Roger C. Burk Department of Systems Engineering U.S. Military Academy West Point, NY 10996, USA roger.burk@usma.edu ### Robin K. Burk Department of Systems Engineering U.S. Military Academy West Point, NY 10996, USA robin.burk@usma.edu # COMPARING ORGANIC VS. ASSIGNED UAV SUPPORT TO THE MANEUVER COMPANY The US Army has plans to deploy a dedicated UAV system at every echelon. However, there are disadvantages to fielding such a large number of different and separately controlled vehicles. This research addresses one key part of this issue of selecting the right mix of UAV systems: How shall a company be supported? We consider two alternatives for the company commander, loosely based on systems currently under development: (1) the "Organic" system, which consists of two vehicle-transported VTOL vehicles of ~50 kg each assigned to each company; and (2) the "Assigned" system, a second tactical UAV system of the same type as the battalion's system and maintained and launched at the battalion level, but operated in direct support of the companies. We are interested in the architectural decision of which of these two types of systems shows the most promise, not in selecting between two existing systems. Consequently, we focus on performance measures that are strongly affected by the architecture. We formulate the problem in a decision analysis framework, using a linear additive value model, in order to define the parameter regions where each of the alternatives is preferable. We identify 19 criteria for the decision, which we intend to capture all important considerations in making this selection. Of the 19 criteria, 9 show no difference between the two systems at the architectural level. Another 7 criteria we could only evaluate qualitatively, but in the aggregate these seem to strongly favour the Assigned system. The remaining three criteria are our focus because for them neither system has an obvious advantage, because some of them are of great importance (e.g. responsiveness), and because high-level analytical models for them can provide important insight into architectural performance. The three criteria are responsiveness, reliability, and number or aircraft in the air. Response time is modeled based on estimates of speed and distance, and for the Assigned system on a analytical queuing model. System reliability estimates are based continuous time Markov chain models. Number of aircraft in the air is also estimated with Markov chain models Using plausible parameters, we find an advantage for the Organic system on these four criteria, but not an extremely large one (0.53 vs. 0.47 on a scale of 1.00). We performed sensitivity analysis on each of the 20 inputs, using very wide ranges (generally +/- a factor of 2). This showed the areas that have potential for erasing the relative advantage, of the Organic system. The Organic system has an advantage in average responsiveness that is strongly dependent Burk, R.C.; Burk, R.K. (2007) Comparing Organic vs. Assigned UAV Support to the Maneuver Company. In *Platform Innovations* and System Integration for Unmanned Air, Land and Sea Vehicles (AVT-SCI Joint Symposium) (pp. 31-1 – 31-28). Meeting Proceedings RTO-MP-AVT-146, Paper 31. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp. | maintaining the data needed, and c
including suggestions for reducing | election of information is estimated to
completing and reviewing the collect
this burden, to Washington Headqueld be aware that notwithstanding ar
OMB control number. | ion of information. Send comments arters Services, Directorate for Infor | regarding this burden estimate of mation Operations and Reports | or any other aspect of the 1215 Jefferson Davis | is collection of information,
Highway, Suite 1204, Arlington | | | |--|---|--|---|---|---|--|--| | 1. REPORT DATE 01 NOV 2007 | | 2. REPORT TYPE N/A | | 3. DATES COVE | RED | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT NUMBER | | | | | Comparing Organ
Company | ic vs. Assigned UAV | Support to the Ma | neuver | 5b. GRANT NUMBER | | | | | Company | | | | 5c. PROGRAM ELEMENT NUMBER | | | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | | | | | 5e. TASK NUMBER | | | | | | | | | 5f. WORK UNIT | NUMBER | | | | | ZATION NAME(S) AND AD
tems Engineering U | ` ' | y West Point, | 8. PERFORMING
REPORT NUMB | GORGANIZATION
ER | | | | 9. SPONSORING/MONITO | RING AGENCY NAME(S) A | AND ADDRESS(ES) | | 10. SPONSOR/M | ONITOR'S ACRONYM(S) | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | | 12. DISTRIBUTION/AVAIL Approved for publ | LABILITY STATEMENT
ic release, distributi | on unlimited | | | | | | | 13. SUPPLEMENTARY NO See also ADM2024 | | | | | | | | | 14. ABSTRACT | | | | | | | | | 15. SUBJECT TERMS | | | | | | | | | 16. SECURITY CLASSIFIC | CATION OF: | | 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF | | | | a. REPORT
unclassified | b. ABSTRACT
unclassified | c. THIS PAGE
unclassified | ABSTRACT
UU | OF PAGES 28 | RESPONSIBLE PERSON | | | **Report Documentation Page** Form Approved OMB No. 0704-0188 # Comparing Organic vs. Assigned UAV Support to the Maneuver Company on the time required to plan, prepare, and launch a mission. On the other hand, a high enough operations tempo tends to increase the Organic advantage. On the whole, our analysis provides some support to the idea that maneuver companies are better served by a tactical UAV flown by the battalion and assigned to direct support of the companies as needed, rather than by a smaller organic UAV system. It also identifies which performance parameters are likely to have a strong effect on this decision, and consequently deserve more study. # 1.0 PROBLEM DESCRIPTION # 1.1 UAV Support to the Company The purpose of this investigation was to compare two system concepts for providing support from an unmanned aerial vehicle (UAV) to an Army maneuver company. Such a company might be an infantry company of ~150 soldiers traveling in light armored vehicles and fighting mainly on foot, or a tank company with ~10 tanks. These companies are organized into battalions, which consist typically of three or four maneuver companies plus a headquarters and smaller units that provide scouting, mortars, medical care, and other support. The UAV support consists mainly of video imagery. The two concepts we consider are: (1) a UAV system organic to the company, operated from vehicles that travel with the company commander and flying when needed at the commander's direction; and (2) a UAV system that is organic to the battalion of which the company is part, keeping one air vehicle (AV) in the air constantly during operations and assigning that AV to direct support of one of the companies as needed, the company then taking control of the AV and its payload until the period of direct support is over. We named these the "Organic" system concept and the "Assigned" or "Handoff" system concept, respectively. (We came to prefer "Handoff" because it does not connote administrative assignment.) We wanted to compare these two concepts at the architectural level, rather than comparing two specific hardware designs; i.e. we wanted to identify performance criteria and other desiderata that are strongly affected by the architecture and method of operations. To the greatest extent possible, we avoided making any assumptions about implementation that were not clearly implied by the system concept. Since we were interested in system concept exploration, we developed high-level performance models that were simple enough to evaluate in closed form but still captured all important considerations and the essential effects of the architectural choice. We used those models to generate input to a multiattribute value model and estimate the relative desirability of the two concepts. Another reason to develop simple models was that system performance was sure to depend to the technical performance of system elements (such as the AVs), which could be only roughly estimated, and on operational conditions, which might vary considerably from time to time. With high-level models, it was possible to perform a survey of relative system desirability for a wide range of estimates of performance and conditions. This work was motivated by the Army's current design for the Future Combat System (FCS) to equip the Army starting in 2014 [1]. That system as currently envisioned has four different designs of UAVs, one each for the platoon, company, battalion, and brigade levels. We wanted to explore the idea of dispensing with the company-level UAV and using the battalion-oriented design for company support instead. However, the FCS consists of many things, of which the UAV architecture is a relatively small part. We limited our investigation to the single question of Organic vs. Handoff concepts for company support. We envision an FCS-era environment and a highly networked force, which enables the Handoff concept, but otherwise we did 31 - 2 RTO-MP-AVT-146 # **Comparing Organic vs. Assigned UAV Support to the Maneuver Company** not assume the presence of or take into account any other FCS systems. We would be delighted if our methods and results provided useful insights for FCS development, but the scope of this work is limited to one architectural question considered more or less in isolation. We are not proposing or recommending that the decision in FCS to field separate
