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Nomenclature
U = Solution vector
E, F = Fluxes
u, v = Cartesian velocity components
p Density
p Pressure
e Internal energy
E, = Total energy
r, ry, Ty Shear stress components
qx, qy = Heat Flux
Re = Reynolds number
Pr = Prandtl number
M Mach number
T = Temperature
(x, y) = Cartesian coordinates
(W, () Streamffunction-potential function coordinates
J Jacobian
(x,,, x. ...) Grid metrics
(x. yd = Grid speed
6V = location of the first grid line above the wall
a, = Strength of vortices
r = Clustering parameter in (p direction
P, Q = Clustering parameters in W direction
0 = Angle between grid lines
g = Metric tensor
St = Strouhal number

I. Introduction

Von Mises (Ref. 1) was the first to introduce streamfunction as a coordinate (SFC). In his study, he used

the streamfunction as the coordinate across boundary layer while the transverse Cartesian coordinate was

unchanged. A limitation of this approach is the degeneracy of the grid 2 near the leading edge of the

airfoil. A number of modifications have been proposed to deal with this issue2
-. The advantage of the

SFC methodology in CFD lies in the fact that the streamfunction serves both the purpose of grid

generation and description of motion for steady flows. The SFC approach has found applications in a

wide variety of fields including two-dimensional channel design6'7, nozzle inverse flow design
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problem', inverse design of aerodynamic shapes9" ° and turbomachinery flows, to name a few. In the

aerodynamics of moving airfoils, the generated SFC grid can move with the airfoil and keep the boundary

layer well-resolved. This feature is crucial for accurate modeling of flow separation.

SFC allows for the use of economic single-grid high-order finite-difference type schemes for complex

geometry. In terms of computational time per grid point, this method is advantageous compare to multiple

grids or unstructured grids combined with high-order schemes and interface matching conditions.

Although the SFC is widely used in combination with lower-order numerical schemes in CFD, the

straightforward implementation of SFC create rather coarse grid at the vicinity of stagnation points that

smears high-order numerical computations of aeroacoustics and unsteady aerodynamics of flapping

airfoils. The application of the SFC methodology for numerical computations with high-order of

approximation is considered in the present report.

Though the main application of SFC was in the field of inverse flow device design, it has found

application in other fields too. Finnigan (Ref. 1l-13) used the SFC approach to study turbulent shear flows

and chaotic systems. The method has also found application in the field of two-phase flows' 4 and flow

through porous media' 5.Chakravarthy16 used the streamlines and potential lines of an incompressible

solution to generate a grid for transonic nozzle flow. Adamczyk 7 generated 0-type, C-type and split

conformal grids for turbomachinery flows using an integral formulation similar to the Symm

construction to generate orthogonal grids.

The streamfunctions are defined only for two-dimensional flows; nevertheless, applications can be

found in literature where the SFC has been applied to 3-D problems. Anderson' 9 generated a three-

dimensional coordinate system by rotating an axisymmetric 2-D duct about its axis. Briley ° produced the

grid for a 3-D duct by stacking 2-D systems. Hounjet 21.22 generated 2-D and 3-D grids using the panel

method solution of the velocity potential. The method was used to generate 0-type and multi-block OH-

type grids about transverse cross-sections of transport type aircrafts. As opposed to O-grids and C-grids,
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the SFC coincides with Cartesian coordinates in the far-field that makes straightforward the use of

outflow boundary conditions.

The problem with the SFC is that a uniform distribution of grid points in the computational domain

produces coarse cells close to the stagnation point. For the only velocity scale in the computational set-up,

the velocity is slow at the vicinity of stagnation point and the coarse grid does not introduce significant

error. However, this problem is critical for unsteady aerodynamics including flapping airfoils because of

the presence of another velocity scale such as speed of moving airfoil. Indeed the speed of moving airfoil

is large for higher frequency of airfoil pitching and plunging. The error introduced by coarse grid may

harm the effort to apply high-order schemes to problems of flapping airfoils.

To circumvent this issue, the following combination of algorithmic steps has been implemented in the

current study. A hyperbolic stretching function23 was used for grid refinement close to the solid

boundaries. The degree of stretching will be chosen carefully to make sure that the grid does not become

extremely coarse in the far field. The spatial differencing is performed using a non uniform compact

scheme 24, 25. To remove the oscillations due to the grid non-uniformity, an implicit Pade-type filter26 is

employed in the current study. The explicit time marching is performed using a Runga-Kutta algorithm,

implemented in the low-storage form27. A simple energy transfer and annihilation method 28 is used at the

domain boundaries for absorbing the outgoing energy.

