
 

 
An Inversion Method to Backtrack Source Parameters and 

Associated Concentration Field for an Inert Gas Release  
in Urban Environments 

 
by Yansen Wang 

 
 

ARL-TN-304 March 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 

 



Army Research Laboratory 
Adelphi, MD  20783-1197 
 

ARL-TN-304 March 2008 
 
 
 
 
An Inversion Method to Backtrack Source Parameters and 

Associated Concentration Field for an Inert Gas Release  
in Urban Environments 

 
Yansen Wang 

Computational and Information Sciences Directorate, ARL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 ii

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

March 2008 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

January 2007–December 2007 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

Associated Concentration Field for an Inert Gas Release in Urban Environments 
 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

ARL DRI:  FY-07-CIS-06 
5e. TASK NUMBER 

 

6. AUTHOR(S) 

Yansen Wang 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN:  AMSRD-ARL-CI-ED 
Adelphi, MD  20783-1197 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-TN-304 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

 
13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

This document describes a prototype of an inversion method to reconstruct the unknown atmospheric release parameters, 
including the release location and strength, and associated concentration field.  The inversion method is based on the analysis of 
the data collected from wind, chemical/biological sensors.  A combined process of backward trajectory and Bayesian inference 
is used for the inversion.  The retrieved atmospheric release location and strength by this method are the optimal estimations of 
the physical parameters.  A simple test case is used to demonstrate the accuracy and application of the inversion method. 

15. SUBJECT TERMS 

source parameter inversion, Bayesian inference, transport and dispersion, backward trajectory, urban environment 

16. SECURITY CLASSIFICATION OF:   
19a. NAME OF RESPONSIBLE PERSON 
Yansen Wang 

a. REPORT 
UNCLASSIFIED 

b. ABSTRACT 
UNCLASSIFIED 

c. THIS PAGE 
UNCLASSIFIED 

17. LIMITATION 
OF ABSTRACT 

 
UL 

18. NUMBER 
OF PAGES 

 
18 

19b. TELEPHONE NUMBER (Include area code) 
(301) 394-1310 

 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39.18 



 iii

Contents 

List of Figures iv 

1. Objective 1 

2. Approach 1 

3. Results 3 

4. Conclusions 8 

5. References 9 

Distribution List 11 



 iv

List of Figures 

Figure 1.  A 3-D diagram for the simulation domain. .....................................................................4 
Figure 2.  The time series of concentration detected by sensors; sensors 1 and 8 have blank 

readings. .....................................................................................................................................5 
Figure 3.  The wind field computed from 3-DWF at 4 m.  The dashed line denotes the puff 

backward trajectory, and the puff spreading parameter is represented by circle radius.  
The red dot is the starting point of a Markov chain, and the red square is the release 
location by the inversion method...............................................................................................5 

Figure 4.  The sampling frequency for the release strength.  The red line is the “true” release 
strength.......................................................................................................................................7 

Figure 5.  The reconstructed plume using the inversion method.....................................................7 
Figure 6.  The simulated “truth” plume using the LSPM in 3-DWF computed wind field.............8 



 1

1. Objective 

The objective of this research is to develop an inversion method to reconstruct the unknown 
atmospheric release parameters, including the release location and strength and associated 
concentration field, in an event of a terrorist attack.  The inversion method is based on the 
analysis of the data collected from wind, chemical/biological (CB) sensors.  The retrieved 
atmospheric release location and strength by this method should be the optimal estimations of the 
physical parameters.  The reconstructed source characteristics and concentration field are useful 
information for force protection and emergency responses such as delivering medical treatments, 
disinfecting affected areas, and analyzing forensic evidence.  The retrieved source characteristics 
are also the necessary data for forecasting CB transport. 

