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ABSTRACT  

Research on autonomy is performed for various types of uninhabited vehicles: ground, aerial, surface, 
underwater and space vehicles. A quick state-of-the-art highlights that industry and research develop their 
own architectures and that no standard is emerging; few solutions propose architecture adaptive to 
several types of platform. 

Autonomous vehicles that move in partially known and dynamic environments have to deal with 
asynchronous disruptive events. Hence the need for implementing onboard decision capabilities that allow 
the vehicle to perform the mission even when the initial plan prepared offline is not valid any more. 
Decision capabilities, which guarantee the adaptability of the vehicle to variable environmental 
conditions, must be implemented in a dedicated architecture able to manage the components of the whole 
control loop {perception, situation assessment, decision, and action}. 

This paper focuses on the ProCoSA® software package used by ONERA for controlling and monitoring 
highly autonomous systems.  This software allows the development of decision architectures for any type 
of autonomous vehicle performing its mission in a partially known and dynamic environment. We present 
the software package, a tutorial example, and architecture implementations on an Autonomous 
Underwater Vehicle (AUV) and on an autonomous Uninhabited Aerial Vehicle (UAV). 

1 PROCOSA® SOFTWARE PACKAGE 

ProCoSA®, which was created at ONERA for the development of decision architectures to be embedded 
in autonomous vehicles, is based on the Petri net [1] graphical and mathematical modelling tool. 
ProCoSA® Petri nets model the behaviour of autonomous vehicles as state changes at different description 
levels. Using these procedures, ProCoSA® supervises the activation of the software functions enabling 
autonomy to be achieved by the vehicle: perception, situation assessment, decision, and action. Its 
components are detailed in the following subsections: 

• JdP is the Petri net player of ProCoSA®, it performs the supervision function: 

• it executes the Petri net procedures: looking for the occurrence of events, it fires the event-
triggered transitions of the Petri nets and runs actions associated to transitions; 
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• it supervises the dialog between procedures and software programs and also manages the 
communication with systems outside the vehicle. 

• EdiPet, a graphical user interface for Petri nets, is used both by the developer for procedure design 
and by the operator for execution monitoring. 

A ProCoSA® project includes JdP, Petri net procedures and software programs. An operational version of 
ProCoSA®, which stands for “Programmation et Contrôle de Systèmes à forte Autonomie”, was registered 
in 1999 to the French APP program protection agency. 

1.1 ProCoSA® Petri nets 
The Petri nets used by ProCoSA® for modelling the behaviour of autonomous vehicles have the following 
properties: 

• they are interpreted nets: triggering events and actions are attached to transitions; an enabled 
transition is fired if and only if the associated triggering event occurs, and the associated actions 
are executed; 

• they are “safe” nets: only unary arcs are used, and places should not contain more than one token; 
• special places, called “global places”, have been introduced in order to ease synchronisation 

between nets while preserving modularity: such a global place is shared between several nets. 
This feature is particularly suitable for handling disruptive events; 

• timers can be programmed: a special action enables a timer variable to be instantiated, which 
allows actions with a limited duration to be modelled. 

The hierarchical modelling features enable the developer to structure the whole application in a generic 
way: at the highest description level, nets model generic behaviours, regardless of the characteristics of a 
given vehicle; at the lowest level, they can model the sequences of elementary actions to be performed by 
vehicle or payload. This modular approach eases a quick adaptation to system changes. 

Several types of actions can be associated to transitions: 
• activation of a Petri net (a Petri net is activated when it receives its initial marking); 
• deactivation of a Petri net (when a Petri net is deactivated, it looses its marking); 
• emission of an event; 
• emission of a request towards JdP (e.g. a timer initialisation); 
• emission of a message towards a software program. 

Several parameters can be associated to an event and used by the actions associated to the transition. This 
enables to establish a limited data flow between the different software programs activated by the Petri 
nets: when a software program ends, it sends an event towards a Petri net (usually the one that launched it) 
with a set of output parameters. Those parameters can be immediately transferred by the receiving 
transition to the next software program activated by this transition. 