The governing equations are listed in Sec.2. Sec.3 discusses the SFC method. The numerical algorithm

is discussed in Sec. 4.Numerical results are discussed in Sec.5. In Sec. 6, gust suppression by plunging

airfoil is described. Conclusions are drawn in Sec 7.

II. Governing Equations

The governing equations are the 2-D compressible Navier-Stokes equations. To keep the formulation

applicable to unsteady aerodynamics of flapping airfoils, the Navier-Stokes equations are cast in moving

grid3".
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aU ZIE WF+UaEa =0 (1)
at ax ay

On introducing a transformation (x,y,)->((p(x,y,),(x,y,T,r), the governing Navier-Stokes equations

become

au aO aU aV1 oU a9 aE aV aE aOa aF aF/ W--- - = S(t) (2)ar at ao at a/ ax ao ax a V ay a 0 ay a V

where U denotes the solution vector, E and F are the fluxes (includes both the inviscid and viscous flux

components) and ((p, V/) denotes the potential function and streamfunction respectively. S (t) refers to

acoustic or vortical sources of sound that are presented in the flow.

The solution vector and the flux components are given by

P
U= pu (3)

pl'

-E,

Pu
E =pu 2 + p _ r" (4)

puv - rXY

(E, + p)u-ur -vrxy +qx
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pv
F =puv - lY (5)

pv' +±p-r ,

(E, + p)u - urx, - VrYY + qY

And

E, = p(e + 0.5(u 2 + v 2)) (6)

The shear stresses and the heat flux vector are given by

2 Ou vrV - (2 -- ) (7)
3 Re x Oy

2 av au"= (2---- U) (8)
3 Re c'y ax

1 au av
rxy= 1(2a-+ ) (9)

Re ay &

-1 aT
qx - (10)

(y - 1)M Re Pr Ox

-1 07T
qY (y-1)MRePr 3y (1

where Re, M, Pr are the Reynolds number, Mach number and Prandtl number. The equations of state

for ideal gas become

p = (y - I)pe (12)
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T- yM2P (13)
p

The grid metrics are calculated using the following equations

ao _ 0 Y (14)

90 =_J & (15)
ay av,

a y J ay ( 16 )
ax o

=J - (17)
0 "Y ao

_ axaO ayao (18)
at a Tax ar ay

a v _ axa o -ay ao (19)
at a vax ar ay

1

where J is the Jacobian of the transformation which is given by J = .The grid

velocities (x,, y,) are computed from analytical expression for the rigid body motion of the grid around

the moving body. The grid metrics are computed using the same high-order spatial discretization scheme

(see Section IV) used for the computation of the fluxes.
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III. Grid Generation

Streamfunction and potential function are conjugate harmonic functions and are orthogonal to each

other. This property can be utilized for the generation of orthogonal numerical conformal grids. This idea

has been employed for 2D grid generation and in some cases extended for 3D problems. For simple

geometries, analytical solutions can be constructed for streamfunction and potential function using

elementary solutions of Laplace equation. For such geometries, the exact solution is a system of non-

linear equations which can be inverted using Newton's method to obtain the values of the coordinates (x,

y) when the values of streamfunction and potential function are specified. This method is referred in the

current study as analytical grid generation. For problems, where the exact solution is not available, the

numerical values of stream function and potential function on the solid body can be computed using panel

methods. The numerical values of streamfunction and potential function on the solid body are used to

distribute streamlines and potential lines in the numerical domain and an approximate system of non-

linear equations for streamfunction and potential function can be inverted to obtain the coordinates

(x,y).This method is referred as the numerical grid generating method. For problems involving multiple

bodies in the domain, it is possible to generate the grid by applying the panel method for the system of

bodies directly or by applying the panel method separately to each body and joining the separate grids

using stitching.

Potential lines become coarse close to the stagnation points. For accurate numerical representation of

the problem, this issue needs to be resolved. In the current study, a hyperbolic sine function is used to

cluster the potential lines and it is found that the grid coarse elements close to the stagnation points can be

removed. A hyperbolic tangent function is employed to cluster the streamlines for resolving the boundary

layer.

A. Analytical Method

9
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The analytical grid generating system is the faster of the two above-listed methods as it involves just a

single step inversion of the non linear system of equations. The deviation from orthogonality for grids

generated using the analytical method is negligible. The analytical grid generation method is implemented

as follows:

* Construct the exact analytical solution for streamfunction and potential function.

* Generate the numerical domain between certain maximum and minimum values of

streamfunction and potential function.

" Find (x, y) coordinates for any given grid point (y/, ). To achieve it, invert the non-linear system

of equations using the Newton's method within a specified tolerance. For the left comer point a

random initial guess is used. For rest of the grid points, the previous grid point was used as an

initial guess.