2. Approach 

This source reconstruction system integrates the backward puff trajectory and the Bayesian 
inference methods to retrieve the physical parameters.  The system consists of the data from CB 
detection sensors and the wind field from a diagnostic wind model, the three-dimensional (3-D) 
wind field (3-DWF) (1).  The 3-DWF interpolates a limited number of wind observations to the 
computational domain using the mass conservation as a constraint.  A backward puff trajectory 
using the mean wind field from the 3-DWF is computed to trace back to an approximated area of 
release location.  The improbable release area is quickly eliminated from the backward 
trajectory.  This step is also used as a detection step to ensure that the release location is in the 
computational domain.  After the backward trajectory computation, the CB sensor and wind field 
data are integrated together to find the exact release location and strength using a dynamical 
Bayesian inference theory.  The Bayesian theory gives a maximum likelihood estimate of the 
release parameters.  During the Bayesian process, a forward model dispersion model, named the 
Lagrangian Gaussian puff model (LGPM) (2, 3), is applied to compute the concentration at each 
iterative cycle.  The values of concentration from CB sensors and the LGPM model are 
compared and used to compute a likelihood function.  The converged state from the iteration is 
the maximum likelihood estimate of the source parameters.  

The backward puff trajectory uses the mean wind field computed from the 3-DWF model and 
parameterized turbulence.  The velocity of a puff centroid at (xp, t) in a forward time frame can 
be computed as u = dxp /dt.  The backward trajectory can be computed using a time coordinate  
tb = T0 – t, where T0 is an arbitrary starting time.  The velocity ub of the puff in the backward time 
frame is as follows:    

 ub =  dxp /d(T0 – t) = – dxp /dt. (1)  
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By integrating equation 1 backward with respect to time, a backward puff trajectory line can be 
computed.  In order to take care of the situation of an unsteady wind field, the wind field needs 
to be frequently updated from the 3-DWF and observations.   

The puff turbulence spread parameters, σh and σz, can be estimated from the distance between 
the sensors with maximum and minimum readings.  This method requires that multiple sensors 
are available for CB detection.  In general CB detection practice, the sensors are arranged in an 
arc shape across the mean wind (a near-circular arrangement for arbitrary wind direction).  The 
distance between the source and the detection sensor can be estimated from formulas from 
published literatures in other studies (4, 5).  The distance-spreading relationship is related to the 
atmospheric stability conditions, with wider spreading in unstable, slower wind conditions, and 
narrower spreading in stable and stronger wind conditions. 

After searching for the source area using the puff backward trajectory computation, the source 
inversion system applies the dynamical Bayesian inference theory (6, 7) to “fine-tune” the 
release location and find the release characteristics.  Let α be a time series of the dispersion 
parameter vector (the source location and strength), α ≡( α1, …, αt), and β be a time series of 
detected concentration data, β ≡( β1, …, βt).  The posterior, π(α),  a conditional probability of 
system parameters with respect to the observational data, can be expressed as follows using the 
Bayesian rule: 

 )()(
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where p(β/α ) is the likelihood (the conditional probability function of model output with respect 
to model parameters),  p(α) is the prior distribution, and p(β) is the marginal probability 
distribution of β.  The computation of p(β) is prohibitively expensive.  Instead of trying to 
compute it directly, an alternative approach is to generate a collection of realizations from the 
posterior distribution and use these samples to conduct inference (6, 7).  The likelihood function 
p(β/α ) accounts for the information of the forward dispersion model and detection sensor.  It 
needs special treatment for the errors due to the sensor threshold limits and range limit.  When 
the concentration is below the sensor detection threshold, the reading from the sensor is zero.  
When the concentration is exceeding the sensor saturation value, the instrument reading is set to 
the saturation level.  Following the treatments of other investigators (8–11), the likelihood 
function p(β/α ) can be expressed as the following function:  
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where Mij and Cij are the observed concentration and forward model produced concentration, 
respectively, at location i and time j, n is the number of sensors in the detection network, and σ is 
the error parameter, which incorporates both the errors in the sensor detection and in the forward 
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model.  Other forms of likelihood function can be used (7, 10).  The function is designed to 
capture the error information from the observations and the forward dispersion model.  The error 
estimate in Bayesian inference is a complex research topic; further research is required.  In the 
current experiment, a value of σ = 0.15 is taken for the combined error from observations and the 
forward model.  A larger value of σ will yield a broader final posterior distribution.  