company- and battalion-level systems be revisited. That decision was made by individuals with more military and technical knowledge than the authors and we have no reason to question it. Our interest is rather in developing a method for making similar decisions on a firm quantitative basis. We believe questions like this will arise repeatedly as UAV systems and operations evolve. We hope to contribute a decision framework that captures all the important considerations and quantitative models that evaluate key performance measures. There are two main points of interest in this work. The first is that it develops at least partially a value structure capturing all important aspects of a UAV system architecture decision, and such decision will inevitably be made many times in the next few years as UAV systems develop and proliferate. The second is that it develops mathematical models that provide quantitative measures of value for some of the important system criteria. # 1.2 Academic Origin of the Investigation This research started as a purely academic exercise, and part of our interest in it was pedagogical. The problem was posed to eight teams of three or four First Class (i.e. senior) cadets at the U.S. Military Academy taking SE450 during the academic year 2005-06, in sections taught by one of us (Robin Burk). This is a capstone course for cadets taking a three-course sequence in systems engineering. The purpose of the course is to allow the cadets to integrate and apply what they have learned by working in a team on a realistic problem using a systems approach. Common practice was to have the cadets work on a real problem for a real client. Usually this has meant working on a problem for some organization at the post, such the cadet mess hall or other post service providers. Although these problems do give cadets some experience developing requirements and evaluating solutions in coordination with a real client, often the problems had to be relatively simple both because of the limited experience and expertise of the cadets and in order to bound the investment of time and effort required of the clients who contributed valuable time to work with cadet teams. We felt that such problems were often of a nature that the application of a formal systems approach was not necessary, and that as a result the cadets did not develop an appreciation of the value of the systems engineering techniques they were using. As an experiment, therefore, we challenged two sections of cadets with the company UAV issue, a much more complex and significant problem than those typical for the course, with one of us (Roger Burk) acting as a surrogate client. (Two other sections of cadets were challenged with another issue regarding selection and deployment of advanced equipment, namely tactical high energy lasers for fixed base defense against rockets, artillery and mortar attack.) We hoped that the complexity of the UAV problem would make obvious the utility of the full systems engineering approach, and that the cadets would be engaged and motivated by the obvious significance of a problem like this to the Army. We did not expect that the cadets would have the resources to produce a definitive solution, but we thought their approaches might provide some interesting insights. We were not disappointed. The cadets came up with a variety of interesting ways to formulate the problem and showed energy and initiative in identifying and interviewing both prior-enlisted cadets and also officers on post who had recent operational experience relevant to UAVs. There was no pattern in the conclusions the cadet teams reached: some favored an Organic system, some a Handoff system, and some developed an # Comparing Organic vs. Assigned UAV Support to the Maneuver Company additional alternative that they liked better than either. This variety of approaches and conclusions, and the significance of the original problem, led us to try to consolidate everything that had been done into one best approach, taking the best features from all the cadets' work, and adding our own thoughts to it. That is what this work represents. We did limit the scope of our own analysis to the two system concepts described above, in order to have a manageable problem that could still provide some useful insights into a real Army system-level decision. # 1.3 Summary of Major Results We identified nineteen criteria to judge between the Organic and the Handoff systems. Nine of these depended almost entirely on details of air vehicle or other system component design and not significantly on the architecture, or in some way showed equivalent performance between the two architectures, so these nine were not considered further. Six of the remainder showed a clear qualitative advantage for the Handoff system, and four of them showed at least a possible advantage, qualitative or quantitative, for the Organic system. We concentrated our effort on developing quantitative models for three of these last four, so that we could estimate what advantage, if any, the Organic system had in the four. Then we compared that result with the six qualitative criteria favoring the Handoff system, to see if we could discern an overall advantage. We did not find a general overall advantage for either the Organic or the Handoff system concept. Instead, we found that the advantage varied with one's assumptions about the problem. The most important assumptions were: the operational requirements, especially the tempo of the operations in which the unit is engaged; the system performance characteristics of the designs, especially the ability of the Organic system to plan, set up, and launch a mission; and the relative value tradeoff between system cost on the one hand and responsiveness (i.e. time from support request to camera on target) on the other. Responsiveness was one of the most important criteria, and its measurement was very sensitive to modeling assumptions. We found the responsiveness of the Handoff system to be very sensitive to the operations tempo because of queuing delays in using the AV (though this can be ameliorated to some extent by positioning the aircraft and prioritizing users wisely). The average delay was 39 minutes in what we called our baseline scenario, but in various excursions the average was as low as 19 minutes and as high as 103. On the other hand, the responsiveness of the Organic system could be excellent, but only if there is a quick way to plan a mission and prepare and launch an AV. That delay is the major factor in Organic responsiveness; using our model we estimated that responsiveness at 31 minutes in the baseline case, with excursions varying from 11 to 61 minutes. Thus we found that the Organic system has an arguable advantage in this very important criterion, and that the advantage is very sensitive to assumptions about operations tempo and the Organic system mission initiation performance. If the Organic system has an advantage in responsiveness, it has to be set against other advantages of the Handoff system that we identified but did not quantify. The Handoff system has an important advantage in saving development costs, since it is already being developed as the battalion UAV, while the Organic system would have to be developed independently for the company mission. In addition, the Handoff system would save significant recurring costs because of consolidations in training, logistics, and operations, even if the direct costs to operate the Handoff and Organic systems were similar. We concluded that the relative advantage between the Organic and Handoff system turns on one's judgment of the relative importance of these cost savings compared to the probable advantage of the Organic system in responsiveness. Other criteria showed smaller advantages for one system or the other but the issues of responsiveness and system cost emerged as the most significant. 31 - 4 RTO-MP-AVT-146 # 1.4 Organization This report is organized as follows: Section 2 describes the setting: the Army's Future Combat System and role of UAVs in it, the five levels of control of a UAV, the currently envisioned FCS operations concept for UAV support to companies via full local control (Organic), and the proposed alternative of supporting companies via local control of the airborne AV and payload only (Handoff). Section 3 develops the criteria we used for the comparison between the two alternatives and describes how we dealt with them. Section 4 develops the additive value model we developed to make the comparison: the quantitative measures for selected criteria, the single-dimensional value functions for the measures, and the relative swing weights to account for tradeoffs between the criteria. Section 5 gives the modeling results, comprising a baseline result using a set of baseline model parameters and an extensive sensitivity analysis varying all of the parameters over fairly wide ranges. Section 6 gives our conclusions and recommendations from the study. # 2.0 UAVS IN THE FUTURE COMBAT SYSTEM MANEUVER BATTALION # 2.1 FCS and Its Four Classes of UAVs An official Army description of the Future Combat System is available online [2]. The FCS comprises an integrated set of vehicle, combat, support, and information systems being developed together to equip the Army of the next decade. FCS is expected to cost \$122 billion; it is the Army's largest and arguably most important new system development [3]. It is designed around an information network providing integrated command, communications, intelligence, logistics, and training services [4]. This network will link all elements of the FCS together. In addition to systems for the individual soldier, the FCS will include a family of eight manned ground vehicles: an infantry carrier, a command vehicle, a tank-like "mounted combat system," cannon and mortar carriers, a scout vehicle, a medical vehicle, and a recovery and maintenance vehicle. Other
