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1 Introduction

1.1 Preamble

Nonlinear finite element structural analysis is dominated by the use of low-
order “displacement” elements that are specially designed to avoid volumet-
ric or incompressible locking. Deformations that involve very small volume
changes occur for rubber-like materials, and the elastic-plastic response of
metals and undrained soils. Elastic-plastic analysis is ubiquitous in many en-
gineering disciplines and, thus, it is essential that finite elements are able to
accurately represent nearly incompressible deformations. Standard elements
have difficulty or fail entirely in this situation. A full discussion of the early
experiences and development of effective methodologies is presented in Hughes
[29], Chapter 4. It would seem at this stage of the development of finite ele-
ment technology that higher-order approaches would play an important role
in nonlinear structural mechanics, but this is not the case. The only approach
that claims any success is the p-method, in which the polynomial order within
elements is increased on a fixed mesh (see [62, 63]). The claim for standard
higher-order C0-continuous finite elements is that volumetric locking is allevi-
ated as the element polynomial order is increased. This seems to be the case,
but there is evidence that the accuracy of the solution at any fixed polyno-
mial order is far from optimal (some confirmation of this observation will be
presented herein). In addition, numerical experience indicates standard higher-
order elements are much more “fragile” than low-order elements. This lack of
robustness is particularly apparent in nonlinear dynamic analysis of structures
involving contact and impact, and subject to high wave number inputs, such
as blast waves. The reasons for this have never been fully explained. How-
ever, recent vibration and wave propagation studies (see Cottrell et al. [18]
and Hughes et al. [37]) have revealed that the higher modes produced by the
p-method diverge with p. That is, whereas formal accuracy is increased, the
improvement is confined to lower modes, while at the same time the higher
modes get worse as p increases. This may explain why robustness decreases
with p.

An alternative higher-order approach has recently emerged from Isogeometric
Analysis (see Hughes et al. [32]), namely k -refinement, in which discretiza-
tions of order p achieve Cp−1 continuity on “patches” (roughly speaking, sub-
domains). It has been shown that k -refined meshes behave entirely differently
than standard finite element methods with respect to higher modal compo-
nents. In fact, in some cases all discrete modes converge to exact ones and
nearly spectral accuracy is achieved. To us, this suggests that robust and
higher-order accurate finite element methods applicable to nonlinear struc-
tural analysis may be a possibility, and this study represents a first-step in
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this direction.

At the same time, we need to deal with the locking problem in both small- and
finite-deformation regimes. We feel the most widely applicable and practically
useful approach is by way of a pure displacement formulation (i.e., no pressure
degrees of freedom) as is generally employed in large-scale structural analysis
programs (see for example [43, 44]). In order to achieve good behavior, we
feel it is imperative to use some form of “projection” to reduce the number of
volumetric constraints. This is absolutely essential for lower-order elements,
and very important for higher-order elements as well (as we will show herein).
Designing projection schemes for higher-order elements, as far as we are aware,
has not been pursued previously in the literature. The B̄ scheme (see Hughes
[28]) is a formalism that utilizes projection and we propose a new family of
higher-order B̄ schemes in the sequel. Engineering and mathematical points of
view are both relevant to this pursuit, but are not entirely in accord. In these
cases, we favor the view gained from engineering experience (de gestibus non
est disputandum). In particular, some elements produced by our scheme are
definitely known not to satisfy the well-known Ladyzenskaya-Babus̆ka-Brezzi
(LBB) stability condition (see, e.g., [10, 11, 62]), but nevertheless are favored
and widely utilized in engineering applications, the prime example being the
mean dilatation, bilinear quadrilateral element “Q1/Q0”. It should be men-
tioned here that this element fails to satisfy the LBB condition only “slightly”
so is not altogether mathematically abhorrent. We also wish to emphasize we
are certainly not opposed to satisfying the LBB condition, and some of our
other constructs may, at least under certain situations, but we also want to
develop methods that have the highest probability of being used in engineering
applications. This is the key issue in the approaches we have proposed. The
large-deformation counterpart involves projection of the deformation gradi-
ent, a so-called F̄-scheme, involving a product decomposition into volumetric
and deviatoric factors. There has been only limited use of such schemes in
the literature, and in our opinion none is completely satisfactory. More about
this later. A second contribution of this work is the development of a new
F̄ formulation based on a modified minimum potential energy principle. We
derive the variational equations and a consistent tangent operator for gen-
eral hyperelastic materials. There are a number of “unexpected” terms in the
consistent tangent and it is symmetric, a theoretical improvement over some
previous F̄ formulations. We also perform a number of numerical calculations
on quasi-static, small- and large-deformation test problems. The calculations
are very encouraging and seem to validate the new methods.
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1.2 Literature survey

Several techniques are available in the literature to deal with incompressibil-
ity. The mixed Galerkin finite element formulation is one of the most com-
mon. However, the order of approximation for both pressure and displace-
ment/velocity variables cannot be chosen arbitrarily. The method must ful-
fill the LBB condition to ensure stability and optimal convergence (see, e.g.,
[10, 11, 62]) or must be used in conjunction with stabilization techniques which
allow the use of a wide variety of interpolations, including equal-order. These
stabilization techniques have been utilized with success in the past twenty
years in fluid mechanics; the most commonly used are Streamline Upwind
Petrov-Galerkin (SUPG, see, e.g., [12, 33]) and Galerkin Least Squares (GLS,
see, e.g., [34]). In more recent work, these ideas have been successfully ex-
tended to nonlinear solid mechanics [42, 46, 49]. Another possible form of
stabilization for displacement based formulations is “hourglass” control used
in conjunction with reduced integration rules (see, for example, [9, 25, 50, 51]).

A different approach to handle the incompressibility condition is the incom-
patible mode technique proposed by Wilson et al. [65], and later generalized
as the enhanced or assumed strain method by Simo et al. [57, 59] within a
three-field variational principle. Although this method has exhibited hourglass
instabilities in some cases, several improvements have been proposed to over-
come these effects, in particular, by using an alternative enhancement strategy
[2], or a mixed-enhanced strain formulation [40, 41].

The approach of greatest engineering interest is to use a simple pure-
displacement formulation. This idea goes back in the 1970’s with the
so-called “reduced” and “selective” integration methods, and B̄ technique
[29], for which equivalence theorems with mixed methods have been obtained
[28, 35, 45]. If seen in a more general way, as a strain projection technique
[29, 30], one can include within the same B̄ framework the well known
mean-dilatational formulation of Nagtegaal et al. [47]. This formulation is
widely used in large-scale and commercial codes [43, 44]. The major numerical
developments on F̄-type methods, the generalization of B̄-type methods to
hyperelastic finite-deformation formulation, have been done by Hughes et al.
[38], Simo et al. [60] (within a three-field Hu-Washizu variational principle),
and de Souza Neto et al. [20, 22], who proposed an F̄ technique for linear
elements. These works exhibit some shortcomings: a consistent tangent was
not derived in [38], it was never published in the open litterature, and not
pursued further; [60] is a mixed method requiring pressure unknowns; and
[20, 22] leads to a non-symmetric consistent tangent.