The posterior distribution of πt(α1:t ) is generated from the Markov stochastic sampling 
procedure, named the Metropolis-Hasting method (7, 12), and computed from equation 2.  The 
specific Metropolis sampling procedure for our system can be described as follows:  The 
sampling process begins with a source parameter, α 1≡ (X1, R1), where X1 and R1 are the source 
location vector and release strength at step 1.  The X1 starts at the previous backward trajectory 
obtained region, and R1 starts at a reasonable guess of release rate.  In the i-th iteration, a 
candidate state *α ≡(Xi, Ri) is sampled.  The samples of unknown source parameters (Xi and Ri ) 
are from a large set of possible X and R.  These source parameters provide source location and 
release strength for the forward dispersion model to compute the concentration field at the sensor 
locations.  The observed values and forward model prediction at the sensor locations are 
compared.  Based on the comparison, the probability of source parameter Xi and Ri at i-th 
iteration is updated using the likelihood function and prior probability values of  α ≡(Xi-1,   Ri-1). 
If the comparison of the Xi and Ri are more favorable than the previous (i-1)th value, the sampled 
parameter is then retained for the next iteration step.  If the Xi and Ri are less favorable 
parameters, they are not rejected automatically but determined by a random process with a 
uniform distribution.  This ensures that the sampling process is not going to trap into a local 
optimal value (7, 8).  During the iteration, a candidate source parameter ( *α ) with probability 

)( *αα,ρ  is computed in the follow equation:  
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where n is the number of sensors in the network and )( *αnπ  and )(αnπ  are computed using 
equation 2.  Typically, four Markov chains are used in the stochastic sampling process.  The 
convergence is attained when the ratio of variance within chain to variance between chains is 
approaching unity (6).  The final posterior distribution produces the most likely source 
parameters X and R.  The final forward concentration prediction is the reconstructed 
concentration field. 

3. Results 

Before applying the inversion method to a complex urban environment, an experiment with a 
simple situation was performed.  In this example, a release source reconstruction in an idealized 
suburban area was considered.  The computation domain consisted of five buildings over a 
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gentle terrain (figure 1).  The chemical detection sensors were arranged at ground surface in a 
circle enclosing the five buildings.  The test was based on a simulated “truth” of an atmospheric 
release at the ground surface.  The wind field was initialized with several logarithmic profiles.  
Applying the data of the terrain, the building height, and the initial wind profiles, the wind field 
was computed using the 3-DWF model.  The wind field remained in a steady condition during 
the 20-min release period.  A neutrally buoyant gas was released in an upwind area of the five 
buildings.  The concentration field was simulated with a Lagrangian stochastic particle model 
(LSPM) (13–15), which was to be compared with the reconstructed field.  The LSPM-type 
model is usually considered a more advanced and accurate approach for the air pollutant 
dispersion simulation (13, 14).  Unlike the LGPM model, a large number of particles in LSPM 
are released and the turbulence effects are simulated with a random walk model.  However, a 
much longer computation time (as much as 10× more time compared with the LGPM) is required 
for a LSPM model simulation.  Details about the LSPM can be found in Wilson and Sawford 
(13) and Thomson (14). 

 

Figure 1.  A 3-D diagram for the simulation domain. 

Assume that in a real situation, the release source location and release strength are not known,  
only the concentration time series sampled (figure 2) from 6 out of the 8 sensors (in this 
simulated case).  The wind field condition is monitored continuously.  From the inspection of the 
time series signal (figure 2) and the wind field (figure 3), the release is continuous in a rather 
steady wind condition since the concentration signals reached the constant values for each sensor 
after about 100 s.  The inverse system uses the information from the detection sensors and 
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Figure 2.  The time series of concentration detected by 
sensors; sensors 1 and 8 have blank readings.  