1.2 The JdP Petri net player 
JdP was developed in Tiny language. Tiny is a Lisp interpreter designed for distributed embedded 
applications and includes a library implementing the TCP/IP communication protocol between software 
programs and the Petri net player. There is no code translation step between the Petri net procedures and 
their execution: they are directly interpreted by the Petri net player, thus avoiding any supplementary error 
causes. 
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When a ProCoSA® project is run, JdP first reads the Petri net structures and establishes the socket 
connections with EdiPet (if used during the execution phase) and with the software programs. Specified 
Petri nets are activated, and the internal JdP loop is ready to receive the incoming events. 

1.3 EdiPet graphical user interface 
Prolexia company developed the EdiPet graphical user interface (Figure 1). This tool is used both for the 
development of a ProCoSA® project and for execution monitoring. A ProCoSA® project includes a set of 
Petri nets, a set of software function and their relations. EdiPet thus allows: 

• the connections inside the whole project between JdP, nets and software programs; 

• the graphical creation of Petri nets; several editor windows display and allow to modify attributes 
associated to each object (net, place, transition, event, action); 

• the management of the communication protocol between Petri nets and software programs; EdiPet 
generates the function prototypes, which have then to be filled by the software developer; 

• the display of the net states during execution; when activated (which means that one token is 
present), places (and last fired transitions) are displayed in red. 

 

Figure 1: EdiPet graphical user interface 

During the execution phase, EdiPet can be displayed for the operator in the ground station, as far as a 
communication link is established with the autonomous vehicle. 

1.4 Verification process 
ProCoSA® includes a verification tool, which makes use of Petri net analysis techniques to check that 
some properties are satisfied by the procedures, both at the single procedure level and at the whole project 
level (that is to say taking into account inter-net connections). 

The following properties are checked: 

• place safety (not more than one token per Petri net place); 

• detection of dead markings (deadlocks); 

• detection of cyclic firing sequences (loops). 
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The principle of this analysis lies on the automatic generation of the reachability graph, which contains all 
the possible reachable states of each net and of the whole set of interconnected nets. As nets are safe, this 
set is necessarily finite, and its analysis permits to deduce the above properties. 

2 TUTORIAL EXAMPLE 
The basic example that explains how to program an embedded decision architecture using ProCoSA® 
software package is a simple project for the supervision of an autonomous Uninhabited Aerial Vehicle 
(UAV). The different stages for architecture development are described in the following subsections. The 
vehicle is totally autonomous once the mission begins: there is no communication with an operator during 
mission execution. 

2.1 Vehicle mission 
The objective of the UAV mission is to achieve survey operations while flying a sequence of legs: a leg 
can be a transit leg or a payload leg. Two payloads are available onboard (e.g. cameras). Each leg is 
defined by its starting waypoint, its ending waypoint, and by activated payloads for payload legs. 

The nominal phases describing the flight plan are the following: mission preparation (plan storage), 
runway rolling, takeoff, climb to the cruise altitude, leg following, approach to the landing strip, and land. 

Two types of disruptive events may affect the mission; a reaction is specified for each one: 

• in case of an engine failure, transit to the nearest emergency site; 

• in case of a payload failure, update of the sequence of waypoints and mission resuming. 

2.2 Software program coding 
Embedded decision functions allow the vehicle to be autonomous. These functions are developed 
independently. This is also the case for the guidance function that computes vehicle moves and controls 
payloads. In this tutorial, two software programs are used: 

• GUI software program simulates vehicle guidance and payload control; 

• DEC software program stores all information relative to the mission and achieves decision tasks 
in case of non-nominal situations. 

These software programs are simplified versions. In a real architecture, more sophisticated software 
programs have to be developed to enable to close the loop {perception, situation assessment, decision, and 
action}. 