The development of isogeometric analysis, recently proposed by Hughes et
al. [32], introduced a new numerical method in an attempt to improve ge-
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ometry, solution representation and mesh refinement compared with finite
element analysis. Isogeometric analysis is based on the geometric primitives of
computer graphics and Computer-Aided Design (CAD). The first implemen-
tation of isogeometric analysis was based on Non-Uniform Rational B-Splines
(NURBS), a standard technology in CAD [15, 24, 48, 52]. It was first applied
to three dimensional linear elasticity and advection-diffusion problems in [32].
The ability of NURBS to represent precise geometry was successfully applied
to solve problems of vascular fluid-structure interaction with patient-specific
geometries in [6, 66]. The mathematical theory of NURBS based isogeometric
analysis was begun in [7], where stability proofs and optimal error estimates
were obtained assuming h-refinement. An interesting feature of isogeometric
analysis, not shared by finite element analysis, is so-called k -refinement, which
simultaneously increases polynomial order and continuity of the basis func-
tions. Using this feature, isogeometric analysis attains better accuracy than
finite elements for structural vibrations [17, 18]. The higher continuity, be-
yond the geometric interest, has also proved advantageous for turbulent flows
problems [1]. The above developments and observations suggest NURBS-based
isogeometric analysis may offer some new possibilities in large scale structural
mechanics applications.

1.3 Outline

The paper is organized as follows: In Section 2 the basics of isogeometric anal-
ysis are recalled with an emphasis on k -refinement. In Section 3, the use of
high-order NURBS within a projection technique is studied in the geometri-
cally linear case with a B̄ method to investigate the choice of approximation
and projection spaces with NURBS. The performance of the proposed strat-
egy is demonstrated on well-known numerical examples. Section 4 presents the
new F̄ formulation. The consistent tangent operator of the Newton-Raphson
iterative scheme for the fully nonlinear elastic case is derived in detail in Ap-
pendix B. The performance of the new method is compared with some of the
techniques cited earlier on several numerical examples in Section 5, and the
good behavior of the new methodology is again observed. Finally, Section 6
presents some conclusions and possible directions of future work.

2 Brief overview of Isogeometric Analysis

This section gives a brief overview of NURBS-based isogeometric analysis. A
more detailed description can be found in [17, 32]. NURBS functions are a
standard tool in CAD to describe and model curves and surfaces [15, 24, 48,
52].
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2.1 B-Splines

NURBS are built from B-Splines. B-Splines are piecewise polynomial curves
composed of a linear combination of B-Spline basis functions. The B-Spline
parametric space is local to “patches” in contrast with finite elements in which
each element carries its own parametrization. Patches may be thought of as
subdomains.

2.1.1 Knot Vectors

A knot vector in one dimension is a set of coordinates in the parametric
space written

Ξ = {ξ1, ..., ξn+p+1}, (1)

where ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, ..., n+ p+ 1, p is the
polynomial order of the B-Spline and n is the number of basis functions cor-
responding to it. The knots partition the parameter space into elements, and
the interval [ξ1, ξn+p+1] constitutes a patch. A knot vector is said to be uni-
form if its knots are uniformly spaced and non-uniform otherwise. Knot
values may be repeated, that is, more than one knot may take a given value.
The multiplicities of knots have important implications on the continuity of
the associated B-Spline functions. A knot vector is said to be open if its first
and last knots are repeated p + 1 times. In what follows, we always employ
open knot vectors. Basis functions formed from open knot vectors are inter-
polatory at the ends of the parametric interval [ξ1, ξn+p+1], but are not, in
general, interpolatory at the interior knots. Open knot vectors enable patches
to be assembled in essentially the same way elements are assembled in finite
element analysis.

2.1.2 Basis functions

B-Spline basis functions are defined recursively starting with piecewise con-
stants (p = 0); given a knot vector Ξ

Ni,0(ξ) =

1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(2)

For p > 1, they are defined by:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (3)

An example for a uniform knot vector is presented in Figure 1. Note that for
p = 0 and p = 1, the basis functions are the same as for standard piecewise
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constant and linear finite element functions.
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Fig. 1. Basis functions of order 0, 1, 2 for an open, uniform knot vector
Ξ = {0, 1, 2, 3, 4, ...}.

An example of quadratic basis function for an open non-uniform knot vector
is presented in Figure 2. Note that the basis functions are interpolatory at
the ends of the interval and also at ξ = 4, the location of a repeated knot,
where only C0-continuity is attained. Basis functions of order p have p −mi

continuous derivatives across knot ξi, where mi is the multiplicity of the value
of ξi in the knot vector. When the multiplicity of a knot is exactly p, the
basis is interpolatory at that knot. When the multiplicity is p+ 1, the basis is
discontinuous and the patch is split into two separate patches.

1

0
0 1 2 3 4 5

N7,2
N2,2

N1,2

N3,2 N4,2 N5,2

N6,2 N8,2

ξ

Fig. 2. Quadratic basis functions for an open, non-uniform knot vector
ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}

An important property of B-Spline basis functions formed from an open knot
vector is that they constitute a partition of unity, that is, ∀ξ:

n∑
i=1

Ni,p(ξ) = 1. (4)

This feature is also shared with finite elements and meshless methods. Another
interesting property is that the support of each Ni,p is compact and contained
in the interval [ξi, ξi+p+1]. Finally, one can note that each basis function is
point-wise non-negative over the entire domain of definition: Ni,p ≥ 0 ∀ξ. This
means that all of the entries of the mass matrix will be positive, which has
implications for developing mass lumping schemes (see [18] for an initiatory
investigation).

7



2.1.3 B-Spline curves

B-Spline curves in Rd are constructed by taking linear combinations of B-
Spline basis functions. The vector-valued coefficients of the basis functions
are referred to as control points. They are analogous to nodal coordinates
in finite element analysis in that they are the coefficients of the basis functions.
However, the non-interpolatory nature of the basis does not lead to the usual
finite element geometric interpretation of the control points. The piecewise
linear interpolation of the control points defines the control net. Given n
basis functions, Ni,p, i = 1, 2, ..., n, and n corresponding control points Bi ∈
Rd, i = 1, 2, ..., n a piecewise polynomial B-Spline curve is given by:

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi. (5)

An example is shown in Figure 3 for the quadratic basis illustrated in Fig-
ure 2. Note that the curve is interpolatory at the first and last control points,
a general feature of a curve built from an open knot vector. The curve is
also interpolatory at the sixth control point. This is due to the fact that the
multiplicity of the knot ξ = 4 is equal to the polynomial order there, that is,
m5 = p = 2. Note also that the curve is tangent to the control polygone at the
first, sixth and last control points. The curve is Cp−1 = C1-continuous every-
where except at the repeated knot ξ = 4 where it is Cp−m5 = C0-continuous.

(a) Curve and control points (b) Curve and mesh denoted by knot locations

Fig. 3. Piecewise quadratic B-Spline curve in Rd. a) Control point locations are
denoted by  ’s. b) Knots, which define the mesh by partitioning the curve into
elements, are denoted by �’s.

The properties of B-Spline curves follow directly from the properties of their
basis functions. For example, B-Spline curves have continuous derivatives
through order p − 1 in the absence of repeated knots or control points. Re-
peating a control point or a knot k times decreases the number of continuous
derivatives by k. An affine transformation of a B-Spline curve is obtained
by applying the transformation to the control points. This turns out to be
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the essential property to guarantee satisfaction of so-called “patch-tests”, as
discussed in [32]. This property is referred to as affine covariance.

