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Chapter 1

Introduction

The potential of sustained hypersonic flight to revolutionize military and commercial activ-
ity is well recognized, and is reflected in recent initiatives such as the National Aerospace
Initiative. High-speed vehicles will substantially impact military strategy by providing new
defensive options such as a rapid on-demand global strike capability with much shorter re-
sponse times than currently possible. Furthermore, the development of new technologies
based on air-breathing propulsion can be leveraged to considerably reduce the cost of access-
to-space, the benefits of which are both military as well as commercial.

However, daunting technical challenges remain in realizing such vehicles. The harsh
environment imposed by the envelope of such future missions is manifested in the severe
anticipated thermo-mechanical loads and various propulsion-related requirements. Although
the diversity of the physical phenomena encountered is broad, several key limiting issues have
been identified as primary challenges, including both local and global constraints such as,
for example, cowl lip loading and airframe balance. A scrutiny of the problems identified
reveals the pervasive importance of several basic fluid dynamic phenomena. One of these,
and possibly the least understood, is that of high-speed transition.

The impact of hypersonic boundary layer transition on airbreathing propulsion design,
on extended range re-entry systems, and on tactical missile design has been outlined by
Dr. Key Y. Lau and Dr. Kevin G. Bowcutt (Phantom Works, The Boeing Company)
in their talk at AFOSR Contractors Meeting in Unsteady Aerodynamics and Hypersonics
(September 10-11, 2002). Particularly, in the summary of the talk, they pointed out that
there is a need of a better understanding of roughness-induced transition and boundary layer
trip design. The latter is associated with the requirement of robust, turbulent boundary layer
flow for inlet operability on missiles and on small-scale flight test vehicles. The boundary-
layer transition on small vehicles is dominated by bypass mechanisms because the forebody
of tactical missiles and small vehicles is too short to cause natural transition, and tripping
is required. This outline illustrates the manifold role of roughness-induced perturbations as
the cause of the transition and a means for flow control.

In the present report, the main results stemming from research supported by AFOSR
grant are presented. The theoretical and computational studies of stability, transition and
flow control have been carried out in close contact with AFRL at WPAB with an emphasis
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on the roughness-induced transition prediction due to the transient growth mechanism, and
on the roughness-induced flow control.

The principal investigator is thankful to Prof. E. Reshotko, Prof. X. Zhong, Dr. E.
Forgoston, Dr. S. Zuccher, Dr. X. Wang, Mr. C. Chiquete, Mr. P. Gaydos, Mr. I. Shalaev,
and Mr. M. Veirgutz for their significant input into this three-year project.

The results have been published in 9 journal papers and in 17 conference papers.

Journal publications

1. P. Gaydos, and A. Tumin, Multimode Decomposition in Compressible Boundary Lay-
ers, AIAA Journal, Vol. 42, pp. 1115-1121, 2004.

2. E. Forgoston, and A. Tumin, Initial Value Problem for Three-Dimensional Disturbances
in a Hypersonic Boundary Layer, Physics of Fluids, Vol. 17, No. 8, Paper No. 084106,
14 pages, 2005.

3. A. Tumin, and E. Reshotko, Receptivity of a Boundary-Layer Flow to a Three-
Dimensional Hump at Finite Reynolds Numbers, Physics of Fluids, Vol. 17, No. 9,
Paper No. 094101, 8 pages, 2005.

4. S. Zuccher, A. Tumin, and E. Reshotko, Parabolic Approach to Optimal Perturbations
in Compressible Boundary Layers, J. Fluid Mechanics, Vol. 556, 2006, pp. 189-216,
2006.

5. A. Tumin, Biorthogonal Eigenfunction System in Triple-deck Limit, Studies in Applied
Mathematics, Vol. 117, 2006, pp. 165-190

6. E. Forgoston, and A. Tumin, Three-Dimensional Wave Packets in a Compressible
Boundary Layer, Physics of Fluids, Vol. 18, No. 10, Paper No. 104103, 2006.

7. S. Zuccher, I. Shalaev, A. Tumin, and E. Reshotko, Optimal Disturbances in the
Supersonic Boundary Layer Past a Sharp Cone, AIAA Journal, Vol. 45, No. 2, 2007,
pp. 366-373.

8. A. Tumin, X. Wang, and X. Zhong, Direct Numerical Simulation and the Theory of
Receptivity in a Hypersonic Boundary Layer, Physics of Fluids, Vol. 19, No. 1, Paper
014101, 2007.

9. A. Tumin, Three-Dimensional Spatial Normal Modes in Compressible Boundary Lay-
ers, Journal of Fluid Mechanics, Vol. 586, 2007, pp. 295-322.
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Conference publications

1. A. Tumin and E. Reshotko, Optimal Disturbances in the Boundary Layer Over a
Sphere, 34th AIAA Fluid Dynamics Conference and Exhibit, Portland OR, AIAA
Paper 2004-2241, 2004.

2. E. Forgoston and A. Tumin, Initial-Value Problem for a Three-Dimensional Distur-
bance in a Hypersonic Boundary Layer, 34th AIAA Fluid Dynamics Conference and
Exhibit, Portland OR, AIAA Paper 2004-2243, 2004.

3. E. Forgoston and A. Tumin, Three-Dimensional Wave Packet in a Hypersonic Bound-
ary Layer 43rd Aerospace Sciences Meeting and Exhibit, Reno NV, AIAA Paper 2005-
0099, 2005.

4. A. Tumin, Biorthogonal Eigenfunction System in the Triple-deck Limit, 43rd Aerospace
Sciences Meeting and Exhibit, Reno NV, AIAA Paper 2005-0524, 2005

5. S. Zuccher, A. Tumin, and E. Reshotko, Optimal Disturbances in Compressible Bound-
ary LayersComplete Energy Norm Analysis, 4th Theoretical Fluid Mechanics Confer-
ence, AIAA Paper 2005-5314, Toronto ON, June 2005.

6. E. Forgoston, A. Tumin, and D. Ashpis, Distributed Blowing and Suction for the Pur-
pose of Streak Control in a Boundary Layer Subjected to a Favorable Pressure Gra-
dient, 4th Theoretical Fluid Mechanics Conference, AIAA Paper 2005-5195, Toronto
ON, June 2005.

7. F. G. Ergin, M. Choudhari, P. Fischer, and A. Tumin, Transient Growth: Experiments,
DNS, and Theory, Proceedings, 4th International Symposium on Turbulence and Shear
Flow Phenomena, Williamsburg VA, Vol. 2, pp. 583-588, June 27-29, 2005.

8. A. Tumin, X. Wang, and X. Zhong, Direct Numerical Simulation and the Theory of
Receptivity in Hypersonic Boundary Layers, 44th Aerospace Sciences Meeting and
Exhibit, Reno NV, AIAA Paper 2006-1108, 2006.

9. A. Tumin, Three-Dimensional Spatial Normal Modes in Compressible Boundary Lay-
ers, 44th Aerospace Sciences Meeting and Exhibit, Reno NV, AIAA Paper 2006-1109,
2006.

10. A. Tumin, Receptivity of Compressible Boundary Layers to Three-Dimensional Wall
Perturbations, 44th Aerospace Sciences Meeting and Exhibit, Reno NV, AIAA Paper
2006-1110, 2006.

11. S. Zuccher, I. Shalaev, A. Tumin, and E. Reshotko, Optimal Disturbances in a Bound-
ary Layer Past a Sharp Cone, 44th Aerospace Sciences Meeting and Exhibit, Reno NV,
AIAA Paper 2006-1113, 2006.
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Chapter 2

Biorthogonal eigenfunction system
and its application to the receptivity
problem and to the multimode
decomposition

2.1 Introduction

The conventional linear stability theory of boundary layers deals with the quasi-parallel flow
approximation when the characteristic scale of the perturbations, A (wavelength), is much
smaller than the longitudinal scale of the mean flow, L: i. e. A <K L. In this approximation,
the solution of the linearized Navier-Stokes equations is considered in the form of normal
modes

q(x, y, z, t) = 4(y) exp(i(ax + f3z - wt)), (2.1)

where x, y, and z are the Cartesian coordinates, and coordinate y stands for distance from
the wall; t is the time; a and 3 axe the x- and z-components of the wavenumber, respectively.
The analysis can be carried out within the scope of the temporal or spatial approach.

In the case of temporal analysis, the wavenumber of the perturbation is considered as

a real parameter and the complex frequency has to be determined. For incompressible
boundary layer flow, [GS78] showed that there are normal modes of discrete and continuous
spectra. Later on, [SG811 proved that the solution of the initial-value problem [Gus791 can
be presented as an expansion into these normal modes. Their weights can be found from
the initial data with the help of the eigenfunctions of the adjoint problem. There is an

orthogonality condition between the eigenfunctions of the direct and adjoint problems, and
the sets of eigenfunctions are called a biorthogonal eigenfunction system. Recently, this
result was extended to the cases of two- [FT03] and three-dimensional [FT05] perturbations
in compressible boundary layers.

In the case of a spatial framework, frequency is prescribed as a real parameter. For two-
dimensional mean flow with coordinate x in the downstream direction, #3 is a real parameter,
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and the complex wavenumber, a, has to be found. The corresponding biorthogonal eigen-
function system for spatially growing disturbances was introduced independently by [ZST80]
and [SG811 for two-dimensional perturbations in incompressible boundary layers. In addition
to discrete modes (Tollmien-Schlichting-type modes), there are four branches of continuous
spectra. The modes of two branches have arbitrary large growth rates in the downstream di-
rection (they may be interpreted as upstream decaying modes). This indicates that a spatial
Cauchy problem is ill-posed. [TF83b] suggested considering spatial initial-value problems
having finite growth rates in the downstream direction. In the case of incompressible flow,
the initial data require velocity and pressure perturbations, together with some of derivatives
with respect to x. The constraint on the initial data providing finite growth rates in the
downstream direction means that the short-scale upstream perturbations are not presented
in the initial data. Under this condition, the Laplace transform with respect to x can be
utilized. When additional a priori information is available, the spatial initial-value problem
can be solved with partial inflow data. For example, [Tum03] illustrated by an example that
when the downstream boundary is far away (in the length scale of the upstream perturba-
tions) one can assume that the solution can be expanded into downstream modes only, and
the spatial initial-value problem is solvable with only velocity perturbations as the initial
data. Apparently, recovering the whole flow field from one velocity component is impossi-
ble, even under the assumption that only downstream modes are involved in the solution.
However, if it is known that the main input into the perturbations is associated with a finite
number of specific modes, one can still find their amplitudes. For example, two unstable
discrete modes coexist in a laminar wall jet. Therefore, [TACZ96] assumed that experimen-
tal data were comprised of the unstable modes only and found their amplitudes and phases
from experimental data for one velocity component only. Afterwards, the quality of the de-
composition could be checked by comparing the experimental data with data obtained with
the help of the utilized normal modes and their recovered weights. [GT04] illustrated this
approach by an example of two-dimensional perturbations in a compressible boundary layer.
One can recognize that decomposition of experimental data should depend on the quality
of the assumptions. In compressible boundary layers, results of measurements could be con-
taminated by acoustic perturbations that can penetrate into the boundary layer. Therefore,
in order to provide a reasonable accuracy of the decomposition aimed at a discrete mode,
one also needs data for the external acoustic field [GayO41.

An analysis of compressible [TF83b] and incompressible [ZT87] boundary layers using the
Laplace transform with respect to the streaming coordinate, x, demonstrated the complete-
ness of the biorthogonal eigenfunction system for two-dimensional perturbations. Three-
dimensional spatially growing/decaying perturbations in an incompressible boundary layer
were considered by [Tum03]. A biorthogonal eigenfunction system for three-dimensional
perturbations in compressible boundary layers was formally introduced by [Tum831 without
analysis of the spatial initial-value problem, which is necessary to establish an expansion of
the solution into normal modes of discrete and continuous spectra.

The biorthogonal eigenfunction system turned out to be a powerful tool for solving recep-
tivity problems for boundary layers and for internal flows [ZST80, Fed82, TF83a, Tum83,

8



TF84, Fed84, ZF87, Fed88, Hi195, Tum96, TA97, Tum98, FK02, Fed03a, Fed03b]. Orig-
inally, the method was utilized for analysis of discrete modes (Tollmien-Schlichting-likc
modes) only. After clarification of uncertainties associated with the continuous spectra
[Tum03], the method was also applied to the analysis of roughness-induced perturbations
[TR04b, TR05, Tum06b]. It was proven [TA97, Tum06a] that the receptivity solution based
on the biorthogonal cigenfunction expansion is equivalent to the method used by [AR90],
whereas in the triple-deck limit the method leads to the results by [SSB77] and [Ter8l].

Another emerging application of the biorthogonal eigenfunction system is associated with
the progress being made in computational fluid dynamics (CFD), which provides an oppor-
tunity for reliable simulation of such complex phenomena as boundary layer receptivity and
laminar-turbulent transition [MZ01, MZ03a, MZ03b, MZ05, ZM02, EFN04, EFS05, WZ05,
WZ071. In addition to experimental observations, CFD provides complete information about
the flow field that cannot be measured in real experiments. However, this increase in available
information does not furnish a physical insight to the problem because the leading mech-
anisms still remain hidden behind a messy disturbance field. Sometimes a flow possesses
several discrete modes that are equally significant in the transition process, and it might
be desirable to distinguish the dynamics of each mode in the complex non-steady flow field.
Consequently, the problem of flow fields decomposing into normal modes arises. [GT04]
demonstrated how the biorthogonal eigenfunction system could be applied to an analysis
of CFD data for two-dimensional perturbations in a compressible boundary layer. In order
to find the amplitudes of the normal modes comprising the perturbations, it is necessary
to provide velocity components, temperature, pressure, and some of their derivatives at one
crossection only. The orthogonality relation for the eigenfunctions of the direct and adjoint
problems provides a straightforward tool to filter out amplitudes of the modes. [TWZ07]
applied the technique to analyze perturbations generated in a high-speed boundary layer
by blowing-suction through a slot on the wall. Amplitudes of stable and unstable discrete
modes were filtered out from the CFD results and compared with the solution of the recep-
tivity problem. Their work illustrates how the biorthogonal eigenfunction system could be
used to gain insight on the details of the flow field that would have remained hidden without
the advanced analysis. Future progress of the computational efforts will be associated with
three-dimensional perturbations [WZ07], and an extension of the multimode decomposition
method is required.
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2.2 Three-dimensional normal modes in a compress-
ible boundary layer

The objective of this section is to solve the spatial initial-value problem for three-dimensional
perturbations in a compressible boundary layer, and to establish decomposition of the solu-
tion into the normal modes of the discrete and continuous spectra.

Spatial Cauchy problem

We consider a compressible two-dimensional boundary layer in Cartesian coordinates, where
x and z are the downstream and spanwise coordinates, respectively, and coordinate y cor-
responds to the distance from the wall. We write the governing equations (the linearized
Navier-Stokes equations) for a periodic-in-time perturbation, - exp (-iwt), in the matrix
form a fLoaA) +LI a A +H2 aA + 3A (2.2)0--y -y +L y-=H 1 A+H 2 -- +H 3 -- (2.2

19 y O/ OX O

where vector A has 16 components

A (x, y, z) =(u, Ou/ly, v, r, , 9/cy, w, aw/Oy, Ou/9x, v/Ox, (2.3)

0/Ox, w/OX, Ou/Oz, Ov/Oz, 40/Oz, Ow/Oz)T.

L0,L 1 ,H 1,H 2, and H 3 are 16 x 16 matrices (their definitions are given in Appendix A.1);
u, v, w, 7r, and 0 represent three velocity components, pressure, and temperature perturba-
tions, respectively; and the superscript T in (2.3) and in what follows stands for transposed.
The mean flow is assumed to be parallel (quasi-parallel approximation). Solution of (2.2) is
subject to the following boundary conditions

y =0: u=v=w=0=0, (2.4)

y -00: JAjI- 0, (j = 1,...,16). (2.5)

We consider the spatial Cauchy problem for (2.2) assuming that the initial data, AO(y, z), at
x = 0 corresponds to the solution having a finite growth rate in the downstream direction.

After Fourier transform with respect to the coordinate z and Laplace transform with
respect to x,

Apq(y) = JePx e-zA(x,y,z)dzdx, (2.6)
0 -00

we arrive at the following system of ordinary differential equations:

- L0 dAp)+ L1 dAyy - H1A , - pH2 ApO - i# App = -H 2A0 , (2.7)
dy dy/ dy
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where
Co

Ao6(y) = Je-i3zAo(y, z) dz. (2.8)

The homogeneous part of (2.7) can be recast as an equation for vector z comprised of the
first eight elements of vector App as follows:

dz
= Hoz, (2.9)

where Ho is 8 x 8 matrix.
There are eight fundamental solutions, zi,..., z8, of the homogeneous system of equations

(2.9). Outside the boundary layer (y --+ oo), H0 is a matrix of constant coefficients, and
thus each fundamental solution has an exponential asymptotic behavior - exp(Ajy), where
A1, ..- , A8 are determined from the characteristic equation

det IIHo - AIII = 0, (2.10)

that can be recast as follows:

(bil - A2) 2 x [(b 22 - A2 ) (b33 - A2 ) - b23b32 ] = 0, (2.11)

where

bi = H 21 , (2.12a)
b2 2 = H4 2 H2 4 + H 0

4 3 4 + H46H64 + H04H84, (2.12b)

b23 = H02H2 + H01HO34 + H0H0 + H04 8H 85 , (2.12c)
b32 = H0

64 , b33 = H 65 , (2.12d)

with Ho denoting the (i,j) element of matrix Ho. The roots of (2.11) are (we substitute
p = ia) A 2 =2 =l 2 +2

A7 ,8 = = bil + 6+ iRe (a - w),

324,= (b22 + b33 ) /2 + (b22 -b 3a) + 4b2 3b3 2, (2.13)

A~6 = (b2+ b33) /2 - -( 2  2 + 42 b22

The root branches are chosen to have Real(A,,A 3 ,A5 ,A7 ) < 0, and we define a matrix of
fundamental solutions,

M = HIZ,... ,ll8I. (2.14)

We use a lower case z for vectors having 8 components, whereas vectors having 16 components
will be denoted by a capital Z. By the definition of the components in (2.3), one can find all
the components of the fundamental solutions Z if the fundamental solutions z are known.
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The non-homogeneous system given by (2.7) has a solution expressed in the form

AP = MQ(y) + G, (2.15)

where M is the matrix of fundamental solutions comprised of vectors Z(j =1,..., 8), and
the vector of coefficients Q(y) has to be found. Vector G(y) is defined as follows:

G1 = ... = G8 = 0,

G9 = -Fg;..., G16 = -F16,2.16)

where Fj are components of the vector F(y) = - (H 2A0 O). After substituting (2.15) into
(2.7), we arrive at the following equations for Q

2L0dM dQ d2Q dLoMdQ dQd- --- + LoM-y +-- y+L 1 M-+
dydy dGdy dy dy dy (2.17)

L1dG
L - HjG - pH 2 G - iIH 3 G = F.

Let us consider the individual equations of Eq. (2.17). Denoting zij to be ith component
of vector zj, Qj to be the jth component of vector Q, and F to be the jth component
of vector F, then the first, third, fifth, sixth, and seventh equations of Eq. (2.17) are,
respectively,

zjQ = 0, (2.18a)

dy
dQj = F3 , (2.18b)
dQ

z5j-'Q- = 0, (2.18c)

dy
z= dQj pFn I F6 , (2.18d)

dQj 0, (2.18e)
d¢ y

where the index summation rule is imposed, and the explicit form of the matrix elements
(see Appendix A.1) is taken into account. Using Eq. (2.18b), and the definitions Z10 = pz3j
and Zj4j = ilz 3 j, the second and eighth equations of Eq. (2.17) are, respectively,

dQ3  1 dGlo
z2j- dj + (m + 1dGO+ (m + I)pF3 + pH229F9 - i,3(m + 1) F,2 = F2, (2.19a)

dy dydQ3 dG14

z8j + (in + 1)iOF 3 + (in + 1) dG4 + pG1 2 = F8 . (2.19b)

The fourth equation of Eq. (2.17) is recast as

L43dz3j dQj d 143 dQ dj 41Go = F4 . (2.20)
L 0-d -y Ty(L 0z3-j +Zjd pH2  (
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The third equation of Eq. (2.9) yields

dz3,j = HZlj + Ho3 z3 j + Ho4 z4j + H, 5  + Hg3z7 .

dy 
(2.21)

After substitution of Eq. (2.21) into (2.20) and taking into account Eqs. (2.18), we arrive at
d Q j [ L ~4 3 u 3 3 L- .  d ( L 0 3 F 3)]4 4( .

dQ, I _____3) H4~1G 43 H034)N - F4 - L -, 3  pH2"°o ( + L (2.22)
Z4jd +Py1 41 0LJ0H 0d

Therefore, we have the following algebraic system of equations for dQj/dy:
dQm dy (2.23)

where vector W has the following eight components

01 = 0, (2.24a)

W2 = F2 - (m + 1) dGo - (m + 1)pF3 - pH22F 9 + i8 (m + 1) F 12 , (2.24b)dy

= F3 , (2.24c)

4 [F4 -4L
3 3  

- d(LL3 F3 ) +pH24'1Gi0 o (1 + L4H3) -1  (2.24d)=L o " dy

o5 = 0, (2.24e)

W6 = F6 + pFll, (2.24f)
W7 = 0, (2.24g)

W8 = F8 - (m + 1) if3F3 - (m + 1) dG - pG12 (2.24h)dy pG.(22h

One can solve the algebraic equations (2.23) and write down the solution of (2.7) for the
first eight components as follows

Ap,= 8 (a -+ -y dy zj, (2.25)
j=l Yj

where the constants aj and yj are determined using the boundary conditions. Using proper-
ties of determinants, we obtain the following solution:

Apo= (a, + fdjdy zI + f dy Z2 + a3 + -dI dy Z3+ dQya dy + dyzQ,
0 00 0

dQ4  dQ 5 -
d+ dyZ 4 + aj5+f Y- dY) Z5 + J d 6  (2.26)

(a+df7Y dQy dyz 8
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where

c2 E 2 3 5 7 + c 4 E 4 3 5 7 + c6 E 6 35 7 + c 8 E8357E 1357

c2 E 12 5 7 ± c 4 E 1 4 57 + C6 E1 6 5 7 + c8 E1 8 5 7
a3 = E 1357

c2 E 13 2 7 + c 4 E 1 3 47 + c6E 1 36 7 + c 8 E 1 38 7
a 5  =

C2 E 1352 + c4E 1354 + c6 E1 356 + c8 E1358a 7  E1357

00

0

Zli Zij Zlk Zil

EjkI = det Z3i Z3 j Z3k Z31
Z5i Z5j Z5k Z51

Z7i Z7J Z7k Z71 y=O

Although the result (2.26) formally looks the same as in [FT05] (see Section 3.2), the deriva-
tives dQj/dy are found from a different set of algebraic equations.

The inverse Laplace transform,

po+ioo

A,g(x,y;,3) = 2 i Ap,(y;p,,6)eP dp, (2.27)

Po -iOO

will be determined by the poles corresponding to the roots E 1357 = 0, and by the branch
cuts associated with the equations Real(Al, A3 , A5 , A7) = 0. The structure of the branch-
cuts is the same as in the case of two-dimensional perturbations (Section 2.5.2). They
represent perturbations of the continuous spectra: vorticity, entropy, and acoustic modes.
The constraint on the initial data ensures that there is such Pt that the solution is analytic
at Real(p) _ pb and the path of integration in (2.27) lies in the domain of analyticity of App.

The result (2.27) is recast as a sum of integrals along the sides -y+ and -y of each left-
hand-side branch in the complex plane p that represent input from the continuous spectra,
and a sum of the residue values corresponding to the input from the discrete spectrum,

2A# i =-ID ApeX dp + Ap#e" dp) + Z Resn(ApeP-). (2.28)
2ir 4 +A,exp + (;28

The three-dimensional character of the perturbations leads to overlapping of the two
branches corresponding to the vorticity modes, similar to the cases of spatial [Tum03] and
temporal [FT05] analysis of three-dimensional perturbations. The latter is reflected by the

double root in (2.13).
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In principle, the assumption about a finite growth rate of the solution (2.28) admits
inclusion of a portion from the upstream modes into the initial data [TF83b, Tum03].
However, the typical applications of the method are associated with downstream modes
only, and the upstream modes are excluded from the consideration.

Similar to the analysis of the initial-value problem, the integrals along the branch cut
sides can be written as one integral of the difference A' - A -, where superscripts + and
- indicate values evaluated at sides -y+ and -, respectively. Although the coefficients cj in
(2.26) are different from those defined in the Section 3.2, all formulas for A+ - remain
the same for the spatial Cauchy problem under consideration. Particularly, for branch cuts
corresponding to the acoustic waves, A3,4 = ±ik, where k > 0, we find

Ac,4 = A+ - =

c2 E 1275  + c3 E1 753  c4 E 1754  c6 E1 756  c8 E7 18 5  (I 5E+5 +  + + (.9
E175 3EI754  E 1753 E 17 54  E1753 E1 754  E 1753 E1 754  E1 753 E1 754

x (E5734ZI + E 1754z3 + E7153 z4+ E7134Z5 + E,534z7).

All functions on the right-hand side (2.29) are evaluated at the -Y+ side of the branch cut,
where z 3 - exp(+iky).

In the region of overlapping vorticity modes, we can use the result for the initial-value
problem to represent A+ - A- as a sum of stand-alone modes corresponding to A1,2 =

A7,8 = ±ik (k > 0)
A+ - A- =A,,,+ A,, 5 , (2.30)

where

( 1 E 1753  C2E 2753  + 4E 4753 + r6 E6 753  C8 E 8753

c E1753 E 27 53  E1 753 E 2753  E 1753 E 2753  E 1753 E 2753  E 1753E 2753  (2.31)

X (E 2 7 53 zI - E 17 5 3 Z 2 + E 1 2 75 z3 - E 17 23 z 5 + E1253 z7)

and

A ( Cl E 1 2 53  c4E 5234  +{ C6E 2563 + c7 E7253  c8 E8 253
E 2 7 5 3 E 2 8 5 3  E E 27 5 3 F 2 8 5 3  E 2 7 53 E 2 8 53  E 27 5 3 E 28 5 3  W 53E2 E 2853 (2.32)

X (E78 53 z 2 + E2785z 3 - E2 783 z5- E28s3 z7 + E 2753Z 8) •

We call modes (2.31) and (2.32) vorticity modes A and B, respectively. Here notation -Y+
corresponds to the branch-cut side where zi and z7 have asymptotics as - exp(+iky).

In the case of steady supersonic perturbations, there is an overlapping of two vorticity
modes and the entropy mode with A5,6 = ±ik (k > 0). For this case, we can also use the
result for the initial-value problem,

A+ - A- = A , + A,, 2 + A,,5 , (2.33)
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where A,j and A,,5 are given by (2.31), (2.32), and

SCE1283 c 4E 2834  c5 E2853  + 6 E2 8  c_E2793_

E 2 8 5 3 E 2 8 6 3  E 2 8 5 3 F 2 86 3  E 2 8 5 3 E 2 8 63  E 2 8 5 3 E286 3  E 2 8 5 3 E 2 3  (2.34)

X (E8563z 2 + F2 856Z 3 + E 2863Z5 - E 2853z 6 - E 2563Z8)

In (2.34), the side 7+ also means that z5 - exp(+iky).
In the case of steady subsonic perturbations, there is an overlapping of four modes. This

case has not been considered yet elsewhere. Similarly to the other cases, one can derive

A+ - A- = A,,1 + A,,2 + A,, 3 + A,,5 , (2.35)

where A,,3 is defined as follows

C E 62 18  C3 E 2863  c4E 2468 C5 E 6528  c7 E 6728

A,3 E 2 8 6 3 -2 4 8  E2 8 6 3 E2 4 6 8  E 28 6 3 E 2 468  E 2 8 6 3 F2 4 6 8  6 8 / (2.36)

X (E 6 34sZ 2 - E 2 4 6 8 z 3 - E 2 8 6 3 z4 - E 2 8 3 4 z 6 + E 2 46 3 z8) .

In addition, we should address the discrete spectrum, which is associated with poles
originating from zeros, p,,, of the equation E1357 (Pn) = 0. Their input into (2.28) is presented
by the residue values

Res n (Ap epc) - P [Z1 (c 2 E 2 3 5 7 + c4 E435 7 + c6E 6 3 5 7 + c8E83 5 7 )

+ Z3 (c 2 E1 2 5 7 + c 4 E 1 457 + c6 E 16 5 7 + csEs 5 7 ) (2.37)

+ z5 (c 2E 1327 + c4E 347 + csE 1367 + csE1387 )

+ z7 (c2 E1352 + c4E 1354 + c6E 1356 + csE135s)],

where the right-hand side is evaluated at p = p.. Taking into account that E1357 = 0, one
can derive from (2.37)

Resn (ApeP") = eP
n" (c 2 E 12 5 7 ± c 4 E 1 457 + c6E 17 6 5 ± c8E 15 7 8)

( Of.- 7 ) E1 457  (2.38)

X (z 1 E435 7 + z 3 E 45 7 + z 5 E 3 4 7 + z7E,354 ) .

The result (2.38) represents a discrete mode that is comprised of four fundamental solutions,
z1 , z3 , Z5 , and z7 , decaying outside the boundary layer. This result and the results for the
continuous spectra were verified with the help of Mathematica [Wol99].

One can see that input into the inverse Laplace transform (2.28) from the integrals along
branch cuts [(2.29), (2.31), (2.32), (2.34), (2.36)], and the residue values evaluated at the
poles (2.38) are written as stand-alone modes (vector functions) with coefficients depending
on the initial conditions AO(y, z),

A, (x,y)= d.,A, (y)e'', x + ] dj (k)A,,j(y)e'%(k)z dk. (2.39)
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Here, E-, and E- denote sums over the discrete spectra and branches of the continuous
spectra, respectively. The coefficients d, and dj also can be found from the initial data,
AO(y, z), using the biorthogonal eigenfunction system {A,o, B,,} defined in Appendix A.2.
The solution (2.39) provides the background for the multimode decomposition that will be
discussed later in this section.

Recapitulation of spectra

Continuous spectra

Although one can find properties of continuous spectra for perturbations in compressible
boundary layers elsewhere [TF83b, BM92, GT041, for the sake of clarity, we briefly recapit-
ulate these properties.

The structure of the 3D continuous spectra is similar to the 2D case discussed in [GT04]
(see Section 2.5.2). As in the 2D case, there are 7 branches. Three-dimensionality leads to
two vorticity modes, A and B (see the previous subsection with the spatial Cauchy prob-
lem formulation) stemming from the vector character of the quantity. There are branches
associated with the upstream modes that are of no interest to the present work. Figure
2.1(a) shows branches of the downstream modes in the complex plane a = -ip (p is the
Laplace variable in the previous subsection) at Mach number M = 5.95, Reynolds number
Re = 1500, Y = 10 -', and frequency parameter F = wji/pU, = 10-, where the subscript
e stands for the flow parameters at the edge of the boundary layer. In what follows, we
use the specific heat ratio y = 1.4, and assume that viscosity is a function of the temper-
ature in accordance with Sutherland's law. Results in figure 2.1 were obtained at Prandtl
number Pr = 0.72, the free-stream stagnation temperature To = 470K, and bulk viscosity
parameter e = 0.8 (see Appendix A.1). One can see two horizontal branches representing
the slow (SA) and fast (FA) acoustic waves. In the limit of high Reynolds numbers, the
branch points correspond to phase velocities c = 1 ± 1/M. The vorticity and entropy modes
are indistinguishable in the scale of figure 2.1(a), but they are not identical, as one can see
from figure 2.1(b). However, there is an overlapping of the modes at W = 0. In the limit of
high Reynolds numbers, the branch points of the vorticity and entropy modes are a w.
One can find more details about the branch points for 3D perturbations in [BM92].

In the case of 3D perturbations, the modes of continuous spectra are comprised of five fun-
damental solutions. Some of them are oscillating outside the boundary layer as - exp(±iky),
whereas the others are decaying. Figures 2.2(a,b) and 2.3(a,b) show real, u', and imaginary,
ui, parts of the streamwise velocity perturbations of the vorticity, entropy and two acoustic
modes in the case of a boundary layer over a flat plate with temperature factor TW/Tad = 0.1,
where T and Tad are the wall temperature and the temperature of the adiabatic wall, respec-
tively. We use the length scale H = (p x/pU,)'1/2 , where x is the distance from the leading
edge. The continuous spectrum parameter in these examples is k = 1. The other parameters
are the same as in figure 2.1, except the spanwise wavenumber, which is fi = 0.16. The
solutions are normalized by the wall condition du/dy(O) = 1. One can see that the vorticity
and entropy modes do not penetrate the boundary layer at these parameters, whereas the
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Figure 2.1: Branch cuts in the upper half-plane, a. M = 5.95, F = 10 - 4 
, Re = 1500,

I = 10 - 4 .

acoustic modes have velocity perturbations significantly larger than outside the boundary
layer. This phenomenon is the reason why the quality of perturbation measurements in
high-speed boundary layers depends on the level of the acoustic perturbations originated in
boundary layers over wind-tunnel walls.

Figure 2.4 shows branches of the continuous spectra in the complex plane, a, for a
subsonic boundary layer at Mach number M = 0.5, Re = 1500, F = 10- 4 , and 3 = 10 - 4 . In
the limit M -* 0, the branch cuts corresponding to the acoustic modes degenerate into the
imaginary axis of a. In the limit Re --+ oo, the acoustic branch cuts form a cross with the
midpoint at a = -M 2w/(1 - M2 ) [Fed82, ZT87].

Slow and fast discrete modes

As was found by [Mac69], the discrete spectrum of perturbations in supersonic boundary
layers is more complicated than in the subsonic case. [FK01] noticed that at high Mach
numbers (when the so-called second Mack's mode exists) there axe two discrete modes (stable
and unstable) that could be synchronized at some downstream coordinate, x, depending on
the flow parameters and the perturbation frequency. Because at small Reynolds numbers
one discrete mode is synchronized with the slow acoustic mode, whereas the other mode
is synchronized with the fast acoustic mode, [Fed03a] suggested calling them slow and fast
discrete modes, respectively. The synchronization means that these discrete modes could be
generated by acoustic waves interacting with the leading edge of a flat plate.

Both the slow and fast discrete modes could be involved in the laminar-turbulent transi-
tion scenario. For example, the decaying mode could be generated by the entropy or vorticity
modes of the continuous spectra. At the point of synchronism between the fast and slow
modes, the decaying mode can give rise to the unstable mode (switching of the modes),
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Figure 2.2: Streamwise velocity perturbation of vorticity mode A (a) and entropy mode (b).
M = 5.95, T/Td = 0.1, F = 10- 4 , Re = 1500, f = 0.16, k = 1.
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Figure 2.3: Streamwise velocity perturbation of the fast (a) and slow (b) acoustic modes.
M = 5.95, T/Tad = 0.1, F = 10 - 4 , Re = 1500, = 0.16, k = 1.
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Figure 2.4: Branch cuts at M = 0.5, F = 10- 4 , Re = 1500, = 10- 4

which may lead to the transition. The scenario suggested by [FK01] means that both the
stable and unstable modes are of interest for understanding transition mechanisms. Later
on, switching of the modes was observed in direct numerical simulations of perturbations in
high-speed boundary layers [MZ03b].

In order to clarify the terminology and to illustrate the motivation for analysis of stable
discrete modes, we provide an example of slow and fast discrete modes in a boundary layer
of a calorically perfect gas over a flat plate. The free-stream stagnation temperature To=
470K, the edge Mach number M = 5.6, the Prandtl number Pr = 0.71, and we employ
Stokes' hypothesis (e = 0 in the matrix elements of Appendix A.1).

Here is an example of a boundary layer on an adiabatic wall. In the limit of two-
dimensional perturbations, we choose a small spanwise wavenumber, f = 5.7 x 10- 5 . The
local Reynolds number, Re = 704. Figure 2.5 shows the map of eigenvalues obtained with the
help of the spectral collocation method. The frequency parameter is F = 150 x 10-6. One
can see the discretized continuous spectra. There are two horizontal branches corresponding
to the slow and fast acoustic modes, and a vertical branch corresponding to the vorticity
and entropy modes. Also, one can see fast (F) and slow (S) discrete modes. Figure 2.6(a,b)
illustrates real, a,, and imaginary, aj, parts of the downstream wavenumber a versus the
frequency. Lines SA and FA in figure 2.6(b) represent slow and fast acoustic modes with
phase velocities c = 1 T 1/M, respectively. Figure 2.6(b) also shows the line corresponding
to the phase velocity c = 1 that represents vorticity and entropy perturbations moving with
the free stream. One can see that at w -- 0 the discrete modes S and F are synchronized
with the slow (SA) and the fast (FA) acoustic modes. This synchronization means that there
is a channel of coupling between the acoustic and discrete modes.
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Figure 2.5: Eigenvalue map. M = 5.6, F = 150 x 10- 6 , Re = 704, 3 = 5.77 x 10- 5 .

At w z 0.12, the mode F is synchronized with the vorticity mode (c = 1). This synchro-
nization is accompanied by discontinuity in ai. As was discussed by [FT03], the discrete
mode coalesces with the continuous spectrum from one side of the branch cut and reappears
on the other side at another point. Mathematically, the pole associated with mode F ap-
proaches one side of the branch cut on the complex p plane. At the same time, another pole,
located on the lower Riemann sheet, approaches the branch cut from the opposite side. As
the pole on the plane coalesces with the branch cut, it moves to the upper Riemann sheet
while, simultaneously, the pole that was on the lower Riemann sheet moves into the complex
p plane at another point. The discontinuity of ai at the point of synchronism between a
discrete mode with the vorticity/entropy modes could also be noticed in plots published by
other authors [Mac69, EB93]. Usually, the discontinuity looks like a wiggle on the plots,
and it has not been interpreted as a discontinuity. [BM92] reported coalescence of discrete
modes with the vorticity/entropy branch cut in the complex plane a, but they did not report
the reappearance of a discrete mode from another side.

There is a synchronism between mode F and mode S at w P 0.13. However, there is
no coalescence of the eigenvalues. A model of two-mode synchronism considered in [FK91]
and [FKO1] explains branching of the modes at the point of synchronism. At this point, one
of the modes becomes unstable, whereas the other one moves toward positive aj. Although
in this example the modes have the same value of c, - w1a/r at w t 0.13, the minimum
of JaF - asl exists in the vicinity of w z 0.11, and this is actually the point of the modes'
branching. The synchronism between mode F and the vorticity/entropy modes accompanied
by the synchronism between modes F and S suggests that there is a scenario associated
with excitation of mode F by vorticity/entropy modes, and mode F can give rise to the
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Figure 2.6: Imaginary (a) and real (b) parts of the wavenumber. M = 5.6, Re = 704,
F=150x 10-6, 0 = 5.77 x 10- 5.

unstable mode S at the point of their synchronism. The aforementioned properties of discrete
spectrum are typical for high Mach number (M > 4) and an adiabatic wall.

Effect of three-dimensionality on the discrete modes can be depicted as follows. Figure
2.7(a,b) illustrates a, and ai for mode S as functions of frequency at three wavenumbers

= 5.77 x 10- , 4.62 x 10-2, and 9.24 x 10-2. One can see from figure 2.7 that there is
no significant effect on a,, and that a has two minima. The first minimum (at lower w)
demonstrates that the mode is more unstable in the case of three-dimensional perturbations,
whereas the magnitude of the second minimum decreases with an increase of 3. Usually, these
two peaks are associated with Mack's mode I and mode 2, respectively. This terminology
originated from Mack's analysis of inviscid perturbations [Mac69]. He found that an increase
of Mach number is accompanied by an increase of distinct unstable discrete modes. Using
asymptotic analysis, JGF89] showed that each amplified inviscid mode represents a separate
solution. At finite Reynolds numbers, the structure of the discrete spectrum is different.
Results in figure 2.7 correspond to one discrete normal mode, and the minima in ai are only
the footprints of Mack's mode 1 and mode 2.

Decomposition of three-dimensional perturbations

Examples when all components of the vector A0 are available

Recently, the multimode decomposition was successfully applied by [TWZ07] to an analysis
of CFD data in the case of two-dimensional perturbations (see Section 2.5.3). The results of
the spatial Cauchy problem subsection and the orthogonality relation (A.6) provide a tool
for decomposition of three-dimensional perturbations into normal modes of discrete and con-
tinuous spectra. To illustrate application of the method to three-dimensional perturbations,
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Figure 2.7: Imaginary (a) and real (b) parts of the wavenumber as functions of the frequency
at / = const. Mode S. M = 5.6, Re = 704.

we emulate the 'CFD' data by superposition of modes from discrete and continuous spectra,
and use the orthogonality condition in order to decompose the perturbation and to recover
weights of the modes.

In the first example, we consider superposition of mode S, mode F, and a vorticity mode A
in the boundary layer over a flat plate at M = 5.95, TwITad = 0.1. The frequency parameter
F = 10- 4 , the Reynolds number Re = 1895, and the spanwise wavenumber /3 = 0.16. The
parameter k of the vorticity mode is equal to one. The eigenfunctions of these modes are
normalized by the wall condition Ou/Oy(O) = 1.

Figure 2.8(a) shows superposition results of two discrete modes with weights Cs = 1
and CF = -1 for the slow and fast modes, respectively. Decomposition with the help
of the orthogonality relation (A.6) leads to the restored values of the coefficients Cs =

0.999996 + i 5.55698 x 10- 7 and CF = -1.00001 + i 1.78601 x 10- 6.
Figure 2.8(b) shows results when, in addition to the discrete modes as in figure 2.8(a),

there is a vorticity mode with weight Cv = 2. For this case, the decomposition with the help
of the orthogonality relation (A.6) leads to the coefficients Cs = 0.999999 + i 1.21594 x 10- 6

and CF = -1.00002 -i 3.90897 x 10-6.
Examples of decomposition when the perturbations were composed of the mode S (Cs =

1), mode F (CF = -1), and an acoustic wave are shown in figure 2.9(a,b). Figure 2.9(a)
illustrates the case when the fast acoustic wave was used with CFA = 2, k = 1, while the
example with the slow acoustic wave (CsA = 2, k = 1) is shown in figure 2.9(b). Results of the
decomposition for the case corresponding to figure 2.9(a) were CS = 0.999966 - i 4.79233 x
10-6 and CF = -1.00008 + i 6.22089 x 10- 5 . For the example corresponding to figure 2.9(b),
we found Cs = 0.999948 - i 1.70326 x 10- 4 and CF = -0.999860 + i 1.87548 x 10'.
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An example with partial data available

Similarly to the analysis of two-dimensional perturbations in Section 2.5.2, one can consider
decomposition of three-dimensional perturbations when only partial information is available,
as happens when experimental data are used. To proceed with the decomposition, one has
to make an assumption about the modes that had input into the measured function. The
accuracy of the assumption can be checked a poste7iori by comparing the measured function
to that constructed with the weights found from the decomposition.

Decomposition of steady three-dimensional perturbations into modes of continuous spec-
tra is a more complicated problem because there are overlapping vorticity, entropy, and
pressure (subsonic flow) modes of the continuous spectra. In the case of incompressible flow
[Tum03], the expansion into vorticity modes of the continuous spectra was approximated by
a sum of the finite number of the modes with unknown coefficients that were found from
a system of algebraic equations. The same algorithm, in principle, could be utilized for
decomposition of perturbations into the vorticity modes of the continuous spectra in a com-
pressible boundary layer. To illustrate the application, we consider a steady perturbation
corresponding to optimal transiently growing disturbances at Mach number M = 3. We
emulate the 'measured' velocity components and temperature perturbations by the solutions
of the linearized boundary layer equations over a flat plate with an adiabatic wall [TR031.
The Reynolds number is based on the free-stream velocity and the Blasius scale H is equal
to 301.64. The spanwise wavenumber, /, is equal to 0.45.

For the purpose of this analysis, we assume that there is no influence from the upstream
modes, and we carry out the decomposition only into two vorticity modes, A and B [see Eqs.
(2.31) and (2.32)] and entropy modes. For this type of perturbations (counter-rotating
streamwise vortices), we assume that input from the acoustic branch cuts is negligible,
and they are not included in the decomposition algorithm. For the present example, the
continuous spectrum is discretized by 400 modes on the interval k E (0, 4).

Overlapping of the entropy and vorticity modes leads to significant complication of the
algorithm. In order to avoid the overlapping, we used eigenfunctions of the continuous
spectra at small w. Figure 2.10(a) shows weight, JCJ, for mode A obtained at w = 10-4,

10 - , and 5 x 10 - to illustrate convergence as w -* 0. For the numerical decomposition into
modes of the continuous spectra, in what follows, we use w = 5 x 106. The magnitudes
of the weights for modes A and B and for entropy modes axe shown in Figure 2.10(b).
Figures 2.11(a,b) and 2.12 demonstrate a comparison of the x-, y-, z-velocity components,
and temperature 'measured' and composed with the found weights for the vorticity and
entropy modes. Similarly to the incompressible case [Tum03], one can see that there is a
discrepancy between the 'measured' and composed data of order 1/Re.

Discussion of the results

The spatial Cauchy problem was solved for three-dimensional perturbations in compressible
boundary layers. Although the numerical examples and the matrix elements in Appendix
A.1 were given for two-dimensional boundary layers, all the results of the spatial Cauchy
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Figure 2.10: Vorticity and entropy modes in the multimode decomposition when three ve-
locity components and temperature are 'measured': a) Vorticity mode A at W = 10-4, 10-1,
and 5 x 10-6; b) Vorticity modes A and B and entropy mode at w =5 x 10-6. M 3,
Re =301.64, fi=0.45.
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Figure 2.11: Comparison of 'measured' (input) and composed velocity components. M =3,

Re = 301.64,6 f= 0.45.
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Figure 2.12: Comparison of 'measured' (input) and composed temperature perturbations.
M = 3, Re = 301.64, 0 = 0.45.

problem section are valid [after minor adjustments in (2.24)] for three-dimensional boundary
layers when the mean flow profiles are independent of the spanwise coordinate, z. These re-
sults provide a tool to decompose perturbations given only at a local station, x, into modes
of continuous and discrete spectra. In order to be able to distinguish the modes, one needs
amplitude and phase distributions for pressure, temperature, and velocity components, to-
gether with some of their derivatives with respect to the coordinate x. This is possible in
computational studies of perturbations introduced into boundary layers. The latter might
be helpful to elucidate underlying mechanisms that are important in laminar-turbulent tran-
sition scenarios. For example, we discussed the synchronism of discrete modes F and S. One
of them might be unstable, and it could be responsible for transition to turbulence. The
other decaying mode might be synchronized with vorticity and entropy modes. It means
that there exists a channel: 'vorticity/entropy modes' -- 'decaying discrete mode' --+ 'un-
stable discrete mode' -- 'transition to turbulence' [FK01]. In conventional computational
studies, one could observe the generation of the instability mode only in the far field, where
the unstable mode dominates the other modes of discrete and continuous spectra. However,
the significant element of the scenario - the decaying mode - could not be attained in the
analysis. The present method allows evaluation of the amplitude of the decaying modes in
order to provide a more rigorous background for interpretation of CFD results (see Section
2.5.3).

Decomposition of perturbations when only partial information is available is an ill-posed
problem. Nevertheless, one can apply a regularization procedure to recover the flow field.
Actually, the assumption that the flow field is composed of downstream modes only is an

27



example of regularization leading to decomposition based on measured velocity components
and temperature only. We expect that developed methods of regularizations for ill-posed
problems [TA77, TGSY95] may allow a further reduction of measured data under reasonable
assumptions.

Although the considered examples are associated with the cases when the solution is com-
prised of the downstream modes only, the orthogonality condition (A.6) allows distinguishing
upstream modes in the initial data as well. The main constraint on the initial data is that
it must be orthogonal to short-scale upstream modes in order to provide finite downstream
growth rate for the solution, and to carry out the inverse Laplace transform.

The solution in the present work is based on the parallel flow approximation. This ap-
proximation is valid when the length scale of interest is much smaller than the characteristic
scale of the unperturbed flow in the downstream direction. Results of the present work
are also based on the assumption that the normalization constant F in (A.6) is not equal
to zero. [FK02] showed that the constant is equal to zero at the branching point of two
discrete modes, and the nonparallel flow effects are to be taken into account in order to re-
solve the singularity. Analysis of discrete and continuous spectra by [TWZ07] demonstrated
that the normalization constant tends to zero also in the case of synchronism between the
discrete mode and the continuous spectra (Section 2.5.3). Therefore, an extension of the
theoretical model by [FK02] is required when one needs to resolve the mode close to a point
of synchronism with the continuous spectra.

Another issue that we find worthwhile to address in this discussion is the terminology
used for discrete modes in high-speed boundary layers. Historically, the terminology was
introduced by [Mac69]. In his inviscid analysis of perturbations, Mack discovered the
existence of new instability modes. At finite Reynolds numbers (see our example in the
spectra recapitulation part, there is only one unstable mode having signatures of Mack's
mode 1 and mode 2 (see figure 2.7a). Mathematically, this is a single mode associated with
a pole in the solution (2.26), and the pole is moving around the complex plane in such
a way that one can see two peaks in the imaginary part of a. [[BM92] also emphasized
that there exists only one unstable eigenvalue, a, for a given 0.] These two peaks are
associated with Mack's mode 1 and 2. The first peak demonstrates that three-dimensional
perturbations grow faster than two-dimensional, whereas the second peak has the opposite
trend. One should keep in mind that the terminology based on Mack's modes addresses
different behaviors of the same unstable mode at low and high frequencies.
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2.3 Receptivity to 3D actuators placed on the wall

2.3.1 Roughness-induced perturbations in incompressible bound-
ary layer

This section is based on the paper published in collaboration with E. Reshotko [TR051.

Tiny roughness elements might be responsible for laminar-turbulent transition associated
with the transient growth mechanism of perturbations introduced into the boundary-layer
flow [Res0l, RTOO]. Extensive theoretical analyses of optimal disturbances in incompressible
and compressible flows [TRO1, TR03] led to correlations for transition Reynolds numbers con-
sistent with the available experimental data [RT04] related to roughness-induced transition.
From the theoretical studies, optimal transient growth is associated with streamwise vor-
tices. To investigate the transient growth mechanism experimentally, an array of roughness
elements was used in [Whi02, WE97]. Although the experimental results agree qualitatively
with the theoretical ones, there are quantitative differences that will be discussed later. In
order to resolve the discrepancy and to complete the transient growth scenario, one has to
solve the receptivity problem, i.e., find the flow perturbation generated by an array of humps.

Boundary-layer flows in the presence of three-dimensional (3D) humps have been investi-
gated extensively with the help of asymptotic methods [SSB77, BL85, Bog86, Bog87, Bog88]
in the limit e = RL118 -+ 0, where RL is the Reynolds number based on the characteristic
length of the oncoming boundary layer, L, and the freestream velocity, Uo. The asymptotic
methods are very helpful for an overall understanding of flow structure and for the purpose of
deriving the governing parameters, whereas the quantitative results might be questionable at
finite Reynolds numbers. Therefore, it would be preferable to solve the receptivity problem
with the help of a method that is applicable to the case of finite Reynolds numbers.

The flow response to a small roughness element on the wall is a particular example of
the general receptivity problem. Usually, the term "receptivity" is used for the generation
of instability modes only. Because the method applied in the present work originated as a
method for solving receptivity problems in boundary layers at finite Reynolds numbers, we
would like to outline its origin and how it was verified by comparison with other methods
(we do not present a review of the receptivity problem, and the list of references includes
only some of the earliest papers and the papers relevant to the verification of the method
used in the present work).

[Mor69, Res76] clarified the important role of receptivity in the laminar-turbulent tran-
sition process. These papers motivated intensive investigations of various mechanisms re-
sponsible for excitation of unstable Tollmien-Schlichting (TS) waves. A partial listing of the
vast bibliography on the topic is presented in [Cho98, SRK02, Fed03a].

Theoretical models may be categorized according to their underlying principles as fol-
lows: (i) the asymptotic analysis of the linearized Navier-Stokes equations at large Reynolds
numbers (RL -* oo); (ii) the finite Reynolds-number approach based on a combination of
analytical models with numerical representation of normal modes; and (iii) direct numerical
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simulation. In what follows, we shall address only (i) and (ii).
The first results on the generation of TS waves within the scope of asymptotic methods

(the triple-deck theory) were obtained by Terentev [Ter8l, Ter84, Ter851 for an actuator
on the plate surface. The first theoretical model on the generation of spatially growing
TS waves at finite Reynolds numbers was suggested by Gaster [Gas65]. He considered a
localized periodic-in-time forcing on the wall and outlined how to evaluate the TS wave
amplitude. [AP79] published experimental data on the excitation of TS waves by acoustic
waves interacting with a roughness element and suggested a theoretical model, which in-
corporated simultaneously solving of the direct and adjoint Orr-Sommerfeld equations. In
succeeding years, this approach led to the formulation of the biorthogonal eigenfunction sys-
tem [ZST80, TF83a, TF83b, TF84, Fed84], which turned out to be a powerful technique in
solving receptivity problems for spatially developing perturbations. The bulk of the results
obtained with this approach were presented by [Fed82].