weapon systems will include intelligent mines, an Armed Robotic Vehicle, and a missile launcher with a variety of missiles. There will also be an unmanned utility and logistics vehicle with three variants. Unmanned reconnaissance systems will include unmanned ground systems, a small unmanned ground vehicle, and four classes of unmanned air vehicles. The Future Combat Systems envisions UAVs of different design organic at the platoon, company, battalion, and brigade levels. (FCS brigade-level organizations have sometimes been called "units of action" or "UAs.") These four classes are called Class I through Class IV, respectively. Class I (platoon) will weight less than 15 pounds, will be backpackable, and will have vertical takeoff and landing (VTOL) capability and a video camera payload. Class II (company) will also have VTOL capability, but it will be vehicle-mounted, have longer range and endurance, and will have target designation capability for non-line-of-sight weapons (missiles, cannon, mortars) as well as a video camera. Class III (battalion) will not necessarily be VTOL, but it will have yet longer range and endurance and will carry additional communications relay, mine detection, Chemical, Biological, Radiological and Nuclear (CBRN) detection, and meteorological survey payloads. Class IV (brigade) will have additional range, endurance, and capabilities. Systems are currently in development for the four FCS UAV classes. Defense Industry Daily (DID) provides a summary of their status as of late 2005 [5]. In 2006 Honeywell Defense & Space Electronic Systems received a contract to develop the Class I system based on their Micro Air Vehicle, which has a ducted fan design. First flights and prototype deliveries are planned for late 2008 [6]. Class II candidates are less advanced; four contracts have been awarded to develop them. One was to Piasecki Aircraft Corporation, which will develop a dual shrouded rotor AV called the Air Scout [7]. The other three are all under the Defense Advanced Research Projects Agency's (DARPA's) Organic Air Vehicle (OAV) II program [5] and # Comparing Organic vs. Assigned UAV Support to the Maneuver Company all are using ducted fan designs. One DARPA team is led by Aurora Flight Sciences; the team is developing a variant of Aurora's GoldenEye family of tilt-body vehicles. Another team is led by Honeywell International and is basing their development on Allied Aerospace's iSTAR family of vehicles, which use a ducted fan with lift augmented by the airfoil shaping of the duct. The third DARPA team is led by BAE Systems, whose design has not been published. The larger Class III UAV is also in development, with three candidates currently being worked on. AAI Corporation is proposing the Shadow III, based on the Shadow 200 UAV currently in service with the U.S. Army. Teledyne Brown Engineering (TBE) is proposing the Prospector, a variant of the German Kleinflugger Zielortung (KZO) being built by Rheinmetall DeTec for the Bundeswehr. Both the Shadow III and the Prospector use fixed-wing, catapult-launched AVs. The Shadow lands in a field using wheeled landing gear, while the Prospector will use a parachute and airbags. The third Class III competitor is a wheeled autogyro called the Air Guard, which is being developed by a team led by Piasecki. The largest FCS UAV, the Class IV, has already been identified. It is the Fire Scout helicopter built by Northrop Grumman. Our concern in this paper is with the Class II and Class III types, the two for which there are still competing types of aircraft. Table 1 summarizes the technical characteristics of the competing designs, to the extent that they have been defined and published. For the most part these are design requirements or predictions rather than proven performance, so they should not be taken as definitive. These are provided to give a concrete impression of the type of systems we are investigating. The many blanks in the table probably reflect the fact that the data are considered proprietary by the competing companies. # 2.2 Company Support: An Organic Class II UAV The FCS Class II UAV is envisioned as an organic company asset with complete Level V control at the company level. Based on the requirements and prototypes described in Table 1, we can expect that the AV will have some sort of ducted fan propulsion and will take off and land vertically, though it could possibly tilt in the air for high-speed flight. The AV is likely to weight about 112 pounds, and it will require ground equipment for mission planning, AV data linking and flight control, communication, refueling, maintenance, and repair. The system will also need one or more soldiers trained to operate and maintain the system. We assume that the system will include at least two AVs to allow continual support and to provide redundancy in case of failure. On the other hand, we believe the Army will want to minimize the number of ground vehicles, equipment, and soldiers deployed at the company level, for reasons of logistics and operational security. Based on these considerations, we envision the Organic system as consisting of one ground vehicle carrying two soldiers, two VTOL AVs, and all the necessary equipment and supplies. If the actual Class II UAV system does not turn out to be exactly like this, it is likely to be similar, and we believe that the differences should have little effect on our architectural-level evaluation. 31 - 6 RTO-MP-AVT-146 Table 1. Published Technical Characteristics of Class II and Class III Candidates and Related Systems Class II Types* Class III Types | AV
Character-
istics | FCS
Require-
ments | Air
Scout | GoldenEye-
100 | iStar | FCS
Require-
ments | Shadow 200 | Prospector | Air Guard | |----------------------------|--------------------------|--------------------------|-------------------|------------------------------------|--------------------------|----------------------------------|---|------------------------| | Length (ft) | | | | | | 11 | 7.5 | | | Width/
Wingspan (ft) | | | | | | 14 | 11 | | | Weight (lbs) | <112 | | 150 | | 300-500 | 380 | 355 | | | Endurance (hrs) | >2 | | | | >6 | 5 | 6 | | | Range (km) | | | | | | 125 | 200 | | | Max speed (knots) | | | 160 | | | 105 | 120 | | | Launch
method | | VTOL tandem | VTOL | VTOL | | Catapult | Catapult | STOL | | Landing
method | | shrouded tiltbody rotors | tiltbody | | Field | Parachute/
Airbag | autogyro | | | Support
vehicles | | | | Transporter,
possibly
others | | Four
HMMWVs*,
two trailors | Launcher,
Maintenance,
Recovery,
others) | Transporter,
others | | Sources | [8] | [7] | [9], [10] | [11] | [8] | [13] | [12] | [7] | ^{*}High Mobility Multipurpose Wheeled Vehicles # 2.3 An Alternative: A Battalion-Level UAV We evaluate an alternative operational concept in which UAV support to the company is provided by a larger Class III vehicle that is maintained and flown at the battalion level and is handed off in flight as needed to a company to control at Level IV. We call this the Handoff system. In the FCS era each battalion is expected to have a Class III UAV supporting the battalion commander; we envision a second Class III system also belonging to the battalion, but dedicated to supporting the companies. During operations, the companies' UAV would be kept on station overhead, waiting for a call. When a company requested support, the AV would be flown to their area and handed off to local control until the mission was complete, when the AV would be returned to battalion control or possibly handed off to another company. In case of competing requests, the users would wait until previous missions were completed and then receive control of the AV, unless a more urgent need gave them priority, in which case an ongoing mission would be broken off. We # Comparing Organic vs. Assigned UAV Support to the Maneuver Company assume that in the FCS era such handoffs will be technologically and operationally relatively easy. We envision that an operational plan would establish which company had priority for the system, based on company mission, tactical situation, and time of request. A UAV platoon in charge of the system would coordinate the handoffs, and the battalion commander would be the ultimate arbiter in case of competing requests under unforeseen circumstances. Our motivation for considering such an alternative was the idea that there could be substantial efficiencies from consolidating the Class II and Class III systems, and that in the highly networked FCS the required rapid handoffs would be technically practical. We also saw parallels with the Army's employment of other supporting weapon systems. Such systems can be organic at a higher echelon but dedicated to a lower-echelon unit for a shorter or longer period of time. One example of this is artillery, where a forward observer with an infantry company can in effect control the fire of a battery that is assigned at the brigade level. Other examples include mortar, engineer, and aviation units. There is also a parallel in close air support, where a forward air controller controls Air Force attack aircraft when they are hitting targets close to friendly forces. These parallels gave us hope that the Handoff system would be practical in a military sense. We were concerned whether the delays would be tolerable when there were multiple requests for the companies' UAV, but we also thought that the Handoff system would sometimes actually be faster to support, since it would have an AV on station in the air. We thought that quantitative modeling could clarify the relative advantages. Based on the performance parameters in Table 1, we envision the Handoff air vehicle as weighing about 400 lb. and being probably fixed-wing, catapult-launched, and field-landed. The top speed is about 115 knots and the endurance at least six hours.