2.1.4 h- and p-refinement: knot insertion and order elevation.

The analogue of h-refinement is knot insertion. Knots can be inserted with-
out changing the curve parametrically or geometrically. Given a knot vector
Ξ = {ξ1, ..., ξn+p+1}, let ξ ∈ [ξk, ξk+1[ be a desired new knot. The new n + 1
basis functions are formed recursively, using Eqs. (2) and (3), with the new
knot vector Ξ = {ξ1, ..., ξk, ξ, ξk+1, ..., ξn+p+1}. The new n + 1 control points
{B1, ..., Bn+1} are formed from the original control points {B1, ..., Bn}, by

Bi = αiBi + (1− αi)Bi−1, (6)

where

αi =


1 if 1 ≤ i ≤ k − p,
ξ−ξi

ξi+p−ξi if k − p+ 1 ≤ i ≤ k,

0 if k + 1 ≤ i ≤ n+ p+ 2.

(7)

Knot values already present in the knot vector can be repeated. However, this
reduces the continuity of the basis at the corresponding knot. The continuity
of the curve is preserved by choosing the control points using Eqs. (6) and (7).
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Fig. 4. Curve, control points, knot vectors and basis functions after knot insertion
and order elevation of a quadratic curve. Control points are denoted by  ’s.
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The mechanism for implementing p-refinement is order elevation. The poly-
nomial order of basis functions can be increased without changing the curve
parametrically or geometrically. Note that each unique knot value in Ξ must
be repeated in order to preserve discontinuities in the pth derivatives of the
curve that is being elevated. The number of new control points depends on
the multiplicities of existing knots. As for knot insertion, the solution space
spanned by the elevated basis contains the space spanned by the original ba-
sis. Thus, it is possible to order elevate without changing the geometry and
the parametrization of the B-Spline curve (see [48, 52] for further details and
algorithms).

An example of h- and p-refinement is presented on Figure 4. The original
curve consists of quadratic B-Splines with knot vector Ξ = {0, 0, 0, 1, 1, 1}.
The original curve, knot vector and basis functions are shown on the left.
A new knot is inserted at ξ = 0.5. The new curve, knot vector and basis
functions are shown in the center of the figure. Note that the curve remains
unchanged but that basis functions and control points are different; there is
one more of each. Next, the curve is order elevated once; the new curve, control
points and basis functions can be seen on the right of the figure. This time
the multiplicity of the knots is increased by one. The location and number of
control points change, but the curve remains the same. There are now four
cubic basis functions. Despite the same number of basis functions, note that
the locations of the new control points obtained from knot insertion and order
elevation are different.

2.1.5 k-refinement: higher-order and higher continuity

The last paragraph presented the analogues of finite element h- and
p-refinement: knot insertion and order elevation. To be identical to h-
refinement, knot insertion must be performed such that each new knot has a
multiplicity equal to the polynomial order of the basis, ensuring C0 continuity
at each knot. Similarly, if we begin with a mesh where all functions are already
C0, order elevation coincides exactly with the usual notion of p-refinement
in the finite element literature. However, knot insertion and order elevation
provide us with additional possibilities (see [17]).

A higher-order alternative elevation strategy present itself; it takes advantage
of the fact that knot insertion and order elevation do not commute. If a unique
knot value ξ is inserted between two distinct knot values in a curve of order
p, the number of continuous derivatives of the basis functions at ξ is p − 1.
If we subsequently elevate to order q, the multiplicity of every knot value is
increased to maintain Cp−1 continuity of the basis functions at ξ. If instead we
order elevate the original curve to q and then insert a unique knot value ξ, the
basis would have q− 1 continuous derivatives at ξ. This strategy is referred to
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as k-refinement ; it has no analogue in standard finite element analysis.
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Fig. 5. Non commutativity of h- and p-refinement. The starting point is one linear
element. Classical p-refinement strategy: knot insertion followed by order elevation
results in seven C0 quadratic functions. New higher-order k-refinement strategy:
order elevation followed by knot insertion results in five C1 quadratic functions.

The concept of k-refinement is important because isogeometric analysis is fun-
damentally a higher-order approach. In traditional p-refinement there is a very
inhomogeneous structure to arrays due to the different basis functions associ-
ated with surface, edge, vertex, and interior nodes. Furthermore, maintaining
C0 continuity during the refinement process implies a proliferation in the num-
ber of nodes, In k-refinement, there is a homogeneous structure within patches
and growth in the number of control variables is limited (see [17]).

An example of the k-refinement process and its comparison with traditional p-
refinement is given in Figure 5. This example shows that k-refinement results in
fewer functions with higher continuity, thus fewer control variables or degrees
of freedom. Starting with p+ 1 functions, inserting n− (p+ 1) knots (i.e., to
obtain n basis functions), followed by r order elevations, results in (r+1)n−rp
Cp−1 basis functions. Using k-refinement, that is, starting with p+1 functions,
performing r order elevations, followed by the insertion of n − (p + 1) knots,
results in n + r Cr+p−1 basis functions. More details on this can be found in
[17, 18, 32]. Keeping in mind that the preceding numbers are raised to the d
power in d dimensions, it is clear that the k-refinement strategy produces fewer
unknowns than p-refinement, for the same mesh and order of approximation.

In the k-refinement process on a fixed mesh, knots are added at the boundary
points, increasing their multiplicity, but no interior knots are added. It is inter-
esting to note that in the periodic case, in which there are no boundaries and
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consequently no open knot vectors (see, e.g. Bazilevs et al. [5]), no additional
equations are engendered by k-refinement.

2.1.6 B-Spline surfaces and solids

Given a control net {Bi,j}, i = 1, ..., n, j = 1, ...,m and knot vectors Ξ =
{ξ1, ..., ξn+p+1}, H = {η1, ..., ηm+q+1}, a tensor product B-Spline surface is
defined by:

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j, (8)

where Ni,p and Mj,q are B-Spline basis functions of order p and q respectively.
For purposes of numerical integration of arrays constructed from B-Splines,
“elements” are taken to be knot spans, namely [ξi, ξi+1] × [ηj, ηj+1], as seen
previously in the one-dimensionnal case in Figure 3. As presented in [32],
integrals are pulled back to the parent element by the classical change of
variables formula and standard Gaussian quadrature rules are employed as
in finite elements (see for example [30], Chapter 3). However, we note that
optimally efficient quadrature rules for B-Spline patches do not seem to be
known yet.

Analogously, tensor product B-Spline solids can be defined; given a con-
trol net {Bi,j,k}, i = 1, ..., n, j = 1, ...,m, k = 1, ..., l and knot vectors
Ξ = {ξ1, ..., ξn+p+1}, H = {η1, ..., ηm+q+1} and Z = {ζ1, ..., ζl+r+1}:

S(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k, (9)

where Ni,p, Mj,q and Lk,r are B-Spline basis functions of order p,q and r re-
spectively.

2.2 Rational B-Splines

As described previously, NURBS are built from B-Splines. Specifically,
NURBS entities in Rd can be built from a projective transformation of
B-Spline entities in Rd+1. In particular, conic sections, such as circles and
ellipses, can be exactly constructed by projective transformations of piecewise
rational quadratic curves.

