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Brain and Surface Warping via Minimizing Lipschitz Extemss

Facundo Mémoli Guillermo Sapiro Paul Thompson
Stanford University University of Minnesota UCLA
March 2005
Abstract nique! A few representative works can be found at

[5, 7, 8, 13, 14, 16, 30, 34, 36, 37, 40, 41], this list be-

Based on the notion Minimizing Lipschitz Extensions aniglg far from complete. In spite of this, the problem is
its connection with the infinity Laplacian, a computationatill open and widely studied, since there is not a “ground
framework for surface warping and in particular braittuth” method to obtain a map between brains. The cri-
warping (the nonlinear registration of brain imaging datagria for matching different features (e.g., geometry er in
is presented in this paper. The basic concept is to comnsity) may also depend on the applications, which range
pute a map between surfaces that minimizes a distortfom recovering intraoperative brain change to mapping
measure based on geodesic distances while respectingtiagh growth, or reducing cross-subject anatomical differ
boundary conditions provided. In particular, the globahces in group functional MRI studies.

Lipschitz constant of the map is minimized. This frame- The way the brain warping problem is addressed is
work allows generic boundary conditions to be appliegitical for studies of brain diseases that are based on
and allows direct surface-to-surface warping. It avoids tbopmaﬂon comparisons. Examples of this application
need for intermediate maps that flatten the surface ogigh pe found atl[4, 34], although these are a very non-
the plane or sphere, as is commonly done in the liteghaustive account of the rich literature on the subject.
ture on surface-based non-rigid brain image registratiothe interested reader may also che€k][for numer-
The presentation of the framework is complemented wigfyg applications of brain warping and population stud-
examples on synthetic geometric phantoms and cortigad,  As detailed in 7], brain warping approaches can
surfaces extracted from human brain MRI scans. be divided into two classes, those based on volume-to-
volume matching and those based on surface-to-surface
. matching. Our work belongs to the latter of the cate-
1 Introduction gories. Surface matching has recently received increas-
) ] o ) ) ing attention as most functional brain imaging studies fo-
Brain warping, a form of brain image registration angs on the cortex, which varies widely in geometry across
geometric pattern matching, is one of the most fundg;piects. The power of these studies depends on the de-
mental and thereby most studied problems in compufee to which the functional anatomy of the cortex can be
tional brain imaging 7). Brain images are commonlygjigned across subjects, so improved cortical surface reg-
warped, using 3-dimensional deformation fields, ontojgration has become a major goal. In contrast with flow
common neuroanatomic template prior to cross-subjgglsed works such as those i BO, 34], our motivation
comparison and integration of functional and anatomé 5< in I, 16,17, 18, 21, 38, 39, 47]. That is, we aim to
cal data. Images of the same subject may be warRgghpute a map that preserves certain pre-defined geomet-

into correspondence over time, to help analyze shagecharacteristics of the surfaces. While the literatuas h
changes during development or degenerative diseases. Al-

most all the active research groups in this area have detthjsincludes groups at JHU, UCLA, U. Penn., INRIA, MGH, GAT-
veloped and/or have their favorite brain warping tecEcH, Harvard-BW, and the University of Florida, to name jasew.




mainly attempted to preserve angles and areas, we wBrksuch thats(z;) = y; for 1 < i < N and such thap

with geodesic distances (see al§d]). Our work is in- produces minimal distortion according to some functional

spired by the literature on Lipschitz minimizing maps anfl. One possible way of interpreting this problem is that

in its connection to the infinite Laplacian. The motivatiowe are trying to extrapolate or extend the correspondence

for using these frameworks will be presented after sorfrem I'; to the whole of53; in such a way that we achieve

brief mathematical introduction below. small distortion.