EdiPet interface is used to code ProCoSA® Petri nets; functions of GUI and DEC software programs, 
events they can send by return, and parameters associated to function’s calls and events were previously 
specified for the example project. Figure 3 illustrates an example of a software program call (the 
GUI_TakeOff function is activated by the GUI_ROLL_OK event at the end of the runway rolling phase) 
and an example of a return event (the DEC_LEG_next event is received after the call of the 
DEC_NextLeg function). 

2.3 Nominal behaviour modelling 
The nominal behaviour for the vehicle is to follow the flight plan. With Petri nets, the natural way to 
implement such a nominal behaviour is to model each vehicle phase by a place and each phase change by 
a transition. A generic solution for leg following is to model a loop until the end of the sequence. DEC 
program knows the leg sequence and manages its update. 
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Two Petri nets model then the nominal behaviour: 

• the MISSION net manages phase sequencing; 

• the PAYLOADS net manages payload activation and deactivation; as events relative to these 
controls are sent by DEC program, there is no direct relation between MISSION and PAYLOADS 
nets. 

The EdiPet project is shown on Figure 2. The execution begins when the MISSION net receives the 
MISS_GO event from the JdP Petri net player. In a real context, this event may be sent by an operator 
through a specific interface. 

 

Figure 2 - Nominal project includes JdP, MISSION and PAYLOADS nets and GUI and DEC 
programs. The EVENTS net refers to the non-nominal behaviour. 

Petri nets are built following three steps: 

• creation of net structure (places, transitions and arcs) with the EdiPet interface; 

• definition of initial places (displayed with a token) and arguments; 

• association of events and actions to transitions according to the templates of the software program 
functions; events and actions are displayed on EdiPet interface through the “/ae” label attached to 
transition names. Examples on Figure 3 show this interpretation for respectively “roll to takeoff”, 
and “climb to next leg” phase changes. 
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action:
DEC_NextLeg

event: 
DEC_LEG_next
= Wpt3

event: GUI_ROLL_OK

action:GUI_TakeOff 
 

Figure 3 - Examples of Petri net interpretation 

Figure 4 shows MISSION and PAYLOADS nets. The fact that the payloads are modelled separately 
enables the operator to monitor the payload states during mission execution. At the beginning of the 
mission, payloads are off: places PL1_OFF and PL2_OFF are marked. The confirmation of the payload 
states change is required by the net from GUI software program before setting up the state to ON or OFF. 

 

 

 

Figure 4 - MISSION and 
PAYLOADS nets 

 

2.4 Analysis of the nominal behaviour 
The verification process in EdiPet is run for each elementary net of the example, then for the combined net 
which is built - for an analysis purpose only – by taking into account the direct connections between 
elementary nets: 
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• MISSION net: all places are safe, the tree includes 11 nodes, 2 are duplicated nodes, there are no 
dead markings; 

• PAYLOADS net: all places are safe, the tree includes 33 nodes, 17 are duplicated nodes; this is 
consistent with the combination of all possible states of the two payloads; there are no dead 
markings; 

• the results are the same for the net built with MISSION and PAYLOADS nets as there are 
executed in parallel (no direct connection between the two nets, through events or net activation 
requests). 

A second verification step is performed through simulation; the whole project can be run from the EdiPet 
interface. In the example, the following successive processes are thus activated: 

• Petri net player log process: this report is useful to check the activity of the Petri net player; 

• Petri net player input process: this window allows the developer to send Lisp controls, for 
example the emission of the MISS_GO event; 

• GUI and DEC software programs: the associated windows display the results of function calls. 

Once all processes are activated, the developer can launch the mission by sending the MISS_GO event 
through the Petri net player input process: he can check the evolution of markings on EdiPet nets and the 
outputs information from the software programs. The mission was fully executed with respect to the flight 
plan and to the payload activations and deactivations. 

