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ABSTRACT

The research project has generated a number of problems addressing the uncertainties and
relaxation problems in aeroelastic structures. Specifically, three main problems that are of

important concern to the aerospace industry and the Air Force technology have been addressed.
These are:

1. The influence of structure uncertainties of the flutter of an aircraft wing.
2. Stabilization of wing flutter via parametric excitation.
3. Influence of joint relaxation on the flutter of aeroelastic structures.

These problems are addressed in the next three chapters.



CHAPTER 1.
EFFECT OF STIFFNESS UNCERTAINTIES ON THE
FLUTTER OF A CANTILEVER WING

Summary of Results

This research project deals with the influence of structural uncertainties and joint relaxation on the flutter
probability and safety of nonlinear cantilever wings. The tasks of the research have been accomplished
using analytical, numerical, and experimental techniques. The influence of span-wise distribution of
bending and torsion stiffness uncertainties on the flutter behavior of an aeroelastic wing using a
stochastic finite element approach was studied using a numerical algorithm to simulate unsteady,
nonlinear, incompressible flow (based on the unsteady vortex lattice method) interacting with
linear aeroelastic structure in the absence of uncertainties. The air flow and wing structure were
treated as elements of a single dynamical system. Parameter uncertainties were represented by a
truncated Karhunen-Love expansion. Both perturbation technique and Monte Carlo simulation
were used to establish the boundary of stiffness uncertainty level at which the wing exhibits
flutter in the form of limit-cycle oscillations (LCO) and above which the wing experiences
dynamic instability. The results of the perturbation approach were compared with those predicted
by Monte Carlo simulation and the comparison revealed good correlation for low values of
stiffness uncertainty levels. The major findings are:

* As uncertainty level increases, the perturbation method loses the accuracy.

e For the prediction of LCO, the perturbation method is very accurate for all levels of
bending stiffness uncertainty examined, but the method loses its accuracy at upper levels
of torsion stiffness uncertainty.

e The stability boundary in the flow speed versus stiffness uncertainty reveals the
appearance of LCOs just below the flutter speed boundary. Further increase of
uncertainty level produces instability.

* The uncertainties in torsion stiffness induce a greater disturbance in the system. A smaller
level of torsion stiffness uncertainty induces instability in the system.

State-of-the-Art

The presence of parameter uncertainties in aeroelastic structures adds a new dimension to an
already complicated problem. Parameter uncertainties owe their origin to a number of sources,
which include:

(i) randomness in material properties due to variations in material composition;

(ii) randomness in structural dimensions due to manufacturing variations and thermal effects;

(iii)randomness in boundary conditions due to preload and relaxation variations in
mechanical joints; and,

(iv)randomness of external excitations.

Generally, uncertainty is described as either parametric or non-parametric. Parametric
uncertainty is due to variability in the value of input parameters, while non-parametric




uncertainty includes all other sources, such as modeling errors, coarse finite element mesh
fidelity, or un-modeled nonlinear effects.

Parameter uncertamtxes fmay cause sensitivity and variability of the response and eigenvalues of
structural stochasticity'. The early developments relied on Monte Carlo simulation and later on
first- and second-order perturbation methods to compute second-order moments of structure
response. Furthermore, the genemal sources of uncertamty affecting the design and testing of
aeroelastic structures were discussed. In particular, Pettit’ addressed a number of applications of
uncertainty quantification to various aeroelastic problems such as flutter flight testing, prediction
of limit-cycle oscillations (LCO), and design optlmnzatlon with aeroelastic constraints. Different
computational methodologies have been employed*® to quantify the uncertain response of
aeroelastic structures with parametric variability. These methodologies include finite element
and perturbation methods.

One of the major problems of incorporating the random field mto finite element analyses is to
deal with abstract spaces which have limited physical support®’. The difficulty involves the
treatment of random variables defined on these abstract spaces. Usually the problem is solved
through Monte Carlo simulation or stochastic finite element methods. Due to the large number of
samples, which require high computational time, the Monte Carlo simulation is used mainly to
verify other approaches. The perturbation®'' and Neumann expansion'®'?  methods proved
acceptable results for small random variation in the material properties. It was found that these
methods are comparable in accuracy, but the most efficient solution procedure is the perturbation
finite element method, which requires a single simulation. However, perturbation method
requires the system uncertainty to be small enough to guarantee convergence and accurate
results.

The perturbation stochastic finite element method (SFEM) has been adopted by several
researchers using the Karhunen Loeve (K-L) expansion to discretize the random fields due to
structure mechanical properties'"”. Jensen'® considered an extension of the deterministic finite
element method to the space of random function. A Neumann dynamic SFEM of vibration for
structures with stochastic parameters under random excitation was treated by Lei and Qiu'’. The
equation of motion was transformed into quasi-static equilibrium equation for the solution of
displacement in time domain. The Neumann expansion method was applied to the equation for
deriving the statistical solution of the dynamic response within the framework of Monte Carlo
simulation. The K-L expansion has proven to be a powerful tool in modeling parameter
uncertainties in the structural dynamics community. However, it has not been utilized in the
randomness and variability of parameters in aeroelastic structures. The present work is an
attempt to employ the K-L expansion to discretize the span-wise distribution of bending and
torsion stiffness uncertainties of an aircraft wing.

Structural and material uncertainties have a direct impact on the flutter characteristics of
aeroelastic structures and they have begun to attract some attention in the literature. They were
considered in studying the flutter of panels and shells'®*. Liaw and Yang'®" quantified the
effect of parameter uncertainties on the reduction of the structural reliability and stability
boundaries of initially compressed laminated plates and shells. For buckling analysis, the
uncertainties were included in the modulus of elasticity, thickness, and fiber orientation of
individual lamina, as well as geometric imperfections. For flutter analysis, further uncertainties
such as mass density, air density, and in-plane load were also considered. Kuttenkeuler and



Ringertz*® performed an optimization study of the onset of flutter, with respect to material and
structural uncertainties using finite element analysis and the doublet-lattice method. Lindsley et
al.>'* considered uncertainties in the modulus of elasticity and boundary conditions for a
nonlinear panel in supersonic flow. The probabilistic response distributions were obtained using
Monte Carlo simulation. It was reported that uncertainties have the greatest nonlinear influence
on LCO amplitude near the deterministic point of LCO. Poirion”** employed a first-order
perturbation method to solve for the probability of flutter given uncertainty in the structural mass
and stiffness operators.

Recently, the influence of parameter uncertainties on the response of a typical airfoil section was
considered by few researchers®?®, The sensitivity of uncertainty of aeroelastic phenomena was
evaluated using Monte Carlo snmulatlon The effect of parametric uncertamty on the response of
a nonlinear aeroelastic system was studied by Attar and Dowell*® usmg a response surface
method to map the random input parameters to the root-mean square wing tip response.

Civil engineers have been involved in studying the influence of uncertainties of structural
properties, in particular damping, on the reliability analysis of flutter of a bridge girder and a flat
plate was determined in few studies®®>!. The prediction of the flutter wind speed was found to be
associated with a number of uncertainties such that the critical wind speed can be treated as a
stochastic variable. The probability of the bridge failure due to flutter was defined as the
probability of the flutter speed exceeding the extreme wind speed at the bridge site for a given
period of time. The probabilistic dynamic response of a wind-excited structure has been studied
in terms of uncertain parameters such as wind velocity, lift and drag coefficients by Kareem®?.
The influence of uncertainty in these parameters was found to propagate in accordance with the
functional relationships that relate them to the structural response. Note that while in aerospace
structures, one is interested in estimating the onset flutter due to parameter uncertainty, civil
engineers, on the other hand, focus on probabilistic reliability analysis to determine a probability
of the bridge or a structure failure due to flutter for a given return period rather than stating a
single critical wind speed.

A ground vibration test was used by Potter and Lind*® to obtain uncertainty models, such as
natural frequencies and their associated variations, which can update analytical models for the
purpose of predicting robust flutter speeds. Different norm approaches were used to formulate
uncertainty models that cover the entire range of observed variations. Lind and Brenner*
introduced a tool referred to as the “flutterometer” for predicting the onset of flutter during a
flight test. The flutterometer computes the onset of flutter for an analytical model with respect to
an uncertainty descrlptxon Brenner® considered a technique that 1dent1ﬁes model parameters and
their associated variances from flight data. Later, Prazenica, et al.*® introduced a technique for
estimating uncertainty descriptions based on a wavelet approach, but relies on Volterra kernels.

The present work deals with the influence of stiffness uncertainties on the flutter behavior of an
aeroelastic wing. A numerical algorithm originally developed by Predikman and Mook®’

simulate unsteady, nonlinear, incompressible flow interacting with linear aeroelastic wing in the
absence of uncertainties is adopted. In order to implement this algorithm in the presence of
uncertainties we introduce a random field that represents bendmg or torsion stiffness parameters
or both as a truncated Karhunen-Love (K-L) expansion®. The air flow and wing structure are
treated as elements of a single dynamic system. Both perturbation technique and Monte Carlo
simulation are used to establish the boundary of stiffness uncertainty level at which the wing



exhibits LCO and above which the wing experiences dynamic instability. In this paper the term
limit cycle oscillation is used to denote the flutter boundary, where for a linear system, effective
damping is zero. The analysis also includes the limitation of perturbation solution for relatively
large level of stiffness uncertainty. The analytical modeling of aerodynamic loading based on the
unsteady vortex lattice method, structural forces interacting with the aerodynamic loading, and
stiffness uncertainties based on The K-L expansion are briefly described in sections II through
IV, respectively. Section V establishes the entire system modeling by combining the three
models (aerodynamic, structure, and uncertainty) in the wing governing equations of motion in
the finite element discretized form. Sections VI and VII present the perturbation analysis solution
and Monte Carlo simulation results, respectively, together with a comparison of the
corresponding results.

II. AERODYNAMIC MODELING

Aerodynamic modeling requires the estimation of aerodynamic forces and at the same time
accounts for a wing elastic deformation. This is achieved by using the unsteady vortex lattice
method (VLM). The VLM accounts for aerodynamic nonlinearities associated with the angle of
attack, static deformation, vorticity-dominated flow, and unsteady behavior. It is also not limited
to small periodic motion. The general unsteady vortex-lattice model imitates the boundary layers
and the wakes as vortex sheets’’. The vortex sheets are of two types, bound-vortex sheet, and
free vortex sheet. The bound-vortex sheets create the boundary layer on the surface of the wing
while free-vortex sheets represent the wakes.

The lifting surface is approximated by a set of lattices of short segments of constant circulation
each. Each segment occupies a portion of the wing surface and is enclosed by a loop of vortex
segments. Figure 1(a) shows the discretization of the lifting surface, where N-frame is the ground
fixed coordinate system and B-frame is the coordinate system on the wing body and is moving
with the wing. The leading segment of the vortex loop is located at a distance equivalent to
quarter of the panel length. The velocities are calculated at a finite number of points called
control or collocation points located at the lattice center. Figure 1(b) represents the position of an
arbitrary control point P on the lattice as a result of the wing structure displacement.

The point P° represents the point P before the wing is deformed. In the N-frame, the positions
of P’ and P are given by the vectors, R,, and R, respectively. The corresponding vectors in the
B-frame are r, and r. The displacement of the aerodynamic point P due to deformation of the
wing is, Ar, . The vectors R and r can be represented as functions of the wing displacement,
Ar, , i€, R=Ry+Ar, , and r= r,+Ar, . The pressure p(r) at point P was estimated using

Bernoulli’s equation for unsteady flow from which the non-dimensional aerodynamic load at
point P is

= —. iE . ot it D E=rm]=

FA,P (1') = Z{AVP 'I:VmP _N vB _B rP -(I)B )(B rP:|+D_f GP]}APn (])
where n is the unit normal vector at the control point, 4, = 4, /L. is the non-dimensional area of
the element P, 4, is the area of the element, L. represents the chord-wise length of one element
on the bound lattice, t=¢/T,, R=R/L.=R,+A¥F,, R,=R,/L., AF, =Ar, /L., T.=L./V, is a




characteristic time, V, = V,./V,, V, is the absolute velocity of the air flow, V. is the free stream
velocity. AV, =AV,/V, is the non-dimensional tangential velocity difference across the vortex
lattice and V,, is the “mean” velocity which does not recognize the presence of the local
vorticity. V,, can be considered as the flow velocity at the midpoint of the vortex sheet
thickness. G, is the circulation loop in non-dimensional form of the vortex lattice element which
encloses the control point P, *v*(r) is the absolute velocity of 0,, “¥" and *¥" are the position
and velocity of P relative to the B-frame, respectively, and *&” () is the angular velocity of the

B-frame. The expression for the aerodynamic load at point P in dimensional form is:

Control Points

Leading Edge

N-frame

N-frame Z (b)

Figure 1. (a) Lifting Surface Discretization, (b) The position of an arbitrary point P on the lifting surface caused by
the wing structure deformation

For (l):[:(pwV: /2)ch:|i‘4.r(r) (2)



where p is the density of the fluid. This aerodynamic force is acting at the center of each lattice

and interacts with the elastic and inertia forces of the wing structure and their modeling is given
in the next section.

III. STRUCTURAL MODELING

Figure 2(a) shows a cantilever wing with a straight elastic axis at distance &, from the inertia

axis. The wing is structurally modeled as an Euler-Bernoulli beam. The coordinate system
coincides with the B-frame coordinate system from the aerodynamic modeling. The wing is
divided into elements as shown in Figure 2(b), where a single element with two nodes is shown
in Figure 2(c).

The displacements of each element, i(y,r), v(y,t), and Ww(y,r), are expressed in terms of the
nodal displacements «,, v,, w, in x, y, and : directions, respectively, and nodal rotations 2,
a@,, 7, about x, y, and : axes, respectively. The relationships between the element and nodal
displacements are

i(y,1) =Yy (¥)ue (1), V(n1)=Y] (y)ve(?)

(3)
(1) =Y, (V)we (1),  a(n0)=Y. (y)a (1)
whete Y7 ()=, ()={%, % T K}, VI()=Y.()=( 1},
u, v,
THES Z’ ! v,={vv’ }, w, ()= f’ . ae(t)={:'}
Yiei B

. . . 39 5 3 v
Y,, j=12,.,6 the shape functions given by Preidikman™ . Applying Lagrange’s equation to each
coordinate gives the following set of equations of motion:

(]’Y(y)Y oY dy] (j ELY, () (Y07 ) & ] {f EY, (y)dy] (4a)
(Iy(y)”y)dyj (‘)”[IAEYU)(YU)) ] )=(;I'Fvvv(y)dy] (4b)
[IY(M 604 dy] (t)+m6(j Y, )Y, () dy] (1)
{ I ELY, 07 (Y07 ) dy]w. (1)= (j EY,( y)dy] (40)
( fLy.om.0r dy] (1) +md, ( [v.0)v. ) dyJ (1)

+[ I cGJY, (y) (Y,, 6% )T dy]ﬂ, (1) = (yj' M,Y,(y) dy] (4d)



Inertia Axis

Elastic Axis

A
/

Elastic axis

(b).