The Handoff system includes four air vehicles and six to twelve ground vehicles to provide maintenance, repair, storage, transportation, launch, recovery, control, communication, and other support functions. Organizationally, it is a platoon organic to the battalion. In normal operations it operates out of an open area reasonably close to the battalion headquarters and keeps one of its AVs in the air continuously. After about four hours on station, an AV is relieved in place by another AV and returns to the landing field. These UAVs will be dedicated to supporting the company commanders and will be handed off in flight from company to company, or back the UAV platoon, as required. A second UAV platoon, identical in equipment and very likely operating out of the same field, will fly a UAV dedicated to supporting the battalion commander. Having described the Organic and Handoff systems and their concepts of operations for support of maneuver companies, we now turn to identifying the criteria by which the two systems should be evaluated. ### 3.0 EVALUATION CRITERIA # 3.1 Criteria Generation A set of evaluation criteria for the two operations concepts was developed by review of the current literature on tactical UAV operations, by consideration of the needs of the various system stakeholders, and by interviews with USMA personnel who had recent operational experience either as tactical company commanders or as UAV operators. We developed nineteen criteria in six categories, as shown in Table 2. The six categories are: 31 - 8 RTO-MP-AVT-146 | Category | | Criterion | Measure Type | Summary of Justification for Type
Classification | |--------------------------|---|--|-----------------------|--| | 1. Mission
Operations | a | Responsiveness: time from when
a commander requests support
until a vehicle is at the target
(when the system is operational) | Quantitative
model | This is a very important criterion to tactical commanders, and the possible delays involved in waiting in line for support in the Handoff alternative are a major concern. This is also easy to model using standard queuing models. | | | b | Reliability: probability that the system will be operational | Quantitative
model | This criterion depends largely on the individual reliabilities of the AVs and of their comm links and ground systems, which can be estimated only roughly until the systems are built, and tested. However, there is also an architectural element that can be modeled: in order to be operational, the notional Organic system needs to keep one AV out of two flying, while the Handoff system needs only one out of four. | | | С | Dwell Time: length of time the AV can stay on the target | Even | Either system can maintain surveillance indefinitely by handing off the mission to a newly launched AV. The Handoff system may have an advantage because its longer flight durations will require fewer handoffs. The Organic system may have an advantage from a hovering or perching capability. Overall, no advantage. | | | d | Survivability: likelihood of avoiding destruction by enemy action | Even | Against small arms, the Handoff has an advantage because it flies too high to be easily engaged. Against radar- or infrared-guided weapons, the Organic has an advantage because it flies low enough to use terrain masking. Overall, no advantage. | | | е | Flight Safety: likelihood of avoiding flying accidents | Qualitative | Handoff may have an advantage because it flies farther from ground obstructions, and because it is likely to land and take off under more benign conditions. | | | f | Operational Flexibility: the ease with which UAV support can be shifted to a lateral unit | Qualitative | In part, this is the result of system design, operational doctrine, and training. However, the Handoff operations concept is based on regularly shifting support from one company to another, so that system has an advantage. | | | g | Usability: the ease with which soldiers can operate and maintain the system | Even | This depends on details of system design, not on the architectural decision. | # Comparing Organic vs. Assigned UAV Support to the Maneuver Company | | | Table 2. Evaluation | Criteria (continu | ed) | |---------------------------------------|---|---|-----------------------|--| | Category | | Criterion | Measure Type | Summary of Justification for Type
Classification | | 2. Mission Data | a | Data Quality: resolution and stability of EO/IR video image | Even | The Handoff vehicle may carry higher-
quality optics because it has a larger
payload, but the Organic vehicle can fly
closer to the target. We assume that these
two effects cancel out. | | | b | Data Handling: storage, transmission, annotation, etc. | Even | This depends on details of system design, not on the architectural decision. | | | С | Secondary missions: capacity for payloads other than EO/IR video | Qualitative | The Handoff AV has an advantage because it has a larger carrying capacity and because its Class III design allows to multiple payloads. | | 3. Mission
Support
Requirements | a | Logistics: required flow of parts and supplies to operational units | Even | The Handoff system has fewer but larger systems, so without more detailed design it is impossible to say which system would produce the greater total logistical burden, if either. | | | b | Personnel: number and skill level of soldiers required to operate the systems | Even | The Handoff system has fewer but larger systems, so without more detailed design it is impossible to say which system would require more soldiers and/or higher skills, if either. | | | С | Equipment: number of vehicles and other equipment required in the field | Even | The Handoff system has fewer but larger systems, so without more detailed design it is impossible to say which system would require more total deployed equipment. | | | d | Operational Location | Qualitative | The Handoff system has an advantage here, since flight operations (landing, takeoff, maintenance) are farther to the rear, where disruptions are fewer and supply and support easier. | | 4. Flight
Coordination | a | Number of Vehicles in the Air | Quantitative
Model | In the FCS era, the sky will be dark with UAVs. The system that can accomplish its mission with the fewest additional AVs in the air has an advantage. | | | b | Altitude of Flight: lower flight levels have less chance of interfering with manned flights | Qualitative | The exact altitude of flight is an operational decision, but in general the Organic AV is designed to operate at a low level and the Handoff will fly higher, so the Organic has an advantage. | | 5. Cost | a | Development Costs | Qualitative | The Handoff system has an important advantage here, since the Handoff is already being developed for battalion-level use. | | | b | Procurement, Operations, and Disposal
Costs | Even | The Handoff system has fewer but larger systems, so without more detailed design it is impossible to say which system would be cheaper overall, if either. | | 6. System Consolidation | | | Qualitative | If the entire Organic weapon system can be eliminated, there will be huge simplifications in training, logistics, and operations. | 31 - 10 RTO-MP-AVT-146 # Comparing Organic vs. Assigned UAV Support to the Maneuver Company - 1. Mission Operations: seven criteria relating to flight operations and getting the AV where it is needed when it is needed - 2. Mission Data: three criteria regarding the quality of the EO/IR primary mission data and possible additional missions - 3. Mission Support Requirements: four criteria relating to the logistics flow, training requirements, and operational footprint of the UAV system - 4. Flight Coordination: two criteria on for the ease of integrating UAV operations into other flight operations in the area - 5. Cost: two criteria for development and operational costs - 6. System Consolidation: one criterion for the cost savings and simplifications of acquisition, training, logistics, and operations if an entire weapon system can be dropped from the inventory When we considered how to evaluate these nineteen criteria at the architectural level, we concluded that they fell into three classes. For nine of the criteria, we could not find a convincing reason for favoring one operations concept over the other, so we considered them "even." For seven of the criteria, we could make a qualitative judgment favoring one system or the other. For the remaining three, it was not obvious where the advantage lay, so we developed quantitative models to clarify the situation. The following sections discuss these classes of criteria. ### 3.2 Even Criteria The nine criteria we judged to be "even" were of two types. For some, the Organic and Handoff systems clearly performed differently at the architectural level, but they had countervailing advantages and overall we could identify neither a winner nor a straightforward means of analysis to reveal a winner. For the rest, system performance did not depend significantly on the architecture, but rather on lower-level design. #