In this paper we therefore introduce the use of Lip- A possible way to measure the distortion produced by

schitz minimizing maps into the area of computationalmapg is by computing the functionald K p < =)

brain imaging, presenting a theoretical and computational

framework complemented by examples with artificial and 1

real data. An additional critical contribution of the work p(9) = <m

here presented is that intermediate distorting maps to the

plane or sphere are avoided — these intermediate mappiwgere Dg, denotes differentiation intrinsic to the surface

are common practice in the brain warping literature.  3; andp is the area measure ¢h. One immediate idea
is then to consider, for a fixed € (1, ), the following
variational problem:

A ||Dsl¢>||5u<dx>)1/p W

2 Formal statement of the problem
_ ~ Problem 1 (minimizeJ,) Find ¢ € S such that
Let 5, and3; be two cortical surfaces (2D surfaces inthg (4) = inf s J, (1), whereS is a certain smoothness

three dimensional Euclidean space) which we considg4ss of maps from 53; to B, such that they respect the
smooth and endowed with the metric inherited fré  given boundary conditions(z;) = y; for all z; € T'.

so thatdp, anddg, are the geodesic distances measured

on By andB;, respectively. Let'; C By andl's C Bobe  The case) = 2 corresponds to the Dirichlet functional
subsets which represent features for which a correspgfd has connections with the theory of (standard) Har-
dence is already known. In general, the détsare the monic Maps. In more generality, it is customary to call
union of smooth curves traced on the surfaces, e.g., sulg@l solutions to Probler p-Harmonic Maps, see for ex-
beds lying between gyri, and/or a union of isolated pointsmple [L0, 20, 11]. Itis easy to show, under mild regular-

A set of anatomical landmarks that occur consistently jiy assumptions, that for a fixes J,(¢) is nondecreasing
all subjects can be reliably identified using standardizgd a function of, and that [.5]

anatomical protocols or automated sulcal labeling tech-
niques (see for example Brain VISA by Mangin and Riv- J.(¢) := lim J,(¢) = essup., [ D, ()|, (2)
iere and SEAL by Le Goualher). ptoo

Functional anatomy also varies with respect to Su'%hich is the Lipschitz constant o

Igndmark_s, but sulci t.yplcally.he atthe |r_1terfaces of ft_mc In this paper we propose to use the functiahal as a
tionally different cortical regions so aligning them im-

: ) . measure of distortion for maps between cortical surfaces
proves the registration of functionally homologous araMhd to solve the associated variational problem in order

As commonly done in brain Warp'”@_ﬂ' weassume that to find a candidate mapping between the cortical surfaces
a correspondence betwe€n andI'; is pre-specified to ‘

th bound dit f th In thi constrained by the provided boundary conditions).
e map ( oundary conditions of the map). In this col- I.et/: denote the space of all Lipschitz continuous maps
respondence, internal point correspondences may beé{a

: . " By — By such that)(z;) = y; for1 <i < N. We
g)i\;]vges teogre;s)]( along landmark curves in the final ma fen propose to solve the following problem:

To fix ideas let's assume thay = UL, ; andT> = problem 2 (minimizeJ.,) Find ¢ € £ such that
U, yi, and that the correspondence is giveniby- y; Joo(0) = infyer Joo ().
forl <i< N.

We want to find a (at least continuous) map B; — We now argue in favor of this functional.



21 WhyuseJ, ? 3 Proposed computational ap-

Our first argument is thal ., measures distortion in a proaCh
more global way than any of th&, for p € (1,0),
since instead of computing an averaged integral quantlfywe take for example the case pfHarmonic maps, one
we are looking at the supremum of the local distortiongay of dealing with the computation of the optimal map
IIDgs, #(x)|].. Note also that as stated aboJg, upper- ¢, is by implementing the geometricheat flow associ-
boundsJ, under mild regularity assumptions. ated with the Euler-Lagrange equation of the functional
Another element to consider is that this problem is well,, starting from a certain initial condition. As was ex-
posed for the kind of general boundary data we wantptained in P9, using an implicit representation for both
respect, provided both at curves and isolated points on theand 32, we could obtain the partial differential equa-
surfaces. At least for the cage< 2, this is not true in tion PDE, we need to solve in order to fing,. By tak-
general, se€ej. ing the formal limit asp 1 oo we would findPDE,
We are then looking for a Lipschitz extension of ththe PDE that characterizes the solutipg of the (varia-
map given af’; whose Lipschitz constant is as small aonal) Problem £).? All of this might work if we had a

possible. Let notion of solution for the resulting PDEs. Whereas this
is feasible in the case @DE, for 1 < p < oo, to the
L(Iy,T5) ;= max di; (yi,y5) 7 best of our knowledge, there is no such notion of a so-

