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ABSTRACT 

This paper presents an overview of the on-going research activities at Shrivenham, aimed at the design of 
an autonomous flapping-wing micro air vehicle. After introducing the problem of insect wing kinematics 
and aerodynamics, we describe our quasi-three-dimensional aerodynamic model for flapping wings. This 
is followed by a brief discussion of some aerodynamic issues relating to the lift-generating leading-edge 
vortex. New results are then presented on modelling of wing aeroelastic deflections. Finally, some brief 
observations are made on flight control requirements for an insect-inspired flapping-wing micro air 
vehicle. Overall, it is shown that successful development of such a vehicle will require a multi-disciplinary 
approach, with significant developments in a number of disciplines. Progress to date has largely been 
concerned with hover. Little is known about the requirements for successful  manoeuvre. 

1.0 INTRODUCTION 

Agile flight inside buildings, caves and tunnels is of significant military and civilian value. Current 
surveillance assets (e.g. satellites, UAVs) possess virtually no capabilities of information-gathering inside 
buildings. The focus on indoor flight leads to the requirement of a distinct flight envelope. In addition, 
autonomy is required to enable mission-completion without the assistance of a human telepilot; this 
requires precise flight control. Current unmanned aerial vehicles (UAVs) are too large to achieve indoor 
flight and our research has concluded (see Refs [1][2][3]) that insect-like flapping flight is the optimum 
way to fulfil this capability — fixed wing aircraft do not have the required low-speed agility and miniature 
helicopters are too inefficient and noisy. Insect flapping flight, on the other hand, has been present in 
nature for over 300 million years [4] and has been perfected over this time. Insects fly at low speeds, are 
extremely manoeuvrable, virtually silent and most are capable of hover. In addition, insect flapping flight 
also offers significantly better power efficiency, particularly at low flight speeds, than both fixed-wing 
aircraft and  rotorcraft [5][6], making it ideal for our focus on micro UAVs for indoor flight. 

Cranfield University at Shrivenham, together with our partners in other universities (currently Oxford, 
Heriot-Watt and Bristol) are engaged in world-leading research on flapping-wing micro air vehicles 
(FMAVs), based on insect-like aerodynamics. A micro air vehicle is defined here as a hand-sized flying 
machine having no dimensions greater than ca. 15cm. This paper will review our key work to date. The 
paper is organised as follows. First, the flapping-wing problem is introduced by familiarising the reader 
with insect flight kinematics and relevant aerodynamic phenomena. Then, a brief description of our 
aerodynamic model is presented. This is followed by discussion of some relevant aerodynamic phenomena 
which are not directly captured in this model. We next discuss some recent findings on aeroelasticity 
before finally highlighting some considerations for flight control of an FMAV. 
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2.0 FLAPPING-WING PROBLEM 

Understanding the flapping flight of insects has long been elusive due to the high forces generated that 
cannot be explained by conventional aerodynamics. For the development of an engineering model to 
demonstrate the behaviour of such flapping wings, therefore, it is necessary first to understand the 
underlying kinematics responsible for the forces and the associated aerodynamics. Wing kinematics 
encompass a whole series of design parameters that can be optimised to give the desired performance, 
once their effects are quantified. 

2.1 Kinematics 
The availability of high-speed photography has enabled reasonably good descriptions of the kinematics of 
insect wings [7][8][9]. Insects have either one or two pairs of wings. We restrict ourselves to one pair of 
wings (diptera) and the description that follows is for such an insect. The overall flapping motion is 
similar to the sculling motion of the oars on a rowboat, consisting essentially of three component motions 
— sweeping (fore and aft motion), heaving (up and down motion) and pitching (varying incidence). 
Flapping frequency is typically in the range 5–200 Hz. The wing motion can be divided broadly into two 
phases — translational and rotational. The translational phase consists of two half-strokes — the 
downstroke and the upstroke (see Figure 1). The downstroke refers to the motion of the wing from its 
rearmost position to its foremost position, relative to the body. The upstroke describes the return cycle. At 
either end of the half-strokes, the rotational phases come into play — stroke reversal occurs, whereby the 
wing rotates rapidly and reverses direction for the subsequent half-stroke. During this process, the 
morphological lower surface becomes the upper surface and the leading edge always leads (Figure 1a).    

