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Constrained Localization in Static and Dynamic
Sensor Networks

Mona Mahmoudi and Guillermo Sapiro

Abstract— In this note we propose to introduce physical
constraints in the localization problem in sensor networks. This
is based on extending the classical STRESS function from
distance geometry and multidimensional scaling. We present the
underlying framework and demonstrate its importance with three
examples: penalizing the sensors for being in high elevation areas,
removing sensors from forbidden areas, and forcing the sensors to
be on pre-described curves. We also extend the work to dynamic
environments.

Index Terms - Sensor localization, sensor networks, STRESS
function, multidimensional scaling, distance geometry, physical
constraints.

I. I NTRODUCTION

Automatic sensor localization is one of the most fun-
damental problems in the area of sensor networks. Sensor
data needs to be registered to its physical location to be of
use in the major applications of sensor networks. For large
scale and inexpensive networks, it is not possible to include
GPS capability on every device. Therefore, automatic sensor
localization based on pairwise (local) information has received
a lot of attention in recent years. The basic idea is to use
information such as signal strength, time-of-arrival, or angle-
of-arrival, between a sensor or group of sensors and some of
their local neighbors (often denoted as pairwise or set-wise
dissimilarities), to compute the physical coordinates of the
sensors. See for example [4] for some literature on the subject
and details on the basic requirements of sensor localization
algorithms.

Computing point (sensor) coordinates from pairwise dis-
similarities is a classical problem in distance geometry [2].
Such problems arise for example in molecular biology, where
protein structures are to be determined from a few noisy mea-
surements of pairwise distances obtained from X-ray crystal-
lography or NMR. The same task is the fundamental problem
in multidimensional scaling [1], [5], where the primary goal is
to represent and visualize in low dimensional Euclidean space
a set of pairwise dissimilarities obtained, for example, from
psychophysical experiments. The sensor localization problem
is nothing else than another application/extension of these
theories.

Often, in addition to the pairwise dissimilarities, some prior
or learned information about the physical environment is also
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available. For example, if we are localizing active cellular
phones in the heart of the winter in Minnesota, it is very
unlikely that they will be located in the middle of a lake
with thin ice. Similarly, it is unlikely that sensors for ocean
waves activity are located far inland. The same physical
prior knowledge is valid for chemical and control sensors
for example. This physical information is very common and
imposes an additional constraint in the sensor localization
problem. Although multidimensional scaling has studied the
constrained scenario [1], [5], this important problem has not
been part of the sensor localization techniques developed in
the literature. It is the goal of this paper to present a simple
framework for sensor localization with physical constraints
and to show the importance of this type of constraint. Both
static and dynamic environments are studied.

Next, Section II, describes the framework for sensor lo-
calization with constraints. Experimental results for particular
physical scenarios are presented in Section III, while conclud-
ing remarks are given in Section IV.

II. CONSTRAINED SENSOR LOCALIZATION

We now introduce the proposed framework for constrained
node localization in sensor networks. We first start with the
static scenario, which is easily extended to the dynamic case.
Consider a network withN nodes in aD dimensional space
(usuallyD = 2, 3). Let xi ∈ <D, i = 1..N , be the coordinates
for each one of the sensors. We assume that we measure
pairwise dissimilaritiesδij between sensorsi andj at positions
xi andxj as Euclidean distances:1

δij =‖ xi − xj ‖=
√

(xi − xj)T (xi − xj).

These pairwise distances can be obtained for example via
received signal strength or time of arrival, and are often noisy.
Also, not all the pairwise distances need to be available, often
only close-by sensors are considered available.

We propose to find the constrained sensor positions from the
available setδij via the minimization of the following global
cost function:

S =
∑
ij

wij(δij − dij(X))2 + λ
∑

i

f(xi). (1)

Here,wij represents the accuracy of the measurementsδij

(e.g., wij = 0 is a measurement between sensorsi and j is

1The framework introduced here, as well as the general theory of multidi-
mensional scaling, is applicable to other measures of dissimilarities, including
geodesic distances for example [11].
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not available),X stands for theN × D matrix of unknown
coordinates,dij(X) is the Euclidean distance between the
searched coordinates for the sensorsi and j, f(xi) provides
the penalty (constraint) for positioning sensori at coordinate
xi, and λ is a scalar parameter that controls the tradeoff
between the accuracy to the provided dissimilaritiesδij and
the constraints given byf(·). The first sum is over all the
pairs, while the second one is over each sensor.