" For boundary layer resolution, streamlines are clustered using the following

1 1
formula: S where N is the number of points across the boundary layer and I is

the scale of thickness of the boundary layer.

An example of the grid generated using the above algorithm is considered for the case of uniform flow

past a single cylinder (see Fig. la). For this case, the analytical expressions for streamfunction and

potential function are given by

R2

02 = x( +2 ) (20a)x z + Y
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R2

S (1 X 2 + y2) (20b)

As can be seen in Fig. la, the uniform grid obtained is coarse close to the stagnation point. The way of

avoiding this is discussed in the section D.

B. Numerical Grid Generating System

The numerical grid generating system consists of two parts: i) apply a panel (boundary element

method) solver to find the velocity the potential, and ii) invert an approximate numerical expression for

streamfunction and potential function to find (x,, yj ) coordinates for any given grid point (q, , y/, ).The

orthogonal property of the numerical method is comparable to the hyperbolic grid generating method with

the advantage of being able to specify the outer boundary. The following algorithm is used for the

numerical grid generation:

" Construct a panel method solution of the potential function on the solid boundary. In the

current study, discrete potential vorticeS3 are used as an elementary solution in panel

methods. The panel method solves for the discrete potential vortex strengths a, at each

boundary cell (panel).

" Since the surface of the body is a streamline, the ideal value of streamfunction will be

constant on the surface of the body. The value of streamfunction on the surface of the body

computed using the panel methods will have some numerical error from the computations.

Hence the numerical value of the streamline will not be the same at all the points on the

surface of the body. To account for this error, the values of the streamline on the body are

11
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denoted as Cu and C, where C, is the maximum value of the streamline on the body and C, is

the minimum value of the streamline on the body.

* Next, the first streamline above and below the body are constructed as WI=CiCu and 4 1 =C 2CI,

where CI, C2 are used to ensure that the streamlines does not cross into the body. The values

of C1 and C2 are set to 1.02 and 0.98 respectively. Further, to ensure that the required number

of points is clustered in the boundary layer, the following condition is satisfied in the
1

numerical algorithm: , = - _, , where J,, = e .The number of discrete vortices

(panels) is increased on the surface of the solid body and the panel method is repeated until

the above condition is satisfied.

* Generate the numerical domain between certain maximum and minimum values of

streamfunction and potential function.

* The following system of equations is inverted to obtain the values of (,y)

(x,y) X - C" tan-(y-y (21 a)i=' 2 7" x - x

NV(X,y)= y+ Y. -a' ln(V/(x -x,)2 +(y -yj) 2  (2 1b)

j=127

An example of the application of the above method is shown for the case of a cambered airfoil (Fig.2).

It can be seen that the grid lines are orthogonal to each other. The above grid generating algorithm has the

ability to produce high quality orthogonal grids on different kinds of geometries (Fig. 1-4).

12
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Elliptic grid generating system can generate smooth grids but the implementing of boundary layer

clustering and generating orthogonal grids require some effort. The hyperbolic grid generation can

generate orthogonal grids but the outer boundary cannot be specified and the grid can deteriorate rapidly

close to sharp edges unless grid lines are clustered or artificial dissipation is added. The current grid

generation method can be viewed as a hybrid method which is able to achieve the orthogonality and grid

clustering with the ability to specify the outer boundary at the same time. The implementation of grid

clustering will be discussed in Sec.1II.D.

C. Grid Stitching

For problems, involving multiple bodies like two wings in tandem or a combination of steady and

unsteady wings, the panel method can be used to generate a single-block structured grid. An example is

shown in Fig.3 for the generation of grids around two cylinders placed in tandem. The panel method grid

generator can be used for inviscid studies but is not a convenient grid generator for viscous flows due to

the lack of local grid control around each body. This becomes extremely important for studying flows

with boundary layer resolution. To have more control on the grid about individual bodies stitching

method is employed. In this method, the grids around each body are generated using either analytical or

numerical grid generating system. The local grids are then stitched together at an interface (stitching

boundary) 32. In the current study, an elliptic grid generating method is used for stitching the two parts of

the grid together to keep the procedure simple32, 33. The following steps are used for generating the

patched grids:

* Generate the local streamfunction grid around each body.
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" The region close to the patched area might have grid lines crossing each other. To remove

those grid lines and make the grid smooth, the grid lines, which do not intersect at both the

ends, are selected and fixed.

* For the top and bottom lines, the comers from the previous grid lines are used to distribute

points on the comers using linear interpolation.