 

 

 

Figure 1: Insect-like flapping: (a) top view, showing downstroke (1-3) and upstroke (4-6) (left);  
(b) side view (right) 

The path traced out by the wing tip (relative to the body) during the wing stroke is similar to a figure-of-
eight on a spherical surface (see Figure 1b) as the wing semi-span is constant. The wing flaps back and 
forth about a roughly constant plane called the stroke plane (analogous to the tip-path-plane for rotorcraft). 
The stroke plane is inclined to the horizontal at the stroke-plane angle β (Figure 1b). The angle swept by 
the wing during a half-stroke is the stroke amplitude φ. During a half-stroke, the wing accelerates to a 
roughly constant speed around the middle of the half-stroke, before slowing down to rest at the end of it. 
The velocity during the wingbeat cycle is, therefore, non-uniform and for hover, in particular, the motion 
of the wing tip does not vary dramatically from a pure sinusoid [7]. Wing pitch also changes during the 
half-stroke, generally increasing gradually as the half-stroke proceeds. The maximum pitch angle of 90o 
will occur near the ends of each half-stroke. A maximum pitch before the wing comes to rest is referred to 
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here as pitch advance, whereas a maximum pitch after the start of the next half-stroke is pitch delay 

2.2 Aerodynamics 
The flow associated with insect flapping flight (and scales pertaining to micro UAVs) is incompressible, 
laminar, unsteady and occurs at low Reynolds numbers. Despite their short stroke lengths and small 
Reynolds numbers, insect wings generate forces much higher than their quasi-steady equivalents due to 
the presence of a number of unsteady aerodynamic effects. The flow is now understood to comprise two 
components — attached and separated flow [10]. The attached flow refers to the freestream flow on the 
aerofoil as well as that due to its unsteady motion (sweeping, heaving and pitching). For insect-like 
flapping wings, flow separation is usually observed at both leading and trailing edges — the leading-edge 
vortex (LEV), which is bound to the wing for most of the duration of each half-stroke, and the trailing-
edge wake, that leaves smoothly off the trailing edge. Flow is more or less attached in the remaining 
regions of the wing. The leading-edge vortex is believed to be responsible for the augmented forces 
observed [11][12].   

3.0 AERODYNAMIC MODELLING 

As part of our study of insect-like flapping flight, a nonlinear, unsteady aerodynamic model [14] has been 
developed to simulate this flow regime [15][16]; for full details see Ansari (2004)[13]. The model is 
inviscid and quasi-three-dimensional, and yet, shows remarkable agreement with existing experimental 
data, both in terms of force prediction and flowfield representation (see below). Consequently, it has 
proved to be a valuable design tool for flapping-wing problems. The simplicity of the model (due to its 
inviscid nature) makes it particularly useful for rapidly iterating through various wing configurations and 
designs, much faster than would a conventional Reynolds-averaged Navier-Stokes (RANS) CFD model. 
This model has been used for parametric studies [17]  - showing, amongst other things, the importance of 
pitch advance in controlling lift. The model also gives insight into important flow phenomena. 

3.1 Methodology 
The model is quasi-three-dimensional; strip theory is used to divide the wing spanwise into chordwise 
sections that are each treated essentially as two-dimensional. Division of the wing into sections requires 
closer attention. The low aspect ratio and high solidity (the ratio of wing area to swept area) of insect 
wings requires that radial chords be used instead of normal (straight) chords (see Figure 2). This is 
necessary because each wing section would otherwise see a significant spanwise component of incident 
velocity, whose effect would be un-modelled. As a result, each wing section resides in a radial cross-plane 
that is then unwrapped flat and the flow is solved as a planar two-dimensional problem. The overall effect 
on the wing is obtained by integrating along the span. 