3.3 Qualitative Criteria Seven criteria had a clear *a priori* advantage for one system. These seven criteria were: - 1e. Flight Safety: likelihood of avoiding flying accidents. The Handoff system has an advantage because it flies at a higher altitude, farther from ground obstructions, and because it is launched, landed, and maintained farther to the rear and thus usually under more benign conditions. Flight safety will also be affected by the soundness of the design, construction, and operation of the systems, but if these are held equal, there will still be a Handoff advantage. - 1f. Operational Flexibility: the ease with which UAV support can be shifted to a lateral unit. The Handoff system has an advantage because it is designed to shift rapidly from one company to another, under the coordination of battalion staff as activities on the ground cross company areas of operations. The Organic system could also be used to support a sister company, and good doctrine and training could make this easier, but it seems unlikely that it would ever be as easy as with the Handoff system. The Organic system may have some advantage in special circumstances when the company operates independently of the battalion; we neglect such rare events. - 2c. Secondary missions: capacity for payloads other than EO/IR video. The Handoff system has an advantage because it has a larger AV with more payload capacity. We are assuming that the imagery mission is by far the most important for a company-level UAV, but other missions could emerge, such as # Comparing Organic vs. Assigned UAV Support to the Maneuver Company - signals intelligence, communications relay, attack, or emergency supply delivery (Fulgham [14] describes a package delivery system for the Shadow). - 3d. Operational Location. The Handoff system has an advantage, under the assumption that operations farther to the rear are easier then those in forward units, other things being equal. - 4b. Altitude of Flight: lower flight levels have less chance of interfering with manned flights. Here the Organic system has an advantage because its concept of operations calls for flight typically at lower altitudes. - 5a. Development Costs. The Handoff system has an advantage because its development is a sunk cost, other than possibly a new Level IV control system to be deployed with the companies, since the Handoff system is assumed to be the same type as the UAV providing battalion-level support. - 6. System Consolidation. The Handoff system has an advantage. Even if the procurement, operations, and disposal costs of the two systems turn out to be the same, and the development costs of the Organic system are ignored, there will still be a valuable simplification in training, logistics, and operations if an entire weapon system can be dropped from the Army inventory. Note that for six of these seven, the advantage is with the Handoff system. Some of these could be of minor importance, especially if the lower-level system design is good and doctrine and training appropriate. However, Development Costs (5a) and System Consolidation (6) appear to us to be possibly very significant, and not dependent on lower-level design or system employment. # 3.4 Quantitative Criteria This leaves three criteria for which the performance of the Organic and Handoff systems will clearly be different, for which it is not obvious where any advantage would lie, and where a quantitative model seems likely to clarify things. These are: - 1a. Responsiveness: time from when a commander requests support until a vehicle is at the target (assuming the system is operational). This is a very important criterion to tactical commanders. The Organic system might seem to have an advantage because it dedicated to the company commander and always on call. However, if the operations concept is to keep the AV on the ground until needed, there will always be a delay involved in planning, preparing, and launching a mission and flying to the point of interest. On the other hand, the Handoff system may have virtually no response delay if the AV is in the air over the target and not otherwise being tasked. The Handoff system may also have a very long delay if the AV is a long way away and has a number of tasks queued up. We used geometry and a queuing model to investigate the distribution of response times for the two systems. - 1b. Reliability: probability that the system will be operational. This is an important criterion, but it depends largely on the individual reliabilities of the AVs and of their communication links and ground systems, and those reliabilities can be estimated only roughly until the systems are designed, built, and tested. Furthermore, if the systems are designed and built equally well, their reliabilities should be similar. However, there is also an architectural component to reliability that can be stochastically modeled: in order to be operational, the notional Organic system needs to keep one AV out of two ready for flight, while the Handoff system needs to keep one out of four actually flying. (Another consideration is that when the Organic system is down, it is down for one company, but when the Handoff system is down, it is down for the whole battalion, which is probably worse. On the other hand, the Handoff system might more readily be backed up by the battalion's similar UAV than an Organic system would be by the battalion or by a sister company. We neglect these complications.) 31 - 12 RTO-MP-AVT-146 # **Comparing Organic vs. Assigned UAV Support to the Maneuver Company** 4a. Number of Vehicles in the Air. In the FCS era, the sky will be dark with UAVs. The system that can accomplish its mission with the fewest additional AVs in the air has an advantage. The Organic system would have more total aircraft in the battalion, and at any one time it could have one per company flying, but it could also have none flying. The Handoff system will always have one AV in the air, and sometimes two when one is being flown out to relieve the other. We used stochastic models to estimate the average number of vehicles in the air for the two systems. # 4.0 VALUE MODEL # 4.1 Modeling Approach As detailed in the previous section, we identified nineteen criteria for this problem, of which we assessed nine as even, six as qualitatively favoring the Handoff system, one as qualitatively favoring the Organic system, and the remaining three as calling for a quantitative evaluation to determine which system they might favor. Because of the difficulty of obtaining convincing and authoritative relative weights for all the qualitative criteria, we decided to simplify the problem as follows: we decided to look in detail only at the last four criteria mentioned, the ones that favor or possibly favor the Organic system. If an assessment based only on these four favored the Handoff system, or was approximately even, then our overall assessment would have to favor the Handoff. If an assessment based on these four favored the Organic system, then we would have the more difficult problem of comparing the Organic advantage in the four criteria with the Handoff advantage in six qualitative criteria. Therefore we decided to develop a value model using the following four criteria: - 1a. Responsiveness - 1b. Reliability - 4a. Number of Vehicles in the Air - 4b. Altitude of Flight We evaluated the first three of these quantitatively, the last qualitatively. Our value modeling approach is based the multiple-objective decision analysis methods described by Keeney and Raiffa [15], Keeney [16], and Kirkwood [17]. We use an additive multiattribute value model on two grounds: (1) since we model the problem as a decision under certainty and have more than two criteria, we can be sure that there is an additive model that gives the correct preference order [17]; and (2) our knowledge of the correct preferences is too imperfect to justify any more complex model. We used the swing weight method to estimate the relative importance of the criteria because it provided a straightforward way to explicitly consider the range of possible performance in each criterion (see Clemen [18] for a discussion of swing weighting). Similar value modeling approaches have been used for a wide variety of problems involving multiple stakeholders and incommensurable criteria, including Air Force research project selection [19], reconnaissance satellite selection [20], and nuclear incident response [21]. The model was created in a Microsoft Excel spreadsheet, available from the authors, which provided a convenient way to capture all data and calculation on a series of linked worksheets, to produce graphical representations of the results, and to perform sensitivity analysis. The rest of this section proceeds as follows: Section 4.2 describes the measures we selected for the three quantitative criteria in the value model and how they were calculated for the two alternatives. Section 4.3 describes how swing weights were estimated for the four criteria in the model. Section 4.4 discusses the value functions that translated the measures in the domain of value for each of the quantitative measure. Finally, # Comparing Organic vs. Assigned UAV Support to the Maneuver Company Section 4.5 puts it all together and presents the complete additive value model. # **4.2** Evaluation Measures The following sections develop measures for the three quantitative criteria (la Responsiveness, 1b Reliability, and 4a Number of Vehicles in the Air) as applied to the two alternatives. # 4.2.1 Responsiveness for the Organic System We chose a direct and natural measure for responsiveness: average time from the request for support until the AV has a camera on the target. For the Organic system, calculating response time is straightforward. We assume that the AV is sitting in its transporter when the company commander calls on it for a mission. The operator needs to plan the mission, prepare and launch
the AV, and fly it to the target. Let $p_o = \text{mission planning/preparation/launch time}$ $s_o = AV \text{ dash speed}$ d_o = distance from transporter to target Then Response Time = $p_o + d_o/s_o$ # 4.2.2 Responsiveness for the Handoff System This measure is the most complex in the value model. For the Handoff system, the time from support request to AV over the target has two components: the time required for the AV to complete any previously assigned tasks, and the time required for the AV to fly from wherever it happens to be to where it is needed. To approximate the average required flying distance, we modeled the battalion area of operations (AO) as a rectangle of width w_h and depth d_h . We assume the AV location and the support location are uniformly and independently distributed over this rectangle. (This is conservative, since the AV is likely to be flying near the location of greatest anticipated need.) We divide the AO width and depth each into six intervals, and find the center of each of the resulting 36 cells. We find the required flying distance between each of the 36^2 cell center pairs, accounting for the fact that the Handoff vehicle flies at a higher altitude and can look obliquely, and therefore does not need to arrive exactly over the target. The estimated average flying delay is then the average flying distance \overline{F} divided by s_h , the dash speed of the Handoff AV. To estimate the time to complete previous tasks, we model the Handoff system as an M/M/1 queue with a finite calling population, the server being the AV and the customers being the companies. This allows approximate average delay to be calculated with standard closed-form expressions (Hiller and Lieberman, 2001, section 17.6), but it requires several simplifying assumptions. The requests for support are assumed to arrive in a Poisson process at rate λ per company; each company has a maximum of one request outstanding at a time. The number of companies making support requests is three, assuming that normally no more than three companies in a battalion are actively engaged. The queue service time is the sum of the flying delay calculated above and the required time on target, and we model the service times as being distributed identically, independently, and exponentially (this is a conservative approximation, since the high variance of the exponential distribution generally causes poor queue performance). The average service time is therefore 31 - 14 RTO-MP-AVT-146 # **Comparing Organic vs. Assigned UAV Support to the Maneuver Company** $t + \overline{F}/s_h$, where t is the average required time on target, \overline{F} is the average flying distance, and s_a is the speed of the AV. Under these assumptions, we can calculate W_q , the average time a company waits for its service time to begin: $$N = \text{number of customers} = 3$$ $$\mu_b = \text{service rate} = 1/(t + \overline{F}/s_b)$$ $$P_0 = \text{probability of idle system} = \left[\sum_{n=0}^{N} \left(\frac{N!