However, the aforementioned results at finite Reynolds numbers suffered due to uncer-
tainty in the path of integration in the inverse Fourier transform at supercritical frequencies
of the forcing, and the hypothesis by [BR82] was adopted in order to include the unstable
discrete mode into the downstream solution. Using the triple-deck theory, [Ter84] justified
the hypothesis of [BR82]. [AR90] revisited the problem of a vibrating ribbon in a boundary
layer at finite Reynolds numbers and resolved the question concerning the contour in the
inverse Fourier transform. The result provided a rigorous basis for the analysis of receptivity
problems at finite Reynolds numbers. Later on, [Cro92, CS921 extended the analysis to the
problem of acoustic waves scattering into TS waves on localized irregularities.

Up to the point where the solution of the problem is presented as an inverse Fourier trans-
form, the finite Reynolds number approach [AR90, Cro92, CS92] and the method based on
the biorthogonal eigenfunction system [TA97] are identical. The difference is only in evalu-
ation of the contributions from the poles and from integrals associated with the continuous
spectrum. In [AR90, Cro92, CS92], the pole contribution was evaluated in a straightforward
manner, whereas solution of the adjoint problem in [ZST80, TF83a, TF83b, TF84, Fed841
served as a convenient filter to evaluate the contribution. It was proved in [TA97] that re-
sults of the receptivity problem solution for a localized actuator on the wall obtained within
the scope of the biorthogonal eigenmode expansion and with the finite Reynolds-number
approach [AR90] are identical.

In this section, the biorthogonal eigenfunction system is applied to the problem of flow
perturbation due to a three-dimensional hump (an array of humps) placed on the wall. Due
to some obstacles in the extension of the biorthogonal eigenfunction technique to the 3D
stationary perturbations, the method had not been applied yet to this type of problem.
Recently, however, these issues were resolved in [Tum03]. This makes it possible to revisit
the problem of the 3D humps with the help of the biorthogonal eigenfunction expansion.

Problem formulation

We consider a steady two-dimensional incompressible boundary layer in the parallel flow
approximation. The coordinate x corresponds to the distance along the surface, y is the
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distance from the wall, and the coordinate z represents the distance in the spanwise direction.
A localized hump of shape y,(x, z) = hf(x, z) is placed on the wall, where h stands for the
height of the hump and max.,z(f) = 1. The value of h is assumed to be small enough (less
than the viscous sublayer thickness [SSB77], h, = EL) to employ the linearized Navier-
Stokes equations and the linearized boundary conditions on the wall

y=O: u=-hf(x,z)U V, v=w=O (2.40)

where (u, v, w) are the perturbation velocity components, U (y) is the undisturbed flow
velocity profile, and U. = (dU/dy)Y=0 . Far from the hump (y - oo), the perturbations are
assumed to be decaying.

Formal solution

We introduce the vector-function A = (u, Ou/y, v,p, w, aw/Oy, Ou/ax, v/Ox, aW/aX)T
comprised of nine components, where p stands for the pressure perturbation. The superscript
T stands for "transposed". After Fourier transform with respect to x and z, the linearized
Navier-Stokes equations are written in the form [Tum03]

EdA,,
EdA = H1A, + ia,H 2A, (2.41)

where E, H1 , and H2 are 9 x 9 matrices (their definitions are given in [Tum03j); a,, is the
Fourier transform variable corresponding to the coordinate x; and A, is the Fourier transform
of A. Actually, Eq. (2.41) represents the continuity equation and three momentum equations
supplemented by the definitions of au/Oy, 9w/fy, ou/ax, Ovlox, and 0w/ax via the other
components. The boundary conditions are the following:

y =0: Avj=fi(a,0), Av 3 =Av5=0 (2.42)

y -+0: I0,0 0-*0

where

iz ((o, ?) = -hUmp ( ,, ) (2.43)
+00 +00

1 f-oqo

p(a, = (27)2 J ] f (x, z) e-'----'3dxdz

The system of ODE (2.41) has six fundamental solutions, Zi(y),...,Z 6 (y). Their asymp-
totic behavior outside the boundary layer can be easily found as "-. exp(Ajy), with complex
numbers Aj, j =1,...,6

A1  = -Ta+-, 2 , A2 = V(2v+ 162

A3,5  - -= V+ ) + ffa,, (2.44)

A4,6 = /a2 + 6 + iRa,,
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Figure 2.13: The integration path in an evaluation of the inverse Fourier transform with
respect to a,.

where R is the Reynolds number.
In the general case, three fundamental solutions are decaying outside the boundary layer,

whereas the other three solutions axe exponentially growing. To be specific, we choose Z I (y),
Z3(y), and Z5 (y) as the decaying solutions. Therefore, the solution of system (2.41) satisfying
the boundary conditions (2.42) can be written as follows:

Av (y; av, ) = U (z33z55 - z35z53) y. ZI (y)
E135

+ U (z35z51 - z3 1Z55 )y=0 Z 3 (Y)
E135

+ U (z31Z53 -Z 3Z51)y= 0 Z5 (Y) (2.45)

(Z11 Z13 Z15
E135 =det z31 z3 z35

Z5 1 Z53 Z55  =o

where zj stands for ith component of the jth vector. Finally, the formal solution corre-
sponding to the spanwise wave number/3 will be written as

+00

AO (x, y) = J Av (y) e*, da,, (2.46)

After the inverse Fourier transform with respect to fl, one can find dependence on the
coordinate z, as well.

Up to this point, our analysis is equivalent to the finite Reynolds-number approach [AR90,
Cro92, CS92]. The inverse transform (2.46) can be evaluated numerically in a straightforward
manner, or one can use an integration path over the upper half of the complex a, plane,
(x > 0), as is shown in figure 2.13. The result will be recast as a sum of integrals along
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the branch-cuts (only one branch-cut exists for stationary perturbations) and the residue
values originating from the pole singularities (there are no pole singularities in the stationary
perturbation case). In the present method, we employ the result in [Tum03] that solution
(2.46) can be recast as a sum of normal modes of the continuous spectrum (pressure and
vorticity modes), and the coefficients can be determined with the help of the orthogonality
condition between the direct and adjoint eigenmodes.

Biorthogonal eigenfunction system

For the sake of clarity, the definition and properties of the biorthogonal eigenfunction system
are briefly recapitulated. We introduce the following biorthogonal eigenfunction system
{A.(y),B.(y)}:

dA,
E dy H IA , + iaH 2A ,. 

2.7
y = 0: A,I = A =A 5 =0 (2.47)
y--+=±oo: IA,jI<oo, (j=1,...,9)

- E- =HTB,, + iaHTB,,
dy 

(2.48)y= 0 : B.2 = B.4 = B.6= 0 (.8

yv- +±oo I B.j I < oo, (J =1.,9)

where a is a complex number and the subscript 'a' indicates the corresponding solution.
With the help of the analysis of the fundamental solutions from [Tum03], we arrive at the
conclusion that the eigenvalues a belong to the discrete or continuous spectrum. In the case
of the continuous spectrum, a are found from equations A = -k 2 , j =1,...,6, where k is
a real parameter (k > 0) and Aj, j = 1, ... , 6 are defined in Eq. (2.44). The corresponding
solutions, a(k), represent the branch-cuts in the complex plane on figure 2.13.

Actually, Eq. (2.48) defines the complex conjugate of the conventional adjoint problem
(in the numerical implementation, we use only the complex conjugate solution). The system
of equations in the direct problem (2.47) can be recast as follows:

dzd= Hoz (2.49)

whereas the adjoint problem (2.48) can be recast as

dY T

dy Ho (2.50)
y=o: Y2 =Y 4 =Y6 =0
y-- oo JI < oo, 1= , ..., 6)

Elements of the matrix H0 are given in [Tum03J. One can find the following relationship
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between the solutions of (2.48) and (2.50):

B.i = Y1, B.2 = Y2 , B.3=Y3,

= Y4, B.5 = Y5, B = Y6,
B. 7 = iaB.2, B.8 iaBA (2.51)

R

B.9 = iaB,a

Modes of the continuous spectra outside the boundary layer have asymptotic behavior
- exp(±iky). There are downstream and upstream modes [Tum03]. Because we are going
to consider perturbations downstream from the hump, only downstream modes will be taken
into account. Among these downstream modes, one can recognize pressure modes with the
streamwise wave number

a = 0 2 +,3 2, k > 0 (2.52)

The pressure modes have a pressure perturbation not equal to zero outside the boundary
layer, whereas the vorticity perturbation is equal to zero. As a result of the 3D character of
the problem, there are two types of vorticity modes with the streamwise wave number

iR (1 -) + R

a=+ (i +(kV~ ) (2.53)

The vorticity modes have a zero pressure perturbation outside the boundary layer and a
non-zero vorticity perturbation. In order to distinguish between the two types of vorticity
modes, they were referred to as modes "A" and "B", respectively, in [Tum03]. The following
orthogonality relation is valid [Tum03]:

0 0 
9

(H2A,, Ba,) J E H2mA.jB.,mdY = QA,, (2.54)
0 j,rn=--

where Aa,a, is the Kronecker symbol if a or a' belongs to the discrete spectrum; A ,. =
6(a - a) is a delta-function if both a and a' belong to the continuous spectrum. Coefficient
Q on the right-hand side of (2.54) depends on normalization of A,(y) and B"(y).

Contribution of the modes in the formal solution

It was shown in [Tum03] that the eigenfunction system is complete, i.e., a spatially grow-
ing/decaying solution of linearized Navier-Stokes equations can be presented as an expansion
into the eigenfunction system. In the case of steady perturbations, it means that solution
(2.46) can be presented as follows:

o

Ap, = ZJ cj(k)A. (y)e"'(k)'dk (2.55)

S0
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where E, stands for summation over the downstream pressure and vorticity modes and aj
corresponds to the downstream pressure or vorticity modes from Eqs. (2.52) and (2.53),
respectively.

With the help of the orthogonality condition (2.54), one can find from Eq. (2.55) at some
distance x

C ex= (H 2A,Bj) (2.56)Qi

If we consider the dot-product of Eq. (2.41) and B% and integrate with respect to y over
the interval [0, co), we arrive at the following relationship:

(H 2A,,Ba) = (A,, 1 ,)y= _i (a , ) B,i,w (2.57)

where B,,ji, is the first component of vector B, evaluated at y = 0.
Substitution of the formal solution (2.46) into Eq. (2.56) together with Eq. (2.57) leads

to the following result

+00

cj(k) +00 da. (2.58)
-00

By closing the path of integration in the upper half-plane, one can find the coefficient as the
residue value at a, = aj

2't27rhu ,"

cj(k) = L2.^ (aLj,f3) Ba,,w = U P(aj,h) B.h,. (2.59)

Finally, substitution of coefficients cj(k) into Eq. (2.55) provides the solution of the recep-
tivity problem.

Numerical examples

For the purpose of illustration, we consider an array of humps (figure 2.14). In this case, we
use a Fourier series instead of the Fourier transform with respect to the spanwise coordinate,
z. In the first example, the parameters are chosen in accordance with experimental conditions
[WE97] in a boundary layer over a flat plate. The roughness strip was placed at X,,gh = 300
mm. The distance between the centers of the dots was equal to L, = 19 mm. The unit
Reynolds number was equal to U0 0/ = 627 x 103 m - 1. It was found that the base flow
parameters fit the Blasius solution, with the virtual origin at x0 = 58 mm. Therefore, the
Blasius length scale is H = L '(X,ough - xo)/U 0 = 0.621 mm. The corresponding Reynolds
number, R = U,,.H/v, is equal to 390. The roughness strip was composed of dots of diameter
D = 6.35 mm (D/H = 10.23) and having a height of h = 0.47 mm. One can recognize that
the height (h/H = 0.757) is too large to use the linearized boundary conditions (2.40).
Therefore, the linearized analysis can only qualitatively approximate the experiment.
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Figure 2.14: The array of humps.

Because 21rH/Lz = 0.205, we are considering the following spanwise wave numbers:
/3. = n x 0.205, n = 1, 2, ..., 12. For the purpose of illustration, we exclude input from

= 0. This allows exclusion of the pressure modes from consideration because they have
Im(a) > ,3, and one can choose a distance x downstream from the hump where the input of
the pressure modes will be small in comparison with the input from vorticity modes "A" and
"B". Integrals with respect to the parameter k were evaluated numerically on the interval
0 < k < 12 (similarly to [Tum03]) with 250 modes on the interval. The number of modes
was chosen after convergence tests with up to 500 modes on the interval.

Figures 2.15 and 2.16 demonstrate the results of the summation of the first 12 terms
of the Fourier series for the velocity perturbations downstream from the roughness strip
at a distance equal to 5.51D (corresponding to 35 mm). Figure 2.15 shows contours of the
streamwise velocity perturbation in the y-z plane. One can see the wake region downstream
from the hump and high-speed streaks aside the hump. Velocity perturbation in the high-
speed streaks is above 10 - , whereas the velocity perturbation in the wake region is about
-4 x 10- 3 . A vector plot of the flow field in the y - z plane is shown in figure 2.16. One can
see that there is a pair of counter-rotating streamwise vortices. This topology of the flow
field is associated with very small humps represented by the linearized boundary conditions
(2.40), and it is in agreement with the result obtained within the triple-deck asymptotic
analysis [TR04b]. Recently, [FC04] carried out a numerical simulation of the flow accurately
resolving the shape of the hump. Their results revealed that there is a pair of two coun-
terrotating streamwise vortices in the near field. The difference between the linear solution
and the numerical result is attributed to the nonlinear character of the receptivity problem.00

Energies of the first six spanwise Fourier harmonics, E,, = f u. (y) d (y/H), evaluated with
0

the streamwise velocity perturbation at z = 0 are shown in figure 2.17. At the end of the
interval, (x - Xrough) /H = 120, harmonics n = 1, 2, 3, and 5, as one can see from figure
2.17, are the dominating ones, whereas the experimental [WE97] and computational [FC04]
data demonstrate that the harmonics are ordered as 3, 4, 1 and 2.
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Figure 2.15: Contours of the streamwise velocity perturbation downstream (Ax =5.51) from
the hump (dot) in steps of 0. 558 from -3.91 to + 1. 11 (the values are multiplied by 103). The
length scale is equal to H =0.621 mm.
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Figure 2.17: Energies of the spanwise Fourier harmonics versus the downstream coordinate
(x - Xrough) at parameters corresponding to [WE97].

Another example is associated with the numerical simulation of flow behind an array
of roughness elements by Joslin and Grosch [JG95]. They solved nonlinear equations for
perturbations, but the boundary conditions were linearized as in Eq. (2.40). The goal of
[JG95] was to simulate the experimental conditions of [GGJ941, where a hump was located
in a boundary layer over a flat plate at 400 mm from the leading edge. For purposes of the
numerical simulation, the array of humps was chosen with a spanwise period of L, = 50 mm.
The local Reynolds number based on the displacement thickness, P., was equal to 1200 and
the local displacement thickness, 6*, was equal to 1 mm. The shape of the hump chosen for
the computations was defined by the following equation JJG95]

h(x,z) = acos3 (rA) cos 3 (7Z) (2.60)

where Ax and Az are measured from the center of the hump, amplitude a = 0.1, 1x = 15.9,
and 1;, = 13 (all these parameters are scaled with the displacement thickness, 6*, as it was
chosen in [JG95] in order to simplify comparisons). In this example, 27r6*/L, = 0.126,
and, similarly to the previous example, we include only the first 12 harmonics with 3, =
n x 0.126 (n = 1, 2, ..., 12). Because the closest velocity field in the y - z plane was reported
at dimensionless x = 503 (Ax = 103 downstream from the hump), we solve the receptivity
problem and find the flow field at this distance in accordance with the method described
above. Although for this distance (about 100 displacement thicknesses) nonparallel flow
effects have to be taken into account, our results are based on the parallel flow approximation.
The height of the hump (0.15*) is still large for the linear receptivity problem, and it should
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Figure 2.18: Contours of the streamwise velocity perturbation downstream from the hump
(Ax = 103) as in [JG95] in steps of 0.362 from -2.83 to + 0.431 (the values are multiplied
by 10'). The length scale is equal to (* = 1 mm.

be taken into account in the following comparisons with computational results.
Figure 2.18 shows contours of the streamwise velocity perturbation in the y - z plane.

One can see the wake region downstream from the hump and high-speed streaks aside the
hump. Velocity perturbation in the high-speed streaks is about +0.5 x 10- , whereas the
velocity perturbation in the wake region is about -3 x 10- 4 . These values are different from
those reported in [JG95] (+0.48 x 10 - 3 and -1.69 x 10 - 3 respectively). Contours of v? + w2

in the y-z plane are shown in figure 2.19. Our results correspond to a maximum value about
9 x 10- 6, whereas the authors of [JG95] report 2.62 x 10 5 . A vector plot of the flow field in the
y - z plane is shown in figure 2.20. The linear theory gives only a pair of counter-rotating
streamwise vortices, whereas the vector plot in [JG95] has a more complicated structure.

00

Energies of the first six spanwise Fourier harmonics, E, = f u2 (y) d (y/5*), evaluated with
0

the streamwise velocity perturbation at z = 0 are shown in figure 2.21. In this case, one can
see that harmonics ni = 2 and 3 overcome the first one at (x - Xrough) > 61,.

In the following example, we consider the same flow parameters corresponding to figures
2.18-2.21, but the shape of the hump is replaced by a rectangle having 1, = 15.9 and I4 = 13.
The height of the hump is the same, a = 0.1. Figure 2.22 shows contours of the streamwise
velocity in the y - z plane at Ax = 103. One can see that there are two relatively high-speed
streaks in the wake region. Comparison of the results in figures 2.18 and 2.22 illustrate the
hump geometry effect.
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Figure 2.19: Contours of v2 +w 2 in the y-z plane downstream from the hump (Ax = 103)
as in [JG95] in steps of 0.837 from 0.837 to 8.37 (the values are multiplied by 106). The
length scale is equal to P" = 1 mm.

2.5

2

)- 1.5

0.5

S-4 -3 -2 -1 0 1 2 3 4 5
AZ

Figure 2.20: The vector plot corresponding to figures 2.18 and 2.19 in the y - z plane. The
length scale is equal to 6* = 1 mm.
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Figure 2.21: Energies of the spanwise Fourier harmonics versus the downstream coordinate

(x - xrough) at parameters corresponding to [JG95].
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Figure 2.22: Contours of the streamwise velocity perturbation downstream from the rectan-
gular hump (Ax = 103) in steps of 0.731 from -4.18 to +2.4 (the values are multiplied by
104). The length scale is equal to 3* = 1 mm.
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Discussion

The linear receptivity of the boundary-layer flow to a 3D hump has been solved with the
help of the biorthogonal eigenfunction system. This approach provides a convenient tool
to filter out the amplitude of a normal mode representing the flow field. Only the formal
solution (2.55) of the elliptic boundary value problem for the perturbations had to be found
in order to filter out the modes of interest. As a result, the flow field in the y - z plane could
be computed locally on a conventional computer.

The triple-deck asymptotic analysis [SSB77, BL85, Bog86, Bog87, Bog88] of perturba-
tions in the vicinity of a three-dimensional hump revealed that the linearized boundary
conditions are applicable only when the height of the hump is much smaller than the viscous
sublayer thickness, i.e., h << h_ = OL. For example, h,/* is 0.13 and 0.11 in [FC04] and
[JG95], respectively. If the height is comparable with the viscous sublayer thickness h, or
larger, the governing equations in the vicinity of the hump axe also nonlinear (boundary-
layer equations), whereas in the main and the outer decks (the main and the outer parts
of the boundary layer, respectively) the governing equations are linear. In the considered
examples, we compared the results of the linear theory with the computational results at
heights, h/*, equal to 0.44 and 0.1 (heights of roughness elements considered in [FC04] and
[JG95], respectively). As expected, these heights are too large to be treated within the scope
of the linear theory, and our results illustrate the discrepancy between the linear theory and
the computations stemming from the nonlinear character of the receptivity problem.

In both cases [FC04, JG95], the choice of parameters was motivated by available exper-
imental data [WE97, GGJ94] that were limited by the desirable accuracy in measurements
of small velocity perturbations. Because the numerical simulations [FC04, JG951 require
supercomputing, we do not have parametric studies of flow past roughness elements in or-
der to explore effects of the roughness shape. One should expect that the results can be
strongly affected by the geometry. For example, [AS87] observed a pair of counter-rotating
streamwise vortices (standing vortices in their terminology) behind a hemisphere placed on
the wall, whereas they were not observed behind a half teardrop obstacle. The theoretical
model developed in the present work may serve as a tool to explore the geometry effects at
the limit of small heights.

In order to incorporate the influence of roughness-induced perturbations into the tran-
sition prediction theory [RT04], effects of roughness geometry, compressibility and temper-
ature factors should be included. For this purpose, the developed theoretical model has to
be extended to the case of compressible boundary layers, and the initial amplitude of the
perturbation has to be derived from the receptivity analysis.

The flow field behind the hump possesses a pair of streamwise vortices that bring down
the high-speed fluid, whereas the streamwise velocity perturbation in the wake is negative.
One can expect that far away from the hump, the velocity perturbation may change its sign
due to the downwash motion induced by the streamwise vortices. We have solved linearized
boundary layer equations with inflow obtained from the linear receptivity problem [TR04b]
in order to explore the possibility of the velocity sign reversal. However, observed weak

transient growth was caused by a mismatch in the inflow data, and the corrected results
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did not demonstrate the effect, and the perturbation decayed gradually with the distance
from the hump. Numerical results [FC04, JG95] and experimental data [WE97] revealed
that transient growth can be observed downstream from an array of humps for some span-
wise Fourier harmonics. It might be that the effect is associated with the strong nonlinear
receptivity mechanism responsible for the near-field perturbation in the computations and
the experiment.
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2.3.2 Roughness-induced perturbations in a compressible bound-
ary layer

Recently, formulation of the biorthogonal eigenfunction system was extended to the case of
three-dimensional perturbations in compressible boundary layers in Ref. [Tum06c]. This
extension allows revisiting the receptivity problems with a three-dimensional source of per-
turbations placed on the wall when a continuous spectrum is of interest as well. It might
be an oscillating membrane installed on the surface, a three-dimensional roughness element,
periodic-in-time blowing and suction through a hole, wall-temperature perturbations, etc.

At the present time, there are only some limited results on the receptivity to three-
dimensional perturbations in compressible boundary layers at finite Reynolds numbers. Tu-
min [Tum831 considered the vibrating surface of an infinite swept wing. Fedorov [Fed88]
applied the biorthogonal eigenfunction technique to crossflow receptivity with a roughness
element placed on a swept wing wall. Manuilovich [Man89], Crouch [Cro93], Choudhari
[Cho94b], and Ng and Crouch [NC99] analyzed crossflow receptivity in three-dimensional
incompressible boundary layers within the scope of the finite Reynolds number approach.
Balakumar and Malik [BM92] analyzed the receptivity of supersonic boundary layers to a
point source of blowing and suction on the wall. In addition to the discrete modes, they also
included input from the continuous spectra in the consideration.

The objective of the section is to solve the receptivity problem when three-dimensional
perturbations in a compressible boundary layer are generated by an actuator (periodic-
in-time or stationary) placed on the wall by using the biorthogonal eigenfunction system
considered in T06.

Problem formulation and formal solution

We consider a steady two-dimensional compressible boundary layer in the parallel flow ap-
proximation. The coordinate x corresponds to the distance along the surface, y is the dis-
tance from the wall, and the coordinate z represents the distance in the spanwise direction.
We consider two problems: blowing-suction through the wall with the amplitude function
v,,, (x, z), and a localized hump y,w(x, z) = f(x, z) placed on the wall. The height of the
hump and the intensity of the blowing-suction are assumed to be small enough to employ
the linearized Navier-Stokes equations and the linearized boundary conditions on the wall.

We introduce the vector-function

A (x, y, t) = (u, Ou/Oy, v, ir,O, Ol/ay, w, ow/Oy, (2.61)

4/ax, OV/1x, (0/0x, OW/x, Ou/Oz, Ov/Oz, a0/Z, aw/z)T (
comprised of 16 components, where (u, v, w) are the perturbation velocity components, 0 is
the temperature perturbation, and 7r represents the pressure perturbation. The superscript
T stands for 'transpose'. The linearized Navier-Stokes equations for a periodic-in-time per-
turbation, "- exp (-iwt), are written in the form [Tum06c]

0 (LO aA) L1OA OA HaA (2.62)
-- y\ - y + - = 1A + H 2 x +
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where L0 , L1,H1 , H 2, and H 3 are 16 x 16 matrices (their non-zero elements axe presented in
Appendix A of [Tum06c]). Solution of (2.62) is subject to the following boundary conditions
on the wall and outside the boundary layer

y= 0: u=-qhf(x,z) U.', v=qvvw(x,z), w=O, 0=0, (2.63a)

y oo: IAj -4 0, (2.63b)

where U' = (dU/dy)y=o is the derivative of the unperturbed flow velocity profile. For the

case of a hump, qh = 1, q, = 0, and w = 0, whereas for blowing-suction on the wall, qh = 0,
q, = 1, and w : 0.

Because the boundary layer is assumed independent of the coordinate z, one can employ
the Fourier transform with respect to z. For simplicity, we assume that the perturbation
frequency is subcritical, i.e. the perturbation decays downstream from the actuator. In this
case, one can employ the Fourier transform with respect to x as well:

+00+00

A, (a,,, y,,3) = f J A (x, y, z) e-"ox-'3zdzdx. (2.64)
00 -00

In the case of a supercritical frequency, one has to employ the Briggs method in order
to include the unstable (exponentially growing downstream mode) into the inverse Fourier
transform [AR90, BM92].

Vector-function A, (a,, y,,3) satisfies the following equation and the boundary conditions

di (LdA dA,,
d L dA- +L dA = H 1 A,, + ia,,H2A,, + iOH3 A,,, (2.65)

dy( dy dy

= 0: A,,1 = -qhU:(p (a,,,3), A,,3 = q,,p (a,,,,3), A,,5 = 0, A, 7 = 0, (2.66a)

y- oc: IA,,jl - 0, (j =1, .. ,16); (2.66b)

where

+00+00

~o(a, /) f J f (X, Z) e-T-',8dzdx, (2 .67a)
-00-00

+00+00

p(a,, 3) f J J vw(x,z)e-'°o-zZdzdx. (2.67b)
-00-00

Equation (2.65) has four fundamental solutions decaying outside the boundary layer
[Tum06c]. One can solve the inhomogeneous boundary-value problem as follows:

A,, = C 1 Z 1 + C 3 Z 3 + C 5 Z 5 + C 7 Z 7 , (2.68)
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where Z1 , Z3 , Z5 , and Z7 are the decaying fundamental solutions. The coefficients Cj in
(2.68) are found from the boundary conditions (2.66a) on the wall. The formal solution for
the Fourier harmonic, Afi (x, y,,O), can be written as follows:

+00

Ap (x,y, ) = f A, (a,, y, 3) el vxda, (2.69)
-00

The original problem for perturbations of a prescribed frequency w is an elliptic one. It
was shown in [Tum03] and [Tum06c] that if the downstream boundary is located fax away,
and one can neglect its upstream influence, the solution of the linearized Navier-Stokes
equations can be expanded into the normal modes of continuous and discrete spectra.

00

A,9(x,y,fl) = Ej C(k)A,(y,k)e ej(k)xdk +E" CmAc,,6,(y) e (2.70)
j 0 nm

The first term in (2.70) represents summation over the modes of the continuous spectrum,
and the second term represents input of the discrete modes. A,.g in (2.70) are solutions
of the direct eigenvalue problem. Together with the solution of the adjoint problem, B,,
they represent the biorthogonal eigenfunction system {A, Bq} (see [Tum06c]). There is
the following orthogonality relation:

16 00

(H2A., B.,O) -= J (H2A,o), B.,pjdy = QA.,.,? (2.71)
j=1 0

where A,, is the Kronecker delta if a or a' belongs to the discrete spectrum, and A =

6(a - a') is the delta function if both a and a' belong to the continuous spectrum. The
coefficient Q on the right-hand side of (2.71) depends on the normalization of A,(y) and
B,#(y). The orthogonality relation (2.71) provides a tool to find coefficients C and Cm in
the formal solution (2.69).

Contribution of the modes to the formal solution

With the help of the orthogonality relation (2.71), one can find the input of a mode to the
formal solution

Ce, = (H2A#, B ) (2.72)

If we consider a dot product of B,g and (2.65), and integrate with respect to y over the
interval [0, oo), we arrive at the following identity (we take into account explicit forms of
matrices Lo, Li):

L43  d TA,

AOda6 - AO.0 A,,, 1  + (A,-,, (LTa
dy I += dy ~0 dy (2.73)

dAB, LT-'# (A,HTB,,) + ia, (A,, H TBX,6) + i/3 (A,, HT]B"),
dy 1
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where L 3 stands for the element of matrix L0 having indices (4, 3). Taking into account the
adjoint equation and the boundary conditions (2.66), one can derive

[L.43dB-O B ,.]"
[LoH2 - B,i (,=o qh(P (Ctv, /) [B.,l],=o U.' (2.74)

(H2Av, B) = q,p(a,l) i (a, - a) + i (a, - a)

We substitute (2.69) into (2.72) and utilize (2.74) to find

+00[L43 dB# 4 - Ba03
Ceiax - j I ei (a (a,# 1 a)I a

1 i a , - a) (2.75)

21hUf e (a,,3) [.0,- oda,,.
2v Q i (a, -a)

By closing the path of the integrals in the upper half-plane, we find the coefficient as the
residue value at the pole a, = a

C = q,,p (a, /0) G,, + qhO (a, fl) Gh, (2.76a)

G, [L43dB,4 B,8IO (2.76b)

Gh = U [B.#]=0 . (2.76c)

The coefficients G, and Gh in (2.76a) axe independent of the blowing-suction distribution or
the hump shape.

Receptivity to an array of roughness elements

For the purpose of illustration, we consider an array of humps placed at distance x0 from the
leading edge of a flat plate (in this case, the Fourier transform with respect to z is replaced
by the Fourier series). The geometry of the humps is the same as in [JG951:

f (x, z) = a cos A cos 3 (7Z) (2.77)

where Ax and Az are measured from the center of the hump, amplitude a = 0.172, 1. = 27.36,
and 1, = 22.37. The spacing between the humps is L_ = 86.04. All lengths are scaled with

the Blasius scale. The local Reynolds number is Re = 697.37. In this example, 21r/L,
= 0.073, and we include only the first 12 harmonics with 0,, = n x 0.073. Recently, this
configuration was analyzed theoretically by Tumin and Reshotko [TR05] (see Section 2.3)
within the scope of the receptivity theory for incompressible flow. In this section, we repeat
the results of 2.3, assuming that the Mach number was equal to 0.02.
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Figure 2.23: Convergence test for the streamwise velocity perturbation at M 0.5 and
T,ITad = 1 at W - 0, x - x 0 = 6.481.

Flat plate, M=0.5. In the case of subsonic steady perturbations, there is an overlapping
of the two vorticity modes A and B, similarly to the incompressible flow case [Tum03].
In addition, at w = 0, there is an overlapping of the vorticity modes with the entropy
mode. These three modes overlap with the pressure mode at Im (a) > 1)31 (see [Tum03] and
[Tumf6c]). Because all these modes decay downstream, one can choose a distance where
the pressure modes could be neglected. A numerical evaluation of the integrals in (2.70)
associated with the vorticity and entropy modes was done with the help of the trapezoidal
formula on a finite interval 10, k,,.] with 500 steps and k,,x = 5. Overlapping of the vorticity
and entropy modes complicates the problem because it requires special treatment. In order
to avoid the complication, the eigenfunctions were computed at a small non-zero frequency
w. Figure 2.23 shows the convergence test for the streamwise velocity component at w -- 0.
One can see that the real parts of the streamwise velocity component, u, = Real(u), are
indistinguishable at w = 10', 10- , and 5 x 10-6. The imaginary part, u = Im(u), is very
small at w = 5 x 10-6 (at w = 0 it has to be equal to zero). Frequency w = 5 x 10-6 was
used in the following examples at M = 0.5.

A vector plot of the perturbation in the (y, z) plane at distance x - x0 = 6.48/x for the
case of an adiabatic wall is shown in figure 2.24a, and contours of u x 105 are shown in figure
2.24b. One can see that the flow structure is similar to the one obtained in Section 2.3: there
is a pair of counter-rotating streamwise vortices, there is a wake region downstream from
the hump, and there are high-speed streaks on both sides of the hump.

Figure 2.25 illustrates levels of the velocity and temperature perturbations at x - x0=
6.481, when the temperature factor, T,ITad, is equal to 0.5. One can see that the temperature
increases in the wake region, there are cold streaks at the both sides of the hump, and there
is a cold streak above the hump. We attribute this cold streak to the displacment of cold
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Figure 2.24: a) Vector plot of v and w at x - xo = 6.481. b) Contour plot of u x 10' at
x - xo = 6.481, with step 2 from the starting level -24. Adiabatic wall. M = 0.5.
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Figure 2.25: a) Contour plots of u and 0 at x - xo = 6.48/,; a) U X 105 with step 4 from the
starting level -46; b) 0 x 10' with step 5 from the starting level -7. T/Tad = 0.5, M = 0.5.
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Figure 2.26: Convergence test for the streamwise velocity perturbation at M = 2 and
T,/T,,d = 1 at w --4 0. x - xo = 6.481 .

gas by the hump.

Flat plate, M=2. In the case of a supersonic boundary layer, in addition to the vorticity
and entropy modes, we have to include also input from the acoustic branch cuts. In what
follows, we use interval [0, k,.x] with 1000 steps and k,.. = 10. As in the previous example,
we consider a small nonzero frequency in order to avoid overlapping of the vorticity and the
entropy modes in the numerical implementation. Figure 2.26 illustrates the convergence test
for the streamwise velocity component when w --* 0. The imaginary part of the streamwise
velocity perturbation is very close to zero at w = 10- 5. This value was chosen for the
numerical evaluations.

Temperature perturbation in the (z, y) plane at x - xo = 6.481, is shown in figure 2.27.
One can see the Mach waves generated by the roughness element located at z = 0 and by the
neighboring elements. In order to show more detail, streamwise velocity and temperature
perturbation profiles at z = 0 and z = 40 are shown in figure 2.28. One can see that there
are three regions at z = 0 where the amplitudes of the perturbations are relatively large. The
first region is located inside the boundary layer. The second region, at y z 110, is associated
with the Mach wave generated by the roughness element. The other region, at y Z 60,
is associated with the Mach waves generated by the left and right neighboring roughness
elements in the array. The streamwise velocity and temperature perturbations inside the
boundary layer are shown in figure 2.29.
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Figure 2.27: Contour plot of 6 x 105 at x - xo 6.481, M = 2, T,,/Td =1
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Figure 2.28: Temperature and streamwise velocity perturbations at x - xO= 6.4841, M =2,

T,,/,T,d = 1. a) z = 0, b) z = 40.
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Figure 2.29: a) Contour plots of u and 0 at x - xO = 6.48l= a) u x 105 with step 2 from the
starting level -22; b) 0 x 10' with step 1.5 from the starting level -2. T,ITad = 1, M = 2.
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2.4 Nonparallel flow effects on roughness-induced per-
turbations in boundary layers

The non-parallel flow effects on receptivity are important when the source of the disturbances
is distributed on a scale larger than the boundary-layer thickness. Choudhari [Cho94a] and
Bertolotti [BerOO] developed methods that can be used for analysis of the receptivity when
the nonparallel flow effects are to be included. The nonparallel flow effects on development
of unstable discrete modes on a length scale that is much larger than the boundary-layer
thickness have been studied within the scope of the method of multiple scales [Bou72, Gas74,
SN75, SN77, PN79, Gap80, Nay80, EH80, TF82]. Another method that allows inclusion of
the nonparallel flow effects on TS waves is based on the parabolized stability equations
[Her97]. To our knowledge, nonparallel flow effects on modes of the continuous spectra have
not been addressed yet.

Governing equations

We consider a compressible two-dimensional boundary layer in the Cartesian coordinates,
where x and z are the downstream and spanwise coordinates, respectively, and coordinate y
corresponds to the distance from the wall. We write the governing equations (the linearized
Navier-Stokes equations) for a periodic-in-time perturbation (the frequency is equal to zero
in the case of a roughness-induced perturbation), '- exp (-iwt), in the matrix form

a L A OA 0A OA
I +L H=H1 A+H 2 - + H- +H4 A, (2.78)

09 019/ OY 9X 19z

where vector A has 16 components

A (x, y, z) =(u, OufOy, v, 7r, 9, O0/Oy, w, Ow/Oy, Ou/Ox, Ov/Ox,

a0/OX, OW/Ox, Ou/Oz, Ov/Oz, 09/Oz, OW/OZ)T. (2.79)

L 0, L 1, H 1, H2, H 3, and H 4 are 16 x 16 matrices (their definitions are given in Appendix of
[Tum08]); u, v, w, 7r, and 9 represent three velocity components, pressure, and temperature
perturbations, respectively; and the superscript T in (2.79) stands for transposed. Matrix
H 4 originates from the nonparallel character of the flow.

We utilize the Fourier transform with respect to the coordinate z

A#(x, y) = J e-"S9A (x, y, z) dz. (2.80)

In the quasi-parallel flow approximation, the solution of the linearized Navier-Stokes
equations can be expanded into normal modes of the discrete and continuous spectra [Tum07]

AO (x, y) = E dA,#i (y) e ' + j dj (k) A,j (y) eia,(k)Tdk. (2.81)
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Here, Ei, and E denote sums over the discrete spectrum and branches of the continuous
spectra, respectively. The coefficients d, and dj are to be found from the receptivity problem
solution [Tum06b].

The following biorthogonal eigenfunction system {A,,, B,,#} was formulated in [Tum07]:

d (L0dAfg) + L, dA-P= H1A, + iaH 2A, + iOH 3A, , (2.82)

y=O: Ai = Aa = A,,5 = Aa, = 0,
y--, 00 : I A,p I < oo,

d (LTdB , LT dB  - HTBa, + iaH T B,6 + i /MT 1B,6, (2.83)
dy 'Ddy 1 1 dy 123

y=O: B.p = B.# = B.p = B.p8 = 0,
y --+ 00 : I B,,p I < oo.

Actually, (2.83) defines the complex conjugate of the conventional adjoint problem.
The eigenfunction system {A,, B,3} has an orthogonality relation given as

00

(A2 Aafp B,p) J- f (H2A.0, Ba,6)dy = 1A.. (2.84)

0

where F is a normalization constant; A is a Kronecker delta if either a or a' belongs to the
discrete spectrum; A is a Dirac delta function if both a and a' belong to the continuous
spectrum. Because Eq. (2.83) represents the complex conjugate of the conventional problem,
the dot product (,) in (2.84) does not involve complex conjugation.

Weakly nonparallel flow analysis

Discrete mode

For the purpose of clarity, we begin with an outline of analysis for a discrete mode in a
weakly nonparallel boundary layer (see, for example, [Nay80]).

In a weakly nonparallel flow, one can employ the method of multiple scales by introducing
fast (x) and slow (X = ex, E < 1) scales. The mean flow profiles depend on y and X only,
whereas the perturbation will depend on both length scales. In the case of a discrete mode,
solution of the linearized Navier-Stokes equation is presented in the form

A,9 (x, X, y) = [D, (X) A.,6 (X, y) eif a ' (X)dx + cA() (X, y) eif ax (X)dz + (2.85)

where A, is an eigenfunction satisfying Eq. (2.82), and function D, (X) has to be de-
termined. After substitution of Eq. (2.85) into Eq. (2.78), we arrive in order 0(E) at an
inhomogeneous equation for A() having the same leading operator as in Eq. (2.82) (the
terms associated with matrix H 4 have order of magnitude 0(E)). Taking the dot product of
the equation with the adjoint solution, B ,,, satisfying Eq. (2.83) and evaluating integral
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of the result with respect to y from 0 to oc, we arrive at an ordinary differential equation
for D,:

dx a/

Continuous spectrum

Eigenfunctions of the continuous spectra oscillate at y o oc as exp(±iky), and the analysis
requires a modification. Instead of a single mode, we consider a narrow wave packet of width
Ak around k = ki. Therefore, solution for the narrow wave packet is considered in the form

[fk1+Ak/2
Ap (x, X, y) = [fk"-Ak/2 Dj (X, k) A,,. (X, y) eif aIj (X,k)dxdk (2.87)

JkL' -A~k/2L , Ak/2 A(, ) elf c,(X'k)dzdk +

where A,j is an eigenfunction of the continuous spectra satisfying Eq. (2.82). We substitute
Eq. (2.87) into Eq. (2.78) and consider the equation in order 0(e). Evaluation of the dot
product with adjoint eigenfunction B,i satisfying Eq. (2.83) at a3 = aj(kj) and integration
of the result with respect to y from 0 to cc lead to the ordinary differential equation for Dj,
as follows

ia,= dIn Dj (X,kj) = _I lim fk+Ak/2 [( A , \ )] dk.
dx Ak-0 fk,-a/2x j

(2.88)
In the limit Ak --+ 0, the integrals in Eq. (2.88) lead to evaluation of terms like

f0m exp (i (k - ki) y) dy = 7r6 (k - kj) (see [Tum03]), and the result can be evaluated using
asymptotic solutions outside of the boundary layer.

Multimode solution in a weakly nonparallel flow

In the case of a multimode solution, we are presenting our result as

Ap (x, X, y) = E D,, (X) A. # (X, y) e' f a (X)dx +

V

v j Dj (X, k) A,,6 (X, y) eif j(X,k) dk + 0 (E), (2.89)

D, (0) =d,

Dj (0, k) = dj (k).

One should keep in mind that the multi-mode form of solution, Eq. (2.89) admits a mecha-
nism of inter-modal exchange due to the weakly nonparallel flow effect. An example of this
phenomenon was illustrated by Zhigulev and Fedorov[ZF87], who considered generation of
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an unstable discrete mode by an acoustic wave. Although the effect is weak when the wave
numbers of the modes are different, the exponential amplification of the unstable mode leads
to its relatively large amplitude. In the present work, we neglect such inter-modal exchange.

The initial values d, and dj in Eq. (2.89) are to be determined from the receptivity
problem solution[Tum06b]. In the case of a roughness element, the linearized wall-boundary
condition for the streamwise velocity component may be written as follows:

y=0: u = -f (x, z) U,, (2.90)

where U.' = (oU,/Oy)y=0 is the derivative of the unperturbed flow velocity profile. For
a localized hump, the nonparallel flow effects on the receptivity problem solution can be
neglected in the leading approximation, and one can find[Tum06b

dj (k) = AV (aj), (2.91)

A=U"

0) ( =3 f. j j f (x, z) e-'Qjx-'zdzdx,

where [B,oj], 0 is the first component of the adjoint eigenfunction evaluated at the wall.
The nonparallel flow effects may be incorporated into the receptivity problem solution

along the lines of the distributed receptivity model proposed by Choudhari[Cho94a]. It
was shown in [Cho94a] that the cumulative effect of distributed wall perturbations can be
evaluated using the parallel flow approximation for each piece of the actuator and integrating
the result over the distributed actuator. In our case, the result (with the reference point at
x = 0) will be written as follows:

dj (k) = j J A (k, x) f (X, z) e-i f, aj(k,x')dx' -iI6zdzdx (2.92)

where A (k, x) is defined in Eq. (2.91).
One should keep in mind that the linearized wall-boundary condition, Eq. (2.90), could

be rigorously derived within the triple-deck asymptotic analysis when the height of the hump
is small in comparison with the thickness of the viscous sublayer. At finite Reynolds numbers,
we do not have criteria for height and length of the hump in order to specify limits when
the linearized boundary conditions can be used. The results should be compared with direct
numerical simulations and/or experiments in order to establish validity of the boundary
condition.

Numerical results

Verification: discrete mode at M=4.5

In order to test the new block of the code, we repeated results of [Gap80] for a two-
dimensional TS wave in a compressible boundary layer over a flat plate at the Mach number
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4.5, at the local Reynolds number (based on the Blasius scale) 1550, and at the frequency
parameter 130 x 10-6. Figure 2.30 shows the local growth rate of the mass flux perturbation
as a function of the dimensionless coordinater/ = VIX/epU. Comparison of the mass-flux
perturbation corresponding to the discrete mode is shown in figure 2.31.

Roughness array. M = 0.02

In the case of roughness-induced perturbations, there are no discrete modes; and only steady
normal modes of the continuous spectra represent the perturbation. There are two vorticity
modes ('A' and 'B'), entropy modes, and the acoustic modes (representing Mach waves in
the limit w -- 0) [Tum07].

In the present work, we consider the same array of roughness elements as in [Tum06b]. An
array of humps is placed at distance x0 from the leading edge of a flat plate. The geometry
of each hump is defined by the function:

f (x,z) = acos' 7rAx cos 3 (7rZ), (2.93)

where Ax and Az are measured from the center of the hump, amplitude a = 0.172, 1x =

27.36 and l, = 22.37 (in VZ1xo/pU units). The parameters correspond to a hump having
a length scale of about 5 times the boundary layer thickness. Therefore, one may expect
that the receptivity of the flow can be analyzed within the quasi-parallel flow approximation.
This issue will be addressed later. The local Reynolds number is Re= 697.37. The spanwise
period of the array is L, (27r/L = 0.073). In what follows, we include only the first 12
harmonics with fl,, = n x 0.073.

In order to evaluate the most significant interval of the parameter k in the present ex-
ample, we show in figure 2.32 the amplitude factor,

JA(k)(p (aj (k), 0) e""j(k)(.-.o) 1, (2.94)

for two vorticity modes at Xdown = x-xo = 6.481x, 63 = 031, and M = 0.02. One can see that
the main input at these parameters is associated with a k of about 2.

Figure 2.33 shows variation of normalized JAI along the roughness element for two vor-
ticity modes at k = 2, )3 =/81, and M = 0.02. The variation of the coefficient is about 1%,
and one can consider the receptivity problem within the parallel flow approximation.

Figure 2.34 illustrates contours of the streamwise velocity perturbation, u, at Xdw, =

6.481. in the boundary layer at M = 0.02 obtained including the nonparallel flow effects and
using the vorticity modes only. The continuous spectrum was discretized at 0 < k < 5 using
500 intervals. One can see that there is a wake region downstream from the hump, and there
are high-speed streaks on both sides of the hump.

Figure 2.35 shows the difference between two contour plots: UraaUlle - Unonparallel. One
can see that the difference is about 10% in the wake.
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Figure 2.30: Local growth rate of the mass flux perturbation in the boundary layer over a
flat plate.

In order to understand the source of the difference shown in figure 2.35, we plot real and
imaginary parts of the integral,

N(k) = [a (k) + a., (k, x)] dx, (2.95)

in figure 2.36 for two vorticity modes together with the result stemming from the parallel
flow approximation (in the parallel flow approximation, N, = 0). One can see that the
nonparallel flow effects do not have a significant effect on the integral. The latter means
that the main source of the difference in figure 2.35 is associated with different shapes of the
eigenfunctions evaluated at x = x0 (parallel flow model) and at x = XO + Xdon (nonparallel
flow consideration).

Roughness array. M = 0.5

In order to illustrate the nonparallel effects on the receptivity problem at M = 0.5, we present
results at the temperature factor T,,/Td = 0.5 that are similar to the case M = 0.02.

Figure 2.37 shows the amplitude factor defined in Eq. (2.94) as a function of the param-
eter k.

Figure 2.38 shows variation of normalized JAI along the roughness element for two vor-
ticity modes and the entropy mode at k = 2, # = #1, M = 0.5, and Tw/Tad = 0.5. The
variation of the coefficient is about 1%, as in the previous case, and one can consider the
receptivity problem within the parallel flow approximation.

Figures 2.39 and 2.40 demonstrate the streamwise velocity contour plots in the case of
an adiabatic wall at M = 0.5. The nonparallel flow effect on temperature perturbations at
M = 0.5 (adiabatic wall) is illustrated by figures 2.41 and 2.42. Figures 2.43 through 2.46
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Figure 2.32: Amplitude factor [Eq.(2.94)] at Xd,, 6.481.. M =0.02, adiabatic wall.
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Figure 2.34: Contours of u x 104 at Xd., = 6.48/1. M =0.02, adiabatic wall.
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Figure 2.40: Difference (times 105) between streamwise velocity perturbations obtained
within parallel and nonparallel flow models. M = 0.5, adiabatic wall.
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Figure 2.42: Difference (times 106) between temperature perturbations obtained within par-
allel and nonparallel flow models. M = 0.5, adiabatic wall.
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Figure 2.44: Difference (times 105) between streamwise velocity perturbations obtained
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Figure 2.47: Integral N for two vorticity modes and the entropy mode at M = 0.5, T./Tad =
0.5.

illustrate the nonparallel flow effect at M = 0.5 and the temperature factor 0.5. In these
examples, the results were obtained using the vorticity and entropy modes. In order to avoid
overlapping of the vorticity and entropy spectra and to simplify the computations, we use a
small non-zero frequency (w = 10- 5) as was described in [Tum07].

Similarly to the example at M = 0.02, we plot in figure 2.47 integral N for two vorticity
modes and the entropy mode at M = 0.5 and T,,/T.d = 0.5. One can see that in this case
the nonparallel flow effects also do not have a significant effect on the integral.

Conclusion

To our knowledge, this is the first example when the weakly nonparallel flow effects are con-
sidered for modes of the continuous spectra. Although the results obtained with nonparallel
flow effects included are quantitatively different (up to 10% in the wake velocity perturbation)
from the results obtained in [TR05] and [Tum06b] within the parallel flow approximation,
the qualitative structure of the flow field downstream of the roughness element remains the
same. Analysis of the nonparallel flow effects in subsonic boundary layers over a flat plate
revealed that one can take them into account just by evaluation of the eigenfunctions at the
local Reynolds number downstream from the hump.
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2.4.1 Periodic-in-time actuators placed on the wall

Receptivity to periodic-in-time blowing-suction through the wall

As an example of a periodic-in-time actuator, we consider a point blowing-suction through
the wall. For the purpose of illustration, we choose the two examples of flow past a flat plate
analyzed by Balakumar and Malik [BM92]. In the first example, Mach number M = 2 and
dimensionless angular frequency w = 0.02. In the second example, M = 4.5 and w = 0.2.
The free-stream stagnation temperature of 311 K, adiabatic wall conditions, and Prandtl
number, Pr, equal to 0.72 were used for both cases. Viscosity was computed in accordance
with Sutherland's law. The free-stream velocity, density, and viscosity were used as the
characteristic scales, together with the Blasius length scale, (v:,xo/U,,) 1/2 , where x0 stands
for distance from the leading edge.

Balakumar and Malik [BM92] evaluated the integral in (2.69) by closing the path in the
upper half-plane a, in order to represent the result as a sum of the residue values (input
from the discrete spectrum) and integrals along three branch cuts representing input from
the continuous spectrum. In the present method, we use (2.76) in order to find amplitudes
of the discrete and continuous spectra and substitute them into (2.70). Because the shape
function v , (x, z) in equation (2.63a) was chosen as 3 (x - x0) 6 (z), p (a,fl) = 1 and C = G,
in (2.76).

Flat plate, M = 2. Balakumar and Malik [BM92] found the receptivity coefficients of
the least stable discrete modes when the eigenfunction was normalized so that the maximum
amplitude of the streamwise velocity component was equal to one. Their results for discrete
modes and comparisons with the present method are presented in tables 2.1 and 2.2 for 0 = 0
and 6 = 0.08, respectively. One can see that results of the present work and of [BM92] agree
well, except for the second discrete mode in table 2.2.
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Table 2.1: Flat plate. M = 2, To = 311 K, Pr = 0.72, Re = 1000, w = 0.02, f = 0.