The aerodynamics of flapping wings is realised using potential flow. As observed in insect flight, flow 
separates from both leading and trailing edges where the Kutta-Joukowksi condition is enforced. Further, 
the flow is assumed to be irrotational (except at solid boundaries and discontinuities in the wake). So in 
essence, the flow is solved for using Laplace’s equation. Although viscosity is generally ignored, its 
effects are included indirectly in the form of the Kutta-Joukowksi condition and in the formation and 
shedding of vortices. The nature of Laplace’s equation means that the principle of linear superposition can 
be applied — quasi-steady (wake-free) and unsteady (wake-induced) components are computed 
separately, and the net effect is obtained by taking their sum. The flow is solved for by satisfying the 
kinematic boundary conditions at the wing surface, the Kutta-Joukowski condition at the wake-inception 
points and by requiring that the total circulation in a control volume enclosing the system must remain 
constant (Kelvin’s law). What finally results are two coupled, nonlinear, wake integral equations that 
together describe the flow in its entirety (within the limits of the assumptions made). Conformal 
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transformation is used and all calculations are performed in the circle plane. 

 
 

Figure 2: Radial chords used in 
aerodynamic modelling 

Figure 3: Data flow in the aerodynamic model 

3.2 Implementation & Validation 
The solution is implemented using the discrete point vortex method. The aerofoil in each 2-D section is 
represented by a distribution of bound vortices and the zero through-flow condition is enforced there. The 
two wakes shed from the leading and trailing edges are also distributions of vorticity but these are free to 
move with the fluid flow. At each time-step, the quasi-steady bound circulation is computed for smooth 
flow at the trailing edge. Two new vortices are then released, one each from the leading and trailing edges, 
and placed such that they follow the trace left by the previous vortex. The nonlinear equations referred to 
above are then solved simultaneously for the circulation strengths of the two new vortices. At the end of 
the time-step, the solution is marched forward in time by convecting the shed vortices in the wake using a 
forward Euler scheme. During the more acute phases of the flapping cycle (e.g. stroke reversals), the time-
steps are subdivided into finer sub-time-steps to give better resolution but at the cost of increased CPU 
time. A spin-off of this method is that flow-visualisation is automatically generated (see Figures 3 & 4). 

 

Figure 4: Comparison of flow 
visualisation for a wing after travelling 

2 and 4 chord lengths: Cranfield’s  
numerical predictions [16] (left) and 

benchmark experiments [19] 

Figure 5: Lift force comparison: 
Cranfield’s numerical predictions [16] and 

benchmark experiments [9]. 

Forces are computed by Kelvin’s method of impulses [18]. The bound and shed vortices constitute vortex 
pairs that impart impulses between them. The combined time-rate-of-change of impulse of all vortex pairs 
is a measure of the force on the wing (since only the bound vortices sustain Kutta-Joukowski forces). 
Moment is computed similarly from the moment of impulse. In order to validate the model, predictions 
from it were compared with experimental results. Remarkable agreement was found both in terms of 
flowfield comparisons with Dickinson & Götz [19] (see Figure 4) as well as force comparisons (see Figure 
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5) with data provided by Dickinson from his Robofly experiments (see: [9]; [13]; [16]). 

An important observation made during the development of the model was that flow behaviour is very 
strongly dependent on the number of chord lengths travelled. Flow in the outboard regions, having 
travelled more chord lengths, is more developed and ‘older’ in terms of chord lengths travelled. Therefore, 
it is more prone to vortex breakaway. A similar observation was made by Ellington et al. [11] and van den 
Berg & Ellington [20] from experiments using Ellington’s flapper. They reported that, in the latter stages 
of the halfstroke, vortex breakdown caused the leading-edge vortex to ‘lift off’ the wing surface in these 
regions of the wing. New light is shed on this phenomenon in Section 4 below. 