* Once the four comer grid lines are fixed, an elliptic grid generation method is used for

smoothing the patched region.

The above steps ensure that the grid stitching is local and does not change the global grid. The size of

the patching domain is problem-dependent and needs some trial and error. This approach has been applied

in the current study to generate a single non-uniform structured grid around two cylinders in tandem. The

grid is generated locally around each cylinder and is then smoothed using an elliptic grid generator. Grid

generated by panel method around two cylinders in tandem is shown in Fig.4a. The grid generated by

stitching is shown in Fig.4b. The grids are similar to each other if no clustering is implemented.

D. Grid Clustering

Vinokur 4 found that the hyperbolic sine functions are the best for concentrating points in the middle

of domain and hyperbolic tangent function for clustering at the ends of domain. As can be seen from

Fig. la, the grid becomes coarse close to the stagnation point of the cylinder. Hence to remove the coarse

grid cell in the p direction, which is near stagnation points in the middle of the domain, a hyperbolic sine

function is employed35.

x = x(1 -+ sinh(r(r - B))) (22a)

sinh(rB)
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where xc is the location in physical domain around which the grid clustering is required (stagnation

points have x, = ±0.5 ), 17 is the normalized computational coordinate which varies from 0 to 1. The

clustering parameter T varies from zero to infinity, where r=O corresponds to a uniform grid (no

clustering). The parameter B is given by

B = I In[tl+(e_'-l)(x, Ih)(2b2r 1 + (e- 1)(xC /h)]

where h is the length of physical domain in either positive or negative direction.

For problems involving viscous flows, resolution of boundary layers become very important. To

cluster grid in the y direction in boundary layer the following approach is used33 :

s = Pr7 + (1 - P)(1 - tanh[Q(1 -17)]) (23a)
tanh(Q)

X=X, +S(Xe -X,) (23b)

The factors P and Q control the clustering and xj and xe are the limits of physical domain. The

comparison between grid generated with the application of hyperbolic sine function (22) is shown in

Fig. I b with a clustering parameter r =5. The clustering of points in the boundary layer for the SD 7003

airfoil is shown in Fig.2b with P=O.J and Q=4 in Eq. (23), and T=2.5 in Eq. (22).

E. Orthogonality in 2D

The orthogonality property of the grid is measured by computing the angle between grid lines, which

is given by

15
Final report FA9550-07-1-0314 3/13/2008



= cos' ( 1 ) (24)
J/ 1g 22

where g is the metric tensor which is calculated by

2 ax
gi=y( ~k )(aXk)(5

-k=1 L9q, aqj 25

where (x, , x2) = (x, y) and (q, , q 2) = (0, y'). For an orthogonal grid, 0 should be equal to 90 degrees.

The maximum measured deviation from orthogonality was around 4-5 degrees for both grids about the

cylinder and airfoil. The deviation was observed only at two points to the front and back stagnation point

of the cylinder and at the leading edge of the airfoil. At the rest of the grid points the deviation was less

than 0.5 degrees. The orthogonal property of the current grid generating method was compared with the

other grid generating methods available in literature. Comparison between the different methods is shown

in Table. I. The deviation from orthogonality for the proposed SFC-based non-uniform grid appears to be

comparable to other listed methods.

Table 1. Comparison of orthogonal property of different orthogonal grid generating system

Method Maximum Departure (in degrees) Geometry

Steger and Chausse36  16 Turbine blade

Duraiswamy and Prosperetti 37  1.11 NACA 0015

Eca3" 4.41 NACA 0015

Nair and Sengupta39  0.5 NACA 0015

Present 4-5 SD 7003/NACA 0012/NACA
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IV. Numerical Algorithm

The governing equations are discretized using high-order finite-difference schemes. This is done to

reduce significantly the number of points required per wavelength compare to second-order schemes for

the resolution of the acoustic waves and vortices 24.

A. Spatial Differences

A non-uniform compact scheme was proposed in Ref. 25. The scheme becomes identical to the

uniform compact scheme proposed by Ref.24 .For some functionf its derivativef is computed as

2

af, + f+ Aflf'+ =JA11f1+ (26)
/=-2

The coefficients on the left-hand side and right-hand side can be obtained by matching the Taylor's series

expansion. Close to the boundaries at i=], 2 and i= N-I, N, the scheme is replaced with one-sided

schemes and the coefficients are obtained accordingly. More details can be found in Refs. 14, 15. The

value of al and /A, can be adjusted at each point but are kept constant at 1/3 at each point and the

scheme becomes central-differenced. On a non-uniform grid, the fourth-order accuracy is achieved.