@;2,€01 dp, (T4, ;) lution for PDE_,. One could of course still persist and

that is, the Lipschitz constant of the boundary data. Er _to solve th(_ese equations without the necessary theo-
retical foundations and call these plausible solutions

general, we will havenf e, Joo > L(I'1,T2). This . A . . ;
is related to Kirszbraun's Theorem, which in one of itlgarmonlc Maps. Nonetheless, this is certainly an inter

. . : p  esting line of research.
?agy %lﬂilsizsst::‘ez)?eits?o;piscﬂgl;z iﬁ%g vﬁtrﬁhé A different direction is considered in this work. As a

same Lipschitz constant &s see [.7]. In the same vein guiding example, we first concentrate on the case where

one has Whitney and McShane extensions which ap is any closed smooth manifold aiit} is replaced by

to the case when the domain is any metric sp&cand Jeriecsnszjlizr?: i (Ifﬁr anlt?]redgfﬁr:girp%atgne Otg
the target islR. These extensions provide functions that )'. . 82 [4], > propose
llow a similar path to the one we have just described,

agree withf where boundary conditions are given ang)nd thev do not obtain a converaent numerical discretiza-
preserve the Lipschitz constant throughdutsee for ex- y ! Verg umert ! 2

ample P, 27. The more general problem of extendin%on for the resulting PDE. Meanwhile, iBf], the author
F:8 —>'Y (S C X, X andY’ any metric spaces) to all roposes a convergent discretization of the PDE, basing

X with the same Lipschitz constant is not so well undel?!S construction on tr_'e original varl_at_lonal _prqblem. we
réoose to follow this idea as our guiding principle.

stood and only partial results are known, see for examﬁ . _ .
[23, 24, 25). We now explain this alternative approach. The ba-

The idea then is to keep the distortion at the same or@&t idea is S|mplle, mfstead O; f|rr]st o(?tmmn_g_ the hEuIer-
as that of the provided boundary conditions. In generlaéfgra,ng(_e equ_atlon§ F. and then discretizing them,
there might be many solutions for the Proble) (One we will fll’.St dIS.CI’etIZGJOO and then pr_oceed to solve
particular class of minimizers which has recently receivgf.'ie_ resu_ltmg d|scr_ete problem. Con3|d_er that the_ do-
a lot of attention is that o&dbsoluteminimizers, orabso- main B is given discretely as a set of (different) points

lutely minimizing Lipschitz extensio&MLE). Roughly 21 = {a1,...,2m} together W'th,a neighborhood rela-
speaking, the idea here is to single out those solutidify’ (ie., a_gra_ph). To fix |deas_lets assume the neighbor-
of Problem p) that also possess minimal local Lipschit?0d relation is a-nearest neighbors one. Denote, for
constant, again, seé][for a general exposition, andf] eachl <@ <m, by N; = {z,,...,z;,} € By the set
for atreatment of the case when the domain is any reasonzthe case when the domain is a subsefist and the target is the
able metric space and the target is the real line. real line leads to the so called infinity Laplacian, s&elp, 9].




of k neighbors of the point;. We consider the discretepoint. For computational efficiency, we work at all times
local Lipschitz constant of the magpat z;: with two different scales in the discrete domd@in. We
choose a subsdt; of B; such that#F; <« m but still
Li(6) = max dp, (¢(x:), d(x;)) 3) Fi is an efficient (well separated) covering Bf with

z; €Ni  dp, (T, 25) small covering radius. We do this by using the well known

U ina that di . (geodesic) Farthest Point Sampling (FPS) procedure, see
_ Upon noting thatl; (¢) serves as a discrete approximas g 31 \yhich can be efficiently constructed based on
tionto||Dg, ¢(z;)||2, we see that a possible discretizatio

. . ) ptimal computational techniques. Roughly speaking, we
OT the _functlonal.]oo(gzs) IS given by the discrete gIObalapply the iterative procedure on this subset of points only
Lipschitz constant 06 given bymaxi <;<., Li(¢). The

hor of d in th héb | laced and then extend the map to the rest of the points in the do-
author o 52] proposed, In the case w & Is replace mainB, . We now show how to obtain a reasonable initial
by IR, solving the discrete version of Problef) py fol-

lowing the following i . q here d i CﬁJnditiongﬁo and then discuss additional details regarding
owing the fo owing iterative procedure (here descri e implementation of the iterative procedure described in
for By a surface as in our problem): the previous section

e Let ¢y be aninitial guess of the map. o o o
Building theinitial condition: We compute, for alk, €