}{(N-n)!} \left(\frac{\lambda}{\mu_h} \right)^n \right) \right]^{-1}$$ $$L_q$$ = average customers waiting = $N - \frac{\lambda + \mu_h}{\lambda} (1 - P_0)$ $$L = \text{average number of customers in system} = N - \frac{\mu_h}{\lambda} (1 - P_0)$$ $$\overline{\lambda}$$ = average customer arrival rate = $\lambda(N - L)$ $$W_q = L_q / \overline{\lambda}$$ Since this model includes the flying delay as part of the queue service time, the company's average wait time until an AV can see the target is approximately $W_a + \overline{F} / s_h$. # 4.2.3 Reliability for the Organic System We chose a direct and natural measure for reliability: the probability that the system will be in a non-operational state, given the system's architecture and operational concept, and given mean time between failures and mean time to repair for the AV. The Organic system can be in one of five states, as shown in Table 3. The state transition diagram is in Figure 1. This model includes the following simplifying assumptions: - The mission duration is the average required on-target time, t, plus twice the average time required to fly between the transporter and the target, do/so (as calculated in section 4.2.1). - If a mission is aborted because the flying vehicle fails while the spare is under repair, the mission cannot be resumed even when a repair is completed. - The repair rate is constant whether one or two vehicles are under repair. Table 3. Operational States for Organic System | State | Avs Ready for Launch | AVS Flying | Avs under Repair | |-------|----------------------|------------|------------------| | 20 | 2 | 0 | 0 | | 11 | 1 | 1 | 0 | | 10 | 1 | 0 | 1 | | 01 | 0 | 1 | 1 | | 00 | 0 | 0 | 2 | Figure 1. State Transition Diagram for Organic System Under these assumptions, we can calculate π_{ij} , the steady-state probability that the system will be in state ij, by equating the inflow and outflow rates in each state, to get: $$\pi_{10} = \left[\left(1 + \frac{\mu_o}{\lambda} \right) \frac{\rho_o}{\phi_o} + 1 + \frac{\rho_o}{\lambda} + \frac{\rho_o + \lambda}{\mu_o + \phi_o} \left(\left(1 + \frac{\mu_o}{\lambda} \right) \frac{\rho_o}{\phi_o} + 1 + \frac{\phi_o}{\rho_o} \right) \right]^{-1}$$ $$\pi_{01} = \frac{\rho_o + \lambda}{\mu_o + \phi_o} \pi_{10}$$ $$\pi_{11} = \frac{\rho_o}{\phi_o} (\pi_{10} + \pi_{01})$$ $$\pi_{20} = (\rho_o \pi_{10} + \mu_o \pi_{11}) \frac{1}{\lambda}$$ $$\pi_{00} = \frac{\phi_o}{\rho_o} \pi_{01}$$ System reliability is measured by π_{00} , the probability that both AVs are under repair and neither is ready to fly a mission, and the smaller π_{00} is the better. # 4.2.4 Reliability for the Handoff System We model the Handoff system similarly and with a similar set of assumptions, the differences coming from the different operations concept. The Handoff system keeps an AV in the air and on call if at least one of its four AVs is operable; the AV on station is replaced in the air without a break in support unless it is the only one operable, in which case there is a break while it return for refueling and any necessary servicing. The states of the Handoff system are shown in Table 4 and the state transition diagram is in Figure 2. | State | AVs Ready | AVs On
Station | AVs under
Repair | AVs in Turn-
around | |-------|-----------|-------------------|---------------------|------------------------| | 0UR | 3 | 1 | 0 | 0 | | 1UR | 2 | 1 | 1 | 0 | | 2UR | 1 | 1 | 2 | 0 | | 3UR | 0 | 1 | 3 | 0 | | TA | 0 | 0 | 3 | 1 | | 4UR | 0 | 0 | 4 | 0 | Table 4. Operational States for Handoff System τ = time-on-station rate = 1/(mean time on station) α = mission turnaround rate = 1/(mean turnaround time) $\phi_h = AV$ failure rate = 1/(mean time between failures) $\rho_h = \text{AV repair rate} = 1/(\text{mean time to repair})$ Figure 2. State Transition Diagram for Handoff System # Comparing Organic vs. Assigned UAV Support to the Maneuver Company Under these assumptions, the steady-state probabilities that the system will be in each state are: $$\pi_{1UR} = \left[1 + \frac{\rho_h}{\phi_h} + \frac{\phi_h}{\rho_h} + \left(1 + \frac{\tau}{\alpha} \right) \frac{\phi_h^2}{\rho_h^2} + \frac{\phi_h^3}{\rho_h^3} \right]^{-1}$$ $$\pi_{0UR} = \frac{\rho_h}{\phi_h} \pi_{1UR}$$ $$\pi_{2UR} = \frac{\phi_h}{\rho_h} \pi_{1UR}$$ $$\pi_{3UR} = \frac{\phi_h^2}{\rho_h^2} \pi_{1UR}$$ $$\pi_{TA} = \frac{\tau}{\alpha} \pi_{3UR}$$ $$\pi_{4UR} = \frac{\phi_h}{\rho_h} \pi_{3UR}$$ System reliability is measured by $\pi_{TA} + \pi_{4UR}$, the probability that no AV is on station because three are under repair and the fourth is either in turnaround or also under repair. # 4.2.5 Number of Vehicles in the Air for the Organic System This criterion is its own measure. We make the assumptions necessary to model the Organic system as an M/M/3 queue with a finite calling population of three. The average number of AVs in the air is then L, the average number of customers in the system, which can be calculated as follows, using standard queuing formulas (see Hillier and Lieberman [22], section 17.6): # **Comparing Organic vs. Assigned UAV Support to the Maneuver Company** t = average time required over target (as before) d_o = average distance from transporter to target (as before) $s_a = AV \text{ dash speed (as before)}$ $$v = \text{service rate} = \left(t + 2\frac{d_o}{s_o}\right)^{-1}$$ λ = arrival rate of support requests per company (as before) N = calling population = number of companies engaged = 3 s = number of servers = 3 $$P_0 = \left[\sum_{n=0}^{N} \frac{N!}{(N-n)!n!} \left(\frac{\lambda}{\nu}\right)^n\right]^{-1}$$ $$P_n = \frac{N!}{(N-n)!n!} \left(\frac{\lambda}{V}\right)^n P_0 \quad \text{for } n = 1,2,3$$ L_a = number of customers waiting for service = 0 $$L = \sum_{n=0}^{s-1} nP_n + L_q + s \left(1 - \sum_{n=0}^{s-1} P_n\right)$$ # 4.2.6 Number of Vehicles in the Air for the Handoff System Under normal operational conditions, the Handoff system will have one AV in the air constantly, and it will have two AVs in the air when a replacement is being flown out to relieve an AV on station and the relieved AV is flying back to base. In section 4.2.2 we calculated \overline{F}/s_h , the average to fly to or from a randomly selected station in the battalion AO. If o_h is the average time on station, then the fraction of time with two AVs in the air is $2(\overline{F}/s_h)/o_h$ and the average number of AVs in the air is $1+2(\overline{F}/s_h)/o_h$. # 4.3 Measure Weights The swing weight Handoff to each of these measures depends on the possible range of variation of the measures. In the sensitivity analysis excursions we performed (see section 5.3), we found that the measures fell within the limits shown in Table 6. Note that the range for Responsiveness was very significant: 6 minutes to 108 minutes. For a company commander in action this could easily be a vital difference. On the other hand, the
swings in the other measures seem much less important. All scores in Reliability were quite good (system operable more than 96% of the time), so the swing is not so important. The measures for Traffic Density and Flight Altitude are of yet lower importance because they address the Flight Coordination area, which is surely secondary. Furthermore, the swing in scores for Average AVs in the Air (one vehicle per battalion) seems small considering the number of manned and unmanned aircraft that will be flying around anyway. For these reasons, we assigned swing weight to the four measures in the ratio 100:15:2:2, as shown in Figure 3. ### 4.4 Returns to Scale and Value Functions All four measures are of the "less is better" type, but only Responsiveness seems to require a careful consideration of how value accumulates as one moves from larger raw scores to lower. We evaluate Flight Altitude qualitatively and only at the extreme values, so we do not need to consider return to scale. We could see no reason for other than a linear return to scale for Reliability and Traffic Density, and in any case those swings are of relatively small importance. However, the swing for Responsiveness is very important, and we could easily see that most of the value could be lost quickly as response time increased, so we developed a nonlinear value curve for Average Time to Target. This is shown in Figure 3. We assume that half the value is lost after 30 minutes and 80% of the value is lost after one hour. # 4.5 Summary of the Value Model The value model is summarized in Figure 3. Recall that the model includes only those criteria from Table 2 that favor or possibly favor the Organic system. Figure 3. Value Model 31 - 20 RTO-MP-AVT-146 # 5.0 RESULTS # **5.1** Parameters of the Model The model calculates value from 20 parameters that the analyst can set as desired. These parameters are shown in Table 5, along with the baseline or base values we used for this study and the high and low values we used for sensitivity analysis. Symbol **Parameter** Units Base Low High REQUIRE-Rate of Mission Requirements per hr per co 0.208 0.104 0.417 **MENTS** t Average Required On-Target Time hrs 1 0.5 2 Org Setup/Mission Planning/Launch Time 0.167 hrs 0.5 p_o 200 Org AV Speed 160 50 S_{o} knots **ORGANIC** Org Average Distance to Fly 4 2 10 d_o km **SYSTEM** Org Average Time Between Failures 4 2 8 flying hrs f_o Org Average Time To Repair hrs 2 1 4 BN AO Width 80 40 160 km W_h BN AO Depth 20 80 d_h km 40 HO AV Dash Speed knots 115 100 230 S_h 3000 10000 a_h HO AV Altitude ft 5000 **HANDOFF** HO AV Off-Nadir Look Angle 45 30 60 deg n_h **SYSTEM** 2 HO AV Average Time-on-Station 4 8 