2.5 Non-nominal behaviour modelling 
Non-nominal behaviours are modelled through (1) a third Petri net, EVENTS, which includes the reaction 
to both types of disruptive event, and (2) an extension of the MISSION net. 

When a failure event occurs, the appropriate reaction is modelled: 

• in case of an engine failure, after the killing of MISSION net (ordered by the action associated to 
the engine_failure transition of the EVENTS net), the DEC program computes the nearest 
emergency site; the EVENTS net then supervises the transit to this emergency site, that is 
modelled as a leg follow; 

• in case of a payload failure, after the killing of MISSION net (ordered by the action associated to 
the payload_failure transition of the EVENTS net), the DEC program computes another list of 
waypoints that do not use the faulty payload; to resume the mission, a new instantiation of the 
MISSION net is created and the “replanning2leg” transition is fired. 

Figure 5 shows the two parts of EVENTS net and Figure 6 shows the new place and transition coded for 
mission resuming in MISSION net. The final project for this embedded architecture is given on Figure 2. 
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Figure 5 - Non-nominal EVENTS net 

 
 

Figure 6 – New part of MISSION net 

2.6 Analysis of the whole project 
The same kind of analysis on the whole project including the non-nominal behaviours can be performed. 

However, the formal analysis of the augmented MISSION net obviously shows that places are no more 
safe, due to the added REPLAN_WAIT initial place, although this cannot happen during execution, as the 
MISSION net is “killed” before its re-activation; this illustrates existing limitations in the verification 
functions implemented currently, and shows a way of improving them by taking into account the “kill” 
action when performing the global analysis on the combined net. 

The checking process of the whole project was successfully achieved through simulation tests including 
the occurrence of disruptive events. 

3 AUTONOMOUS UNDERWATER VEHICLE PROJECT 

GESMA group from French armament procurement agency DGA has been working on autonomy projects 
for several years. One is devoted to the development of an autonomous system for the execution of 
missions in a partially known environment by an Autonomous Underwater Vehicle (AUV). A ProCoSA® 
based architecture was implemented for the autonomous execution of a mission defined by a set of 
mission areas where a survey procedure is performed. At the end of these operations, the vehicle joins the 
end area. The environment is defined by bathymetry, currents, forbidden areas and non-navigable water 
data. 

3.1 Experimental configuration and decision architecture overview 
Experiments are conducted with the Redermor AUV (Figure 7). Three computers and thirteen distributed 
Can interfaces with computation capabilities are installed on the platform. Serial link, Can Bus, I2C and 
Ethernet connections are available for payload integration and data exchange. OA1 computer is in charge 
of complex vehicle functions, supervision and mission planning; it thus includes the decision architecture 
(Figure 8). OA2 and OA3 computers are used for sonar payload controls and treatments like Computer 
Aided Detection and Classification algorithms for mine warfare. 

For mission supervision, the decision architecture in OA1 computer includes: 

• the Petri net player; 

• vehicle behaviour modelling through Petri nets for nominal and non-nominal situations; 



A Generic Architecture for Autonomous Uninhabited Vehicles 

RTO-MP-AVT-146 20 - 9 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

• four software programs connected to ProCoSA®: planning (PLN), guidance (GUI), dynamic data 
manager (GDD) and event listener (EVT) programs; 

• the pilot program software (IDC) that computes controls sent to the engine; 

• the data server (OA_NAVIO) developed by GESMA that carries out bi-directional 
communication links with the hardware architecture. 

