From a⇒a′, a⇒ λ(H,R,F).cptr(R(r),a′′), and a⇒push fret
a′′, it follows that

a′⇒ λ(H,R,F).cptr(R(r),a′′), and a′⇒push fret
a′′.

Case RET. The derivation D has the form

a⇒ λ(H,R,F).cptr(H(R(esp)),a′′) a⇒pop a′′

Ψ `{a} ret

From a⇒a′, a⇒ λ(H,R,F).cptr(H(R(esp)),a′′), and a⇒pop a′′, it follows that

a′⇒ λ(H,R,F).cptr(H(R(esp)),a′′), and a′⇒pop a′′. ¥

Lemma D.2 (XCAP86 Code Heap Typing)

If ΨIN ` C :Ψ and f∈dom(Ψ) then f∈dom(C) and ΨIN `{Ψ(f)}C(f).

Proof Sketch. The proof is same as the XCAP Code Heap Typing (Lemma B.2). ¥

Lemma D.3 (XCAP86 State Typing)

If ΨIN ` C :Ψ and [[cptr(f,a) ]]Ψ then f∈dom(C) and ΨIN `{a}C(f).

Proof Sketch. The proof is same as the XCAP State Typing (Lemma B.3). ¥

Lemma D.4 (XCAP86 Progress)

If ΨG `{a}P, then there exists a program P′ such that P 7−→ P′.

Proof Sketch. Derivation ΨG `{a}P has the following form.

ΨG ` C :ΨG ((DC(C)∗ [[a ]]ΨG
) S) lookup(C, pc,I) ΨG `{a}I

ΨG `{a}(S, pc)

The proof is by induction over derivation ΨG `{a}I.
Case SEQ, JMPI, JCC, JMPR, CALLI, CALLR, and RET. the proof is by simple inspections.

Case ECP. The proof is by the induction hypodissertation. ¥

Lemma D.5 (XCAP86 Preservation)

If ΨG `{a}P and P 7−→ P′ then there exists an assertion a′ such that ΨG `{a′}P′.
Proof Sketch. Suppose P= ((H,R,F), pc). We name derivation ΨG `{a}P as D , which

has the following form.
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ΨG ` C :ΨG ((DC(C)∗ [[a ]]ΨG
) (H,R,F)) lookup(C, pc,I) ΨG `{a}I

ΨG `{a}((H,R,F), pc)

The proof is by induction over the derivation ΨG `{a}I, named as E .

Case SEQ. The derivation E has the form

a⇒c a′ ΨG `{a′}I′
ΨG `{a}c;I′

By the operational semantics, P′ = (Nextc(H,R,F),npc). Then

1. ΨG ` C :ΨG is in D;

2. from ((DC(C)∗ [[a ]]ΨG
) (H,R,F)) and a⇒c a′ it follows that

((DC(C)∗ [[a′ ]]ΨG
) Nextc(H,R,F));

3. from lookup(C, pc,I) and Dc(H, pc)=(c,npc) it follows lookup(C,npc,I′);

4. ΨG `{a′}I′ is in E .

Case JMPI. The derivation E has the form

a⇒ΨG(f) f∈dom(ΨG)
ΨG `{a} jmp f

By the operational semantics, P′ = ((H,R,F),f). Then

1. ΨG ` C :ΨG is in D;

2. from ((DC(C)∗ [[a ]]ΨG
) (H,R,F)) and a⇒ΨG(f) it follows that

((DC(C)∗ [[ΨG(f) ]]ΨG
) (H,R,F));

3. from f∈dom(ΨG) and ΨG ` C :ΨG by Code Heap Typing (Lemma D.2) it follows

that f∈dom(C), and it follows that lookup(C,f,C(f));

4. from f∈dom(ΨG) and ΨG ` C :ΨG by Code Heap Typing (Lemma D.2) it follows

that ΨG `{ΨG(f)}C(f).

Case JCC. The derivation E has the form
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(λ(H,R,F).〈¬F̂(cc)〉 ∧∧ a (H,R,F))⇒ a′ ΨG `{a′}I′

(λ(H,R,F).〈F̂(cc)〉 ∧∧ a (H,R,F))⇒ΨG(f) f∈ dom(ΨG)
ΨG `{a} jcc f;I′

By the operational semantics, when F̂(cc), P′ = ((H,R,F),f). Then

1. ΨG ` C :ΨG is in D;

2. from ((DC(C)∗ [[a ]]ΨG
) (H,R,F)) and (λ(H,R,F).〈F̂(cc)〉 ∧∧ a (H,R,F))⇒ΨG(f) it

follows that ((DC(C)∗ [[ΨG(f) ]]ΨG
) (H,R,F));

3. from f∈dom(ΨG) and ΨG ` C :ΨG by Code Heap Typing (Lemma D.2) it follows

that f∈dom(C), and it follows that lookup(C,f,C(f));

4. from f∈dom(ΨG) and ΨG ` C :ΨG by Code Heap Typing (Lemma D.2) it follows

that ΨG `{ΨG(f)}C(f).

By the operational semantics, when ¬F̂(cc), P′ = ((H,R,F),npc). Then

1. ΨG ` C :ΨG is in D;

2. from ((DC(C)∗ [[a ]]ΨG
) (H,R,F)) and (λ(H,R,F).〈¬F̂(cc)〉 ∧∧ a (H,R,F))⇒ a′ it

follows that ((DC(C)∗ [[a′ ]]ΨG
) (H,R,F));

3. from lookup(C, pc,I) and Dc(H, pc)=(c,npc) it follows lookup(C,npc,I′);

4. ΨG `{a′}I′ is in E .