Figure 2. (a) Schematic diagram of a cantilever wing model, (b) Finite elements discretization, (c) A finite element
representation

where a prime denotes a derivative with respect to spatial variable y. m is mass per unit length,
I, is mass moment of inertia (about inertia axis) per unit length, and L is the wing length. 4 is
the wing cross-sectional area, £ is Young’s modulus, 7, is the area moment of inertia of the
wing cross-section about x axis, /, is the area moment of inertia of the wing cross-section about
z axis, J is the polar moment of inertia of the wing cross-section about :z-axis, G is the

modulus of rigidity, and ¢ is a factor accounting for the non-circular geometry of the wing cross-
section. The value of ¢ depends on the cross-section geometry and is documented in the
literature*”. F,, F,, and F, are the external forces acting along x-, y-, and z-axes, respectively,

and M, is the external moment about the inertia axis. Equations (4) may be written in the matrix
form:

MU +KU* =F (5)
Where UF =i {ul vl wi B: (!, YI ui+l v:+l wl+l Bl+l a’Hl Yr+|}r ¢

Equation (5) constitutes the governing equations of motion for a single element without
uncertainties. The inclusion of material uncertainties will be considered in the next section.



IV. MODELING OF MATERIAL UNCERTAINTIES

Material uncertainty is considered for bending and torsion stiffness parameters. Let the bending
and torsion stiffness parameters be represented in the form,

EI,(y)=EI+El:(y), GJ(y)=GJ+GJ(y) (6a)

The mean values El« >>0,and GJ>>0 are assumed to be much larger than the root-mean-square
of the random field variability represented by EI.(y) and GJ(y). Both El.(y) and GJ(y) are
assumed to be Gaussian distributed with zero mean and their standard deviations ogr, , and ogy

are much smaller than the corresponding mean value, i.e., o /Elx <1, and oG, /GJ <1. This

implies that the stiffness parameters EI,(y) and GJ(y) form positive-valued random fields. Let
the stiffness parameters be represented by the random function x(y,6), where 6 is a parameter
that belongs to the space of random events and ye[-L/2,L/2]. The random field x(».0) can be
expressed by the truncated K-L expansion®:

x(y,9)=i(y)+gé" ONAD) (6b)

where ¥(y) is the mean value of x(y,6), A, are the eigenvalues of the random field as defined

n

in equation (7) and (9b) below, f,(y) is a set of eigen-functions, and ¢&,(6) is a set of random
variables with zero mean and E[£,(6)¢,(6)]=5,,, 5,, is the Kronecker delta. Where 4, are the

eigenvalues of the covariance operators in equations (7) and (8), and f, (y) are the corresponding
eigenfunctions by the solution of the integral equation

L/2

[ Coap /G0, = 4,£,00) (7)

-L/2

where C(y,y,) is the covariance kernel of the random field x(y,0).

Expansion (6b) is mathematlcally well founded and is guaranteed to converge. The convergence
and accuracy of the K-L expansion were proven by Huang et al.* by comparing the second-order
statistics of the simulated random process with that of the target process. It was shown that the
factors affecting convergence are mainly the ratio of the length of the process over correlation
parameter and the form of the covariance function. The K-L expansion has an advantage over the
spectral analysns for highly correlated processes. For long statlonary processes, the spectral
method is generally more efficient as the K-L expansion method reqmres substantial
computational effort to solve the integral equation. In addition, it is optimum in the sense that it
minimizes the mean square error resulting from truncating the series at a finite number of terms.
The bending and torsion stiffness parameters will be modeled by one-dlmensmnal Gaussian
random field models with bounded mean squares. Ghanem and Spanos and Loeve* showed that
for a Gaussian process the K-L expansion converges. The covariance kernel of the random field
x(»,6) may be assumed in the form:
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Cyp)=ate Pl ()
where o is the variance of the random field y, such that o, « 7(y) implying that x(y,6) will
always be positive, 7, is correlation length such that /., — L. For one-dimensional case, the
eigenvalue problem (7) possesses the closed form analytical solution®

cos(w,y) 203 /1, \
LHly)= O WY e . 9a,b
) L sinQo,L/2)" 7 @y +I/E, .
2w,

where o, are the roots of the characteristic equation:

{i—wtan(w%)”w+tm[a)§)}=0 (10)

Introducing the expressions (9) into (6) the random field takes the form:

X(y-9)=i(y)+ilzg,, (6)o, I ©p /ey

V(mf, + 1/130,)[Lm" +sin(20,L/2)] cos{on) ()

For bending stiffness, the random field y is denoted by EI (y) with mean value EI, and
variance o7, ; and for torsion stiffness the random field y is denoted by GJ(y) with mean value

GJ and variance o7, . For simplicity, it is assumed that both parameters are uncorrelated. The

elemental stiffness expression K¢ is "
N N
K*(0)=Kj+) K; ,£,(0)+ Y K £, (6) (12)
n=1 n=1
where
Yiar i Yint T Y T _—— )
K§=El, Y, (y) dy+AE [ Y, (Y) &+, Y, (Yw') dy +¢GJ [ Y,'Y,"dy (13a)
Yi Y Yi Y

w’l / Icar

cos(w,y) YY" 13b
a;j+1/130,)[Lw,,+sin(2w,,L/2)] os(27) i 155

K;,= yT 28, (9)0'51, \/(

< | o /1
K!, = [2Z,(0 n_cor DY Y, T 13
@ J 4 )GG’\/(w,f+1//30,)[Lwn+sin(2a)"L/2)] =02} @ dam)

Assembling the elemental matrices we obtain
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MU (8) +[K0 J{ﬁ K, &, (9))+[§: K, £, (G)JJ U(6) =F, (V) (14)
n=1 n=1

where M is a (6nS x6ns) mass matrix represents the assembled elemental mass matrix M¢, n

is the number of points in the structural grid, K, is a (6nyx6n;) matrix representing the

assembled elemental mean value of the stiffness matrix K{. K,, and K,, are (6ng x6ng )

matrices representing the assembled elemental bending K;, and torsion K¢, random stiffness

matrices, respectively. F,(U,,0) is a (6ngx1) vector representing the assembled elemental force

vector F{, and U(z,6) is a (6ng x1) vector of the displacements of the points in the structural grid
and represents the assembled elemental displacement vector U®.

Note that the left-hand side of equation (14) constitutes a set of stochastic second-order
differential equations with random variable coefficients with Gaussian distribution. In the
absence of aerodynamic forces, these equations are always stable, since the stiffness matrices are
real positive definite. This is guaranteed by the fact that the uncertain components of the stiffness
parameters are very small compared with their mean values as stated in the beginning of this
section. In the next section the aerodynamic nodes will be connected to the structural finite
element mesh and the aerodynamic forces will be transferred to the structural grid.

V.SYSTEM MODELING

Figure 3(a) shows the structural grid superimposed to the aerodynamic grid.
The relationship between the displacements of the aerodynamic grid points and displacements of
the structural grid points is:

AR, =] =G U (15)

where A%, is a (3n,x1) vector representing the displacements of the control points in the
aerodynamic grid, n, is the number of control points in the aerodynamic grid, G ,; is an 3n, x6n

interpolation matrix that connects the displacements of the nodal points in the aerodynamic grid
to the displacements of the nodal points in the structural grid®’.

Figure 3(b) shows how an aerodynamic point is connected to an internal structural grid point,
where an aerodynamic point P, is connected to a point P, on the elastic axis between two

successive structural nodes. For the present study, the structural nodes are labeled by the index i,
where i=1,2,...8(=n,) while the aerodynamic points are labeled by the index j, where

j=12,.,18(=n,). The points P; and P, are in the same plane, which is perpendicular to the
elastic axis. The relative position between P, and P is given by the vector ol =(x,-,yj,z 1). The

: . n— g . .
displacement of the point P, is given by Ar/ = {Ar,",Ar{' ,Ar;‘} and the displacement of the point
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P; is given by U, ={u,'.‘,vf w0, y,‘-'} . The relationship between the points P, and P is given
by**:

Structural Nodes

Control Points

B-frame

Aerodynamic Nodes
Structure nodes: i=1,2,...,8, Aerodynamic control points: j=1,2,...,18

(a)

(b).

Figure 3. (a) Structural grid superimposed to the aerodynamic grid, (b) Connection of an aerodynamic grid point to
an internal point of the structural grid point

1 00 O =z 0
ar, =G,U,, G,=|0 10 -z, 0 x (16)
001 0 =—=x; 0
The displacement vector U, is obtained by finite element interpolation as a function of

displacements on nodes i and i+1 as follows®”:

Y, Y, Y3 Y .
Up, =|: o - M:IU,‘,M =YU,, (17)
Y2| Y22 Y23 Y24
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Where U, ., ={u, v, w, B, o ¥ %, Vi Wm B % Y} »and the detailed structures
of Y, are given in the Appendix. Introducing equation (17) into equation (16) gives:

% w1 Ui U,
Arj,; = I:Gjiy]{U.H} = I:Gj_i GI'H’I]{U-H} (l 8)
Next, the matrix G,, will be assembled into the global matrix, G ,, which is introduced into

equation (15). In order to obtain the relationship between the aerodynamic forces F, and
structural forces Fy, the two force systems must have the same work for any virtual
displacement, i.e.,

5(A3A )T Fy= 5U§r {(GAS )T FA} = SUQFS (19)

where 8(A%t,) and 8Uj, are virtual displacements of control points of the aerodynamic grid and

of structural nodes, respectively. G, is the global matrix which connects the control points of
the aerodynamic grid to the structural grid points, F, is the matrix of aerodynamic force, which
is located at the aerodynamic control point, and Fy is the matrix of the structural load, which is

located at the structural grid points. Equation (19) yields the relationship between structural
forces and the aerodynamic forces,

K= (G AS )T F,=GyF, (20)

where (G o )T =Gy, . Introducing equation (20) into the equation (14), the equations of motion of
the system is:

Mi)(e)+[|<0 +(ﬁ K, .. (e)]+(§ K, ., (e)ﬂu(e) =G F,(0) 2D
n=|1

n=1

Equation (21) constitutes the equations of motion of a wing involving stiffness uncertainties. A
modal analysis of equation (21) is performed and gives:

K, ¥ = M¥A 22)

where ¥ is an NxN eigenvector matrix where N is the number of degrees of freedom of the

finite element model, and A is a NxN diagonal matrix of eigenvalues. Equation (21) will be
solved using perturbation analysis in the next section..

VI. PERTURBATION ANALYSIS

In order to develop the perturbation analysis, it is convenient to introduce the following
coordinate transformation, which approximates the deformation of the beam:
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N
U(,6)= ) ¥,q; = ¥q; (23a)

k=1

where ¥ is a truncated form of ¥ . For the present application, the method requires displacement
vector be expanded into the truncated Taylor series:

U(1,0)= ‘l’[qo(t) Z (6)+ Z ia: 2 le=o £, (8)&,,(8) +.. ] (23b)

nlml

Note that ¥ is an NxN matrix that includes first N mode shape vector, q is an ~NxI
generalized coordinates vector, and q, is the mean value of q. Substituting equation (23b) into
equation (21), pre-multiplying both sides by M™¥" and collecting terms of the same power of &

yields a set of perturbational equations of zero-order, first-order, second-order, and so on. For
simplification sake we restrict the analysis up to the first-order and the following perturbational
equations are obtained:

e Zero-order equation (coefficients of &°):

do +[ ¥'K ¥ Jap =[M7¥TGy, |F,, (24a)
e First-order equation (coefficients of &!):

o,

- (24b)

i+ YKo ¥ Jay, =-[¥7K,, ¥ +¥TK, ¥ ]q +[M7¥TG, ]

where n=1..N, q]n_— and [‘I'TKO‘P] is am NxN diagonal matrix of first N eigenvectors.

O%n

The aerodynamic loading F, as defined by equation (1) depends on the wing displacement Ar,,

which is time dependent. Note that a; is obtained by taking the derivative of equation (1) with

n

respect to &, after substituting for Ar,, which is expressed in equation (16) and equation (23b)
which is a function of ¢, .

Equations (24) are numerically integrated once using an adapted Hamming’s fourth order
predlctor-corrector method. The numerical solutions are performed using the following values of

the wing®: ET, =10°Nm?; EI, =50x10°Nm?; GJ=15x10°Nm?; Ed= 20x10°N; m= 10kg/m;
L _15kgm, 8;=0.15m; wing length L=3m; wing chord C=1m; angle of attack o, =5°;
L. =0.16667m ; and [, =L=3m. In order to obtain realistic results, the wing will be discretized

using 9 elements for the wing structure and 6x10 elements for the lattice. The response will be
obtained from perturbation method at various flow speeds and various bending and torsion
stiffness uncertainty levels, i.e.,
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N N
Dben (T’e) = qO,ben (T) t Z ql,ben (T)fn (0) ’ ior (T! 0) = qO,lor (T) it Z ql,lor (r)fn (0) (25a’b)
n=| n=1
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Figure 4. Dependence of wing response variances on the number of terms N in the Karhunen-Loeve expansion

showing the convergence is achieved for N > 2 .

where g;,., and g,,, are obtained from the equation (24a), ¢,,., and ¢,,, from the equation

(24b). The analysis is carried out for N =2 since for N>2 the results converge as shown in
Figure 4. The temporal component of the response variance along the ensemble is given by:

520n (1:6) = (hen (6:0) = E[den (10)]) s 52, (1.6) = (q10r (1.6) ~ E[ 4y (1.6) ]) (26a,b)

The wing bending and torsion time history records are numerically estimated using equations
(25) together with the corresponding variances (as computed from equations (26)) for airflow

speed 120 m/s and angle of attack a=5°, in the absence of uncertainty. The solutions are
obtained for initial conditions g,,,(0)=-0.05, g,,,(0)=0.0, g,,(0)=0.01, and 4,,(0)=0.0 . It is found
that the wing is stable under this airflow speed. In the presence of small level of bending stiffness
uncertainty up to oy, /EI, =0.09 and zero torsion uncertainty, o, /GJ =0.0, and under the same
airflow speed the wing remains stable and both time history records and their variances decay
with time. When the bending stiffness uncertainty reaches the critical value oy /EI,=0.1 the
wing experiences instability, loses its zero equilibrium state and reaches the flutter boundary in
the form of LCOs due to aerodynamic nonlinearity. Above that level of bending stiffness
uncertainty the wing oscillations grow without limit. As the air flow speed increases, the flutter
boundary takes place for lower values of bending stiffness uncertainty defined by the bound
oy, / EI, <0.1. An extensive number of numerical solutions have been carried out for the purpose
of establishing the flutter boundary on air flow speed, ¥, , versus the variance of bending
stiffness uncertainty, o, /EI, . Figure 5(a) shows the stability bifurcation diagram v, - oy ! EI,,

where the region occupied by small empty circles, “o”, designates stable wing response, and the
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region covered by small empty triangles, “A”, belongs to an unstable wing. The line separating
the two regions signals the occurrence of flutter, designated by empty squares “[J”.
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Figure 5. (a) Stability bifurcation diagram ¥, vs. Oy / ET_, (b) Stability bifurcation diagram Vo NS. B /GJ
O Stable, JLCO, A Unstable

In the absence of bending stiffness uncertainty, and over a small range of torsion stiffness
uncertainty, the wing remains stable until o4, /GJ=0.035, at which the wing experiences flutter
for airflow speed 120 m/s, above that level the wing is unstable. Figure 5(b) shows the stability
bifurcation diagram ¥, - o5, /GJ. It is seen that the stable region in the presence of torsion
stiffness uncertainty is smaller than the stable region in the presence of bending stiffness

uncertainty. This demonstrates the significant influence of torsion stiffness uncertainty on the
stability of the wing.