 

 

 

 

 

 

Figure 7 – Redermor AUV 
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Figure 8 – AUV embedded architecture 

3.2 Nominal scenario 
The behaviour of the vehicle during the execution of a mission is described by eleven Petri nets. This 
description is hierarchical (Figure 9): 

• in Mission net, at level 1, two places model the stop and the ongoing states of the mission; 

• Mission_Phases net at level 2 models main phases of the ongoing mission: planning initialisation, 
the loop structure enabling the vehicle to join each mission area (transit to the area and survey) 
and transit to the end area; 

• three Petri nets model level 3: Transit_to_Area net for transiting to the next mission area and 
Operation net for survey achievement; Initialisation net runs itinerary and operation planning 
when starting the mission; 

• level 4 is devoted to computation (PLN calls): Itinerary_Planning net computes an itinerary for 
the stored mission taking into account non-navigable areas; Trajectory_Planning net computes a 
trajectory between two areas; Operation_Planning net computes the operative sequence; both a 
trajectory and an operative sequence are composed of linear trajectory followings and course 
changes; 

• level 5 executes the mission (GUI calls): Trajectory net asks for the next trajectory and runs it; 
Survey net asks for the operative sequence and runs it; Planning_and_course_change net 
computes the required gyrations and heading following sequence and executes it. 
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Figure 9 – Hierarchy of Petri nets 

3.3 Non-nominal scenario 
Many events that affect AUV missions require onboard replanning. At present, three types of events are 
implemented: 

• an alarm event forces the vehicle to move directly to the end area: a new itinerary to avoid non-
navigable areas and a new trajectory are computed then executed; 

• when arriving on an objective area, if the real current is different from the predicted one it 
invalidates the already-computed survey: a new operative sequence is computed; 

• the operator can ask for a local operation of inspection, for example to inspect a suspicious object. 
A specific operative sequence is planned before the vehicle resumes its mission. 

These events are considered in the architecture through three new Petri nets. The Decision net implements 
the decisions that the vehicle must take according to the type of event, e.g. return to the end area in case of 
an alarm event. The Action net executes the decisions; it can run nominal nets. The Inspection net 
executes the inspection asked by the operator. 

3.4 Lab bench tests and sea experiments 
A bench test has been developed to test the whole decision architecture. The OA_NAVIO data server has 
been connected on the one hand to a Redermor simulator, and on the other hand to an operator interface. 
The simulation of several missions allowed to validate the desired behaviour of the vehicle (Petri net 
modelling), the computation functions of PLN, the management of dynamic data in GDD, the guidance 
and the pilot of the vehicle (GDD and IDC) and the reception of disrupted events (EVT) together with the 
supervision on operator interface (Figure 10). Nominal and non-nominal scenarios were successfully 
simulated. 

First sea experiments were conducted in Douarnenez Bay in March 2006. Three missions were carried out. 
The vehicle is tracked by acoustic means, and only a few points were available (Figure 11). Vehicle 
immersion, transit to the survey area, line following at a given altitude and return to the end area were 
successfully performed. Several autonomous behaviours were observed: 

• the bathymetry of the mission area was different from predicted values: the vehicle adapted its 
manoeuvres to the measured altitudes; 
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• predicted and real currents were different: when arriving in the survey area, a new operation 
sequence was computed with a new main direction for the survey; 

• online computation of course changes allowed to take into account real currents. 

These experiments validated the embedded use of ProCoSA®. Emphasis should now be put on guidance 
accuracy, perception function, classification of disruptive events, situation monitoring and assessment 
functions. 

 

 

 

Figure 10 – Supervision of a simulated AUV mission. 
Survey area is blue, forbidden area is red, planning  

trace is yellow, vehicle simulated trace is green. 

 

Figure 11 – Supervision of a real AUV mission. 
Acoustic vehicle trace is green. 

4 UNINHABITED AERIAL VEHICLE PROJECT 

EADS and ONERA were involved in a national project [3] that aims at testing an architecture designed for 
mission supervision in a Uninhabited Aerial Vehicle (UAV) and demonstrating the relevance of such 
architectures in future uninhabited vehicles. As all categories of UAVs have to perform their missions in 
complex environments with the same types of constraints, the embedded architecture had to be generic, 
i.e. not dedicated to a given mission, environment or vehicle. As the mission may be disrupted by internal 
or external events, e.g. failures, weather situation, interfering aircraft, and threats, onboard plan 
monitoring and replanning were required in order to deal with nominal or disruptive events, avoid 
systematic return to base and proceed with the mission as well as possible given the new constraints. 