Case JMPR. The derivation E has the form

a⇒ λ(H,R,F). cptr(R(r),a′) a⇒ a′

ΨG `{a} jmp r

From ((DC(C)∗ [[a ]]ΨG
) (H,R,F)), a⇒ λ(H,R,F). cptr(R(r),a′) and a⇒ a′ it follows that

((DC(C)∗ [[a′ ]]ΨG
) (H,R,F)) and [[cptr(R(r),a′) ]]ΨG

.

By the operational semantics, P′ = ((H,R,F),R(r)). Then

1. ΨG ` C :ΨG is in D;
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2. ((DC(C)∗ [[a′ ]]ΨG
) (H,R,F)) is from above;

3. by ΨG ` C :ΨG , [[cptr(R(r),a′) ]]ΨG
, and State Typing (Lemma D.3) it follows that

R(r)∈dom(C), and it follows that lookup(C,R(r),C(R(r)));

4. by ΨG ` C :ΨG , [[cptr(R(r),a′) ]]ΨG
, and State Typing (Lemma D.3) it follows that

ΨG `{a′}R(r).

Case ECP. The derivation E has the form

(λS.cptr(f,ΨG(f))∧∧a S)⇒ a′ f∈dom(ΨG) ΨG `{a′}I
ΨG `{a}I

From ((DC(C)∗ [[a ]]ΨG
) (H,R,F)), (λS.cptr(f,ΨG(f))∧∧a S)⇒ a′, and f∈dom(ΨG) it

follows that ((DC(C)∗ [[a′ ]]ΨG
) (H,R,F)). Together with ΨG `{a′}I, the prove is

completed by using the induction hypodissertation.

Case CALLI. The derivation E has the form

a⇒push fret
ΨG(f) f∈dom(ΨG)

ΨG `{a}call f; [fret ]

By the operational semantics, P′ = (Nextpush fret
(H,R,F),f). Then

1. ΨG ` C :ΨG is in D;

2. from ((DC(C)∗ [[a ]]ΨG
) (H,R,F)) and a⇒push fret

ΨG(f) it follows that

((DC(C)∗ [[ΨG(f) ]]ΨG
) Nextpush fret

(H,R,F));

3. from f∈dom(ΨG) and ΨG ` C :ΨG by Code Heap Typing (Lemma D.2) it follows

that f∈dom(C), and it follows that lookup(C,f,C(f));

4. from f∈dom(ΨG) and ΨG ` C :ΨG by Code Heap Typing (Lemma D.2) it follows

that ΨG `{ΨG(f)}C(f).

Case CALLR. The derivation E has the form

a⇒ λ(H,R,F).cptr(R(r),a′) a⇒push fret
a′

ΨG `{a}call r; [fret ]
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From ((DC(C)∗ [[a ]]ΨG
) (H,R,F)), a⇒ λ(H,R,F).cptr(R(r),a′) and a⇒push fret

a′ it follows

that [[cptr(R(r),a′) ]]ΨG
and ((DC(C)∗ [[a′ ]]ΨG

) Nextpush fret
(H,R,F)).

By the operational semantics, P′ = (Nextpush fret
(H,R,F),R(r)). Then

1. ΨG ` C :ΨG is in D;

2. ((DC(C)∗ [[a′ ]]ΨG
) Nextpush fret

(H,R,F)) is from above;

3. by ΨG ` C :ΨG , [[cptr(R(r),a′) ]]ΨG
, and State Typing (Lemma D.3) it follows that

R(r)∈dom(C), and it follows that lookup(C,R(r),C(R(r)));

4. by ΨG ` C :ΨG , [[cptr(R(r),a′) ]]ΨG
, and State Typing (Lemma D.3) it follows that

ΨG `{a′}C(R(r)).

Case RET. The derivation E has the form

a⇒ λ(H,R,F).cptr(H(R(esp)),a′) a⇒pop a′

Ψ `{a} ret

From ((DC(C)∗ [[a ]]ΨG
) (H,R,F)), a⇒ λ(H,R,F).cptr(H(R(esp)),a′) and a⇒pop a′ it

follows that [[cptr(H(R(esp)),a′) ]]ΨG
and ((DC(C)∗ [[a′ ]]ΨG

) Nextpop(H,R,F)).

By the operational semantics, P′ = (Nextpop(H,R,F),H(R(esp))). Then

1. ΨG ` C :ΨG is in D;

2. ((DC(C)∗ [[a′ ]]ΨG
) (H,R,F)) is from above;

3. by ΨG ` C :ΨG , [[cptr(H(R(esp)),a′) ]]ΨG
, and State Typing (Lemma D.3) it follows

that H(R(esp))∈dom(C), and it follows that lookup(C,H(R(esp)),C(H(R(esp))));

4. by ΨG ` C :ΨG , [[cptr(H(R(esp)),a′) ]]ΨG
, and State Typing (Lemma D.3) it follows

that ΨG `{a′}C(H(R(esp))). ¥

Theorem D.6 (XCAP86 Soundness)

If ΨG `{a}P, then for all natural number n, there exists a program P′ such that P 7−→n P′.

Proof Sketch. By simple induction on n and using Progress (Lemma D.4) and Perservation

(Lemma D.5). ¥
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