Figure 6 shows the influence of both bending and torsion uncertainties on the stability of the
wing. Figure 6 reveals the stability boundaries for the bending-torsion combination uncertainties

(oy /El,-og, 1GJ ) at different flow speeds.
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Figure 6. Stability boundaries o, / Elx vs. 65, /GJ at different flow speeds.

VII. MONTE CARLO SIMULATION

In order to define the limitation of the perturbation method, the Monte Carlo simulation will be
performed. First consider the deterministic equations of motion for one element as given by
equation (5). Uncertainties will be introduced in bending stiffness, which is described by
equation (6a). Assembling the elemental matrices given in the equation (5) and introducing the
aerodynamic loads given by expression (20), gives the system equations of motion:

MU +KU =G F, (27)
Using the coordinate transformation given by equation (23), equation (27) takes the form
('j+[‘I’TK0‘l’]q = [M"‘PTGSA]FA (28)

Equation (28) will be integrated numerically once, based on the assumption that the response is
ergodic. The Monte Carlo simulation confirms the perturbation results in predicting the flutter
boundary for low values of bending stiffness variance. Figure 7(a) shows a comparison of
perturbation (shown by solid curves) and Monte Carlo simulation (shown by dashed curves)
results for bending and torsion variances for flow speed 120 m/s, and stiffness uncertainty
parameters o, /EI,=0.1, 6, /GJ=00. Figures 7(b) show another set for airflow speed of 140

m/s and bending uncertainty level og;/EI, =0.015 and zero torsion uncertainty. Figure 7(b)
reveals good agreement between perturbation and Monte Carlo simulation results.



(0)=0,

s Qben

-0.05

ed from perturbation method,

1990
1990 2000
imat
(0)

Dben

1980
1980

=0,

P B 16T

0.01, 4, (0)

1970
1970

1960
1960

(@) r
1950
1950
(b)r

10n response variance as est

1940
1940

1930

1920
lation, --------, for a,

1910

x10*

p e

1

2
ben

S

Figure 7. Time history records of bending and tors
and Monte Carlo Simu

(0)

ior
=120m/s, O, /EI,=0.1. (b) V,, =140m/s, O, /EI, =0.015.

(@) Ve



19

1350-
V. [m/s]
1304
1250 - &
e R e e o S SR S
9% I S S N S S N O

0 001 002 003 004 005 006 007 008 003 0.1

UEIX /E_[X
Figure 8. Stability bifurcation diagram ¥, vs. o, /EI, for Monte Carlo Simulation

O Stable, JLCO, A Unstable

The bifurcation diagram shown in Figure 8, obtained from Monte Carlo simulation, is identical
with the one shown in Figure 5 estimated by perturbation method. This demonstrates that the
perturbation method is very accurate in the prediction of the flutter boundary and the
establishment of stability boundaries in the presence of bending uncertainties and absence of
torsion uncertainties. The dependence of bending and torsion variances on bending uncertainties
is shown in Figure 9 for different values of airflow speed.
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Figures 10(a) and 10(b) show the Monte Carlo simulation time history response variances for

two values of airflow speed, 120m/s and 140m/s, and two different levels of torsion stiffness
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uncertainty, o, /GJ =0.05 and 0.01, respectively. The comparison shown in Figure 10(a) reveals
a poor approximation of the perturbation method as compared to Monte Carlo simulation for
flow speed 120 m/s and o, /EI, =0, o5,/GJ=0.05.

Note that the Monte Carlo simulation yields LCOs while the perturbation method gives unstable
response. Better correlation between the two methods is obtained at higher speeds but lower
uncertainty levels as demonstrated in Figure 10(b) for flow speed 140 m/s, oy /EI =0,

6, /GJ =001,
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The stability bifurcation diagram V, - o, /GJ obtained from Monte Carlo simulation is shown in
Figure 11. Comparing the bifurcation diagrams from Figures 5(b) and 11, one observes a good
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correlation in the prediction of flutter boundary up to flow speed 130 m/s and o, /GJ =0.03. As

the flow speed decreases and torsion stiffness uncertainty level increases, the perturbation
method loses the ability to predict the flutter boundary. For example, at flow speed 120 m/s, the
flutter onset is obtained form Monte Carlo simulation at o, /GJ =0.05, while from perturbation

method at o, /GJ =0.035. Figure 12(a) and 12(b) shows the dependence of bending and torsion

variances on the torsion stiffness uncertainty level for different values of airflow speed indicated
on each curve. Both diagrams reveal the validity of the perturbation method for a low level of
stiffness uncertainty.

VIII. CONCLUSIONS

The influence of uncertainties of bending and torsion stiffness parameters on the flutter behavior
of an aeroelastic wing is examined. The uncertainties are modeled using a modified first order
stochastic perturbation method together with a truncated Karhunen-Loeve expansion instead of
Taylor series. However, the Taylor series is used for displacement vector expansion. The results
of the perturbation approach are compared with those predicted by Monte Carlo simulation and
the comparison revealed good correlation for low values of stiffness uncertainty levels. As
uncertainty level increases, the perturbation method loses the accuracy. For the prediction of
LCO, the perturbation method is very accurate for all levels of bending stiffness uncertainty
examined, but the method loses its accuracy at upper levels of torsion stiffness uncertainty. The
stability boundary in the flow speed versus stiffness uncertainty reveals the appearance of LCOs
Just below the flutter speed boundary. Further increase of uncertainty level produces instability.
The uncertainties in torsion stiffness induce a greater disturbance in the system. A smaller level
of torsion stiffness uncertainty induces instability in the system.
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Appendix
The detailed structures of ¥;; of equation (17)

, 0 0 0 0 - Y, 0 0 0 0 =%
Y;=|0 % 0|, ¥;=|/0 0 0, ¥Y;={0 % o0, Y,=l0o 0 0|,

0 0 K Y, 0 0 0 0 ¥, Y, 0 0

0 =i Y 0 0 0 0 =x Y 0 0

Yu=[0 0 0|, Y¥Y,=(0 ¥ 0|, ¥s=|0 0 0, ¥=(0 % o

Y, 0 0 0 0 ¥ Y, 0 0 0 0 Y

where a prime denotes a derivative with respect to y and Y, are the finite element shape
functions given by
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CHAPTER 2:
THE INFLUENCE OF JOINT RELAXATION
ON THE FLUTTER OF AEROELASTIC STRUCTURES:
Part 1: Experimental Investigation
ABSTRACT

The influence of boundary conditions relaxation on two-dimensional panel flutter is studied in
the presence of in-plane loading. The boundary value problem of the panel involves time-
dependent boundary conditions that are converted into autonomous form using a special
coordinate transformation. Galerkin’s method is used to discretize the panel partial differential
equation of motion into six nonlinear ordinary differential equations. The influence of boundary
conditions relaxation on the panel modal frequencies and LCO amplitudes in the time and
frequency domains is examined using the windowed short time Fourier transform and wavelet
transform. The results revealed:

e The relaxation and system nonlinearity are found to have opposite effects on the time
evolution of the panel frequency.

* Depending on the system damping and dynamic pressure, the panel frequency can
increase or decrease with time as the boundary conditions approach the state of simple
supports.

The effects of various bolt preloads, viscoelasticity and external applied static and dynamic loads
on bolt load relaxation in a carbon/epoxy composite bolted joint have been studied. Both
phenomenological modeling and finite element analysis (FEA) of bolt-connected three-point
bending specimens were employed in the studies. The experimental measurements showed that:

* Relaxation of 1.25% - 4.25% over a period of 30 hours was observed depending on the
initial preload and applied external loads.

* It was observed that for any magnitude of external load the bolt load relaxation decreases
with increasing initial preload. These findings emphasize the importance of the
magnitude of the preload.

e Only about 1/3 of the relaxation in composite specimens is due to viscoelastic behavior of
the polymer matrix in the composite, and the remaining 2/3 of the relaxation is due to
other mechanisms such as bolt thread slip, plasticity and/or external excitation.

State-of-the Art

The purpose of the present investigation is to conduct experiments and develop
phenomenological models of relaxation in composite joints under external static and dynamic
loads. An attempt was also made to indirectly estimate the effect of viscoelasticity on relaxation
by comparing experimental relaxation curves for a composite bolted joint with those of a steel
joint, which does not exhibit viscoelastic behavior at room temperature. Phenomenological
models were derived from the experimental results based on regression analysis. Three-
dimensional FEA models for the composite bolted joints including the time-dependent material
properties under 3 point bending were developed and a quasi-elastic approach was used to
estimate the bolt load relaxation for static and dynamic loads and for various values of preloads.
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The relevant previous work reported in the literature addresses the design, analysis and
relaxation of bolted joints, and is reviewed in the next two subsections.

Design, Analysis and Characterization of Joints

The design of structural systems involves elements that are connected through adhesive bonds,
bolts, rivets, pins, and various combinations of these connections. Joints and fasteners are used to
transfer loads from one structural element to another. In composite structures, three types of
joints are commonly used, namely, mechanically fastened joints, adhesively bonded joints, and
hybrid mechanically fastened/adhesively bonded joints. General aspects of design, analysis and
characterization of composite joints have been discussed by Camanho and Mathews [1], Erki [2],
Jones [3], Wang, et al. [4], Rastogi, et al. [5,6,7], and Hart-Smith [8-9]. Adhesive joints depend
on the size of the parts to be joined and the amount of overlap required to carry the load.
Adhesive joints are often acceptable for secondary structures, but are generally avoided in
primary structures on account of strength, temperature and moisture effects, and reliability.
Bolted joints or hybrid bolted/bonded joints are still the dominant fastening mechanisms used in
joining of primary structural parts for advanced composites.

The complex behavior of connecting elements plays an important role in the overall dynamic
characteristics such as natural frequencies, mode shapes, and response characteristics to external
excitations. The joint represents a discontinuity in the structure and results in high stresses that
often initiate joint failure. Ibrahim and Pettit [10] presented an overview of the problems
pertaining to structural dynamics with bolted joints. The contact forces are not ideally plane due
to manufacturing tolerances. Furthermore, the initial forces will be redistributed non-uniformly
in the presence of lateral loads. Under environmental dynamic loading, the preload in joints
experiences some relaxation that results in time variation of the structure’s dynamic properties.
Most of the reported studies have focused on the energy dissipation of bolted joints, linear and
nonlinear identification of the dynamic properties of the joints, parameter uncertainties and
relaxation, and active control of the joint preload.

Although utilized quite extensively, bolted joints in laminated composites are not well
understood. Packman, et al. [11], Schulz, et al. [12] and Lin and Jen [13] presented experimental
and statistically-based investigations of ultimate strengths of bolted joints for laminated
composites. Stress concentrations at hole-edges in advanced composites can be very high (Jones,
[3]) and joint efficiencies are often as low as 50% (Hart-Smith, [14]. The design of composite
fasteners subjected to transverse loads was considered by Running, et al. [15]. Rosner and
Rizkalla [16,17] experimentally and analytically examined the behavior of bolted connections in
composite materials used for civil engineering applications. A design procedure was introduced
to account for material orthotropy, pseudo—yielding capability, and other factors that influence
bolted—connection behavior.

Andreasson, et al. [18], Menendez and Guemes [19], and Li, et al. [20] analytically and
experimentally studied the tensile response and failure of bolted or riveted joints made from
carbon fiber-reinforced plastic (CFRP). They observed that the dynamic behavior of composite
joints is much more complicated than its behavior for the quasi-static condition due to strain rate
and inertia effects. The effect of clamping on the tensile strength of composite plates with a bolt-
filled hole was studied by Horn [21], Hung [22], Hung, et al. [23,24], and Yan, et al. [25]. Early
work by Van Siclen [26] on composite bolted joints made of graphite/epoxy involved the
development of joint allowables and alternating reinforcing concepts for increasing joint
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strength. Semi-empirical procedures combined with experimental data were used to predict the
Joint strength as a function of basic laminate properties and joint geometrical parameters. Studies
reported in the literature address the importance of joint allowables [27, 28], selection of
optimum ply stacking sequence [8], washer size, effects of clamping force or bolt preload on
Joint strength and failure modes [9,29,30]. Yet, some of these questions remain unanswered. For
example, how much bolt preload should be applied to composite joints to minimize relaxation
and what other factors have the most influence on relaxation in such joints?