The UAV mission consists in following an ordered set of payload and transit legs, as introduced in the 
tutorial example (section 4). In addition, once a payload has been followed, the operator has time to 
analyse the results and to ask the vehicle for a payload leg replay. 

4.1 Experimental configuration and decision architecture overview 
Experiments were conducted on a light plane, a Dyn’Aero MCR-4S (Figure 12). Two computers are 
devoted to the control part of the plane, and a third one to the decision part, i.e. mission management. The 
first control computer is directly linked to the plane sensors and actuators (e.g. the automatic pilot) and to 
the ground station, while the second one acts as an interface between the previous real time control 
computer and the decision computer: it sends formatted frames and interprets elaborated orders. 

The role of the software decision architecture implemented on the decision computer through ProCoSA® 

(Figure 13) is thus to monitor the main mission phases of the nominal scenario, to manage the dialog with 



A Generic Architecture for Autonomous Uninhabited Vehicles  

20 - 12 RTO-MP-AVT-146 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

the operator (payload use), and to generate control decision when disruptive events occur. In order to 
elaborate events from the telemetry frame data, an additional interface software layer was developed. 

 

 

 

 

 

Figure 12 – Light plane used for 
experiments in UAV project 
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Figure 13 – UAV embedded decision 
architecture 

4.2 Nominal scenarios 
A four-level mission modelling architecture was defined in order to guarantee a generic approach: 

• level 0: initialisation of the communication protocols between ProCoSA® and the other software 
layers; 

• level 1: global state of the mission and modes monitoring (nominal - non nominal); 

• level 2: main nominal phases of the mission (from pre-flight tests and takeoff to touchdown and 
end-of-flight tests); 

• level 3: sub-phases of the mission. 

Level 3 corresponds to less generic procedures, i.e. more specific to the vehicle type or to mission and 
payload characteristics. The Petri net shown on Figure 14 details the linking of the different steps within 
the operational area: this net shows the looped structure enabling the set of pre-programmed tasks to be 
achieved, and includes communication requests to the operator. ProCoSA® timers are used to limit the 
time allowed for the operator’s answer. 

4.3 Non-nominal scenarios 
In order to be able to apply a generic approach to deal with disruptive events, they were classified in four 
categories: 

• catastrophic events lead to mission abortion and cannot be recovered; when such an event occurs, 
the processing of any other kind of events is aborted and no further incoming event can be 
processed; example: engine total failure; 

• safety-related events lead to modifying the flight profile or the flight plan - e.g. change route for a 
while - which may induce delays or new constraints on the use of the payload; examples: 
interfering aircraft, new forbidden area, turbulence...  
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• mission-related events only have consequences on the mission itself; replanning amounts to adapt 
the mission to the new constraints, e.g. remove waypoints; examples: camera failure, violated 
temporal constraint, new mission goal... 

• communication-related events are related to communication breakdowns between the UAV and 
the ground; such events result in the UAV being fully “autonomous” therefore it has to proceed 
with the mission as planned; example: telemetry failure. 

According to this classification, one Petri net was designed for each disruptive event category: an example 
is given by the engine failure Petri net shown on Figure 15: one can note the use of the “global places” 
feature (see section 1.1), which enables to adapt the reconfiguration actions to the current state of the 
mission. This reconfiguration process is achieved through software function activation requests, which 
enable to build a set of control orders to be sent to the control computer. 

 

Figure 14 – Modelling of the linking of 
operational tasks 

 

 

 

 

 

 

Figure 15 – Engine failure reaction 
modelling 

4.4 Ground and flight tests 
Several series of field tests were realised in 2006. A test series was organised as a two-step process: during 
the first week, ground tests were conducted in order to prepare and simulate the scenarios to be run on the 
plane. Flight tests were conducted during the second week, with a pilot and an operator onboard the plane.  