4.0 LEADING-EDGE VORTEX STABILITY 

Details of the three-dimensional flow produced by a flapping wing are being investigated using RANS 
CFD [21]. Ansari’s model is essentially inviscid, although the effects of viscosity are introduced 
‘artificially’ by imposing separation at the leading and trailing edges of the aerofoil. Since FMAVs will 
operate at relatively low Reynolds numbers (~35000) at which viscous forces might be thought to be 
dominant, and since FMAV wings are known to experience three-dimensional flow effects, the accuracy 
of the model when compared to experimental data is surprising. The CFD research is investigating a 
number of issues related to this.  
 
Insect wings operate at high angles of attack (>45o), but instead of stall occurring, a stable, lift-enhancing 
LEV is created. It is likely that any FMAV will have to retain this phenomenon in order to retain the high 
efficiency of insect-like flapping. However, the reason or reasons for the stability of the LEV are still not 
entirely clear. The generally accepted view is that spanwise flow within the LEV extracts vorticity from it, 
meaning it does not grow to an unstable size [22]. Others have found no evidence of the spanwise flow 
and have instead postulated that the tip vortex is somehow responsible for limiting the LEV’s growth [23]. 
More recently, some authors have suggested that the LEV is in fact unstable [24]. It appears that the 
stability of the LEV may be affected by Reynolds number, and since FMAVs will operate at higher 
Reynolds numbers than insects, it is important to investigate this effect. 

In order to isolate 2D effects from 3D effects, we have first investigated the flow around 2D aerofoils at 
high angles of attack. This has shown that for Reynolds numbers of 25 or greater, any LEVs that appear 
are quickly shed, and their lift-enhancing effect is transient. At Reynolds numbers higher than 1000, 
Kelvin-Helmholtz instability (KHI) appears in the leading- and trailing-edge vortex sheets. However, this 
instability does not affect the frequency of the shedding of primary leading- and trailing-edge vortices; nor 
does the occurrence of KHI have a dramatic impact on the lift produced. 

However, the 2D results also showed that the pressure at the core of an LEV decreases as the velocity of 
the flow is increased. This explains the spanwise flow that is seen in 3D cases - outer sections of the wing 
are moving faster and therefore generate an LEV with lower core pressure, leading to a spanwise pressure 
gradient. Spanwise flow occurs at all Reynolds numbers tested - the lowest being Re=120. The resulting 
LEV is stable even at Reynolds numbers of the order of 10000; although KHI does occur in the leading-
edge vortex sheet, it does not cause the LEV to detach from the wing. 

All of the CFD research so far has dealt with steady aerofoil or wing motion. The next stage will involve 
investigating the effects of aerofoil and wing acceleration. 

5.0 AEROELASTIC EFFECTS 

The authors and their co-investigators from Oxford University (Thomas, Taylor et al.) and Heriot-Watt 
University (Moore et al.) have recently completed a ground-breaking investigation of insect wing 
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aeroelasticity. The project integrated experimental and theoretical work to collect hitherto unavailable 
kinematic data for hovering insects in free flight. These data were used to develop a fundamental 
understanding of insect flight and to underpin novel dynamic modelling of flapping wings for use in the 
ongoing research programme to develop flapping-wing micro air vehicles at Cranfield University. 

Hitherto, no reports exist in the literature of experimental data for insect-wing deformation at a dense grid 
of points during free flight. Some previous analysis has assumed that the wing behaves as a rigid plate 
[25] but this is inappropriate. Other workers have analysed the wing as a half-rigid plate [26], where the 
wing is divided into a number of chord-wise strips that can rotate independently about the longitudinal 
axis of the wing. The half-rigid model is not applicable to wings where chord deformation (camber) is 
significant. Wing camber measurements on free-flying [27] dragonflies were previously made using a 
stripe projection technique. This technique cannot be used, however, where the spar structure is too sparse 
for projected fringes to be visible, such as in hoverflies.  

Dynamic modelling of insect wings aims to establish the nature of the observed deformation of insect 
wings: is the deformation predominantly due to inertial forces or aerodynamic forces, i.e. inertioelastic or 
aeroelastic in nature? Answering this question was hampered by the lack of detailed wing data, as 
explained above, and also by the lack of adequate aerodynamic modelling capabilities [28][29]. Our recent 
work has produced an aeroelastic model of wing deformation which couples our aerodynamic model (see 
Section 3) with an appropriate elasticity model of the insect wing (see Section 5.2) and new experimental 
data (see Section 5.1). 