B. Numerical filtering

17
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Since the spatial differencing scheme is central-difference, numerical instabilities arising due to

unresolved scales and grid non-uniformities can grow. Hence the solution is filtered according to the

procedure suggested in Ref. 16. Iff is the unfiltered solution and f is the filtered solution then

5

af I, +f +aff+l =+(27)
/=-5

Here af is a free parameter with values between -0.5 and 0.5 based on analysis using transfer

function. The higher the value, the less dissipative is the filter. In the current study the value is set equal

to 0.45.Since the stencil is wide, one-sided differencing formulas are needed at points (1... 5) and (N-4...

N). Higher-order one-sided 26 formulas can be used to obtain the filtered values close to the boundaries.

Ref 26 has a detailed discussion on the derivation and the order of the filters. The numerical filter

employed in the current study is the tenth-order accurate.

C. Time Marching

Low-storage Runga-Kutta proposed by Ref.27 is used for marching the solution in time. The method

is explicit and third-order accurate. The time marching for a system given by df/dt=u is computed from

time step m to time step m+I as follows

f+nl = fn +b 'H, (28)

H, = a, H,_-, + dtu , (29)

where n refers to the stage number. The value off at the final stage of the scheme becomes the value at

the timestep m+1. The values of the coefficients a, and b,+ have been given in Ref.27.

18
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D. Boundary Conditions

Different kinds of boundary conditions have to be specified for the Euler and Navier Stokes equations.

For Euler equations at the wall, ghost point boundary condition of Tam and Dong28 in employed. No-slip

boundary conditions are used for the stationary Navier-Stokes equations and the surface velocity

components are set to the grid speed for the moving grid case. At the artificial domain boundary energy

transfer and annihilation (ETA) 29 is employed with extrapolation of the values to domain boundaries.

V. Numerical Results

A. Euler Solver

As a first step, the code is validated for non-linear and linearized Euler equations (Eq.2, without the

viscous terms) for curvilinear geometries using the SFC. A problem from the 2nd CAA workshop 40 is

considered. The configuration describes the scattering of an initial acoustic pulse from a circular cylinder

(See Fig.5a).The initial acoustic pulse is given by

- ln(2X(x-x, )2 +(y-y, )2)

p = p , + O.Ole 0.04 (30)

The center of the pulse (xc ,yj is located at (4,0). The domain is kept uniform in the region [-8*8]*[-

8*8] and coarsened beyond that with a stretching factor of 1.2. The results were computed on 300*300

and 450*450 grids and the results were found to converge. The pressure contour for pulse reflection from

the cylinder and propagation into region of grid stretching are shown in Figs.6a, b. As can be seen in

Fig.6b, the grid stretching and filtering absorbs the outgoing energy without producing non-physical

19
Final report FA9550-07-1-0314 3/13/2008



reflections back into the domain. The results are compared on different grids at P1 (0, 0.6) (Fig.5b). The

results obtained on the 300*300 and 250*250 grid agreed with each other. For the 200*200 grid, two sets

of computations were performed. It can be clearly seen from Fig.5b, the computations with clustering of

grid points provides a closer match with the results obtained on the two previous grids. For the case with

no grid clustering because of the coarse grid cells near the stagnation point, the number of grid points per

wavelength is reduced. This causes smearing of the acoustic pulse. The clustering increases the number of

points close to the stagnation region and ensures that sufficient numbers of points are present to resolve

the waves.

Two different kinds of grid generation were mentioned in Section III.C for problems involving

multiple bodies. To test the grid generation algorithm for multiple bodies using both the grid generation

methods, sound scattering from two cylinders placed in tandem is considered (Fig.4). An initial pressure

pulse is similar to the single cylinder case(Eq.30) and is located at the origin. The aeroacoustic

computations were performed with the left cylinder of diameter 1 located at (-4, 0) and the right cylinder

of diameter 0.5 located at (4, 0).The domain of computation is [-8, 8]*[-5, 5]. The acoustic pressure was

monitored at the point (0, 2). As shown in Fig.7a excellent agreement is obtained between both methods

of grid generation.

To test the long term stability of the solver and the boundary conditions, the scattering of periodic

pulse placed from two cylinders in tandem is considered41. The aeroacoustic computations were

performed with the same two cylinder tandem configuration but only on the stitched grid. A periodic

source given by

-In(2X(x-x) 2
)+(y-y,)

2 )

S = 0.Ole 0.04 sin(ot) (31)

was located at (0, 0).The value of w was taken to be 87r. The periodic source was added to the right-hand

side of the energy equation and continuity equation. The initial values of the acoustic pressure and
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velocities were assumed to be zero. The region close to the cylinder surface was stretched using a

clustering parameter r =1 in Eq. (22). The degree of stretching was kept limited to ensure at least 8 points

per wavelength in the far field. The computations were performed on the 720*720 grid. The pressure

history at a probe point is shown in Fig.7b and it can be seen that once the transient waves leave the

domain, the solution has become periodic. The rms value of pressure was compared on the surface of the

left (Fig.8a) and right cylinder (Fig.8b) with the analytical solution41. Very good match is obtained for

both the cases and demonstrates the accuracy of computation for complex geometries.