To obtain a NURBS curve in Rd, we start from Bw
i , i = 1, ..., n, a set of control
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points (“projective points”) for a B-Spline curve in Rd+1 with knot vector Ξ.
The control points for the NURBS curve are defined by:

(Bi)j =
(Bw

i )j
wi

, j = 1, ..., d, (10)

where (Bi)j is the jth component of the vector Bi and wi = (Bw
i )d+1 is referred

to as the ith weight. The rational basis functions and NURBS curve are given
by:

Rp
i (ξ) =

Ni,p(ξ)wi∑n
i=1Ni,p(ξ)wi

, (11)

C(ξ) =
n∑
i=1

Rp
i (ξ)Bi. (12)

Rational surfaces and solids are defined analogously in terms of the rational
basis functions; see [32, 48, 52] for further details:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
i=1

∑m
j=1 Ni,p(ξ)Mj,q(η)wi,j

, (13)

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑n
i=1

∑m
j=1

∑l
k=1 Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k

. (14)

In the following, we summarize noteworthy properties of NURBS:

• NURBS basis functions formed from an open knot vector constitute a par-
tition of unity.
• The continuity and support of NURBS basis functions are the same as for

B-Splines.
• NURBS possess the property of affine covariance.
• If all weights are equal, NURBS become B-Splines.
• NURBS surfaces and solids are the projective transformations of tensor

product piecewise polynomial entities.

2.3 NURBS as a basis for Isogeometric Analysis

The isogeometric analysis framework, based on NURBS consists of the follow-
ing features:
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Finite Element Analysis Isogeometric Analysis

Nodal points Control points

Nodal variables Control variables

Mesh Knots

Basis interpolates nodal
points and variables

Basis does not interpolate
control points and variables

Approximate geometry “Exact” geometry

Polynomial basis NURBS basis

Gibbs phenomena Variation dimishing

Subdomains Patches

Compact support

Partition of Unity

Isoparametric concept

Affine covariance

Satisfy patch tests

Table 1
Comparison of Finite Element and Isogeometric Analysis properties.

• A mesh for a NURBS patch is defined by the product of knot vectors. For
example in three dimensions, a mesh is given by Ξ×H×Z.
• Knot spans subdivide the domain into “elements.”
• The support of each basis function consists of a small number of elements.
• The control points associated with the basis functions define the geometry.
• The isoparametric concept is invoked. The coefficients of the basis functions

are the degrees of freedom or control variables.
• Three different mesh refinement strategies are possible: analogues of h- and
p-refinement and the new higher-order k-refinement scheme.
• Element arrays constructed from isoparametric NURBS are assembled into

global arrays in the same way as finite elements (see [30], Chapter 2).
• Dirichlet boundary conditions are applied to the control variables. Homoge-

neous conditions are satisfied pointwise. For inhomogeneous conditions, the
boundary values must be approximated by functions lying in the NURBS
space; this results in “strong” but approximate satisfaction. Another option
is to impose Dirichlet conditions “weakly” (see, for example, [8]). Neumann
boundary conditions are satisfied naturally. The situation is very similar to
standard finite elements (see [30], Chapters 1 and 2).
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Table 1 summarizes the similar and different properties of isogeometric anal-
ysis and finite element analysis.

3 B̄ formulation for linear elasticity using NURBS

3.1 The boundary value problem of compressible and incompressible linear
elasticity

The boundary value problem of compressible elasticity for a body Ω is given
by the following:

Given f : Ω→ R3, g : Γg → R3, and h : Γh → R3, find u : Ω→ R3 such that:

divσ + f = 0 in Ω, (15)

u = g on Γg, (16)

σ · n = h on Γh, (17)

n is the exterior unit normal on Γ, the boundary of Ω, g is the prescribed
displacement on Γg and h is the prescribed traction on Γh, which form together
the boundary Γ = Γh ∪ Γg of Ω, and f is the body force. The stress tensor σ
is defined in terms of the strain tensor ε by the generalized Hooke’s law:

ε = ∇su =
1

2
(∇u +∇uT ) or εij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (18)

σ = c : ε or σij = cijklεkl (19)

The Einstein summation convention is employed for spatial indices through-
out.

In the compressible isotropic linear elastic case, Hooke’s law can be expressed
in terms of the Lamé parameters λ and µ by:

cijkl = λδijδkl + µ(δikδjl + δilδjk), (20)

σij = λuk,kδij + 2µεij, (21)

where

λ =
ν2µ

(1− 2ν)
, µ =

E

2(1 + ν)
, (22)

and ν is Poisson’s ratio and E is Young’s modulus.

Clearly, as ν → 1
2
, λ approaches infinity. The value ν = 1

2
thus represents

incompressibility. The constitutive equation needs to be modified in this case:

σij = −pδij + 2µεij, (23)
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where p, the hydrostatic pressure, is determined as part of the solution of
the boundary value problem. As p represents an additional unknown, the
kinematic condition of incompressibility must be introduced as an additional
equation:

divu = uk,k = 0 in Ω. (24)

However, to represent the nearly incompressible case, that is, the ratio λ/µ
is large but not infinite, the compressible theory can be applied with some
modifications in the discrete case.

3.2 Selective and reduced integration

Among the original techniques to successfully solve the nearly incompressible
case are selective and reduced integration techniques as presented in [28–30].
The basic idea of selective integration is to split the bilinear form of the varia-
tional formulation into its λ and µ contributions. Using vector representation
of tensors, and introducing the strain-displacement matrix B (see [30], chapter
2 for a definition of B), the element stiffness matrix is:

ke =

∫
Ωe

BT DBdΩ. (25)

The material properties matrix D can be split into its λ and µ parts:

D = µD̄ + λ ¯̄D, (26)

which results in the same split for the element stiffness matrix:

ke = µk̄e + λ¯̄ke. (27)

Since λ/µ � 1, the numerical values of the entries in the second matrix in
Eq. (27) tend to be very large compared with those of the first. The idea is to
use a standard Gauss quadrature rule to compute k̄e and a reduced (i.e., lower

order Gauss quadrature) rule on ¯̄ke to reduce the number of incompressibility
constraints. The simplest example is the piecewise bilinear quadrilateral ele-
ment in plane strain for which the normal rule is the 2× 2 Gauss points rule
and the reduced rule is the one-point Gauss rule. Equivalence theorems be-
tween reduced/selective integration elements and mixed formulation elements
have been obtained by Hughes and Malkus [28, 35, 45]. These theorems show
that selective and reduced integration techniques are a simple way of attaining
the performance of mixed methods without engendering unwanted degrees of
freedom. This seems to be a primary reason why these techniques are used in
large-scale and commercial codes [43, 44].
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3.3 Strain projection and the B̄ method

Some drawbacks of the selective and reduced integration rules are that the
equivalence theorems with mixed formulations are not valid in the axisym-
metric case and that these rules are difficult to generalize in anisotropic cases.
This can become a particular problem with nonlinear problems since the tan-
gent moduli always exhibits anisotropic character. These difficulties were over-
come by introducing a strain projection approach, referred to as the B̄ method
(Hughes [29]).