5.1 Experimental Work 
Photogrammetric techniques were used by our partners at Heriot-Watt and Oxford Universities to measure 
insect wing deflections in flight. Initial measurements used locusts tethered on a 6-component force 
balance in the Oxford University low-speed, low-turbulence wind tunnel. These experiments allowed the 
optical instrumentation to be tested under near-ideal conditions. The locust wingbeat frequency is about 
20Hz (similar to the target figure for an FMAV) making 1000 fps cameras and white light illumination 
suitable for image acquisition without image blur or overheating the insects. Wing position and incidence 
errors were found to be an order of magnitude smaller than for previous methods. Force balance 
measurements, wing weighing and laser vibrometer measurements were also included. 

Measured points on wing veins were connected using cubic spline interpolation, and a mesh was fitted to 
reconstruct the wing surface. An empirical model of the mass distribution of the locust wing was fitted by 
cutting the wings into ca. 40 smaller pieces, and weighing these fresh. This was combined with the local 
acceleration data to estimate the local inertial forces acting on the wings, which were subtracted from the 
measured forces to calculate the aerodynamic forces. 

The techniques developed with the locusts were applicable to the more difficult case of free-flying 
hoverflies, but white light could not be used with hoverflies because continuous illumination overheats the 
insects, whilst visible pulsed illumination alters the insects’ natural wingbeat. For free-flight experiments, 
therefore, a 200W, 808nm, (infra-red and therefore invisible to the insects) pulsed diode laser was used 
[30] with a maximum pulse duration of 80µs and maximum repetition rate of 5kHz. The laser beam was 
focused on to a fibre array of four 2m lengths of plastic optical fibre. The output light from each of the 4 
fibres was expanded through a 50.8mm focal length lens to produce four 60mm-diameter collimated 
beams that shone through the measurement volume into the lenses of four high-speed cameras. 

The laser and cameras were operated in synchrony at 4kHz, yielding ca. 50 frames per wingbeat. The 
insect only triggered the cameras when it was hovering in the centre of the measurement volume. The 
same techniques as used with locusts were used to estimate the inertial forces. 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

Recent Progress Towards Developing an 
Insect-Inspired Flapping-Wing Micro Air Vehicle  

35 - 6 RTO-MP-AVT-146 



The standard deviation of the 3D position errors was < 0.05mm in all axes. The shorter chord length for 
the hoverflies makes the angle of attack error roughly double that in locusts but still < 1o. The geometric 
angle of attack changes rapidly during the ends of the wingstrokes, but is then held fairly constant during 
the down- and upstrokes. The measurements reveal that the wings are not planar, with substantial twist 
from root to tip. There is also substantial camber throughout the wingstroke, and this is maintained during 
the translatory phase of the wingstrokes. 

5.2 Mathematical Modelling 

The complex kinematics of flapping result in deformation of insects’ wings and the generation of lift . The 
elastic response of the wing is due to the interacting inertial and aerodynamic forces. As the wing beats, 
the aerodynamic force contributes to wing deformation, so the wing changes its shape, and this new shape 
modifies the aerodynamic force which, again, affects the wing’s shape. This continuous and dynamic 
interaction between the elastic wing and the airflow is aeroelasticity. For flapping-wing aeroelasticity, the 
mathematical modelling has been divided into: (i) an aerodynamic model (see Section 3) and (ii) a 
structural model. The aeroelastic model was obtained by coupling (i) with (ii). 