Seven scenarios were then tested, including single or multiple disruptive events occurrence: for example, 
the most complex one includes first a payload failure, then a simulated interfering aircraft, and finally a 
simulated engine failure.  
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A double check process was achieved during each flight test. Flight data (telemetry frames) and the 
corresponding Petri net states was registered onboard. The ProCoSA® layer of the decision computer was 
duplicated on the ground station that also received the real-time telemetry frames, thus enabling system 
state to be monitored on the ground. 

The following conclusions were drawn from these experiments: 
• vehicle behaviours modelled by Petri nets were correctly executed; 
• multiple disruptive events were dealt with without conflict; 
• the Man Machine Interface prototype used by the operator needs to be improved; 
• the real time hardware implementation of the system needs to be strengthened. 

The following steps would consist in testing a direct connection between the decision computer and the 
autopilot and to enrich the replanning algorithms. 

5 CONCLUSIONS AND PERSPECTIVES 

The ProCoSA® software package is used by ONERA for controlling and monitoring highly autonomous 
systems. It allows fast prototyping of embedded decision architectures. Petri net procedures model the 
desired behaviours of the uninhabited vehicle, and the hierarchical modelling features enable to structure 
the whole application in a generic way: at the highest description level, generic behaviours can be 
described, regardless of the characteristics of a given vehicle; at the lowest level, they specify the 
sequences of elementary actions to be performed by the vehicle or the payloads. This formalism allows 
parallelism modelling and asynchronous event handling. 

Industry and research develop their own architectures and no standard is emerging. This favours emulation 
but makes it difficult to compare different platforms. Several properties can be expected for such 
architectures: modularity (both at the design level and the ability to receive new components), easiness of 
implementation, easiness of interfacing, genericity, adaptivity, interoperability, extensibility, portability, 
maturity, ability to be validated… 

The key features offered by ProCoSA® to develop generic decision architectures for autonomy are the 
following ones: 

• the modularity of the architecture is obtained by considering separate software programs that are 
synchronised by the supervision function; the architecture can then include new programs easily; 

• implementation: a graphical user interface is available to code Petri net behaviours and their 
interfacing with software programs; it can also be used to display states online; 

• communication with hardware components, operators and other vehicles can be achieved through 
specific interfaces must be developed performing data exchange, i.e. for telemetry and control 
frames treatment; 

• architectures are generic regarding to mission objectives, environment and vehicle characteristics 
which are stored in databases; several scenarios can then be tested with minor modifications; 
moreover, if an operator interface is available for mission preparation, the obtained scenario can 
be easily embedded; 

• vehicle nominal and non-nominal behaviours can be incrementally developed. New behaviours 
can be added to an existing structure, e.g. for the implementation of reactions to new disruptive 
events; 

• the software includes a verification tool, which makes use of Petri net analysis techniques to 
check that some properties are satisfied by the procedures. 
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Experimental demonstrations were conducted in 2006 on two different autonomous vehicles: an AUV and 
a “habited UAV” (for security reasons). These demonstrations validated the embedded use of ProCoSA® 
software. During sea tests, there was no interaction between the AUV and the operator: once the mission 
was launched, the vehicle performed its missions fully autonomously. During flight tests, the operator was 
able to modify some parameters. By the end of 2007, the ProCoSA® based architecture should be adapted 
to a new AUV able to perform Rapid Environmental Assessment missions. 

Several ways of research could lead to the improvement of ProCoSA® software package: 

• extension of analysis features to take into account timers, net kills, software program outputs; 

• specification of a generic articulation between the decision level of ProCoSA® and the reactive 
level; 

• comparison with existing decision architectures implemented onboard autonomous vehicles: 
centralised architectures based on Artificial Intelligence (Blackboards, multi-agents 
architectures…), hierarchical architecture with more than three levels, hybrid architectures both 
reactive and deliberative… 
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