The main idea in the strain projection approach is to additively split the strain
tensor into its deviatoric and dilatational (i.e., volumetric) parts

ε(u) = εdev(u) + εdil(u), (28)

where

εdil(u) =
1

3
(divu) I or εdil

ij (u) =
1

3

∂uk
∂xk

δij, (29)

and I is the identity tensor.

To achieve an effective formulation in the nearly incompressible case, the di-
latational part is replaced by an “improved” dilatational contribution (e.g., a
“projected” one), using a linear projection operator π

ε̄dil(u) = π
(
εdil(u)

)
. (30)

In terms of B, the strain-displacement matrix, we have

B̄ = Bdev + B̄dil, (31)

with

Bdev = B−Bdil. (32)

3.3.1 Weak form of the B̄ method

Let us recall the usual principle of minimum potential energy to obtain the
weak form in linear elasticity. We start by defining the trial and weighting
spaces S = {u | u ∈ H1(Ω),u|Γg = g} and V = {w | w ∈ H1(Ω),w|Γg = 0}.
Given u ∈ S the potential energy is defined by:

Π(u) =

∫
Ω

Ψ(ε(u))dΩ−
∫

Ω

u · fdΩ−
∫

Γh

u · hdΓ, (33)
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where Ψ is the strain energy density:

Ψ(ε(u)) =
1

2
cijklεij(u)εkl(u). (34)

Minimizing the potential energy is equivalent to satisfying the variational
equation, or weak form; that is given u ∈ S, w ∈ V and ε ∈ R,

∂Π(u + εw)

∂ε
|ε=0= 0⇔ a(w,u) = (w, f) + (w,h)Γh , (35)

where

a(w,u) =

∫
Ω

εij(w)cijklεkl(u)dΩ, (36)

(w, f) =

∫
Ω

u · fdΩ, (37)

(w,h)Γh =

∫
Γh

u · hdΓ. (38)

Considering now the potential energy in terms of the modified strain tensor
ε̄:

Π̄(u) =

∫
Ω

Ψ(ε̄(u))dΩ−
∫

Ω

u · fdΩ−
∫

Γh

u · hdΓ, (39)

and recalling that ε̄ is a linear operator, one can write:

ε̄(u + εw)) = ε̄(u) + εε̄(w). (40)

Therefore, the directional derivative of the modified strain energy density is
given by:

∂Ψ(ε̄(u + εw))

∂ε
|ε=0=

∂Ψ

∂εij
(ε̄(u)) ε̄ij(w), (41)

which allows us to define the modified stress tensor as:

σ̄ij = cijklε̄kl. (42)

The minimization of the modified potential energy finally becomes:

0 =

∫
Ω

ε̄ij(w)cijklε̄kl(u)dΩ−
∫

Ω

w · fdΩ−
∫

Γh

w · hdΓ, (43)

which represents the variational equation for the B̄ method. The first integral
in Eq. (43) is a bilinear form, and expressing it the following way,

ā(w,u) =

∫
Ω

ε̄ij(w)cijklε̄kl(u)dΩ, (44)
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the B̄ variational formulation can be stated as:

Find u ∈ S, such that ∀w ∈ V
ā(w,u) = (w, f) + (w,h)Γh . (45)

3.4 B̄ and higher-order NURBS

3.4.1 Projection operator and space with NURBS

The use of the B̄ method within isogeometric analysis requires further inves-
tigation into the choices of the projection operator and the associated space
onto which the projection will be performed. Since the technique has been
applied mostly to piecewise bilinear and trilinear finite elements, and we want
to make intensive use of the properties of high-order k -refined NURBS, these
topics need to be studied without any assumption on the order of approxima-
tion.

In the discrete case, we have

uh(x) =
n∑

A=1

uANA(x), (46)

likewise

wh(x) =
n∑

A=1

wANA(x), (47)

where NA are the NURBS basis functions and uA and wA are the associated
control variables. This reduce to the usual shape functions and degrees of
freedom when classical finite elements are utilized.

In developing the B̄ method for higher-order finite elements and NURBS,
we need to define the linear projection operator and the spaces upon which
to project the dilatational strain. Throughout, we use the L2 projection of
the strains. For the spaces, we define the following procedure: assume the
displacement space is given. We shall refer to it as Qp, that is quadrilateral, or
hexahedral, elements of order p. The continuity of Qp elements within a patch
can be any order k from 0 to p−1. In this paper, we are particularly interested
in elements of maximal continuity, namely, Ck = Cp−1. We always assume an
open knot vector construction so that only C0 continuity is attained across
patch interface. The basis functions for the projected dilatational strain are
taken to be one order lower, and usually one order of continuity lower, namely
the space Qp−1, of continuity Ck = Cp−2. The only exception occurs when
p ≥ 2, but there are lines or surfaces of C0 continuity within a patch. In this
situation, the projected space is also taken to be C0 continuous across those
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lines or surfaces. There is nothing fundamental about this choice. It is simply
a convenience due to the data structure we employ in our code. In practice,
C0 lines or surfaces within a patch exist when conic sections such as circles,
are constructed by standard NURBS algorithms (see e.g., Piegl and Tiller [48]
and Hughes et al. [32]).

As an example of what our construction produces, consider the displacement
space Q1. This is the space of bilinear quadrilaterals, or trilinear hexahedra,
and is C0 continuous across element boundaries (which correspond to knots in
this case). The space for projected dilatational strain is then Q0, of continu-
ity class C−1, that is, piecewise constants. This element becomes the classical
mean dilatational element (see Hughes and Allik [31], Nagtegaal et al. [47]
and Hughes [30]) referred to, herein, as Q1/Q0. We wish to emphasize that we
recognize that there is no guarantee that our construction produces discrete
approximations satisfying the LBB condition (see e.g., [10, 11, 62]). In fact,
it is entirely obvious that this is the case, the Q1/Q0 element being a prime
example of an element that fails. However, despite the theoretical deficiency,
it must be noted that Q1/Q0 is without doubt the most utilized element in the
history of nonlinear structural finite element analysis, and it is widely used
in fluids as well. There are other practical issues at play here (see Hughes
[30]). We will say, however, that our construction produces a good balance
between the number of displacement degrees of freedom and number of di-
latational constraints on each patch. Asymptotically, “constraint ratios” are
2 in two dimensions and 3 in three dimensions, in all cases (see Hughes [30]
for a discussion of constraint ratios). But from the LBB perspective, we may
have slightly too many constraints, at least for some cases. We note that for
the discretizations of main interest herein, namely p ≥ 2, Qp/Qp−1, of inter-
nal patch continuity Cp−1/Cp−2, there are no known theoretical results, one
way or the other, at this point in time. However, results from the p-method
community seem to indicate that incompressible locking is not an issue for suf-
ficiently great p (see Suri [61], Szabó and Babus̆ka [62] and Szabó et al. [63]).
The construction we advocate takes a middle road. It does not reduce the
number of constraints sufficiently to satisfy the LBB condition for all cases,
but it does reduce it to a value that seems to attain a good balance in all
cases. Our experience with it is good, as the numerical results will indicate
in the sequel. On the other hand, our experience with higher-order elements
without projection is that they are overconstrained and not competitive with
the reduced constraint, projection elements advocated. Likewise, spectral ele-
ments of order Qp/Qp−2, and continuity class C0/C−1 are known to satisfy the
LBB condition [39], but convergence is suboptimal and the minimum-order
element is Q2/Q0. In fairness, the spectral element approach is focused on
very high-order elements and high precision applications exclusively, not the
low-order end of the spectrum. Nevertheless, in nonlinear structural analysis,
low-order elements are extremely important.
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Fig. 6. Basis functions Qp/Qp−1, p = 1, 2, 3, for a one-dimensional patch of four
elements. All cases attain continuity Cp−1/Cp−2.