5.2.1 Elastic Model of Insect Wing  

The structural model of the Eristalis wing must capture the wing’s elasticity and be coupled with the 
aerodynamic model of Section 3. Since only flexural and torsional deflections need to be considered (at 
least for the experimental case of hoverflies), the Euler-Bernoulli beam model was sufficient to capture 
those deformations. In classical aeroelasticity [31] the emphasis is on modelling the Euler-Bernoulli beam 
with a partial differential equation (PDE), because for simple kinematics such a PDE admits solution by 
separation of variables. For insect flapping, the wing kinematics are highly non-uniform and the resulting 
PDE for flexural (bending) deflection w = w(x, t) along the x-axis is: 

   ______Eqn (1) 

where φ, θ and ψ are the time-varying angles defining the wing kinematics, while dashes and dots 
represent spatial and temporal derivatives, respectively. Here, E is Young’s modulus, I the area moment of 
inertia and R the beam length. This equation is much more complex than the recently considered case of 
non-uniform beam motion [32] and does not admit solution by separation of variables. The PDE for the 
torsional deflection is also involved and cannot be separated either. 

A better strategy, well-suited to the wing-element nature of the aerodynamic model of Section 3, is to 
represent the Euler-Bernoulli beam in the lumped-parameter form [33]. This is now explained for the 
flexural deflection (bending), as this is the more demanding case (than torsion). The continuous beam is 
divided into n sections (like the wing) and each ith section is represented as a point mass mi and a massless 
spring with stiffness ki . The n mass-spring elements are connected in series to express the structural 
continuity of the beam. This discrete representation with n lumps allows considering flexural deflections 
for each lump as a function of time only. In other words, instead of w = w(x, t), as in Eqn (1), we compute 
n functions wi (t) each of which corresponds to the spatial discretisation point (lump), 

ixxi txwtw
=

≈ ),()( . 

Derivation of the stiffness coefficient ki for each element was somewhat non-standard for the Eristalis 
wing; for n = 3 the stiffness matrix K is: 
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   __________ Eqn (2) 

and has the characteristic tri-diagonal and block form. The wing was divided into elements of equal length 
l = R/n except for the root element having length al. This division led to different masses mi and area 
moments of inertia Ii for each section. The resulting lumped-parameter representation [34] is the system of 
n second-order ordinary differential equations (ODEs) FwKwM =+ ~

&& , where M is the mass matrix,      
M = diag[m1 · · ·mn], is the effective stiffness matrix, , w is the vector of 
deflections at the lumps, w(t) = [w1(t) . . .wn(t)] and F is the vector of external forces acting at the lumps, 
F(t) = [F1(t) . . . Fn(t)]. Solutions of the ODEs are oscillatory and n > (2r−1)π/√ε guarantees that the first r 
natural frequencies are accurate to ε per cent [35]. We chose n = 20, so that the accuracy of the first five 
frequencies was better than 2%, which we verified (in bending and torsion) for exact solutions of PDEs 
obtained by simplifying Eqn (1). 

K~ 1121
1

2212
~ KKKKK +−= −

5.2.3 Aeroelastic Coupling  

Aeroelastic coupling is achieved by solving the system of ODEs FwKwM =+ ~
&&  of the lumped parameter 

beam model above together with the integral equations of the aerodynamic model of Section 3. The 
aerodynamic force enters into F, thus contributing to the wing deformations w. These deformations w 
define a new shape of the wing which is fed into the aerodynamic model for computation of the 
aerodynamic force and so on in a continuous interaction. 

5.2.4 Inertioelastic or Aeroelastic?  

The coordinate system x y z associated with the undeformed wing rotates through angles φ, θ, ψ with 
respect to the inertial system X Y Z. The bending deflections (u, v, w) refer to the displacements from the 
undeformed position (x, y, z), so that X = X0 + x + u, Y = Y0 + y + v, Z = Z0 + z + w. Resolving the inertial 
system accelerations X&& , Y&& , Z&&  in the rotating frame x y z and taking into account that the deflections u = 
v = 0, yields: 

  ________ Eqn (3) 

where F1 is generated by the insect’s flight muscles while F2 is the wing elastic response (in bending) to 
both the applied force F1 and the aerodynamic force A; both F1 and F2 are in the x y z system. The 
question is which of the forces dominates in eliciting the elastic response F2: the applied force F1 or the 
aerodynamic force A? This question can be answered from Eqn (3) if the wing mass m, wing kinematics φ, 
θ, ψ and wing deflections w are known together with the corresponding aerodynamic force A.  