hrs O_h HO AV Average Turnaround Time hrs 1 0.5 2 t_h HO Average Time Between Failures flying hrs 8 16 f_h 0.75 HO Average Time To repair 1.5 3 hrs Responsiveness Measure Weight 0.84 0.7 Reliability Measure Weight 0.126 0 0.3 WEIGHTS Traffic Density Measure Weight 0.017 0 0.1 Flight Altitude Measure Weight 0.017 0.1 **Table 5. Model Parameters** Some of these values were based on published performance values for UAV systems in operation or under development; others were purely notional, being reasonable assumptions based on information available to us and to the cadets who developed earlier versions of the model. Generally, the low and high values were half and twice the base, respectively. # **5.2** Results Using Baseline Evaluation Parameters The model results using the baseline parameters are shown in Figure 6. The figure shows stacked bars representing weighted value in each criterion and comparing the Organic and Handoff alternatives to a hypothetical "Ideal" alternative that would achieve maximum value in the four measures (i.e. it would average 10 minute responsiveness, have perfect reliability, keep an average of 0.2 AVs in the air, and fly at a low level). Using this model, the Organic system achieves about 53% of the Ideal value, and the Handoff system achieves about 47%. The Organic system shows more value than the Handoff, but the difference is not great. Figure 6. Results Using Base Parameters The Ideal column in Figure 6 illustrates that the bulk of the value in this model is in the Responsiveness criterion. This is because of both the significance of that criterion and the wide swing in its measure (6 minutes to 108 minutes time to target). Reliability is also significant, but the swing was relative small. Traffic Density and Flight Altitude are secondary criteria with moderate swings, so they are of little importance. In the Average Time to Target measure for Responsiveness, the Organic system was modeled at about 31 minutes and the Handoff system at about 39 minutes. As described in section 4.2.1, Organic time to target consisted of planning/preparation/launch time plus time to fly to the target. In the baseline values, the former was 30 minutes and the latter only about 1 minute, because of the assumed high speed of the vehicle and short distance involved. Thus in this model, Organic time to target is essentially constant and consists primarily of the planning/ preparation/launch time. On the other hand, the Handoff time to target shows a lot of variation. As described in section 4.2.2, this measure consists of time to complete previously assigned tasks plus time to fly to the new task. We found in our queuing model that the former averaged 30 minutes, but that about 47% of the time the queue was empty so it would be 0 minutes. The fly-to time averaged 9 minutes, but it could be as low as 0 minutes or as high as 21 minutes. We believe these estimates are conservative, given the baseline values, because in real operations the more critical needs would receive priority in the queue, and the Handoff AV would be more likely to be flying in the area of need rather than the opposite side of the battalion AO. Our model showed a better Reliability measure for the Handoff system than for the Organic: system inoperable 0.2% of the time vs. 1.3%. However, both figures are quite good so the difference in weighted value is small. The difference is due to the assumption that the Organic vehicle will have less time between failures and take longer to repair, and to the fact that the Organic system has to maintain one vehicle out of two operational, while the Handoff system has to maintain only one out of four. These effects appear to us to 31 - 22 RTO-MP-AVT-146 # **Comparing Organic vs. Assigned UAV Support to the Maneuver Company** be real phenomena arising from the different operations concepts, but the extent of the difference will depend on the details of the reliability and reparability of the two AVs. # 5.3 Sensitivity Analysis Because so many of the model parameters are notional estimates only, we elected to do a complete sensitivity analysis exploring the calculated value for both systems and using the high and low values for all parameters as listed in Table 5. Because of the large number of parameters, we did not attempt a two-way sensitivity analysis. The Organic system is most sensitive to changes in UAV system performance: Setup/ Mission Planning/Launch Time, Average Time Between Failures, and Average Time To Repair. On the other hand, the Handoff system is most sensitive to changes in the operational scenario: Average Required On-Target Time, Rate of Mission Requirements, and battalion AO size. This seems to indicate that Organic system value is more critically dependent on the nature and quality of the design than the Handoff system. The Handoff system shows relatively small swings in value from changes in system design (the largest being a swing of 0.085 for AV Dash Speed), but its performance is particularly sensitive to the operations tempo (i.e Average Required On-Target Time and Rate of Mission Requirements). The Handoff system is somewhat more sensitive to changes in the measure weights than the Organic. Since the Handoff system has a significantly higher Reliability value score (0.94 vs. 0.67), the swings in Reliability measure weight affect it more. The two Responsiveness value scores are closer (0.41 for Handoff, 0.49 for Organic), but changes in Responsiveness weight still affect the Handoff system more because of the indirect effect on Reliability weight. It is useful to look at sensitivity of the difference in scores of the two systems. Figure 7 presents a tornado diagram showing the effect of all 20 model parameters on Organic total weighted system value minus Handoff total weighted system value. Here some parameters, such as Responsiveness Measure Weight, have less effect than they do for the individual system scores because they tend to move the two scores in the same direction. Others, such as Flight Altitude Measure Weight, show a greater effect here because they move the scores in opposite directions. However, the largest effects (>0.1) are still parameters that showed up at the top of figures 4 and 5. These include the following: - Two Organic system capabilities: Org Setup/ Mission Planning/Launch Time and Org Average Time Between Failures. The first dominates Responsiveness for this system, and the second at its low value results in a relatively low Reliability score. - Three parameters relating to scenario operations tempo and area: Average Required On-Target Time, Rate of Mission Requirements, and BN AO Width, all of which have a strong effect on Handoff system Responsiveness. The first two directly affect the utilization factor (service time over interarrival time) for the queue of reconnaissance tasks (section 4.2.2); when this factor is high the average queue wait time becomes long and Responsiveness suffers. High BN AO Width affects both queue service times and flyto times, thus also affecting Responsiveness. - Reliability Measure Weight. High weight on this measure emphasizes the Handoff system's advantage, which comes from the larger number of AVs and from the assumed greater vehicle reliability. It is
also noteworthy that seven of the parameters have enough effect to make the Handoff system appear to be preferable to the Organic in the value model measures. These comprise five of the six above (excluding BN ### AO Width) plus these two: - Org Average Time to Repair, which affects Responsiveness like Org Average Time Between Failures - HO AV Dash Speed, where a high speed improves the utilization factor for the Handoff mission queue and thus improves Responsiveness score. Figure 7. Sensitivity of Difference in System Values 31 - 24 RTO-MP-AVT-146 # 6.0 CONCLUSIONS # 6.1 Overall Comparison of the Organic vs. the Handoff System We did find a moderately higher overall value for the Organic system when considering the four criteria of Responsiveness, Reliability, Traffic Density, and Flight Altitude, as shown in Figure 6. Almost all of the difference was due to the Organic system's better Responsiveness score: average 31 minutes time to target, as opposed to average 39 minutes for the Handoff system. This difference (8 minutes, 26%) could be very important in some tactical situations, but to us it is an open question whether overall it is sufficient to outweigh Handoff advantages in Table 7. It is probably more important to look at variations in time to target than at the relatively close averages. In the operational concept we modeled, Organic time to target is relatively fixed and consists almost entirely of the time required to plan a mission and prepare and launch the AV. Unless the system design allows this time to be short, the Organic system's Responsiveness advantage from proximity and on-call status will be nullified. On the other hand, time to target with the Handoff ops concept would vary widely depending on the tactical situation. The time could be nearly zero of the AV was already overhead and not otherwise occupied; it could be hours if the AV had to complete other long missions first and then fly a long way. In the baseline scenario, there was no queuing wait almost half the time and fly-to time averaged 9 minutes (Table 8); the variation in fly-to time given the baseline AO size was 0 to 21 minutes. In real operations, the battalion commander would give priority to the main effort, so the best times (nearly zero) would be realized for the most critical missions. We feel it is an open question which of these two patterns of variation is better overall. It is also important to look at the effect on average time to target of the ops tempo assumptions in our baseline scenario, the parameters Rate of Mission Requirements and Average Required On-Target Time. The Organic system's Responsiveness is not affected by these, but the Handoff system is profoundly affected. Table 8 shows total average time to target varying from 19 to 108 minutes as these are varied individually. If both are set to their low values (Table 5), our model gives an average time to target as low as 14 minutes, and if both are high, it gives an average time of 154 minutes. This extreme sensitivity to the scenario ops temp is an important disadvantage of the Handoff system. However, if our baseline scenario assumptions turn out to be too pessimistic, the average responsiveness could be much better than the Organic system. Our findings on the issues