The first term in the energy (1) is the classical STRESS
in multidimensional scaling [1], [5], and has been previously
used for sensor localization, see [4] and references therein.
The novelty in our approach is in the introduction of the
second term,

∑
i f(xi). The penalty functionf can represent

probability of finding sensori at a given location, or can
penalize for locating the sensors in forbidden or unreasonable
areas. In other words, it provides constraints on the sensor
localization that come from prior or learned knowledge about
the sensors network physical environment.2

Note that all practical algorithms for sensor localization that
follow energy functions of the form of the STRESS cost are
prone to local minima. Distance functions, the dissimilarities
δij , are also affected by the environment and are usually noisy.
As a consequence, it is likely they will locate the sensors
in low probability or even forbidden areas. This can be even
more severe when the localization solution is not unique due to
the noise or the lack of sufficient pairwise dissimilaritiesδij .
Some of these multiple solutions can be eliminated with the
physical constraint. Thereby, using the cost function (1), even
as a second refinement step, is crucial. This will be illustrated
below.

A. Constrained sensor localization in dynamic environments

The above mentioned framework can be readily extended
to dynamic sensor network environments, that is, when the
dissimilarity measurements are available dynamically, we have
time sampled dissimilaritiesδt

ij . The dynamic STRESS then
becomes

S =
∑

t

∑
ij

wt
ij(δ

t
ij − dij(Xt))2, (2)

and the goal is to locate the sensorsX at all the time frames.
Different types of constraints can be added. For example, we
could consider a smoothness constraint, where we penalize for
sensors moving from frame to frame:

S =
∑

t

∑
ij

wt
ij(δ

t
ij − dij(Xt))2 + λ

∑
t

∑
i

‖ xt+1
i − xt

i ‖2 .

(3)
λ can depend on the expected velocity. Position constraints as
in Equation (1) could be added as well of course.

If the sensorxi is attached for example to a moving vehicle,
for which a rough estimate of the motion~Vi is available, then

2Costa et al., [4], proposed an extra quadratic term in their modified
STRESS function that penalizes for individual sensorsi to be located far
from pre-established positions̄xi:

∑
i
ri ‖ xi − x̄i ‖, for confidence values

ri. This is a particular case of the physically motivated constrained framework
here proposed. Energy based penalization in sensor networks are also studied
in [8], the particular penalization coming from acoustic models, and is not a
result of the general physical framework here proposed.

we could think of an energy of the form

S =
∑

t

∑
ij

wt
ij(δ

t
ij−dij(Xt))2+λ

∑
t

∑
i

‖ (xt+1
i −xt

i)−~V t
i ‖2 .

(4)
The above formulations assume that the localization is

simultaneously solved for all the frames, or at least for a
block of them. We could also of course think of a “real time”
scenario, where the sensors are located for framet based on
the location in previous frames and the current constraint. The
formulas are equivalent, simply eliminating the summation
over t.

III. E XPERIMENTAL RESULTS

For the examples in this paper, we find it sufficient to use
standard optimization techniques from the Matlab Optimiza-
tion and Statistics Toolboxes, e.g.,fminsearchand mdscale
[9], as well as standard majorization as commonly applied
to the STRESS function when possible (in particular, when
the constraint is quadratic), [4], [5]. While more sophisticated
optimization techniques could be used as well, this is beyond
the scope of this paper, and efficient techniques, extending
for example the recent works reported in [3], [4], [7], [10],
as well as those with constraints in [1], [5], [6], should be
developed depending on the particular constraint used. When
the constrained formulation here proposed is used as a second
step following an advanced non-constrained optimization al-
gorithm, see below for an example, the particular optimization
is less relevant if a good initial condition has been achieved
(using the mentioned advanced optimization approaches for
un-constrained penalties). This is also true in the dynamic case,
when the localization in timet is used as initial condition to
the optimization fort + 1. Finally, note that the local cost
decomposition for the STRESS developed in [4] is also valid
for the constrained STRESS here introduce, e.g., equations
(1)-(4).

We first present examples of our proposed constrained
sensor localization framework in a static environment. In
particular, three different selections for the penalty function
f in Equation (1) are presented. First, in Figure 1 we localize
the sensors following a topographic map. We definef to act
as a probability function, with probability proportional to the
local elevation, the higher the point the lower the probability to
find a sensor there. In Figure 2, we penalize for sensors located
inside the two large lake areas. This is done by designingf
to be strictly positive inside the forbidden areas (lake) and
zero otherwise. Moreover,f increases with the distance to
the border of the lake. Finally, in Figure 3, we constrain the
sensors to be on a given curve (the yellow line). This is done
by defining f to be the unsigned distance to the curve. In
all these examples we start from a given configuration, blue
squares for Figure 1 and green squares for figures 2 and 3,
that can be obtained from any of the current state-of-the-art
and unconstrained sensor localization techniques, e.g., [4], [7],
[10]. Then, we minimize the energy given by (1), obtaining
the red dots as the new and now constrained sensors position.