Some designers use the existing design code MSFC-STD-486B from the NASA Marshall Space
Flight Center [31], which was developed originally for metallic joints. This code recommends
that, for typical preloaded structural assemblies in tension, the bolt preload should be less than 65
percent of the tensile yield strength of the fastener, while the corresponding bolt preload for lap-
shear joints should be less than 60 percent of the fastener yield strength. However, the above
preload values are directly related to the tension in the fastener but not the structural members to
be connected. In the case of composite joints, only half of the bolt preload value recommended
for steel joints has been suggested for any given bolt size [32]. Thomas and Zhao [33] tested
composite joints made of graphite/epoxy with different thicknesses and bolt diameters and found
that preload limits as specified by MSFC-STD-486B are acceptable, but recommended that a
torque-tension test be performed while simultaneously monitoring the energy levels using
acoustic emissions to prevent damage to the joint. The reason for this is that mechanical
fasteners such as bolts and rivets typically generate clamping forces in the through-the-thickness
(TTT) direction of composite structures, perpendicular to the direction of fiber reinforcement.
Such structures are known to have poor properties in the TTT direction and are susceptible to
damage and failure. This is particularly important for viscoelastic behavior, because the time-
dependent viscoelastic behavior of polymer matrix composites is typically most evident in the
matrix-dominated TTT direction.

Cooper and Turvey [34] investigated the effects of bolt tightening torque on failure loads, critical
joint geometry and joint stiffness in single bolt double lap tension joints in pultruded glass
reinforced plastics (GRP) sheet material. It was observed that as the bolt tightening torque was
increased from 3 N-m (lightly torqued) to 30 N-m (heavily torqued) the bearing failure load
increased by about 50% and the critical end distance, determined by the E/D ratio (where E is the
edge distance, and D is the bolt diameter) which ensures bearing failure, was also found to
increase, but the stiffness of the joint remained unaffected. It was also shown by Lim, et al. [35]
that for a glass/epoxy bolted composite joint with a stacking sequence of [+6/0s]s static shear
strengths increased by about 30% when clamping pressure was varied from 0 to 60 MPa. In
addition, the specimens with lower preloads failed at 80,000 cycles whereas specimens with
higher preloads lasted up to 3 million cycles. In all of the above studies the clamp-up forces were
selected randomly, the effects of external loads on relaxation were not considered and in some
cases the relaxation in the bolted joint was not monitored.

Bolt Preload Relaxation Under External Excitation

There are several factors affecting relaxation in bolted metallic joints, which are well
documented by Bickford [36]. A fastener subjected to vibration will not lose all pre-loads
immediately. First there will be a slow loss of pre-load caused by some of the relaxation
mechanisms. Vibration will increase relaxation because wear and hammering will take place
during vibration. After sufficient pre-load is lost, friction forces drop below a critical level and
the nut actually starts to back off and shake loose. In this case, the joints will not resemble the
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ideal boundary conditions but will involve uncertainties. With higher initial pre-load, longer or
more severe vibration is required to reduce pre-load to the critical point at which back-off occurs.
In fact, in some circumstances, if pre-load is high enough to start with; nut back off will never
take place. It is not known if these observations apply to composite bolted joints. Jiang et al. [37]
conducted experimental investigations and finite element analysis (FEA) on relaxation in steel
Joints under cyclic loading. Depending on the loading conditions and preload, the loss of
clamping force ranged from a few percent to 40% after 200 cycles. Three-dimensional FEA with
an advanced cyclic-plasticity model was implemented to predict the clamping force reduction.

Schmitt and Horn [38], and Horn and Schmitt [39] studied the relaxation process in bolted
thermoplastic composite joints. From single lap-shear tests of bolted thermoplastic composite lap
Joints involving viscoelastic effects, Horn and Schmitt [39] observed that by increasing clamp-up
force the joint bearing failure load increased by as much as 28%. Clamp-up force relaxation was
also monitored and 6% - 16% relaxation from the initial clamp-up force was observed for short
duration (1400 hours) and long duration (100,000 hours), respectively. The rate of relaxation was
predicted to be as high as 37% at an elevated temperature of 250 F for the duration of 100,000
hours. Zhao and Gibson [40] showed that compressive clamping stress relaxed by 18% and 15%
in E-glass/epoxy beams with and without polymeric interleaves, respectively, for a period of 50
hours, whereas the corresponding relaxation in an aluminum beam was negligible.

Using finite element analysis (FEA), Shivakumar and Crews [41] predicted bolt force relaxation
of up to 31% at room temperature for a 20 year duration in a double lap joint made of
graphite/epoxy. It was also observed that the rate of relaxation increases with increasing
temperature and moisture levels. But these findings were for a randomly selected clamp-up force
and neither the effect of different clamp-up forces nor the effects of external loads on relaxation
were considered.

EXPERIMENTAL INVESTIGATION

Experimental Setup

Figure 1 shows the configuration of the specimen in 3-point bending. The design of the specimen
support was selected in such a way to maintain combined bending and shear loading. The joints
were made from unidirectional carbon/epoxy prepreg tapes (Prepreg type: P2254-20-305 T800
carbon/epoxy) from Toray Composites America, Inc. A total of 48 layers of prepreg were laid on
top of each other in the mold along with bleeder cloth and release fabric. The mold assembly was
cured in the molding chamber of a TMP autoclave-style vacuum press, and the cured thickness
of the sample plate was found to be 7.75 mm. Two rectangular beams were cut from the plate
and machined to the required dimensions as shown in Figure 1. Joint clamping force was
generated by an instrumented hexagonal head steel bolt with built-in strain-gages (Strainsert®
Model SXS-FB, 9.525 mm or 3/8 inch in diameter). The driving force for stress relaxation is the
imposed strain, as governed by the initial strained length of the bolt. This is a relaxation problem,
not a creep problem. The creep strain under applied stress depends on the stress level, but the
stress relaxation depends on the imposed strain, which should be independent of washer size.
Therefore, only one washer size (19 mm diameter) was used to clamp the composite specimen
from either side.

Two separate data acquisition systems were used, one for the instrumented bolt and another to
control the Enduratec servo-pneumatic testing machine. The beam load and displacement values
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were monitored by transducers which were built in to the Enduratec machine. The bolt preload
selection Was based on the maximum tensile load recommended by the manufacturer
(Strainsert™). Bolt preloads selected for this study were 4200 N, 5050 N, 6700 N and 7850 N,
which correspond to 12.5%, 15%, 20% and 23.5%, respectively, of the maximum manufacturer-
recommended tensile load in the instrumented bolt. The corresponding through-the-thickness
compressive stresses generated in the composite specimen were approximately 25%, 29%, 38%
and 45%, respectively, of the estimated transverse compressive strength of the composite. After
applying an initial preload to the composite bolted joint, the bolt load was monitored for a period
of 30 hours for the following cases: 1) bolt preload in the absence of external beam load, 2) bolt
preload plus a static applied load of 250 N at beam midspan (combination of ramp and dwell),
and 3) bolt preload plus a dynamic load of 250 N amplitude and frequencies of 1 Hz and 5 Hz at
beam midspan as shown in Figure 2(a). Only one composite joint specimen was manufactured
and tested. However, some of the relaxation tests were repeated with the same specimen under
different loading conditions (for example: 5050 N bolt preload at 5 Hz and 7850 N preload only
condition). It was found that the relaxation was reproducible and the differences in the relaxation
from one test to another were less than 0.5%. A stability check on the data acquisition system
was carried out by monitoring the signal from the instrumented bolt for a period of 30 hours
without the application of load to the bolts. The drift in the signal for the above period was less
than 1%. Also, the drift in the signal was taken into account when the percentage relaxation was
calculated.

Static and dynamic load experiments were carried out on a 3-point bend fixture mounted on the
Enduratec servo-pneumatic testing machine as shown in Figure 2(b). For the first case,
experiments were also conducted on a steel joint having the same dimensions as those of the
composite joint. Since the relaxation in the steel joint was expected to be mainly due to thread
slip and/or other mechanisms rather than viscoelastic material behavior, these tests were done in
order to better interpret the results of the composite joint tests. The bolt load was monitored for a
period of 30 hours using the same 3-point bend set-up and the instrumented bolt for preloads
mentioned above. All the above experiments were conducted without any thread seal. In an
attempt to gain some insight into the importance of slip in the bolt threads as one of the possible
relaxation mechanisms, another set of experiments was conducted in the absence of any external
applied load with Teflon tape thread seal wrapped around the threads. The Teflon thread seal
(Polytetrafluoroethylene, or PTFE) meets standard MIL T-27730A. The bolt load was monitored
for the duration of 30 hours.

EXPERIMENTAL RESULTS AND PHENOMENOLOGICAL MODELING

Effect of preload on relaxation in composite and steel joints

Experimental measurements of bolt load relaxation for composite and steel bolted joints with
initial preloads of 4200 N, 5050 N, 6700 N and 7850 N and no applied beam load are shown in
Figure 3. This figure represents the time evolution of the preload (represented by the normalized
load parameter, P = P(t)/P,, where P, is the initial bolt preload and P(¢) is the relaxed preload

at time 7. It is observed that for the composite bolted joint, the magnitude of the relaxation
decreases with increasing bolt preload. For steel joints, the magnitude of the relaxation is
approximately the same for the preloads selected and the relaxation for a period of 27 hours is
less than that of the composite joint. Relaxation of approximately 4% in the bolt preload (4200
N) for the composite joint was observed for a period of 30 hours, but the relaxation decreased to
approximately 3 % for higher preloads (7850 N). Figure 4 reveals that the preload relaxation
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magnitude in composite joints increases when bolted with a thread seal, indicating that a
significant portion of the relaxation observed is due to slip in the threads and/or viscoelastic
relaxation in the Teflon thread seal. However, it is again observed that the bolt load relaxation
decreases with increasing initial bolt preload.

Effect of applied static loading

Figure 5 shows the effect of static beam load on bolt load relaxation in the composite bolted joint
under the 3 point bend setup. It is seen that the magnitude of the relaxation again decreases with
increasing bolt preload. However, when compared with the preload only condition, the trend of
decreasing bolt load relaxation with increasing bolt preload only becomes clear for higher
preloads (6700 N and 7850 N) and the result for the lowest preload (4200 N) seems inconsistent
with that trend.

Effect of applied dynamic loading
Figures 6 and 7 show the preload relaxation plots under dynamic applied loading on the

beam F(t) = Fy + AF sin 2nft , where F; is the static component, AF =250 N is the amplitude of
the sinusoidal component, and f is the frequency taken as 1 Hz or 5 Hz. It is seen that under the

excitation frequency of 1 Hz, the magnitude of preload relaxation decreases with increasing bolt
preload and is nearly the same for higher preloads (6700 N and 7850 N). However, as the
frequency of the external beam load is increased to 5 Hz, the magnitude of the relaxation tends to
increase as shown in Figure 7. For lower preloads (5050 N) the magnitude of relaxation in the
bolt preload exceeds that of the higher preload cases during the initial time interval of the
experiment, however, this trend reverses for longer times. The increase in the magnitude of
relaxation at higher frequencies of excitation and longer times may be due to the increase in the
number of cycles as reported in Bickford [36]. This is associated with a corresponding increase
in frictional heating. The temperature at the interface of the lap joint was measured before and
immediately after the experiment with a general purpose type K (Chromel / Alumel)

thermocouple and was found to increase by 3°C, and 1 C, respectively, when the composite
bolted joint was preloaded to 6700 N and excited with 5 Hz and 1 Hz frequency, respectively, for
the duration of 30 hours. When the relaxation in bolt load due to applied dynamic load at 5 Hz is
compared with those due to applied static loads, it is found that for lower preloads (5050 N) the
applied static load increases the bolt preload relaxation whereas for higher bolt preloads (6700 N
and 7800 N) the bolt load relaxation decreases.

PHENOMENOLOGICAL MODELING

The experimental bolt force relaxation data in Figures 3-7 can be adequately described by an
inverse power law of the type suggested by Shivakumar and Crews [41]. In normalized
dimensionless form, this equation can be written as

< 1)
P, 1+Kt

where

P, = initial bolt preload

P(¢)= relaxed bolt preload at time ¢

K = constant in (hours) -
N = dimensionless exponent
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= time in hours

For the data in Figures 3-7, the constants K and N in Equation (1) were evaluated using the least-
squares regression analysis in MATLAB [42] at the 99% confidence level and are tabulated in
Tables (la — 1f) for the different preloads and beam loads. For each case the coefficient of
multiple determination, R’, is also given. This coefficient is a statistical measure of the goodness
of the fit of the equation to the data, where R* = 1.0 corresponds to a perfect fit. It should be
noted that the constants K and N listed in Table (1a - 1f) are valid only up to 30 hours, which is
the maximum test duration. It is seen that there are no consistent trends in the variations of K and
N with increasing preload, but the combined effect of the variations in these two quantities is
such that increasing preload reduces the relaxation.

VISCOELASTIC ANALYSIS AND MATERIAL CHARACTERIZATION

The three-dimensional (3-D) elastic lamina properties needed for the finite element analysis were
calculated from composite micromechanics equations [43] (for example: the rule of mixtures to
calculate the longitudinal modulus and Tsai-Hahn equations to calculate the transverse modulus
and shear modulus) using the fiber and matrix properties together with the following
assumptions:

The fibers are linear elastic.

The matrix is linear viscoelastic, with its creep compliance described by a power law
The composite is specially orthotropic and transversely isotropic

The viscoelastic response depends only on the time elapsed since application of the load
(i.e. the material is assumed to be non aging).

) R

The analysis consisted of three parts. First, since the viscoelastic creep and relaxation data for the
epoxy resin used in the prepreg is not available, Beckwith’s [44] measured linear viscoelastic
properties for Shell 58-68 epoxy at 75° F were assumed. Next, these properties were used in the
FEA to predict the bolt load relaxation for an epoxy beam under different loading conditions
using the quasi-elastic approach. Since ABAQUS viscoelastic modeling capability is limited to
isotropic materials, it was necessary to validate the quasi-elastic approach (explained in the next
section). Beckwith’s [44] creep test results were extrapolated out to 50 hrs from the available
data, by using the empirical power law equation for creep compliance:

D(t) = D, + D;t" ()

Where, from [44],

D(t) = time dependent isotropic creep compliance of matrix
D, = initial elastic compliance of matrix = 2.726 x 10™* (MPa)'
D= creep coefficient of matrix = 1.0 x 107 (MPa)'l (min)™

{ = time in minutes

n = dimensionless creep exponent = 0.19

The time-dependent viscoelastic properties of the composite joint were assumed to depend only
on the time-dependent properties of the epoxy matrix material. Based on the linear viscoelastic
assumption, a time-dependent matrix modulus, E,(?), was estimated from the following equation:

1
Em(f)~m
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It was assumed that the power law constants; Dy, D; and » at room temperature are the same as
those measured by Beckwith for Shell 58-68 epoxy [44]. By using these constants and the power
law, the time-dependent creep compliance, D(z), for the epoxy material was calculated. The time-
dependent Young’s modulus of the matrix material, E,(#), (see Table 2) was found from
Equation (3). The tensile modulus data for T800 carbon fibers was obtained from the fiber
manufacturer, Toray Composites America, Inc. as E; = 294 GPa and was assumed to be
independent of time. Viscoelastic properties of the lamina (i.e., longitudinal modulus E;(1),
transverse moduli E>(f) and Ej(?), Poisson’s ratios v;2(t), v;3(t) and vy3(2), longitudinal shear
modulus G2(#), and transverse shear moduli G,3() and G»;3(t) were estimated using elastic fiber
properties and time-dependent viscoelastic resin properties through an application of the Elastic-
Viscoelastic Correspondence Principle to the micromechanics equations [43] with a fiber volume
fraction, v¢ = 0.45 (see Table 2). Fiber volume fraction for the composite laminate was indirectly
estimated using the combined experimental/numerical technique. Measured load-displacement
response from static 3 point bend tests was compared with the predicted response (FE models)
initially assuming the fiber volume fraction to be 0.6. The difference between the predicted and
measured response was then minimized using fiber volume fraction as curve fitting parameter.
These properties were then used in the FEA to calculate the bolt load relaxation.