. ds, (y,yi)
F] \F], ¢0 (JCT) = arg mlny€52 maXg, er, m For

18, (s b1 (1)) this step we use the classical Dijkstra’s algorithm for ap-

- (4) proximating the distancess, andd, since they might
be evaluated at faraway points. This is of course run on
the graphs obtained from connecting each point ta@:-ts
nearest neighbors.

e Foreachn > 1,if x; ¢ 'y, let

¢n(z;) = argmin max ————————=°%
n yEB, JEN; d51(l‘z‘7l‘j)

o ¢p(x;) =y;foraln>0forz, €T;.

With computational efficiency related modifications . ]
described below, this is the approach we follow in gede iterative procedure: After ¢, is computed for all
eral. The intuition behind this iterative procedure is tha@0iNts in the set, we run the iterative procedure from
at each point of the domain, we are changing the valuedgion this set of pomts.“The main mo_dlflcatlon here is that
the map in order to minimize the local Lipschitz constarftnereas we still use Dijkstra’s algorithm for approximat-
that is, the local distortion produced by the map. This is {9 ds. in the target surface, since in the domain we must
agreement with the notion of AMLES briefly explained ifoMPuteds, only for neighboring pointsk; was chosen
§2.1. We should remark that since we are using intringi@ P& dense enough), for computationally efficiency we
distances for the matching, we canlg(¢) play the role C@N approximatés, (z;,x;) = |lz; — ;| forz; € N;.

of (the norm of) the displacement field for analyzing th&/e should also point out that for points i, the neigh-
deformatior? see§5 ahead. borhood relation is defined to be that/ehearest neigh-

bors with respect to the metric @ defined by the adja-
] ] cency matrix ofB,. Let¢, : F; — B, denote the map
4 Implementation details obtained as the output of this stage.

In addition to discretizing the domaik; , we also use a Extension to the whole domain: After we have iterated
discretizationB, = {y1,...,ym } Of the target spacB: over points inF; until convergence, we extend the map

for our implementation. We endo® with a neighbor- ¢, to all pointsz; in B, \{F, UT}. This is done by com-

hood relation given by thé&-nearest neighbors of eadbuting 6. (2;) = argmin, 5, max, e por, dz;g (y(,m(-r)))
[ 2 B, (Ti,x

30ne can imagine a situation in which two isometric surfaces aFor this step, and since we have a|ready obtained the map
matched by our algorithm such that(¢) = 1 for all ¢, but the dis- for a relatively dense subset, we approximate hésh
placement field|z; — ¢(x;)|| is large since there may be no rigid mo- d by th lid di ' o in th .
tion that aligns the two surfaces. One simple example is afieet of anddg, by the Euclidean distance. Once again, the moti-

paper and the same sheet slightly bent. vation for this is just computational efficiency.




5 Exampl% structed in a way similar to the one used for the previ-
ous example, but in this casg)0 points were chosen.
In this section we present some computational examphéete that, if available, hand traced curves could be used
of the ideas presented in previous sections. First, in FRf commonly done in the literature (in other words, more
urelthe domains; is acube(m = 10086) and the target anatomical/functional oriented boundary conditions). In
B, is asphere(m’ = 17982). For the purposes of visual-the first two rows we show different views of each corti-
izing the map, we assigned the clown texture (which c&#l surface, and in the third row we sh@u colored with
be thought of as a functioh : B, — IR) to the sphere, the values ofL,;(®) which we interpret as a measure of
which can be seen on the bottom-right corner of the fifie local deformation of the map needed to makghto
ure. The sphere and the cube were concentric and of &p- See the caption for more details.
proximately the same size. We selectédon the cube
consisting of1000 well separated points using the FPS
procedure alluded to ig4. Also, we setk = 6 (num-
ber of neighbors). We then chofg to be the first1 00
points of the set and then projected them onto the sphere, .,
obtaining in this way, the corresponding $&tto use as
boundary conditions. We then followed the computational
procedure detailed before. The top-left figure shows the
composition/ o ¢, : cube— IR as a texture on the cube.
Finally, the top-right and the bottom-left images show the
histogram ofL;(¢.) and its spatial distribution in the do-
main (we paint the cube at each pointwith the color
corresponding td;(¢.)), respectively. Ideally, we would
like to obtain ad-type histogram, meaning that the dis-
tances have been constantly scaled. Of course, this is not
poss_ible (unless one of the surfaces is isome_tric_to asc?;?‘.lre 1: Artificial example of the proposed warping algo-
version of the other), and_we a“e_mPt to ‘?bta!” hlstogrq ithm. From top to bottom and left to right: The domain sudac
as concentrated as possible. This is quite nicely obtaiRggh 4 picture painted on it to help in visualizing the comgiit
for this and the additional examples in this paper. map; histogram of the Lipschitz constant (note how it is con-
Figure 2 shows the construction of a map from theentrated around a single value); color coded distributathe
unit sphereS? into a cortical hemispher® (B). The Lipschitz constant for the computed map; and mapped texture
boundary conditions consisted 6fpairs of points. We following the computed map.
first took the following6 points on the spheré; =
{(%£1,0,0),(0,+£1,0),(0,0,+1)}. We then constructed