We will now give the technical details of the construction of the spaces. On
each patch, open knot vectors are employed. Tensor product constructs are
utilized so we focus on the situation in each direction separately. The B-Spline
basis is completely determined from Eqs. (2) and (3). We need to specify the
order of the space and the knot vector. We begin with the displacement space,
assumed to be of order p ≥ 1. The knot vector, denoted Ξp, is assumed to
have the following form,

Ξp = {0, 0, ..., 0︸ ︷︷ ︸
p+1 copies

,Ξint, 1, 1, ..., 1︸ ︷︷ ︸
p+1 copies

}, (48)

where, for simplicity, we have assumed the initial and final knots are located
at 0 and 1, respectively. The multiplicities of the initial and final knots are
p+ 1. Ξint denotes the vector of internal knots. Each internal knot may have
a different multiplicity, allowable values being 1, 2, 3, ..., p. The case we are
primarily concerned with in this paper is each internal knot having multiplicity
1 which results in maximal smoothness of continuity class Cp−1 on each patch.
The corresponding knot vector for the projected space, denoted Ξp−1, is given
by

Ξp−1 = {0, 0, ..., 0︸ ︷︷ ︸
p copies

,Ξint, 1, 1, ..., 1︸ ︷︷ ︸
p copies

}. (49)

The order of the projected space is taken to be p − 1 ≥ 0. Note that the
internal knot vector is exactly the same as for the displacement space, whereas
the initial and final knots have multiplicity p. The span of the projected space
is precisely the span of the derivatives of all functions in the displacement
space. An example of the spaces Qp/Qp−1, p = 1, 2, 3, in the general case, for
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a one-dimensional patch of four elements, is given in Figure 6. We see that
Cp−1/Cp−2 continuity is achieved in all cases.
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Fig. 7. Basis functions Qp/Qp−1, p = 2, 3, with a point of C0 continuity within
the patch, for a one-dimensional patch of four elements. All cases attain continuity
Cp−1/Cp−2, except at the repeated knot ξ = 0.75 where the continuity is only C0.

The exception to the general case occurs when there are lines or surfaces of only
C0 continuity within a patch, as mentioned previously. Let us assume that Ξint

has one or more knots having multiplicity p, signifying C0 continuity. Then, in
the space Ξp−1, Ξint needs to be replaced with Ξ̃int, which is identical to Ξint

except for the knots having multiplicity p; in Ξ̃int these knots have multiplicity
p − 1, preserving C0 continuity of the projected space within each patch. An
example of the spaces Qp/Qp−1, p = 2, 3, with a point of C0 continuity inside
the patch, is given in Figure 7. Only C0 continuity is achieved across the
repeated knot ξ = 0.75, and Cp−1/Cp−2 continuity is achieved elsewhere on the
patch interior.

The construction of higher-dimensional B-Splines proceeds by assigning the
polynomial order and knot vector for each dimension. For example, in three
dimension, we have, Ξp ×Hq ×Zr and Ξp−1 ×Hq−1 ×Zr−1, where

Hq = {0, 0, ..., 0︸ ︷︷ ︸
q+1 copies

,Hint, 1, 1, ..., 1︸ ︷︷ ︸
q+1 copies

}, (50)

Hq−1 = {0, 0, ..., 0︸ ︷︷ ︸
q copies

,Hint, 1, 1, ..., 1︸ ︷︷ ︸
q copies

}, (51)

Zr = {0, 0, ..., 0︸ ︷︷ ︸
r+1 copies

,Zint, 1, 1, ..., 1︸ ︷︷ ︸
r+1 copies

}, (52)

Zr−1 = {0, 0, ..., 0︸ ︷︷ ︸
r copies

,Zint, 1, 1, ..., 1︸ ︷︷ ︸
r copies

}, (53)

and the internal knots in Hint and Zint may take multiplicities in the range
1, 2, 3, ..., q, and 1, 2, 3, ..., r, respectively. As before, if there are knots in Hint

and Zint having multiplicity q and r, then Hint and Zint need to be replaced
by H̃int and Z̃int, constructed in a similar fashion as to Ξ̃int.
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In practice, the NA’s are constructed as

NA(x) = N̂A ◦ φ−1(x), (54)

where {N̂} is a NURBS basis in parametric coordinates and φ is the exact
mapping between the parametric and geometric domains. We construct the
“tilde basis” {Ñ}, which corresponds to the projection space, by

ÑA(x) = ˆ̃NA ◦ φ−1(x), (55)

where { ˆ̃N} is the lower order NURBS basis built on the same parametric

domain. As described previously, we take the ˆ̃NA’s to be one order lower than
the N̂A’s to reduce the number of incompressibility constraints.

Note that, even in the case of lowest-order elements (i.e., bilinear and trilin-
ear), we still use the exact geometrical mapping. This means our lowest-order
elements are isogeometric and precisely fit curved boundaries. We believe that
Barth [3] was the first to use this approach, and to demonstrate its effective-
ness in compressible fluid calculations.

In the discrete case, Eq. (30) becomes:

ε̄dilij (uh) =
ñ∑

A=1

ÑAε̃
A
ij, (56)

where

ε̃Aij =
ñ∑

B=1

M̃−1
AB

(
ÑB, ε

dil
ij (uh)

)
Ω

=
ñ∑

B=1

M̃−1
AB

∫
Ω

ÑBε
dil
ij (uh)dΩ, (57)

that is

ε̄dilij (uh) =
ñ∑

A,B=1

n∑
C=1

ÑAM̃
−1
AB

∫
Ω

ÑB
∂NC

∂xk
dΩ uCk δij, (58)

and M̃ is the “mass” matrix of the tilde basis, namely

M̃AB =
(
ÑA, ÑB

)
Ω

=

∫
Ω

ÑAÑBdΩ. (59)

In summary, the procedure corresponds to L2 projection of εdilij onto the {Ñ}
basis.