Due to the limitations of ABAQUS [45], the quasi-elastic approach [43] was used to predict the
bolt load relaxation for the orthotropic composite beams. In this approach, the viscoelastic
solutions were approximated by a series of elastic solutions corresponding to different elastic
properties at different times, while the stresses were assumed to be constant within each time
increment.

FINITE ELEMENT ANALYSIS

Numerical Modeling

The purpose of the FEA is to develop predictive numerical models, and to promote a more
meaningful interpretation of the experimental results. Hypermesh® 5.0 [46] was used for model
development and post-processing, and ABAQUS® V 6.3 Standard 3-D [45] was used predict the
bolt load relaxation using the quasi-elastic analysis. In order to benchmark the quasi-elastic
prediction against the theoretically “exact” viscoelastic solution in ABAQUS (which is only
applicable to isotropic materials), comparisons were made between ABAQUS viscoelastic
solution and the quasi-elastic relaxation predictions for an un-reinforced isotropic epoxy beam
[47]. The only reason for this part of the study was to compare the relaxation predictions made
from viscoelastic (exact) analysis with those from the quasi-elastic analysis. In these studies, the
bolt preload relaxation was predicted for different static and dynamic loads using both
viscoelastic and quasi-elastic approaches. Relaxation of about 4.75% in the bolt preload was
predicted for a period of 50 hours, and the difference between viscoelastic and quasi-elastic
predictions was shown to be less than 2% [47].

With the confidence gained from the benchmarking study, a FEA model (Figure 8) for the
composite bolted joint was developed using the quasi-elastic approach only. A global-local
submodeling technique was used to model the bolted composite joint, where the displacements
around the bolted joint section in the global model (a one-piece beam with no bolt) are used to
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drive the refined local model (Figure 8). This technique has the advantage that more detailed
results in the vicinity of the bolted joint can be obtained with fewer elements than with the full
model. All models were developed using type C3D8 and C3D6 3-D solid elements. Since the
model is symmetric about the vertical midplane of the beam, only a half model was used, and
symmetric boundary conditions were applied. A mesh sensitivity study was performed for both
global and local model to ensure that the finite element meshes were fine enough to give
satisfactory results. For example, the bolt preload predicted by the local model with 4664
elements was compared with the local model with a coarser mesh having only 2857 elements,
and the difference was found be 5%. By increasing the number of elements in the local model to
5632 elements the model was found to be converging and the difference in the predicted bolt
load was found be less than 1%. Therefore, all of the analyses were carried out using the local
model with 4664 elements.

The threads in the bolt were neglected in the FEA models, and the bolt was assumed to be a solid
cylinder. Thus, possible bolt load relaxation due to plastic deformation and/or thread slip in the
threads was not included in the models. The solid bolt simulation requires that contact surfaces
be defined between all the surfaces that are in contact, and these surfaces were modeled using the
contact pair approach in ABAQUS. The contact pairs are defined from free element faces. Since
the sliding between the surfaces was expected to be small, the ‘small sliding’ option was used in
all analyses. Friction coefficients were set to 0.2 for all contact surfaces, as used by Ireman [48].
The coefficient of friction (COF) is very difficult to control and measure or predict as it depends
on the surface conditions of the joining parts. Several authors [49-52] have measured COFs
(both static and kinetic) of polymer materials without any reinforcements, polymeric based
composite materials in contact with composites as well as when in contact with metals. COFs
reported in the literature range from as low as 0.096 to as high as 0.74. The COF has been shown
to be independent of the applied normal load [49, 50]. Herrington, et al. [49] found the static
friction coefficient to be in the range of 0.096 - 0.128 for a simple double shear arrangement
(without bolts) with steel plates on the outer surface of the composite specimen. Schon [50, 51]
observed that the friction coefficient initially for composite-composite is about 0.65 but only
0.23 when the composite is in contact with aluminum [51]. Xiao et al. [52] have measured the
COF to be in the range of 0.125 — 0.3, when a steel pin is sliding against the edge of a
unidirectional carbon fiber/epoxy (T800H/3631) laminate. It should also be noted that several
studies found in the literature consider frictionless pins or bolted models for their analysis. Since
“small sliding” contact is assumed for the current study, the use of COF equal to 0.2 seems
reasonable.

The beam load was applied as a concentrated nodal force at midspan. Pretension in the bolt was
applied in a separate loading step by defining a pre-tension section in the bolts. Assembly loads
were transmitted across the pre-tension section by means of a pre-tension node. Pre-load was
applied by giving an initial displacement (in the direction parallel to the bolt axis) to this node.
Bolt preload was maintained by using the fixed option under boundary conditions, and was
monitored by checking the total force output on that node. The model geometry and boundary
conditions were the same as for the experiments, as shown in Figure 1. For the composite beams,
both experiments and FEA (using the global-local model and quasi-elastic approach) were
conducted, but only experiments were conducted for steel joints.

Bolt load relaxation was predicted for a period of 30 hours in composite bolted joints using a
quasi-elastic analysis and the material properties listed in Table 2 for a preload of 4200 N under
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the following types of loading: 1) bolt preloading in the absence of external beam loading, 2)
bolt preloading in the presence of a static beam load of 250 N, and 3) bolt preloading in the
presence of dynamic loading of amplitude 250 N at a frequency of 1 Hz. The dynamic beam load
was applied using the periodic loading option in ABAQUS for 5 cycles under each quasi-elastic
step and mean bolt load data was recorded in each case

Numerical Results

Figure 9 shows the predicted bolt load relaxation for composite beams under static and dynamic
beam loads using the quasi-elastic approach with the material properties listed in Table 2. It is
observed that the predicted bolt loads are shifted slightly with the application of the static and
dynamic beam loads, but otherwise the relaxation curves are not significantly affected by the
beam loads. Again, the mean bolt load is plotted for the dynamic analysis.

Even though the FEA results captured the bolt load relaxation in composite joints with and
without external loads, Figure 10 reveals that, in the absence of external loading, there is no
change in the predicted magnitude of bolt load relaxation with increasing bolt preloads. This
contradicts the experimental observation that relaxation decreases with increasing bolt preload.
There are several possible reasons for this disagreement.

First, the material model does not capture the viscoelastic effects in the polymer matrix material
at the micromechanical level. The micromechanical analysis referred to in the discussion
following Equation 3 was based on “mechanics of materials” type models which do not take into
account the details of the in-situ stress and strain distributions in the viscoelastic polymer matrix.
A 3-D finite element micromechanics model which takes into account the micromechanical
geometry is needed to accurately simulate the effects of such parameters as boundary conditions
at the bolt-composite interface on the viscoelastic relaxation of the composite. In the absence of
such a detailed 3-D micromechanics analysis, an analysis of the effects of preload on the
macromechanical volume-averaged von Mises stress was conducted. One measure of the
principal stress differences and corresponding shear stresses is the von Mises stress given by

a, =\/%[(0'|—0'2)2+(0'2‘0'3)2+(0'1—0'3)2] 4)

Where, o), o, and o, are principal stresses in 1, 2 and 3 directions, respectively. Figure 11

shows a comparison of macromechanical volume-averaged (or “effective”) von Mises stresses,
o, , in the immediate vicinity of the bolt hole in the composite material for different preloads.

One can conclude that the contribution of the preload to the total effective von Mises stresses
(i.e. for preload + applied static load) clearly increases with increasing bolt preloads. One would
normally expect that the increase in the von Mises stress would be associated with a
corresponding increase in the tendency to exhibit viscoelastic behavior. However, the
experimental observation indicates reduced relaxation with increased bolt preload. The results in
Figure 11 are based on a macromechanical analysis, and a micromechanical analysis of the
viscoelastic behavior of the polymer matrix material may lead to a different conclusion. Another
possible reason for the FEA model’s inability to predict the effect of increasing bolt preload on
the relaxation response is that the initial radial gap between the outside diameter of the bolt and
the inside diameter of the bolt hole in the composite may be closed as the increasing bolt preload
squeezes the composite and causes the hole size to shrink. This, in turn, could lead to time-
dependent boundary conditions at the inner surface of the hole as the relaxation proceeds. As the
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composite presses against the bolt, the effect would be to increase the constraint on the
composite and reduce its relaxation response. Further work in this area is clearly needed.

COMPARISONS AND VALIDATION WITH EXPERIMENTAL RESULTS

FEA results obtained for composite bolted joints with 4200 N preload under preload only, with
static preload of 250 N and dynamic beam load at 1 Hz frequency are compared with the
experimental bolt load relaxation in Figures 3, 5 and 6. FEA results agree very well with the
experimental observations for a fixed preload of 4200 N. The model not only captures the
reduction in the bolt load during the first few hours, but also the general tendency of decay in
bolt load with increasing loading cycles. However, as pointed out in the discussion of Figure 10,
the model does not predict the experimentally observed decrease in relaxation response with
increased bolt preload. It should be noted that the measured relaxation is the total of all
relaxation mechanisms, whereas the predicted value is only due to the viscoelastic relaxation in
the composite matrix material. Relaxation in the average tensile normal stresses, o, across the
pre-tension section in the bolt was also observed as shown in Figure 12 but the corresponding
relaxation of average shear stresses was negligible for a 20 hour duration. The shift in the
average tensile normal stresses is due to the application of static beam load.

The percentage of bolt load relaxation ( p = (P, - P(r))/P, *100) in composite joints at the end of 30

hour duration is shown in Figure 13 for various preloads with different loading conditions. It is
observed that for any external loading condition, the bolt load relaxation decreases with
increasing initial bolt preload. These findings emphasize the importance of preload selection. For
higher preloads (6700 and 7850 N) the bolt load relaxation increases with increasing frequency
of excitation, with lowest relaxation occurring at 1 Hz frequency. But for lower preloads (5050
N) the relaxation decreases with increased frequency of excitation.

Comparing the percentage bolt load relaxation in steel and composite joints for the duration of
30 hours (Figure 14), it is observed that only about 1/3 of the total relaxation is due to
viscoelastic behavior of the polymer matrix in the composite, while the remaining 2/3 is
apparently due to the other relaxation mechanisms such as plasticity and/or slip in the bolt
threads, which also occur in steel joints. Table 3 shows some comparisons of bolt load relaxation
in steel joints found in the literature with the current predictions for composite joints extrapolated
using MATLAB® [42]. It appears that the data in Table 3 from references [36] and [37] are for
steel lap joints loaded in dynamic shear, but this is the only relaxation data for dynamic loading
that was readily available in the literature. For the case of low cycle loading (i.e. 200 and 1000
cycles), the current relaxation rates are far smaller than those of in references [16, 17], and the
current extrapolated relaxation rates only become significant for millions of cycles of loading. It
can be concluded that the viscoelastic behavior in the through-thickness direction of composite
bolted joints may lead to significant reductions in the bolt preload over the service period of the
Joint depending upon the design life and there is a need for long-term experiments on relaxation
in bolted joints.
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CONCLUSIONS

Experiments have been employed to study the effects of various bolt preloads, along with
the effects of static and dynamic external loads on bolt load relaxation in composite
bolted joints, and phenomenological models have been developed from these results.
Finite element models for bolt load relaxation in bolted composite joints based on a
global/local quasi-elastic approach show reasonably good agreement with experiments
except that the experimentally observed decrease in relaxation with increased bolt
preload is not predicted by the models.

Experiments show that for any external loading condition the bolt load relaxation
decreases with increasing initial bolt preload, and these findings emphasize the
importance of bolt preload selection.

If the bolt preloads are small enough (as a percentage of bolt failure load), applied static
and dynamic beam loads at 1 Hz frequency increase the magnitude of bolt load
relaxation. However, for higher bolt preloads the bolt load relaxation decreases for both
static and dynamic loads.

It is observed that increasing the frequency of the external dynamic load from 1 Hz to 5
Hz increases the rate of relaxation, and that the friction-induced heating is at least
partially responsible for this effect.

It is observed from the FEA model that the average normal stress across the pre-tension
section in the bolt relaxes with time for the duration 20 hours, whereas the relaxation in
shear stresses is negligible.

The FEA predictions of bolt load relaxation agree well with the experimental
observations when subjected to external static and dynamic loads, however, more
detailed modeling of the polymer matrix behavior at the micromechanical level and
possible time-dependent boundary conditions at the bolt-composite interface are needed
to understand the experimentally observed relationship between bolt preload and bolt
force relaxation.