Balakumar and Malik[BM92] the present work
2a 1 a X 1G.,I

(3.733 x 102,-3.696d x 10 - ) 2.2079 x 102 (3.733 x 102,-3.696d x 10 - ) 2.2096 x 102
(2.841 x 10-2,2.619 x 10-2) 1.1448 (2.844 x 10-2,2.617 x 10-2) 1.1242

(-9.670 x 10-2,4.206 x 10-2) 0.7527 (-9.671 x 10-2,4.206 x 10-2) 0.7535
(4.366 x 10-2,4.495 x 10-2) 4.7175 x 10-2 (4.366 x 10-2,4.495 x 10-2) 4.7259 x 10- 2

Table 2.2: Flat plate. M 2, To = 311 K, Pr = 0.72, Re = 1000, w = 0.02,,3 = 0.08
Balakumar and Malik[BM92] the present work

a IG.I a IG.I
(4.077 x 10 - 2, -2.384 x 10- 3 ) 0.2333 (4.078 x 10- 2, -2.384 x 10- 3 ) 0.2335
(2.035 x 10- 2, 1.751 x 10-2) 11.9667 (2.062 x 10- 2, 1.699 x 10- 2) 4.67364
(4.382 x 10-2, 4.453 x 10-2) 0.2193 (4.383 x 10- 2, 4.453 x 10- 2) 0.2191

(-6.637 x 10-2, 7.634 x 10-2) 0.7404 (-6.638 x 10-2, 7.634 x 10-2) 0.7406

Figure 2.48 shows the real and imaginary parts of the eigenvalue, ar (fi) and ai (f3),
respectively, together with the receptivity coefficient G, (f) for the unstable mode at Re =
1000. One can compare the results with figure 6 of [BM92] to conclude that there is a good
agreement. The method of the Section 2.3.2 is also convenient for parametric studies. Figure
2.49 shows the contour plot of the receptivity coefficient for a perturbation having frequency
parameter F = w/Re = 20 x 10- 6 . The contour plots of a, and ai in the (Re, f) plane are
presented in figure 2.50.

It is interesting to compare the results for continuous spectra obtained within the present
work with the results of [BM92]. The eigenmodes of the continuous spectrum are oscillating
outside the boundary layer. Their asymptotic behavior is -,' exp (±iky), where k is a real
parameter. Figure 2.51 shows the branch cuts in the complex plane a associated with the
continuous spectrum. Branch cuts 1 and 3 in figure 2.51 represent the fast (FA) and slow
(SA) acoustic modes, respectively. Branch cut 2 actually represents (indistinguishable in the
plot scale) two branch cuts associated with the entropy and vorticity modes [Tum06c].

Numerical evaluation of integrals in (2.70) associated with the acoustic modes was done
with the help of the trapezoidal formula on a finite interval [0, k,,,] with 320-640 steps. The
parameter k,. was varied up to 6 to verify independence of the results from the interval and
number of steps. Figure 2.52 shows inputs from the fast and slow acoustic modes (branch
cuts 1 and 3, respectively) to the real part of the normal velocity component, vr, at distances
x - xo= 250, 500, and 750. The peaks in the velocity distributions correspond to the Mach
wave. One can compare the results of figure 2.52 with the results in figures 19 and 21 of
[BM92] and conclude that they are in agreement. One can also notice from figure 19 of
[BM92] that there are oscillations of the solution above the Mach wave, whereas our results
in figure 2.52 demonstrate a quiet region above the Mach wave. We attribute the oscillations
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3 = 0.

Table 2.3: Flat plate. M = 4.5, To = 311 K, Pr = 0.72, Re = 1000, w = 0.2, f = 0
Balakumar and Malik[BM92] the present work

a JGvj a IG,,I
(0.220, -3.091 x 10-3) 1.7537 x 10-2 (0.220, -3.091 x 10- 3 ) 1.7537 x 10-2

(0.221,1.569 x 10-2) 9.9071 x 10- 2 (0.221,1.569 x 10-2) 4.8394 x 10- 2

(-0.565,5.559 x 10-2) 0.3878 (-0.565,5.560 x 10-2) 0.3880
(0.560,5.659 x 10- 1) 6.5089 (0.561,5.659 x 10- 1) 6.5166

in [BM92] to not long enough pieces of the branch cuts being included in the evaluation
of the integrals. As it was pointed out in [BM92], the main input to the perturbation is
associated with the fast acoustic modes. Figure 2.53 shows the receptivity coefficients of the
fast and slow acoustic modes as functions of the parameter k. The coefficients correspond
to the normalization when the streamwise velocity derivative on the wall is (Ou/Oy), = 1.
One can see that the receptivity coefficients are higher for the fast acoustic mode.

Inputs from the entropy modes and vorticity modes are shown in figure 2.54. Note that
the perturbations have maxima in the vicinity of the boundary layer edge, and they are very
small. These results are different from those reported in [BM92]. They obtained input from
branch cut 2 as a standing-wave-type pattern in the y-direction spreading far away above
the Mach wave (figure 20 of [BM921). The result is, probably, also attributed to the short
piece of the branch cut used in evaluating of the integrals.

Flat plate, M = 4.5. In this example, we consider perturbations having the frequency
parameter F = 200 x 10-6. Tables 2.3 and 2.4 provide comparisons of the receptivity
coefficients of the least stable discrete modes obtained in [BM92] and in the present work.
The agreement is also good, except for the second mode in table 2.3.
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Figure 2.54: Real paxt of the normal velocity component resulting from the entropy and
vorticity modes at x - xo location 750. M =2, Re = 1000, w =0.02, and /3 = 0.

Table 2.4: Flat plate. M = 4.5, To = 311 K, Pr = 0.72, Re =1000, w = 0.2, /3=0.12
Balakumar and Malik[BM921 the present work

a IGIa I
(0.2181,2.969 x 10-4) 1.5405 x 10-2 (0.2181,2.974 x 10-4) 1.5413 x 10-2
(0.2124, 1.288 x 10-2) 6.1334 x 10-2 (0.2124, 1.288 x 10-2) 6. 1341 X 10-2

(-0.5498,5.684 x 10-2) 0.3862 (-0.5499,5.685 x 10-2) 0.3864
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Figure 2.55: Eigenvalues a and receptivity coefficient IG,j at M = 4.5, w = 0.2, Re = 1000.

Figure 2.55 shows the real and imaginary parts of the eigenvalue, a, (fi) and ai (,3),
respectively, together with the receptivity coefficient G,, (f6) for the unstable mode at Re =
1000. One can compare the results with figure 7 of [BM92] to conclude that the results are in
good agreement. Figures 2.56 and 2.57 show the contour plots of the receptivity coefficient
and the eigenvalues, a, and aj, in the (Re, 3,) plane, respectively.

Figure 2.58 shows inputs from the fast and slow acoustic modes at M = 4.5 (branch cuts
1 and 3, respectively) to the real part of the normal velocity component, v, at distances
x - xo= 250, 500, and 750. The receptivity coefficient of the fast acoustic mode is shown
in figure 2.59. One can compare the result with figure 2.53 to see that in this case, the
maximum is shifted toward the higher values of the parameter k.

Inputs of the entropy and vorticity modes to the velocity perturbation at x = 500 are
shown in figure 2.60. Similarly to the case of M = 2, the inputs are small and the maxima
are located at the edge of the boundary layer.

Discussion of the results

The receptivity of compressible boundary layers to three-dimensional wall perturbations was
solved with the help of the biorthogonal eigenfunction system. The method allows finding
amplitudes of the discrete and continuous spectra. The main result of the present work is
associated with inclusion of the continuous spectra in compressible boundary layers into the
receptivity analysis within the scope of the biorthogonal eigenfunction expansion. In the
case of a periodic-in-time actuator or an array of roughness elements, the continuous spectra
provide correct representation of the Mach waves in supersonic flows. Although each mode
of the continuous spectra is oscillating at y --+ oc, their sum represents zero perturbations
above the Mach wave. The example with an array of roughness elements in Section 2.3.2 at
M=0.5 illustrates how the modes of the continuous spectra (vorticity and entropy modes)
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Figure 2.56: Contour plot of the receptivity coeficient, IG,I, at M = 4.5, F = 200 x 10- 6.
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Figure 2.57: Contour plots of real (a) and imaginary (b) parts of the eigenvalue, t, at
M = 4.5, F = 200 x 10-6.
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represent streamwise vortices localized inside the boundary layer. It is also worthwhile to
mention that the results demonstrate that a roughness element on a cold wall creates a
low-speed streak above the wake region. To our knowledge, this phenomenon has not been
addressed in asymptotical or CFD studies. This phenomenon might be associated with a
secondary instability mechanism, and it has to be addressed in the future.

The solution in the present work is based on the parallel flow approximation. This ap-
proximation is valid when the characteristic scale of the perturbation (wave length) is much
smaller than the characteristic scale of the unperturbed flow in the downstream direction.
This condition is violated when the actuator is located close to the leading edge. Tumin,
Wang and Zhong [TWZ06] analyzed results of a direct numerical simulation when pertur-
bations were introduced into a hypersonic boundary layer by periodic-in-time blowing and
suction through a slot. Comparison of theoretical and numerical results for amplitudes of dis-
crete modes generated by the actuator revealed their discrepancy when the slot was located
close to the leading edge.

In the case of three-dimensional boundary layers, roughness elements may generate a
crossflow instability mode (see [RS89, Bip99, SRW03]). Comparison of the receptivity pre-
diction for the discrete mode within the scope of the parallel flow approximation with the
Navier-Stokes solution revealed that nonparallel flow effects reduce the initial amplitude
[CL99]. In order to take into account the nonparallel flow effects, Bertolotti [BerOO] sug-
gested an approach based on the Taylor series for the mean flow in the vicinity of the
roughness element. Comparison of the receptivity coefficients obtained with the help of
the model with the values obtained from the solution of linearized Navier-Stokes solutions
demonstrated their good agreement. In principle, this approach can be incorporated into
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the method discussed in the present work.
Results of the present work are also based on the assumption that the denominator in

(2.72) is not equal to zero. Fedorov and Khokhlov [FKO1] showed that the denominator is
equal to zero at the branching point of discrete modes. They also showed [FK02] that it
might be of practical importance in high-speed boundary layers on a cold wall. In this case,
the nonparallel flow effects are to be taken into account in order to resolve the singularity.

In the present method, an adjoint solution serves as a filter to find the amplitude of a mode
(see equation 2.72). Hill [Hil96] and Herbert [Her97] suggested using adjoint parabolized
stability equations (APSE) for receptivity prediction when the nonparallel flow effects are
essential. Luchini and Bottaro [LB98] used the same idea for analysis of the receptivity of
the G6rtler instability. They calculated Green's function from the solution of the parabolic
adjoint problem by marching upstream. Later on, a number of publications (see [AWBOO,
CDOO, DCOO, AirOO, PAHHOO, AWB02]) demonstrated how the APSE can be used to predict
the receptivity of boundary layers to a variety of forcing. The method is suitable to determine
the amplitude of an instability mode (the leading mode) that is usually of interest. However,
as was discussed by Fedorov and Khokhlov [FK01], decaying modes in high-speed boundary
layers may be an important element of the laminar-turbulent transition scenario as well.
At the present time, it is not clear how accuratly the APSE approach can determine the
amplitudes of the decaying modes. In addition, the APSE method in its present formulation
does not provide a tool for the prediction of amplitudes of modes belonging to continuous
spectra, whereas the adjoint method in the parallel-flow approximation has the capability to
address decaying modes of discrete and continuous spectra. The local parallel approximation,
together with the extension suggested by Bertolotti [BerOO], probably will be an adequate
tool to analyze the decaying discrete modes and modes of the continuous spectra when the
nonparallel flow effects are significant.
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2.5 Multimode decomposition of perturbations in a
compressible boundary layer

This section is based on the paper published in collaboration with P. Gaydos [GT04].

2.5.1 Introduction

The progress being made in computational fluid dynamics (CFD) provides an opportunity
for reliable simulation of such complex phenomenon as laminar-turbulent transition. The
dynamics of flow transition depends on the instability of small perturbations excited by
external sources. CFD provides complete information about the flow field, which would be
impossible to measure in real experiments. However, this increase in available information
does not furnish a physical insight of the transition because the leading mechanisms still
remain hidden behind a messy disturbance field. Sometimes, a flow possesses a few instability
modes that are equally significant in the transition process, and it might be desirable to
distinguish the dynamics of each mode in the complex non-steady flow field. Figure 2.61
illustrates the dependence of the real parts of wave numbers of the first and the second
discrete modes on the local Reynolds number, R = VrpeUX/, in a hypersonic boundary
layer over a sharp cone, where pe, 1A,, and Ue are density, viscosity, and mean velocity at
the edge of the boundary layer. The coordinate x is measured along the surface of the
cone, and the wave numbers are dimensionless with the help of the length scale V/PeX/PeU.
In this example and what follows, the boundary layer solution was obtained with Mangler
transformation from a planar to a conical configuration. The frequency parameter is F =
150 x 10- 6, and the Mach number is equal to 5.6. One can see that there is a synchronism
of these two modes in the vicinity of R = 1600. The synchronism is not absolute because
the eigenvalues, a, have small but different imaginary parts. Nevertheless, the complex
wave numbers are very close, and figure 2.62 demonstrates that the mode shapes are very
close as well. In simple words, one has to recognize these modes in the presence of acoustic,
vorticity and entropy modes and separate them from one another. Consequently, the problem
of decomposing the flow fields into normal modes arises. Because CFD provides complete
information about the flow field, one can expect that the decomposition may be formulated
as a rigorous procedure.
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Figure 2.62: Profiles (normalized to 1) of the discrete modes at R = 1600. Eigenvalues of
the first and the second modes are a1 = 0.2627 + iO.02269 and a 2 = 0.2603 - iO.00494,
respectively.
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2.5.2 Outline of the method

Governing equations and formal solution to the spatial Cauchy problem

We analyze two-dimensional perturbations in a two-dimensional compressible boundary
layer, and the boundary layer is considered in the parallel flow approximation. After Fourier
transform with respect to time, the linearized Navier-Stokes equations are recast in the
following matrix form:

at!'L O ' OA\ OA
a 0 -y ) + L,-A = H1 A + H 2- 9A (2.96)
ay ( y / 9 a&

where L 0 , L 1, H1, and H2 are 9 x 9 matrices. Their non-zero elements are presented in A.4.
The vector-function, A(x, y), is defined with the help of the streamwise and normal velocity
perturbations, u and v, respectively, pressure perturbation, 7r, and temperature perturbation,

9.
A = (u, au/ay, V, /, ,9/1, au/ax, av/ax, ao/ax)T (2.97)

The boundary conditions are a no-slip condition on the wall and decaying perturbations
outside the boundary layer.

For the purpose of clarity, we briefly recapitulate the main ideas of [TF83b]. The Cauchy
problem for (2.96) with initial data at x = 0 is ill-posed. The latter is associated with
possible upstream influence of the downstream boundary of the domain. However, if there
is no evidence of the upstream impact, one can assume that the solution has a finite growth
rate along the coordinate x.

Assuming that the solution has a finite growth rate, we apply the Laplace transform with
respect to x:

00

AP (y) = JA (x, y) e-Pxdx (2.98)

0

As a result, we arrive at the following inhomogeneous system of ordinary differential equa-
tions:

L (Lo A ) + L 1 --AP - H 1A, -pH 2AP = F
d dy dy (2.99)

F = -H2Ao

where vector-function A 0 stands for the initial data at x = 0. A homogeneous system of
equations corresponding to (2.99) can be recast in the form

dzd= Hoz 
(2.100)

where Ho is a 6 x 6 matrix (see A.4) and z is a vector-function comprised of the first
six elements of vector-function AP. The system of equations (2.100) has six fundamental
solutions, zi(y), z2 (y),..., z6 (y). Because their properties will be used in further analysis, we
shall discuss them in detail.
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Classification of the fundamental solutions stems from their behavior outside the bound-
ary layer, where U,(y) 1, T(y) 1, and derivatives of the mean flow profiles are equal to
zero. Solutions of (2.100) outside the boundary layer have an exponential form as z° exp(Ajy).
For y --+ co, the characteristic equation

det liHo -AIII = 0 (2.101)

can be written in the explicit form

(b,- A2 ) X [(22 -A) (b33 - A2 ) -b2 3b32 ] = 0,
b11 = H 2',

22 = H0
42 H 4 + H043HO3 + H04H6 4,

+23 =H42H2. + H33 55 (2.102)
bN2 = H 614,

523 = HY'5

where elements of matrix H0 are evaluated at y --+ oo. The roots of equation (2.102) are

= = a2 +- iR (a - w),

A2 b22 +b 33 _1
2 2 2  b +

5,ti + ( -b2 533 )2 +45 23 32

Solution of the inhomogeneous system of differential equations (2.99) can be expressed in
terms of the fundamental solutions zj(y), z2(y),..., z6(y) with coefficients depending on the
initial data A0. The inverse Laplace transform could be presented as a sum of residue
values at poles corresponding to the modes of discrete spectrum and a sum of integrals along
branch-cuts in the complex plane p. These branch-cuts are associated with the continuous
spectrum, and they can be found from equations

A =-k 2, j= 1,...,6 (2.104)

where k is a positive parameter. In the case of the spatially growing disturbances, there
are seven branches of the continuous spectrum. This number stems from the fact that the
characteristic equation represents a polynomial of seventh order with respect to the wave
number, a = ip (the continuity equation has the first derivative with respect to x, the two
momentum equations and the energy equation have second derivatives with respect to x).
Particularly, indices j = 1 and 2 correspond to the vorticity modes, whereas the others
correspond to the acoustic and entropy modes [depending on the branch of the square root
in Eq. (2.103)]. The classification of the modes follows from their properties outside the
boundary layer (one can find discussion of the properties of vorticity, entropy and acoustic
modes in [Pie89]).
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Figure 2.64: Branches of the continuous spectrum in the complex plane a.

Figure 2.63 demonstrates branches of the continuous spectrum at local Mach number
M, = 0.5 in the complex plane a = ip. Figure 2.64 shows the branches in the case of
a supersonic flow (M, = 2). In both examples the dimensionless frequency was chosen
equal to 1. The relatively small Reynolds numbers are chosen for purpose of the illustration
only (the Mach numbers on the illustrations are the same as in [TF83b]). One can see
that there are three modes having negative imaginary parts of a. They are associated
with upstream perturbations. The other four modes correspond to the downstream modes.
One of the branches has a limiting point as parameter k tends to infinity. Although the
limiting point exists at significantly high positive values of ai that are usually not of interest,
we demonstrate the structure of the branches for completeness of the illustration. The
branches can be interpreted as acoustic, entropy, and vorticity modes in accordance with
their properties outside the boundary layer. Note that the branch having a limiting point
in the upper half-plane was calculated incorrectly in [TF83b]. The correct behavior of this
branch was found by D. E. Ashpis (private communication, 1993). However, the error was
associated with strongly decaying modes, and it did not affect the main result and conclusions
of [TF83b].

Biorthogonal eigenfunction system

It was shown in [TF83b] that the formal solution of the spatial initial-value problem could
be represented as a sum of the continuous and discrete spectra. The direct and the adjoint
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problems corresponding to these modes (A, and B,, respectively) are the following:{d (LdA ,\ dA,G
f+ L,--A, = H1A, + iaH 2A,

y=O: A.l=A. 3 =A. 5 =0 (2.105)

y-*oo: IA,I< ooI + (L-) - LT = H Bo + iaH2Bo

y=O: B. 2 =B.4 =B 6 =0 (2.106)

y --+oo: IB,,jl< oo
In the definition of the adjoint problem, we do not introduce the complex conjugate due to
the convenience associated with a numerical realization. The subscript (Y indicates that the
mode is associated with the wave number.

The system of equations (2.105) can be recast in the form of Eq. (2.100), whereas Eq.
(2.106) can be recast as

dy =.0 (2.107)

We have found relationships between components of vectors B and Y with the help of
Mathematica [Wo199] (see A.5).

The following orthogonality condition exists:
9 c

---- Z ](H2A.)j B., 3 dy = QA(,,)
j=1 I

where A,. is the Kronecker symbol if a or a' belongs to the discrete spectrum, and A,, =

(a - a') is the delta function if both a and a' belong to the continuous spectrum. The
coefficient Q on the right-hand side of (2.108) depends on normalization of A (y) and B(y).

If we have a vector function Ao(y) (for example, from a computational study), we can
find the amplitude of a mode as follows:

C. = (H 2Ao, B.) / (H 2A0 , B,) (2.109)

An example of two discrete modes is given in figure 2.62. Examples of the acoustic modes

in the boundary layer over a cone R = 1600 and F = 150 x 10-6 are shown in figure 2.65.
The parameter k in these examples is equal to 1 and the normalization of the modes was
defined by the equation Ou/Oy = I on the wall.

Examples of the multimode decomposition

We consider two examples. The first one is an emulation of the analysis of a flow field
obtained by means of a computational method, i.e. all parameters of the flow are assumed
to be known at a prescribed station x. The second example will be an emulation of the

decomposition of 'experimental' data. Details of the numerical methods are presented in
[FT031.
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Figure 2.65: Streamwise velocity component of acoustic modes.
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Figure 2.66: Real and imaginary parts of the combined flowfield (two discrete modes, vor-
ticity and acoustic).

'CFD' Flow Field

Figure 2.66 gives an example of a flow field, Ao(y), comprised of two discrete modes (figure
2.62) with amplitudes C, = 1 and C2 = -1, acoustic and vorticity modes, respectively.
The sum of the discrete modes only is shown in figure 2.67. It is very difficult to imagine
presence of the discrete modes in the total flow field. The phase shift between the modes
was chosen to illustrate how interpretation of the flow field might be complicated. The
decomposition procedure, Eq. (2.109), leads to the coefficients C = 1.0018+il.58e -03 and
C2 = -0.9997 - il.59e - 04. The negligible discrepancy with the actual values is attributed
to the accuracy of the numerical evaluation of the integrals.

Evaluation of the coefficient Q in Eq. (2.108) in the case of the discrete spectrum is
straightforward: numerical integration on the interval [0, y.ma] and analytical calculation
on the interval [Ym , oo). In the case of the continuous spectra, the coefficient Q can be
found with the help of the asymptotic solutions outside of the boundary layer. An outline
of the evaluation is given in [Tum03]. We would like to point out that, the coefficient Q and,
therefore coefficients Cj, depend on the normalization of the biorthogonal eigenfunction
system. However, the product of the coefficients and the eigenfunctions A. is invariant with
respect to the normalization.

'Experimental' Flow Field

In the previous example, all components of the vector AO(y) were known. If, for some reason,
one can expect that only a few modes are responsible for the total signal measured in the
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Figure 2.67: Real and imaginary parts of the combined flowfield (two discrete modes only).
Compare magnitudes of the functions in figures 2.66 and 2.67.

experiment, this a priori information also can be helpful in decomposing the experimental
flow field. The assumption about the main input from specific modes actually allows recovery
of the other components in the vector Ao(y) with unknown coefficients. For example, we
have 'experimental' data for the x-velocity component as in figures 2.68 and 2.69 (amplitude
and phase of the streamwise velocity perturbation corresponding to figure 2.67). If there is a
priori information that the data are comprised of two discrete modes associated with wave
numbers a, and a2, one can represent the vector Ao(y) as follows:

Ao(y) = (u, C1 A. 1 + C2A,021, CIAaj2 + C2 A a2 2, C1Aa 3 + C2A.,23,

CIAc, 4 + C 2 A. 2 4 , CA. 1 5 + C 2A, 25 , CA,16 + C 2 Ac,26, (2.110)

C1 A, 17 + C 2A,,27 , C1 A,,18 +C2A,2s, C1 A.l 9 + C2 Ac2 9 )

where A%m stands for the rrt-th component of the vector A,., At the same time, the a
priori information suggests that the vector Ao(y) can be represented also as a sum of these
two modes

Ao (y) = CIA., (y) + C2A- 2 (y) (2.111)

From the orthogonality condition, one can obtain

(H 2 Ao, B.,) = C1 (H2A,,, B.1)

(H 2Ao,B- 2) = C2 (H2A., ,B- 2) (2.112)

Substitution of Ao(y) from Eq. (2.110) into Eq. (2.112) leads to a system of algebraic
equations for C1 and C2 . This decomposition procedure has been applied to data in figures
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Figure 2.68: Experimental streamwise velocity disturbance amplitude distribution across the
boundary layer.

2.68 and 2.69 and the coefficients C1 and C2 were found as 1.00002 + il.16e - 04 and
-0.999996 + il.65e- 06, respectively. Because the experimental data might be contaminated
by noise or by other modes that were not included into the decomposition, one has to carry
out a posteriori comparison of the measured and recovered profiles in order to estimate
consistency of the decomposition with the a priori information/assumption.

Conclusion

The formulated method of multimode decomposition might be very helpful for the analysis
of computational results related to laminar-turbulent transition in compressible boundary
layers. Although the present formulation deals with two-dimensional disturbances and two-
dimensional boundary layers, the orthogonality relationship can be easily extended to a
general case of three-dimensional perturbations when the boundary layer flow is indepen-
dent of the spanwise coordinate (for example, infinite swept wing flow). In this case, the
Fourier transform with respect to the spanwise coordinate can be employed and the orthog-
onality condition can be formulated for the modes having the same spanwise wave number.
The method might be also useful in the analysis of real experimental data when a priori
information about the modes is available.

89



Cone. M = 5.6. Adiabatic wall. F = 150, 106
150.

100.
50.

0

on
w -50,

(Ua; -100.
• : 150.

. R= 1600
-200
-250.

-300
-350 1 1

Y

Figure 2.69: Experimental streamwise velocity disturbance phase distribution across the

boundary layer.
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2.5.3 Application of the decomposition to DNS results

This section is based on the paper published in collaboration with X. Wang and X. Zhong
[TWZ07].

Introduction

The objective of the present section is to demonstrate how the multimode decomposition
may serve as a tool for gaining insight into the computational results and to validating them
as well. As an example, the direct numerical simulations (DNS) of high-speed boundary layer
receptivity to wall blowing-suction axe chosen for the analysis [WZ05]. The perturbation flow
field obtained in the DNS is projected onto the spatially growing/decaying modes of discrete
and continuous spectra at a prescribed frequency. In addition, the filtered-out amplitudes of
two discrete normal modes and of the fast acoustic modes are compared with ones predicted
by the linear receptivity theory.

Numerical approach

A numerical simulation was carried out by Wang and Zhong [WZ05] to determine the re-
ceptivity of a Mach 8.0 flow over a sharp wedge to wall blowing-suction through a slot on
the wedge surface. The wedge had a half-angle of 5.3' . The freestream parameters were: ve-
locity Uo,, = 1181.7 m/s, density poo = 0.0247 kg/m, and temperature T,o = 54.78 K. Such
a hypersonic boundary-layer flow had been numerically studied by other researchers. Malik
et al. [MLS99] solved the linearized Navier-Stokes equations to investigate the responses of
the flow to three types of external forcing. Ma and Zhong [MZ03c] studied receptivity mech-
anisms of the same flow to various freestream disturbances by solving the two-dimensional
compressible Navier-Stokes equations. In the current simulation, we extend the study to
the receptivity mechanism of the hypersonic boundary layer to wall blowing-suction distur-
bances.

In our simulation, the Mach 8 flow is assumed to be thermally and calorically perfect.
The governing equations for the simulation are the two-dimensional Navier-Stokes equations
in the conservative form, i.e.,

-9-+ 49(Fl, + F1 .) + (F2i + F 2,) = 0, (2.113)

where U is a vector containing the conservative variables of mass, momentum, and energy,
i.e.,

U = {p, puI, pu2 , e}. (2.114)

The flux vector in (2.113) is divided into its inviscid and viscous components, because the
two components are discretized with two finite difference schemes: Fli and F 2i are inviscid
flux vectors, whereas F 1, and F 2, are viscous flux vectors. The flux vectors can be expressed
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as
PUj

Fji= pUuj +P6j (2.115)p'UU + 062j

uj(e + p)

0

_F ,Tj (2.116)
-- j U , - -x 8 ---

with j,n E {1, 2}. In the perfect gas assumption, pressure and energy axe given by

p = pRT, (2.117)

pcT + E(U2 + u), (2.118)

where c, is the specific heat at constant volume. For compressible Newtonian flow, the
viscous stress tensor can be written as

8ui Onj. 2 &u-
Ti =(-j + o9uj) - 2,,au,-bij, (2.119)

for i,j, n E {1, 2}. In the simulation, the viscosity coefficient, I, and the heat conductivity
coefficient, K, are calculated using Sutherland's law together with a constant Prandtl number,
Pr = 0.72.

The fifth-order shock-fitting method of Zhong [Zho98] is used to solve the two-dimensional
Navier-Stokes equations in a domain bounded by the bow shock and the wedge surface. The
bow shock is treated as a boundary of the computational domain, which makes it possible
for the Navier-Stokes equations to be spatially discretized by high-order finite difference
methods. Specifically, a fifth-order upwind scheme is used to discretize the inviscid flux
derivatives. Meanwhile, the viscous flux derivatives are discretized by a sixth-order central
scheme. The Rankine-Hugoniot relation across the shock and a chaxacteristic compatibility
relation from the downstream flow field are combined to solve the flow variables behind the
shock. By using the shock-fitting method, the interaction between the unsteady perturba-
tions and the bow shock is solved as part of the solutions, with the position and velocity of
the shock front being taken as unknown flow variables. A three-stage semi-implicit Runge-
Kutta method is used for temporal integration, where the time step size is obtained based
on CFL number and grid size.

The steady base flow is computed by solving (2.113) with a combination of the fifth-
order shock-fitting method and a second-order TVD scheme. In the leading edge region, there
exists a singular point at the tip of the wedge, which will introduce numerical instability if the
fifth-order shock-fitting method is used to simulate the flow. Therefore, the computational
domain for the shock-fitting simulation starts from a very short distance downstream of
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the leading edge. A second-order TVD scheme is used to simulate the steady base flow
in a small region including the leading edge to supply inlet conditions for the shock-fitting
simulation. The steady base flow simulation is advanced in time until the last pair of solutions
separated by a finite time interval can be considered as identical within a specified tolerance.
For unsteady simulations, blowing-suction disturbances axe introduced in a downstream
region where the shock-fitting method is used. The subsequent responses of the hypersonic
boundary layer are simulated with the fifth-order shock-fitting method to achieve a periodic-
in-time flow field (large time asymptote of perturbation calculations).

For the simulation of steady base flow, the wall is adiabatic, and the physical boundary
condition of velocity on the wedge surface is the non-slip condition. When periodic-in-time
blowing-suction disturbances are enforced on the steady base flow, the isothermal temper-
ature condition is applied on the wall. This temperature condition is a standard boundary
condition for theoretical and numerical studies of high-frequency disturbances. Meanwhile,
a non-slip condition is applied on the wall, except for the forcing region. Inlet conditions
are specified, while high-order extrapolation is used for outlet conditions because the flow is
supersonic at the exit boundary, except for a small region near the wedge surface.

In the current study, the coordinate x is defined as the distance measured from the tip
of the wedge, whereas the coordinate y is the normal distance from the wall. The blowing-
suction slot is simulated by the periodic-in-time boundary conditions for the perturbation
of the mass flux on the wall, which can be written as follows:

15

pv = qog(l) >sin(wnt), (2.120)
n= 1

where qO is an amplitude parameter and w,, is the circular frequency of multi-frequency
perturbations. In (2.120), g (1) is the profile function defined as

20.2515 - 35.437514 + 15.187512, ( 1) (2.121)
-20.25 (2 - 1)' + 35.4375 (2 - )4 - 15.1875 (2 - )2, (1 > 1).

The variable I in (2.121) is a non-dimensional coordinate defined within the blowing-suction
slot:

(X) (x - xi)' xi <xX < X'; (2.122)

where xi and x, are the coordinates of the leading and the trailing edges of the slot, re-
spectively. The amplitude distribution, g (1), is shown in figure 2.70. Numerical simulations
reveal that there is no difference in the results if surface blowing-suction is specified by the
perturbation in the y-velocity only. This is due to the fact that the weak perturbation is in
the linear region. The corresponding velocity perturbation at y = 0 is

15 15

v(x,t) = vw(x) Zsin(wt) = qO g(1)q° Zsin(wt), (2.123)
n-1 Paw n=
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Figure 2.70: Amplitude distribution of the blowing-suction slot.

where Paw is density of the unperturbed flow on the wall. In the theoretical analysis we
utilize (2.123) as the boundary condition simulating the actuation.

As had been mentioned above, the steady base flow is simulated with a combination
of a fifth-order shock-fitting finite difference method and a second-order TVD scheme. In
the leading edge region, there exists a singular point at the tip of the wedge, which will
introduce numerical instability if the fifth-order shock-fitting method is used to simulate the
flow. Therefore, the computational domain for the fifth-order shock-fitting method starts
at x = 0.00409 m and ends at x = 1.48784 m. In actual simulations, the computational
domain is divided into 30 zones, with a total of 5936 grid points in the streamwise direction
and 121 grid points in the wall-normal direction. Forty-one points are used in the buffering
region between two neighboring zones, which proved to be sufficient to make the solution
accurate and smooth within the whole domain. An exponential stretching function is used
in the wall-normal direction to cluster more points inside the boundary layer. On the other
hand, the grid points are uniformly distributed in the stream-wise direction.

For the first zone of the shock-fitting calculations, the inlet conditions are obtained from
the results of the second-order TVD shock-capturing scheme, which is used to simulate the
steady base flow in a small region including the leading edge. For other zones, inlet conditions
are interpolated from the results of the previous zone. Figure 2.71 shows the wall-normal
velocity and density contours near the leading edge of the steady base flow obtained by the
second-order TVD scheme and the fifth-order shock-fitting method. The flow field including
the leading edge is simulated by the TVD scheme, while the flow field after x = 0.00409
m is simulated by the shock-fitting method. It shows that wall-normal velocity and density
contours have good agreement within the buffering region, which indicates that the TVD
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Figure 2.71: Wall-normal velocity and density contours near the leading edge of the steady
base flow obtained by a combination of a fifth-order shock-fitting method and a second-order
TVD scheme.

solutions are accurate for use as inlet conditions for the fifth-order shock-fitting simulation
in the first zone.

In our simulations, three sets of grid structures are tested to check the grid indepen-
dence of the numerical results. As an example, figure 2.72 compares the temperature con-
tours of the steady base flow in zone 10, simulated using the three sets of grids. It shows
that the three contours agree well in the domain despite the increases in grid points. This
figure indicates that the simulation results are converged in both the x and y directions.
Figure 2.73 shows the streamwise velocity and temperature profiles in the wall-normal di-
rection at the location of x = 0.62784 m. The current numerical solutions are compared
with the self-similar boundary-layer solutions. In the figure, velocity and temperature are
non-dimensionalized by corresponding freestream values, while the y coordinate is non-
dimensionalized by x/ p,U . This figure shows that the properties of the current
numerical simulation agree very well with those of the self-similar boundary-layer solution.
In unsteady simulations, the amplitude of blowing-suction is at least one order of magnitude
larger than the maximum numerical noise and it is small enough to preserve the linear prop-
erties of the disturbances. Figure 2.74 compares dimensionless amplitude along the wedge
surface of a pressure perturbation at the frequency of 149.2 kHz. The solid line and trian-
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Figure 2.72: Comparison of temperature contours of the steady base flow in zone 10 simulated

using the three sets of grids.

gular symbol represent the numerical results simulated using grid structures of 241 x 176

and 241 x 121, respectively. The agreement between the two distributions of perturbation

amplitude indicates that the grid independence of unsteady simulation is achieved. All these

three figures show that the grid structure of 241 x 121 used in the current simulation is

enough to ensure grid-independent numerical simulations.

For the purpose of the multimode decomposition, fast Fourier transform (FFT) of the

perturbation field is carried out downstream from the slot at distance Xd,,at. The time

duration of simulation data used for FFT analysis is one period of the base frequency. Seven

cases with different xi, xe, and Xd.ta are considered in the present work. In all cases, the

width of the slot, w = x, - xi, is kept equal to 1.2 cm. Coordinates of the slot center, xc,

and the coordinates Xdata are presented in table 2.5.
Figure 2.75 shows an example of the streamwise velocity amplitude distributions obtained

in the numerical simulation for case 1. The velocity is scaled with the edge velocity, U. =

1167.3 m/s, and the distance from the wall is scaled with H = 0.1251 mm. The length scale

H is defined as V/XdaaP./P.U-.

The boundary layer thickness 699 (distance from the wall where the local velocity U -

0.99Ue) is given in table 2.5. As follows from the table, the ratio 699 /H is about 19.5 in all

cases.
The contours of the instantaneous pressure perturbation induced by blowing-suction dis-

turbance at frequency 5 x 14.92 kHz are shown in figure 2.76 (case 2). After the blowing-

96



0.9
u,,UU. =r. - f%T=yMH 10

0.7 ............ uof eff-simila r solutimn

0.6 T of numerlWIca I,9OtW=

A u of numerlial soMlon"0.5

0.4

0.3 4

0.2

0.1 2

00 50 100 150 200 250

11

Figure 2.73: Profiles of streamwise velocity and temperature in the wall-normal direction at
the location of x = 0.62784 m.
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Case xc Xdata qO x 105 H 69 N as'H aF,H

(M) (m) (kg/s m 2) (mm) (mm) aSjH aF i H
1 0.10772 0.12784 0.125188 0.1251 2.437 11 +1.07 x 10-' +9.91 x 10- 2

-3.38 x 10-
4  +2.73 x 10-

3

2 0.40784 0.42784 0.054453 0.2289 4.452 7 +1.17 x 10- ' +1.15 x 10- '
-1.98 x 10-3  +6.92 x 10-3

3 0.05784 0.07784 0.214139 0.09764 1.901 11 +8.54 x 10-2 +7.19 x 10- 2

+5.77 × 10-
6  +8.16 x 10- 4

4 0.15784 0.17784 0.096130 0.1476 2.875 10 +1.13 x 10- ' +1.09 x 10- 1

-1.14 x 10-3  +6.75 x 10- 3

5 0.20784 0.22784 0.080666 0.1670 3.250 9 +1.14 x 10- ' +1.10 X 10-1
-1.28 x 10-3  +6.63 x 10- 3

6 0.25784 0.27784 0.070759 0.1845 3.590 8 +1.10 x 10- 1  +1.05 x 10-1
-6.05 x 10-4  +6.89 x 10-3

7 0.30784 0.32784 0.063745 0.2004 3.900 8 +1.19 x 10-1  +1.19 x 10-1

-2.43 x 10-3  +7.55 x 10-3

Table 2.5: Coordinates of the slot center, x,, and of the station, Xd.t,,, where data were
provided for the decomposition; the amplitude parameter qO in (2.120); the length scale H
corresponding to the considered examples; the local boundary layer thickness, 699; the real
and imaginary parts of the eigenvalues corresponding to the slow and fast discrete modes, as
and UF, respectively. The presented eigenvalues correspond to frequencies (N - 1) x 14.92
kHz, where N is given in the table.
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- 1.5e-07 "'N=9-- N=10 -----.
--. .." ....."-. N=ll....

-- le-07 ,

5e-08

0
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y/H

Figure 2.75: Amplitude distribution of the streamwise velocity component at x Xd,,ta and
frequency (N - 1) x 14.92 kHz for case 1.
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Figure 2.76: Contours of the instantaneous pressure perturbation induced by blowing-suction

disturbance at frequency 5 x 14.92 kHz for case 2.
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suction slot, the excited pressure perturbations are divided into two branches: one branch
penetrates the boundary layer and propagates along the Mach lines (acoustic waves) while
the other branch stays within the boundary layer, which is the instability mode (mode S
in terminology of the results' part of this section), indicated by the typical wave structures
near the wall.

Theoretical analysis

The theoretical analysis of the numerical results in the present work includes two steps. The
first one is the decomposition of the perturbation field obtained in the computational part of
the work into normal modes (projection onto the basis comprised of the eigenfunctions of the
continuous and discrete spectra). The second step is the receptivity problem solution with
the blowing-suction on the wall defined by (2.123) and comparison of the found amplitudes
with those filtered out from the computational results.

The multimode decomposition of two-dimensional perturbations in compressible bound-
ary layers was introduced by Guydos and Tumin [GT04] (Section 2.5.2), and it can be
utilized for analysis of the present problem. Alternatively, one can use the results for three-
dimensional perturbations [Tum06c] when the spanwise wave number, 6, is very small. Simi-
larly, the receptivity problem solution for three-dimensional perturbations introduced on the
wall (see Section 2.3.2 and 2.4.1) can be utilized for analysis of the two-dimensional prob-
lem by using fl --+ 0. For clarity of the method description, we recapitulate the receptivity
problem solution in a form adequate for two-dimensional perturbations in a compressible
boundary layer [Fed84]. One can find a historical perspective of the method and relevant
bibliography in Sections 2.3.2 and 2.7.

In the parallel flow approximation, we write down the governing equations for a two-
dimensional periodic-in-time perturbation in the matrix notation of Section 2.5.2,

( &A i9A
a (L - +L - =HA+H 2 F,--,

where L0 , L, , H 1, and H 2 are 9 x 9 matrices. Their non-zero elements are given in Section
2.5.2. Vector A is comprised of the perturbation profiles and their derivatives,

A = (u, iu/Oy, v, 7r, 0, 90/fy, Ou/Ox,,Ov/X,0/aX)T , (2.125)

where u and v are x- and y-velocity components, respectively; 7r is the pressure perturbation;
0 is the temperature perturbation; and T stands for transposed. In the case of blowing-
suction through a slot, the boundary conditions in the slot domain are inhomogeneous,
A 3 (x, 0) = v, (x), and A8 can be found from A 3 by the definition. The solution of (2.124)

is decaying outside the boundary layer. For simplicity, we assume that the perturbation
frequency is subcritical, and one can employ the Fourier transform with respect to x.

+00

A,, (a., y) = J A (x, y) e-I-xdx. (2.126)

01
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In the case of a supercritical frequency, one has to refer to Briggs' method in order to

include the unstable mode (exponentially growing downstream mode) in the inverse Fourier

transform [AR90, BM921.
Vector-function A,, (a,, y) satisfies the following equation and boundary conditions

d /"LdA,, LdA,,
d L( -A + Lj = H 1 A, + ia,H 2A,, (2.127)dy dy / dy

y=0 : A,j =0, A,3= (a,), A,5 =0, (2.128a)

y- oo: IA,,jI--+ 0, (j =1,...,9), (2.128b)

where
+00

o (a,,) J v,,, (x) e-"I'dx. (2.129)

-00

Equation (2.127) has three fundamental solutions decaying outside the boundary layer.

One can write down the solution of the inhomogeneous boundary-value problem as follows:

A,, = CIZ 1 + C3 Z3 + C5 Z5 , (2.130)

where Z1 , Z3 , and Z5 are the decaying fundamental solutions. The coefficients Cj in (2.130)
axe found from the boundary conditions (2.128a) on the wall. The formal solution of (2.124)
satisfying the boundary conditions can be written as follows

+00

A (x,y)= A,,(a,,, y) e",da,, (2.131)

-00O

It was shown in [TF83b] and [Tum06c] that the periodic-in-time solution of the linearized
Navier-Stokes equations can be expanded into the normal modes of continuous and discrete
spectra,

00

A(x, y) = E J Cj(k)A.(y, k)e'c!(k)xdk + 1 C,,A,,_ (y) ei'a-x, (2.132)

0 m

where the eigenfunctions A, are found as solutions of the following problem:

d Ld-+ L,- = H1 A, + iaH 2A,, (2.133)
dy ( ) dy

y=O: A.i=AA3 =A, 5 =0, (2.134a)

y -- + : A, I < oo, (j = 1,...,9). (2.134b)
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The first term in (2.132) represents summation over the modes of the continuous spectrum
(such as entropy, vorticity, and acoustic modes), and the second term represents input of
the discrete modes. Eigenfunctions of the discrete modes decay outside the boundary layer,
whereas eigenfunctions of the continuous spectra have asymptotic behavior "-' exp(±iky) at
y --+ co, where k is a real parameter (k > 0). This parameter also serves as a coordinate
along the branches of the continuous spectra in (2.132).

Vectors A,, together with the solution of the adjoint problem, B",

d (L T'-) LTd =_ HT B + iaH TB,, (2.135)

y=0: B. 2 =B.4 =B.6 =0, (2.136a)
y- oo I B,, I < oo, Uj = 1, ...,19), (2.136b)

represent the biorthogonal eigenfunction system {A,, B}. There is the following orthogo-
nality relation

9 00

(H2A.,B.) E](H2A.)j B.,,dy = QA.,,, (2.137)
j=1

where A ,., is the Kronecker delta if a or a' belongs to the discrete spectrum, and A ,, =
6(a - a') is the delta function if both a and a' belong to the continuous spectrum. The
coefficient Q in the right-hand side of (2.137) depends on the normalization of A,(y) and
B,(y). Evaluation of the coefficient in the case of the discrete spectrum is straightforward.
In the case of the continuous spectrum, the coefficient can be found with the help of the
fundamental solutions outside the boundary layer [Tum03, Tum06c].

The orthogonality relation (2.137) provides a tool to find coefficients Cj and Cm in the
formal solution (2.131). With the help of the orthogonality relation (2.137), one can find the
initial amplitude of a mode entering in the formal solution A (x, y):

(H2A (x,y),B,(y)) ix
C_Qe (2.138)

If we consider a dot product of B,, and (2.127), and integrate with respect to y over the
interval [0, oo), we arrive at the following identity (we take into account explicit forms of
matrices L0 and Li):

[L3A 3 dB 4 - AvB.3 + KA d ( T'-)"dy I Y= T 0 dY (2.139)

S(A L, LTB) = (A, HTB.) + io, (Av,HTB.),

where L4 stands for the element of matrix Lo having indices (4,3). Taking into account the
adjoint equation (2.135), one can substitute the formal solution (2.131) in (2.138) and find
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with the help of (2.139) the following result:

+00 L _ 43d1

1 f [Ldd - B- 31=2rQ I I ) (a,)  B =°da. (2.140)

- 00

By closing the path of the integral in the upper half plane, we find the theoretical coefficient
as the residue value at the pole a, = a:

Cd= L d4y - B.3 (2.141)
Q(a) I d =

On the other hand, we have results of the direct numerical simulation (DNS) in the form
of the vector-function ADNS at X = XDNS. One can find from (2.138) the initial amplitude,
CDNS, of the mode as follows:

CDNS = (H2ADNS (XDNS, y) , Ba) eiaxDNS (2.142)
Q(a)

According to the definition of coefficients in (2.132), C in (2.141) and CDNS in (2.142)
are the complex amplitudes at x = 0. In order to interpret the complex weight C in (2.141)
as initial amplitude and phase of the normal mode generated by the slot, the origin, x = 0,
is chosen at the slot center. Therefore, XDNS in (2.142) means the distance Xdat - Xc,

where Xdata and x, are given in table 2.5 for each case. Because the distance XDNS in all
considered examples is less than 11699, the nonparallel effects in the growing/decaying of the
perturbations on the interval XDNS are ignored. If one is interested in the local amplitude
of a mode at x = XDNS, the origin of the coordinate should be at this point. In other words,

XDNS = 0 in (2.142).
Finally, one can compare the filtered-out coefficient CDNS in (2.142) with the predicted

C in (2.141).

Results

Discrete modes

One can find the details of the numerical method used for computation of the eigenvalues
and eigenfunctions of the direct and adjoint problems elsewhere [Tum06c]. In all cases,
eigenvalues and eigenfunctions of the discrete and continuous spectra are computed using the
velocity, temperature, and viscosity profiles obtained from the direct numerical simulation
at X = Xdata.

Figure 2.77 shows the discrete and continuous spectra at frequency f = 134.28 kHz. One
can see in figure 2.77 slow (S) and fast (F) discrete modes, and branches of the continuous
spectra. There are two horizontal branches representing the slow and fast acoustic modes.
Their branching points correspond to phase velocities c = 1Fl/M, where M is the local Mach
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Figure 2.77: Continuous and discrete spectra at 134.28 kHz for case 1.
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Figure 2.78: Imaginary (a) and real (b) parts of the wave number, case 1.
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number at the edge of the boundary layer. At this scale, the vertical branch is comprised of
two indistinguishable branches of entropy and vorticity modes [Tum06c].

Figure 2.78 shows the imaginary and real parts of the wave number a for the discrete
modes as functions of frequency, w. Lines SA and FA in figure 2.78b represent the branching
points (k = 0) of the slow and fast acoustic modes, respectively. One discrete mode (mode
F) is synchronized with the fast acoustic mode at low frequencies, whereas the other discrete
mode (mode S) is synchronized with the slow acoustic mode.

At f P 150 kHz, mode F is synchronized with the vorticity and entropy modes (c = 1).
This synchronization is accompanied by a discontinuity in aj. The phenomenon may be
illustrated as a sequence of figures 2.77 at different frequencies. When frequency increases,
the vertical branch in figure 2.77 is moving from left to right with speed da,/dw = 1,
whereas the eigenvalue corresponding to the fast discrete mode moves from left to right
with dar/dw > 1. At some frequency, the discrete mode coalesces with the branch of the
continuous spectrum. As was discussed in [FT03], the discrete mode coalesces with the
continuous spectrum from one side of the branch cut and reappears on the other side at
another point. Mathematically, the eigenvalue associated with mode F approaches one side
of the branch cut on the complex a plane. As the pole on the plane coalesces with the
branch cut, it moves to the upper Riemann sheet while, simultaneously, the pole that was
on the lower Riemann sheet moves into the complex a plane at another point. Actually, one
should interpret these poles as two different modes. Historically, they are discussed as one
mode having the discontinuity.

At higher frequency, f : 170 kHz, there is a synchronism between mode F and mode
S. However, there is no coalescence of the eigenvalues. A model of two-mode synchronism
considered by Fedorov and Khokhlov [FK91, FK01] explained the branching of the modes
at the point of synchronism. At this point, one of the modes becomes unstable, whereas
the other one moves toward positive aj. Although in this example the modes have the same
phase velocity c = w1ar at f & 170 kHz, the minimum of IaF - asl exists in the vicinity of
f ; 150 kHz, and, actually, this is the point where we observe the modes' branching.

Both the slow and fast discrete modes could be involved in the laminar-turbulent transi-
tion scenario. For example, the decaying mode could be generated by the entropy or vorticity
modes of the continuous spectra. At the point of synchronism between the fast and slow
modes, the decaying mode can give rise to the unstable mode (switching of the modes),
which may lead to the transition. The scenario suggested by Fedorov and Khokhlov [FK01]
means that both the stable and unstable modes are of interest for understanding transition
mechanisms. Later on, switching of the modes was observed in direct numerical simulations
of perturbations in high-speed boundary layers [MZ03b]. These features of the fast and slow
discrete modes explain why we need accurate simulations of the decaying mode as well.

Figure 2.79 shows a comparison of the theoretical receptivity coefficient with the ampli-
tude filtered out from the computational results in accordance with (2.142). Results in figure
2.79 and what follows for the discrete modes correspond to normalization of the eigenfunc-
tions when the maximum of the mass flux perturbation in the boundary layer is equal to
one. Figures 2.80 through 2.85 demonstrate comparisons of theoretical and numerical results
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Figure 2.79: Comparison of the theoretical prediction for the receptivity coefficient in case
1 with data filtered out from the computational results: a) mode S and b) mode F.

for cases 2 through 7, respectively.
One can see from the figures that there is a good agreement between amplitudes calculated

with the help of the receptivity model of the theoretical part of this section and those obtained
from the numerical results as a projection onto the normal modes.

One can also notice that the shape of the function IC(f) I for mode S in case 3 (figure
2.81 a) is qualitatively different from the other cases, and agreement between the theoretical
prediction and the numerical results is not as good. Case 3 corresponds to the closest
location of the slot to the wedge's tip. The slot has a width of about 1.2 cm, whereas the
distance from the tip is about 5 cm, and one should expect nonparallel flow effects, which
were neglected in the present model. The nonparallel flow effects may be incorporated into
the receptivity problem solution with the help of the multiple scales method along the lines
of the distributed receptivity model proposed by Choudhari [Cho94a]. Another approach
to receptivity problems with nonparallel flow effects was suggested by Bertolotti [BerOO].
Because the main objective of the present work was decomposition of the DNS results,
we do not pursue the nonparallel flow effects in the theoretical solution of the receptivity
problem.