3.4.2 Implementational aspects

We consider aspects of solving the global matrix system in this section.
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For an isotropic homogeneous linear elastic material, with Hooke’s law given
by Eq. (21), the discrete version of the bilinear form of Eq. (44) is given by:

ā(wh,uh) =
n∑

A,B=1

(
wAi

∫
Ω

NA
,j ĉijklN

B
,l dΩ uBk

+
1

3
(3λ+ 2µ)

ñ∑
C,D=1

wAi (NA
,i , ÑC)M̃−1

CD(ÑD, N
B
,k ) uBk

)
, (60)

where

ĉijkl = µ

(
δikδjl + δilδjk −

2

3
δijδkl

)
. (61)

Due to the inverse of M̃ , the second term in Eq. (60) increases the popula-
tion of the stiffness matrix on each patch for p ≥ 2. Note, we always assume
use of patches constructed with open knot vectors. This means that the dis-
placement field is continuous across patch interfaces, but no smoother. Conse-
quently, the tilde basis will be discontinuous across patches and M̃−1 will be
uncoupled from patch to patch. Nevertheless, if we use a direct solver to solve
the global equation system, we need to account for increased coupling of the
equations due to M̃−1 on each patch. There are at least two ways to circum-
vent the effect of the increased coupling. One is to use an iterative strategy
that does not require the assembly of the stiffness matrix, such as Conju-
gate Gradients, to solve the global problem. Within each conjugate gradient
iteration, a direct solver can be used to evaluate M̃−1 patch-wise, retaining
its sparse band-profile structure. This procedure can be used to solve very
large problems. We have used it extensively in our calculations and found it
to be very efficient. A second possibility is to replace M̃ with a diagonal, or
“lumped” approximation. This would only need to be done in the left-hand-
side matrix, and so would be interpreted as a preconditioner. In this case, the
band-profile structure of the preconditioner would be only slightly larger than
for the system constructed without projection. Using the consistent M̃ on the
right-hand-side would ensure the full accuracy of the projection procedure.
Convergence would require one or more iterations, but this involves only a
forward reduction and back substitution for each additional iteration with an
existing factorized array when employing a direct solver.

3.5 Numerical Examples

We consider NURBS displacement/projection spaces Qp/Qp−1 with p =
1,2,3,4. All internal knots have multiplicity 1, resulting in maximal smooth-
ness, that is Cp−1/Cp−2. For fixed p, we examine “h-refinement,” that is, we
subdivide the mesh by knot insertion. For a fixed mesh, we also consider
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k-refinement, that is, we increase p before inserting knots to obtain the desired
mesh. k-refinement produces very few additional degrees of freedom (i.e.,
control variables) as no internal knots are added and only the multiplicities
of the initial and final knots are increased by 1. This results in one layer of
additional degrees of freedom per dimension. For example, in a one-patch
three-dimensional mesh of 3n3 degrees of freedom, one level of k-refinement
results in (3n + 3)3 degrees of freedom (see Cottrell et al. [17] for further
details).

In the following we present two numerical examples for nearly incompress-
ible linear elasticity to demonstrate the proposed approach. Both are plane
strain two-dimensional problems but are solved using a three-dimensional for-
mulation with two linear functions in the out-of-plane direction and boundary
conditions enforcing the plane strain constraint.

3.5.1 Cook’s membrane

16mm

E = 240.565 MPa

F = 100 N/mm

ν = 0.4999
44mm

48mm

F

uy

Fig. 8. Geometry, loading, boundary conditions, material parameters and quantity
of interest for the plane strain Cook’s membrane.

This problem has been solved by many authors to test nearly incompressible
formulations under combined bending and shear (see, e.g., [14, 16, 19, 40]). A
tapered panel is clamped on one side and subjected to a uniform shear load
on the opposite side. The other sides are traction free. The geometry, loading
and boundary conditions are given in Figure 8. The quantity of interest is
the vertical displacement of the top right corner of the plate as presented in
Figure 8. Its convergence as a function of the number of elements per edge is
usually used as a criterion in investigating performance. The results are plotted
in Figure 9 for the four orders of approximation with the standard Galerkin
approximation, without any treatment of the incompressibility condition, and
with the proposed B̄ method. We observe, as expected, that the piecewise
bilinear quadrilateral element suffers from severe locking. Increasing the poly-
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Fig. 9. Cook’s membrane. Vertical displacement of top right corner versus number
of elements per edge with and without B̄ for various NURBS orders obtained from
k-refinement.
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nomial order of the NURBS functions improves the results, however, we can
see that C1 quadratic NURBS still suffer from locking for coarse meshes. The
use of B̄ significantly improves the results, and good convergence is attained
even with Q1/Q0. Note that the results obtained with Q1/Q0 are better than
Q2 and that Q2/Q1 gives better results than Q4. Finally, we observe that with
B̄ Q4/Q3 we obtain converged results with only a mesh of four elements.

It is also interesting to study convergence as a function of the number of un-
knowns. The results are shown in Figure 10, where a logarithmic scale has
been used for the abscissa. Note here, that in terms of unknowns, Q1/Q0 per-
forms almost the same as Q3 and Q4. We also see that the results with Q2/Q1

and Q3/Q2 are virtually equivalent in terms of unknowns and the best per-
formance is attained with Q4/Q3. These results demonstrate the superiority
of high-order k -refined NURBS: increasing the polynomial order and the con-
tinuity only slightly increases the number of unknowns, which enables us to
obtain very good results with only a few C3 quartic functions: for Q4/Q3, 4
elements and 36 degrees of freedom is enough to obtain the reference value,
whereas we need at least 1024 elements and 1089 degrees of freedom to obtain
about the same results with Q1/Q0.

3.5.2 Infinite plate with circular hole under in-plane tension

The next problem is a plane-strain infinite plate with a hole under tension.
This problem has been studied previously with isogeometric analysis in [32]
assuming an isotropic compressible linear elastic medium. It is interesting
from the geometrical point of view because quadratic NURBS can exactly
represent the circular hole and the existence of an analytical solution allows
us to focus on the convergence rates that the proposed method can attain
without geometrical approximation. In the nearly incompressible regime, this
problem has been of less interest than the previous one. Some results in the
incompressible limit using meshless methods can be found in [23, 27]. The
infinite plate is modeled by a quarter plate. The exact solution (Timoshenko
and Goodier [64], pp. 90-93) is evaluated at the boundary of the quarter plate
and applied as a Neumann boundary condition.

The exact solution is given by the following:

σrr(r, θ) =
Tx
2

(1− R2

r2
) +

Tx
2

(1− 4
R2

r2
+ 3

R4

r4
) cos 2θ, (62)

σθθ(r, θ) =
Tx
2

(1 +
R2

r2
)− Tx

2
(1 + 3

R4

r4
) cos 2θ, (63)

σrθ(r, θ) = −Tx
2

(1 + 2
R2

r2
− 3

R4

r4
) sin 2θ. (64)

The geometry, loading, boundary conditions and parameters are shown in
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Fig. 11. Geometry, loading, boundary conditions and material parameters for the
infinite plate with a hole under tension.

Figure 11. R is the radius of the hole, L the length of the finite quarter
plate, and Tx is the magnitude of the applied stress for the infinite case.
The value for ν was chosen to be very close to the incompressible case to
study the convergence of the B̄ isogeometric analysis in that case. A rational
quadratic basis is the minimum order capable of representing the geometry.
The sequence of meshes obtained from h-refinement used for the convergence
study are shown in Figure 12.

Fig. 12. Infinite plate with a hole: sequence of meshes produced by h-refinement.