Results of relaxation experiments with bolted steel joints and with bolted composite
Joints with Teflon tape thread seal on the bolt threads strongly suggest that slip and/or
other relaxation mechanisms in the bolt threads may be as important as or even more
important than the through-the-thickness viscoelastic relaxation in the composite material
being fastened.
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Table 1. Constants K and N in Equation (1) evaluated using least-squares regression analysis

(a) Composite joint — Preload only with no

beam load (see Figure 3)

(f) Composite joint - Preload + 250 N dynamic

beam load @ 5 Hz (see Figure 7)

(b) Steel joint — Preload only with no beam
load (see Figure 3)

Preload

K

N

RZ

5050 N

0.01167

0.2317

0.9885

6700 N

0.007192

0.3371

0.996

7850 N

0.008088

0.2813

0.998

(¢) Composite joint - Preload only with thread

seal (see Figure 4)

Preload

K

N

RZ

5050 N

0.03324

0.182

0.9667

6700 N

0.03397

0.09815

0.9019

7850 N

0.02452

0.1698

0.9771

(d) Composite joint - Preload + 250 N static

beam load (see Figure 5)

Preload

K :

N

RZ

4200 N

0.01338

0.4062

0.9952

5050 N

0.02313

0.1603

0.9714

6700 N

0.015%4

0.1621

0.9595

7850 N

0.009239

0.2557

0.9918

(e) Composite joint - Preload + 250 N dynamic

beam load @ 1 Hz (see Figure 6)

Preload

K

N

RZ

4200 N

0.02151

0.1858

0.9891

5050 N

0.02101

0.1024

0.9892

6700 N

0.01086

0.218

0.9564

7850 N

0.009212

0.2415

0.9345

Preload K N R Preload K N R’
4200N | 0.01592 | 0.3405 | 0.9886 S050N | 0.0184 | 0.1293 | 0.9363
5050 N | 0.02038 | 0.1604 | 0.9442 6700 N | 0.01339  0.3027 | 0.9989
6700 N | 0.01433 | 02472 | 0.9847 T DO} S2e7] | 0986
7850 N | 0.01698 | 0.1605 | 0.9893
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Table 2. Micromechanics estimate of time-dependent material properties for unidirectional

carbon/epoxy*

Time En®) E1) Ex(1) =E5(1) | Gia(t) = Gs(1) vy ()= Gas(t)
(Hrs) | (GPa) | (GPa) (GPa) (GPa) vsp®)=v2s(t) | (GPa)
0 3.662 134.5 12.07 3.612 0.30004 2:535

1 3.607 134.4 11.66 3.469 0.30711 2.446

2 3515 134.4 11.55 3.449 0.30806 2.434

4 3.495 134.4 11.51 3.428 0.30914 2.421

6 3.482 134.4 11.48 3414 0.30983 2.412

8 3.473 134.4 11.45 3.403 0.31035 2.405
10 3.465 134.4 11.40 3.395 0.31078 2.400
15 3.450 1344 1137 3379 0.31159 2.390
20 3.439 1344 11.34 3.366 0.31220 2.382
25 3.430 134.4 11.32 3.356 0.31269 2.376
30 3.422 1344 11.55 3.348 0.31311 2.371

* Toray Composites America T800 carbon fibers with assumed viscoelastic compliance for Shell 58-

68 epoxy matrix material [44]

Table 3. Comparison of rate of bolt load relaxation due to dynamic loads from previous and current

predictions
Plastic deformation of Current General Expt.
Number of Threads Viscoelasticity observation (Steel
Cycles (Expt. on steel joints) Measurements (composite joints) (Bickford,
(Jiang, et al, [37]) joints) preload 4200 N [36])
200 41 % 0.92% 30 %
1000 NA 1.5% 70 %
108000 NA 3.98 % NA
3690000 NA 10 %* NA
36000000 NA 50%" NA

a - Extrapolated by exponential curve fit using MATLAB® [42]- current model
NA — no data available
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Figure 2. (a) Sinusoidal load of 250 N amplitude at frequency of 1 Hz (b) Enduratec servo-pneumatic
testing machine with 3 point bend set-up
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1.010 — =12.5% preload (4200 N)[C] —&—15% preload (5050 N)[C]
—©— 20% preload (6700 N)[C] A 23.5% preload (7850 N)[C]
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Figure 3. Measured bolt load relaxation in composite and steel bolted joints normalized to the initial
preload for several preloads, along with predicted (FEA) bolt load relaxation in composite joint for
preload of 7850 N (Note: S = Steel and C = Composite)
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Figure 4. Measured bolt load relaxation in composite with and without thread seal
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Figure 5. Bolt load relaxation for composite bolted joint with various preloads and static 250 N beam

load (F,=250 N).
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Figure 6. Bolt load relaxation for composite bolted joint with various preloads and a 250 N amplitude
dynamic beam load at 1 Hz frequency (F(8)=250 sin2m(1)t N))
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Figure 7. Bolt load relaxation for composite bolted joint with various preloads and a 250 N amplitude
dynamic beam load at 5 Hz frequency (F(#)=250 sin2n(5)t N)
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Figure 8. Bolt FEA model (Local)
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Figure 9. Predicted bolt load relaxation for composite bolted joints with preload 4200 N
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Figure 10. Predicted bolt load relaxation for composite bolted joints with various preloads
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Figure 11. Volume averaged macromechanical (or "effective') von Mises stresses in the immediate
vicinity of the bolt in composite material
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Figure 12. Average normal stress relaxation in the pretension section of bolt when composite joint is
preloaded to 4200 N
B Preload on

M preload+250 N Static
O Preload+250 N @ 1Hz
[ Preload+250 N @ 5Hz

12.5% (4200 N) 15% (5050 N) 20% (6700 N) 23.5% (7850 N)

Bolt preloads (P) as a percentage of bolt failure load

Figure 13. Measured bolt load relaxation in composite bolted joint at 30 hour duration

-
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315 5 @ Composite Joint
| Steel Joint

15% (5050 N) 20% (6700 N) 23.5% (7850 N)
Bolt Preload (P) as a percentage of bolt failure load

Figure 14. Bolt load relaxation comparison in steel and composite bolt joint for various preloads under
preload only condition
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Part 2: Analytical Investigation

INFLUENCE OF BOUNDARY CONDITIONS RELAXATION ON PANEL FLUTTER
WITH COMPRESSIVE IN-PLANE LOADS

Summary of Results

The influence of boundary conditions relaxation on two-dimensional panel flutter is studied in
the presence of in-plane loading. The boundary value problem of the panel involves time-
dependent boundary conditions that are converted into autonomous form using a special
coordinate transformation. Galerkin’s method is used to discretize the panel partial differential
equation of motion into six nonlinear ordinary differential equations. The influence of boundary
conditions relaxation on the panel modal frequencies and LCO amplitudes in the time and
frequency domains is examined using the windowed short time Fourier transform and wavelet
transform. The results of this task revealed:

e The relaxation and system nonlinearity are found to have opposite effects on the time
evolution of the panel frequency.

* Depending on the system damping and dynamic pressure, the panel frequency can
increase or decrease with time as the boundary conditions approach the state of simple
supports.

e The largest Lypunov exponent is also determined. They reveal complex dynamic
characteristics of the panel, including regions of periodic, quasi-periodic, and chaotic
motions.

State-of-the-Art

It has been observed that apparently identical aircraft can exhibit different dynamic
characteristics under the same flight conditions. This difference owes its origin to the stochastic
nature of structural properties and the environment. That is, the sensitivity of the dynamic system
behavior is directly linked to variations in its physical properties. The physical properties of
aeroelastic structures are affected by boundary conditions relaxation and joint uncertainties.
Generally, the main sources of uncertainties of aerospace structures include:

(v) Randomness in material properties due to variations in material composition.

(vi)Randomness in structural dimensions due to manufacturing variations and thermal
effects.

(vii)Randomness in boundary conditions due to preload and relaxation variations in
mechanical joints.

(viii) Randomness of external excitations.

The present work deals with the third source and its mechanisms. There are many factors that
affect mechanical joints and fasteners, such as friction, hardness, finish, and dimensions of all
parts, and gasket creep (Bickford, 1990). Each factor will vary from fastener to fastener and joint
to joint because of manufacturing or usage tolerances. Moreover, a fastener subjected to
vibration will not lose its pre-load immediately. First there is a slow loss of pre-load caused by
various relaxation mechanisms. Vibration increases relaxation through consequent wear and
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hammering. After sufficient pre-load is lost, friction forces drop below a critical level and, if the
Joint is bolted, the nut actually starts to back off and shake loose. As relaxation occurs, the joint
fails to mimic ideal boundary conditions; instead, the joint’s properties lzecome time dependent
and uncertain.

The present work is motivated by some recent results on the sensitivity and variability of the
response of structural stochasticity (see, for example, Ibrahim, 1987, and Manohar and Ibrahim,
1999) and by the recent assessment of joint uncertainties by Ibrahim and Pettit (2004). These
problems are complex in nature because every joint involves different sources of uncertainty and
non-smooth nonlinear characteristics. For example, the contact forces are not ideally plane
because of manufacturing tolerances. Furthermore, the initial forces will be redistributed non-
uniformly in the presence of lateral loads. This is in addition to the prying load, which induces
nonlinear tension in the bolt and nonlinear compression in the joint. The main problems
encountered in the design analysis of bolted joints with parameter uncertainties include random
eigenvalues, response statistics, and probability of failure.

The combined effect of uncertainty in the boundary conditions and spatially variable material
properties on the nonlinear panel aeroelastic response was studied by Lindsley, et al. (2002a, b).
It was shown that the flutter problem of aeroelastic structures could be handled when random
uncertainties are introduced in the structural model. Pinned and fixed boundary conditions were
modeled as limiting cases of rotational springs on the boundary, which possessed zero and
infinite stiffness, respectively. Accordingly, rotational spring stiffness was used to parameterize
the boundary conditions. Parametric uncertainty was examined by modeling variability in
Young’s modulus and the boundary condition parameter. The variability in the boundary
conditions was restricted to a single value along the plate boundary edges for each realization.
For values of the dynamic pressure in the deterministic limit cycle oscillation (LCO) range, the
variability in the boundary conditions affected the plate deflection in an essentially linear
manner. However, for values of dynamic pressure in the neighborhood of the bifurcation point,
the relationship was nonlinear. Variation in boundary conditions resulted in a softening effect of
the clamped panel, and thus induced an increase in the amplitude of plate oscillations.

Structural and material uncertainties were also considered in studying the flutter of panels and
shells by Liaw and Yang (1991a,b), and Kuttenkeuler and Ringertz (1998). For example, Liaw
and Yang (1991a,b) quantified the effect of parameter uncertainties on the reduction of the
structural reliability and stability boundaries of initially compressed laminated plates and shells.
For buckling analysis, the uncertainties include modulus of elasticity, thickness, and fiber
orientation of individual lamina, as well as geometric imperfections. For flutter analysis, further
“uncertainties such as mass density, air density, and in-plane load were also considered.
Kuttenkeuler and Ringertz (1998) performed an optimization study of the onset of flutter, with
respect to material and structural uncertainties.

A ground vibration test was used by Potter and Lind (2001) to obtain uncertainty models, such as
natural frequencies and their associated variations, which can update analytical models for the
purpose of predicting robust flutter speeds. Different norm approaches were used to formulate
uncertainty models that cover the entire range of observed variations. It was found that the
o —norm produces the smallest uncertainty and the least conservative robust flutter speed. Lind
and Brenner (2000) introduced a tool referred to as the “flutterometer” for predicting the onset of
flutter during a flight test. The flutterometer computes a flutter for an analytical model with
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respect to an uncertainty description. Brenner (2002a) considered a technique that identifies
model parameters and their associated variances from flight data. Later Prazenica, et al. (2003)
introduced a technique for estimating uncertainty descriptions based on a wavelet approach, but
relies on the Volterra kernels.

The studies of panel flutter were concentrated on parametric analysis of stability boundaries and
the amplitude of LCO under different boundary conditions. At the same time, it was shown that a
panel subjected to a combination of airflow and in-plane loading experiences a complex range of
motions, including static buckling (divergence), quasi-periodic motion, and chaos in addition to
LCO. Dowell (1982) showed that a panel under the combined effect of fluid flow and in-plane
compression exhibits chaotic motion for certain values of some control parameters. Dowell
(1984) observed chaos, via period doubling and intermittency while increasing the compressive
in-plane loading. The existence of multiple attractors and the coexistence of both symmetric and
asymmetric LCO were observed by Bolotin, et al. (1998) using a two degree-of-freedom
approximation of an elastic panel. They studied the transition between different stability regions.
The stability regions of a simply supported two-dimensional panel subjected to compressive
loading were revisited recently by Epureanu, et al. (2004). They used bifurcation diagrams for
two control parameters to determine stability boundaries and Lyapunov exponents. The effect of
damping on stability boundaries as well as on LCO was considered by Kuo, et al. (1972),
Bismark-Nasr and Bones (2000), Bolotin, et al. (2002), Pourtakdoust and Fazelzadeh (2003).
Kuo, et al. (1972) showed that the edge compression and viscous structural damping would result
in an increase of flutter amplitudes while the aerodynamic damping would cause a reduction in
the flutter amplitude.

Relaxation effects in structural joints cause time-dependent boundary conditions and depend on
the level of structural vibration. In other words, there are uncertainties in the boundary conditions
in addition to a random field due to system parameter uncertainties. In this case, aeroelastic
structures will experience non-stationary time-frequency flutter, which is analyzed using time-
frequency transforms such as spectrographs and wavelet transform. The time-frequency analysis
techniques have recently been used to analyze flight flutter data by Brenner, et al. (1997),
Johnson, et al. (2002), Staszewski and Cooper (2002), and Yu, et al. (2004). Brenner (1997) used
time-frequency signal representations to analyze aeroelastic flight data. Mastroddi and Bettoli
(1999) conducted wavelet analysis in the neighborhood of a Hopf bifurcation to capture the
features of transient responses. In the neighborhood of aeroelastic flutter during flight tests, the
time scale decompositions of continuous wavelet transform was used to analyze pre- and post-
critical transient behavior of nonlinear aeroelastic structures. Brenner (2002b) applied the
singular-value decomposition to aeroelastic pitch-plunge wing section models to detect
instability and nonlinear dynamics from the time-frequency map.

The present work deals with the nonlinear panel flutter with relaxation in boundary conditions.
The conventional boundary value problem of the panel involves time-dependent boundary
conditions, which are converted to an autonomous form using a special coordinate
transformation inspired by the work of Qiao, et al. (2000). The present analysis extends the
analysis of Ibrahim, et al. (2004) to include six-mode interaction in the presence of boundary
condition relaxation. The dynamic characteristics of the panel and the influence of initial
conditions are predicted using phase plots, FFT plots, bifurcation diagrams of the first return,
short time Fourier transform, wavelet transform, and Lyapunov exponents.
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II. ANALYTICAL MODELING

IL.1 Panel Flutter with Non-ideal Boundary Conditions

Consider a two dimensional panel exposed to supersonic flow as shown in Flgure 1. In order to
estimate the work done by aerodynamic loading, the pressure on the panel is represented by the
linear piston theory, (Ashley and Zartarian, 1956),

pU.low 1 ow
—=|—+ 1
Ap=p-p,= M[aant] )

where w(x,t) is the panel deflection, which is a function of position, x, and time, ¢.
M =U,_/a, is the Mach number, U, is the undisturbed gas flow speed, a_ = m is the
speed of sound, p, and p, are the undisturbed free gas stream pressure and density,
respectively. p is the pressure of the gas flow at the panel surface, y = C,/C, is the ratio of

specific heats at constant pressure, C,, and volume, C, .