The most significant discrepancy between the theory and the computational results is
observed for mode F in case 6 at f = 104.44 kHz (figure 2.84b). This example corresponds to
the eigenvalue a = 0.1047+i6.894x l0- located very close to the branch cut representing the
vorticity/entropy modes having a, z 0.1036. In order to illustrate the qualitative difference
between the mode eigenfunctions when a mode is approaching the branch cut, we show in
figure 2.86 streamwise velocity perturbations of the neighboring discrete modes at 89.52 kHz
and 119.36 kHz (phase velocities, c, of the modes in figures 2.86a and 2.86b are equal to 1.059
and 0.926, respectively). The streamwise velocity of mode F at f = 104.44 kHz is shown in
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Figure 2.80: Comparison of the theoretical prediction for the receptivity coefficient in case
2 with data filtered out from the computational results: a) mode S and b) mode F.
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Figure 2.81: Comparison of the theoretical prediction for the receptivity coefficient in case
3 with data filtered out from the computational results: a) mode S and b) mode F.
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Figure 2.82: Comparison of the theoretical prediction for the receptivity coefficient in case
4 with data filtered out from the computational results: a) mode S and b) mode F.
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Figure 2.83: Comparison of the theoretical prediction for the receptivity coefficient in case
5 with data filtered out from the computational results: a) mode S and b) mode F.
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Figure 2.84: Comparison of the theoretical prediction for the receptivity coefficient in case
6 with data filtered out from the computational results: a) mode S and b) mode F.
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Figure 2.85: Compaxison of the theoretical prediction for the receptivity coefficient in case
7 with data filtered out from the computational results: a) mode S and b) mode F.
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Figure 2.86: Streamwise velocity perturbation in discrete mode F: a) 89.52 kHz (c = 1.059)
and b) 119.36 kHz (c = 0.926).

figure 2.87 (c = 0.99). One can see that although the amplitude of the mode decays outside
the boundary layer, as it has to for a discrete mode, there are oscillations in the amplitude
distribution in y typical for modes of continuous spectra. The closer the location of the
eigenvalue is to the branch cut, the more similarity with the continuous spectra should be
observed.

Fedorov and Khokhlov [FK02] considered the receptivity problem when a synchronism
between two discrete modes is possible. They showed that in this case Q = (H2A", B") -. 0,
and the analysis has to include both modes simultaneously, together with the nonparallel flow
effects. In our example, we have a synchronism between a discrete mode and the continuous
spectrum. Figure 2.88 shows the magnitude IQI for modes F and S as functions of frequency.
One can see that in the case of mode F, Q is very close to zero at f = 104.44 kHz. This
means that the theoretical model based on the parallel flow approximation is not adequate,
and the extension of the model [FK02] to the case of a continuous spectrum is required.

Acoustic modes

The biorthogonal eigenfunction expansion also provides a tool for analysis of the input from
continuous spectra in the computational results. Examples of boundary layers at M = 2 and
4.5 considered by Balakumar and Malik [BM92] and Tumin [Tum06b] (see Sections 2.3.2 and
2.4.1) indicate that input from entropy and vorticity modes due to blowing-suction through
the wall is small in comparison to the acoustic modes. Therefore, we are considering the fast
and slow acoustic modes only (the horizontal branches in figure 2.77).

In the case of two-dimensional perturbations, eigenfunctions corresponding to the acous-
tic modes are comprised of four fundamental solutions [TF83b, GT04]. Two of them decay
exponentially outside the boundary layer, whereas the other two fundamental solutions be-

111



0.06 S Uri

0 .04 .... ......... ..

-0 .0 2 . . ................... . .... ...... ............
-0.02

-0 .0 4 -. -.---. ----. .............. . .. -- --- --

-0 .0 6 . ............ . . . . ----------------- . ... ...

-0.08F

0 5 10 15 20 25 30 35 40
y/H

Figure 2.87: Streamwise velocity perturbation in discrete mode F at f = 104.44 kHz (c -
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Figure 2.88: Magnitude of the denominator in (2.142),case 6.
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Figure 2.89: Strearnwise wave numbers of the fast (FA) and slow (SA) acoustic modes, case
1 (134.28 kHz).

have as exp(±iky) at y -- c. One can interpret these fundamental solutions at k $ 0 as
incident and reflected acoustic waves.

In the inviscid limit, the wavenumbers of the fast and slow acoustic waves (aFA and aSA,
respectively), can be found analytically as follows:

VM k +M 2

wM
2  k2 + 

2

= M _1" - M 2 _1(2.143a)

M Vj 
M

2

+

aSA 1 + , (2.143b)sA -21 +  /-M 2_1

At the finite Reynolds number, the wave numbers aFA and aSA are found numerically
from the characteristic equation for fundamental solutions outside the boundary layer at
prescribed parameter k [GT04, TumO6c]. Figure 2.89a shows dimensionless real parts of
aFA and aSA as functions of the parameter k in case 1 corresponding to the frequency
134.28 kHz. Branches of the acoustic spectrum in the complex plane a are presented in
figure 2.89b.

Projection of the computational data onto the eigenfunction system allows evaluation of
the amplitudes of the modes and, therefore, revealation of the underlying physics. Figure 2.90
shows the computational (input) data for the streamwise velocity perturbation corresponding
to the frequency 134.28 kHz in case 1 at x = Xd,t., the reconstructed input of two discrete
modes (S and F), and the acoustic modes ('A' stands for sum of the slow and fast acoustic
modes). In this example, amplitudes of the modes are determined from the computational
results with the help of the orthogonality relation (2.137). Integrals corresponding to the
continuous spectra in (2.132) are evaluated numerically with respect to k from 0 to 4 with
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Figure 2.90: Input DNS data at x = Xd., and results of the projection onto modes of discrete
spectrum (S and F), and the acoustic modes, case 1 (134.28 kHz).

the help of the trapezoidal formula resulting from 100 steps on the interval. Computations
with larger number of steps and longer interval of the integration have not revealed a visible
difference on the scale used in figure 2.90.

One can see that the acoustics provides the main input outside the boundary layer. The
wiggles in the computational data (at y/H ; 35 - 45) are associated with the acoustic
perturbations emanating from the slot and propagating along the Mach lines outside the
boundary layer. In this case, M P 6.62 and the Mach angle p ; 8.690. One can find width,
Ay, of the perturbation strip propagating along the Mach lines as Ay = w tanA ct' 14.7H,
which is in agreement with the results in figure 2.90.

In the inviscid flow, the distance between the wall and the strip is (Xda.t - x, - 0.5w) x
tan p ; 17.25H. As follows from figure 2.90, there is the boundary boundary layer flow
effect, and the strip is displaced from the wall a distance of about J99.

At the parameters corresponding to the results in figure 2.90, the main input into the
perturbation profile inside the boundary layer is associated with the fast (F) discrete mode.
It is also found that the slow acoustic modes have small amplitudes in comparison with the
fast modes, similar to the previous studies [BM92, Tum06b].

It is interesting to compare the amplitudes of the acoustic modes obtained with the help
of the receptivity problem solution and their amplitudes obtained as a projection of the
computational results. Figure 2.91a shows the theoretical amplitudes of the fast acoustic
modes and the values filtered-out from the computational results. One can see that there is
a discrepancy between them at k ; 1 - 1.5. The discrepancy might be attributed to the grid
in the DNS not being fine enough in the vicinity of the wiggles at y/H _ 35 - 45 having the
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Figure 2.91: Amplitudes of the fast acoustic modes (a) and predicted velocity perturbation
profiles (b), case 1 (134.28 kHz).

length scale < 27r.
Figures 2.92 through 2.95 show comparisons of the theoretical prediction for amplitudes

of the fast acoustic modes and their amplitudes found as a projection of the computational
results, together with the reconstructed profiles of the velocity perturbations in case 1 at
frequencies 149.2 kHz, 164.12 kHz, 179.04 kHz, and 193.96 kHz, respectively.

Discussion of the results

The results of the present work serve as an illustration of how the biorthogonal eigenfunc-
tion system can provide an insight into computations. In order to be able to distinguish the
modes, one needs amplitude and phase distributions for pressure, temperature, and velocity
components, together with some of their derivatives, given at only one station x. The nec-
essary information is always available in computational studies, and the described method
allows finding the amplitudes of the modes from the discrete and continuous spectra. For ex-
ample, the results illustrate how one can find amplitudes of the decaying modes in numerical
simulations that could not be addressed at all in the past (only unstable modes dominating
the perturbation field in a numerical simulation could be compared with predictions of the
linear stability theory).

The solution in the present work is based on the parallel flow approximation. This
approximation is valid when the characteristic scale of the perturbation (wave length) is much
smaller than the characteristic scale of the unperturbed flow in the downstream direction.
This condition is violated when the actuator is located close to the leading edge (see case
3 in the results' part). Results of the present work are also based on the assumption that
the denominator in (2.142) is not equal to zero. Fedorov and Khokhlov [FK02] showed that
the denominator is equal to zero at the branching point of two discrete modes. In this case,
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Figure 2.92: Amplitudes of the fast acoustic modes (a) and reconstructed velocity perturba-
tion profiles (b), case 1 (149.2 kHz).
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Figure 2.93: Amplitudes of the fast acoustic modes (a) and reconstructed velocity perturba-
tion profiles (b), case 1 (164.12 kHz).
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Figure 2.94: Amplitudes of the fast acoustic modes (a) and reconstructed velocity perturba-
tion profiles (b), case 1 (179.04 kHz).
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Figure 2.95: Amplitudes of the fast acoustic modes (a) and reconstructed velocity perturba-
tion profiles (b), case 1 (193.96 kHz).
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the nonparallel flow effects are to be taken into account in order to resolve the singularity.
Analysis of case 6 (f & 104 kHz) showed that the denominator tends to zero in the case of
synchronism between the discrete mode and the continuous spectra. Therefore, an extension
of the theoretical model of [FK02] to the case of continuous spectra is required.

Decomposition of perturbations when only partial information is available is an ill-posed
problem. Nevertheless, it is still possible to analyze the flow field if some additional informa-
tion about the data is available. Tumin et al. [TACZ96, Tum03, GT04, TumO6c] discussed
examples where the perturbations could be decomposed into the normal modes when only
partial information was available. Further development of this approach might be especially
helpful in analysis of experimental data in high-speed boundary layers.
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2.6 Biorthogonal eigenfunction system for supersonic
inviscid flow past a flat plate

This section is based on the paper published in collaboration with C. Chiquete [sAT07].

The objective of the present section is to illustrate the main ideas of the multimode
decomposition using a study case where all steps of the method are accompanied by analytical
solutions. The problem of perturbations in inviscid uniform flow past a flat plate provides
the opportunity to formulate the biorthogonal eigenfunction system in analytical form.

Spatial Cauchy problem

The first step in the method is to demonstrate that periodic-in-time solutions of linearized
Euler's equations can be presented as an expansion into normal modes. This problem is
analogous to analysis of perturbations in boundary layers in [Tum03, TumO6c], and [TF83b].

Consider two-dimensional perturbations in an inviscid uniform supersonic flow past a
flat plate. Axis x is chosen in the flow direction; coordinate y stands for the distance from
the plate. The governing equations for the perturbations are the linearized Euler equations,
which can be written in dimensionless form as follows:

ap + p + Ou + av 0
at ax ax ay
Ou Ou 07r5T + - = -- O
av av aw (2.144)

5i+ Y = 'Yat ax ay

a90 aoI)M ai+a7
- + -= (

T-1)tM I -+

where u, v, 7r, p, and 0 are perturbations of the x and y velocities, pressure, density and
temperature, respectively. The free-stream velocity Uo,, density poo, and temperature T..
are chosen as the characteristic scales in (2.144). The pressure is scaled with the help of
p,U.. The coordinates x and y are scaled with a length scale L, whereas the time scale is
L/Uoo. M and -y in (2.144) are the free-stream Mach number and the specific heats ratio,
respectively. In addition, one can find from the linearized equation of state that

p = -9M21r _ 0 (2.145)

We consider periodic-in-time solutions of the governing equations in the complex form
q(x, y, t) = O(x, y) exp (-iwt). As a result, the equations (2.144) are recast with the help of
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the equation of state (2.145) (we omit ' ^ '):
0 ~ Ou &v(M2a(_YM27r _ ) OU =8 0

- iw (7M 2 r - 9) + - M 9+ F + Fy

Ou 0Ow
- iWu + - - -17

Ox &2r (2.146)

- zWv + -
ax O y

- iWo + 00 ( 1)M2 -iw7r + 07

The system of four equations can be written in the matrix-vector form with the help of
the vector function A(x, y) = (u, v, 9, 7r)T, where T refers to the matrix transpose.

aA 9A
E-= H 1A + H 2 -

ay ax

(I000 i 0o 0 0
010 0 H1 0 0 -iw iW-YM 2

E = 0 0 ' 0 iW iw(Q-y 1)M2 (2.147)
(00 0 1 0iLO 0 0

H2 = -1 0 1 -7/m 2

0 -1_ (7-0 )M2
-1 0

Solution of (2.147) is subject to the following boundary conditions on the wall (y = 0)

and at y - oo:

y=0: A2 =0 (2.148)

y -oo: JA I- 0, (J = 1, .. ,4) (2.149)

At x = 0, the initial data for the amplitude functions are provided:

x = 0: A = Ao(y) = (uo(y), vo(y), o(y),7ro(y))T (2.150)

where the initial data vector Ao(y) is assumed to decay at y --+ o. This defines the spatial

Cauchy problem.
Solution of the problem, (2.147) - (2.150), can be found with the use of the Laplace

transform with respect to x:

A.(y) = A(x, y)e-'xds (2.151)
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The transformation leads to the following boundary-value problem for inhomogeneous ordi-
nary differential equations:

EdA.
EdA - H 1A 8 - sH2A 8 = Fdy (2.152)

y=O0 A,,2 = 0
y-*oo: JAJ ,3 -*0

where F = -H 2A0 . A fundamental solution of the corresponding homogeneous system of
(2.152) can be found as c exp(-Ay), where A is a root of the characteristic polynomial

-(S _ iw) 2(-A 2 + M 2 (s - iw)2 - s 2 ) = 0 (2.153)

There are two distinct roots

A1 ,2 (s) = + (s) (2.154)

p(s) = V/M 2 (s - iw)2 _ S2

where the root branch is chosen to have RZe(ps) > 0. This defines two fundamental solutions

Zl (s- iM 2 ( _l 1), 1 (2.155)

and

Z2 =. ,_ 1 M - 1), 1 (2.156)

The non-homogeneous system given by (2.152) has a solution expressed in the form

A(y) = MQ(y) + G(y)
G _= (Fl/1(s - iw), 0, F3 1(s-ia)O)(21)

where M = [[Z1 eXP(-PY), Z2 exp(py,] is the matrix of fundamental solutions, and the vector
of coefficients Q(y) = (QI(Y), Q2(y)) has to be found. Applying (2.157) to (2.152), we arrive
at the following reduced 2 x 2 system:

dQM-T- -- f(y),
= S Ff,F(T (2.158)

f= (F 2 + F3 - )

where m is a 2 x 2 matrix: One can solve the algebraic equations (2.158) and write down
the solution of (2.152) as follows

As(y) C (y';s)dy' - cl(s) zle - ' + C 2 (Y' ;s)dY') Z2e'_Y + G(y) (2.159)
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where

e(S) = C 2(Y ; s)dy'

C,(y; s) = y [AVo - iwuo + ([M2(s - iw) - s) ,ro]

-1,Y (2.160)
C2(Y; s) = e [IV0 + iwuo - ([M2 (s - iw) - s) 7ro]

S_o+U M 2 ( -1)0 -W

Finally, the solution of the spatial Cauchy problem can be written as the inverse Laplace
transform

A(x,y) = - .A(y)e--ds (2.161)

where F indicates a vertical path in the complex plane of s to the right of any singularities of
the integrand. There is a pole located at s = iw and two branch points, s = iwM/(M ± 1).
In order to have solution (2.159) decaying at y --* oo everywhere in the complex plane s, we
choose two vertical branch cuts (defined by the equation Re(p) = 0) as shown in figure 2.96.

kC

C-

Figure 2.96: A sketch of the complex plane of s.

The path of integration, F, can also be closed, as in figure 2.96. By Cauchy's residue
theorem, the contour integral over the closed path is equivalent to the residue of the integrand
at s = iw, i.e.,

I (.. ±j .. + j . + j.f Res(A,e x).=j, (2.162)

Because the integral vanishes along the contour C,o, we can represent the contour integral
over F as a sum of residues derived from the poles of the integrand, and two contour integrals
along the branch cuts y+ and 7-.
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One can find explicitly the residue of A,(y) exp(sx) at s = iw:

Res(AU) = w{[f(Y)+ f2 (0) + ef 2(y)} (2.163)
( wf{eY[f(y) + f2() eYf2(y) jre =o - M 2(y - 1)iro )

0

where

f,(Y)= e- [vo - i(uo + ro)] dy' (2.164a)

f2(Y) = 2 [v0 + i(uo + 7ro)] dy' (2.164b)

Then solution of the spatial Cauchy problem is given by

A(x, y) = Res(A,e'x) - I (j Ase'-ds + A,esxds) (2.165)

This defines the formal solution to the initial value problem. However, the branch cut integral
can be simplified by parameterizing the complex variable s along the branch cut contours.
This procedure will facilitate the proof of the equivalence of the formal solution and the
expansion in the biorthogonal eigenfunction system.

In the following the integrals in (2.165) along either path (/ + or -) are considered at
once, and denoted as 'y :. Then writing the explicit path along the branch cuts gives

(fds A(y)es"ds + A.(y)esmds) (2.166)
27ri 7 ± 21ri fe, /0

where s* = iwM/(M-1) is the upper branch point of the function as(s) and s* = iwM/(M+
1) is the lower branch point. The vector function A.(y) is discontinuous across the branch
cut, i.e., if we parameterize t(s) = ±ik for k > 0 on the right-hand side of the branch cut,
then p(s) = Tik on the left-hand side. On each branch cut, we have s = sm (k) (m = 1,2),
where we solve

p(s) = V1M 2 (s - iw)2 - s2 = ±ik

for s. Two solutions for s can be found and are denoted s1,2 (k),

si(k) = i(M 2  (M 2 -1)k 2 + M 2w 2

M 2  (2.167)

s 2 (k) = i(M 2w - (M 2 - 1 )k2 + M 2W2 )

Figure 2.97 illustrates the path of integration and values of I(k) on the sides of the branch
cuts.
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Integrals along the sides of the branch cuts in (2.166) are then recast as integrals with
respect to the parameter k via the transformation s = smn(k) and so ds = (dsm/dk)dk:

I j ... ds = - [A.(y)]=-ik e8(k)xdsmk..27ri " 27-i (10 sJ=sm(k)" A ..

+ J[A. (y)]p=ik(k) e8,(k)x  dk

1 j(A =~ik [A- s
([A. (y I)J (k) [A.(Y)],-)_(k)) . dk

Writing the full solution,

1, ' ,i ([A.(y)] =ik (k) -[A.(y)]"= -'k)e a-(k)x Lmd
A(x, y) = Res(Ase " ') + - =a m k)K

27ri m= 1,2 JO A8S )d

Explicitly evaluating the vector valued factor in the integrand,

s=s- [-()],= k) = D,(k) [ez ( 8=8(k) ) + e-kYZ2 (Y=s(k))], (2.168a)
iw)= (k)) N..()

Dm(k) = j [ivosinky'-W +i(M 2 ( s m(k) -k -sm(k)) -o) cos ky'l dy' (2.168b)

The final form of the formal solution is therefore as follows:

A(x, y) = Res(Aae"z)+
f-- , o1 o ° i k Z ( IA l =ik + e-ikyz (IA=ik (), (2.169)

= Dm(k) (e SS(k)) + - Z2 $=B,(k) )ea"(k) dsmk

It will be shown that this formal solution can be recast as an eigenfunction expansion.
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Biorthogonal eigenfunction system

The idea that any disturbance governed by the linearized Navier-Stokes equations can be
considered as a superposition of vorticity, entropy, and acoustic modes was expressed a long

time ago (see, for example, [Pie89], pp. 519 and 524). A proof for an ideal gas having Prandtl

number 3/4 was given by Wu in [Wu05]. In the case of an inviscid gas without heat conduc-
tion, the acoustic modes have non-zero velocity, pressure, and temperature perturbations,
whereas there are no vorticity and entropy perturbations. The entropy modes have non-zero

entropy and temperature perturbations, whereas the velocity and pressure perturbations are
absent. The vorticity modes have non-zero velocity and vorticity perturbations, and there
are no pressure, entropy, and temperature perturbations.

In the present section, we introduce a biorthogonal eigenfunction system that can serve as
a tool for projection of the perturbation field onto the normal modes, i.e., for decomposition
into vorticity, entropy, and acoustic modes.

We define the following biorthogonal eigenfunction system {A., B.}

EdA
E -- H 1A ,, - iaH 2A , = 0

Wy (2.170)
y= 0 : A., 2 = 0

y-ooA: IA I<oo

- dB ,, H H3B + iaH HB = 0dB
dy 0(2.171)

y=O B.,4  0
y-oo IB,jI<oo

The superscript H in (2.171) stands for the Hermitian transpose.
Fundamental solutions of the equations (2.170) can be found in the form " exp(Ay),

which yields the following characteristic equation for A:

-(a - w) 2 (A2 + (M 2 - 1)a 2 - 2M 2wa + M 2w 2) = 0 (2.172)

leads to four roots of a at a given A. In order to ensure the boundary conditions at y = 0 and
y --+ o are satisfied, we impose A = ±ik (where k is a positive real number), and construct
the eigenfunction as a sum of two fundamental solutions cx exp(±iky). Therefore, one can

find from (2.172)

M 2W ± V(M 2 
- 1)k2 + M 2w 2

al,2 = M 2 -1 (2173a)

O3,4 = W (2.173b)
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Each root a(k) corresponds to the following four distinct eigenfunctions representing the
normal modes. The first of these modes we define as the slow acoustic mode, i.e.,

21 ei2 1e - k  21)k k

A.. j(y; k) =etk ei (2.174)

k k

The phase speed of the slow acoustic mode at k = 0 is equal to c = 1 - 1/M.
The fast acoustic mode is found similarly,

Aac2 (y; k) __M2l- i_ky (M2(y e-iky (2.175)
k k

The phase speed of the fast acoustic mode at k = 0 is equal to c = 1 + 1/M.
We define the following as the vorticity mode,

A, (y; k) (k) eiky + () e-ik(2.76

where a, = w. This mode is denoted as the vorticity mode since it produces a non-zero
vorticity.

Finally, the entropy mode is given by

A.(y; k) = ( ei ky ± ( e-iky (2.177)

where a, = w. Because the boundary condition on the wall is satisfied for each fundamental
solution corresponding to the entropy mode, both of them can be considered as independent
entropy modes. Instead of dealing with the fundamental solutions as modes, we construct
symmetric and antisymmetric eigenfunctions by choosing + or - in (2.177).

The adjoint solution corresponding to the slow acoustic mode is given by

k/ I

B.ni(y; k) = k,,i e- ' W- ei'y (2.178)
12k

126



Similarly, the adjoint solution corresponding to the fast acoustic mode is

//
k k

B.c 2 (y; k) = p__ -i k y k eik (2.179)
k k

\1 / 1/

There is an associated adjoint vorticity mode,

B,(y; k) = ( e-ik - 0 eiky (2.180)

Finally, the adjoint solution associated with the entropy mode is of the form

B.(y; k) = ) e-ik' + eiky (2.181)

To derive vectors (2.178) - (2.181), we used the theorem [Kam59] about the relationship
between fundamental solutions of the adjoint system (2.171) and the matrix of fundamental
solutions of the direct problem (2.170). The j-th fundamental solution of Eq. (2.171) can be
obtained as a vector comprised of cofactors of the j-th column of the matrix of fundamental
solutions for the direct problem, Eq. (2.170).

One can establish the following orthogonality relation for the modes of the continuous
spectra [Tum03]:

(H 2A,(y; k'),B.(y; k)) = Q.6(k - k') (2.182)

where 6(k - k') is the Dirac delta function and Q,, is a constant, which depends on the
normalization of the eigenfunctions (Q, = 0 if a and a' belong to different normal modes or
belong to different symmetries in the case of the entropy modes).

For the particular normalizations of Aa(y; k) and B,(y; k) used above, one can find

Qaci = -4r7 d 1 

Qac =- kr [Wd-, j (2.183)

Q , = -2 r ( k+ k

Qe = -27r
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The coefficients of the expansion

In the present section, we are going to show that the solution (2.165) can be written as an
expansion into the eigenfunctions so that

A(x,y) C., (k')A.,,,(y; k') e""'dk'  (2.184)

One can recognize that the input from the residue value in (2.165) is associated with the
entropy and vorticity modes, whereas the integrals along the branch cuts lead to the fast
and slow acoustic modes in (2.184).

Using the orthogonality condition in (2.182) and that Ao(y) is a given vector function in
(2.150), it follows that

C. (k) = (H 2AO(y),B.(y; k)) (2.185)

Qc*

In order to confirm that the eigenfunction system representation (2.184) together with
(2.185) is equivalent to (2.165), we proceed with the discussion of the modes separately.

Vorticity modes

The vorticity mode has two non-zero components (u and v) and therefore its contribution
to the solution involves only these two components. Using the definition for the vorticity
coefficient defined in (2.185), we will show that the contribution of the vorticity mode is
equivalent to the residue value of these two components in (2.163). The coefficient of the
expansion for the vorticity mode is given by Eq. (2.185), therefore,

k 2 M 0 z 0 vosi cos kyd' iwk (2.
S r(k w2 ) + + r(k2 + w2)Io kysn k 'd' (2.186)

The contribution to the solution from the vorticity mode can be evaluated as the following
integral:

~0A(x, y) = j C(k)A,v(y; k)ei xdk = elw C(k)A(y; k)dk (2.187)

The first component of ki,(x, y) is exp(iwx)u,(y) where u,(y) is determined by the following
integral:

uv(y) = 2o Cv(k) cos kydk

7r 0 k2 + w2

+- 2fk sin ky'dy' cos kydk
7r 2+
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Since the integrand of both double integrals is a bounded function of k and y', we can
exchange the order of integration,

u (Y) = 2 Jf (Uo + Iro) (f 2'+ k 2 cos ky cos ky'dk dy'
7ry 0 \ - k-- (2.189)

+ 2 f c (1c w2+ k2 cos ky sin ky'dk dy'

The integrals inside the parentheses can be evaluated explicitly [GROO]:

0o k2 7r w7r e-'coshwy', y' < y
2 + k cos ky cos ky'dk = 20(y - T 2 e- ' cosh)wy,

wk W7r e-dysinh wy, y' < yy (2.190)

0 :; + 2 coskysinky'dk - e- cosh wy, y' > y

Therefore, one can obtain from (2.189)

u, (x, y) = (7ro + uo) - we- ' [(uo + 7ro) cosh wy' + ivo sinh wy'] dy'...

- w csh w ~ 0(2.191)
-w cosh wy f0 e- W [-ivo + (uo + 7ro)] dy'

Expanding each of the hyperbolic sine and cosine functions and regrouping terms lead to the
following result:

u,(x, y) = (7ro + uo) - iwe- y [vo sinh wy' - i(uo + iro) cosh wy'l dy' ..

+ iw cosh wy J e - ' [vo + i(ti + iro)] dy'
Y e _ [ f e Y ' V ,( 2 . 1 9 2 )

= (Uo + Iro) - iW ( -
W [ -[Vo - i(iro + uo)]dy' ...

e [Vo + i(uo + ro)]dy' - e "' [vo + i(uo + 7ro)]dy'

Finally, Eq. (2.192) can be recast as

uv(x, y) = e I{(uo + 7ro) - iw [e-'y[fl(y) + f2(0) + ewyf 2(y)] } (2.193)

where fi(y) and f2(y) are defined in (2.164a) and (2.164b), respectively.
The same procedure is used to derive the second component of k,(x, y), which is defined
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as exp(iwx)v,(y). In order to determine v,(y), we write that

v,(y) = -2i j -C (k) sin ky'dy'

= o VO (f 2  
2 sin ky sin ky'dk dy'

2 i(7ro + +UO (J' Aw- sin ky cos ky'dk dy'

The integrals in parentheses can be found explicitely [GROO], i.e.,

fok 2  sin ky sin ky'dk = 7 f ely sinh wy', y' < y

o ± + 2  2 e' sinhwy, y' >j (2.194)

s k 'dk = w7r e-'Y cosh wy', y' <y

0 k2 W 2 sin kycos -e- ' sinh wy, y' > y

Expanding of the hyperbolic functions and regrouping the terms lead to

V.(Y) = W je-  -- [vo - i(uo + 7ro)]dy' ...
_W Y -e'Y foo e-LOYI (2.195)

- - Y j [vo + i(uo + 7ro)]dy' + ew y 2 [vo + i(uo + 7ro)]dy'

Finally, Eq. (2.195) can be recast as

v (X, Y)= Wei")z [6--Wy[h (Y) + f 0]+eh()
There are no other non-zero terms in A,, therefore the contribution to the solution from the
vorticity mode is

(uo + iro) - iw [e-'Y[fl(y) + f2(0)] + e'yf2(y)]

'V(X, y) = eiw', w [e-dY[fi(y) + f 2 (0)] + e-yf 2 (y)] (2.196)0

0

If we refer to Eq. (2.163), the vorticity contribution is exactly equivalent to the first two
components of the residue value of A,(y) exp(sx) at s = iw. In the following we shall show
that the third component of the residue value is represented by the entropy mode.

Entropy modes

For brevity of the discussion, we assume that the initial data allow expansion only into the
symmetric entropy mode. The entropy mode coefficient is calculated using Eq. (2.185), and
so we obtain

Ce(k) = -jO - m 2 yro) cos ky'dy' (2.197)
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The entropy mode has only one non-zero component, i.e., Ae3(y; k) = 2 cos ky. Its contribu-
tion, exp(iwx)O,(y), can be evaluated as the following integral:00

O(y) = 2j Ce(k) cos kydk

= 2 f ( [0 _ M 1)Iro] cos ky'dy' cos kydy (2.198)
7r

= 2jo [0- M2(_ 1)7ro] ( j coskycosky'dk) dy'

The integral in parentheses can be found to be proportional to the Dirac delta function,
specifically,

cos ky cos ky'dk = 26(y - y') (2.199)

Consequently,
Oe(Y) = 00 - M 2 (y - 1)7ro

Now it is clear that the contribution from the entropy and vorticity modes to the solution

A(x, y) is the same as the contribution from the residue value at s = iw in the formal solution,
Eq. (2.165),

Res(A.(y)e " ) = C,(k)A,(y; k)ei v'xdk + C,(k)A,(y; k)e,'xdk

iU) e-"I[fl(y) + f2(0)] + eWYf2(y)} + (ro +'Uo)

w {e-[f1 (y) + f2(0)] - ewyf2(y)}1 (2.200)
= 00 - MN(- - 1)7ro

0

Fast and slow acoustic modes

It will be shown the integrals along the branch cut in figure 2.96 that have been parameterized
by k > 0 in (2.169), can be represented via the fast and slow acoustic modes. The equivalence
will follow from first expressing the expansion into the acoustic modes, and subsequently
showing the acoustic mode expansion to be equivalent to the integrals that appear in the
formal solution in (2.169). First, the expansion into the acoustic modes using the coefficients
defined in (2.185) for the slow and fast modes is given by

Aa,(x, y) = j C,.(k)A.m(y; k)ei'"mdk (2.201)
ff&=1,2 00

where the coefficients are found from (2.185) as
1 k damCm)

Cacm(k) = 1 k am Cm(k) (2.202a)
2k j is d -r M 2(ww- m)+, A

C.( k ) = ivo sin kydy - ( o + k iro) cos kydy (2.202b)
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The wave numbers am(k) (m = 1,2) in (2.202) are defined by (2.173a).
From (2.167) it is clear that in fact s,,(k) = iam(k), and the acoustic mode coefficients

is recast as:

Cac(k) 1 k ds, C(k) (2.203a)Ca n(k =27r iw - sn dk

Cm (k) = j ivosinkydy - j U + M2 (Sm - iw) - Sm o cos kydy (2.203b)

Also, we can show that the acoustic mode vector can be represented in terms of the funda-
mental solutions of the Laplace transform solution in (2.169),

A.. (y, k) = k i e kzI ( a=$-(k)) + e-ikYz 2 ks=smCk)

And therefore the contribution of the acoustic modes is equivalent to

A.r (x, y) = j: C..(k)A,,,(y; k)e"-'~~dk
m= 1,2

- :f 0C k)[ kZ,(Ai + e-k YZ2A-ik dSme-(kd-Cm(k) eiVzz (\8=am(k) s=s-(k)]]7re =l1,2 d

Given that Dm.(k) = Cm(k) where Dn(k) is defined in (2.168), the acoustic mode component

is exactly equal to the integrals that appear in the formal solution in (2.169). Therefore, it
is concluded that integrals over y+ and -y- can be represented by the fast and slow acoustic
modes, i.e.,

1 ( - ... ds+ ... ds) = f C.(k)A..(y;k)et"dk (2.204)

with the coefficients defined from Eq. (2.202). Analysis of the branches corresponding to
the slow and fast acoustic modes ends the proof of the equivalence of the Cauchy problem
formal solution (2.165) and eigenfunction expansion (2.184).

Two examples of BES application

Projection of computational results onto the normal modes

The biorthogonal eigenfunction system can be used to obtain insight into computational
results by decomposition of the perturbations into the normal modes. For the purpose
of illustration, we analyze computational results for the receptivity problem involving a
periodic-in-time actuator placed on a flat plate in uniform supersonic inviscid flow. This
part of the work is similar to the analysis of acoustic perturbations in [TWZ07].

The actuator is emulated by the inhomogeneous boundary condition on the wall:

v(x,y = 0, t) = v.(x,t) = eg(x)sinwt (2.205)
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For the numerical example the following dimensionless parameters are chosen: freestream
Mach number M = 6.62; angular frequency of the perturbations w = 0.1, the actuator's
length w = 100, and the specific heats ratio y = 1.4. These parameters are close to the local
parameters in the direct numerical simulation of perturbations emanating from the wall of
a wedge in supersonic flow in [WZ05].

The actuator shape function g(x) is given by

9(X) = 20.2515 - 35.437514 + 15.187512, (1 < 1) (2.206)
-20.25(2.0 - l) 5 + 35.4375(2.0 - l)4 - 15.1875(2.0 - l)2 (1 > 1)

where 1(x) = 2x/w. A plot of the shape function is shown in figure 2.98. The actuator
amplitude is chosen as 10- 4.
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Figure 2.98: The shape function g(x).

The nonlinear Euler equations are solved with the help of code based on the Conservation
Element/Solution Element (CE/SE) Euler method introduced by Chang et al. [CWC991.

For the problem at hand, we use the following computational domain: 0 < x < 200 and
0 < y < 35. Two grids, Nx x N., having N. and N. intervals in the x and y directions,
respectively, were used in order to check the numerical convergence:

" Coarse Grid: 250 x 200,

" Fine Grid: 500 x 400.

The time steps were r = 0.1 and 0.05 for the coarse and fine grids, respectively.
The CE/SE method uses two alternating grids, Q, and Q2 . These are shown in figure

2.99. The method begins with grid fQ2 at t = 0, intermediately finds a solution on grid S11
at t = T/2, and finishes on grid Q22 at t = 7-, and so forth. We notice that at certain x-
coordinates, the grid uses points slightly above and below the wall. The actuator boundary
condition (2.205) is applied at these points in spite of their shift from y = 0 in order to
simplify the algorithm. We can estimate the effect of the simplified boundary conditions by
comparing the fine and coarse grid solutions in the vicinity of the wall. Downstream of the
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Figure 299: The alternating grids Q and 02.

actuator, the no-penetration boundary condition is imposed at the wall, y = 0, following
[CWC99]. The boundary conditions at the right and the upper sides of the domain are the
non-reflecting boundary conditions used in [CWC991. On the left-hand side of the domain,
the no-perturbation boundary condition was used.

The CE/SE scheme includes three additional parameters: a and / (both related to the
control of oscillations resulting from discontinuities such as shock waves) and c0 (serving to
control effects of numerical viscosity). In this case, a = 3 = 0 and co = 0.3. The value for co
was chosen after experiments with the parameter and was found to mostly affect the layer
close to the wall.

30 30

25 (a) 25 - (b)
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0 50 100 150 200 0 50 100 150 200
X X

Figure 2.100: Coarse grid result for the (a) pressure perturbation (increment of .5 x 10- 5

between the contours) and (b) streamwise velocity perturbation (increment 1 x 10- 1)

The numerical results for the pressure field, ir, and streamwise velocity field, u, at t = 200,
are shown in figure 2.100. The dashed contours represent negative contours while the solid
lines represent the positive contours. Each contour represents an increase or decrease of
the indicated increment. For example, the outermost positive contour in figure 2.100(a) has
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value 0.5 x 10 - , and the innermost positive contour has value 3.0 x 10'. These results were
produced using the coarse grid.

Comparison of the numerical results with E = 2 x 10- 4 in (2.205) demonstrated that
E= 10 - is small enough that the perturbations can be interpreted as linear.

Figure 2.101 shows the pressure perturbation and streamwise velocity as function of y at
x = 160 for both coarse and fine grids. The results show nearly perfect agreement. In the

, i ~5e-05 , ,

3e-05 - (a) 4e-05 (b)
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Y Y

Figure 2.101: Coarse (crosses) and fine (solid-line) grid comparison for x = 160 and t = 200
for the (a) pressure perturbation and (b) streamwise velocity perturbation

case of the streamwise velocity, there is a relatively larger difference between the coarse and
fine grid solutions in the vicinity of the wall, which we attribute to the inaccuracy in the
application of the actuator boundary condition at the staggered points in the vicinity of the
wall.

As an example of the BES application, one can use the computational results together
with (2.185) in order to find a projection onto the normal modes at a prescribed coordinate
x. Figure 2.102 shows the amplitudes of the slow and fast acoustic modes as functions
of the parameter k. Because there is no dissipation, the amplitude distributions shown in
figure 2.102 are independent of x. One can see that the fast acoustic mode amplitude is
a magnitude larger than the slow acoustic mode. The BES technique reveals this insight,
which otherwise would remain hidden from view if one knew the numerical solution only.

It is worthwhile to compare the computational results and their projection onto the fast
and slow acoustic modes presented in this section with the results of [TWZ07]. The results
are very close qualitatively. The latter means that the main features of the numerical results
for acoustic modes observed in [TWZ07] have an inviscid character.

Projection of the analytical result onto the normal modes: the receptivity prob-
lem solution

The receptivity problem that was solved numerically in the preceding section has an an-
alytical solution [AL65]. It can be found as a solution of the linearized velocity potential
equation with inhomogeneous boundary condition on the wall. The solution provides the
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Figure 2.102: Projection result for the (a) slow acoustic mode (Ca,) and (b) fast acoustic
mode (C.a)

perturbation flow field, and it does not reveal anything about the amplitudes of the fast and
slow acoustic modes. Using the BES, one can decompose the analytical solution as was done
for the numerical result. Instead of the decomposition of the available analytical result, we
are going to show how the BES can be used to find the receptivity problem solution as an
expansion into the normal modes directly. (This part of the work is similar to the receptivity
problem solution in [Tum06b], within the scope of the linearized Navier-Stokes equations.)
After that, one can prove that the solution is equivalent to the result of [AL65].

Assuming that the solutions of linearized Euler equations are proportional to exp(-iwt),
the governing equations are identical to (2.147) except for differing boundary conditions on
the wall.

OA oAE- = HIA H 2 -

y=O: A 2(x,0)=V.(X) (2.207)

y--+ : AjJ-- 0

where v.(x) = eg(x) as defined in (2.206).
To find the formal solution of the problem, we begin with the Fourier transform with

respect to x,

Af(y) = A(x, y)e-"f xds (2.208)

As a result, the problem (2.207) is transformed to the following boundary-value problem for
ordinary differential equations:

EdAf - H 1 Af - iafH 2Af = 0
y = 0: Af, 2 = p(af) (2.209)

y-*o: IA- 0-0 A 0
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where
P(hr) = j vw(x)e - iafx dx (2.210)

One can find the solution of the problem (2.209) as follows:

(ia iM2 (y - 1)(af - w) i (af -2.211
Af(y) = p(af) ( , , A )e (2.211)

where
ji(af) = Va-M 2(af - w) 2  (2.212)

and the positive branch of the square root, 7e(At) > 0 is chosen.
Finally, one can write the formal solution of problem (2.207)

I /+
A(x,y) =- J _ Af(y)etafxdaf (2.213)

The formal solution can be presented as a sum of the normal modes with coefficients

C. (k) = (H2A(y),B.(y;k)) (2.214)
Q.z

f (H2 Af, B.)ei( -Of-)xdaf

27rQ,

Using the dot product of Eq. (2.207) and B,, together with integration by parts, one can
derive

(H2Af,B.) = p(af)B,2(y = 0;k)
i(af - a(k))

Therefore,
C.(k) = - ; k) ( P()ei( (k))x(2.215)

Q.,(k) k27riIL af -a(k) di 225

The integral in (2.215) can be evaluated explicitly as the residue value at af = a(k) by
completing the path in the upper half-plane af. As a result, we arrive at

C.(k) = P(a (k))B 2(Y =0; k) (2.216)
Q.r(k)

If we refer to the equations defining the adjoint modes, it is clear from Eqs. (2.180) and
(2.181) that the entropy and vorticity mode coefficients are zero since the second component
of both modes is zero, i.e., B2 = 0 and B, 2 = 0. This result explains the observation in
[Tum06b] that amplitudes of the entropy and vorticity modes are very small in the case of
a periodic-in-time actuator placed at the bottom of the boundary layer.
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For the slow and fast acoustic modes, the second component at y = 0 is non-zero for
both modes, i.e., Ba, 2 = -2(w - am)/k, and one can find explicitly amplitudes of the slow,
Cac(k), and fast, C.2(k), modes as follows:

C.ci1 (k) = kp(c (k)) (2.217)
27rir(M 2 

- 1)k 2 + M 2W2

C,,2 (k) =kp(a 2 (k)) (2.218)
27rV(M 2 

- 1)k+ ± M2w 2

The Fourier transform p(a) for the particular case of v,(x) was found the help of Math-
ematica, [Wo199] yielding

2i eIawI/2  woa w ot
p(a) w aw (8wa(48a2 + a3 w 2a 2) cos wa - 3840a, sin.wa +

384(5a, - a2)wa - 8(10al - 6a 2 + a3)w 3a3 + (a, - a2 + a3)w 5a5 )

with a, = 20.25, a2 = -35.4375, and a3 = 15.1875.
We are now able to compare the amplitudes, (2.217) and (2.218), with the amplitudes

derived from the projection of the numerical results for the slow and fast acoustic modes (see
figure 2.103). The close agreement of the results serves as validation for the numerical method
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Figure 2.103: Comparison for the projection (crosses) and theoretical result (solid line) for
the (a) slow acoustic mode (C, 1) and (b) fast acoustic mode (Can).

that was employed in solving the Euler equations for the receptivity problem. Figure 2.104
is a comparison of the theoretical and computational results for pressure and streamwise
velocity perturbations at x = 160, t = 200.

Conclusions

The practical use of the BES technique with respect to analysis of computational data
was illustrated by considering the receptivity problem of a periodic-in-time actuator on the
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Figure 2.104: Comparison of the theory (solid-line) with the coarse (circle) and fine (cross)
results for the (a) pressure and (b) streamwise velocity

wall in uniform flow. A numerical method derived from [CWC99] was used to solve the
problem numerically. The computational data were projected onto the normal modes of
the continuous spectra (slow and fast acoustic modes). As a result, it was found that the
slow and fast acoustic modes compose the perturbation field found through the numerical
method. Thus, The BES system helps to reveal the physical structure of the flow.

The receptivity problem was solved analytically, as well. With the help of the BES
technique, it was shown that the actuator does not excite vorticity or entropy modes. We
compared the theoretical and numerical amplitudes of the fast and slow acoustic modes,
finding a close agreement between the predictions derived from our theory and the projection
of the computational results. This type of analysis can be used for validation of numerical
methods in other problems.

139



2.7 Biorthogonal eigenfunction system in the triple-

deck limit

Introduction

Many problems in fluid dynamics at high Reynolds numbers are associated with different
length scales. This is an obstacle for computational methods because the resolution of very
different scales imposes heavy demands on computing resources. In this case, asymptotic
methods might serve as an efficient complementary tool for understanding the flow structure.
Modern asymptotic theories are associated with the triple-deck theory introduced in [Nei69],
[SW69] and [Mes70]. One can find a large number of references relevant to the triple-deck
theory in monographs [SRSK98] and [NBDL04], and in a recent review [RS98]. Initially,
theoretical models dealt with steady perturbations like humps or other imperfections of
the surface (see for example [BN71, BN77, SSB77, BL85, Bog86, Bog87, Bog88]). Non-
steady perturbations were considered within the triple-deck theory in [Sch74, Dan75, RT77,
ZR78, Ter78, ZR79, Smi79]. This extension of the triple-deck theory included problems
of stability of boundary-layer flows (Tollmien-Schlichting waves) in the modern asymptotic
framework (one can find the main references relevant to the predecessors of the applications
of asymptotic methods to the hydro-dynamic stability theory in the monograph by [DR81]).

The first results on the generation of TS waves within the scope of asymptotic methods
(the triple-deck theory) for an actuator on the plate surface were obtained by [Ter81, Ter84,
Ter85]. [Go183] utilized an asymptotic analysis for the problem of TS wave generation by
acoustic waves interacting with a plate leading edge. Using a similar approach, [Go185]
and [Rub85b, Rub85a] analyzed the excitation of TS waves by acoustic waves scattered by
a roughness element. Publications relevant to the asymptotic analysis of boundary-layer
receptivity in succeeding years can be found in [Cho98] and [SRK02].

The objective of this section is to establish the equivalence between the receptivity prob-
lem solutions obtained within the scope of the biorthogonal eigenfunction system and those
obtained with the help of the asymptotic methods at the limit of high Reynolds numbers.

Receptivity problem solution via biorthogonal eigenfunction system

Problem formulation

For the purpose of clarity, we repeat the main results relevant to the receptivity problem
solution within the scope of the biorthogonal eigenfunction technique. The consideration
will be restricted only by incompressible two-dimensional boundary layer flow and by two-
dimensional perturbations in the parallel flow approximation. The linearized Navier-Stokes
equations after Fourier transform with respect to time are written in dimensionless form as
a system of four partial differential equations

OA (x,y) a H1A (x, y) +/H 2

a_ _ H1A (x, y)+H2 O (2.219)
140x
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H 0 0 -iw ) ; H2 0 0 -U -Re-1H= 0 0 0 0 H _= 1 0 0 0

iwRe 0 U'Re 0URe Re 0 0

The vector-function is defined as follows: A = (u,p, v, 9u/19y - 9v/X)T, where T stands for
transposed; U(y) is the unperturbed velocity profile; U' = dU/dy; u and v are the stream-
wise and normal velocity components of the perturbation, respectively; p is the pressure
perturbation; and Re is the Reynolds number. The velocity perturbations in Eq. (2.219) are
scaled with the free stream velocity, U00 ; pressure is scaled with pU2 , where p is the density;
and the coordinates x and y are scaled with the scale L having the order of magnitude of
the distance from the flat plate leading edge.

Assuming that there is a localized actuator on the wall, the linearized boundary conditions
are as follows:

y =0: u = -U,,,hf (x); v = iwhf (x) (2.220)
y-* oo: IAjI-* 0 (j = 1,...,4)

where U,, = (dU/dy)Y=0 , f(x) is the actuators shape function, max x f = 1, and h is the
amplitude parameter. The linearized boundary conditions on the wall (2.220) are applicable
if the amplitude parameter, h, is very small with respect to the thickness of the viscous
sublayer [Ter841. For simplicity, we consider a subcritical frequency, i.e. the perturbation
decays downstream from the actuator. In the particular case of steady perturbation, w = 0,
the problem corresponds to the case of a two-dimensional hump placed on the wall.

Formal solution

With the help of the Fourier transform with respect to the coordinate x, we arrive at the
following system of ordinary differential equations with inhomogeneous boundary conditions:

dA (y) H1 A (y) + iaH 2 A (y) (2.221)

dy

y = 0: A,= -Uhp(a); A,3 = iwhp(a,) (2.222)
y -oo: Aj-* 0 (j = 1,...,4)

where
+00

A (y) = A (x, y) e-""dx

-00

P (av) f (x e-1 &t k dx(22)27r I ()
-00

The system of ODE (2.221) has four fundamental solutions, Z1 (y),...,Z 4 (y). Their
asymptotic behavior outside the boundary layer can be easily found as ,- exp(A3 y), with
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complex numbers Aj(a,), j = 1, ...,4

A1,2 = ±av; A3,4 = T Va + iRe (a. + w) (2.224)

In the general case, two fundamental solutions are decaying outside the boundary layer,
and the other two solutions are exponentially growing. To be specific, we choose ZI (y) and
Z3(y) as the decaying solutions at y - co. In this case, we choose branch Real(A3) < 0, and
the choice of ZI(y) as decaying at y -- oo solution implies that Real(a") < 0.

Explicitly, the fundamental solutions outside the boundary layer are written as follows

a+W ar+L

_ 1 ei0+ 
i+ e ( 2 ia)

0 0

e (a+w)I ; 2- e_a_w) (2.225)

For Real(a,) < 0, the solution of system (2.221) satisfying the boundary conditions (2.222)
can be written as follows:

A. (y) = hp (a) (-iU)z1 3 - UZz3 3)y=o ZI (y) + hp (a.) (U' z 31 + iWz11)y=o Z3 (Y)
E3 E1 3  (2.226)

Eij= det (Zli Zl( 

.2

\Zzi Z3 j) Y=o

where zj stands for the i-th component of vector Zj, and the formal solution is obtained as
the inverse Fourier transform

+00

A (x, y) = J A, (y) ei'a-xdav (2.227)

-00

Biorthogonal eigenfunction system

We introduce the following biorthogonal eigenfunction system {A 0 , B, }:

dA,,dy = H1 A, + iaH 2A,(
dy

y 0 : Al = A3 = 0(2.228)
y-O: A.j I < oo, 1,...,4)
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Figure 2.105: Branches of the continuous spectrum.

- = H[B0 + iaH2B e

y = 0: B2 = B.4 = 0
y-cco: IB.jJ<oo, (j=1,...,4)

where a is a complex number, and the subscript 'a' indicates the corresponding solution
[actually, Eqs. (2.229) define a complex conjugate of the conventional adjoint problem].

Following the analysis of the fundamental solutions, we arrive at the conclusion that the
eigenvalues a belong to the discrete or continuous spectrum. In the case of the continuous
spectrum, a is found from A2 = -, = 1, ... ,4, where k is a real parameter (k > 0)
and Am(a) are defined in Eqs. (2.224). The branches of the continuous spectrum on the
complex plane a are shown in figure 2.105. There are two pressure and two vorticity modes.
The modes associated with the upper half-plane a are the downstream modes, whereas the
other pair of modes represents the upstream ones. For the purpose of further analysis, we
are interested in the downstream modes only.

The pressure modes can be found as follows:

A. (y) = Z, (y) + E-1Z2 (Y) + Z3 (Y) (2.230)
E 23

where a = ik, (k > 0) and the coefficients Ei3 are defined in (2.226). At y -, 00, the mode
(2.230) has a non-zero pressure perturbation, whereas the vorticity perturbation is equal to
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zero. Similarly, one can find for the vorticity mode
E41  E13

A,. (y) = Z, (y) + -4Z 3 (y) + -3Z 4 (y) (2.231)
E34  E34

where a -0.5iR (1 - V1 +4(k2 + iwR)/R2), (k > 0). At y -- oo, the mode (2.231)

has non-zero vorticity perturbation, whereas the pressure perturbation is equal to zero. In
the case of the discrete spectrum, all characteristic numbers Am have a non-zero real part
and only two fundamental solutions can be used to represent the mode. In the case of
Real(a,) < 0, one can find the discrete mode as follows:

A. (y) = Z1 (y) - (1 
0)Z3 (y) (2.232)

z13 (0)

where subscript 'a' means that the solution is evaluated at a as a root of the equation
E 13 (a) = 0. Fundamental solutions of Eqs. (2.229) outside the boundary layer can be
written as follows

010\
Y1= e_a_ ; Y2= _i( ) eav;

Re \Re/
S-2icNo (2.233)/ 2i. 2 V

Y3= (-)2 e-uy; Y4= 0 ( ')e
A

Re(M)2Re(a+W)2

One may consider the dot-product of Eq. (2.228) and B,,, and integrate the result with
respect to y on the interval [0, co). With the help of integration by parts and Eq. (2.229),
the following orthogonality relation may be derived:

(H2A., B.,) = I (H2A , B,,) dy = QA, (2.234)

where Ac, is the Kronecker symbol if a or a' belongs to the discrete spectrum, and Ac,', =
b(a - a') is the Dirac delta function if both a and (' belong to the continuous spectrum.
Coefficient Q in the right-hand side of (2.233) depends on the normalization of A,,(y) and
B.(y).

Contribution of the modes in the formal solution

The eigenfunction system is complete (see [Tum03]), i.e., a spatially growing/decaying solu-
tion of linearized Navier-Stokes equations can be presented as an expansion into the eigen-
function system) as follows:

A (x, y) c.,A, e' + j cj(k)A.j (y) eai(k)'xdk (2.235)
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where E, stands for summation over the downstream pressure and vorticity modes and )",
represents summation over the discrete modes.