of overall system value, system responsiveness, system costs, and other matters are as follows: - 1. We did not find a general overall advantage for either the Handoff or the Organic system concept. Instead, the advantage varies with one's assumptions about the operational requirements (especially ops tempo), the system performance characteristics (especially Organic planning/setup/launch time), and the tradeoff between system cost and Responsiveness. - 2. The responsiveness of the Organic system can be excellent if there is a quick way to plan a mission and prepare and launch an AV. - 3. The responsiveness of the Handoff system is very sensitive to the operations tempo because of queuing delays in using the AV, but the bad effect of this can be ameliorated to some extent by prioritizing users and pre-positioning the aircraft. - 4. At the architecture level, the reliability of the Handoff system (in terms of probability of putting an AV in the air when needed) should be somewhat better because the system is likely to have more spare AVs, the AVs are likely to be less complex, and they will be launched, landed, and maintained under more # Comparing Organic vs. Assigned UAV Support to the Maneuver Company favorable conditions. - 5. The Handoff system has an important advantage in saving development costs, since it is already being developed as the battalion UAV, while the Organic system has to be developed independently for the company mission. The Handoff system would also save significant recurring costs because of consolidations in training, logistics, and operations. However, we did not attempt to quantify these savings. - 6. The Handoff system operations concept also has other lesser qualitative advantages in flight safety, operational flexibility, secondary missions, and operational location (Table 2, lines 1e, 1f, 2c, and 3d). - 7. We quantified the relative advantages on the two systems in the category of Flight Coordination (Table 2, line 4), and found them to be very small compared to the relative advantages we found in other categories. - 8. We identified a number of criteria in which at the architectural level we found no reason to recommend either system over the other. These included Dwell Time, Survivability, Usability, Data Quality, Data Handling, Logistics, Personnel, Equipment, and Procurement, Operations, and Disposal Costs (Table 2, lines 1c, 1d, 1g, 2a, 2b, 3a, 3b, 3c, and 5b). Of course, particular designs of these systems could result in significant differences in these criteria. ### **6.2** Recommendations In an exploratory high-level study such as this, we are reluctant to make firm recommendations other than for more detailed studies. Both the Organic and the Handoff concepts offer strong advantages and more information is needed before selecting over the other. However, we have enough insight to recommend the areas that need the most study to clarify the choice between the two operations concepts. We can also identify some performance parameters that are critical to system performance and that therefore should be emphasized during system development. Finally, the insight from this study can help develop additional alternatives to provided company-level UAV support. We found that the operations tempo (length of missions and time between missions) was a critical parameter for evaluating the relative value of the two systems. This is a very difficult thing to predict and can vary widely from one conflict or peacetime operation to another. We would recommend developing the best possible data and the best possible estimates of how this tempo is likely to vary under different conditions. Analysis of such estimates would provide a great deal of insight into the conditions under which each concept has better responsiveness and into which concept is preferable overall. Another area that should be studied to shed light on the effect of ops tempo is how a Handoff system would actually be used in the dynamics of actual operations. Our model made the simple and conservative assumptions that the system would act as a server in a first-come-first-serve queue and that successive missions would be independently and uniformly distributed over the battalion AO. We would like to develop better understanding of how command decisions on priorities and AV positioning would lessen the impact of the Handoff system's queuing delays. We found that Organic Mission Planning/Setup/Launch Time was by far the most important system performance parameter in determining relative system value (Table 7). Systems are now being developed to meet the FCS Class II requirement using an Organic operations concept (see section 0). In these developments, we recommend that a great deal of attention should be given to shortening the timeline to plan a mission, prepare an AV, and launch it under field conditions. A short timeline in this process is critical to realizing an Organic system's foremost advantage, i.e. its responsiveness. Our final recommendation relates to the generation of additional alternatives based on what we found to be the driving factors in this study. We found that the primary advantage of the Organic system was its 31 - 26 RTO-MP-AVT-146 # Comparing Organic vs. Assigned UAV Support to the Maneuver Company responsiveness (at least in many plausible scenarios), and that the primary advantage of the Handoff system was its cost savings (in development and system consolidation). There may be creative alternatives that realize both these advantages. For instance, there could be a Handoff system for company support, and each company could also have a backpackable Class I UAV such as is envisioned for use at the platoon level. That would realize most of the cost savings of the Handoff system, while also giving the company commander the responsiveness of an Organic UAV. The disadvantages would be the limited performance of the Class I UAV compared to the Class II it would be partially replacing, and the increased cost of having two systems (Handoff and Class I) supporting the company. We feel that an alternative like this is worth studying, and we recommend the development and exploration of this and other additional alternatives to address the need for company-level UAV support. ### **6.3** Future Work This was originally no more than an academic exercise, and we have no plans to continue it on any other basis. If we were to continue it as a serious investigation, some areas we would work on include seeking more expert judgment on how systems like these would really be used by company and battalion commanders in various types of conflicts, possibly from human-in-the-loop simulations; quantifying
the Handoff system advantages in development cost and system consolidation, since these seem to be possibly very significant; and looking more closely at how time-to-target would vary for different systems in different scenarios, looking at the distribution of times as well as at the means. - [1] http://www.army.mil/fcs/ - [2] Charles A. Cartwright, Charles A, and Dennis A. Muilenburg. 2006. "Future Combat Systems an Overview." Available at http://www.army.mil/fcs/articles/ index.html. Accessed 1 Nov 2006. - [3] http://www.cbo.gov/ftpdocs/71xx/doc7122/04-04-FutureCombatSystems.pdf, p.17. - [4] "FCS Overview." Available at http://www.army.mil/fcs/ factfiles/overview.html. Accessed 11 Sep 2006. - [5] Defense Industry Daily (DID). 11 October 2005. "Four FCS UAV Sub-Contracts Awarded (updated)." Available at http://www.defenseindustrydaily.com/2005/10/ four-fcs-uav-subcontracts-awarded-updated/index.php. Accessed 2 Nov 06. - [6] Defense Industry Daily (DID). 24 May 2006. "Honeywell Lands FCS Class I UAV Contract." Available at http://www.defenseindustrydaily.com/2006/05/honeywell-lands-fcs-class-i-uav-contract/index.php. Accessed 2 Nov 06. - [7] Piasecki Aircraft Corporation. 22 August 2005. "Piasecki Aircraft Corporation Awarded Two Contracts for Army's FCS Class II & III UAV Systems." Press release. Available at http://www.piasecki.com/pdfs/FCS%20Class%20IIIII%20UAV_3_1%20Approved%20by%20TACOM%20-for%20web.pdf. Accessed 2 Nov 06. - [8] "Welcome to the Unmanned Aerial Vehicles (UAV) Class II/III Industry Day." 2004. PowerPoint briefing, 1 Dec. # Comparing Organic vs. Assigned UAV Support to the Maneuver Company - [9] Aurora Flight Sciences. 2006. "GoldenEye-100." Available at http://www.aurora.aero/tactical/GoldenEye-100.html. Accessed 17 Nov 06. - [10] Aurora Flight Sciences. 2004. "GoldenEye-100 UAV Successfully Completes Initial Flight Test Program." Press release, 7 Apr 04. Available at http://www.aurora.aero/news/APR-153.html. Accessed 17 Nov 06. - [11] Allied Aerospace. No date. "iSTAR Unmanned Air Vehicles." Brochure. Available at http://www.alliedaerospace.com/pdfs/UAV%20Brochure.pdf. Accessed 17 Nov 06. - [12] Teledyne Brown Engineering. 2005. "The Prospector UAS." Flyer available at http://www.tbe.com/products/aerialSystems/prospector 10-05.pdf. Accessed 17 Nov 06. - [13] http://www.globalsecurity.org/intell/systems/shadow.htm. - [14] Fulgham, David A. "Life Preserver," Aviation Week and Space Technology, July 26, 2004, p. 57. - [15] Keeney, Ralph L., and Raiffa, Howard. 1976. *Decisions with Multiple Objectives: Preferences and Value Tradeoffs.* Cambridge University Press. - [16] Keeney, Ralph L. 1992. Value-Focused Thinking: A Path to Creative Decisionmaking. Harvard University Press. - [17] Kirkwood, Craig W. 1996. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets. Duxbury Press. - [18] Clemen, Robert T. 1996. *Making Hard Decisions: An Introduction to Decision Analysis*. Second edition. Duxbury Press. PP. 547-550. - [19] Parnell, G. S., R. C. Burk, A. Schulman, D. Westphal, L. Kwan, J. L. Blackhurst, P. M. Verret, and H. A. Karasopoulos. 2004. Air Force Research Laboratory Space Technology Value Model: Creating Capabilities for Future Customers. *Military Operations Research*, Vol. 9, #1, pp. 5-17. - [20] Burk, R. C., C. Deschapelles, K. Doty, J. E. Gayek, and T. Gurlitz. 2002. Performance Analysis in the Selection of Imagery Intelligence Satellites. *Military Operations Research*, Vol. 7, #2, pp. 45-60. - [21] Feng, Tianjun, and L. Robin Keller. 2006. A Multiple-Objective Decision Analysis for Terrorism Protection: Potassium Iodide Distribution in Nuclear Incidents. *Decision Analysis*, Vol. 3, #2, pp. 76-93. - [22] Hillier, Frederick S., and Gerald J. Lieberman. *Introduction to Operations Research*, 7th ed. 2001. New York, NY: McGraw-Hill. 31 - 28 RTO-MP-AVT-146