The governing nonlinear equation of motion for the panel is developed using Hamilton's
principle, which yields (Ibrahim, et al., 1990)

2 4 2 2
m a—w+D(1+ ﬁ)aw Nx0+Eh I(aw) dx 6w p-Us aw+ i =Ap, 2)
? ot o) ox* ox ox? M |ox U, a

m, is the panel mass per unit area, a is the panel length, E is Young's modulus, # is the plate
thickness, D =Eh’/(12(1-v*)) is the panel stiffness, v is Poisson's ratio, Ap, is the gas

pressure difference across the panel, N,, is the external in-plane load per unit span-wise length,
and c is a linear viscous damping coefficient. Equation (2) is subject to the boundary conditions

WO ow0.0) )
“BF =& () — = 0, w(0,£)=0 (3a,b)
a W(a t) a, (t) 8w(a t) =0, w(a, t) =0 (3c’d)

where ¢, (1) and a,(f) measure the end slopes and represent torsional stiffness parameters such
that if &,(r)=a,(t) = the panel is purely clamped-clamped. On the other hand, the panel is
simply supported if «,(f) =a,(t)=0. In real situations, ,(f) and a,(f) do not assume these

limiting cases; instead, they are very large for clamped supports or very small for simple
supports. In the dynamic case the boundary conditions (3a,c) are non-autonomous. In order to
convert these conditions into an autonomous form, we introduce the following transformation of
the response coordinate,
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2
w(x,t) = [(%) +28,(2,2; )% +8,(2,,2,) |u(x,t) = p(x; z,, 2, Ju(x,t) 4)

where the dimensionless parameter z,(f) = D/aa,(t), i =1,2, represents the ratio of the bending
rigidity to the torsional stiffness of the joints. The functions g,(z,,z,) and g,(z,,z,) are chosen

to render the boundary conditions autonomous for the new coordinate u(x,f). Possible
expressions of these functions are

1+4z, 2z,(1+4z,))
Z2,2,)=—— Z,,2,)=——F—— 22 5
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In this case, the boundary conditions (3) become
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equation (2) becomes
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I1.2 Relaxation of Boundary Stiffness

The relaxation process is phenomenologically modeled based on experimental results (Bickford,
1990). In this case, The torsional stiffness parameters are assumed functions of the number of
vibration cycles, n=n(7),

aa,(n) _ 1

B s

(8)

where the overbar denotes a dimensionless parameter. An explicit analytical expression for the
parameters &,(n) can be obtained from experimental records (Bickford, 1990), which reveal a

slow drop between an original and an asymptotic value of the joint stiffness. An appropriate
elementary function that emulates this behavior may be selected in the form
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a@(n) = &(e0) +[&(0) —a(oo)][l Emh| b ASH, )]]

1+ tanh[kn, ]

where the subscript 7 has been dropped, and n, is a critical number of cycles, indicating the

location of the inflection point with respect to the origin, n=0. The parameter k is associated
with the slope of the curve at the point, n=n,. The parameters @(0) and @(w) are obtained

from the experimental curve. The slope parameter k can be found by taking the derivative of
equation (9) with respectto n, i.e.,

oa(n)/on], -
S [1+tanh[kn,]] (10)

One can write an expression for z(z) by using relations (8) and (10) in the form

-1
1 h(-x(z-
z(z') = ZOZ°° [ZO = (Zo = Zw) - tlart:n:;f;r )TC)):l (l ])

<w>

27k
frequency, which can be taken as the center frequency. The phenomenological representation
given by equation (11) can be used for any initial preload and will cause the panel to experience
non-stationary behavior. Notice that the relaxation time interval documented by Bickford (1990)
is very short for aerospace structural components. However, the present analysis serves to reveal
the dynamic characteristics of panels under boundary conditions relaxation.

where Z,=2(0), Z, 6 =2(x), y=

, and <@> is the mean value of the response

I1.3 Galerkin Formulation
Galerkin’s method is applied to discretize equation (7) by assuming the general solution in the

N
form ﬁ(f,r):Z‘P"(E)qn(r) and the corresponding weighting functions #(X,7)=

n=1

N
Z‘P"(E)qn(r) where N is the total number of the basis functions for #(x,7); ¢,(r) are

n=|

unknown functions to be determined (generalized coordinates); §,(z) are arbitrary functions of

time and W, (x) are the assumed orthonormal mode shapes. The resulting general differential
equation is

2.4,(2)8,, +2.q,(t)C(n,m)+ &Y q,(2)C,(n,m) =Y q, ()N ,,C, (n,m) -

—B.Zq"(r)q(n,m)( I(Z qk(rxw'(f)%(mw(f)\v;(f»j df)+

0
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+2.4,(0)D,(n,m)+ AY_ q,(r)D,(n,m)+¢{NAY . g, (2)Dy(n,m) = B,Dy(m)  (12)

where

O = [0V, (D), (¥)dx ,

0
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D, (n.m) = :va @, (), (F)dx: D,y (nm)= Jw(f)w;(f)w",(f)df  Dy(n,m)=34,,.

1
D,(m)= [¥,,(%)ds .
0
The general solution is assumed to be periodic in space,
N
u(%,7)=.q,(r)sinnrx (13)
n=1

where N is the total number of modes, g,(r) are the generalized coordinates. It has been

established that accurate solution of the panel flutter can be achieved by using at least six modes
(see, e.g., Dowell, 1966). The inclusion of six modes results in a complicated analysis where
relaxation is considered. For this reason we introduce the simplification, z, =z, =2z/2, which

makes the boundary stiffness values to be equal. The resulting set of six equations may be
written in matrix form,

)i+ e & a0]la+ [KeFun)ig=[pwle )+ 3 3 {eaa)

izjzk

+Z Zj) g{fq,q,qk}+{P} (14)
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where [M(r)] is the time dependent mass matrix and [C(g’ 4 ,A,r)] is the damping matrix,

which depends on the viscous damping ratio ¢, mass parameter, é , and relaxation parameter,
z(1). [K (r,ﬁo,l)] is the stiffness matrix, [D(r)] is the coefficient matrix of cubic terms, and
{P} is the pressure vector, whose elements are non-zero only for odd modes because it is the

integral of a constant, p,, and the sinusoidal basis functions. The structure of these matrices is

given in the Appendix. The complete set of expressions for all coefficients of the matrices and
vectors of equation (4) is documented in Beloiu (2005).

Equations (14) are solved numerically in the time domain for a typical relaxation curve. The
resulting solution is given in terms of the transformed response, # , or rather in terms of its

modal coordinates, g,, i =1..6. One should estimate the modal response in terms of its physical
generalized coordinate,

w(x,7)=p(x)u(x,r) and w(X,7)= ﬁ:én (7)sinnzx (15)

n=|

where @ =|x’+2g,(z,,2,)X +g,(2,,2,) | and g, are given by equation (5). The relationship
T\"19<2 2N~ i

between the physical coordinates g,(z) and the generalized transformed coordinates ¢, (7) is

iqn(r)sin nax = [fz +2g,(2)% + gz(z)]ZN:qn(r)sin nax (16)
n=1 n=1

Integrating the above equation

E[ﬁ: q,(7)sin nﬂf] dx = E[(Ez +28,(2)x + g, (z)) ZN:q,, (r)sin nm_cjldx

gives the desired relation between the coordinates.
q,(t) =T,(2)q,(7) (17)
where

2n-1)*n*
2+Q2n-1)*n%z’

(n-1)*n?

L.(2)=- 2+(n-1)27’z

n=135;.. T(z2)=- , n=2,4,6,... (18)

Therefore, the solution of equations (14) must be divided by 7, (z) in order to recover the actual

modal displacements. The next section presents the stability analysis and response characteristics
under different values of the dynamic pressure and relaxation parameters.
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III. LINEAR ANALYSIS

The stability analysis is carried out by estimating the natural frequencies of the six modes in the
absence of system nonlinearities and by setting the non-homogeneous term in equations (14) to
zero. The dependence of the real and imaginary components of the eigenvalues on the dynamic
pressure is shown in Figures 2(a) and (b) for three different values of relaxation parameter
(z2=0.001, 0.1, and 1), damping parameter, ¢ = 0.0, mass parameter £ = 0.1, and static axial
load parameter N, = 0. It is seen that the real parts are zero up to a critical value of the dynamic
pressure, depending on the value of the relaxation parameter, z, above which one becomes
negative and the other positive indicating the occurrence of panel instability (flutter). Note that
the value z=0.0 corresponds to a clamped-clamped panel, while z=c corresponds to simple
supports. As expected, the linear flutter point decreases for lower boundary stiffness. The
dependence of the components of the first and second eigenvalues on the relaxation parameter,
z, is shown in Figure 3 for three different values of dynamic pressure, 4 =400, 450, and 500. It
is seen that the eigenvalues possess negative real parts up to a critical value of relaxation

parameter, above which one eigenvalue has a positive real part indicating the occurrence of
flutter.

Figures 4 and 5 show the boundaries of panel flutter in terms of the critical value of aerodynamic
pressure, 4, and the relaxation parameter, z . These figures depict the influence of the in-plane

load, N,, and damping ratio, ¢, respectively. As expected, the compression in-plane loading

results in a reduction of the critical flutter speed. The clamped panel (z <<1) requires more in-
plane compression load to reach its flutter speed. With reference to Figure 5, for all values of
relaxation parameter, the damping is non-beneficial as it increases from very small values up to a
critical value, above which it becomes beneficial, depending on the value of the relaxation
parameter. Figure 6 shows the dependence of flutter speed on the damping parameter, ¢ . For a

given relaxation parameter, there is a critical damping ratio, ¢,

)

above which the damping
becomes beneficial and the critical speed increases with the damping. For £ < ¢, the damping is
detrimental and results in a reduction the flutter speed. The value of ¢, is shown by a small

circle on each curve and is determined by setting dA/d¢ =0. The locus of these points is shown
by the dotted curve in Figure 6.

IV. NONLINEAR ANALYSIS

IV.1 Bifurcation Analysis

The complete set of Equations (14) is solved numerically using the MATLAB®© variable solver
odel5 with relative error tolerance of 10 and absolute error tolerance of 10~. The numerical
solution is carried out for a given damping parameter, ¢, and for different values of in-plane
load, N, dynamic pressure, A, and relaxation parameter, z . In order to avoid the influence of

transient motion, only the last portion of the steady state time history is taken to estimate the
state of the panel. Depending on the system parameters and dynamic pressure the panel may
exhibit different regimes such as (I) statically stable, (II) static buckling (divergence), (III) limit
cycle oscillations, and (IV) multi-period oscillations and chaos. Figure 7 shows these four

regimes on the plane of dynamic pressure, A, versus in-plane pressure, —N,/x*, for three
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different values of relaxation parameter z=0.001, 0.1, and 1, in addition to the case of simply
supported panel. The two values of in-plane loads —N,/7* = 1 and 4 represent the Euler

buckling loads of simply-supported and clamped panels, respectively. It is seen that as the
relaxation parameter increases (panel approaches simply supported case) the regions (III) of
LCO and (IV) multi-period oscillations/chaos expand. The dynamics of the panels along lines A
and B shown in Figure 7 will be examined later.

Figure 8 shows the dependence of LCO amplitude on dynamic pressure for zero in-plane
loading and different discrete values of the relaxation parameter z. Note that, depending on the
value of the relaxation parameter, there is a critical value of dynamic pressure at which LCO
begins in the form of supercritical bifurcation. The relaxation results in moving the bifurcation

point to lower values of dynamic pressure. Under compression in-plane loading, N, =37’ and

under low values of dynamic pressure the panel experiences static buckling as shown in Figure 9.
As the dynamic pressure increases the panel enters a stable state until the dynamic pressure

reaches the critical value, 4,, above which the panel exhibits LCO. A three-dimensional

diagram demonstrating the time evolution of LCO amplitude and its dependence on the dynamic
pressure is shown in Figure 10 for zero in-plane loading and same parameters as in the previous
figures.

Under the relaxation curve shown in Figure 11(a), the time history record of the total deflection
at x/a=0.75 is shown in Figure 11(b) for in-plane compression loading, N, =—67>, and

dynamic pressure, A=200. Over the whole time domain, the panel experiences two different
regimes of oscillations, namely the growing amplitude LCO, and chaotic oscillations.

Chaotic flutter is usually detected by estimating the largest value of the Lypunov exponent.
Lyapunov exponent measures the rate at which nearby trajectories converge or diverge, and are
numerically calculated using the algorithm of Wolf, et al. (1985). Equations (14) may be re-
written in terms of a set of first-order differential equations in the form

x = f(x;t) (19)

where x={q,q}" is the state-space vector, where 7' denotes transpose and f describes the
nonlinear behavior of the system. Let x*(t;x,) be the reference solution of the system (19)
where X, is the vector of initial conditions. In order to find the variation of trajectories in the
neighborhood of the reference trajectory x*(t), at each time step #, we introduce the
corresponding linearized equation

y=F(x*(t,))y (20)

where F(x*(t,)) is the nxn Jacobian matrix of the function f evaluated at the reference
solution x*(t,). First, we integrate the differential equation (19) with initial conditions x; to

determine the reference trajectory. Simultaneously, the linearized system (20), with initial
condition y(0), is integrated for a small period of time Ar to obtain a set of vectors yi(AY),
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(=1...,n). The vectors y;(At) are orthonormalized using the Gram-Schmidt procedure. The next

steps consist of integrating equations (19) and (20) for another successive time intervals Af
using x*(t,) and the orthonormalizad vector y;(At) as new initial conditions. Repeating the

above procedure p times, the jth Lyapunov exponent can be obtained as an average increment of
variation vector y,(t) during the test time Ar:

3 ey
Tt |y, o)

21

where ||| denotes vector norm. To obtain reliable values of the X ,» long time integration is
necessary. In the present study, Lyapunov exponents are estimated using a non-dimensional time
increment Az =0.0001. The computation starts after 7 =100 and continues up to 7 =1,000.

Figure 12 shows some regions of relaxation parameter over which the Lyaponov exponent is
positive, implying the existence of chaotic flutter. Note that extreme positive values of Lyapunov
exponent are found for multi-period flutter regimes.