B. Navier-Stokes Solver in Fixed Coordinates

To test the Navier-Stokes solver on stationary grids, the problem of uniform flow past a circular

cylinder is considered first (see Figs. 9-10). This test case was chosen since abundant experimental and

computational data are available for comparison of shed vortex pattern in the literature. It has been found

that the vortex shedding appears for Re around 40-50 as observed in32 and the references mentioned

therein. Below the value of Re equal to 40, a pair of symmetric vortices is formed in the wake of the

cylinder. The size of the vortices increases with Re until a value of Re=50 is reached, when the periodic

vortex shedding begins.

All the simulations were performed with the grid sizes of 100* 100, 150* 150 and 200*200.The results

obtained with the 150*150 and 200*200 grids are coincided. To resolve the viscous boundary layer, grid

stretching was employed by adjusting the parameters P and Q to provide at least 15-20 points in the

boundary layer. It was found that for the cases considered no grid clustering was needed in the (P

direction.

The computations were performed at Re=20, 40,100 and 150. Table 2 presents a comparison of the

current simulations and the available data. Good agreement is found at these Reynolds numbers. For the

Re=20 and Re=40 (Figs.9b, c), steady symmetric vortices are formed behind the cylinder. The size of the

vortices was compared with the available data from literature32. For the cases of Re=100 and 150, once
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the transient flow leaves the domain, periodic vortex shedding appears behind the cylinder. Table 2

compares the Strouhal number (St) for vortex shedding obtained in the current study with results that has

been published in the literature. Agaifi the good agreement is found in terms of the Strouhal number.

Reynolds's Number Current Simulations Literature 42

20 L=0.92 a=0.34 L=0.91-0.93

b=0.42 a=0.33-0.36

b=0.43-0.46

40 L=2.13-2.28 L=2.15

a=0.71-0.76 a=0.7

b=0.59-0.6 b=0.6

100 St=0.167 St=O.16-0.17

150 St=0.181 St=0.18-0.187

Table 2. Comparison of the vortex patterns between current simulation and data available in

the literature

To test the Navier-Stokes solver in the range of moderate Reynolds numbers (10000-60000), uniform

flow past a stationary airfoil (SD 7003) was studied at a Re=20000 over a range of angle of attacks (0-12

degrees). It was found that using the very mild value of grid clustering parameter r=O. I the computed

natural frequency of vortex shedding (f=l1.5) was close to the measured frequency of vortex shedding

(f=12-13).

C. Navier-Stokes Solver in moving coordinates
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U CThe aerodynamics of a plunging airfoil with Re = = 20000 was studied as a test case for the
V

Navier-Stokes solver on the moving grid. The simulations were performed for NACA 0012 airfoil and SD

7003 airfoil.

The plunging motion of an airfoil is given by

y(t) = hcos(2kt) (32)

where h is the plunging amplitude normalized by the chord length and k= is the reduced
2U

frequency. The NACA 0012 airfoil case was run for the Strouhal number St=-kh=0.3. The computations

were performed on four grid levels (GI (240*80), G2 (300*80), G3 (360*80) and G4 (400*800)). The

grids G3 and G4 were generated with grid clustering parameter r = 1 in Eq. (22). The G2 was generated

with the grid clustering parameter r =2.0 in Eq. (22). After an initial transient period of 2 cycles, the

results become periodic. The results on G3 and G4 coincide while the results on GI showed smearing.

Peak coefficient of lift obtained using different grids (G2 and G3) and the results of Young43 are shown in

Fig. 11. The obtained computational results correspond to those of Young43 for the wide range of k

The aerodynamics of a plunging SD 7003 airfoil were performed for two sets of data (i) h=0.025, k=

7.85 (St=0.196) and (ii) h=0.1, k = 5.91 (St-0.591). The former case is designated as a low Strouhal

number case and the latter case is a high Strouhal number case. The grid speed y, is calculated from

Eq.32. The computations were performed using G2 and G2 with r =3.5. It was found that for the low St

case the computations ran on both grids without producing any unphysical reflections. For the high St

case, the computations with mild clustering produced large amounts of unphysical oscillations close to the

leading edge which contaminated the solution. To remove the unphysical oscillations, the clustering

parameter was changed to 3.5 and the unphysical oscillations were avoided. For high St, strong leading

edge vortex is observed as shown in Fig. 12.
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The flow field was compared with the flow visualization of 0 44 for both the cases by plotting the

hyperbolic tangent of vorticity. Similar vorticity pattern to the experiments were observed during the top

stroke and bottom stroke (Fig. 13) showing the accuracy of the computations.