With the help of the orthogonality condition (2.234), one can find from Eq. (2.235) for
modes of discrete and continuous spectrum at some distance x

c,,j(k)e1a"jX= (H2A, B,,j) (2.236)Q",j

where subscripts v and j refer to the discrete and continuous spectra respectively. If we
consider, for example, the dot-product of Eq. (2.221) and B", and integrate with respect to
y over the interval [0, oc), we arrive at the following relationship:

(A ,IB,ji + A, 3Baj3 )=o (2.237)
AHA ,Bj ) = i (aj- a,)

Substitution of the formal solution (2.227) into Eq. (2.236) together with Eq. (2.237) leads

to the following result
+00 ( A ,1Bail -, 3 B,.-

c ((k)I - )x  A3B.j3a='o=°da, (2.238)
Qj_. i (a, - aj)

-00

By closing the path of integration in the upper half-plane, one can find the coefficient as the
residue value at Y, = (Yj

21r ~~27rhp (aj) Bc1(239

c(k) = -Q2 (A,,iB.,I + A,,3 Baj3 )Y=0 - Q( (U.,Ba,I - iwB,j3)=o (2.239)

The coefficients c, corresponding to the discrete modes are obtained from (2.239) with aj
replaced by a,. Finally, substituting the coefficients cj(k) and c,, into Eq. (2.235) provides
the solution of the receptivity problem as an expansion into the normal modes.

The biorthogonal eigenfunction system in the triple-deck limit

In order to derive the triple-deck limit of (2.235), one has to find the eigenfunction system
{Aa, B,} and the coefficient Q in the orthogonality condition (2.234) in the limit of high
Reynolds number and scaling corresponding to the triple-deck theory.

Assuming that the dimension of the actuator in the x direction has the order of magnitude
E3 L, where E = Re- 11 < 1 is the small parameter, we arrive at the triple-deck structure of
the flow (see figure 2.106). The coordinate y in the outer deck has to be scaled with e1L; the
scale in the main deck is e4L, and the lower deck (viscous sublayer) has a scale of e'L. In the
case of unsteady perturbations, the time is scaled with e2L/U,. We are going to consider
the introduced normal modes in the triple-deck limit. The derivation of the asymptotic
governing equations starts with the linearized Navier-Stokes equations (in the triple-deck
theory, the linearization is utilized in the analysis of the lower deck, whereas the equations
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Figure 2.106: Triple-deck structure.

in the leading order of magnitude in the other decks axe linear). Because the downstream
vorticity mode has a ,- w/Uf 'l . (E'L)-', it remains out of the triple-deck scaling and will
be of no interest in the present section. In order to establish the equivalence of the solution
(2.235) and asymptotic solutions of the receptivity problems, we have to find an asymptotic
representation for the pressure and the discrete modes. They could be composed of two
(discrete mode) or three (pressure mode) fundamental solutions. The triple-deck limit of the
fundamental solutions is presented in A.6.

In the triple-deck limit, we obtain with help of the fundamental solutions from the A.6
the following result for E13 (6) =E13/E4:

E13 (a) = - _ iw2 iU.) Ai (C) d(

+ (j.5Cj,) 1,3  F -
(2,241)

+ W a ui,) [Ai' (0) - Q Ai (C) d

where Ci = a/E3 , = w6 2, a, = -- Uw, and A = +Y (depending on the sign of Real (a)), and
= il/ 30 (Uj) - 2/3 . For a discrete mode, it has to be E13 () = 0, and Eq. (2.240) leads

to the dispersion relation as follows:

Ai'(l) w 1/3___)

i0 - I ) (u) 2

00 (2.241)
Io = fAi (C) d( 1 ; I (0) f Ai (d

0 0
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One can find that the dispersion relation is equivalent to the one presented in [Ter8l].
With the help of the asymptotic results for vectors Z, and Z3 , we can find from (2.232) the
velocity components and pressure perturbations for the discrete mode in the viscous sublayer
as follows

A, = Zl Z3 (2.242)
z13 (0)

where d has to be found from Eq. (2.241). Explicitly, the velocity and pressure perturbations
of the discrete mode in the main order of magnitude are recast in the lower deck as follows

6-Iu- AU" 1 A- , (2.243a)

f Ai (() dI

-3 A a-oAUAy(iau+,=2/3 Ai'( Ai ((7)d7? , (2.243b)

f Ai () d 0
00

-2p (2.243c)

In the case of flow perturbation downstream from a hump, we need expressions for the
pressure modes at a = ik (k is a positive parameter) and Co = 0 (Q = 0). In the latter case,
the pressure mode is presented similarly to Eq. (2.230)

Ap = ZI + C 2 Z 2 + C 3 Z 3  (2.244)

where Zl corresponds to A = c = ik in the outer layer solution, and Z2 corresponds to the
asymptotic solution with A -Ct = -ik. The coefficients C2 and C3 are determined from
the no-slip condition. Because we are going to consider the pressure modes in the steady
case, C = 0, we arrive at the equations

C2" U' - C3 1jau,) =-113 ,(2.245a)

-C 2i + C3 (i C',) 1/3 Ai' (0) = i0 (2.245b)

Particularly, one can find C2 as follows:

C2 = 30. (i aU ) 1/ 3 Ai' (0) + i6 2 (idu') -1/3(2.246)3 (,C- '\/3,. " ) -1/3

3 U,, ticU,,)' 1/3 Ai' (0) - jd2 (idrj,, 2.46

Finally, the pressure perturbation in the viscous sublayer (corresponding to the pressure
mode) can be presented as

E-2p = 1 + C2 = 2

a + &7- 4/3 (jdCj,)- 5 /3] (2.247)
- = (-3Ai' (0))3/4 - 0.8272
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For a discrete mode, the adjoint problem solution can be written as the sum of two funda-
mental solutions

B. = g, + D3g3  (2.248)

evaluated at & = &d, as a root of the dispersion relation (2.241); and where g, is the funda-
mental solution having in the outer deck the asymptotic behavior as -' exp(Ay 2) (A = ±d),
whereas g3 represents the fundamental solution localized in the viscous sublayer. The coef-
ficient D3 can be found from the boundary conditions on the wall.

In the case of the pressure mode, the adjoint problem solution is a sum of three funda-
mental solutions

Bp = g, + D2g2 + D3g3 (2.249)

where gi corresponds to A = a = ik in the outer deck solution, g 2 corresponds to the
asymptotic solution with A = -a = -ik, and g3 stands for the fundamental solution localized
in the viscous sublayer. The coefficients D2 and D3 are determined from the wall boundary
condition. Because we are going to consider the pressure modes in the steady case, D = 0,
we arrive at the equations

g(3+) n (3-) D (3,sub) 0
21 + D29 + 321 0, (2.250a)
(3+) D"(3-) y .(3,sub)

41 + -3 - 0 (2.250b)
,,(3+) (3+)

where gi2' and gil are defined in Eqs. (A.60). The superscripts '±' stand for A = ±d
respectively, whereas the superscript 'sub' stands for the solution (A.61) corresponding to
g3. After substituting the solutions into Eqs. (2.250), one can obtain the algebraic system
of equations in the following form:

7rq Bi (0) + 1 + D2 7rq Bi (0) + D 2 + D3Ai (0) 0, (2.251a)
33
q - 2  Bi' (0) - D 3Ai' (0) = 0, (2.251b)

3 3

q (U-) 2  k (2.251c)

It is straightforward to find from (2.251) that

D2 = -C2 (2.252)

where C2 is defined in Eq. (2.246).

The receptivity problem solution in the triple-deck limit

Two-dimensional hump

In the case of a hump (0 = 0), there are no downstream discrete modes. The solution will
be represented by the continuous spectrum. Moreover, because the vorticity modes are not
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presented in the triple-deck limit, we have to analyze pressure modes only. For the purpose

of brevity, we consider only pressure perturbation on the wall that can be easily evaluated

within the triple-deck theory.
The pressure perturbation on the wall corresponding to the pressure mode was found in

Eq. (2.247). This result has to be multiplied by the receptivity coefficient

3 2rhp (d) U' P', PW (2.253)
Qj L

where h = h/6 5 , p = p/e 3 , Ba 1 = B,jI/, and Qj = Qj/,; pw stands for the pressure
perturbation corresponding to the eigenfunction of the pressure mode and evaluated on the

wall [Eq. (2.247)]. Therefore, the induced pressure on the wall is recast as follows:

a_2P 47rhp (a) UwB,,lw 3  (2.254)

6 W a 1+ C12 4/3 (iauwo -5/3

The next step is to find the asymptotic expressions for R,,lw and Q3 . One can find from the

fundamental solutions in the lower deck (A.60)

a a a
a= - D -=(1 + C 2) (2.255)

lw- Uw' u '
The coefficient Qj in the orthogonality condition (2.234) for the continuous spectrum can

be found with the help of the asymptotic solutions outside the boundary layer (in the upper

deck) [Tum03].
Qj = Ir [D2 (H 2Z 1 ,Y 2) + C2 (H 2 Z 2 ,Y,)( 'outerdeck) (2.256)

In the outer deck, one can use the explicit form of the matrix H 2 and fundamental solutions
to arrive at the following result

=j 
j = 47riC 2  (2.257)

Finally, the pressure perturbation on the wall due to the hump is found from Eq. (2.254) as

follows:

6 -2p (a) = 2ihp (a) E3  1

1 + ay-
4

/
3 

( -5/3 1,+3 W -[/ +a , -5/3]

ihp (a, i3 hp (a) e

+ d2 -4/3 (iau,o.-] -/ + 4/3 (iwo-53]

where a = ik. In accordance with the solution (2.235), we have to integrate (2.258) with
respect to k = k/E 3 = -id/E 3 . Therefore, the pressure perturbation in the physical space

may be found as the following integral

c-2p ( a)=i hf (a) ei- hP (a eid 3  da6 X) = I+ C2 y-4/3  (i U , ) -5/'.1 + C2  y 4/3  (iCU ', ~~
(2.259)
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Figure 2.107: Paths of integration leading to transformation of Eq. (2.261) to Eq. (2.259).

This result was found as the triple deck limit of the solution derived with the help of the

biorthogonal eigenfunction system, and we are going to show that it is identical to the result

obtained from the triple-deck theory.
In the case of a 2D hump, one can find from [SSB77] (as the 2D limit of the 3D solution).

_2P ( = (d)

1 + C2 -/3 (icu',) -5/3 (2.260)

The inverse Fourier transform might be found as the following integral:

+00 0

2P i&X3 d& () = da(2.261)
+ p (() ee -3 ]I [. + CyZy 43 (iU',~~

The two integrals on the right-hand side of Eq. (2.261) can be recast as integrals along

the imaginary axis by closing the paths of integration as shown in figure 2.107, and one can

arrive at the conclusion that (2.261) is identical to (2.259) at h = 1.

Two-dimensional actuator

In the case of an unsteady actuator, we are interested in the amplitude of a discrete mode

(Tollmien-Schlichting wave). The pressure perturbation on the wall follows from Eq. (2.239)

PW = 27rhp (a) (U,',B, - iD7B.3) PW (2.262)

Q L=
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where pw stands for the pressure perturbation corresponding to the eigenfunction of the
discrete mode and evaluated on the wall. Taking into account the difference in the definition
of vector A,, in Eq. (2.242) of the present work and in Eq. (21) of [TA97], one can derive
from Eq. (2.262) (with the help of Eqs. (27) and (28) of [TA97]) the following result for
pressure perturbation on the wall

27rihp (a)

P = 8E13 [z33 Uw + ?WZz3 ]=op, (2.263)
Ba

After taking into account solutions in the viscous sublayer, we arrive at the following result

-2p 27rihp(a) [23J + iz213]Y=0 (2.264)
a&

With the help of explicit solutions on the wall,

2UA (2.265a)

23 (0) = - U. (2.265b)

213 (0) = (i,TiJ)Y13JAi(77)d7 (2.265c)
-iu, 1/3

233 (0) = ( AUiQ) -Ai )d ,r d77 (2.265d)

where eigenvalue ai has to be found from Eq. (2.241), one can find

[Z-33Uw' + i23 = (icU, 1 /3 Ai' (0) , (2.266a)

J

aR13 _2i 1/3 (2.266b

Substituting these results into Eq. (2.264) yields

2 (Io - I,) + QAi (0) ( I - () (2.267)

For positive frequency (C > 0), the discrete mode has Real (ai) <0, and we have to choose
A = a. One can find that the result (2.267) is the same as in [Ter8l].
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Conclusion

By consideration of two examples (two-dimensional actuator placed on the wall and a two-
dimensional hump), we have proved that the receptivity problem solution found with the
help of the biorthogonal eigenfunction system is equivalent to the asymptotic results when
the triple-deck scaling is assumed and the Reynolds number tends to infinity.

The biorthogonal eigenfunction system allows filtering out modes of continuous and dis-
crete spectra, and the present results illustrate how this technique could be extended to
asymptotic solutions of linearized Navier-Stokes equations.
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Chapter 3

Three-dimensional wave packets in a
compressible boundary layer

3.1 Introduction

This section is based on the papers published in collaboration with E. Forgoston and M
Veirgutz [FT05, FVT06].

The transition process from laminar to turbulent flow in hypersonic boundary layers has
been studied for many years. However, our understanding of this phenomenon is still very
poor compared to the low speed case [Res94). Several reasons exist for this difference. For
example, experimental conditions are severe in hypersonic wind tunnels. Because of high
levels of free-stream noise, it is difficult to perform experiments with controlled disturbances.
Unlike the low speed case [SS47], it is difficult to design perturbers that can generate high-
frequency artificial disturbances of individual modes. Instead, wave trains and wave packets
are generated. Therefore, interpretation of experimental data is not straightforward, and this
issue leads to the need for close coordination between theoretical modeling and experimental
design and testing [FT03].

Experiments with controlled disturbances could provide insight into the governing mech-
anisms associated with hypersonic laminar-turbulent transition, with a sharp cone being a
good candidate for transition studies due to its relatively simple geometry. Several methods
for excitation of artificial disturbances in a hypersonic boundary layer axe available. These
methods could be used to generate either two-dimensional or three-dimensional wave packets
of a broad frequency band.

Additionally, due to advances in computational fluid dynamics, it is possible to perform
reliable simulations of laminar-turbulent transition. Ma and Zhong [MZ03a, MZ03b] and
Zhong and Ma [ZM02] have performed direct numerical simulations to better understand
the mechanisms leading to hypersonic boundary layer transition.

Accompanying these experiments, both wind-tunnel and numerical, should be theoretical
modeling and studies of the development of wave packets in hypersonic boundary layers.
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Gustavsson [Gus79] solved a two-dimensional (2D) initial-value problem for incompress-
ible boundary layer flows. Fedorov and Tumin [FT03] analyzed a 2D initial-value problem
in a compressible boundary layer. However, the problem for three-dimensional (3D) wave
packets has not yet been considered.

The spatial analysis of the 2D instability modes in hypersonic flows [Fed03a] revealed the
following: (1) in the region of the leading edge, two discrete modes, Mode F and Mode S
(we use Fedorov's [Fed03a] terminology), are synchronized with fast and slow acoustic waves
respectively; (2) at a downstream location, Mode F is synchronized with the entropy and
vorticity waves; (3) further downstream, Mode F and Mode S could also become synchronized
[FKO1]. It is important to understand these features due to the role they may have in the
transition process. Later on, similar features of Mode F and Mode S were seen in the 2D
temporal problem [FT03].

The objective of this chapter is to solve the initial-value problem for a three-dimensional
wave packet in a compressible boundary layer flow. Additionally, we will use a numerical
example to illustrate features of the spectrum that are associated with the 3D character of
the problem.
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3.2 Initial-value problem for three-dimensional pertur-
bations in a compressible boundary layer

Problem formulation

We consider a three-dimensional parallel boundary layer flow of a calorically perfect gas.
At the initial time, t = 0, a three-dimensional localized disturbance is introduced into the
flow. The problem is to describe the downstream evolution of the perturbation. The hy-
drodynamic and thermodynamic characteristics of the flow are expressed as a superposition
Q8 (y) + q(x, y, z,t), where Q, is a mean-flow quantity and q is its disturbance. The stream-
wise, normal and spanwise spatial coordinates, given respectively by x, y, z, are nondimen-
sionalized using a length scale L*, and time is nondimensionalized as L*/U*, where U* is
the streamwise mean velocity at the upper boundary layer edge. The mean-flow velocity
components are referenced to U*, while temperature, density and viscosity are referenced to
their respective quantities at the upper boundary layer edge. Pressure is made nondimen-
sional using the dynamic pressure, p* (U*) 2 . We denote u, v, and w to be respectively the
streamwise, normal and spanwise velocity disturbances, and 0, 7r, p, and M to be respectively
the temperature, pressure, density and viscosity disturbances. The linearized, dimensionless,
governing equations for the disturbances are:
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Op u a + a v + w p =

at a x ay +  z ax Re -ax 8\ a-x a +-z

aU [ waua+v\ _ + u W 1 a 0[ 1 a au aO wM
+r +j a+ (+- + (3.1c)

ai__ (3. a 1 {O /(aw OuP1 [All (ao + 'I) y + x] + TZ TZ

a [ (av aw) aOW 8 1~] a [ ( au av aw\}

+ -y /8 -z +- a1 y ] a -z ax ay azmj J 3.d

av + av± av+ air air

pat 5 8 Tox Ty xz 0 Y

+ [ a ( )) + tLW

/j ( U + r + 7, y 9 + a (3.1f)

Oy ~ ~ ~ XJ 7 _0Z F ay a

ir 9 pP -OT + , a+a.(3.1g)

P8 T 8

where Re is the Reynolds number, Pr is the Prandtl number, and is the specific heat
ratio. Additionally, r = 2(e + 2)/3, r = 2(e - 1)/3 where e = 0 corresponds to the Stokes
hypothesis. U8(y), W8(y), T+(y), anda [(y) are mean flow profiles.

Denoting A = (u, 9u /(9y, v, ir , 9, aO0 ay , w, aw/aOy)T as the disturbance vector function,
it is possible to rewrite the system of equations (3.1a-3.10) in the following matrix operator
form: L0YA OA 0A H 2A A

--y + +-, -L- =+H- -'T + HA + H 2 -- + s a7xy + 14x2
A + 2A + 2A 02A (3.2)

+ Paz x 2 (a-z a av (-ya + a )I z2

where Lo, H1 0 , Hn H2, Ha, 114, H5 , 116, H7 and H8 are 8 x 8 matrices, whose non-zero
elements are presented in the Electronic Physics Auxiliary Publication Service (EPAPS) (see
EPAPS Document No. E-PHFLE6-17-005509 for the non-zero elements of the matrices in
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Eqs. (3.2) and (3.8); a direct link to this document may be found in the online articles
HTML reference section; the document may also be reached via the EPAPS homepage
(http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps; see
the EPAPS homepage for more information). At the initial time, t = 0, the disturbance
vector is denoted as

A(x, y, z, 0) = Ao(x, y, z) (3.3)

The boundary conditions are

y=O: u=v=w=O=O
y- oo JIj-0, (j=l1,...,8)(34

These boundary conditions correspond to the no-slip condition and zero temperature distur-
bance on the wall, and all disturbances decaying to zero far outside the boundary layer.

Solution of the initial-value problem

The three-dimensionality of both the boundary layer flow and the disturbance adds com-
plexity to the problem. However, the problem can be solved using a similar approach to
the one used in [FT03] for the two-dimensional wave packet. The problem is solved using
a Fourier transform with respect to the streamwise coordinate, x, a Fourier transform with
respect to the spanwise coordinate, z, and a Laplace transform with respect to time, t:

= eP t f e- f e-" 3 A(x, y, z, t)dzdxdt (3.5)
0 -0o -00

By applying the transforms given by Eq. (3.5) to the problem (Eqs. 3.2-3.4), we arrive at a
system of non-homogeneous ordinary differential equations for the amplitude vector Apo:

d(Lo ) + - HiopAp - HloAoa + H 11Apao
dy dy + y

.,dA
+ iaH 2Apa, + ia H 3  a2 H 4Ap0 + iOH 5Ap.0 (3.6)

dy
dA

- a,8H 6Ap + iflH 7 dy -,3 2 H 8AP.0
dy

where Ao,#(y) is the Fourier transform (with respect to both x and z) of Ao(x, y, z), the
initial disturbance vector. The solution of Eq. (3.6) satisfies the boundary conditions

y- 0 : Ap = Aap = App 5 = Ap. = 0 (3.7)
y-- oo: Aaoi -+ 0 (j = 1, ... , 8)(37

The non-homogeneous term in Eq. (3.6) is the term containing the Fourier transform of
the initial disturbance, A0 O. The remainder of the terms form the homogeneous part of
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Eq. (3.6). This homogeneous equation can be recast as the following system of ordinary
differential equations:

dAyap - HoA Pa'8 (3.8)

dy
where Ho is an 8 x 8 matrix, whose non-zero elements are presented in EPAPS. There are
eight fundamental solutions, z1 ,..., z8 , of the homogeneous system of equations given by Eq.
(3.8). Outside the boundary layer (y --+ oo), H 0 is a matrix of constant coefficients, and thus
each fundamental solution has an exponential asymptotic behavior exp(Ajy), where A1, ..., A8

are determined from the characteristic equation

det IlHo - AII[ (3.9)

For (y - cc), Eq. (3.9) can be written as

(b,l - A2) x (b41 - A2) x [(b22-A) (b - A2 ) - b23 b32] =0 (3.10)

where bil = H0' ,

b4l = Ho7 = H 21 = bil,
b22 = H4 2H2 4 + H043H3 4 + H0

46Hg4 + H0
4 Hg4 ,

b23 = H 42H 252 + HHH + H sH l o+ H4H ,

b32 = H 4,

b33 = Ho"

with Ho/ denoting the (i, j) element of matrix Ho.
The roots of Eq. (3.10) are

=il = a2 +)32 + iRe (a +)3W, - ip),
1,1

= (b22 + b33) /2 + - - bM3) +4b 23b32,
2 (3.11)

5, 6 = (b2 2 + b 3 3 ) /2 - i (b22 - b3 3 )2 + 4b2 3 b32 ,

A2, 8 = b41 = a2 + /2 + iRe (a +/3W., - ip)

where W is the mean-flow spanwise velocity at the upper boundary layer edge. The root
branches are chosen to have Real(Al, A3 , A5, A7 ) < 0 and we define a matrix of fundamental
solutions

Z = izI, ...,zll (3.12)

The non-homogeneous system given by Eq. (3.6) has a solution expressed in the form

A a = ZQ(y) (3.13)

where the vector of coefficients Q(y) is found using the method of variation of parameters:

+LZ +- iH3Z- - iHTZ = F (3.14)

dy-dy Ldy 2  dy dy dy dy dy
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where F = - (HoAo,O). Since Z is the matrix of fundamental solutions of the homogeneous
system of equations, it follows that dZ/dy = H0 Z. Substitution of this relationship into Eq.
(3.14) yields the system of equations

2LoH 0Zd + LoZ-d2Q + d + ZdQ - i.H3ZdQ - Hi7ZQ = F (3.15)

dy dy2  dy d(y dy dW dy
Let us consider the individual equations of Eq. (3.15). Denoting zij to be the ith component
of vector zj, Qj to be the jth component of vector Q, and Fj to be the jth component of
vector F, then the first, third, fifth, sixth and seventh equations of Eq. (3.15) are respectively:

zj = 0 (3.16)dy

z3jF - f3 (3.17)dyi

z5- =0 (3.18)dy

z6j- -= F6 (3.19)

z7j = 0(3.20)

The second and eighth equations of Eq. (3.15) are respectively:

Z2j dQj i H3 Z3jdQ j = F2 (3.21)

dydy
z8 j dy 7 H %3 z33 dQ = -8 (3.22)

Substitution of Eq. (3.17) into Eq. (3.21) and Eq. (3.22) leads to the following forms:

Z = F2 + iaH33 F (3.23)

j= F8 + i#H738F 3  (3.24)

The fourth equation of Eq. (3.15) is

2LH'. + L43 3yd2Qj dQj dL43  dQj = F4  (3.25)dy L0 dy2  dy dy dy

By considering only the non-zero elements of HO3, Eq. (3.25) can be rewritten as
dQ ' _ - L4 '3 3 F3 - d(LO3F 3)

Z4 j d 1 + 3 -- dy (3.26)
1 43534
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Therefore, the non-homogeneous system (3.15) can be rewritten as

ydQ = (3.27)

with

= 0,

(p2 = - (H,oAo.)2 - iaH 3 (HjoA 0 ) 3 ,
=p3 - (HjoAo.#) 3 ,

4  
3  d (L 43 (H,oAo.) 3 )10 T L4f-F34 {-(HjoAo,6), + 

LO'43' ( oo.3)
1 dy

W5 = 0,
6 = - (H1oAo.) 6 ,

(P7 = 0,

W8 = - (H,oAo.p) 8 - i,6H73 (H,oAo.p )3

The formal solution of Eq. (3.27) is expressed as

8 Y

Ap= a, + ddy zj (3.28)

Yj

where the constants aj and yj are determined using the boundary conditions given by Eq.
(3.7). Using properties of determinants, we obtain the following solution:
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(+ dQd [l+ dQ2  JdQ3d' z3  d3.Q4APO= a, + -wdy . + d IhM + a3 + -dydy-dyZ4 (3.29a)
000 0 00

d5dQ 6  f d7 ) Q+ as+ i  dy )zs +J d + a7+ d-y- / Z7 + I dQ8dyZ8dy zw -f dyzsy

a, - c2 E 235 7 + c4E 4357 + c6 E6357 + c8 E8 357  (3.29b)
E 1357

c2 E 12 5 7 + c4 E 14 5 7 + c6 E16 5 7 + C8 E 18 5 7  (3.29c)a3 : ~E1357 32c

c 2 E 1 32 7 + c4 E 13 4 7 + c 6 E 1 36 7 + c8 E 13 8 7  (3.29d)
E 1357

c2 E 1352 + c4E 1354 + c6 E 1356 + c8 E 1358
E 1357  

(3.29e)

= J4 9 dy, (3.29f)
0

ZliZl Z1 k Z11

Eiki = det Z3 i Z3j Z3k Z31  (3.29g)
Z5 Z5j Z5k Z51

ZTi Z7j Z7k Z71 y=0

Inverse Laplace transform

The inverse Laplace transform of Eq. (3.29a) is

PO +iOO

A.,6(y, t; a, ) = j- J A,p(y;p,a,,)e t dp (3.30)
PO-i0o

Figure 3.1 shows a schematic of an appropriate integration contour for the inverse Laplace
transform, which is determined by poles (relevant to the discrete spectrum) and by branch
cuts (relevant to the continuous spectrum).

By integrating along the contour shown in figure 3.1, Eq. (3.30) can be written as a sum
of integrals along the sides, -y+ and 7-, of each branch cut and a sum of residues resulting
from the poles of Eq. (3.29a) given by the equation E 1357(p) = 0, i.e.

fl= -1 1 ! AP0epdp +] Ap.,ePtdp) + 1 ReS,n (A e') (3.31)
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Figure 3.1: Integration contour for the inverse Laplace transform.
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Discrete spectrum

Modes of the discrete spectrum correspond to poles of Eq. (3.29a), which are roots of
E1357(P) = 0, where E 135 7 is defined by Eq. (3.29g). Discrete modes arise from the situa-
tion when all the roots of Eq. (3.11) have non-zero real parts and are given by the poles'
contribution to the inverse Laplace transform, i.e. the residues shown in Eq. (3.31). These
residues have the form

Resn (AP ePt) = An(y; pn, ,/ )e t  (3.32)

with [E37 ]-
An = [alzi + a3z3 + a5 Z5 +a 7z 7 ] x L Op (Pn) (3.33)

where a., a3 , a5 and a7 are given by Eqs. (3.29b-3.29e). If the eigenvalue pn = -iwn belongs
to the discrete spectrum, then the associated eigenfunction An decays exponentially outside
the boundary layer (y --+ oc).

To illustrate features of the spectrum, we consider a boundary layer over an adiabatic
sharp cone at zero angle of attack. The length scale is L* = (p*x*/pU) and the Reynolds
number is Re = /(p*Ux*/p). Using the Lees-Dorodnitsyn transformation [Jr.89], we solve
the conical problem with boundary layer profiles for a flat plate. Accordingly, all conical
results presented hereafter can be adjusted to the flat plate boundary layer by dividing the

parameters Re, a, 3 and w by v/3.
The standard form for the direct problem given by Eq. (3.8) was used for the numerical

evaluations. The numerical scheme performs the integration of Eq. (3.8) for four fundamental
solutions (discrete spectrum) or for five fundamental solutions (continuous spectrum). A
fourth order Runge-Kutta integration method with constant step (301 points) was used to
integrate from outside the boundary layer (ym,, = 25) toward the wall using the Gram-
Schmidt orthonormalization procedure.

When analyzing the continuous spectrum, k is a parameter, and the frequency w is
calculated using A? = -k 2 , where Aj are given by Eq. (3.11). When analyzing the discrete
spectrum, w is calculated using Newton's iteration method. This iteration method depends
on the initial approach to w. A two-domain Chebyshev spectral collocation method [Mal901
was used to determine the initial approach.

To maintain consistency with the 2D problem analyzed in [FT03], we choose the following
parameter values: M = 5.6, Re = 1219.5, Pr = 0.7, y = 1.4, e = 0 with an adiabatic wall
and stagnation temperature To = 470K.

Two discrete modes axe of interest. One of the discrete modes will be referred to as
"Mode F", where "F" stands for "fast"; this is the mode whose phase speed approaches that
of the fast acoustic mode as a -+ 0 (2D case). Another discrete mode will be referred to as
"Mode S", where "S" stands for "slow"; this is the mode whose phase speed approaches that
of the slow acoustic mode as a --+ 0 (2D case). Even though in the 3D case, synchronism
with the fast and slow acoustic modes as a --* 0 may no longer occur, the behavior of each
Mode curve (3D) is similar to the behavior of the corresponding 2D Mode curve. Thus, it
should not be confusing to refer to the 3D curves as "Mode F" and "Mode S".
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Mode S: M=5.6, Re=1219.5, u-0.2, 0=0.14
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Figure 3.2: Streamwise velocity disturbance of Mode S.

Mode S: M=5.6, Re=1219.5, a=0.2, 0=0.14
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Figure 3.3: Normal velocity disturbance of Mode S.
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Mode S: M=5.6, Re=1219.5, o=0.2, P=0.14
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Figure 3.4: Spanwise velocity disturbance of Mode S.

As an example, figures 3.2, 3.3 and 3.4 show the distribution for the streamwise, normal
and spanwise velocity disturbances corresponding to Mode S for a = 0.2, f3 = 0.14, with
complex-valued eigenvalue w = 0.18291 + i3.95 x 10- 5 (this choice of parameters corresponds
to a disturbance propagation angle of V) z 350, where tan 7 = )/a). Figures 3.5 and 3.6
show respectively the pressure and temperature disturbances corresponding to this mode.

Continuous spectrum

Modes of the continuous spectrum correspond to branch cuts of Eq. (3.29a). Solutions of
the continuous spectrum arise from the situation when a characteristic number Aj given by
Eq. (3.11) is purely imaginary (A2 = - k2, k > 0, j = 1, ... , 8). As in the two-dimensional
case discussed in [FT03], the first pure oscillatory solution corresponds to A 2  -k 2 . This' 1,2 =

equation, along with Eq. (3.11), leads to the following (different from the 2D case) relation:

Pc,1 = -i (a+ )3W8,) - (k 2 + a2 + 02) lRe (3.34)

As in the 2D case, this solution is interpreted as a vorticity branch, where the vorticity
disturbances are propagating with a phase speed of c = 1. The equation

(b22 - A2) (b33 - A2 )- b23b32 = 0 (3.35)

is a third degree polynomial in p and has three roots at A2 = -k . These roots (Pc,2, Pc,3,
Pc,4) were computed numerically for the case when W,, = 0 (2D mean flow). Figure 3.7
shows the results for a = 0.2, 3 = 0.14. The horizontal branch in figure 3.7 has a finite
limiting point and is interpreted as an entropy branch, where the entropy disturbances are
propagating with a phase speed of c = 1. The vorticity branch given by Eq. (3.34) overlaps
the entropy branch. The upper and lower branches in figure 3.7 are associated with fast and

slow acoustic waves. These waves travel with the respective phase speeds c = 1 - /
Me
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Mode S: M=5.6, Re=1219.5, u=0.2, 03=0,14
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Figure 3.5: Pressure disturbance of Mode S.

Mode S: M=5.6. Re=1219.5, a=0.2, P30.A4
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Figure 3.6: Temperature disturbance of Mode S.
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M=5.6, Re=1219.5, tt=0.2, 0=0.14

0.2

0

67 -0.2

-0.4

-0.6
-.005 -.004 -.003 -.002 -.001 0.000

pr

Figure 3.7: Branch cuts of the continuous spectrum in the complex plane p = -iw.

The fifth pure oscillatory solution is an additional solution not found for the 2D case. The
equation, 7,s = -kU, along with Eq. (3.11), leads to the relation:

pc,5 = -i (a+ /3W) - (k2 + U2 + # 2) /Re (3.36)

Eq. (3.36) is identical to Eq. (3.34). The fifth relation is also interpreted as a vorticity
branch, where the vorticity disturbances are propagating with a phase speed of c = 1. The
existence of two vorticity modes reflects the three-dimensionality of the perturbations.

As in the 2D case, it is possible to find compact forms for the solutions of the various
regions of the continuous spectrum. Using a similar technique to that used in [FT03], we
denote one side of each branch cut as '+' and the other side of the branch cut as '-' in
accordance with the asymptotic behavior of the type of disturbance being considered. By
relating zt to z,- and dQt/dy to dQ-/dy, the integrals along the branch cut sides y+ and
7- can be written as one integral of the difference A+ - A-.

Solutions for the acoustic waves include five fundamental vector functions, three of which
decay outside the boundary layer, and two of which oscillate as e +±iky. A +, - A- can be
written solely in terms of the functions on the '+' side of the branch cut as

+ - c2 E 1275  c3 E1 753  c4 E 1754 cE 1 756  c8 E718 5  XA - A = ( +z5E74+ t + +]
+ E 17 5 3 E 1 75 4  E 1 7 5 3 E75 4  E 17 5 3 E 17 5 4  E 17 53 E 17 54

(E5734zI + E1754z3 + E7153 z4+ E 7134z5 + E,534z7 )
(3.37)

The horizontal branch cut in the 2D case has a region of overlapping vorticity and entropy
disturbances. The remainder of the branch cut is a region of vorticity disturbances. In the 3D
problem, the entire branch cut contains a region of overlapping vorticity modes, and there
is a region of the branch cut that has entropy disturbances overlapping the two vorticity
modes.
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In the region of overlapping vorticity modes, there is an uncertainty. There are six
fundamental solutions (four oscillating and two decaying) in this region; however, this number
of fundamental solutions is larger than is needed to satisfy the boundary conditions. This
difficulty is resolved using the technique described above in obtaining Eq. (3.37). The
solution can be expressed as a sum of two stand-alone vorticity modes as follows

A+ - A Ar,j + Ar,5  (3.38)

where
A - ( cIE 1753  c2E2753  + _C4E4753 + c6E 6753  csEs753

' (E 17 5 3 E 2 7 5 3  E 17 53 E2 7 5 3  E 17 5 3 E 2 7 5 3  E 17 5 3 E 2 7 5 3  E 1 75 3 E 2 75 3 / (3.39)

(E2 7 5 3 Z1 - E1 753z 2 + E1275z3+ E1723z 5 + E1 2 5 3Z7)

and
A - ( cIE 1253  c4E 523 4  c6 E 2563  c7E 7253  c8 E8253

5 E2 753 E2853  E 2753 E2 853  E 2753 E 2853  E 2753 E 2853  E 275 3 E2853  (3.40)

(E 7 85 3 Z 2 + E 2 7 8 5 Z3 - E 2 78 3 z 5 - E 2 8 5 3 z 7 + E 2 7 53Zs)

Both Eq. (3.39) and Eq. (3.40) satisfy the boundary conditions on the wall.
In the region of three overlapping modes (two vorticity and entropy), there also exists

an uncertainty. There are seven fundamental solutions in this region (six oscillating and
one decaying). Again, this number of fundamental solutions is larger than is needed to
satisfy the boundary conditions. This difficulty is resolved using the technique described
above in obtaining Eq. (3.37), and since the region of three overlapping modes has not been
encountered before, we shall show the derivation of the solution. In this overlapping region,
we denote one side of the branch cut as '+' and the other side of the branch cut as '-' in
accordance with the asymptotic behavior:

+ iky + -iy +- ik

zi- e e k , z i - - e - i v z2 , e - '  (3.41a)
z - ,e- eik , z + , eA , 

3Y - eA3 Y ,z (3.41b)

z+  e \4Y, z4 - e04Y, z +  e ikly ,  (3.41c)

Z5  
, Z6 e -ikl , Z6 -, eikly, (3.41d)

Z ,'. eiky, z- -e y z + , e - iky , z- - eik y (3.41e)

where k and ki are real, positive parameters, and A3,4 are given by Eq. (3.11). It is possible
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to obtain the relations

z-= 2, z 2 = z , z3 =z, z 4 =z4, (3.42a)

z6 = z5, z 7 = z, z 8 = z7, (3.42b)

dQ - dQ2 
+ dQ2 - dQ1, (3.42c)

dy dy ' dy d-y'
dQ3 - dQ4 

+ dQ 4 - dQ3 
+

dy dy ' dy d- y' (3.42d)
dQ5 - dQ 6

+ dQ 6 - dQ5 
+

dy dy ' dy dy(3.42e)
dQ - dQ 7 

+ dQ8 - dQ8 
+

dy dy 'dy = dy (3.42f)

The integrals along the branch cut sides y+ and -y can be written as one integral of the
difference

A+3 A = (a+J /ido Y)z+J+ /f " y Yz2+ (a +J- y Y)

j y y y j dy

+ -dQS+dy + - Q + dy + z-- d z - + dQ3 dy Z

P dQ ( -dz- d dy d3 dy3
0 oo 000 0 0 0/

f dQ8 dyZ+ ( ±Jd)± ~y z (a;+ J fY ) dQ3

dy dy y dy

000

(3.43)
After substitution of the relations given in Eqs. (3.4la-3.41e) and (3.42a-3.420, simplification
leads to the following expression

Ao - Ao= . +.+)z+ - (2 + ,(-) z.++ (o.+ - a-) .+ + (a+ + c+) +I 1 2 3 5 5 5 (3-44)
- (aW + 4)z+ + (4 + 4) z7 - (c: + a) (z

Equation (3.44) can be expressed in the compact form

A+ - A- = A,j + Ac,2 + Ac,5  (3.45)
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Figure 3.8: Streamwise velocity disturbance of the acoustic mode - (a) slow (b) fast.

where A, 1 and Ac,5 are given by Eqs. (3.39) and (3.40) and with

A - ( clE 1 2 83  c 4 E 2 83 4  c 5 E 2 8 5 3 + CraE2863 c7 F2 7 8 3  XA2 E8386 E85E63+ +- 346
E 2 8 5 3 E2 8 6 3  E2 8 5 3 E8 6 3  F 28 5 3 E 2 86 3  E 285 3 E 28 63 E 2 8 5 3 E 2 8 6 3  (3.46)

(E856 3z2 + E 2 8 5 6 Z3 + E 28 6 3 z5 - E 2 8 5 3 Z6 - E2563 z8)

Each term in Eq. (3.45) satisfies the boundary conditions on the wall and can be inter-
preted as a stand-alone mode.

As an example, figures 3.8 and 3.9 show the distribution of the streamwise and spanwise
velocity for both slow and fast acoustic disturbances.
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SA Mode: M=5.6, Re=1219.5, x=0.2, 0=~0.14
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Figure 3.9: Spanwise velocity disturbance of the acoustic mode - (a) slow (b) fast.
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Summary

We can now express the inverse Laplace transform given by Eq. (3.31) as

1 5 0()dPc,mA (y,t;,)=J (y; k,a,/)ePc(k)t dk+ A. (y;p,,a,6)eP"AM=(y t; ,.(y; k, a,fl----d

0 n

(3.47)
where ut = 1 corresponds to one vorticity wave, with Pc,l and Ac,1 given by Eqs. (3.34)
and (3.39) respectively; 7n = 2 corresponds to the entropy wave, with Pc,2 and Ac,2 given by
Eqs. (3.35) and (3.46) respectively; in = 3,4 correspond to slow and fast acoustic waves,
with P,,3,4 and Ac,3,4 given by Eqs. (3.35) and (3.37) respectively; 7n = 5 corresponds to the
second vorticity wave, with Pc,5 and A,, 5 given by Eqs. (3.36) and (3.40) respectively; pn is
a root of E13 57(p) = 0, and An is given by Eq. (3.33).

Biorthogonal system of eigenfunctions

Following [SG81], it is possible to express a solution of the initial-value problem (Eq. (3.47))
as an expansion in the biorthogonal eigenfunction system {A,,B,}, where the vector A,
is a solution of the direct problem and the vector B, is a solution of the adjoint problem.
There is an orthogonality relation associated with the biorthogonal eigenfunction system.
This orthogonality relation, along with the Fourier transform of the initial data, can be
used to compute the coefficients associated with each of the discrete and continuous modes.
Further details can be found in B.1.

Synchronism of Mode S and Mode F with acoustic waves

In the 2D problem, Mode S and Mode F axe synchronized respectively with the slow and
fast acoustic modes for a wave number a --. 0. Figure 3.10 shows numerical results for
eigenvalues w, of Mode F for a fixed choice of spanwise wave number /. Included in figure
3.10 are lines of constant phase speed. One of these is a line of phase speed c = 1, the speed
at which the entropy and vorticity disturbances travel. The other lines are associated with
fast acoustic modes (FA Mode) and slow acoustic modes (SA Mode) for 03 = 0.0001 (2D)

and fl = 0.1601. The fast/slow acoustic waves travel with phase speed c = 1 ± V -M-/2.
Figure 3.10 shows that Mode F for both/3 = 0.0001 and fl = 0.1601 is a subsonic disturbance
relative to the free stream for a < 0.37 and is a supersonic disturbance relative to the free
stream for a > 0.37. Furthermore, although it is not shown in any figure, these disturbances
are everywhere decaying. To obtain a clearer picture of what is occurring at the lower wave
numbers, figure 3.11 shows a section of figure 3.10.

As can be seen in figure 3.11, just as Mode F at iY = 0.0001 is synchronized with the
/3 = 0.0001 fast acoustic mode at a wave number a < 0.1, Mode F at /3 = 0.1601 is
synchronized with the /3 = 0.1601 fast acoustic modes at a wave number a < 0.1.

Figure 3.12 shows numerical results for eigenvalues w, of Mode S for a fixed choice of
spanwise wave number. Also included in figure 3.12 are lines of constant phase speed for
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Figure 3.10: Eigenvalues for Mode F for /3 =0.0001 and /3 =0.1601.
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Figure 3.11: Figure 3.10 at low wave number.
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the FA Mode and SA Mode for 3 = 0.0001 and 6 = 0.1601. The two Mode S curves are
virtually overlapping. In order to gain a clearer view of what is occurring at the lower wave
numbers, figure 3.13 shows a section of figure 3.12.

In contrast to Mode F, figure 3.13 clearly shows that Mode S for both choices of f is
asymptotically approaching the SA Mode for 3 = 0.0001. We have observed this behavior
at every choice of 0 that we have checked. Even though Mode S for various choices of f
(3D) approach the SA Mode for 6 = 0.0001, there is no synchronism between the two. The
primary synchronism of Mode S with acoustic waves for a < 0.1 is two-dimensional (2D
Mode S with the 2D SA Mode).

Synchronism of Mode F with entropy and vorticity waves

Figure 3.14 shows eigenvalues of Mode F for 0 = 0' and V) = 600. One can see that for
0 = 0', Mode F is subsonic relative to the free stream for a < 0.35 and is supersonic relative
to the free stream for a > 0.35. However, for tP = 60', Mode F is subsonic relative to the
free stream for this entire range of a. It can also be seen that Mode F for both angles of
disturbance propagation is everywhere decaying.

Furthermore, figure 3.14 shows the synchronism between the 2D Mode F and the entropy
and vorticity modes of the phase speed c = 1. In the 2D case, as the discrete mode coalesces
with the continuous spectrum from one side of the branch cut, it reappears on the other side
at another point. Mathematically, the pole associated with Mode F approaches one side of
the branch cut on the complex p plane. At the same time, another pole, located on the lower
Riemann sheet, approaches the branch cut from the opposite side. As the pole on the plane
coalesces with the branch cut, it moves to the upper Riemann sheet, while simultaneously,
the pole that was on the lower Riemann sheet moves into the complex p plane at another
point [FT03]. This leads to a jump in wi. As the angle increases, the synchronism continues,
but the jump-size decreases, until it is seen that for 0 = 60', there is neither a synchronism,
nor a jump in wi, at least for this interval of wave number a. Figure 3.15 shows contours of
wi in the a - 3 wave number plane. One can see the jump location for choices of a and 0.
Also plotted in the figure is a small region bounding the branch cut. This region is denoted
by the dashed lines. We have done this in lieu of plotting the branch cut, since the branch
cut plot obscures the jumps in wi. It is clear that the discontinuity of wi is associated with
the synchronism of Mode F and the entropy and vorticity waves. For large values of 3, it
appears that no jump is seen in figure 3.15 at the location of the branch cut. A jump does
in fact exist, but the size of the jump is small enough so that it cannot be seen on the scale
of this figure.

By plotting lines of constant angle, it is seen that the synchronism between Mode F and
the entropy and vorticity waves vanishes for large enough angles.

Synchronism of Mode S with Mode F

Figure 3.16 shows the eigenvalue curves for Mode S and Mode F for V' = 30'. The Mode
S curve given by the imaginary part of the eigenvalue wi contains two regions of instability.
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Figure 3.14: Eigenvalues for Mode F for ?p = 00 and V) 60'.
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Figure 3.15: Contours of w, in the a - i plane.

The unstable region located at a = 0.12 is equivalent to Mack's first mode. The unstable
region located at a -- 0.26 is equivalent to Mack's second mode. Further details regarding
the relation between Mode S and Mode F and Macks acoustic modes can be found in the
Discussion paragraph. The range of a is extended to a = 0.5 in order to show the decaying
behavior of both Mode S and Mode F for larger values of a.

In the 2D case, Mode F is synchronized with Mode S. This synchronism is indicative of
the fact that the discrete spectrum has a branch point at &* in the complex a plane. True
synchronism (Mode S and Mode F have the same value of w, as well as the same value of
Wr) occurs at &, which may have a different real part from where Mode S's value of Wr is
equal to Mode F's value of Wr. At values of a > a , the disturbance spectrum branches
out: Mode S becomes unstable while Mode F becomes more stable (the topological pattern
may be sensitive to the mean flow parameters, such as Mach number, Prandtl number and
temperature factor; further details can be found in [FK01]).

As seen in figure 3.16, this Mode S instability continues for a disturbance propagating at
¢= 300 (near a 0.23). For larger angles, though, even though there is still synchronism

between Mode S and Mode F, the synchronism is no longer accompanied by a Mode S
instability. This behavior can be seen for a disturbance propagating at i/ = 450 in figure
3.17. Even though it cannot be seen in figure 3.17, plots of the pressure disturbance indicate
that there is a switch from the Mack first mode to the Mack second mode. However, for this
disturbance propagation angle, there is no amplified Mack second mode.
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Figure 3.18: Eigenvalues for Mode F and Mode S for P = 600.

In figure 3.18, one can see that at even higher angles of disturbance propagation, there is
no synchronism between Mode S and Mode F. Additionally, at this angle, the Mode S curve
consists entirely of the Mack first mode.

Discussion

In order to avoid confusion, we now discuss Mack's [Mac69, Mac84] results and how they
relate to Mode S and Mode F. Mack first considered inviscid perturbations and computed
eigenvalue curves or families for various choices of parameters. Each of these families contains
an unstable region corresponding to one of the higher Mack modes (first mode, second mode,
third mode, etc.), and each amplification rate curve represents a distinct discrete mode.
Using asymptotic analysis, [GF89] also captured the feature that each amplified first mode,
second mode, etc. represents a separate solution.
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Mack then considered viscous perturbations and computed families of eigenvalues for
finite Reynolds numbers and compared the eigenvalue curves with the inviscid ones. For
one of Mack's choices of parameters, there were two "separate inviscid amplification rate
curves for the first and second modes" (page 12-24 of [Mac69]) (i.e. two inviscid normal
modes), but "only a single amplification rate curve at the finite Reynolds number shown"
(page 12-24 of [Mac69]) (i.e. one viscous normal mode). This one viscous solution was
comprised of both the first mode and the second mode. This viscous family is analogous to
the Mode S mentioned in prior sections. Mode S in our analysis is a single discrete mode
that corresponds to a single pole in the complex p plane. Furthermore, Mode S is comprised
of Macks amplified first, second and possibly higher modes.

Additionally, Mack explained how "the inviscid solutions are to be the Re -- oc limit
of the viscous solutions" (page 12-25 of [Mac69]) through "the existence of multiple viscous
solutions" (page 12-25 of [Mac691). For the Reynolds number of his example, this additional
viscous solution is damped, and it is analogous to the Mode F mentioned in prior sections.
We would like to point out that [MZ03a, MZ03b] and [ZM02] refer to Mode F as Mode I
and refer to Mode S, not as a single family, but rather to the parts that comprise the family
(Mack's first mode, second mode, etc.).

Mack used a nomenclature for these viscous families that was based on his inviscid nomen-
clature. However, at the time, the receptivity problem was not understood, and the decom-
position of the solutions of the linearized Navier-Stokes equations had not been developed.
We therefore suggest keeping the terminology corresponding to the normal mode analysis.
The normal modes, Mode S and Mode F, are represented by separate poles in the complex
plane, and they may be synchronized with slow and fast acoustic waves at a wave number
a - 0.

Conclusions

In this Section we solve the three-dimensional initial-value problem for disturbances propa-
gating in a compressible boundary layer in the parallel flow approximation. After resolving
the issue with overlapping branch cuts, we showed that the solution can also be expressed as
an expansion in a biorthogonal eigenfunction system. A numerical example that is used to
investigate the spectrum of three-dimensional disturbances in a two-dimensional high speed
boundary layer flow leads to the following conclusions:

1. Mode S and Mode F are eigenvalue curves that correspond to separate solutions.
Mathematically, each curve is the trajectory of a single pole in the complex p plane.

2. Mode S contains regions of Mack first and second modes. Our results are consistent
with Mack's [Mac69, Mac84] in so fax as the Mode S region comprised of Mack's second
mode is most unstable to 2D disturbances, and the Mode S region comprised of Mack's first
mode is most unstable to a 3D disturbance.

3. The discrete spectrum can change dramatically depending on the angle of the distur-
bance propagation.

4. Eigenvalue plots for choices of fixed spanwise wave number, 6, show that the synchro-
nism of Mode S with the slow acoustic mode is primarily two-dimensional.
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5. At a sufficiently high angle of disturbance propagation, Mode F ceases to synchronize
with the entropy and vorticity modes.

6. At a sufficiently high angle of disturbance propagation, the synchronism of Mode S
and Mode F is no longer accompanied by a Mode S instability. At even higher angles, there
is no synchronism between Mode S and Mode F.

The synchronism observed in the example means that the phase velocities of the modes
are the same. However, their complex eigenvalues are different. When the parallel flow
assumption is used, as it has been for this analysis, the normal modes are orthogonal to
one another and therefore do not interact with each other. However, this analysis may be
extended to the case of non-parallel flow through the use of multiple scale methods. There
will be a slow and a fast scale. At the level of the fast scale, the analysis shown here for
parallel flow will be valid. At the level of the slow scale, the normal modes will interact and
hence, one mode may be generated by another mode at the point of synchronism. Analysis of
a non-parallel boundary layer flow was performed by [FK01] for the spatial stability problem.
They showed that Mode F may be generated by the vorticity/entropy modes. This decaying
Mode F may then effectively generate an unstable Mode S. Additionally, this behavior has
been seen in numerical studies for the spatial stability problem. Therefore, the features of
the 3D spectrum found in our analysis of the initial-value problem might have a significant
impact on the transition scenario in high speed boundary layers. All the features discussed
must be taken into account when designing transition experiments in hypersonic flows.
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3.3 Three-dimensional wave packets

This section is devoted to the application of the developed solution of the initial-value prob-
lem.