In Figure 4 we explicitly simulate the use of our framework
as a “correction” step to un-constrained approaches, also
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illustrating the importance of having constraints when the
pairwise distances are noisy and incomplete, as in all realistic
sensor network scenarios. Using the same penalty as in Figure
3, we first located sensors on the yellow curve, and then
added noise to the pairwise distances and considered only
the availability of distances between close-by sensors. This
simulates a real scenario, with very conservative noise and
missing data, see figure captions. The green dots show the
result without constraint, usingmdscale,3 while the red ones
are the ones after our constrained correction. Not only the
sensors are correctly placed on the yellow line but also the
overall error to the original positions is reduced (to 50%, 30%,
and 50% respectively).

We now conclude with examples from dynamic environ-
ments, Figure 5, following in this case Equation (3). This is a
quadratic constraint, and as in [4], is efficiently minimized via
distributed classical majorization [5]. The use of the constraint
not only improves accuracy, but also accelerates the minimiza-
tion convergence. See mountains.ece.umn.edu/∼guille/Sensors
for the video for these and other examples.

Fig. 1. The elevation data is used to define the penalty functionf . The higher
the area, the lower the probability of finding a sensor there. Note how the
blue squares, marking the original sensor locations, move to the red squares
located at lower elevation regions. The elevation map goes from dark blue,
representing low elevations, to dark red, representing high elevations. The
blue spots are zones of holes in the elevation information.

IV. CONCLUSIONS

In this note we have addressed for the first time the prob-
lem of static and dynamic sensor localization with physical
constraints. We have extended the classical STRESS function
from distance geometry and multidimensional scaling theories,
which is frequently used in the sensor networks arena, to
include an extra term that represents the available prior infor-
mation about the physical environment. We exemplified the
ideas by constraining the sensors to be in low elevation areas,
outside of forbidden zones, and to be located on predefined
curves. Dynamic environments were exemplified as well.

The proposed algorithm can be used as a second step,
after constraint-free and efficient sensor localization tech-
niques have been applied to the available pairwise dissimilarity
measures. To efficiently use our proposed framework directly,

3To address the invariance to rotation/translation/symmetry, we use three
anchor points.

distributed minimization algorithms have to be developed. For
some constraints, these are already available in the multidi-
mensional and distance geometry literature, while for others,
such as those coming from distance functions, they need to be
developed (based on these available algorithms). Extending
the current work to angle-of-arrival information is of great
significance as well. These directions, together with the use of
our technique for large real sensor networks, are the subject
of future research.
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Fig. 2. Examples of placing the sensors outside of the lake areas. On the
top-left we see the results, where all the sensors have been moved out of the
lake. Next we show the sensor positions for different values of the parameter
λ in Equation (1). Next, second row, we plot the energy (1) as a function of
the minimization iteration. Lastly, we plot the average percentage deviation
of the pairwise distance function, with respect to the initial condition of the
optimization, as a function ofλ (this corresponds to the figure on the top
right).
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Fig. 3. Examples of placing the sensors in a curve, the yellow line. Results for two different values ofλ are shown in the first figures, with a higher value
on the right (note how all the sensors are located on the yellow line). A different distances configuration is shown in the third figure. In the last figure an
additional example is shown, where some of the pairwise distances between the sensors are not available (wij = 0 in Equation (1)).

Fig. 4. Simulation of the use of our constrained algorithm to correct initial results obtained from other sensor localization techniques. Three examples are
presented, with different sensor configurations and noise levels. Although the sensors are originally located on the yellow curve, a small amount of noise (less
than 0.2% for the first two and 5% for the third), and a few of the largest pairwise distances missing (less than 30% for the first two and 42% for the third),
representing a very optimistic sensor network scenarios, leads to failures in the localization, green dots. Using this as initial condition to our constrained
optimization, brings the sensors to their legal position on the yellow curve, red dots. The overall position error is significantly reduced as well (about half of
the error without constraints).

Fig. 5. Example of dynamic sensor localization. Three consecutive frames are shown on top. On the bottom we see how working without constraints (3
left frames), the localization (given by Xs) is far from the original positions (given by the squares), while very accurate localization is obtained when adding
the constraint (3 right frames). Same number of iterations where used for both cases. See mountains.ece.umn.edu/∼guille/Sensors for the video for these
examples.