the intrinsic distance matrijisz (p;, p;)] for all p;,p; € .
I'y. Finally, we chosé points{¢,...,¢s} = I'> in B 6 Concludlng remarks

such thatmax,; -2%:%)_ \was as close as possible t . . . N
AXi] Tz (piopi) P n this paper we have introduced the notions of minimiz-

+diam(B). We paintedB with a texturely; depending jng Lipschitz extensions into the area of surface and brain
on its mean curvature so as to more easily visualize Wﬁrping. These maps provide a more global constraint
sulci/crests: IfH (x) stands for mean curvature Bfatz, ipan ordinary p-harmonic ones, and allow for more gen-
thenlp(z) = (H(x) — min, H(f))Q- See the caption eral boundary conditions. The proposed computational
for more details. framework leads to an efficient surface-to-surface warp-
The example in Figuré is about computing a mag ing algorithm that avoids distorting intermediate stead th
from a subject’s left hemisphef® to another subject’'s are common in the brain warping literature. We are cur-
left hemispheré8,. The boundary conditions were conrently investigating the use of this new warping technique




for creating population averages and applying it to disf6] M.K. Chung, K.J. Worsley, S. Robbins, and A.C.
ease and growth studies. In earlier work, the Jacobian of Evans. “Tensor-based brain surface modeling and
a deformation mapping over time has been used to map analysis,’Proc. IEEE Conf. on Computer Vision and
the profile of brain tissue growth and loss in a subject Pattern Recognition (CVPR)pp. 467-473,20036
scanned serially (tensor-based morphomeirg{]). The

discrete local Lipschitz constants of our computed mag”?] M.K. Chung, K.J. Worsley, S. Robbins, T. Paus, J.
pings also provide a useful index of deformation that can ~ Taylor, J.N. Giedd, J.L. Rapoport and A.C. Evans,
be analyzed statistically across subjects. The framework ‘Deformation-based surface morphometry applied
here introduced can also be applied in 3D for volumetric 0 gray matter deformationNeuroimage18(2), pp.
warping and with weighted geodesic distances instead of 198-213,2003.1

natural ones to include additional geometric characteriTé]
tics in the matching. As recently shown if, the use of
pairwise distances is of importance of other matching and
computer vision tasks. Results in these directions will be
reported elsewhere.
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Figure 3:Warping between the cortical surfaces of two brains. In tre fow we showt views ofB; : posterior, medial, lateral
and directly viewing the occipital cortex. The corresparylit views of B, are shown in the second row. In the third row, we
showB; with texture/(z;) = L;(®) which can interpreted as a measure of local deformation eded matchz; € B; to
®(z;) € By. Relatively little deformation (blue colors) is requirenl thatch features across subjects on the flat interhemispheri
surface (second image in the second row). This is consistghtthe lower variability of the gyral pattern in the cingué and
medial frontal cortices. By contrast, there is significarpansion required to match the posterior occipital corticé# these two
subjects, especially in the occipital poles which are thgatiof many functional imaging studies of vision. The firaigd in the
figure shows the corresponding histogram fof¢), the local Lipschitz constants of the map.