Receptivity to a Temperature Spot

As an example of an initial disturbance, we consider a temperature spot localized at a
distance Y0 from the wall. For the 3D initial-value problem, this disturbance will have the
form

O(x, y, z) = 6(x)6(y - Yo)6(z) at t = 0. (3.48)

The orthogonality condition given by Eq. (B.15) allows one to determine the weights of
the modes generated by the temperature spot. For Mode F and Mode S, the weight is given
by

(HoAo., B,,) (3.49)
IF

where w (a, 0) corresponds to the eigenvalue for the mode of interest. For a temperature
spot of the form given by Eq. (3.48), it is possible to use the definition of H 10 to obtain from
Eq. (3.49) the expression

c(a,o) = H3 (Y) B. 3 (Y) + H1o (Y) B. 6 (Yo) (3.50)

with H1. denoting the (i,j) element of matrix Hi 0 .
The coefficient c (a, 0) depends on the normalization of the eigenfunction A,. However,

the product c (a,,f) A, is independent of the choice of normalization. We would like to
normalize the eigenfunction so that the maximum value of u is 1. However, for our choice of
parameters, there are two local maxima. We therefore choose to normalize the eigenfunction
so that the value of the inner maximum is 1 (i.e. we normalize A, as um, = inner maximum
of u(y) = 1). The normalized value of the outer maximum may be greater than 1. With
this normalization, c is the amplitude of the maximum streamwise velocity component Uma,
associated with the appropriate mode.

As a limiting case, as # --+ 0, one obtains the receptivity coefficient associated with the
2D initial-value problem [FT03].

Inverse Fourier Transform - 2D

The solution (before application of the two inverse Fourier transforms) is denoted as A,,,
and is given by Eq. (B.16). In the 2D case, the solution (before application of one inverse
Fourier transform) is denoted as A, and will have a form similar to that of the 3D case.
The 2D inverse Fourier transform is given by

J c (a) A. (a, y) ei (a)t) da. (3.51)
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As an example, we consider the streamwise velocity component, u, of the disturbance vector,
A. The transform we are therefore interested in is given as

J c(a) u (a, y) e da, (3.52)
-Co

where the coefficient c (a) is, for this example, the amplitude of the maximum streamwise
velocity component um.. Expression (3.52) is transformed using a symmetry argument.
Using the direct and complex conjugate matrix operator equations, when a is replaced by
-a, i.e., when a --+ -a, it can be shown that w - -U, c - Z , and u - f, where the overbar
stands for complex conjugate. Therefore, (3.52) can be rewritten as

f c (a) u (a, y) e' ( " - )(a)t) da - (3.53a)
-00

2f Real {c (a) u (a, y) e'(ax- (a)t) } da. (3.53b)
0

In the computation, we ignore the factor of 2. For the purpose of analysis, the Mode F and
Mode S wave packets are considered separately.

Mode F

Figure 3.19(a) shows the imaginary part of the eigenvalue Wi for Mode F. Figure 3.19(b)
shows the maximum streamwise velocity amplitude, um., at t = 0 for Mode F, which is
generated by a components of the temperature spot located at varying normal distances Y
from the wall. One can see from figure 3.19(b) that there is little to no receptivity to a
temperature spot located at Y < 5 and Y > 11.

The integral given by (3.53b) is numerically computed from a = 0.1 to a = 0.5. We were
unable to calculate the Mode F eigenvalues below a z- 0.08 (figure 3.19(a)). However, for
a finite time, the input into the integral for a < 0.1 is not significant since the receptivity
coefficient, um., is close to 0 for this range of a (figure 3.19(b)). Beyond this finite time,
the main input into the integral will come from the piece of Mode F with the largest values
of wi (as a -- 0), and this range of a should be considered.

Figure 3.19(b) also shows that the largest values of um. occur near a z 0.27. This fact,
coupled with the fact that Mode F is everywhere decaying, suggests that there will not be
much input into the integral for a > 0.5 if a sufficiently large time, t, is chosen.

There is a synchronism between Mode F and the entropy and vorticity modes. As the
discrete mode coalesces with the continuous spectrum from one side of the branch cut, it
reappears on the other side at another point. This leads to the jump in wi seen in figure
3.19(a).

Figure 3.20 shows contours of wi in the complex a plane. One can see the jumps in
wi along a nearly vertical line. As (3.53b) is integrated from a = 0.1 to a = 0.5, we must
consider the continuous spectrum along with Mode F at the point of coalescence. To make the
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Figure 3.19: (a) Imaginary part of the eigenvalue for Mode F and (b) contours of Um at
t = 0 generated by a components of the temperature spot located at Yo. The contour levels
in (b) range from 0.0026 to 0.0156 in increments of 0.0026.
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Figure 3.20: Contours of wi in the complex a plane. The contours range from -0.0298 at
the bottom of the figure to 0.0028 at the top of the figure in increments of 0.0015.

analysis less complicated, we analytically continue the path of integration into the complex
a plane in order to avoid the discontinuities associated with the coalescence of Mode F with
the continuous spectrum. Therefore, the computed result is obtained using only Mode F.
However, had we considered the sum of Mode F and the continuous spectrum and integrated
along the real a axis, we would obtain the same result. Figure 3.21 is a schematic of an
appropriate integration path. Due to the analyticity of the function being integrated, the
result should be independent of the path of integration.

Using Y = 8.9 (the edge of the boundary layer is located at y - 10), t = 50 and the
integration path, Path 1, (3.53b) is integrated. Using the letters found in figure 3.21 (with
points A, B, E and F located on the real axis), Path 1 is given explicitly as the following:
At point A, a = 0.1. At point B, a = 0.17. At point C, a = 0.17 - 0.015i. At point D,
a = 0.2 - 0.015i. At point E, a = 0.2, and at point F, a = 0.5.

The result is shown in figure 3.22(a) as contours of u in the x - y plane. To better
illustrate the Mode F wave packet, figure 3.22(b) shows a slice of figure 3.22(a) taken at
y = 2.02.

To illustrate the decay of the wave packet in time, (3.53b) is integrated again using Path
1 and Y0 = 8.9 for t = 200. Figure 3.23 shows the result taken at the slice y = 2.02. When
figure 3.23 is compared to figure 3.22(b), one sees that u is an order of magnitude smaller
for t = 200 than for t = 50. This order of magnitude decrease in amplitude is consistent
with wi ,z -0.015 (figure 3.19(a)). Additionally, the wave packet is seen to have moved
downstream with the increase in time. By comparison of figure 3.23 to figure 3.22(b), one
can also estimate the Mode F wave packet group velocity to be Ow/aa z 0.65. One can
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Figure 3.21: Schematic picture of an integration path around the branch cut.

see from figure 3.10 (Mode F eigenvalue curve for 3 = 0.0001 (2D)) in Section 3.2 that the
group velocity estimate is very reasonable.

For the two times considered, we expect the main input into the integral to come from
the receptivity coefficient. Figure 3.24 shows the amplitude spectrum for Mode F for both
t = 50 and t = 200. This figure shows that the main input for both t = 50 and t = 200
occurs at an a value that corresponds favorably with the maximum values of um. for a
temperature spot located at Y = 8.9 (figure 3.19(b)). As time increases, the main input to
the integral will no longer come from the receptivity coefficient, but rather from the e- i(')t
component of the integrand at low a. Therefore, we expect the amplitude peak to be located
at low values of a for large times. For t = 200, figure 3.24 shows that the amplitude peak
has begun this shift to lower values of a. Also, figure 3.24 clearly shows the decay of Mode
F in time.

To ensure that these results are independent of the choice of path of integration, the
results shown for Y = 8.9 at t = 50 using Path 1 are compared with results found using
three other paths of integration. Using the letters found in figure 3.21, Paths 2,3 and 4 are
given as follows:
Path 2 - At point A, a = 0.1. At point B, a = 0.15. At point C, a = 0.15 - 0.015i. At point
D, a = 0.2 - 0.015i. At point E, a = 0.2, and at point F, a = 0.5.
Path 3 - At point A, a = 0.1. At point B, a = 0.15. At point C, a = 0.15-0.015i. At point
D, a = 0.21 - 0.015i. At point E, a = 0.21, and at point F, a = 0.5.
Path 4 - At point A, a = 0.1. At point B, a = 0.17. At point C, a = 0.17-0.031i. At point
D, a = 0.2 - 0.031i. At point E, a = 0.2, and at point F, a = 0.5.
To compare the results, figure 3.25 shows the wave packet at the slice y = 2.02 for each
choice of integration path.

There is good agreement between the results obtained using the four different integration
paths. A portion of each path of integration passes through a region of the complex a plane
where ai < 0. This leads to numerical error associated with growth from the e"' term in the
integrand. Since Path 3 has a longer portion of its path in the negative complex a plane, this
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Figure 3.22: (a) Contours of u in the x - y plane and (b) streamnwise velocity disturbance,
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Figure 3.24: Amplitude spectrum of Mode F for t = 50 (solid line) and t = 200 (dashed
line).
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Figure 3.25: Streamwise velocity disturbance, u, at y = 2.02 for t = 50 for 4 paths of
integration. The Path 1 result is denoted with "cross" markers; the Path 2 result with
"square" markers; the Path 3 result with "circle" markers; the Path 4 result with "triangle"
markers.

phenomena explains why the Path 3 result differs from the other three results (this deviation
is difficult to see at the scale used for figure 3.25).

Mode S

Figure 3.26(a) shows the imaginary part of the eigenvalue wi for Mode S. Figure 3.26(b)
shows the maximum streamwise velocity amplitude, ?j,.x, at t = 0 for Mode S, which is
generated by a components of the temperature spot located at varying normal distances Y
from the wall.

The integral given by (3.53b) is numerically computed from a = 0.1 to a = 0.5. The
greatest input into the integral will be from the region of a - 0.2 to a 1% 0.3. It is in this
region that the receptivity coefficient, uma., is the highest, and it is also in this region where
wi attains its largest value. Beyond a = 0.5, Mode S is decaying, so that for sufficiently large
times, there will not be significant input into the integral for a > 0.5.

Unlike the Mode F case, there is no need to deform the path of integration to compute
the Mode S inverse Fourier transform. The result for Y = 8.9 at t = 500 is shown in figure
3.27(a) as contours of u in the x - y plane. To better illustrate the Mode S wave packet,
figure 3.27(b) shows a slice of figure 3.27(a) taken at y = 2.02.

We expect that the main input into the integral will come from the Gaussian shaped
growth portion of the Mode S eigenvalue plot (figure 3.26(a)). Figure 3.28 shows the
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t = 0 generated by a components of the temperature spot located at Y. The contour levels
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Figure 3.28: Amplitude spectrum of Mode S for t = 500.

amplitude spectrum of Mode S for t = 500. This figure shows that the main input occurs at
an a value that compares favorably with the location of the Gaussian peak (figure 3.26(a)).

Asymptotic approximation with Taylor series expansion of w (a)

Because the eigenvalue plot for Mode S contains a region where Wi > 0, the Mode S wave
packet, unlike the Mode F wave packet, will grow in time (and downstream). It is useful to
compare the Mode S computed inverse Fourier transform with an asymptotic approximation
of the Fourier integral.

The development of 2D and 3D wave packets comprised of spatially growing discrete
modes for incompressible boundary layer flows (parallel and non-parallel) has been considered
previously by Gaster [Gas8l, Gas82, Gas68]. In particular, Gaster used the method of steep-
est descent to find the asymptotic representation of integrals of the form given by (3.53b).
Starting with (3.53b), we have the following:

f c (a) u (a, y) ei("x -w(e)t) da =

f c (a) u (a, y) et(o4-w(a) da. (3.54)
-- 19
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Assuming that the saddle point lies near the point aXmax, we approximate w (a) as

w (a) - wm.a + (a -max) +
max

5(a- am. )2 &Um) (3.55)

where (Ow/o9a)max is real valued. To find the saddle point, a*, at a prescribed x/t, we let
€ (a) = ax1t - w (a) and derive the following:

( cx~(a* -a. &20.(3.56)aa t 0a m a2 M.
0)(- ()=Oa

Solving for ax*, one obtains

a* - amax + t ()max (3.57)
( 2) max

Equation (3.57) can be rewritten as

a* = amax + x - Xmax (3.58)t (02W)Ma Ir ma

where Xmax = t (o9w/O)m. ..
Expression (3.54) can now be rewritten as

c (a*) u (a*, y) J e1t(¢(a*)+ (- " = (3.59a)

L

c (a*) u (a*, y) itS)" (a) eit¢(c*) = (3.59b)

where L is the contour of integration that has been deformed to pass through the saddle
point, the prime (t) symbol denotes differentiation with respect to a, and Q" = -&2W/ca 2 .

After substitution of a* into (3.59c), the asymptotic representation of the original Fourier
integral is given as:

c(a*) u (a*, y) i X
it (X--m ax )

exp iamax + X Xmx) 2 
_ Waxt (3.60)

2t1(+2-)m.
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Actually, the use of a 2nd order Taylor series expansion of w (a) within the framework of the
method of steepest descent is equivalent to Gaster's Gaussian model for a Fourier integral
[Gas8l, Gas82].

Using numerical results, the various quantities found in (3.60) can be determined. They
are

amx = 0.254, Wm , = 0.2342 + 0.0039i

(a).. = 0.86, (2 = -0.2034 - 3.6431i.act i9ce(-) max

Additionally, c (a*) u (a*, y), the receptivity coefficient multiplied by the eigenfunction at
the saddle point for the slice y = 2.02 is 0.00174 - 0.0011i.

These values can be used to compare the computed inverse Fourier transform with the
asymptotic approximation of the transform. Because we have used (3.53b) without thc
factor of 2 to compute the inverse Fourier transform, we will compare the computational
result with the Real part of the asymptotic approximation given by (3.60). Though we
expect good agreement between the two methods, especially for large times, there may be
some differences between the "exact" result found numerically and the "approximate" result
found with the method of steepest descent.

Figure 3.29(a) compares the wave packet found for Y0 = 8.9 and t = 500 at the slice
y = 2.02 with the asymptotic approximation at t = 500 given by (3.60) using the values
given above. Figure 3.29(b) shows a similar comparison for t = 1000. One can see that as
the time increases, the wave packet spreads out as it moves downstream. Furthermore, the
amplitude of the perturbation increases with time. By comparing figure 3.29(a) to figure
3.29(b), one can estimate the Mode S wave packet group velocity to be 9w/Oa ; 0.8. This
estimate is consistent with the group velocity value (Ow/oa)m. = 0.86.

Overall, the asymptotic representation provides a good approximation to the computed
wave packet. However, the "tails" of the two wave packets do not agree very well. This is
particularly true for the front edge of the wave packet.

Asymptotic approximation with numerical computation of the saddle point

In an attempt to improve the asymptotic approximation of the wave packet at the "tails"
of the wave packet, we numerically compute the location of the saddle point. To find the
saddle point, a*, at a prescribed x/t, we let 4 (a) = ax/t - w (a) and derive the following:

k - = 0. (3.61)

Therefore, the following relationships must be satisfied at a*:

X = and 0 = awi (3.62)

t 9ai
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Figure 3.29: Comparison of computed integral (solid line) with the asymptotic approximation
(using 2nd order Taylor series expansion of w (a)) (dashed line) for (a) t = 500 and (b)
t = 1000.
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Using the method of steepest descent, the asymptotic representation of the inverse Fourier
transform is given as:

c(a*) u(a*,y) X

exp (ia*x - iw*t) (3.63)

(Note that (3.63) is the same as (3.60) with x = xm,, and all of the "max"-values replaced
by "saddle point (*)"-values).

Using Eq. (3.62), a*, w* and (02w1/a 2 )* are calculated. Figure 3.30(a) compares the
"exact" computed wave packet found for Y = 8.9 and t = 500 at the slice y = 2.02 with
the asymptotic approximation at t = 500 given by (3.63) using the saddle point values.
Figure 3.30(b) shows a similar comparison for t = 1000. There is now excellent agreement
across the entire wave packet for both choices of time.

Inverse Fourier Transform - 3D for Fixed Spanwise Wave Number

For the streamwise velocity disturbance, u (of A,g given by Eq. (B.16)), the 3D inverse
Fourier transform is given by

J J c (a, i3) u (a, /i, y) ei~~wc))da dOl. (3.64)
-00 -00

Integration with respect to a for a prescribed 0 leads to

eiOz f c (a,)3) u (a,)f, y) e'(- - (Q,f)t) da. (3.65)

-00

As for the 2D case, the integral of (3.65) can be transformed using a symmetry argument
to an integral over the positive a half-plane. As before, for the purpose of computation, we
ignore the factor of 2.

Figure 3.31(a) shows the imaginary part of the eigenvalue wi for Mode S for = 0.1001.
Figure 3.31(b) shows for Mode S at t = 0 the maximum streamwise velocity amplitude,
umax, multiplied by the value of the eigenfunction at y = 2.02, which is generated by a and
/3 components of the temperature spot located at the distance Y = 8.9 from the wall.

The inverse Fourier transform given by (3.65) is numerically computed from a = 0.1 to
a = 0.5 with 13 = 0.1001 and z = 0. Even though w, > 0 for a < 0.1, the receptivity
coefficient (figure 3.31(b)) is near 0 in this region. The greatest input into the integral will
be from the region of a 0.2 to a z 0.3. It is in this region that the receptivity coefficient,
Um, is the largest, and it is also in this region where wi attains its largest value. Beyond
a = 0.5, Mode S is decaying, so that for sufficiently large times, there will not be significant
input into the integral for a > 0.5.
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Figure 3.30: Comparison of computed integral (solid line) with the asymptotic approximation
(using numerically computed saddle point values) (dashed line) for (a) t = 500 and (b)
t = 1000.

198



0.004
(a)

0 .002 .. ... .... . --- ---...

-0.006

0 0.1 0.2 0.3 0.4 0.5

0.16 a(b)

0.14

0.12

0.1

0.08

0.06

0.04

0.02
0
0.1 0.2 0.3 0.4 0.5

a

Figure 3.31: (a) Imaginary part of the eigenvalue for Mode S for f 0.1001 and (b) contours
of c (a, fi) u at y = 2.02 at t = 0 generated by a and 3? components of a temperature spot
located at Y0 = 8.9. The contour levels in (b) increase in increments of 0.0002, beginning
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Figure 3.32: Comparison of computed integral (solid line) with the asymptotic approximation
(using numerically computed saddle point values) (dashed line) for f = 0.1001, z = 0 and
t = 1000.

Using the method of steepest descent, the asymptotic approximation of the inverse Fourier
transform for a prescribed spanwise wave number # is given as

(a*, ) u(a*,,y) t

exp (i#z) exp (ia*x - iw*t) . (3.66)

By numerically computing the saddle point quantities a*, w*, and (&w/t9 2)*, and using
the fact that c (a*,,3) u (a*, i3, y), the receptivity coefficient multiplied by the eigenfunction
at the saddle point for the slice y = 2.02 is 0.00159 - 0.00126i, one can use (3.66) to find
the asymptotic representation of the Fourier integral (as with the 2D case, the Real part of
(3.66) is taken for the purpose of comparison with the computed result).

Figure 3.32 compares the wave packet computed for 0 = 0.1001, z = 0, Y = 8.9 and
t = 1000 at the slice y = 2.02 with the asymptotic approximation at t = 1000 given by (3.66).
There is good agreement across the entire wave packet.

Inverse Fourier Transform - 3D

It was shown in Section VI that it was necessary to deform the path of integration of the
2D inverse Fourier transform for Mode F, but not for Mode S. Each inversion of the Fourier
integral must be accompanied by an analysis of the spectrum to find a suitable integration
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path. In order to perform the double integration of the 3D inverse Fourier transform, it is
again necessary to understand the features of the spectrum so that an appropriate path of
integration is used. Due to the complexities associated with the 3D spectrum, we will use
an asymptotic approximation of the Fourier integral to compute the 3D wave packets.

For the streamwise velocity disturbance, u, the 3D inverse Fourier transform is given
by (3.64). As in the 2D case, (3.64) can be transformed using a symmetry argument. Using
the direct and complex conjugate matrix operator equations, when a is replaced by -a, i.e.
when a -+ -a, it can be shown that 0 --+ -5, w -* -0, c -* Z, and u -* U, where the
overbar stands for complex conjugate. Therefore, (3.64) can be rewritten as:

J J c (a,)) u (a,fl, y)e (  da d8= (3.67a)

2JfRfiealf{c(a, /5) u (a, /5, y1) e(+3(aI))da df3
0 0o o

00 00

+ 2J J Realf{c (a, -,6) u (a, -#, y) e( 3-(,-3))}da dl/3. (3.67b)
0 0

As before, the factor of 2 will be ignored.
At a first glance of (3.67b), it is tempting to think that there are two saddle points.

The first saddle point, associated with the first double integral, must satisfy the following
relations:

x =Ow7 (a,) n Owi (a,i).
t a and 0 =-t oa oa '

z OwT (a,13) and 0 Ow(a,53)
-n 0 = - (3.68)

The second saddle point, associated with the second double integral, must satisfy the fol-
lowing relations:

__1W_.(a,-_6 0w(a, -,6)_cOw,(a,-) and 0= O
t Oa Oa

z Owr (a, -8) and 0- Owi (a, -) (3.69)

Using the symmetry transformations along with properties of complex conjugation, it can
be shown that Eq. (3.69) can be rewritten as

X Ow (a,,3) nOwi (a,/5)
t Oa and 0 = at a a Oa

z 'Wr(a, 0) and 0 =w,(a, ()
t an 0 0/ (3.70)
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However, it can be shown numerically that no saddle point satisfies the relations given in
Eq. (3.70), unless x = 0 and z = 0. Therefore, there is only one saddle point, and it is
associated with the first double integral of (3.67b).

We follow Gaster [Gas68] to find the asymptotic representation of the 3D inverse Fourier
transform. For a fixed /, the Fourier integral becomes

J eifiz J da d,6. (3.71)
00 -0

The asymptotic representation of the inner integral in (3.71) is known from the 2D case, and
substitution of this representation leads to the following:

-I- 
_T d3. (3.72)

- 2. a2w (a*,)

If we let )
(a) + O - u (a* (3.73)

and expand q about 3* so that
(*,)i (a*,,6*) + (0 3*)"2 (a ]6)(-4

then (3.71) can be written as:

/27r e it ( a*xz+ $* z --W ( a*,# *)) )

Vi V,aa) .2,_,o o a2, o2*

-) d/3 = (3.75a)

-00
27r e' t ( a x+# z - w( a ,,6 ) )  (3.75b)

( . '98 (Z 9 oy

The asymptotic representation of the inverse Fourier transform given by (3.75b) can be
derived more generally using a transformation of variables [BH86, Won0l]. Starting with
(3.64) with q given as q (a,)3) = ax + /3z - w (a, 3) t, we approximate 0 as:

(a - ) (0 * ) O*+ ()3 -,*03.6
+/ -)2 (3.76)
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where the a and # subscripts refer to first and second partial derivatives.
Using the change of variables

g =(- *, h =( -,3*),

=g + -? = h, (3.77)

(3.64) is transformed to the following:

dd7. (3.78)

-- OO -00

The integral given in (3.78) is an iterated integral where each integral is Gaussian. Eval-
uation of the iterated integral results in the asymptotic representation of the Fourier integral
given by (3.75b).

The saddle point (a*, f3*) and the various derivatives at the saddle point used in (3.75b)
are numerically computed. Using the asymptotic approximation of the 3D inverse Fourier
transform, the Mode S wave packet is calculated for t = 1000. Figure 3.34(a) is a surface
plot of the streamwise velocity disturbance, u, taken at the slice y = 2.02 for Y = 8.9 and
t = 1000. Figure 3.34(b) is a rotation of figure 3.34(a) in order to see the underside of the
wave packet. To have a clearer sense of the amplitude values, figure 3.34(c) shows contours
of u for y = 2.02, Yo = 8.9, and t = 1000. It is clear from these figures that the wave packet
is essentially 2D. Furthermore, it is possible to compare figure 3.34(a)-(c) with figure 3.33
(3D Mode S wave packet for t = 500) and see that the 3D Mode S wave packet group velocity
is very similar to the 2D Mode S wave packet group velocity.

Conclusions

The previously solved 2D and 3D initial-value problems were used along with features of
the discrete and continuous spectrum for one set of parameters to study the evolution of
wave packets for two discrete modes, Mode S and Mode F. The biorthogonal eigenfunction
system provides a method for the determination of the weights of individual modes given a
specific initial disturbance. Using the specific disturbance of an initial temperature spot, we
computed the 2D inverse Fourier transform for both Mode F and Mode S. Additionally the
3D inverse Fourier transform was computed for a fixed value of spanwise wave number '3.

As shown in [FT03) and [FT05] (see Section 3.2), Mode F and Mode S are eigenvalue
curves that correspond to the trajectory of poles in the complex p plane, while continuous
modes correspond to branch cuts in the complex p plane. It is possible for various modes to
be synchronized, and therefore it is crucial to fully understand the behavior of the spectrum
before computing the inverse Fourier transform. For the 2D case, due to the synchronism
between Mode F and entropy/vorticity waves, the path of integration is deformed around the
branch cut associated with this synchronism. This allows us to compute the inverse Fourier

203



(a) U(b)

... .....- .....
2e-04 -... ,2e-04 ........ ......

Oe+0" Oe+00 ..
-2e-04 "

5..... .... ..... ........ -2 e -0 4 ... .... ......
20 -10 ) 45 0- z 00

3020 34 x
0 x

30 -a(C)

22

10

S0

-10

-20

-30
340 360 380 400 420 440 460 480

x
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transform using only Mode F. The result is equal to that found by considering Mode F and
the continuous spectrum together and integrating along the real a axis. Since the integrand
associated with the sum of Mode F and the continuous spectrum is analytic, the choice of
the integration path should not affect the result, and in fact, the numerical results for four
choices of integration path agree very well.

For the 2D and 3D (fixed fl) cases, the results for Mode S were compared with an asymp-
totic approximation of the Fourier integral. The first approximation used a Taylor series
expansion of w. Generally, this approximation compared favorably with the computed re-
sults. However, there is a significant discrepancy at the wave packet "tails". The asymptotic
approximation was improved using numerically computed saddle point values. From a com-
putational point of view, it is much faster to compute the wave packet using the asymptotic
approximation with numerically computed saddle point values than it is to compute the
inverse Fourier transform.

Additionally, the full 3D inverse Fourier transform was found for Mode S. Since the 3D
spectrum is so complex, rather than compute the inverse Fourier transform, we have used an
asymptotic approximation of the Fourier integral, with numerically computed saddle point
values. A key feature of the 3D wave packet is its 2D nature. As discussed in Section
3.2, Mode S is a single discrete mode that corresponds to a single pole in the complex p
plane. This single mode is comprised of Mack's first and second modes, and for this set of
parameters, the most unstable section of Mode S is associated with Mack's second mode,
whose maximum growth rate is associated with 2D disturbances. Thus, it is not surprising
that for sufficiently large time, the 3D wave packet will have a 2D appearance. One should
note that a comparison of figure 3.26(a) and figure 3.31(a) shows that the spanwise wave
number has little effect on the growth rate. This is a hint of the two-dimensionality of the
3D wave packet.

The previous analysis has been performed under a parallel flow assumption. However,
this analysis may be extended to the case of weakly non-parallel flows through the use of
multiple scales methods. Discussion of this extension may be found in Section 3.2. For
strongly non-parallel flows, one should consider a BiGlobal stability problem formulation
[The03j. Unlike the present analysis, the BiGlobal stability problem deals with a 2D PDE
based generalized eigenvalue problem. However, it should be noted that the biorthogonal
eigenfunction system formulation can be used in the analysis of BiGlobal instability problems
(e.g. separated flow), and that we believe this is a worthwhile area of exploration.

206



Chapter 4

Transient growth of perturbations in
compressible boundary layers

This section is based on the papers published in collaboration with E. Reshotko, S. Zuccher,
and I. Shalaev [ZTR06, ZSTR07].

4.1 Introduction

The problem of optimal disturbances, in the context of bypass transition to turbulence, has
been of great interest during the last decade. This interest is motivated by the fact that there
are many applications where transition to turbulence occurs without the classical exponential
growth, allowing a large transient growth of the disturbance energy in flows that are stable
to wave-like perturbations (Tollmien-Schlichting waves).

Today it is clear that transient growth arises from the coupling between slightly damped,
highly oblique Orr-Sommerfeld (OS) and Squire modes. This can lead to an algebraic growth
followed, in viscous flows, by exponential decay in subcritical regions outside the Tollmien-
Schlichting (TS) neutral curve. A weak transient growth can also occur for two-dimensional
modes since the OS operator and its compressible counterpart are not self-adjoint, and
therefore their eigenfunctions are not strictly orthogonal [Res0l, SHOI].

Historically, the first approach to nonmodal disturbances was in the inviscid limit. [EP75]
found that the streamwise disturbance velocity amplitude may grow algebraically in time,
even though the basic flow does not posses an inflection point. This growth mechanism was
labeled "lift-up" [Lan75]. Later on, [Lan80] showed that all parallel inviscid shear flows are
unstable to a wide class of three-dimensional disturbances and the result is independent of
whether or not the shear flow is unstable to exponential growth. The temporal analysis
involving resonance between OS and Squire modes was employed for the study of Couette
flow [GH80], Poiseuille flow [Gus8l] and boundary layers [HG81, BG81, JBG86], revealing
a viscous decay following initial algebraic growth of the disturbance, otherwise known as
transient growth. Meanwhile, the transient growth phenomenon was intensively studied in
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meteorology [Far82, Far84, Far86, Far871.
[Far88a, Far88b] was the first to use the term optimal perturbations to denote the ini-

tial flow disturbances that produced the maximum gain, defined as the ratio between the
perturbation kinetic energies at the final and initial time. A similar concept had, however,
already been introduced for flow in a pipe by [BB88]. The first quantitative calculation
of three-dimensional optimal perturbations with respect to temporal growth for a paral-
lel approximation of the Blasius boundary layer was performed by [BF92]. Other works
[Gus9l, RH93, TTRD93], carried out more than a decade ago, recognized the great poten-
tial of nonmodal growth for explaining bypass transition.

Optimal perturbations in the spatial framework have only more recently been considered.
The spatial Cauchy problem within the scope of the linearized Navier-Stokes equations is,
however, radically different from the temporal one and is ill posed. This is the main obsta-
cle in applying to the spatial analysis the same optimization methods used in the temporal
case. The problem rises from the presence of modes with a negative imaginary part of the
streamwise wavenumber a. These are modes decaying upstream and associated with the
downstream boundary conditions. [TRoI1 pointed out that if the downstream boundary is
moved fax away, the upstream decaying modes can be neglected and the optimization can
be carried out within the scope of the Cauchy problem, similarly to the temporal analysis.
The ill-posedness of the spatial Cauchy problem was first overcome by considering the (lin-
earized) boundary layer equations [ABH99, LucOO] instead of the Navier-Stokes equations.
In addition, [ABH99] and [LucO] included nonparallel effects. It was found that the opti-
mal initial disturbance is composed of stationary streamwise vortices whereas the induced
velocity field is dominated by streamwise streaks. For example, in the case of incompressible
boundary layer past a flat plate, the maximum amplification occurs in the steady case (fre-
quency w = 0) and for a non-zero value of the spanwise wavenumber 6? = 0.45 (scaled with
1 = V_L/U , v being the kinematic viscosity, U, the freestream velocity and L the longi-
tudinal distance from the leading edge to the location where output energy is maximized).
For the spatial problem, [ZBL06] computed the optimal perturbations in the nonlinear case.

The compressible counterpart of the aforementioned works has also been considered.
Temporal [HSH96, HH98] and spatial [RTOO, TRO1, TR04a] analyses of the transient
growth phenomenon have been carried out within the scope of the parallel flow approxima-
tion. [TR03] developed a model for transient growth including non-parallel effects in the
compressible boundary layer past a flat plate.

Compressible optimal perturbations calculated by including surface curvature effects and
non-parallel growth of the boundary layer are still missing and can actually be of great
importance to explain the long-standing blunt body paradox [RT00j.

Depending on the choice of the norm, which states what quantity will be maximized,
constrained optimization in the framework of optimal perturbation can lead to quite different
results. With reference to the incompressible case, [ABH99] maximized a full energy norm
including all velocity components, whereas [LucOO] considered the energy of the streamwise
component only. On the other hand, the choice of the initial condition (i.e. the choice of the
norm at the inlet) may contribute as well to the result. In the incompressible framework,
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the full inlet energy norm [ABH99] and the energy norm including only the spanwise and
wall-normal velocity components [LucOO] were employed. In [ABH99] both norms at the
inlet and at the outlet depend on the Reynolds number Re. However, in the limit Re --+ 00
(practically for Re > 104) results collapse onto those obtained by [LucOO].

The choice of the energy norm, therefore, can be a delicate issue, especially in the com-
pressible case where effects due to compressibility should be taken into account through the
inclusion of density and temperature. The physics of transient growth is mainly dominated
by streamwise vortices [ABH99, LucOO] and therefore the choice of an initial energy exclud-
ing the streamwise velocity component, in the fashion proposed by [LucOO], is satisfactory.
The choice of an outlet norm including only temperature and the component of the velocity
in the streamwise direction, however, might not represent completely the structure of the
flow field if the flow is not dominated by streamwise streaks. This could be the case of a
blunt body, for which there are some indications that the largest transient growth is located
close to the stagnation point [RT04]. Due to the short interval in the streamwise direction,
a flow field mainly dominated by streaks might not be completely established and thus the
contribution of the wall-normal and spanwise velocity components to the energy norm at the
outlet could be non negligible.
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4.2 Spatial transient growth, problem formulation

Governing equations

Governing equations for the steady, three-dimensional disturbance in a compressible flow are
derived from the linearized Navier-Stokes equations.

A small parameter E = Hr,f/Lref is introduced for scaling purposes, where Hrf =

VrefLr,f/Urf is a typical boundary layer length in the wall-normal direction y and Lref

is a typical scale of the geometry (length of the flat plate L, radius of the sphere R, etc.),
Ur,f and Vref are respectively the reference scaling velocity and kinematic viscosity. In the
case of the flat plate Hrf = 1 = v:L/U,, (the subscript oo stands for freestream pa-
rameters, outside the boundary layer), while for the sphere Href = v41refR/Urf where the
reference quantities are the values at the edge of the boundary layer at a certain downstream
location Xre, x being the streamwise direction. The scaling parameter C is thus strictly re-
lated to the Reynolds number Re. For the flat plate E = Re- 1 2 , where Re = U..L/v. is
the Reynolds number based on the length of the plate and freestream conditions, while forthespereE R-1/2

the sphere e = / eref , where Reef = UrefR/vref is the reference Reynolds number based on
the radius of the sphere R and reference parameters.

As it follows from previous works regarding optimal perturbations in both incompressible
and compressible boundary layers [LucO, CLOO, TR04a, ZLB04, ZBL06], the disturbance
flow is expected to be dominated by streamwise vortices and therefore the following scaling
is employed. The streamwise coordinate x is normalized with Lref, whereas the wall-normal
coordinate y and the spanwise coordinate z are scaled with cLrei. The streamwise velocity
component u is scaled with Ur.f, wall-normal velocity v and spanwise velocity w with (Uref,

temperature T with Trf and pressure p with 2 Pref U * Density p is eliminated through the
state equation.

Due to the scaling adopted, the second derivative with respect to the streamwise coordi-
nate x is smaller than the other terms, and is therefore neglected. This leads to a change in
the nature of the equations from elliptic (Navier-Stokes equations) to parabolic.

For the flat plate, perturbations are assumed to be periodic in z, so that a general variable
can be expressed as q(x, y) exp(ioz), where q(x, y) is the amplitude, which depends on x and
y, 6 is the spanwise wavenumber and i is the imaginary unit. Similarly, for the sphere,
perturbations are assumed to be periodic in the azimuthal direction 4 as exp(imo), where
in is the azimuthal index.

If the vector of perturbations is f = [u, v, w, T, p]T (where the superscript T denotes the
transpose), and w = it7v (@ being the amplitude of the spanwise velocity component), the
governing equations can be written as follows [TR03]:

(Af). = (Dfy); + Bof + Bify + B2fyy. (4.1)

This form of the governing equations is general and can be derived for different geometries
such as flat plate, sphere, sharp cone or blunt-nose cone. Nonzero elements of the 5 by 5
real matrices A, Bo, B 1, B 2 and D for the flat plate are defined in the appendix of [TR03],
while for the sphere they are reported in Appendix C.1.
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As far as boundary conditions are concerned, all perturbations are required to be zero at
the wall except for p, while in the freestream all perturbations vanish except for v:

y=O: u=;v=O;w=O;T=O (4.2)
y---,oo: u-*O;w--+O;p-O;T-O.

In order to isolate the derivative with respect to x, system (4.1) can be recast in a simple
form as

(H 1f), + H 2f = 0 (4.3)

where operators H, and H 2 are still 5 by 5 real matrices and contain the dependence on x
and y due to the basic flow:

H 1 = A - D(.)y; H 2 = -B 0 - B(.)y - B 2 (')yy (4.4)

System (4.3) is parabolic in nature and can be solved by means of a downstream marching
procedure with initial data specified at the inlet section of the domain x = xi,.

It is worth noting that, due to the normalization chosen, the disturbance equations for
the flat plate are Reynolds-number independent, i.e. the Reynolds number Re does not enter
explicitly in the equations, while for the sphere they are not Reynolds-number independent
due to the parameter E in the scaling, which is associated with curvature effects.

Constrained optimization and adjoint discrete equations

As stated in the introduction, we are interested in finding initial optimal disturbances for
the compressible boundary layer over a flat plate and a sphere. The term "optimal" here
refers to the initial condition that is able to produce the worst possible scenario as far as
transition is concerned. It is clear that the choice of a specific quantity that can measure this
worst possible scenario is neither easy nor unique. In previous works dealing with optimal
perturbations in the incompressible framework [ABH99, LucO0, CLOO, ZLB04, ZBL06], the
kinetic energy of the disturbance field has always been the choice.

Once the objective function has been identified, the Lagrangian multiplier technique is
employed in order to solve the constrained optimization problem. In doing so the costate
(or adjoint) equations are derived. If this is applied to the discrete equations, the discrete
version of the adjoint problem is obtained. The procedure is outlined for a general case, as
done in the section with governing equations.

The objective function

In problems related to boundary-layer transition, the quantity that monitors the instability
development is typically the kinetic energy. In optimal perturbation studies the latter is
usually maximized at the outlet of the computational domain, but in other cases the integral
of the kinetic energy over the whole domain has been considered, especially for optimal
control problems [see CLOO, ZLB04]. Since one of the goals of the present study is to check
how the use of a "full energy norm" at the outlet can influence the results, the expression
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we choose to maximize is Mack's energy norm [Mac69] including the perturbation kinetic
energy and temperature in the outlet plane. After employing the scaling in the governing
equations' section, the latter reads

' [ .t( 2 2 2 2 PouT oT2
E..t= jf ou t + Vot + WOUJ) + + dy. (4.5)• p,o,tM 2  y(-y - 1)T,o tM2J

Expression (4.5) was derived for perturbations in the boundary layer over a flat plate within
the temporal framework and is here utilized for the spatial one, as done by [TR03] (for the
sphere, the integration generates a slightly different expression for the energy norm, which
can be found in Appendix C.1). After employing the equation of state for the basic flow and
for the perturbation, the norm reads

E t f [P".Ut (U2t +, 2 (Vo2 + Wo2t)) + . t dy (4.6)
out out (_ I)T 2 d (.6

and can be more compactly recast in matrix form as

Eo (foutR M tfout) dy (4.7)

where the linear operator M.t is a diagonal 5 x 5 matrix

PSout 0 0 0 0

0 E2psout 0 0 0

Rot - 0 0 PSout 0 0 (4.8)Moutu

0 0 0 P-9out 0o( 1)ToutM2

o 0 0 0 0

The initial condition for the compressible boundary-layer equations is not arbitrary, but
only three of the five variables can be imposed at xin [Tin65]. However, in the incompress-
ible case and for Re -- c, [LucO0] observed that the choice 'uin = 0, Pin = 0, vin and
Win related by the continuity equation guarantees the maximum gain in an input-output
fashion (in the incompressible case the number of independent initial conditions is two; see
also [LB98, LucOO, ZBL06]). This choice also corresponds to the physical mechanism, ob-
served in transitional boundary layer flows, known as the lift-up effect [Lan80], according to
which streamwise vortices lift low-momentum flow up (from the wall) and push down high-
momentum flow causing streaks that eventually break down to turbulence. Led by these
considerations, here we focus on initial perturbations with only v and w nonzero, which
correspond to steady, streamwise vortices. It should be noticed, however, that in the case of
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finite Reynolds number, for example Re = 1000, and for the incompressible boundary layer
past a flat plate, the choice of a full energy norm at both inlet and outlet guarantees the
largest gain in the optimization [ABH99].

The kinetic energy of the optimal disturbance fin, if only vi, and wi, are nonzero, is
therefore:

E [PsinE2 (Vn + W2n)] dy, (4.9)

or more compactly

Ein= (fMinfin) dy (4.10)

where Min is a 5 x 5 diagonal matrix

0 0 0 0 0

0 C2p-in 0 0 0

Min- 0 0 E2psin 0 0 (4.11)

0 0 0 0 0

0 0 0 0 0

The quantity to be maximized is G = Eo,t/Ein, the ratio between the outlet and inlet
norms. However, in order to allow direct comparison with previous works, Ge2 will be
presented in the results section. Combining expressions (4.6) and (4.9) leads to

2u~ ~ ~ ~~~~SU +( V2t+W2j)+ P out t
G 2 = 0 jo [Ps°ut (u ut -- +Wut)) + (--)T 8 otM2Idy

G 2 .tM (4.12)

[P-in(Vi + wn)] dy

which reduces, in the Re --+ oo limit (E -, 0), to the expression maximized by [TR03] for the
compressible case and by [LucOO] for the incompressible one. Since the problem is linear,
an arbitrary normalization for the initial disturbance at Xin can be chosen, e.g. Ein = E0 =
1, so that the maximization of (4.12) turns out to be equivalent to the maximization of
expression (4.7).

From the above discussion it is clear that the whole problem of finding optimal pertur-
bations reduces to a "constrained optimization", in which we seek the initial conditions
for the disturbance equations (4.3) that maximize (4.7) and that satisfy the constraint
Ein = E0 at xin together with the direct equations (4.3) and boundary conditions (4.2)
at each x E (Xin; XOUt).
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Constrained optimization

The classical Lagrange multiplier technique is one of the most known tools to solve con-
strained optimization problems. As applied to optimal perturbations, numerous examples
can be found in the literature regarding the continuous version of such an approach, which
leads to the so-called adjoint equations in a continuous fashion. Rigorously speaking, in
the theory of linear operators the adjoint equations are derived by satisfying an equality
involving an inner product [NSOO, Kre89]. Therefore their form is not necessarily related
to constrained optimization problems. On the contrary, when the adjoint equations are de-
rived from a constrained optimization (as in our case) only if the objective function includes
exclusively quantities at the boundaries of the domain then their form is the same as those
derived from an inner product equality. In fact, if we try to maximize the integral of the
energy over the whole domain (as opposed to the outlet energy only), a source term arises
in the adjoint equations [CLOO, ZLB04, ZBL06]. As opposed to the continuous version of
the Lagrange multiplier approach, less numerous are the examples where this technique is
applied directly to the discrete equations [LB98, LB01, LucO0, CLOO, ZLB04, ZBL06].

The adjoint methodology for the calculation of optimal perturbations, and in particular
its discrete implementation, was introduced by [FM92] in the context of oceanic flows. The
use of the discrete approach has several advantages among which the necessity of an "ad
hoc" adjoint code is avoided and a foolproof test is available by comparing the results of the
direct and adjoint calculations, which must match up to machine accuracy for any step size
and not only in the limit of step size tending to zero [ZBL06]. This is due to the conservation
of a quantity which depends on x only [LB98, Luc00J. For a thorough discussion on the
issue of continuous versus discrete adjoints the reader is referred to [Gun00J.

The numerical discretization of a general parabolic system of partial differential equations
such as (4.3) can always be recast as

C.+If.+, = B.f. (4.13)

where n denotes the n-th grid point in the streamwise direction x, f is the vector of unknowns
(not with only 5 elements but with 5 x N , , where N. is the number of grid points in the
wall-normal direction y) and matrices C and B depend on x (as the basic flow does) and
account for the discretization in both x and y. The solution is found by marching forward
in space from n = 0 (xin), given the initial condition f0, to n = N (xout). The boundary
conditions at the wall and for y --+ oo are already included in the matrices rows. The discrete
objective function we aim to maximize is J - fTMNfN, where MN is the discrete version
of Mout as defined in (4.8) and accounts for the discretization of the integral in y.

The augmented functional £, which contains the objective function J = Eout, the con-
straints (4.13) and Ein = E 0, and the Lagrange multipliers, is written as

N-1

L(fO,... ,fN) = fWMNfN + n [pW f (Cn+lf + - Bnfn)] + A0 ffWTM 0f0 - Eo] (4.14)
n=O

where p, is the vector of Lagrangian multipliers, which depends on the streamwise location n
and M0 is the discrete version of Mi as defined in (4.11), in the same fashion as MN. Only
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the dependence on f, (n = 0,..., N) has been emphasized in £ because its derivative with
respect to the Lagrangian multipliers (which is needed to impose &C = 0) would lead to the
constraints, that are already known. The summation between 0 and N-1 in (4.14) involving
p, reflects the integral along x. The integration by parts (which would be performed in the
continuous case) is here replaced by adding and subtracting pTWB,+If,±i in the summation
so that the terms can be rearranged as

N-I N-1
[T CnIfn1 :[TCnlnl_P

Z [Pn' (Cn+ 1 f.+ 1 - Bnfn)]= [p,7Cn+1 f.+1 - p'T 1Bn+lfn+l ] +
n=O n=O

N-I

Z [p T~1n B n+ l f .+i - pTBnf,]
n=O
N-I

n 1 fn IPTn+ +lf+l] +

n=O

PNBNfN - pO Bofo,

and expression (4.14) can be rewritten as

N-I
(fo, ) fN - f NTMf + Z [pC+lf+l PTBnf+l]( +

n=O 
(4.15)

pNBNfN 0- pTBofo + Ao[fWMofo - Eo].

As in the continuous case, the stationary condition is found when &L = 0

N-2
&o6f ° + E 61bnf+ 1 + - fN = 0,

Sn=0bN

which, in order to be satisfied for any arbitrary fo, fn+l and fN, leads to

R TB° + 2AfWM 0  (4.16)

=1 =P T 0n+ = 0
T B

JfN 2fkMN + PNBN = 0 (4.18)

Equation (4.16) furnishes the optimality condition to be satisfied at xir and equation
(4.17) leads to TC l _ T

p - n+,Bn+l = 0, (4.19)

which is the discrete form of the adjoint equations to be solved by marching backwards from
Xout to Xin with the initial condition provided by equation (4.18) solved for PN.
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Outlet conditions

From expression (4.18) follows
BNPN = -2MNfN (4.20)

where BN is the discrete representation of Hi..t and is singular due to the fact that the
fifth column in H1 is made of zeros as p, = 0 in this approximation (the last column of
matrix A is made of zeros). This implies that the solution cannot be found unless the
solvability condition is satisfied. The singularity of H 1 is not simply a practical numerical
problem for the solution of (4.20) but contains deeper information and insights regarding the
initial condition for the adjoint variables. The impossibility to determine a unique solution
of (4.20) translates into the fact that at least one out of five adjoint variables is free at
x = x.,t and therefore can be chosen arbitrarily. For sake of simplicity, we set ps (the fifth
adjoint variable) to zero.

Inlet conditions

By imposing JC/fin = 0 condition (4.16) was obtained. The operator M 0 is the discrete
counterpart of Min and is singular (as Mout) so Mo1 does not exist and (4.16) can not
be solved. However, M 0 is diagonal and therefore the j-th element of f0 corresponding to
M oj j 0 0 can be retrieved by

(pTBo)jfo-2-M0 if M oj j 0

f 2AM 03 j (4.21)

0 if M 03j= 0

The multiplier A is found by imposing the constraint E0 = Ein.

An optimization algorithm

The constrained optimization developed above has enabled us to write a set of equations and
boundary conditions that must be satisfied simultaneously. More specifically, we first need
to solve system (4.13) from X = Xin (n = 0) to x = x.ut (n = N - 1) with initial conditions
at Xin expressed by (4.21). We refer to this as the direct or forward problem. Then we need
to solve system (4.19) from x = xout (n = N - 1) to x = xin (rt = 0), with initial conditions
derived from (4.20) and provided at x = xot. We call this the adjoint or backward problem.

A quite large system of linear equations supplemented by initial and boundary conditions
has to be solved. Instead of doing it in one shot, however, we employ the intrinsic parabolic
nature of the equations to efficiently solve separately the two coupled problems. Such an
algorithm can be outlined in the following few steps:

1. a guessed initial condition fi(0) is provided at the beginning of the optimization proce-
dure

2. the forward problem (4.13) is solved at the i-th iteration with the initial condition fi)
in
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3. the objective function J(() ( is computed at the end of the forward iteration and
compared to the objective function J(i-l) = (utl at the end of the previous forward
iteration. If J(i)/(i - 1) -11 < 6t (where ct is the maximum tolerance accepted to stop
the optimization) then the optimization is considered converged

4. if IJc(i/Jc i 1  1 - 1 > Et the initial conditions for the backward problem (4.20) are
assigned at the outlet and derived from the direct solution at x = xout

5. the backward problem (4.19) is solved from x = Xout to x = xin

6. a new initial condition for the forward problem f.(+l) is obtained from the solution of
the backward problem at x = xin employing (4.21)

7. the loop is repeated from step 2 on.

A similar iterative approach was first introduced by [FM92] for obtaining the most
rapidly growing perturbations in oceanic flows.

It should be noted that the above procedure does not necessarily guarantee convergence.
If there is an attractor for the solution, then the procedure will capture it and this happens
quite fast (2-3 forward-backward iterations) when the norm proposed by [LucOO] is used. On
the other hand, it was observed that when the full energy norm is employed the convergence
is generally much slower, depending on the wavenumber fi, reaching the fastest convergence
in the proximity of the optimal 3.

Discretization

A finite difference discretization scheme has been implemented to numerically solve equa-
tions (4.3) with boundary conditions (4.2). For sake of generality, grid points in x and y
are not necessarily equally spaced. A staggered grid is introduced in the wall-normal direc-
tion, with variables u, v, 7v and T known at the grid points, and p known at the mid-grid
(staggered) points. All equations are satisfied at the grid points except for continuity, which
is satisfied in the mid-grid points. The use of the uneven grid in y allows us to cluster
more nodes close to the wall so as to take into account the large gradients of boundary layer
quantities in this region.

The last point of the y-grid is located far enough from the wall to allow us to specify
there the boundary conditions for y -+ 0o.

Fourth-order non-compact finite differences are used for the y discretization, employing
six points so as to allow 4th order accuracy for the second derivative. By using six points,
the first derivative is automatically 5th order accurate and the function (when interpolated
due to the staggered grid) is 6th order accurate.

Also the discretization in the strearnwise direction is based on uneven grid. Since the
system of boundary layer equations is parabolic, a second order backward discretization is
chosen, which requires the solution at two previous steps to be known. For the first step,
however, a first order scheme is used because only the initial condition is available.
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After the discretization, the original system of partial differential equations (4.3) can be
re-written in the following form:

[C.+,H.+1 + H+] f.+ = - H (4.22)

where coefficients C+1, C,1+ 1 and Cn2+1 account for the strearnwise discretization and ma-
trices H.1+ 1 and H.+j are the discretized version of respectively H, and H 2 introduced in
the governing equations' section. The solution is thus completely determined once the initial
condition f0 = fin is given at Xin. Clearly, for the first step in x a first-order approximation
is used for the derivative since data are available only at one point upstream, not two.

Equation (4.22) can be easily rewritten in a form similar to (4.13)

C.+if.+i = C.41B.f. + B C _jf._j (4.23)

where C.,+ = [C+,H,,, + H1+] and B. = -H'
Contrary to the simple form (4.13), which refers to a scheme where the new solution

f,+l depends on fn only, the discrete equation (4.22) depends on f& and f&1 due to the
second order approximation in x. Therefore, the discrete adjoint system is slightly different
from (4.19). More specifically, by repeating the same steps as in constrained optimization
section, the constraint C,+If,+, - C,+IB,f, - C +jBn-lfn-1 = 0 is left multiplied by the
vector of Lagrangian multipliers pn and then all terms are included in the summation on n
(in the streamwise direction) to form the functional for the constrained optimization. Within
this summation, we first add and subtract the quantity p+1 [C.+ 2B-+lf-+l + C.+ 2B.f.]
and rearrange the summation as E pT [Cn+lfn+,] - pnT+l 1C +2 Bn+ifn+i + C+ 2Bfn] and

then we add and subtract the quantity pWT2 C +3B.+,f.+, so that the final form of the

summation is n- p [Cn+f.+l]- S + 1 [Cn+ 2 Bn+lfn+l] n- pW+2 [Cn+ 3 Bn+lfn+l ] . In this
way, all terms are right multiplied by fn+l so that the derivative of the functional £ with
respect to fn+l leads to the adjoint discrete equation in the form

TC l T T CT

pn n+- -- = 0, (4.24)

where the solution at step n is obtained by marching upstream in space from the outlet to
the inlet and needs two steps downstream to be computed.