 
Figure 3.  The wind field computed from 3-DWF at 

4 m.  The dashed line denotes the puff 
backward trajectory, and the puff spreading 
parameter is represented by circle radius.  
The red dot is the starting point of a Markov 
chain, and the red square is the release 
location by the inversion method. 
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the wind field to reconstruct the source location and the release strength.  The first step is to do a 
backward trajectory computation, starting at the sensor location with the maximum reading.  
This sensor location is considered as an approximated plume centroid location.  The starting 
plume parameter, σh, is approximated from the line which is perpendicular to the wind at the 
sensor location.  The σz parameter is taken as 0.75σh to start the backward trajectory computation 
for a neutral atmospheric stability condition.  The plume source is traced back using the 
backward trajectory shown in figure 3, where the radiuses of the circles represent the σh values 
of the puff.  The σh and σz values are computed using the formula from previous studies (5, 6).  
The puff centroid backward trajectory is computed by solving equation 1 using a second-order 
Runge-Kutta method.  Since the purpose of the backward trajectory step is to reduce the 
computation in the entire source inversion system by tracing back to the approximated source 
location, the trajectory computation is stopped at the location with the σh ~ 0.1 km.  At this time, 
the Markov chain Stochastic sampling process takes over to find the maximum likelihood 
estimate of release location and characteristics. 

Four Markov chains started at the area where the puff backward trajectory was traced.  The 
Markov chains sampled source locations and release strength, following the rules described in 
the Metropolis-Hasting method (7, 12).  For clarity, figure 3 only shows the sampling locations 
from one Markov chain, where the starting point is marked by a red circle.  The converging point 
is denoted by a small red square.  The sampling starting point is proven to be near the release 
point with the help of backward trajectory.  If the reconstruction system was not preceded with a 
backward trajectory computation, the Markov chain stochastic sampling would take much 
longer.  The sampling starting location could have started at a location far away from the release 
location, taking much more iterations to converge to the release point.  The system has been 
tested without using the backward trajectory procedure starting at random locations in the 
computational domain.  Retrieving the release location would take as much as 4 hr of CPU time 
(~3× the computation time with default inversion system) on a 3-GH workstation to converge to 
the release point.  At the same stochastic sampling process, the release strength was statistically 
retrieved in the Bayesian procedure.  The sampling started at the release strength of 1 g/s, carried 
out with the 0.1 increment of release strength for a sampling iteration.  The resulting release 
strength sampling is shown in a probability distribution in figure 4.  It indicated that the largest 
posterior probability is approximately corresponding to the “true” release strength in the base 
simulation.  The maximum likelihood estimate of the release strength is slightly greater than 
“true” release strength of 3 g/s.  Using the reconstructed release location and release strength, a 
concentration field is computed as shown in figure 5.  The comparison with the base simulation 
(figure 6) indicated that the release was satisfactory in this simple situation. 
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Figure 4.  The sampling frequency for the release strength.  
The red line is the “true” release strength. 

 

Figure 5.  The reconstructed plume using the inversion method.
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Figure 6.  The simulated “truth” plume using the LSPM in 
3-DWF computed wind field.  

4. Conclusions 

A source inversion method for reconstruction of the surface atmospheric release source location 
and strength has been developed in this research.  The inversion system consists of a backward 
puff trajectory computation and a Bayesian inference process via stochastic sampling.  The 
backward puff trajectory computation is used to trace back the approximated area of release 
location.  The approximated area from the backward trajectory serves as a starting point for a 
Bayesian inference process.  The Bayesian inference process is applied to search the release 
strength and the release location.  A preliminary test with an idealized continuous, point source 
release case indicated that the method gives satisfactory inversion results in terms of the release 
location and strength.  This integrated methodology combined backward trajectory and Bayesian 
inference reduces about 66% of the computation time compared with the method using the 
Bayesian inference only in a test case.  Obviously, this is a preliminary exploration of the 
inversion method for a very simple situation.  For real complex urban conditions, the following 
difficult issues need to be resolved:  (1) the complex turbulence characteristic in the urban 
environment, (2) the backward trajectory computation in an urban environment, (3) the 
computation speed of the inversion system, and (4) the forward modeling of the plum or puff in 
different atmospheric stability conditions. 
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