VI. Gust Suppression by Flapping Airfoils

In the current study, the effect of the wind gust on the aerodynamic performance of a 2D plunging

airfoil is examined numerically using a Navier-Stokes solver in moving coordinates described above. The

gust is included as a source term45 in the right-hand side of the momentum equations to avoid dealing

with the numerical problems to propagate gust at the boundaries of the computational domain. The flight

of Micro Air Vehicles (MAV) experiences high unsteady flow conditions due to the gusty winds in the

atmosphere. Birds and insects, which operate under similar conditions, use the flapping motion of their

wings to generate thrust and lift. To improve the design of the MAV to suit the operating conditions, a

number of studies have been performed to study the aerodynamics of insects and simplified models of

airfoils. However, the effect of the wind gust, which is a very important factor in the MAV design, has

been neglected in most of these studies. In the current study, the effect of the wind gust on performance of

MAV and the ability to suppress the effect of wind gust using the plunging motion of the airfoil is

examined.

The gust is included as a source term in the right-hand side of the momentum equations to avoid

dealing with the problems at the boundaries of the computational domain:

0I

SK cos(kt)
S cos(kt)

0

where k is the reduced frequency given by k = . The coefficients C, C 2 are given by2U ~2aegvnb

C, = 3a(1 + cos(b(x - x, )))(tanh(3(y + yc))2 - tanh(3(y - yc ))2) (33)
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C2 = ab sin(b(x - x,)))(tanh(3(y + y )) - tanh(3(y - y,))) (34)

in the range I x - x, 1< b and 0 for other values, a represents the gust amplitude, b represents the gust
b

width, xc, y, represent the center of the vortical gust.

The amplitude of plunging (h) is computed from the formula

h = e max(C, C2), (35)

where e is a parameter, which is used to adjust the plunging amplitude to match the lift force

generated by the vortical gust with the lift force generated by the plunging motion of airfoil.

Computations were performed for three cases: (plunging frequency and the vortical gust frequency

were equal)

o Stationary airfoil with vortical gust (Case 1)

o Plunging airfoil with no vortical gust (Case 2)

o Plunging airfoil used to suppress the oscillatory lift force created by the vortical gust.(Case 3)

The comparisons are shown in Fig.14 fora = 0.8,b = 5,h = 0.007,k = 3.93. As the gust propagates with

the mean flow, the approximate non-dimensional wavelength of the gust is 0.8. As the non-dimensional

chord length of the airfoil in the computation is equal to unity, more than one wavelength of the gust is

swept across the airfoil during each instant. The computations for case 1 and case 2 in Fig. 1 shows that

the case I and case 2 are approximately out of phase. For the case 3, it is found that lift suppression has

been achieved but the suppression is not a simple superposition of the lift force generated due to the gust

and the plunging motion. For more exact cancellation of the gust lift, the pure plunging should be

combined with the pitching motion of airfoil that will be considered in our future research.

VII. Conclusions

Streamline as a Coordinate method (SFC) was used in the past for steady aerodynamics with low-

order of approximation of governing partial differential equations. The advantages of the SFC are the
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ability of grid to adhere to the curvilinear airfoil surface, to resolve the boundary layer, and to move with

the pitching and plunging airfoil. The use of SFC for aerodynamics of flapping airfoils was hindered by

low accuracy of the SFC method near stagnation points.

In the current study the SFC method using analytical and numerical solutions of potential function and

patching of sub-domains was combined with the high-order spatial and temporal discretizations in a

single-grid approach. The far-field SFC grid approaches Cartesian grid so the ETA method was found to

absorb the outgoing numerical error. The presented results show the orthogonality property of the grid

generated. This paves the way to adopt the economic single-grid approach for complex geometry when

high-order schemes are needed. However, it was observed that a uniform distribution of SFC grid points

in the computational domain produces coarse grid cells close to the stagnation point that may harm the

effort of utilization of high-accuracy high-order schemes. To circumvent this issue, a sine hyperbolic

stretching function was used for grid refinement in the .p direction in the current study.