The basic-flow model

The basic flow for the flat plate is the same as in [TR031 and is obtained from a conventional
similarity solution.

For the high-speed flow past a sphere, the streamwise velocity U, at the edge of the

boundary layer of the subsonic part of the flow can be approximated by

dU,
2dO
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where dU/dOlo is the derivative of the edge velocity with respect to the meridional coordinate
9 evaluated at the stagnation point. This quantity can be calculated from the modified
Newtonian pressure distribution [Jr.89] as

1 dU, CPoo
Uo dO 0o Po

with C,m. (maximum pressure coefficient) and p0 evaluated at the stagnation point for a
calorically perfect gas with specific heat ratio -y = 1.4. Flow parameters at the edge of
the boundary layer for the downstream locations can then be found from the isentropic
relationships.

For the compressible boundary layer we consider the local-similarity approximation [Jr.89]
and introduce the Levy-Lees-Dorodnitsyn variables

oe =peU RsinO ',7 p d77,

= peIIUR 3 (sin 0)2 dO; q Vr I PC

where 'r = y/Href, y being the coordinate in the wall-normal direction. After substituting
these new variables and i, boundary-layer equations can be recast as

(Cf")' + ff" + H [I - (fl)2]

Pr 2 e

where the prime (') denotes the partial derivative with respect to il, C = (pA)/(pL,) and
& = (26/U,)dU/d is the Hartree parameter. These boundary layer equations are solved
subject to the conventional boundary layer conditions on the wall and in the freestream
[Jr.89]. The flow quantities are then retrieved from functions f(6, i) and §(6, q), which axe
related to the velocity U( , q/) and total enthalpy I( , q7) according to the similarity laws

U(Cilf) = Ue(O)fV(,I); I(6, f/) =/IeX6(,W)

As proved in figures 4.1(a) and 4.1(b), for 9 < 30' OH lies within the interval [0.5; 0.6]
and the Mach number is a linear function of 9. Moreover, when the wall-normal distance is
scaled with H(O) = V/(p U Rsin0) profiles of UIU, and T/T are almost independent of
the Mach number Me and Hartree parameter #H, as shown in figures 4.2(a) and 4.2(b).

The dependence on the meridional angle 9 enters the analysis only through the local
velocity, temperature, density and pressure at the edge of the boundary layer, and through
the local length scale H(9), which is however a slow function of 9 as figure 4.3 clearly shows.

For the present study we have chosen the scaled velocity and temperature profiles ob-
tained for Me = 0.6 and /6 = 0.5.
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Figure 4.1: Hartree parameter O3H (a) and local Mach number Me, at the edge of the boundary
layer (b) as a function of the the meridional angle 0.
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Figure 4.2: Effect of the Mach number Me and Haxtree parameter f3H on the basic flow
profiles. (a) strearnwise velocity, (b) temperature.
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Figure 4.3: Boundary layer local length scale ReoHIR as a function of the the meridional
angle 0

Shortcoming of the iterative algorithm

As mentioned before, the choice of the norm is not unique. Here we discuss some limitations
of the iterative algorithm due to the choice of the inlet norm and focus on the incompressible
case, for which previously published results obtained with different norms are available.

[ABH99] employed the full norm including all components of velocity. By combining the
continuity equation with the streamwise momentum equation (for the perturbations) and
the continuity equation for the basic flow they derived a constraint that holds for each x > 0

-_V,)u + VU, - + UV _ V, - = o, (4.25)

but optimal disturbances were computed at the leading edge of the flat plate, xin = 0.
In order to avoid discontinuity of the solution at x = 0, [ABH99] required the optimal
perturbation [Uin, vin, win] to satisfy the constraint (4.25) also at x = 0-. However, since u, v
and w at x = 0-, as resulting from the application of the inlet conditions stemming from the
adjoint-based iterative algorithm, do not satisfy (4.25), [ABH99] needed to solve a further
least square problem seeking uin,'v,, win] that simultaneously satisfy (4.25) and minimize
the distance from the solution obtained by applying the inlet conditions (4.21).

It should be noticed that in [LucO], where uin was set to zero, no further constraints such
as (4.25) were required because in that case v and w as resulting from the inlet conditions
already satisfy the governing equations at Xin = 0, and there is no discontinuity in the
solution.

From the point of view of optimization, what was done by [ABH99] corresponds to
adding more constraints to the problem. Because of this, the optimization procedure locates
a maximum with a value of the objective function lower than in the case where the optimal
perturbation is not constrained by an equation at the inlet.

Here we propose a further analysis of this issue.
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Figure 4.4: Profile of uin as a function of y, no constraints on the initial condition, full
energy norm at both inlet and outlet, Re = 1000. M = 0.02, Xin = 0 Xout = 1.0, Tv/Td = 1,

/3 = 0.55. (a) Outer view. (b) Zoom in the proximity of the wall.

By writing explicitly the inlet conditions (4.21), it is easy to verify that vi, and wi, go to
zero at the wall as long as the streamwise component of the basic flow does, because they
originate from the adjoint solution multiplied by U. Therefore, even if the adjoint field is
not homogeneous at the wall, since U satisfies the no-slip condition, Vin and Win are zero at
the wall. On the contrary, the expression for uin does not guarantee u = 0 at the wall and
thus a non homogeneous solution is allowed at the wall by the algorithm. However, this
nonphysical solution guarantees the maximum gain in the optimization procedure.

We consider adiabatic wall conditions, T/Td = 1, and freestrearn Mach number M =
0.02. Figure 4.4 shows the streamwise component of the optimal perturbation obtained
without any further constraint and using full energy norm at both input and output (FENI
and FENO). The outer view, figure 4.4(a), indicates that Uin does not satisfy the no-slip
condition at the wall. Zooming in on the proximity of y = 0, figure 4.4(b), the behavior
of ui, is clearer, showing a few oscillations. The latter do not originate from the numerical
scheme, as was proven by changing from 4th order to 2nd order finite differences in y. On
the contrary, they originate from the fact that uin is generated by a component of the adjoint
solution that does not guarantee U1in = 0 at the wall.

Different possible choices are available to render ui, homogeneous at the wall so as to
reconcile the optimization algorithm with the governing equations. Such a "smoothing", i.e.
forcing Uin= 0 at the wall, avoids the discontinuity at xin = 0 that would occur due to the
fact that at x = 0+ it must be u = 0 on the wall because of the no-slip condition.

The simplest approach is to substitute Vin and Win as provided by the inlet condi-
tions (4.21) into (4.25) and to obtain uin from a boundary value problem where Uin is forced
to be zero at the wall and in the free stream. By doing so, results reported in figure 4.5 are
obtained. The order of magnitude of u is now much smaller than what was seen in figure 4.4,
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Figure 4.5: Profile of Uin, Vin and Win as a function of y, physical, constrained solution.
M = 0.02, xi, = 0 Xout = 1.0, T/T,,d = 1, # = 0.55. The constraint (4.25) is used where
Vin and win axe those originating from the inlet conditions (4.21) and uin is calculated from

the linear ordinary differential equation so obtained by imposing homogeneous boundary
conditions at the wall and in the free stream. (a) uin. (b) vin and Win-

while Vin and Win remain on the same order as before. This choice of rendering Uin zero at
the wall so as to avoid the discontinuity at xin, therefore, leads to an initial perturbation
very far from the one originally computed without additional constraints and generates a
consequently much lower gain.

If the goal is to try to keep Uin on the same order of magnitude as the profile originating
from the inlet conditions alone (the one in figure 4.4) but assuring the continuity at Xin by
imposing the uin = 0 on the wall, then infinite possibilities are available.

We chose to replace the oscillations in Uin visible in figure 4.4 with a smooth solution
so as to keep uin untouched from a certain . to Ym. (where the boundary conditions for
y -* oo axe imposed) and to replace Uin with a smooth function that goes to zero with
y for y < . Both and the smooth function are axbitraxy. For the function we need a
choice that guarantees the continuity of Uin and its first and second derivative in (to avoid
discontinuities when uin is substituted in (4.25)) and such that its second derivative is zero
at the wall. The latter requirement is dictated by the constraint equation (4.25), from which
it is easy to verify that at the wall w = uY. A 4th-order polynomial is used. The value 9
is chosen to be 80% of the position in y where Vin reaches its maximum. After Uin has been
smoothed, the constraint (4.25) is used to compute Win given Uin and Vin.

This choice of smoothing ui, and constraining it to be zero at the wall produces a small
difference (in the profile of Uin) with respect to the free case reported in figure 4.4 (see
figure 4.6(a)), with the discrepancy localized in the proximity of the wall. On the contrary,
no significant differences are detectable in the profiles of Mn and win (figure 4.6(b)). Since
the optimal perturbation remains almost unchanged, the difference in the gain between the
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Figure 4.6: Profile of ui,,, vin and win as a function of y. Comparison between the "free"
solution computed from the inlet conditions (4.21) and the physical solution obtained by
smoothing uin and constraining it to be zero at the wall. The constraint (4.25) is used to
compute Win given Uin and Vin. M = 0.02, Xin = 0 Xout = 1.0, Tw/Tad = 1,/3 = 0.55. (a) uin.
(b) Vin and Win.

"free" and "smooth and physical" cases is very tiny. For the smoothened case the gain is
GIRe = 2.52. 10- as opposed to GIRe = 2.54. 10- in the free case. This difference is about
0.8%, even smaller than the tolerance (1%) which is required to end the forward-backward
iteration in the optimization procedure presented in the algorithm section.

Such a result offers much better insights regarding the issue of the inlet norm. It shows
that in the constrained case the gain is, as expected, smaller than in the free case but
this difference is extremely tiny and within the tolerance of the scheme. The explanation
resides in the order of magnitude of ui,. If it is kept on the same order as resulting from the
application of the automatic inlet conditions (4.21) then the gain is practically the same as in
the case of unconstrained uin. On the contrary, when ui is obtained by solving the ordinary
differential equation (4.25) assuming Vin and win given, a much smaller uin is obtained with
a considerable difference in the gain.

A summary of the above discussion is graphically reported in figure 4.7, where different
curves are reported.

Results by [ABH99] (x) were obtained with full energy norm at both inlet and outlet
and show the largest values of the gain. They differ only slightly from those obtained in
the present work for the case of free optimization (o) and for the case of smoothed and
constrained inflow profile (o). The maximum discrepancy is on the order of 3% and it is
believed to be due to different numerical schemes, as the same trend was observed in the
case of infinite Reynolds number limit (figure 4.8). Although it is not clear how the problem
of discontinuity in uin at the wall for Xin = 0 was treated by [ABH99], our results illustrate
that the energy gains are very close for constrained (smoothened u) and free optimizations.
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Figure 4.7: Comparison of G/Re between results obtained by [ABH99] and present work.
x, [ABH99], Re = 1000; C0, free optimization, Re = 1000; 0, smooth and constrained,
Re = 1000; A, u = 0, Re = 1000; A, Re - oc. M = 0.02, xin = 0 xout = 1.0, T,,/Td = 1.

Values of the gain are bounded between the free optimization results (upper limit - uI) and
the Reynolds independent ones (lower limit - A). Any constraint on the initial perturbation
produces an energy gain that is within these limits.

Instead of employing a constraint equation, one can simply impose u = 0 at xin (symbols
A in figure 4.7). This is one of the possible constraints to which the optimal perturbation
can be required to obey. The gain obtained in this way is smaller than the previous ones
(figure 4.7), but is still higher, at Re = 1000, than the Reynolds-independent case (solid
line - A), which represents the lower limit for the gain.

The conclusion is therefore that the values of the gain are bounded between the free
optimization results (upper limit) and the Reynolds independent ones (lower limit). Any
constraint on the initial perturbation produces an energy gain that is within these limits.

Infinite choices are available to constrain the initial perturbation to be zero on the wall.
Among those, we assume uin = 0 and Tin = 0 (in the compressible case). This is more
consistent with the scaling adopted in §4.5, according to which the leading mechanism is
associated with the lift-up effect in the presence of streamwise vortices. Due to this choice,
all results presented in §4.5 refer to partial energy norm at the inlet (PENI), as defined in
expression (4.9).

From this analysis it is clear that the iterative algorithm described in the algorithm
section and proposed as an efficient way to solve two coupled problems, which should be
solved simultaneously, suffers some limitations at finite Reynolds number. The shortcoming
is related to the choice of the energy norms, which change the coupling conditions at the
inlet and/or outlet and therefore the solution of the complete optimization problem. When
energy norms are those employed by [TR03] (i.e. PENI and PENO - the extension to the
compressible regime of the norms proposed by [LucOO] for the incompressible case), which
are Reynolds independent, the convergence of the iterative procedure on the attractor is fast
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and usually does not require more than three forth-back iterations. On the contrary, the
use of full energy norm at the outlet and partial one at the inlet (FENO and PENI), for
Re = 1000, renders the convergence slower, requiring from five to ten iterations. If Reynolds
number is increased so as to emulate the Re -- co limit (e.g. Re = 10') results collapse
on the Reynolds independent ones, as observed by [ABH99] in the incompressible case, and
convergence is fast. Several iterations are still required at Re = 1000 when the full energy
norm is employed at both inlet and outlet (FENI and FENO), whereas a fast convergence is
restored by smoothing the optimal perturbation at the inlet so as to avoid the discontinuity
at x = 0, as discussed above. This smoothing, however, is arbitrary and does not guarantee
a solution independent of its choice.

The fact that the algorithm relies on the existence of an attractor, which changes de-
pending on the choice of the norm because the latter affects directly the initial conditions
of the direct and/or adjoint problems, raises the question about a more robust optimization
algorithm.
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Figure 4.8: Comparison of GIRe as a function of the wavenumber )3 with previous results
available in literature for the incompressible case in the limit Re -* oo. Solid line, present;
o, [ABH99]; x, [TR03]. M = 0.02, Xin = 0 Xout = 1.0, T/T d = 1.

4.3 Spatial transient growth in a compressible bound-
ary layer over a flat plate

In the first case the code was verified against incompressible [ABH99] and compressible
[TR03] published works, in which spectral collocation methods (SCM) were employed.

In figure 4.8 the gain GE2 = GlRe, where G = E.,,/Ein, is shown in the limit Re -- co as
a function of the wavenumber ,3 for the incompressible flow past a flat plate and compared
with previous results available in the literature. The agreement is very good, even though
present values of the gain are very slightly smaller than those obtained by [ABH99]. This
might be due to the different numerical implementations.

In what follows, for the flat plate case, only results regarding the use of the full energy
norm at the outlet (FENO), i.e. norm (4.6), are considered and compared to those obtained
by [TR03], in which partial energy norm at the outlet (PENO) was employed (i.e. only u.t
and Tout were nonzero, whereas vout and wout were excluded from (4.6)). In both cases the
inlet energy norm is the one introduced by [LucO0] and extended to the compressible case
as in (4.9). We refer to (4.9) as partial energy norm at the inlet (PENI), as it considers the
contributions of vin and win only. The choice of this inlet norm is further discussed in §4.2.

For the sphere case, the code for optimal perturbations was verified against [TR04a]
(SCM) and results are later presented for both partial (PENO) and full (FENO) energy
norm at the outlet, keeping the inlet norm fixed (PENI).

Here we consider a perfect gas with a specific heat ratio -y = 1.4, Prandtl number Pr = 0.7
and viscosity depending on T only, in accordance with the Sutherland law. The stagnation
temperature To is fixed and equal to 333 K.

As described in §4.2, the full energy norm at the outlet (FENO) includes not only u and
T (as done in [TR03]) but also also v and w. At the inlet, PENI includes only v and w.
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Figure 4.9: Objective function J = G/Re: effect of Re and /f for M = 3, T/Td = 0.5,
Xi = 0 Xou t = 1.0

Figure 4.9 shows the effect of the Reynolds number Re on GIRe when PENI and FENO
are employed. The plot refers to the case Mach number M = 3, Tw/Ta = 0.5 (T, is the
wall temperature and Td is the recovery temperature), initial station for the computation
Xin = 0, and outlet station xout = 1.0. It is clear that the Reynolds number has quite a
strong influence only for Re < 10', while for values greater than this limit, results do not
differ significantly from the Reynolds-independent case.

The effect of the norm (PENO versus FENO) for different temperature factors T,,/T
at M = 0.5 is reported in figure 4.10 (xin = 0, X.ut = 1.0). The Reynolds number for the
case of full energy norm at the outlet (FENO) is Re 103 . It can be concluded that at low
Mach number M = 0.5, though large enough to allow compressible effects, the choice of the
norm does not produce a remarkable difference.

The conclusion drawn from figure 4.10 does not extend to larger values of Mach number.
In figure 4.11, a moderate supersonic Mach number M = 1.5 is considered. The effect of
increasing M is clearly to shift the maximum of the curves towards smaller values of 3 and
to enhance the difference between results obtained with different norms. This is particularly
true for TITd = 1.00.

In the supersonic case, M = 3, reported in figure 4.12, a difference up to 17% can be
detected when comparing PENO with FENO. This difference is remarkably higher for low
values of the wavenumber,3 and is visible also in figure 2 of [ABH99] for M = 0.

It can thus be concluded that for the flat-plate case an energy norm including u, v, w
and T at the outlet (FENO) provides a significant difference with respect to the case where
only u and T are considered and that this effect increases with the Mach number.
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Figure 4.10: Objective function J = GlRe: effect of 03, TI/T,, and norm choice PENO
(only U2 and T 2 at xout) versus FENO. PENI at the inlet (only V2 and W2 at Xi) M = 0.5,
Re = 103, Xin = 0 X.ut = 1.0. c, T,,IT., = 1.00; o, T,,ITd = 0.50; 6~, T,,ITd = 0.25; full
symbols and solid lines refer to FENO, empty symbols and dashed lines to PENO.
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Figure 4.11: Objective function J =GlRe: effect of 05, TI/Td and norm choice PENO
(only u 2 and I2at X0Ut) versus FENO. PENI at the inlet (only V2 and w2 at Xin), M = 1.5,
Re = 10', Xin 0 X.ut = 1.0. x, PENO; Ei, Tl/Tm = 1.00; 0, TI/Td = 0.50; A, TI/Td =

0.25; full symbols and solid lines refer to FENO, empty symbols and dashed lines to PENO.
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Figure 4.12: Objective function J = G/Re: effect of,f, T,,,/Td and norm choice PENO (only
u2 and T2 at X.o,t) versus FENO. PENI at the inlet (only v 2 and w 2 at xi,), M = 3, Re = 103,
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symbols and solid lines refer to FENO, empty symbols and dashed lines to PENO.
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Figure 4.13: Estimate parameter f at wind Figure 4.14: Estimate parameter c at flight
tunnel conditions. M = 6; P0 = 25 bar; conditions. M, = 6; p , = 0.0253 bar;
To = 750 K. T, = 217 K.

4.4 Spatial transient growth in a boundary layer over
a sphere

In the case of the sphere, the solution of the governing equations is assumed to be proportional
to exp (im), where in is the azimuthal index and i the imaginary unit (see Appendix C.1).

In order to estimate the values of the small parameter c that might be of interest to the
analysis, we consider two examples at a freestream Mach number M = 6. The first one
corresponds to typical wind tunnel conditions, To = 750 K and Po = 25 bar. The second
case is chosen as a flight condition, with T = 217 K and p, = 0.0253 bar. Figures 4.13
and 4.14 illustrate typical values of c as a function of the sphere radius R (in meters) and
evaluated at the reference parameters corresponding to the edge of the boundary layer at
9 ref = 30'. One can see that values of c on the order or 10- 3 correspond to realistic cases.

In what follows, the edge boundary layer parameters are defined at 0ref = 30'. This choice
has an impact on the definition of f., but the final result GE2 = E.ut/Ein is independent of
the reference point 9 rf.

The effect of E on the gain G as a function of t (,7i = mc) is shown in figure 4.15, where
the partial energy norm is used at both inlet and outlet (PENI and PENO). Contrary to the
parallel-flow formulation IRT041 where the Reynolds number and the curvature radius are
independent, here the radius is strictly associated with the Reynolds number and not only
with the curvature. Assuming that all reference parameters are constant, when the radius
increases E decreases (E = V/vr/RUf) leading to an increases of the gain, as reported in
figure 4.15.

The effect of wall temperature Tw/Td is illustrated in figure 4.16. Similarly to previous
studies [RT00, TROI, TR03], the cooling of the wall destabilizes the flow with respect to the
transient energy growth and the difference in G with respect to the adiabatic wall is about
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Figure 4.15: Objective function 3 = G: effect of c and m = me for Oi, = 10.00, 0 out = 15.0',
Oref = 30.00, T/Td = 0.5. Partial energy norm at both inlet and outlet (PENI and PENO).
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Figure 4.16: Objective function 3 = GE : effect of wall temperature ratio Tw/T,,d and
in- = me for Oin = 10-00, 0out = 15.00, ref = 30.0', E = 10- 3. Partial energy norm at both
inlet and outlet (PENI and PENO). o, TITd = 1.00; o, Tw/Td = 0.50; A, T,,,/Td = 0.25.
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Figure 4.17: Objective function .J = G62 : effect of outlet station Out and 'ih = mE for
Oi. = 10.0' , 0rf = 30.0', T,,/Td = 0.5, E = 10- 1. Partial energy norm at both inlet and
outlet (PENI and PENO). x, 9 out = 130; o, 9 out = 150; 0, O.t = 200; A, O.ut = 250.

two orders of magnitude.
Figure 4.17 shows the effect of the outlet station 0out and in- for 0in = 10.0', Ord = 30.0',

T,I,,/,d = 0.5 and . = 10- 3. It is clear that the maximum transient growth is achieved for
smallest intervals of the 0 range, more specifically for 0 E [100; 130].

The trend observed in figure 4.17 can be found also in figure 4.18, where the same kind
of plot is reported, but for 0i,, = 15.00 instead of Oir, = 10.00. Again, the smallest range of
meridional angles produces the largest energy growth.

Figure 4.19 provides better insights regarding the dependence of G on the choice of Oin

and 0out. The difference 0out -Oin is not the only factor that causes a larger energy growth. In
fact, curves with the same 0out - in (50) but with different Oin clearly show that the strongest
transient growth is achieved close to the stagnation point.

The main outcome from the results presented up to this point and referred to the partial
energy norm at both inlet and outlet (PENI and PENO) is a large transient energy growth
in the proximity of the stagnation point. Moreover, this effect is much stronger when the
difference Oout - Oin is small. Due to the short downstream development of the flow, one
issue is that maybe the optimal perturbation in the form of counter-rotating vortices still
dominates the flow field and therefore the choice of the partial energy norm at the outlet
could be misleading. On the contrary, the use of the full energy norm (which encompasses
not only u and T but also v and w) at the outlet would clarify this issue.

Figure 4.20 shows the effect of norm choice and e. Quite a number of curves are reported
because comparisons of FENO have meaning depending on the value of F, but results with
the PENO change with 6 as well. In all cases the inlet energy norm is fixed (PENI). The
constant parameters are Oi, = 2.00, 00ut = 5.0' 0,rf = 30.0' and T/Td = 0.5. For c = 10

- 3

there is basically no difference between using PENO and FENO. However, it is precisely
in this range of E that it is meaningful to investigate the behavior of the solution, since it
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Figure 4.19: Objective function J GE G 2: effect of interval location and i m-E for
0r.f = 30.0', TvITd = 0.5, E = 10-3. Partial energy norm at both inlet and outlet (PENI
and PENO).
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corresponds to the estimated values for wind tunnel conditions and flight tests, as reported
in figures 4.13 and 4.14. For higher values of E (2. 10- 3 and 3. 10- 3 ) the difference between
the use of the two norms seems to be more evident.

The conclusion from figure 4.20 is, however, that the maximum appreciable difference is
confined within about 1% of the parameters of interest.

Conclusions

Optimal perturbations in the compressible regime have been considered for both flat plate
and sphere. An adjoint-based optimization technique is employed and the discrete costate
problem is obtained from the discretized direct problem by applying the Lagrangian multi-
pliers technique in the discrete framework. This simplifies the code, reduces the number of
possible errors, and allows the automatic generation of coupling conditions at the inlet and
outlet. The code has been verified against available results [TR03, TR04a].

The main contributions of the present work are the analysis including the full energy
norm at the outlet and the fully discrete approach (including the coupling conditions), which
considerably facilitates its implementation.

In the incompressible limit and for the flat plate (for which comparisons with the full
energy norm at both inlet and outlet are available) it is found that the values of the gain are
bounded by the free optimization results (the upper limit) and the Reynolds independent
ones (the lower limit). Any constraint on the initial perturbation produces an energy gain
that is within these limits.

The norm to be maximized at the outlet, in the compressible case, is extended to the
complete Mack's norm, including not only uout and Tout in the fashion proposed by [Lucool
but also v,,t and w,t.
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Results for the flat plate show that when the Reynolds number is on the order of 10, a
significant difference in the energy growth (up to 17%) is found between the two choices of
the outlet energy norm (full or partial). This is particularly true for supersonic values of the
Mach number. On the other hand, when compressible effects are considerable but the basic
flow is subsonic, the difference between the full and partial energy norms is not a critical
factor. If the Reynolds number is greater than 104, vout and wout do not play a significant
role even in supersonic flows.

Results for the sphere are first presented by considering the use of the partial energy norm
only and secondly by comparing them with the full energy norm, in the most interesting case.
The effect of the wall temperature is in agreement with previous finding based on the parallel
flow model with curvature effects [TR01] and on the nonparallel flow model over a flat plate
[TR03]. Particularly, the cooling of the wall destabilizes the flow with respect to the transient
growth, with a difference up to two orders of magnitude when the adiabatic wall is compared
to a cold wall (Tl,/Td = 0.25). On the other hand, at fixed wall temperature, it is found
that the energy growth is stronger in the proximity of the stagnation point, reinforcing
what was found in the parallel flow approximation. In contrast with the latter, however,
the present model includes a significant feature, the divergence of the flow. In the parallel
flow approximation, the spanwise wavenumber,3 is a fixed parameter, whereas in this work
the azimuthal index is kept constant so that the effective local spanwise wavenumber 3 is
a function of the streamwise and radial coordinates. This divergence of the flow also leads
to a modification of the energy norm resulting from the integration of the perturbation
over a period in the azimuthal direction. Due to the scaling, the equations governing the
perturbations on the sphere are not Reynolds-independent. This reflects the twofold role
of the radius of the sphere in the transient growth phenomenon. Not only does it enter
into the disturbance equations as the curvature parameter, but also in the Reynolds number
through the small parameter E. The overall effect is an increase of the energy growth with
the sphere radius. The use of the full energy norm at the outlet was also investigated. This
was done close to the stagnation point and for a small range of the meridional angle, since
this is the region where the largest gain is observed for the sphere in the case of partial
energy norm. Results reveal that, in the range of interesting values of Reref (related to the
small parameter c = (Re,e) - 1 /2 ) that are typical of wind tunnel tests or flight conditions,
no significant role is played by v and w at the outlet. Despite the progress made in the
present paper towards a better understanding of transient growth on blunt (spherical) noses,
the ultimate elucidation of the blunt body paradox would require solving the receptivity
problem, which would explain the origin of the perturbation. This issue will be addressed
in a future work.
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4.5 Transient growth phenomenon in a boundary layer
over a sharp cone

Governing equations

The governing equations for steady, three-dimensional disturbances in the supersonic flow
past a sharp cone are derived from the linearized Navier-Stokes equations, in the same
fashion as in Section 4.2.

A small parameter E = Href/Lref is introduced for scaling purposes, where Href =

V1vreffLrf/Urf is a typical-boundary layer length in the wall-normal direction y and Lref
is a typical scale of the geometry (length of cone L in the present case). The scaling param-
eter c is thus strictly related to the Reynolds number E = Re 1

/
2 where Rere = UefLre/Vref

refrd=U,Lfrf
is the reference Reynolds number.

As it follows from previous works regarding optimal perturbations in both incompressible
and compressible boundary layers [ZTR06, ZTR05, LucO0, ZBL06, TR04a, CLOO, ZLB04],
the disturbance flow is expected to be dominated by streamwise vortices and therefore the
following scaling is employed (Section 4.2). The streamwise coordinate x is normalized with
Lref, whereas the wall-normal coordinate y is scaled with cLmef. The azimuthal coordinate
0, being an angle, is not normalized. The streamwise velocity component u is scaled with
Urf, wall-normal velocity v and azimuthal velocity w with EU,ef, temperature T with Td
and pressure p with c2 PrefUef. Density p is eliminated through the state equation.

Due to the scaling adopted, the second derivative with respect to the streamwise coordi-
nate x and Op/ax are smaller than the other terms, and are therefore neglected. This leads
to a parabolic system of equations.

Perturbations are assumed to be periodic in the azimuthal direction 0 as exp(imo), where
'rn is the azimuthal index, so that the general unknown can be expressed as q(x, y) exp(imo),
where q(x, y) is the amplitude, which depends on x and y, and i is the imaginary unit.

If the vector of perturbations is f = [u, v, w, T,p]T (where the superscript T denotes the
transpose), with w = i@ (@ being the amplitude of the spanwise velocity component), the
governing equations can be written as follows:

(Af)x = (Dfl)x + B 0f + Bjfy + B 2fyy. (4.26)

This form of the governing equations is general and can be derived for different geometries
such as flat plate, sphere, sharp cone or blunt-nose cone. Nonzero elements of the 5 by 5
real matrices A, B0 , B 1, B 2 and D are given in Appendix C.2. New terms, relative to
the flat-plate case, arise in the equation due to the geometrical factors introduced by the
half-angle of the cone tip 0.

As far as boundary conditions are concerned, all perturbations are required to be zero at
the wall except for p, while in the freestream all perturbations vanish except for v:

y=O: u=O;v=O;w=O;T=O
y-oo: u-+O;w--+O;p--+O;T--+O (4.27)
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In order to isolate the derivative with respect to x, system (4.26) can be recast as

(Hif)x + H 2f = 0, (4.28)

where operators H1 and H 2 are still 5 by 5 real matrices and contain the dependence on x
and y due to the basic flow:

H1 = A - D(.)y; H 2 = -B 0 - Bl(.)y - B 2 (')yy. (4.29)

System (4.28) is parabolic in nature and can be solved by means of a downstream marching
procedure with initial data specified at the inlet section of the domain x = xi,.

It is worth noting that the disturbance equations are not Reynolds-number independent
(contrary to the flat-plate case) because of the parameter c in the scaling, which is associated
with geometrical effects.

Formulation of the optimization problem

The problem of finding arbitrarily normalized optimal perturbations practically reduces to
performing a constrained optimization. The constraints are the governing equations (4.28)
and the normalization of the initial energy of the perturbation at the inlet, Ei,. The objective
function is a particular norm to be identified, and therefore arbitrary. However, it should
be a measure of the flow conditions relevant to the transition process. This choice is neither
easy nor unique. In previous works dealing with optimal perturbations in the incompressible
framework [ABH99, LucOO, ZBL06, CLOO, ZLB04], the kinetic energy of the disturbance
field has always been the choice.

In the compressible case, in Section 4.2, we maximized Mack's energy norm [Mac691 of
the perturbation kinetic energy, density, and temperature (or simply the part containing u
and T) at the outlet plane,

2 2 2 Pout sout T2out psout
Eut [put [UPoM - 1)Tt M2] dy, (4.30)

in which the scaling described in the governing equations' section is employed. Expres-
sion (4.30) was derived for perturbations developing in the boundary layer over a flat plate
within the temporal framework, and is here utilized for the spatial case, as done in [TR03].
After employing the equation of state for the basic flow and for the perturbation, and ob-
serving that in the limit e - 0 v and w can be neglected (Reynolds-independent approach,
see [LucO]), the norm reads /T2[

Eot = o POt12 t P+A°otT
= POutl1ut 2 dy, (4.31)

or more compactly

E.ut= (futMoutf.t) dy, (4.32)
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where the linear operator M.ut is the diagonal 5 x 5 matrix

PSout 0 0 0 0
0 0 0 0 0

Mout= 0 0 0 0 0 (4.33)0 0 PSOUt 0(y 2 t2

0 00 0 0

The initial condition for the compressible boundary-layer equations is not arbitrary, but
only three of the five variables can be imposed at xin [Tin65]. However, in the incompressible
case and for Re --+ o, it was observed that the choice uin = 0, pin = 0, vin and win related
by the continuity equation corresponds to the maximum gain in an input-output fashion
[LucO0] (in the incompressible case the number of independent initial conditions is two;
see also [LucOO, ZBL06, LB98]). This choice also corresponds to the physical mechanism,
observed in transitional boundary-layer flows, known as the lift-up effect [Lan80], according
to which streamwise vortices lift low momentum flow up (from the wall) and push down
high momentum flow causing streaks that eventually break down to turbulence. Led by
these considerations, here we focus on initial perturbations with only 7) and w nonzero,
which correspond to steady, strearnwise vortices.

The kinetic energy of the optimal disturbance fin, if only Vin and Win are nonzero, is
therefore:

in [P-in 2 (V + Wn)] dy, (4.34)

or more compactly
(fiT (4.35)Ein finj4infin) dY, (.5

where Min is the 5 x 5 diagonal matrix

0 0 0 0 0
0 2p in 0 0 0

Min 0 0 2  2plin 0 0 (4.36)

0 0 0 0 0
0 0 0 0 0

The quantity to be maximized is G = EoutEin, the ratio between the outlet and inlet
norms. However, in order to allow direct comparison with previous works, GE2 will be
presented in the results section

GE2 = .+ ()_ 1)Tso2tM2 (4.37)

j .in(Vi + win)] dy
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Since the problem is linear, an arbitrary normalization for the initial disturbance at xin can
be chosen, e.g. Ein = 1, so that the maximization of (4.37) turns out to be equivalent to the
maximization of expression (4.32), i.e. J = Eo.t.

It should be clear now that the whole problem of finding optimal perturbations reduces to
a constrained optimization, in which we seek the initial conditions for the disturbance equa-
tions (4.28) that maximize (4.32) and that satisfy the constraint Ein = E0 at Xin, together
with the direct equations (4.28) and boundary conditions (4.27) at each x E (Xin; Xout).

The details of the constrained optimization procedure are reported in Section 4.2. The
classical Lagrange multiplier technique is applied to the discrete version of problem (4.28),
which can be recast as C,+If,+, = B,f,, leading to the so-called adjoint equations [ZTR06,
ZTR05, LucOO, ZBL06, CLOO, ZLB04, LB98, LB01] (here n denotes the n-th grid node in
the streamwise direction x, f is the vector of 5 x Ny unknowns at each n station, N. being
the number of grid nodes in the wall-normal direction y; matrices C and B depend on x
and y, as the basic flow does, and account for the discretization in both x and y).

The use of the discrete approach has several advantages among which the necessity of an
"ad hoc" adjoint code is avoided and a foolproof test is available by comparing the results of
the direct and adjoint calculation, which must match up to machine accuracy for any step
size and not only in the limit of step size tending to zero [LucO0, ZBL06, LB98].

The augmented functional £ contains the objective function J = Eout, the constraints
(4.28) and Ei. = E 0, and the Lagrange multipliers (Section 4.2). The optimization imposes
W£ = 0, which leads to the adjoint equations in the discrete form and coupling conditions
between the direct and adjoint problems at the inlet (xin) and outlet (xout). These conditions
can be written in a matrix form so that their application becomes straightforward. In order
to retrieve the outlet conditions, a system needs to be solved where the coefficient matrix is
singular (due to 6p/9x = 0 in this approximation), reflecting the fact that at least one out
of five adjoint variables is free at x = xout and therefore can be chosen arbitrarily. For sake
of simplicity, we set the fifth adjoint variable equal to zero.

The constrained optimization formulation requires the simultaneous solution of a large,
coupled system of direct equations, adjoint equations, boundary conditions and coupling
conditions. Instead of doing it in one shot, however, we employ the intrinsic parabolic nature
of the equations to efficiently solve separately the two coupled problems. Such an algorithm
can be outlined in the following few steps. (1) a guessed initial condition f (° ) is provided at
the beginning of the optimization procedure; (2) the forward problem is solved at the i-th
iteration with the initial condition f.(); (3) the objective function ((I) ) is computed at
the end of the forward iteration and compared to the objective function J('-') = E('-) atout
the end of the previous forward iteration. If IJ(i)/J( 1) 1 1j < et (where ct is the maximum
tolerance accepted to stop the optimization) then the optimization is considered converged
and the problem solved; (4) if / - 1 1 > Et the initial conditions for the backward
problem are assigned at the outlet and derived from the direct solution at x = xo.ut; (5) the
backward problem is solved from x = xOut to x = Xin; (6) a new initial condition for the
forward problem f0+1) is obtained from the solution of the backward problem at x = Xin
employing the coupling condition at the inlet; (7) the loop is repeated from step (2) on until
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it is eventually ended in step (3). It should be noted that this procedure does not necessarily
guarantee convergence. If there is an attractor for the solution, then the procedure will
capture it and this happens quite fast (2-3 forward-backward iterations).

Discretization

A finite difference discretization scheme has been implemented to numerically solve equa-
tions (4.28) with boundary conditions (4.27). For the sake of generality, grid nodes in x

and y are not necessarily equally spaced. A staggered grid is introduced in the wall-normal
direction, with variables u, v, w and T known at the grid nodes, and p known at the mid-grid
(staggered) nodes. All equations are satisfied at the grid nodes except for continuity, which
is satisfied in the mid-grid nodes. The use of the uneven grid in y allows us to cluster more
nodes close to the wall so as to take into account the larger gradients of boundary layer
quantities in this region. The last node of the y-grid is located far enough from the wall to
allow satisfaction there of the boundary conditions for y - o0.

Fourth-order non-compact finite differences are used for the y discretization, employing
six nodes so as to allow 4th order accuracy for the second derivative. By using six nodes,
the first derivative is automatically 5th order accurate and the function (when interpolated
due to the staggered grid) is 6th order accurate.

Also the discretization in the streamwise direction is based on an uneven grid. Since the
system of boundary layer equations is parabolic, a second order backward discretization is
chosen, which requires the solution at two previous steps to be known. For the first step,
however, a first order scheme is used because only the initial condition is available.

Results

The basic flow for the sharp cone is obtained from the flat-plate case by rescaling the wall-
normal coordinate y and its derivatives according to Mangler's transformation [HP59].
The local Mach number, Mlo,, at the edge of the boundary layer was calculated assuming
calorically perfect gas flow at free stream Mach number M. = 6. Since the shock wave is
assumed to be fax away from the boundary layer (and perturbation), their mutual interaction
is not considered. The calculations are performed for cone half-angles of 0 = 150 and 250.
The main goal in the presentation of the results is to discuss the effects originating from flow
divergence induced by the geometry. The boundary-layer edge velocity,density, temperature,
and viscosity at x = Lrf are chosen as the reference parameters. All results are obtained at
c = 0.001 unless otherwise stated.

Figure 4.21 shows the objective function Gc2 obtained from the optimization procedure
for 0 = 15'. Adiabatic boundary conditions are used for the temperature at the wall,
T,I/Td = 1, and the initial station is kept constant, Xin = 0.2, while changing the outlet
station. Results show that there exists a location, downstream of Xin = 0.2, where the curve
of the maximum energy growth as a function of modified azimuthal wavenumber, 'An = c7,
reaches the largest value, after which the maximum of the curve decreases with increasing
Xo,ut. Among the computed curves, this maximum seems to be reached for x0ut = 0.3.
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Figure 4.21: Objective function GE2: effect of xout and in- for 0 = 150, M, = 6, MI., = 4.37,
TIT.d = 1, xi. = 0.2. 0, x,,t = 0.25; m, x,,t = 0.275; o, x,,t = 0.3; 0, xo,t = 0.35; A,
xout = 0.4.

However, a better estimate can be obtained by performing a parabolic interpolation of the
data corresponding to the maxima for the three cases xo,t = 0.275, xu.t = 0.3 and x,,t = 0.35.
This leads to the optimal outlet location xout = 0.32, from which the optimal interval
Ax = Xout - xin = 0.12 is obtained.

The shape of the optimal perturbation at xi, is very similar to what has been found
so fax in both incompressible and compressible studies [LucO, TR03] and is shown in
figure 4.22 for the largest gain observed in the previous figure, i.e. iht = 0.045 and x0ut = 0.3.
The maximum energy growth is determined by streamwise vortices generated by v- and
w-perturbations that extend outside the boundary layer and decay at the same rate as a
function of y. This type of perturbation is consistent with the assumptions employed in the
scaling process.

By moving the inlet location further downstream to xin = 0.4, results qualitatively similar
to those shown in figure 4.21 are found. The corresponding estimated x.,t that causes the
maximum gain is xout = 0.64 and the interval Ax = Xout - xin = 0.24 is greater than the
value Ax = 0.12 previously observed for xin = 0.2. The conclusion is that divergence effects
are stronger in the proximity of xi, = 0, as one could argue from geometrical considerations.

Figure 4.23 shows the objective function GE' computed for a larger cone half-angle, 9 =
25', while keeping xin = 0.2 fixed. The general trend of the results is as in figure 4.21. The
estimated value of xout that causes the maximum gain is xo.t = 0.32, leading to Ax = 0.12.
Remarkably, the latter is the same as for 9 = 15' and xin = 0.2.

By moving the inlet location to xi, = 0.4 (for 9 = 250), the optimal estimated outlet
location is x.,,t = 0.64 and thus Ax = 0.24, i.e. the same as for 9 = 15'. This suggests the
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Figure 4.22: Optimal perturbation at xi,, for 0 15', M,,, = 6, Mi,, 4 437, Tw/Td 1
Xi 0.2, x.ut 0.3 and Fn = 0.045.
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Figure 4.23: Objective function GO2 : effect of x,u and in- for 0 = 25', M. 6, MI.c 3.22,
T,Td= 1, xi, 0.2. o, x0,ut = 0.225; n, x0ut = 0.25; 0, xout = 0.275; 0, x01ut = 0.3; A,

x.t= 0.4.

possible insensitivity of zAx = xo1ut - x, to the nose-tip angle. However, as can be deduced
b,y comparing figures 4.21 and 4.23, 9 influences the values of GE , which are consistently
higher for larger cone half-angles.
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As opposed to the sharp-cone geometry, the flat-plate case has no effects due to the flow
divergence. Therefore, by analyzing the results from the previous figures together with those
obtained in the same fashion for the flat plate, more insights can be gained regarding the
influence of the geometry. This is done in figure 4.24, where flat-plate results are shown

0.0025 1 1 1 1 1

0.002

S -.

0.001 %
• : 0UZ4.

0.0005 -

0. 0 .4
0 0.2 0.4 0.6 0.8 1

Figure 4.24: Objective function GlRe, flat plate: effect of xo,t and /3 for M = 3.22, T,/T,d =
1, Xin = 0.4. 0, xout = 0.45; a, xout = 0.6; 0, xo,ut = 0.8; *, Xout = 1.0;

for M = 3.22 (the local Mach number corresponding to the 250 cone), adiabatic wall and
Xin = 0.4. It is clear that moving the outlet location downstream leads to a monotonic
increase in the curve of maximum energy growth. A precise optimal outlet xout, however, is
not found. This is a new finding with respect to previous figures and to previously published
results for the flat plate [TR03], in which only the inlet location xi,, was changed, while
keeping xout = 1.0. The straightforward conclusion from the comparison between figure 4.24
and the previous ones is that, once the inlet location is fixed, divergence effects result in
the existence of an optimal outlet location x.,,t < 1 for which the largest energy growth is
reached. This behavior was also present in the sphere case (Section 4.4), corroborating the
conjecture of being due to the flow divergence only.

Figure 4.25 plots the reverse case to what was seen before. The gain GC2 is shown for
the sharp-cone geometry, keeping the outlet fixed, xo,t = 1.0, and changing the inlet xi,,
for 0 = 25' (the other parameters are M, = 6, Ml,, = 3.22, and T./T.I = 1). An optimal
inlet location is now found. By performing the same type of parabolic interpolation for the
maxima as done before, the largest energy growth is obtained for an estimated xi, = 0.72,
i.e. for Ax = 0.28. The latter is comparable with the value of Ax found for xi,, = 0.4 while
changing xout for the 25' cone.
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Figure 4.25: Objective function Gc2: effect of Xin and in for 0 = 25', Mc = 6, Moc = 3.22,
Tw/Td = 1, x,,t = 1.0. o, xi,, = 0.2; 0, xi,, = 0.4; 0, xi. = 0.6; 0, xi, = 0.8; L, xi,, = 0.85;
A, Xin = 0.9.

A quantitative comparison between flat-plate and sharp-cone results

Results presented in figure 4.24 certainly shed a new light on the differences between fiat-
plate and sharp-cone geometries that can be attributed to flow divergence. However, the
order of magnitude of the gain reported in that figure differs quite remarkably from what
is shown in the figures for the sharp cone. This allows only a qualitative comparison. In
order to compare quantitatively the energy growth for flat plate and cone, both physics and
scaling should be considered.

The physics suggests that the results for the sharp cone should reduce to those obtained
for the flat plate in the limits Xin --* x0ut and in -- co. The first is dictated by the fact
that divergence effects (which are the main difference between sharp-cone and flat-plate
geometries) are negligible far from the cone tip (in the proximity of x.,t). The second limit
is due to the fact that the presence of many vortices in the azimuthal direction forces the
flow to be less sensitive to divergence and, thus, to behave as in the flat-plate case. To
emphasize the effects of divergence in the flow past the sharp cone, therefore, we focus on
the limits Xin -- xo..t and m -- oo. The outlet location xout = 1 is kept constant, as for the
flat-plate case, so as to allow direct comparison.

The scaling is important as well. The fact that the boundary layer thickness over the
cone is l/V3 times that of the boundary layer thickness over the flat plate, and the same
length scale Lref is used in the definition of the Reynolds number in both cases, suggests
that GIRe for the flat plate (Section 4.3) must be compared with 3GE2 . On the other

mz MHrefcone Z
hand, the wavenumber 3 Z/Hreflat,e must be compared with mo = - = Z

R R Hrefone'
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where z is the transverse coordinate along the cone surface and R is the local radius. The
comparison between flz/Hrefpl,te and mo, therefore, reduces to the comparison between fl
and mHrefcone/R. However, since Hrefcone = Hrefplate/0/ and R = Lref sin 0, by taking into
account that c = Hrefpl,te/Lref, one gets

mHrefcone mHrefplate mHrefplate 'ME ih

R Vf3R 03Lsin 0 v/zsin 0 v/3sin 0
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Figure 4.26: Objective function, comparison between G/Re (flat plate) and 3GE2 (sharp
cone) as a function of # and ffi/(v- sin 0) respectively, effect of xi,, and wavenumber. M10 c =
3, Tw/Td = 1, Xout = 1.0. o, 0 = 150 and xi,, = 0.95; 6, 0 = 150, Xin = 0.95 and c = 0.0001;
o, 0 = 15' and xi, = 0.97113; v, 0 = 25' and xi,, = 0.95; n, flat plate, xi, = 0.913; o, flat
plate, xin = 0.95.

This rescaling is employed in figure 4.26 for the sharp-cone results in order to compare
them with those for flat plate. Many conclusions can be deduced from these plots, obtained
by changing 0 and Ax = Xout - xin. First, the scaling is correct in that all the results for
the cone with xi,, = 0.95 and xout = 1.0 (o, A, V, *) collapse onto one curve, regardless of 0.
Secondly, E does not have any effect on the gain function (3GE2), as is proved by comparison
of the cases for E = 0.001 (o) and E = 0.0001 (A), both referring to xi, = 0.95, x,,t = 1.0 and
0 = 15'. Third, the comparison between cone (empty symbols) and flat plate (full symbols)
should be carried out with further care with respect to Ax. In fact, because of the difference
in the boundary-layer thickness between flat plate and cone, distances Ax having about the
same number of boundary-layer thicknesses should be considered. We suggest comparing
AXcone with Axpiatel/A, implying that the sharp-cone cases x E [0.95; 1] and x E [0.97113; 1]
should be compared respectively with the flat-plate cases x E [0.913; 1], and x E [0.95; 1].
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Figure 4.26 confirms this by showing that results for the sharp cone and flat plate collapse
onto each other for 'it , oo, when the correct intervals Ax are considered (see o vs. a and
o vs. 0)
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Figure 4.27: Objective function, comparison between GIRe (flat plate, full symbols) and
3G 2 (sharp cone, empty symbols) as a function of /3 and Fn/(vr3 sin 9) respectively, effect
of xin and wavenumber. MI., = 3, T,ITd = 1, xo,t = 1.0. Sharp cone: 0, 9 = 150 and
Xin = 0.6; 0, 9 = 150 and Xin = 0.8; A, 9 = 15' and xi, = 0.9; v, 9 = 15' and xi, = 0.95.

Flat plate: 0, xi,, = 0.30718; *, xi, = 0.65359; A, xi, = 0.82679; V, xi, = 0.913.

In order to investigate the intuitive idea that the difference in the energy growth between
the two geometries should diminish as xin -4 xout and fn --* 0, in figure 4.27 we compare
the sharp cone (empty symbols), 9 = 150, and the flat plate (full symbols) at different xi,,.
The parameter Ax is properly rescaled so that o compares with n, o with e, A with A, and
v with v. Results confirm what is expected (see for example the sharp-cone case xi, = 0.95,
v, compared to the flat-plate case Xin = 0.913, v).

Having the correct scaling, further comparisons between the two geometries can be car-
ried out. The effect of wall temperature, which can either promote or delay transition in

supersonic boundary layers, is shown in figure 4.28 in the limit Xin -- xot. Empty symbols
refer to the sharp cone (9 = 150) and full symbols to the flat plate. It can be noted that a
cold wall, i.e. Tw/T d = 0.5 (o and v for sharp cone, corresponding to the cases e and
v for the flat plate) enhances the energy growth, as already pointed out in previous sec-
tions. Moreover, not only is the gain larger for a cold wall, but the wavenumber for which
the optimum is reached is also larger. For very large values of the wavenumber, results for
the two geometries collapse onto each other, as a consequence of the in --+ oo limit previously
described. This behavior is consistent, for every case considered (see also o vs. 0, and v vs.
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Figure 4.28: Objective function, comparison between G/Re (flat plate, full symbols) and
3GE2 (sharp cone, empty symbols) as a function of 6 and ffi/(v3sin 0) respectively, effect of
xi,, wavenumber and T,,/Td. Mloc = 3, xout = 1.0. Sharp cone: o, 0 = 150, T/Td = 1.0
and Xin = 0.95; 0, 0 = 15', T/Tdj = 0.5 and xi,, = 0.95; A, 0 = 150, Tw/Tad = 1.0 and

xi, = 0.97113; v, 0 = 15', T/Td = 0.5 and xin = 0.97113. Flat plate: 0, xin = 0.913
and T./Td = 1.0; 0, xi. = 0.913 and T/Td = 0.5; A, xi, = 0.95 and T/T = 1.0; V,

xi,, = 0.95 and T/Td = 0.5.

All considered examples demonstrate the growth factor G for the flat plate is larger than
that for the cone leading to the conclusion that flow divergence has stabilizing effect.

Conclusion

Optimal disturbances originating in the supersonic boundary-layer flow past a sharp axisym-
metric cone have been studied, motivated by several factors. Similar studies (Sections 4.2 -
4.4) report optimal perturbations for flat plate and sphere, but a direct comparison between
them was complicated by the many effects present in the case of the sphere (flow divergence,
pressure gradient, centrifugal forces and dependence of the edge parameters on the local
Mach number). The sharp-cone geometry, on the other hand, is simpler than the spherical
one and characterized by flow-divergence effects only, allowing us to identify them more eas-
ily when comparing flat plate, sharp cone and sphere. Moreover, in the development of the
studies towards a more realistic three-dimensional supersonic case, the sharp-cone geometry
is a natural step before the blunt-nose cone.

Equations are obtained from the linearized Navier-Stokes equations by employing a
scaling that assumes the perturbation dominated by streamwise vortices. This leads to
parabolic-in-x equations. The optimization is carried out in an iterative manner, relying on
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the alternate solution of the direct and adjoint problems related by coupling conditions at
the inlet and outlet.