The bifurcation diagram shown in Figure 12 is obtained by plotting the first return points of the
panel amplitude for in-plane load parameter N, =—-5.877, damping factor ¢ =0.0001, static

pressure p, =0, mass ratio parameter {A =0.1, and dynamic pressure A =200. The relaxation

parameter vary between z =0.0025 and z =1 with an increment of Az =0.0025. It is seen that
for relatively small values of relaxation parameter, z <0.105, the panel experiences symmetric
LCO with increasing amplitude as the relaxation parameter increases from the absolute clamped
case, z=0. The figure may be classified into the regimes listed in Table I.

Table I: Panel flutter regimes

0.001<z<0.0925
0.0925<z<0.1025

Period-one, symmetric (about z—axis)
Period-one, asymmetric (about z —axis)

0.1025<z<0.1700
0.1700 < z<0.1850
0.1850<z<0.2625

Chaos
Period-two, mixture of symmetric and asymmetric
Period-one, symmetric

z=0.2650 Period-five, symmetric

0.2650<z<0.2850 Period-one, symmetric

0.2850<z<0.3775 Period-one, two, and three, symmetric and asymmetric
z=0.3800 Period-eight, symmetric

0.3800<2<0.3925 Period-one and two, symmetric

z=0.3950 Period-seven, symmetric

0.3950<2z<0.4025 Period-one, symmetric

z=10.4050 Period-four, symmetric

0.4050 < z<0.4825 Period-one, asymmetric and asymmetric
0.4825<2<0.4950 Chaos

0.4950 < z£0.5075 Period-doubling, asymmetric

0.5075<2z<0.6700 Chaos

0.6700 < z<0.7275 Period-four and seven, symmetric and asymmetric
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0.7275<2<0.7325 Chaos
0.7325<2<0.7375 Period-six, asymmetric
0.7375<2<0.8925 Chaos

0.8925<z<1 Period-three, symmetric

For selected values of relaxation parameter, the phase plots are shown in Figure 13. The
corresponding FFT plots are shown in Figure 14 and reveal n spikes for the multi-period regimes
and continuous spectra for chaotic motion.

Figure 15 shows the bifurcation diagram and the corresponding Lyapunov exponent for A =250
and N, =-67". The switching from symmetric to asymmetric LCO is more visible over the

region 015<2z<0.37. After a window of symmetric LCO, the motion becomes chaotic
(z>0.6325) with the increasing of the Lyapunov exponent as the relaxation parameter
increases. Switching between symmetric and asymmetric LCO, together with cascades of quasi-
periodic motion, and chaotic flutter with windows of periodicity make the panel behavior very
complex.

Figures 12 and 15 reveal only a partial view of the route to chaotic flutter during relaxation. To
have a global picture over the parametric space of dynamic pressure and relaxation parameter for
given values of in-plane load and relaxation parameter, the boundaries of chaotic flutter are

shown in Figure 16 for two values of N, and two values of ¢ . The dynamic pressure varies

from 4=100 to 4 =300 with a step size AA =5, and relaxation parameter varies from z =0 to
z=1 with step size Az=0.05 so that each map is represented by 41x22=902 points. The
Lyapunov exponent is computed for each set of parameters. A positive Lyapunov exponent
indicates chaotic flutter, which is labeled by a black dot. If all exponents are negative, the panel
equilibrium position is stable. If the largest Lyapunov exponent is zero the panel experiences
stable limit cycle. Both negative and zero Lyapunov exponents are labeled by a blank space.

Figure 16(a) shows chaos boundaries for N, =—67" and small damping ratio, ¢ =0.0001. The

motion is regular for z<0.1. The relaxation process increases the chaos occurrence but not
monotonically; instead, a complex pattern is observed. Higher in-plane loads enlarges the chaos
boundaries as shown in Figure 16(c), however, the switching of windows with regular and
chaotic motions is still visible. By maintaining the same in-plane load and increasing damping
ratio to £ =0.001, the chaos boundaries are reduced considerably, especially for lower z as

shown in Figures 16(b,d).

With reference to the path line A at N, =—6z" shown in Figure 7, we consider the panel

dynamic behavior in terms of the bifurcation diagram and Lyapunov exponent, shown in Figure
17 for relaxation parameter, z=1. The aerodynamic pressure, A, is taken as the control
parameter. A similar analysis is found in Epureanu, et al. (2004) for a simply supported panel
without structural damping. The dynamic pressure varies between A =100 and A =300 with a
step increment of A4=0.25. The bifurcation diagram begins with the buckled state of the panel
up to 4=109. The chaotic motion over the region 109.5< 1 <152.5 is followed by a region of
multi-period oscillations up to 4 =173. Another window with chaotic motion is found over the
range 173<A<192 followed by a wide window with period three motion. Increasing the
aerodynamic pressure, the motion is chaotic but the chaos intensity decreases as suggested by the
decreasing value of Lyapunov exponent. For A>288, the panel experiences LCO with
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increasing amplitude. Figure 18 depicts the bifurcation diagram and corresponding Lyapunov
exponent for the same path A but with relaxation parameter z = 0.1, which is much closer to the
clamped state. The motion is much more sensitive to the change of control parameter over the
dynamic pressure rangel20.5<A<156. With the reference to the corresponding Lyapunov
exponent, the panel motion exhibits a cascade of alternating chaotic and periodic oscillations.
The character of the motion is changed abruptly over a small increment of A .

With reference to the path line B at =140 of Figure 7, we consider the panel dynamics
behavior by varying the in-plane load N,. The bifurcation diagram illustrated in Figure 19 is

determined for relaxation parameter, z =1. It is seen that the panel is stable for small in-plane
load up to N, =3.3 above which it experiences LCO over the range, 3.3< N, <3.45. At

N, =3.45 the panel experiences secondary bifurcation with symmetric period-3 oscillations.

Increasing the in-plane load, the motion switches between asymmetric and symmetric multi-
harmonic oscillations. Further increase of the in-plane loading results in a chaotic motion with

three windows of periodicity: 4.22 <N, <4.39, 4.77 <N, <4.96,and 5.58 <N, <5.87.

For the same set of parameters, the response may be different depending on initial conditions.
This is true not only for the chaotic motion but also for the periodic oscillations. Figure 20 shows
phase portraits for four different sets of parameters. Each phase portrait is drawn for two
different initial conditions (1) ¢,(r=0)=0.1, ¢,(r=0)=0,i=2,..,6, and (2) q,(r=0)=1,

q,(r=0)=0,i=2,..,6, respectively. One can observe from Figures 20(a) and (b) that multi-

periodic oscillations corresponding to initial condition set (1) becomes a period-3 oscillation in
the case of initial condition set (2). In both cases, the response is symmetric. For other sets of
parameters two asymmetric solutions co-exist as shown in Figures 20(c) and (d). The panel
response follows one of these solutions, depending on the initial condition. The co-existence of
symmetric and asymmetric LCO is better observed in the bifurcation diagram shown in Figure

21 for Ny=—67", and z=0.1. The response is asymmetric over the range 233<A<2375

depending on the initial conditions; after that, the response becomes symmetric independent of
the initial conditions.

IV.2 Time-Frequency Analysis

The ultimate decision on whether the motion is chaotic or not is given by the presence of a
positive Lyapunov exponent. However, the Lyapunov exponent is characterized by a slow
convergence, which requires long time simulations and large computation resources. Time
limitation may be critical, especially when experimental data is available for a limited time
history record. Therefore, at least for preliminary investigations, the information from the
bifurcation diagram, phase plot and power spectrum is generally sufficient. The relaxation of the
boundary conditions results in time variation of the panel natural frequencies, and thus the flutter
becomes non-stationary. The Fourier transform does not reveal the time dependency of the
frequency of panel oscillations. The present work will adopt two techniques usually used for
non-stationary signal analysis. These are the windowed Fourier transform, known as the
spectrogram, originally developed by Gabor (1946), and the Morlet wavelet transform. Note that
both transforms have time-frequency resolution limitations for the determination of the
instantaneous frequencies. The windowed Fourier transform relies on the selected length of the
window. Any special features occur during short time-scales smaller than the length of the
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window, or with frequencies smaller than those contained in the window are lost and cannot be
captured by the windowed Fourier transform. On the other hand, the wavelet transform has the
advantage in that it follows the rapid variations of the instantaneous frequencies since it adjusts
the length of the window according to the frequency content of the signal.

For the case of the short time Fourier transform, a real and symmetric window g(#) = g(~t) is
translated by 7 and modulated by the frequency @,

g..1)=€e"g(t-7), |g|=1,and |g,, | =1 (22)

The short Fourier transform, known also as the short time Fourier transform, of the panel
deflection g,(¢) is

Sw(r, @) = a]v—v(t) g(t—1)e"™ dt (23)

In the present work, the Kaiser (1974) window function is used. It has the following form

IO(ﬂ,/l—(t/T)2 )
g0=\""1% o (24)

0 otherwise
7

where /; is the modified Bessel function of order zero and of first kind, 3 is a parameter that

governs the shape of the window, and T is the signal total time. The spectrogram measures the

energy density of the flutter deflection w in the time-frequency neighborhood of (z,m) given by
2

Pz, @) = |Sw(z, )| = (25)

°], w(t)g(t—1)e™"dt

Figures 22(a) and (b) show two cases of the FFT plots and spectrograms of the panel total
deflection time history records for (a) 4 =700, and £ =0.0001, and (b) =700, and ¢ =0.02,

respectively. For low damping, Figure 22(a) shows the panel frequency decreases with time as
the panel boundary conditions approach the case of simple supports. On the other hand, as the
damping increases, the panel frequency increases with time. There are two factors competing
with each other, namely, the structure geometric nonlinearity and the relaxation in the boundary
conditions. For increased damping, the structure geometric nonlinearity overcomes the influence
of relaxation and the frequency increases as shown in Figure 22(b).

Alternatively, we will use the continuous wavelet transform technique to present the time history
records in two-dimensional function of time and frequency to reveal the wavelet modulus and
phase. A wavelet is a function with some special properties. It should have a small concentrated
burst of finite energy in the time domain and exhibit some oscillation in time. The wavelet
transform can be regarded as a cross correlation between the wavelet and the panel time history
record. To analyze signal structures of very different sizes, the wavelet transform decomposes
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signals over dilated and translated wavelets. A wavelet is a function w(¢) e L'(R) with zero
average. It is normalized |y|=1 and centered in the neighborhood of r=0. A family of
wavelets is obtained by scaling y by s and translating it by 7 (see, e.g., Mallat, 1999):

=1 (26)

=T
— | » Ve
S

t//,_,(t)=%t//( )

The wavelet transform (WT) of the signal w e I’(R) at time 7 and scale s is
. " I afit=¢
W (z,s)=(wy, V= W(t)—= (—jdt 7
(W..) = [ #(@0) 75 27)

The Morlet wavelet is suitable for analyzing smooth signals. It is complex, but not admissible
because it does not possess zero mean. Nevertheless, the mean value is very small, so they
generally work well in computations even though they slightly violate some theoretical
conditions. The mother wavelet for the Morlet wavelet is given by the following function

‘//(t) - ”-]/4ei%|t|e_|,|2/2 (28)

The modulus of the wavelet transform is defined as

7 (z.5)| = \/(Re[Wj(r, s)])2 +(m[w7 s)])2 (29)
and the phase is
—_ Im[WV,W(r,s)]
#(r,s) =tan [WJ (30)

The square of the modulus WW(z',s)2 represents the energy density distribution of the signal
q v p

over the time-scale plane, (7,s). On the other hand, the phase measures the relative position of

the signal and its analyzing wavelet. The graphical representation of the WT modulus in time-
scale plane is called scalogram. The modulus and phase provide the time evolution of the
frequency components of the analyzed signal. Figure 23 shows the time history, scalogram, and

wavelet phase for fixed parameters A=132, N, =-6x", and z=1. The scalogram shown in

Figure 23b illustrates a large spectrum of frequencies randomly distributed in time. According to
Newland (1999a,b), the absolute phase is not a useful indicator because it depends on wavelet
location. However, the rate of change of phase with time in the same frequency band is an
interesting parameter because it is constant when the signal is harmonic of fixed frequency and
phase. Figure 23(c) shows the projection of phase on the frequency-time plane and one can see
the evolution of phase with time does not maintain a constant value. A better visualization of
time-frequency evolution of the wavelet modulus is illustrated in the three-dimensional plot
(Figure 23d). Similarly, Figure 24 shows the time history, wavelet modulus and wavelet phase
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for fixed parameters A =203.5, N, = —-67%, and z=0.1. The wavelet scalogram shows a band

of frequencies varying about a dominant component of @*=20 dimensionless frequency. In
addition, intermittent higher frequency components randomly distributed in time are observed.
Although the time history shows a certain degree of repeatability, the motion is still chaotic.
Compared to the Lyapunov exponent, the wavelet transform is well suited to the analysis of short
duration or intermittent signal components. However, the wavelet transform cannot provide a
quantitative tool to measure chaos.

V. CONCLUSIONS

The nonlinear flutter of a two-dimensional panel exposed to supersonic gas flow involving six-
mode interaction is studied in the presence of non-ideal boundary conditions. The deterministic
study includes stability analysis in terms of dynamic pressure, relaxation parameter, damping
ratio, and in-plane loading. For in-plane loading below the critical buckling value, the panel
experiences LCO above a critical aerodynamic pressure governed by the relaxation parameter.
For compressive in-plane loads, the panel experiences periodic, quasi-periodic and chaotic
oscillations depending on the values of dynamic pressure, relaxation parameter and damping
ratios. Bifurcation diagrams of the first return and the associated largest Lyapunov exponent are
estimated by taking the dynamic pressure or the relaxation parameter or the in-plane loading as
control parameters. The chaos regions represented by the positive largest Lyapunov exponent
were found to be reduced for small relaxation parameter. The initial conditions were found to
affect the behavior of the panel flutter in the periodicity and symmetry of oscillations. The time-
frequency analyses of the panel flutter was estimated using the techniques of spectrogram and
Morlet wavelet transform. The importance of these transforms is to reveal the degree of non-
stationarity of panel flutter in terms of frequency variations and nonlinear behavior. The results
presented herein show that variations in boundary fixity clearly affect aeroelastic flutter
characteristics. It is recommended that phenomenological models of relaxation be integrated into
aeroelastic models of more complex structures to ascertain whether relaxation could be an
important factor in the observed variability of aeroelastic behavior between nominally identical
aircraft.
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Figure 2. Dependence of real and imaginary parts of the panel natural frequency on dynamic
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Figure 4. Boundaries of panel flutter on the plane for different values of in-plane load and for
£=0.1, ¢£=0.0001.
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separate between stabilizing and destabilizing damping effects.