The aeroelastic model described above takes as input the wing kinematics, mass, geometry and material 
properties and outputs the deflections w and the aerodynamic force A. It is an engineering design tool for 
insect-like flapping-wing micro air vehicles allowing prediction of the wing behaviour for the input data 
assumed for the design. The model can also be used to analyse the insect wing, provided the required input 
data, e.g. E and I needed in Eqn (2), are known reliably. However, the reported values of E and I for insect 
wings vary widely [36][37]. An alternative approach, adopted here, makes use of the deflection data 
produced in this project combined with the aerodynamic model of Section 3. Using the measured data for 
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the kinematics θ, φ, ψ and wing deflections w, the forces F1 and F2 are computed from Eqn (3). The 
aerodynamic force A, corresponding to these measured kinematic and deflection data, is calculated using 
the aerodynamic model of Section 3. The forces thus obtained F1, F2 and A are compared in Figure 6 
showing that overall F1,rms dominates compared with Arms, for bending. 

 

Figure 6: Instantaneous values of F1, F2 and A for two flapping cycles from Eqn (3) and the 
aerodynamic model of Section 3, left. Progressive average magnitudes calculated as RMS 

values using }d)()1{()( 2
0rms ττFttF t∫= , right. These show that, for bending, during the 

first half-cycle (start-up) F1,rms and Arms are comparable. Thereafter F1,rms dominates with 
F1,rms/Arms ≈ 2. 

6.0 SENSOR-RICH FEEDBACK CONTROL 

As described earlier, obstacle-avoidance is central to indoor flight. While providing an efficient platform 
with high aerodynamic performance, a flapping-wing vehicle poses significant challenges in terms of 
positional awareness, flight stability and robustness against disturbances or changes. This requires a 
complex flight control system, and here again the solution can be found in insect flight [38]. In modern 
aircraft, flight dynamics are governed by a few complex controllers fed by a small number of sensors. The 
computational overhead is significant. Flight dynamics for insects are as complex (if not more so) and they 
must, therefore, solve similarly complex equations. We hypothesise that in insects, however, the required 
information is generated by favouring measurement rather than computation — a large number of sensors 
feed many simple controllers. Biological evidence substantiates this claim. For a fly, for example, of the 
338000 neurons, only about 1% form part of the central processing complex in the brain [39]; the 
remainder are all simple sensor-processing neurons. This indicates a low computational overhead, and is 
made possible not by solving the complex equations but by the insect ‘knowing’ these few solutions. We 
study the implications of this sensor-rich platform and open a new avenue of multidisciplinary research on 
reverse-engineering of insect flight for micro air vehicle applications. Emulating an insect-like platform 
will require a multitude of sensors which, in turn, will call for multi-sensor data fusion. In fact, a much 
broader synergy of flight mechanics and control systems is required for a successful design. 

7.0 CONCLUSIONS 

This paper has discussed on-going research by the authors, aimed at the development of a flapping-wing 
micro air vehicle based on insect-like aerodynamics. From biological research the aerodynamic 
phenomena encountered in hover are now reasonably well understood and these have been described. We 
have outlined our aerodynamic model for flapping wings, which is quasi-three-dimensional but predicts 
measured force vs time histories very well for a 3D wing. Reynolds-Averaged Navier Stokes modelling of 
wings at high angles of attack has shown the importance of spanwise flow in stabilising the LEV. 
Although Kelvin-Helmholtz Instabilities occur in leading and trailing-edge vortex sheets as Reynolds 
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Number is increased, this does not cause the detachment of the LEV, so lift is maintained. 

New experimental results on insect wing deflections in flight have been presented. These have allowed us 
to develop an aeroelastic model of flapping wings, using input from our aerodynamic model. With this 
model and the measured wing deflections we have been able to address the relative significance of 
inertioelastic and aeroelastic bending. 

Finally, some thoughts have been offered on a potential way forward for flight control of an insect-
inspired FMAV – sensor-rich feedback control. 
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