A first set of results, obtained by keeping the inlet location fixed and changing the outlet
location, provides interesting conclusions on flow divergence. An optimal distance Ax from
the inlet (Ax = x.,t - xi,) is found at xo, < 1, for which the curve of the maximum gain is

the largest. The increase of Ax when the inlet location is moved downstream suggests that
divergence effects are stronger in the proximity of the cone tip. On the other hand, increasing

the cone half-angle does not seem to affect Ax. When these results are compared with the
flat-plate case, it becomes clear that the presence of an optimal downstream location for
the energy growth is a unique characteristic of flows dominated by geometrical divergence,
such as those on sharp cones and spheres. For the case of the flat plate, in fact, for a given
inlet station xin, the curve of optimal energy gain reaches larger values monotonically as the

outlet location, x0,t, is moved downstream.
A second set of results is obtained by keeping the outlet location fixed and changing the

inlet location. The gain, wavenumber and Ax are properly rescaled taking into account the
half-cone angle 9 and the fact that the boundary layer thickness on the sharp cone is V
thinner than that over the flat plate. By comparing the two geometries, it is found that both
the gain and the wavenumber scale fairly well and that results for the sharp cone collapse
onto those for the flat plate in the limits xin x,ut and m -- co.

Comparisons of growth factors for cones and flat plate demonstrate that the flow di-
vergence has a stabilizing effect on transient growth. Results confirm also that a cold wall
enhances transient growth.
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4.6 Transient growth phenomenon in a boundary layer
past a blunt cone

Despite the efforts done insofar, some issues regarding transition in supersonic flows are still
open. One of them is the long-standing blunt-body paradox [RTOO], according to which
transition occurs in supersonic flows behind the detached bow shock, in a region that is
subsonic and characterized by a favorable pressure gradient and therefore stable to TS-
instability-like phenomena. Transient growth seems to be a promising mechanism to explain
such a paradox (see Sections 4.1 - 4.4). However, the ultimate elucidation of the blunt-body
paradox requires solving the roughness receptivity problem, which can explain the origin
of the perturbation. The latter issue has not been addressed yet. The section presents the
equations for analysis of optimal disturbances in the boundary layer over the blunt-nose cone
at the angle of attack. The equations are derived for the stagnation line only.

We begin our derivation with full Navier-Stokes equations for axisymmetric system of
coordinates [HCSP96]. Metric coefficients are the following: h. = 1 + 2, hy = 1, h -

R'

r + y cos 0, where x is a streamwise coordinate, aligned to the envelope curve of the body,
y is a coordinate which is normal to the surface, z represents the azimuthal angle €, R is
local radius of curvature in streamwise direction, r is local radius of curvature in spanwise
direction, 0 is the local angle between envelope curve and symmetry axis of the body. R, r
and 0 depend on streamwise coordinate x.

We use the same scaling as in the case of the sharp cone (section 4.5): the small parameter
e = H,,f/Lr, = Re-' , where Re,,f = UrefLref/v, f is the reference Reynolds number,
Hr,f is a typical boundary layer length in the y-direction, L,,f is the typical scale of geometry.
The radii of curvature, R and r, and x coordinate are scaled with Lref, y coordinate is
scaled with EL,,e, streamwise velocity component u is scaled with Ur,, normal and spanwise
velocity components, v and w, are scaled with EUef, temperature T is scaled with Tr,f and
pressure p with EPr,fUr while density p is eliminated with the help of the equation of state.

We assume that perturbations are harmonic with respect to the transversal variable,
oc exp (imo) with azimuthal index m and use w = ifv as the spanwise velocity component.

In the vicinity of the spreading line (4 --* 0) we can rewrite the z-component of base-flow
l o as , -0 as ¢ -*0, and so the derivatives of W are zeros exceptaWoct as =¢-f.=

o- - - 0 for ¢ -* 0. The terms containing transversal velocity component of the
base flow are though neglected.

The form of the equation needed to develop optimal perturbation analysis: (Af). =

(Dfy)+Bof+BIfy+B 2 fyy, where f = (u, v, w, T, p)T, superscript T stands for transpose.
The non-zero elements of matrices A, B0 , B 1, B2 and D are given in the Appendix C.3.
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Chapter 5

Conclusions

A comprehensive study of stability and receptivity of hypersonic boundary layers has been
carried out under the support from the Air Force Office of Scientific Research, USAF under
grant FA9550-05-101 monitored by Dr. J. D. Schmisseur.

The main results of the project:

* Mathematical method of the multimode decomposition for three-dimensional pertur-
bations in compressible boundary layers has been developed. The method provides
analysis of experimental and computational results for modes of discrete and continu-
ous spectra.

* Theory of boundary-layer receptivity was developed for roughness-induced perturba-
tions in incompressible and compressible boundary layers.

* The transient growth phenomenon in compressible boundary layers over flat plate,
sphere, and sharp cone has been studied. The work was accompanied by development
of solvers for these geometries. The solvers are described in Refs. [Zuc06a, Zuc06b,
ZucO6c]. 1

1The reports have been delivered to AFRL at WPAFB and to the University of Minnesota
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Appendix A

Appendices to Chapter 2

A.1 The matrix elements, Section 2.2

In what follows, U., T,, and it, are velocity, temperature, and viscosity of the mean flow,
respectively, and they are scaled with their values at the edge of the boundary layer. The
pressure is scaled with pU 2 , and tt = dp/dT,, Re, Pr, and -y stand for the Reynolds number,

Prandtl number, and specific heat ratio, respectively; M is the Mach number at the edge
of the boundary layer; D = d/dy. The parameters r and m are defined as r = 2(e + 2)/3
and m = 2(e - 1)/3, and 2e/3 is the ratio of the bulk viscosity to the dynamic viscosity.
Particularly, Stokes' hypothesis corresponds to e = 0.

Nonzero elements of the matrices in (2.2) are

0 - Re

L11= L42= 1 = L =L5 L = L7= L48= 1,

S,10 + 1.
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IH12 =1,

H21  iwRe

I = D ,

H2 3 ReDU

H 5 _ D (/DU)

H26 = D U

l&s

DT,Hj3 = TM

H = iw-YM 2 ,

1 T'
Hi3 = iwp8 ,
Hi6 = 1

hr/2 = -2(7- 1) PrM2 DU,

RePrHI= DT.,

H, 4 = iw (Y - 1) RePrM2 ,

i6 RePr Pr (OU 2 D( (o,DT)
H= -iw - b - 1) -M 2 / y '

=66 2Dp,
HI8 = 1

788

87 iwReHi = _-
A,T.'

H1 -4

0 , = 11,11 12,12 13,13 14,14 15,15 16,16
H9 Hi H = H1 = H1  Hi H1  H1  -
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H 21Re

H_223 = Dp.

H 4
= Re

H2 9 
= -

I31~~

35 U.

4, mDIL,

Re'
H 2= ('+ '

43 U8H2  T

H245 ADU.,
Re

4,10 A ,
2 Re'

H= -2 (y - 1) PrM 2 DU,

SP RePr

65_ RePr

H2 1
= - .1

87ReU,

3= - (M + 1),

H29= H1,3 = H2" 5 = H 2 " = 1.
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; ' = - (,n + 1),

H
3 =-I,

H 3  Re

H3 ' = -1,
488

H 3 = D(,fn+1)t-

HR4 = Re
831

H3' = ,
H3 16 

,

H 3 1  H14' 3 = H1' 5 = = H3 = 1.

One can also find the nonzero elements of the matrix Ho in (A.3) and (A.4) from [Nay80]
with the spanwise velocity of the mean flow equal to zero, a = -ip, and

tw -aU., X -Re _irYM2(;

Ho== - 6 = H0= 1,

Re

SHo3 = -z(+ -ja +Re

H iC.T.
1 22 = D i*,,

23 + Re DU9
H a = -ia(in + 1) DT -iaDp u..

H24  Re
= ia_ + (m + 1) YM 2 aC,

25C D (p'DU, )
Ho0 = -a(m+ 1)

H26  'DU,
255
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Hg'o =--&

T

Ho4 =i

H35 =

Hg7
T

41= -ixarDT + 2 DIL),

( T.
H 2 = -ix,

a 2 5)2 CRe +r D 2T DA,DT.]
Ho' = x I- T. T+

Ho"= - -- Co aDU- -
T

= 2i(y 1 ,aDU8  + RePD#y

Ho = iX aDU, + -I'aDU, - r6)

Ho' = -ixr 
CD,

Y4o= iX f \ T. +

H 6  = -iX,

622

Ho2 = -2 (7-1) M2 PrDU,,

H063 = -2i (-y - 1) M2 PraDU,, + RePr DT
t"T.'

4 =(7- 1) M2 PrRe-- ,
^

Hjo5 = 2 + 2_ier W __( )M p# (DU. )2 D2t,

Ho = -2 D/--s
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H 3 = -i (m + 1)/3 DTS i D3Dp 8
T. A.

H0' = (m + 1) yM 2& + i6Re,
IL8

H05 = -(m + 1) -

H08 =a 2 ± icRe

H 8  DMi8H8 = its

A.2 The biorthogonal eigenfunction system, Section
2.2

We introduce the following biorthogonal eigenfunction system {A,O, B3}:

" (LoA3) + L I'A -'o - H IA ,, + iaH 2A,, + i,6H 3A, ',

y=O: Ac, 1 = A3 a = Aj 5=A =0, (A.1)

y -- O: IA6I < oo,

(L\ - L ___ = HTBc + iaH2B + i/BHT,3,

y=O: B. = B.4 = B.# = B.p = 0, (A.2)

y--+ *o: IB.jl < oo.
Actually, (A.2) defines the complex conjugate of the conventional adjoint problem. Equation
(A.1) can be recast as a system of eight ODEs,

d- = Hoz., (A.3)

where vector za,9 is comprised of the first eight elements of the vector A,. The conventional
adjoint problem in three-dimensional stability equations is found from the following system
of ODEs:

dy-'6 = HoY,8. (A.4)

dy
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One can establish correspondence between B,g and Y , similar to the case of temporal

three-dimensional normal modes (FT):

iaL'Y.9 (A.5a)
= Yo 1 + (1 + L43H 4)'

B.0 = YM, (A.5b)

B,#3 = Yo3 - ia (m + 1) Y# - ifO (in + 1) Y6
L4a3 ,64 s d [ Y

0H 3
4 ) + L043 - Y.14 (A.5c)

(1 + LH 4 ) 0 dy (1 + L4H34 ) '

B'Y 4 = (A.5d)

B.p5 = Y., 5 + Ho Y4 , (A.5e)

B.0 = Y0, (A.5f)

B.+L0 YH# 4 ) (A.5g)
B,67 = Y.,67 + (1 + Lo-'o/43Hg#34) ( .g

B,p8 = Y#8, (A.5h)

Bp = -iarB,,M, (A.5i)

=+ iaH2+)"°B,,#4 , (A.5j)

B.# , = -iaB. 6 , (A.5k)

B.,2 = -iaB,,s - i/3 (m + 1) B,#, (A.51)

B,613 = -ia (7n + 1) B,,# - ifB.0, (A.5m)

Ba,,6 4 = (7n + 1) dBc0 + i#H3414 B 4 , (A.5n)

B.p 5 = -i3B.06 , (A.5o)

B. 1 6 = -iflrB.#s, (A.5p)

where r and m are defined in Appendix A. 1.
The eigenfunction system {A,p, Bp} has an orthogonality relation given as

00

(H 2Aa,8 Ba,p) J (H 2A., B.,O)dy = FAc,, (A.6)

0

where F is a normalization constant; Aa, is a Kronecker delta if either a or a' belongs to the
discrete spectrum; Aa, is a Dirac delta function if both a and a' belong to the continuous
spectrum. Because Eq. (A.2) represents the complex conjugate of the conventional problem,
the dot product (,) in (A.6) does not involve complex conjugation. One can also establish
the following equality:

(H 2A.0,B,#) = -i ( a-- za,Ya. (A.7)
8a

258



In our computations of the adjoint eigenfunctions, we find Y# from (A.4) and restore
B, with the help of (A.5). Because derivation of asymptotic fundamental solutions of (A.4)
at y -+ cc is too complicated, we utilize the theorem [Kam59] that fundamental solutions of
the adjoint system (A.4) can be found as vectors t, comprised of cofactors of the jth column
in the matrix of fundamental solution, m, defined in (2.14). Therefore, we don't derive the
asymptotics, but find them numerically with the help of the known asymptotic result for the
matrix m. Utilizing asymptotics for zj (see Appendix A.3), one can find asymptotics tj as
follows:

41 = t 42 = toeA, 3 = toet 4 = , (A.8)
t5 = toeA, t6 = &V', t = o 4 = Ce0. 8

For each fundamental solution tj having 8 components, one can restore fundamental
solutions Cj for the adjoint problem (A.2) comprised of 16 components with the help of
(A.5). These steps allow computation of the adjoint eigenfunctions B,g of the discrete and
continuous spectra.

One can find the following presentation of the adjoint eigenvectors B, corresponding to
the continuous spectra:

B,j = C1 E 1753 + C2 E 2 75 3 + C4 E 4753 + C6 E 6753 + C8 E875 3 , (A.9)

B,, 2 = C1E1283 - C4 E 2 8 3 4 + C5 E 2 8 5 3 + C6 E 2863 - C7 E 2 7 8 3 , (A.10)

Br,3 = CI1 E 6 2 1 8 - C3 E 2863 + C4E 2468 - C5 E 65 2 8 - C7 E 67 2 8 , (A.11)

Br,4 = C2 EI275 + C3 EI7 53 + C4E 754 + 6 E1756 + C8 E7 18 5 , (A.12)

Bc,5 = C1 E 1253 + C4E5234 + C6 E 2563 + C7 E7 253 + C8 E8 253. (A.13)

For the discrete modes, we find

B.= 2 E 1 25 7 + C4 E 1 457 + C6 E1 7 65 ± C8 E 1578 . (A.14)

One can see that the coefficients in (2.29),(2.31), (2.32), (2.34), (2.36), and (2.38), depending
on the initial conditions, are associated with the adjoint eigenvectors, respectively, as follows:

c 2E 12 75 + c 3 E 1753 + c 4 E 1754 + c6E 1756 + c8 E 7 18 5 - (H2Ao, Bc,4),
c 1E 17 5 3 + c2 E275 3 + c4 E 47 5 3 + c6E 6 75 3 + c 8E8 753 '- (H 2Ao, Be,),
cE 12 53 + c4E 234 + c6 E256 3 + c7 E7 25 3 + c8 E8 25 3  -(H2Ao,B, 5),

cjE1283 - c 4 E 28 3 4 + c 5 E285 3 + c 6 E 2 86 3 - c 7 E 2 7 8 3 -'- (H 2Ao, Br,2 ),

clE 6 218 - C3E28 63 + c4 E24 8 - c5 E6 528 - C7 E6728 - (H 2Ao, Br,3 ),

c2 E 1 2 5 7 + c4 E 14 5 7 + c6 E1765 + c 8 E 5 7 8 - (H 2 A0 , B ,).

Following [SG81], one can prove that the inverse Laplace transform (2.39) is an expansion
into the biorthogonal eigenfunction system {A.#, B.,6.
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The asymptotic vectors Z9 and Co are used to to calculate the normalization constant,
F, in the orthogonality relation (A.6) for the continuous spectra. Evaluation of the normal-
ization constant F for the continuous spectra can be found with the help of integrals like
f0 exp(i(k - k')y) dy = 7r(k - k') [Tum03]. For example, one can find for an acoustic mode

r = [(H 2Z5,C5) + (H2Z6,C)] . (A.16)

A.3 Numerical method, Section 2.2

Two independent codes were used in the present work. The first one (SCM) was based on the
single-domain Chebyshev spectral collocation method [Mal90]. Solution of the linearized
Navier-Stokes equations for compressible gas is considered in the wave-like form

(u, v, w, 1r, 9) = (fi(y), 0(y), ?b(y), f(y), (y)) e' (ax+'z t). (A .17)

In order to avoid the nonlinearity in a., we introduce the vector

= (,, , fi, ia0, iai i4) , (A.18)

and the system of ODEs for the amplitude functions is written in the matrix form

(A 1 D 2 + A 2 D + A 3 )4 = aA 4 4), (A.19)

where D = d1dy; A 1,A 2, A3 , and A 4 are 9 x 9 matrices.
Homogeneous boundary conditions for (A.19) are formulated on the wall, y = 0, and at

Y = Ymax,

y=0 and y--+oo: I)j = 0, (j = 1,2,3,5,..., 9). (A.20)

In the numerical implementation, the boundary conditions (A.20) were supplemented by the
y-momentum equation at y = 0 and y = y,,.

An algebraic stretching was employed in order to map interval [0, y,a] onto the Cheby-
shev interval e [-1, +1],

1 + (A.21)

where b = 1 + 2d/y, and d = yjy,/(y.,, - 2yi). The parameter yj is chosen to locate
half of the grid points in the interval (0, yi). The Nth-order Chebyshev polynomials TN were
used with the collocation points

Ci = cos (rj/N), j = 0,..., N. (A.22)

The unknown functions and their derivatives at the collocation points, yj, are presented
as sums of the Chebyshev polynomials, T, with unknown coefficients, a,:

N

Q(Y) = Z ,Tn(yj), (A.23)

n=O
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As a result of the discretization, we arrive at the generalized eigenvalue problem

A.9& = aBgd, (A.24)

where AS and Bg are 9(N + 1) x 9(N + 1) matrices, and & is the vector comprised of

9(N + 1) unknown coefficients. Because the rows of the matrix B. corresponding to the

boundary conditions (A.20) contain only zeros, we replace them by the corresponding rows
of the matrix Ag divided by a large number, as was suggested by [HSH96]. This introduces
eigenvalues that are located far away from the domain of interest in the complex plane a.

The generalized eigenvalue problem (A.24) was solved with the help of standard routine

DG6CCG from the IMSL FORTRAN Library.
[Mal90] reported eigenvalue a = 0.2534048 - i 0.0024921 for a two-dimensional pertur-

bation in a boundary layer over a flat plate with an adiabatic wall. The following parameters
were used: Mach number M = 4.5; the Reynolds number Re = 1500 was based on the Blasius
scale; the stagnation temperature To = 611.11 K; and the Prandtl number Pr = 0.70. For
these parameters, we considered three-dimensional perturbations at i = 10-4.At N = 125,

= 5, and Y,,x = 100, our result was a = 0.2534416 - i 0.0027743. Variation of yj and

y,,,x did not reveal a difference within six digits. Increasing N up to 175 revealed an effect
only on the last digits of the real and imaginary parts of a. This code had an auxiliary role,

and it served for verification of the other code that was based on the 4th-order Runge-Kutta

solver for equations (A.3) and (A.4), and to provide an initial guess for the eigenvalues.

In the second code (RK), the fundamental solutions of equations (A.3) and (A.4) were
found numerically by integration of the equations from y,,x to the wall with the known
analytical asymptotic solutions outside the boundary layer, zqexp(Ajy). One can find the

vectors z0 from (A.3) at y --* c. For vectors z°,2 and z0  we haveasymptotic vetr z , 7,8,w' hv
011 (, 1 2 , Hg1/A 1,2 , 0, 0, 0, 0, 0)T (A.25)

z7 (0,0, /A7 ,8, 0,0,0,1, A 7,8 )T (A.26)

where the matrix elements H0j are defined in Appendix A.1.

The nonzero elements zij of vectors z° (j - 3,..., 6) were calculated as follows:
z0 -1 z0 -A '\ 1
zij l, 2 , z°4= (A4 - H') b23/b,2, (A.27a)

Zo = -(b 22 -A 2) (A2- H 2) /b12, zo = Aj 03  (A.27b)0 r4 0 2 _r'85

z°4 = (H zij + H85 zo3)/(A -HO), zij = A3 z, (A.27c)
0 -31 0 r34 0 ,35 0 -37 0 ) /Aj,(A2d

Z3j = (H" Zlj + H Z4j + H 5 i + Hg") Z /7- (A.27d)

where b12 = H24b23 - H025(b22 - A?), and b22 and b23 are defined in (2.12).

Asymptotic vectors o for the system (A.4) were found numerically from the matrix of

the fundamental solutions m introduced in (2.14) (see discussion of properties of the adjoint
system in Appendix A.2). The Gram-Schmidt orthonormalization procedure was employed

in the computation of the fundamental solutions zj and tj during integration across the

boundary layer.
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[BM92], /3 = 0 the present work, /6 = 10- 4

(0.220, -3.091 x 10- 3) (0.220, -3.091 x 10- 3)

(0.221,1.569 x 10-2) (0.221,1.569 x 10-2)
(-0.565,5.559 x 10-2) (-0.565,5.560 x 10-2)
(0.560,5.659 x 10-1) (0.561,5.659 x 10-1)

Table A.1: Flat plate. M = 4.5, To = 311 K, Pr = 0.72, Re = 1000, w = 0.2

[BM92] the present work
(0.2181,2.969 x 10-1) (0.2181,2.974 x 10- 4)

(0.2124,1.288 x 10-2) (0.2124,1.288 x 10-2)
(-0.5498,5.684 x 10-2) (-0.5499,5.685 x 10-2)

Table A.2: Flat plate. M = 4.5, To = 311 K, Pr = 0.72, Re = 1000, w = 0.2,/3 = 0.12

Finally, the eigenfunctions of the direct and adjoint problems could be obtained as a sum

of the fundamental solutions with unknown coefficients that are to be determined from the
boundary conditions on the wall. In the case of continuous spectra, the eigenfunctions are

comprised of five fundamental solutions. The unknown coefficients could be found from four

boundary conditions on the wall (fi = 0 = ib = 0 = 0) and the normalization condition

dfi/dy (0) = 1. The wavenumbers a corresponding to the modes of the continuous spectra
were found from the equation ) = -k 2 . For the problem of the discrete spectrum, the

cigenfunctions are comprised of four fundamental solutions zj, z 3 , z 5 , and z7 . The unknown
four coefficients were determined from the boundary conditions fi = 0 = 6v = 0 and the
normalization condition dfi/dy (0) = 1. The eigenvalue a was found with the help of the
Newton method as a root of the equation 0(0) = 0. The convergence criterion was chosen
as ]O(0) < e with e < 10 - .

We tested the code with the example discussed above. The outer boundary was chosen

as y,,,. = 35, with the uniform grid having N = 601 nodes and the convergence criterion
= 10 - 5 . The spanwise wavenumber / was held at 10'. The found eigenvalue was a =

0.2534420-i0.0027738. The result remained the same for N = 1201, e = 10- 1, and N = 601,
1 0 - 7 .

In another test, we used the eigenvalues reported by [BM92] for a boundary layer over

an adiabatic flat plate at Mach number M = 4.5, Prandtl number Pr = 0.72, stagnation
temperature in the free stream To = 311 K, Reynolds number Re = 1000, and dimensionless

frequency w = 0.2. In table A.1, we compare our eigenvalues, a, obtained with help of the
RK solver at 83 = 10- 4 and results from [BM92] at 63 = 0. A comparison of eigenvalues a

corresponding to /3 = 0.12 is given in table A.2.
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A.4 The non-zero elements of matrices in Eqs. (2.96)
and (2.100), Section 2.5.2

The velocity, temperature, and viscosity are scaled using their values at the upper boundary-

layer edge; the pressure is scaled using p,U, . Non-zero elements of the matrices in Eq. (2.96)

are
L 3 = r,is

R'

LV = 1, (i,j =1,.6),

= rn + 1,

21 iwR

HI 3  R DU,

l25 = D(li'DU.)

HI8HI6 =--- DUB I

DT,

= iW7Me,

35_
H = iw

H 6 =1,

I 3 = -2DU, Pr(-y - 1) M ,

H 64 = iW_ __ r  1) M',
As

- Pr (y- 1) Me ) 2
- D (p'DT,) iwR PrII = . ( DU.)

H16 = 2L'1DT, ,
26

HI' HIs=H1=1
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hr21 RU,

H/2'2 = -D (In A.,),
2 4= R

H2H23

= -1,
H = -y M U,,H2= U

H2 T
41 mDIL

R '
H2 =-

H2 = (7 +1)'L

R'

H6 = -2P Du8 (y - 1) M:,

-RPr~

H2 -Ti

/_/ 2 = / /  = / 28
3 = HN s= -1,
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12 5H6 
=1,

H2 1 = a 2 + i (aU, - w) R/IAuT , ,
H 2 = -DA.IA,.
Hg2 =H23 = -ia (in + 1) DT/T - iaDAg/,, + RDU,/T , ,

Ho4 = iaR/,! - (m + 1) '/M:a (aLU8 - w),

Ho5 = a (m + 1) (aU. - w)/T 8 - D (IT. DU8 )/,

H26 = - 'DU./,.,
H31 =-ia,

H 3 = DT/T,
Hg34 = -iyM2 (aU, - Lo),
Hg = i (aU. -w)/T 8 ,

X= [R+ iryM2 (aU, - w),

Ho1 = -iax (rDT/T + 2Dg./p,),
H= -iax,

Ho4 = X [-a 2 - i (aU. - w) R/AT, +rD 2T/T + rDjiDT/AT.],

Ho4 = -iXr7M [aDU.+ (aU, - w) (DT./T. + DA./1 p)],
Ho = iX [raDU/T, + aji,DU/1IA + r (aU. - w) Dlt8/.T 8 ],

Ho6 = irX (aU. - w)/T.,
/g 2 = - 2

2(- 1)M Pr DU,

116 a = - 2ia (- - 1) M2 r DU, + R Pr DT/IiT , ,
64 

= -iR Pr (y - 1) M (aU, - w) /.,

Ho5 = a2 + iR Pr (aU, - w)/jT 8 - (1, - 1) M, er (DU) 2 / ps -

Ho = -2Dp./2..
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A.5 Correspondence between solutions of the adjoint
problems, Eqs. (2.106) and (2.107), Section 2.5.2

B = Y- iarY4

-R + iryM (aU. - w)]

B2 = Y,

B3 = -ia (m + 1) Y2 + Y3
r DT Y4 rl d (Y4)

+ T [+rM(U_)] R dy [1i+ i I'IA. -M 2. (U- ]'

1AR+iryM, (aU. - w)( jP.~
2 (U 8 -w1

B4 = Y4

B5 = [ + ir-M( (aU -w) '

T.2ir ((aeU w) Y

B6 = Y6,

B7 = iarB2,
B8 = -(n+) dB 2 -iaH2B,

B9 = iaB 6 .

A.6 Fundamental solutions in the triple-deck limit,
Section 2.7

Direct problem

The outer deck (2). Introducing the new variables 7h = y*/EL, x 2 = x*163L, and t 2 =

t*U ./6 2L, where '"' stands for dimensional coordinate, the solutions of the linearized Navier-
Stokes equations are considered proportional to exp[i(Cx 2 + @t 2 ) ]. One can find the following
expansions for the amplitude functions of the velocities and the pressure perturbation in the
outer deck:

u = e2u12 ) (Y2) + _u3? (Y2 ) + ... (A.28a)

v = E2v 2) (Y2) + E1j ('Y2) + ... (A.28b)

p = 62p( 2 ) + p) (Y2) + ... (A.28c)

where the superscript indicates the number of the deck. Because we deal with a linear
problem, the solution can be normalized arbitrarily. However, we keep the triple-deck scaling
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for the velocities and pressure perturbations in Eqs. (A.28) stemming from the general

analysis of nonlinear problems. In the main order of magnitude, the governing equations are

as follows:

iu2) + dVE 0 (A.29a)dy 2

u2) +p 2 ) =0 (A.29b)

(2) dp =ik,+ d, 0(A .29c)
dy 2

Solution of Eqs. (A.29) can be presented as

p2) e (A.30a)

u2 =_p 2 ) (Y2) (A.30b)

v (2) _1 dp _A (2)(Y2) (A.30c)
1 ic dy2  ix (

where A = +C. Because the procedure of finding the asymptotic solutions corresponding
to the direct problem is well known, we skip details of finding the inner limit of the outer
solution at W2 -* 0, derivation of the matching conditions for the outer limit of the main
deck solution, and other conventional details for the triple-deck analysis.

The main deck (1). In the main deck, the variables are defined as x, = X2, tl = t2 , and
Y1 = Y2/, and the amplitude functions have the following expansion:

u = EU(I ) (Yi) + e2u 1 ) (Yj) + ... (A.31a)
v = v62 (Y) + eiv4')(yi) + .-. (A.31b)

P = E2p() (Y) + ep() (Y1) + ... (A.31c)

In the main order of magnitude, one can find

p()= 1 (A.32a)

v1
= -AU (y) (A.32b)

u)_ A dU
U = &2 dy (A.32c)

Y A dU] dylv2()=DU(yi)+iU(y) a- W2dylJ U2 (A.32d)

11
I

dUdyi 1  I[1 1]
D=iA[ddy, id f - 1 dy, + ia (A.32e)

a 1 2
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The lower deck (3). In the lower deck, the variables are X3 = X1 = X2, t 3 = tl = t2 , and
Y3 = yl/,. The leading terms only of our interest and one can find their scaling from the
matching condition as follows

u = u3 (Y3) +. (A.33a)

v = 3v 3) 
(Y3) + .-- (A.33b)

p = 62P(3) (Y) + (A.33c)

These amplitude function satisfy the following equations

(3) dv( 3 )=
ddv -" = 0 (A.34a)

zau1
3)-- dy3

(3 (3)-C, i ,3+V(3)T ---, --= p UEdy
i@u 3 + idul + 1- (A.34b)

dY3

dpW) = 0 (A.34c)dy3

where U' = (dU/dyj)Y,=o.
From the last equation of the system (A.34) and the matching condition with the solution

in the outer deck, we have p(3) = 1. Therefore, we derive from Eqs. (A.34)

idU dvl3 = 0 (A.35a)
• (3), v(z)O: -lOt+ (dy

ioul + idul U'Y 3 + V = -i +d (A.35b)

The solution of Eqs. (A.35) satisfying the matching condition in the outer limit, y3 --+ 00,

can be found as

1 a2 (3" (A.36a)

= - ( U ,y + - i ) (A.36b)

This result completes the analysis of the fundamental solutions of Eqs. (2.228) having
asymptotic behaviors - exp (±dy2) outside the boundary layer.

Another fundamental solution [residue of the vector Z3 in (2.230) and (2.232)] can be
found in the viscous sublayer. This solution has pi3) = 0, and I 3)(y3) satisfies the following
equation:

1__ - (fi -=3 (d -wY3 -=0 (A.37)d 3  dy3
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With the help of the new variable,

1- + (iau ) 13 (A.38)

where the branch is chosen to provide I arg (a.,) 113 1 < 7r/3. Equation (A.37) is reduced
to the Airy equation for Q(() = du(3)/dy3

Q" - (Q = 0 (A.39)

The decaying at y3 -- oo solution of Eq. (A.39) is the Airy function, Q(() = Ai(().
Therefore, the velocity components and pressure perturbation corresponding to this funda-
mental solution are as follows:

( 3)-, - /
= (idU) JAi (r7) dq (A.40a)

00

v(3)= wwo 1/3
= - _ Ail) -f Ai (77) d17 (A.40b)

pI3) =0 (A.40c)

Adjoint problem

Similar to the consideration of the direct problem, we are looking for the fundamental solu-
tions of Eqs. (2.229). Because the adjoint problem has not been discussed in the triple-deck
limit elsewhere, more details are included in the following derivations.

We employ the scaling of the streamwise coordinate and the frequency in accordance
with the triple-deck theory, and recast the system of Eqs. (2.229) as follows

dY eE 3_' Y_0dy- - idc- (-Y 3 + e-Suy 4 ) + iC'-6Y 4  (A.41a)

dY2 = iaE y 4  (A.41b)

dY3  _
6( V U,e_y a - i'e 2 y 2 + id_ 3 (Y - UY2 ) (A.41c)
dY

_ Y - eidY 2  (A.41d)

dy
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The outer deck (2). We are looking for the solution in the outer deck in the following
asymptotic expansion form:

y = g2 (y2) + ,Fq(Y2) + ... (A.42a)

Y3 '~i = (Y2) + Cg2 (Y2) + ... (A.42c)

y4 = elg4) (Y2) + g(2 (Y2) + .. (A.42d)

where the first subscript stands for the component of the adjoint vector solution, Y. In the
main order of magnitude, one can find

g() = exp (Ay2 ) (A.43a)

= - exp (Ay 2) (A.43b)

g(2) -. exp (Ay 2) (A.43c)

2)0 (A.43d)

where A = ± . At the limit Y2 -- 0

(2)
921 -* 1+Ay2 + ... + eAy +... (A.44a)

(2) A [1 + Ay2 A
941 -+-[+A 2 +..=----[±A 1 ..

41- 1+ Ay (A.44b)

g) -- [1 + Ay2... = --- I1 + Ayj± .+.] (A.44c)

g2) - 0 (A.44d)

Equations (A.44) will serve as the outer matching conditions for the solution in the main
deck.

The main deck (1). We are looking for the solution in the main deck (1) as the following
expansions:

Y, = gi(1)(YI) + Cg) (Yi) + ... (A.45a)
Y2 = 921 (Yl) + 'g-2') (Y) + ... (A.45b)

Y3 = .3 (yi) + e%(2') +... (A.45c)

Y = ?9(1) (Y) + e9942(Y1) ... (A.45d)
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In the main order of magnitude, the governing equations are

-1)= 0 (A.46a)

() U (1)  (A.46b)

dg. 21 = 0 (A.46c)

dy,

dyl _ dU (g1) (A.46d)

dy, - Y dy 1

The solutions of Eqs. (A.46) satisfying the matching condition at yj -o* c are found as

%q1) = 1 (A.47a)

N(1l) A (A.47b)
1 = -iU 2

A (A.47c)

idu
11 0 (A.47d)

For the purpose of analyzing the viscous sublayer (lower deck), we need also g() Thus,

we consider the equations in the next order and arrive at:

.2 iCX(1) (A.48)
dyl

On can find g22(YO from Eqs. (A.48)

9221 = A]-j-.dyl C (A.49)

1

where Co is a constant that has to be determined from the matching condition with the

solutions (A.44)

Co = A- A J - 1] dy, (A.50)
1

At the limit yj -- 0, one can find

gil 1 (A.51a)

g() A A 1- U Y= - (A .51 b)

93(1l)  A 1 (A.51c)

9(1) A = - (A.51d)
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The lower deck (3). In the lower deck, scaling of the leading terms stem from the match-
ing condition at y3 --+ 00

Y eg- ) (y3) + ... (A.52a)

gi3 (Y3) + .(A.52b)
3= (,q )(Y3) + (A.52c)

y4 e6g4(3 ) (Y3) +--. (A.52d)

where the amplitude functions satisfy the following equations

dY tij +4+ (A.53a)

dg() (3)

dy = idg4 l (A.53b)

dY3~ _ 
(A.53c)

dy3

dg3) 91) (A.53d)

dy3

One can derive from Eqs. (A.53) the equation for 1

dy3 dy 3  dy32

With the help of the variable C [see Eq. (A.38) at D = 0], one can arrive at

4d() 2(3

d _q. d 02 = 0 (A.55)

dy 4

The integration of Eq. (A.55) with respect to C leads to the inhomogeneous Airy equation

A4, (3) ~ ,4(3) ,3 3
21 ~ ~ 92 (g2O(3) • -'-tu'2

KT__ I = G (C)

G ) k- + 5k2

where k, and k2 are constants that have to be determined from the matching condition at
y3 -- oo. The solution of Eq. (A.56) can be written as (see [AS72])

(3) (C) = 7r + C2

921 (C) = [ Bi (C) GAid( - Ai (C) GBid] (A.56)
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where Ai(C) and Bi() are two fundamental solutions of the Airy equation [AS721, and their
Wronskian is

1Ai (C) x Bi'(() - Ai'(() x Bi (C) = - (A.57)
ir

One can find that at y3 -+ oo (C- 0o)
(3) GC (A.58)

1

Therefore, the matching conditions lead to the result

ki = -1 (A.59a)

k2 = - (A.59b)(U'l)
2

After substituting G (C) with ki = -1, we arrive at the solution in the lower deck

(3) irk 2 Bi ( ) AidC - Ai (gJ Bid1 + 1 (A.60a)

-q21 Aid - Ai Bd.

00 -00

()- -- (iaUw)' Bi'(IAidC - Ai' (() Bid 1  (A.60b)

I= [g2) - (A.60c)

(3) i7r\
91i 1 Bi" (C) Aid( - Aii" () BidC]J+- (A.60d)

1 0 -00

Solution (A.60) summarizes the asymptotic analysis of two fundamental solutions having
asymptotic behavior outside the boundary layer exp(±Cxy2). The third fundamental solution
will be found as a decaying at the C --+ oo solution of the homogeneous equation (A.52) (Airy
equation). Therefore, we obtain for the third fundamental solution the following result:

g23) = Ai (C) (A.61a)

41) d() Ai' (C) (A.61b)

,) - ( -au,o) Ai"(C) (A.61c)

-i

,) U'Ai(C) (A.61d)
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Appendix B

Appendices to Chapter 3

B.1 Biorthogonal system of eigenfunctions, Section 3.2

It is possible to express a solution of the initial-value problem (Eq. (3.47)) as an expansion
in the biorthogonal eigenfunction system (A,,, BJ}. The vector &~ is a solution of the direct
problem

d__ dAA, A,
dALo +A iwH,OA, + H11A, + iaH2A, + iaH3  H4A

WyA d dp (B.1)
+ i)3H 5A,, - OfH 6A. + iM57 fl29HsA,

dy

y 0O: A., =A&3 =A., 5 =Aw7 =0, (132)
y oo :0 IAj I < 00, 1, =. 8.

The vector B, is a solution of the adjoint problem

d LO d- - dB- = icDH' B, + H*1 B, - iaH*B, + ia*d - a 2 H4*B,
a-dy dy 10 1/HB 2 3iHB +dyHw 9B (B.3)

y 0O: B,,2 =B. 4 = B, 6 = B, 8 =0, (134)

The asterisk in Eq. (B.3) denotes a Hermitian matrix, and the over bar denotes a complex
conjugate value. The direct problem, Eqs. (13.1-13.2), can be expressed in the standard form
given by Eq. (3.8). The adjoint problem, Eqs. (13.3-13.4), can be expressed in a similar
fashion as

H*Y (B.5)
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y=O:Y 2 =Y 4 =Y 6 =Y 8 =, (B.6)
y-00c: IYj < oo,j = 1,...,8.(B)

A correspondence can be found between B, and Y. These relationships are given as
follows:

iarY4
Re/lp - ir'yM2 (aU. + 3W. - (.7)

B2 = Y2 (B.8)
1 +Y rDT Y4

T. Re/p. - ir-yM (aU. + 3W,-) 
(B.9)rA. d Y4 + (B.9)+ 1 Y

Re dy 1 - ir-M 2 (L./Re) (aU,+flWs- ) ++i 3(m. +1-Y

134=
B4 1 - irfM2 (.2 /Re) (U 8 +/3W/ - (B.10)

, p.Re (aU. +)3W. - Cv)Y

B 5 = Y5 r (aU + OW, - o)4 (B.11)

B6 = Y6  (B.12)

B 7 =Y 7 +i/Or B 3
Re/p - iryM, (aU. + 3W. - )(B.13)

B8 = Y8 (B.14)

Solutions of the direct and adjoint problems given by Eqs. (B.1-B.2) and (B.3-B.4)
belong to the discrete and continuous spectrum. Eqs. (3.37), (3.39), (3.40) and (3.46) are
modes that satisfy the direct problem with weights (coefficients) that depend on the Fourier
transform of the initial disturbance, Ao,.

The eigenfunction system {A,, B} has an orthogonality relation given as

0o

(H,oA.,B.) J (HoA,, B,) dy = rA,, (B.15)

0

where F is a normalization constant. A,, is a Kronecker delta if either w or w' belong to
the discrete spectrum. A,, = J (w - w') is a Dirac delta function if both w and w' belong
to the continuous spectrum.

The inverse Laplace transform can be expressed as an expansion in the biorthogonal
eigenfunction system as follows:

00

A,3(y, t) = c.,AA/(y)e-t"t + Z J c (k)A,f,(y). - iwj(k)tdk (B.16)

275 0
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where E denotes a summation over the discrete spectrum and E, denotes a summation
over the continuous spectrum. Using the Fourier transform of the initial disturbance, Ao,O
as well as the orthogonality relation (Eq. (B.15)), one can find the coefficients cL, and c3.
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Appendix C

Appendices to Chapter 4

C.1 Matrices for compressible flow past a sphere, Sec-
tion 4.4

Assuming that the basic flow is known, let r, 0 and € denote respectively the radial, merid-
ional and azimuthal coordinate and v, u, w be the corresponding velocity field. Temperature
T and pressure p are the other unknowns of the problem, while density p is related to T and
p by the state equation and thus is not an explicit unknown. The radial coordinate r = R + y
includes the sphere radius R and the distance from the sphere surface y.

The scaling is as described in §4.2. The unknowns in the disturbance equations axe only
five and are assumed to be proportional to exp (imo), where n is the azimuthal index and i
the imaginary unit.

The scaling adopted for the sphere leads to the following relationships between p, p and
T (the subscript ., stands for basic flow), which allow us to recast the equations in five
variables only:

pIT ps
P T, Ps T

In what follows viscosity p1, is assumed to be a function of temperature only, and therefore
,', stands for the derivative dgI8/dT.

Transformations of the lineaxized equations lead to a system of partial differential equa-
tions

(Af)0 = Dfo,7 + Bof + Bif, + B 2f, (C.1)

where A, B0 , B 1, B 2 and D are 5 x 5 matrices and 17 = y/Hef is the normalized distance
from the wall. System (C.1) can be recast as

(Hif)o + H 2 f = 0, (C.2)

where the parabolic dependence on 0 should be more clear and operators H1 and H 2 are
still 5 by 5 matrices and contain the dependence on 9 and 77:

H, = A - D(.),; H 2 = -B 0 - [Bi - Do) () - B2('),m. (C.3)
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It should be noticed that system (C.1) is written in a different form than (4.1). However, by
rearranging the matrices, the same final forms (C.2) and (4.4) are obtained.

The expression to be maximized is the integral in the wall-normal direction of the kinetic
energy and temperature

E[ +fiout [U2 22 2 Psout1utu f)(1 + E7) sin(O psout[ out + ot + ut)] + M, dli, (C.4)0 . outuI. ('y- 1)T 8out M

where the term (1 + .Er) sin(O0,t) comes from the integration over the whole domain, i.e. over
the three independent variables.

The nonzero elements of the matrices are here reported. It should be noticed that, for-
mally, in the limit E -- 0, the geometric factor (1 + E7) reduces to 1 and thus is automatically

excluded from the denominator. The dependence on E remains only in the terms associated
with the centrifugal force such as B0". However, in the present numerical implementation,
the outer boundary 77m. had to be chosen far away (on the order of 100) and E = 0(10-'),
leading to Eli = 0(10-1). Since E is not negligible, we keep the factor (1 + E77) in the
governing equations.

The wavenumber # in the following terms is defined as = mE
(1 + E7) sin 0'

Continuity equation:

A 14 P. U(1 + E/)

T8(1 + El)
B1 -p 8 cot 0

B012 O=
o (1±+ li);

B 3o0' _OP__z
B3 =

Bg4 = 6 (p8V8 pUcotO
812

B -Ps;

14 _P-V-.
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9-momentum equation:

A21 = 2p 8U8(1 + E,/);

A 24 = pU.

T(1 + E7);
2 _ = 9__V, A32 2p 8e, cot 0

B2 2 - 19UABO 1

BO3 = -_)p U.;
B 24 = 8 (p8 V8U8'\ 0 ( U8  p8U2cotO

0-T 8 ] + N p  T8 (l +E r )'

B24  pU V, U , 42
B O = T . + ' 77 T , l + E7 )

21= #;
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r-momentum equation:

p., V 2 Ot,.A 31 = -- +
(19E7) 3(1 + 77) 0?'

A32 = P8 U8(1 +e q)'

A34 = pUV, a 4 U.
T8(1 + ef) (1+E'n) + 77'

B 31 - 2 0 2p8  pV cot 0 2p,U8  2 cot9 091,
3 (l + 77) 0700 (+ E77) e( + E77) 3(1 + E77) 77'

Bo = - 2 0p 02 -V pIUl cot 0
077 8(1 + E7)

BO = -,3p. V 01

3 07'
2p8 VO t"8 [3O gA 0V8  2 OU,sinO]

T- 077 07 13 077 3(1 + E77) sin 0 09

0 (4 W, 2 U,sin 0
077 3 7 3(1 + E7) sin 0 00

a (p) UV p+U ip.cotOOU8

+ 0r/ T(1 + 7) ET,(1 + 77) + (1 +077)0'

1 = 1 Ou 8  t8 cot 0(1 + E[) 0 3( + c)'

B32 = -2p.V, + 4 o,;

3(1 + c7)'
3 4  , 40V 2 U. sin ] p.V 2

134 93077 3(1 + E/)sin 00 + T.

B 35 = -1;

B32  4
3

D31_
3(1 ± 2)0
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0-momentum equation:

A 43 = P8Us(1 +,Er/) ;

A44 = ji,f3U 8

3T(1 + El)
B/ 1  A.# 9ps _ 018 2/3p, cot 0

3p8 (1 + f) 00 (1 + ElI) 00 (1 + el)

B4 = 3p--3p- - 0!s8
0 f 1

B apV 2p 8U, cot0
- 0r/ (1+ E77)

B44 = p 9U/ 0 (p. 2p ,3U. cot 0
0 3T,(1 + Eq) 0 p. (1 + q)

+ [2 V + 1 a ]
3 17+ (l1 +7)sino(Usin)

O.T30 (ap V._ u U cot 0
3p, 0r/ 3T,(l +,E77)'

Bo' = 0;

B = -pV s + -9-

3T'

B2' LI

Energy equation:

A 5 1 = p.T-

(1 + Er)'

B1 - 1 Op, pT. cot 9B0 (l + 17) aO (1 + 7) '
B053 = _p.T

B = 2- 1)M.f +s aUT

or;
B = -pATs;

B =2 0/1.
Pr P Pa

2= 1- "
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C.2 Matrices for compressible flow past a sharp cone,
Section 4.5

Assuming that the basic flow is known, let x, y and € denote the three independent coordi-
nates, where x is the streamwise distance from the nose tip, y the wall-normal distance and
¢ the azimuthal angle. With this notation, u, v, w are the corresponding velocity field, that
together with temperature T and pressure p form the set of problem's unknowns. Density p
is related to T and p by the state equation and thus is not an explicit unknown.

The scaling is as described in §4.2. The unknowns in the disturbance equations are only
five and are assumed to be proportional to exp (imo), where m is the azimuthal index and i
the imaginary unit.

In what follows viscosity /L is assumed to be a function of temperature only, and therefore
' stands for the derivative d,4,/dT,.

Transformations of the linearized equations lead to the system of partial differential
equations

(Af), = (Dfy). + B 0f + Bjfy + B 2 fl, (C.5)

where A, B 0, B 1, B 2 and D are 5 x 5 matrices, and can be recast as

(Hlf): ± H 2f = 0. (C.6)

Operators H 1 and H 2 are still 5 x 5 matrices and contain the dependence on x and y:

H1 = A - D(.)y; H 2 = -B 0 - Bl(.)y - B 2 (.)y. (C.7)

The expression to be maximized, in the limit c -* 0 (i.e. Re -- oo), is the integral in
the wall-normal direction of the kinetic energy and temperature. After the transformations
imposed by the geometry, Eo,t reads

Et = sin O(x + Ey cot 0) u + + Psut 
2ut dy, (C.8)

where the term sin 0(x + ey cot 0) stems from the integration over the whole domain, i.e. over
the three independent variables.

The nonzero elements of the matrices are here reported, with the wavenumber,f defined
as ff = i/(1 + erl), ih being Frt = em.
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Continuity equation:

All = ps;
A 14 = PSUS.

T.,'B'= - Ps

(1 +Et);
BO'2 = _ (P__I,

9y'

B 3 = -lp.;

=o9-y T T(1 +E?7)'

B a = -p8;
B'4  psY

T,'

x-momentum equation:

A 21 = 2p, Us;

A 24 A_ U2

B2' _ p UP1 s. 2 2pU

ay'

Bo3 = -)3p. U.;
B 2 4 - 8 (p8 8U8'U + _ _ p,2BO= "Y T., + .y I:Oy]+ T (1 + )

21al;
Bi _ -j-Y p. ,;

B = -pU,.;

-1 p8U8Vy8  ,6ou8B2 Ps-Us-V + p"-aT;
1 T8

283



y-momentum equation:

A3 1  2ap. }-3- y
A' P.V + 3 ay'
A32 -- U.;

A3 p8U8V ,c9U8 ,

A T. aOy
0B31+ 1 (_ P"Vt3ox \x ay / (1+E,) 3 oy

ty 9y - 1+ O

Bo3  -/p 8V - "AS0~ ~ _O. y'

34 = 1 [p.U.V. 1, W. 2U"aA,] + (p.V2)
(I+e0) [T. +3"4 " - a-y y T

+ u ov, 2 +u8] -a U 1 92 us 1
+-- - Oy--J +18 - I + +"

a 13 a 3 0 Y 3 a e 3  x y

3(l +,E77) + 3ax'

B 32 = -2p.V + 4(9,4,.3 0 y'
1 3.O

1 3 '
B3 4 - 2 40V 2U,1 p,,V. 2 

_2U,

BI +4 aV As_3B iy 3ax J + T, 3(1 + E/)'

B35 = -1;

B3 2 4
B2 -As3

3,
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-momentum equation:

A 4 3 = U.;

A 44= As13U-

3T,

3p, Ox ax (1 + Ef)'
B 42 -,30p P-

0 if p _ O__l=3p, 49y / ;

Op.V_ 2p8 U,
Oy (1 +,E7/)'

3, __ p3.u 0 3 T (uI3BO 4y\ l + 3T, Ox P ( 3T(1 +,)"
2)3p' OU.+ 23p., OV 4,6Up'

+ 3 Ox 3 Ox 3(1+E?7)'

BO = )3;

B i = p V, + - - '

3T'

B23  S;

Energy equation:

A 51 = p"T;
Bl , = Y-10 p. "T

'y Ox (1I + er)'

B5 2 = _Op- T
Oy

B0 s = _,3p.,T;

B05t = IP,s _ I1) Mr.f + All U ,O,"
( t9y ] -P-- Pray 09-oy'

5 = 2(y - 1)M2f 9'"
O9Y

B 2 -p,,
B54 2 ps

-Pr Oy '
Bi4

Pr"
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C.3 Matrices for compressible flow past a blunt cone

The form of the equation needed to develop optimal perturbation analysis of compressible
flow over a blunt cone: (Af), = (Dfy), + B 0 f + Bifs, + B 2 fyy, where f = (u, v, w, T, p)T,

superscript T stands for transpose. Rewriting equations in this form, we get the following
non-zero elements of matrices A, Bo, B 1 , B 2 and D:

Continuity equation:

All = ps;

A 14 = -Rep.U;

B"- aR R, or
01 = -P l;

6o4 R p8 U8  R, Dr,p8 U8  0 /p 8 V 8 lp,(__'x + + + ;

x T, reOx T. Dy +, a o

BT4-

286



x-momentum equation

A 21 = 2Rp.U, ;

A24 = -R pU.2

eT= (-2.- , L 84eBg 21R a2R a p V Ws0= 2 2 Rr' .Us aPu s Vs 12 As ps
( r, ay 0 =0

B2= aP, U-.

Bo3 = -3p8 U8;

BO p.(w, .(4 R15 &C~ 0R9 p 0 (PIUs V-+ a (ds aUll
r , a x T d=o

+ 1 P.U. (OW.8

B,2 = -p. + _,
y'

B = -p,U.
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y-momentum equation

A 3 1 = XIpsV + 2

3 O~y

A32 = Rep.U,;

A 34 - -V dg, ,U.
= - Re T RdT 8Y'

Bo ..RpOre 2ap. _ 1 2 0 (ReO" +_-- r-h- - - + 2- p8 e8 + H aR -Re) + ax 0

B 32  Mr -- Orp.U, 2apaV -621L. + aREp. U. - p.r, Ox 9y a -rePTO 0=0;

323 .~r 2 OpV 2LR
=- -- y = _x a

BO 4 = Redi,8 a2 U8 _ 2e ( Id,,j,\ aU,, 4dii. &2 V
3 ~ dTO 5xa 3 y dT. Ox 3 dT,, 9y240OV 8 O (dt \ 0 (p8~T--~' lp 8 U p d#O (Rp. UU'.

+ 3y ay dT, a T,, ReT dT, 8 Ox c9y]

Me p.U.V. 1 are (1 dp,W, 20 a(dL,) U" + p.,U.VOx T, r, Ox.. 3dT. Oy 3TOy d U+
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€-momentum equation:
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Energy equation:
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where M, is the reference Mach number.
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