The numerical solution of governing Navier-Stokes in non-inertial coordinates have shown that the

non-clustered grid in the p direction in the vicinity of stagnation points can be used if the modeled flow is

steady, that is, the only velocity scale is present and this velocity tends to zero near the stagnation point. If

another non-zero velocity scale is present such as the speed of flapping airfoil, the grid clustering is

needed in the y direction in the vicinity of stagnation points.

The scattering of sound from single and multiple cylinders was taken as representative cases for which

analytical or well-established numerical solutions are available for inviscid Euler equations. For the case

of a single cylinder and multiple cylinders, the computed acoustic pressure matched well with the exact

solution when appropriate clustering of grid points is implemented. Uniform flow past a single cylinder

was taken as a test case for viscous flows at low Reynolds numbers. The size of shed vortices for this case

had a good agreement with the data available in the literature. For the periodic shedding at Re=100 and

150, the Strouhal number matched with the values given in the literature. The grid refinement in the (p

direction in the vicinity of stagnation points was not needed since the only velocity scale is present.
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The vortex shedding from a SD 7003 airfoil in uniform flow was studied as a test case for moderate

Reynolds number flow (Re=20000) and it was found that the computed natural shedding frequency

agreed well with the experimental results with very mild grid clustering in the T direction.

Plunging of airfoils at two different Strouhal numbers was studied to find the necessary degree of grid

clustering near stagnation points. The measured coefficient of lift for the case of NACA 0012 airfoil

coincided with the results obtained by Young43. The flow field visualization for SD 7003 plunging airfoil

showed similar structures to the observed experimental pattern when appropriate clustering of grid points

in the q direction is implemented. Further, it was found that the amount of grid clustering required in the

q5 direction increased for higher Strouhal numbers, that is, for a higher plunging speed of the moving

airfoil.
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Figure 1. The SFC grid around a cylinder: (a) uniform grid and (b) grid stretching in the V-direction close to the stagnation
points.(T=4, in Eq. (22))
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Figure 2. Grid generated using panel method for SD 7003 Airfoil: Domain with boundary layer %p-clustering and the ip-clustering
close to stagnation point

32
Final report FA9550-07-1-0314 3/13/2008



0 1

0,2

0 01

0

-0 1

-0.1

-0.5 -0.4 -0.3 02 03 04 05
x x

(a) (b)

Figure 3. Grid generated using panel method for SD 7003 Airfoil: (a) zoomed-in view of leading edge and (b) zoomed-in view of
trailing edge
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Figure 4. Grid generation for pair of cylinders in tandem: (a) using panel method solution of two cylinder system and (b) local
panel method solution for each cylinder followed by stitching along the region of patching. Every second grid line is shown on

either side starting from the streamline on top and bottom of the cylinder for both the cases.
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Figure 5. Pressure contour for scattering of an initial pulse from cylinder a) t=5 and b) t=9.
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Figure 6.Results on the scattering of acoustic pressure from a single cylinder: (a) numerical grid with coarsening and (b) acoustic
pressure at P1 obtained by using a uniform grid (300*300) and a grid of 200*200 with and without clustering close to stagnation point
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Figure 7. Sound scattering from the pair of cylinders: (a) momentarily acoustic pulse computed on grids obtained by grid
stitching method and by the single-domain panel method and (b) pressure history at probe point for scattering of a periodic

pulse
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Figure 8.Comparison of analytical and numerical solutions for scattering of a periodic pressure pulse from the pair of cylinders: (a)
acoustic pressure on the surface of the left cylinder and (b) Acoustic pressure on the surface of the right cylinder
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Figure 9. Steady vortex past a single circular cylinder: a) nomenclature used for comparing quantities of interest,

b) Vortex pattern for Re=20, and c) vortex pattern for Re=40.
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Figure 10. Shedding of street of vortices past a single cylinder: a) Re=100 and b) Re=150
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Figure 11. Peak coefficient of lift for plunging NACA 0012 airfoil
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Figure 12. Plunging SD 7003 airfoil for St=0.591: (a) refined grid and (b) Isolines of hyperbolic tangent of vorticity

37
Final report FA9550-07-1-0314 3/13/2008



02

-02

0406 8 1
x

(a) (b)

0.2

-0 2

014 016 018

(c) (d)

Fig.13 Comparison between experimental observation and numerical simulation for plunging SD7003, Case I: (a-b) bottom
stroke, (c-d ) top stroke, (a, c)-experimental visualization, (b, d)-computational isolines of vorticity. Hyperbolic tangent of

vorticity obtained by the numerical simulations is shown in subfigures (b, d)
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Figure 14. Comparison of the Lift force for the three cases: Case 1 (gust), Case 2 (plunging), and Case 3 (combined).
In the Case 3, airfoil plunging suppresses the effect of gust.
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