The geometry of the coarsest mesh can be exactly represented by quadratic
NURBS. It consists of two elements, shown on the left of Figure 12, and is
defined by the knot vectors Ξ2 and H2, from which the knot vectors Ξ1 and
H1 are constructed to build the corresponding linear basis:

Ξ2 ×H2 = {0, 0, 0, 0.5, 1, 1, 1} × {0, 0, 0, 1, 1, 1}, (65)

Ξ1 ×H1 = {0, 0, 0.5, 1, 1} × {0, 0, 1, 1}. (66)

We define the relative error as the error normalized by the corresponding value
of the exact solution. Convergence results for the relative error in the L2 norm
of displacement, relative error in the L2 norm of stress, and relative error in
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the energy norm are shown in Figure 13. The cubic and quartic NURBS are
obtained from k -refinement of the coarsest quadratic mesh. The mesh param-
eter h is defined as the maximum distance, in the physical space, between
diagonally opposite knot locations. As can be seen, the B̄ method obtains
good convergence rates in the three norms with relatively coarse meshes. Note
that the standard displacement based formulation performs relatively poorly,
especially in the L2 norm of stress, and needs relatively fine meshes to attain
convergence rates equivalent to what is obtained with the B̄ formulation. Even
when seemingly optimal asymptotic rates of convergence are attained in the
case of the standard Qp elements, the error is orders of magnitude greater
than for the corresponding projected Qp/Qp−1 B̄ elements. For example, in
stress the difference is four orders of magnitude! This result clearly shows that
optimal rate of convergence is not the only issue to be considered.

4 F̄ formulation for nonlinear elasticity

4.1 Constitutive equations

The central idea in the development that we propose is, as done in the geo-
metrically linear case, to split the tensor that measures the deformation into
its deviatoric (volume preserving) and volumetric-dilatational parts. In the fi-
nite deformation case, the deformation gradient F is the relevant tensor, and,
contrary to the small deformation case, the split is multiplicative rather than
additive. This multiplicative decomposition has been exploited previously by
Flory [26], Hughes et al. [38], Simo et al. [54, 60] (within a three field Hu-
Washizu principle), and more recently by de Souza Neto et al. [20, 22] in an
alternative F̄ approach. The work we present here shares features with these
techniques. We want it to be a simple pure displacement formulation, but
having greater generality and a more rigorous theoretical base than previous
approaches.

We start by writing the multiplicative split of the deformation gradient:

F = FdilFdev, (67)

where
detF = J = detFdil and detFdev = 1, (68)

which leads to:
Fdev = J−1/3F and Fdil = J1/3I. (69)

We now define a modified deformation gradient F̄ in terms of the deviatoric
part of the deformation gradient Fdev and a modified dilatational part of the

30



deformation gradient F̄dil:

F̄ = F̄dilFdev, (70)

where

F̄dil = π(Fdil) = π(J1/3)I = J1/3I, (71)

with π a linear projection operator identical to the one proposed previously
for the linear case. We can finally write, keeping the “bar” notation for the
projection:

F̄ = αF, (72)

α =
J1/3

J1/3
. (73)

We assume hyperelastic homogeneous material behavior for which there exists
a free-energy function 3 Ψ that depends on the Cauchy-Green tensor C = FTF
and from which the second Piola-Kirchhoff stress tensor is derived as:

S = 2
∂Ψ(C)

∂C
(74)

The standard additive decomposition of Ψ (see for example [58]) into a volu-
metric part depending only on J and an isochoric part is used:

Ψ(J,C) = Ψdil(J) + Ψiso(J,C) (75)

4.2 Variational equation and weak form

Let B be the reference configuration of a body and B′ be its deformed config-
uration. We introduce a mapping φ : B → B′ that takes a point X ∈ B to a
point x = φ(X) ∈ B′. The displacement of a particle from its initial position
X to its current position x is given by

u(X) = φ(X)−X = x−X. (76)

The deformation gradient is the second order tensor defined by:

F(X) = ∇Xφ(X) =
∂φ(X)

∂X
. (77)

The boundary value problem for finite deformation elasticity for a body with

3 also called stored energy or strain energy function
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reference configuration B is given by the following:

Given F : B → R3, φ̄ : ∂φB → R3, and H : ∂HB → R3, find φ ∈ S such that:

∇X ·P + F = 0 in B, (78)

φ = φ̄ on ∂φB, (79)

P ·N = H on ∂HB, (80)

where N is the unit exterior normal on ∂B, the boundary of B, φ̄ is the
prescribed deformation on ∂φB and H is the prescribed Piola traction on ∂HB,
which form together the boundary ∂B = ∂φB ∪ ∂HB. F is the body force per
unit initial volume, S is the space of admissible deformations defined by

S = {φ : Ω→ R3 | det(∇Xφ) > 0, φ|∂φB = φ̄}, (81)

and P is the first Piola-Kirchhoff stress tensor:

P = FS. (82)

Corresponding to what was done previously in the geometrically linear case,
given the mapping φ ∈ S, the potential energy is given by

Π(φ) =

∫
B

Ψ(E(φ)) dV −
∫
B
φ · F dV −

∫
∂HB

φ · H dΓ, (83)

where E = 1
2
(FTF−I) is the Green-Lagrange strain tensor. The stationarity of

the potential energy leads to the variational equation for the finite deformation
case (see for example [58]).

We now introduce the modified potential energy

Π̄(φ) =

∫
B

Ψ(Ē(φ)) dV −
∫
B
φ · F dV −

∫
∂HB

φ · H dΓ, (84)

where the modified Green-Lagrange strain tensor is defined in terms of the
modified deformation gradient:

Ē =
1

2
(F̄T F̄− I). (85)

We write the stationarity of the modified potential energy:

∂Π̄(φ+ εW)

∂ε
|ε=0= 0, (86)

where φ ∈ S, W ∈ V = {W : B → R3 |W|∂φB = 0} and ε ∈ R.
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We need to compute the directional derivative of the strain energy density,
keeping in mind that the projection operator is linear:

∂Ψ(Ē(φ+ εW))

∂ε
|ε=0=

∂Ψ(E)

∂EIJ

(Ē(φ)) ·
(
∂ĒIJ(φ+ εW)

∂ε
|ε=0

)
(87)

The calculation of the directional derivative of the modified Green-Lagrange
strain tensor is presented in Appendix A, the result is:

∂Ē(φ+ εW)

∂ε
|ε=0 = DĒIJ(φ) ·W

=
1

3

(
π(J1/3∇x ·W)

J1/3
−∇x ·W

)
F̄T F̄

+ α
(
F̄T∇XW

)
, (88)

where α is defined in Eq. (73).

We then define the modified second Piola-Kirchhoff stress tensor

S̄IJ(φ) = SIJ(Ē(φ)) =
∂Ψ(E)

∂EIJ
(Ē(φ)), (89)

and Eq. (87) becomes

S̄IJDĒIJ(φ) ·W = S̄IJ

{
1

3

(
π(J1/3∇x ·W)

J1/3
−∇x ·W

)
F̄T F̄ + α(F̄T∇XW)

}
IJ

.

(90)

where ∇x ·W = tr(∇XWF−1) (see Eq. (B.15) in Appendix B).

Defining the modified first Piola-Kirchhoff stress tensor as

P̄iI = F̄iJ S̄IJ , (91)

and introducing the following notation

Wi,I = αWi,I +
1

3

(
π(J1/3∇x ·W)

J1/3
−∇x ·W

)
F̄iI , (92)

we rewrite Eq. (90) as

S̄IJDĒIJ(φ) ·W = P̄iIWi,I . (93)

We introduce the modified Cauchy stress tensor, and push forward to the
current configuration Eq. (93)

σ̄ =
1

J
F̄S̄F̄T , (94)
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P̄iIWi,I = Jσ̄ijwi,j, (95)

where

wi,j = wi,j +
1

3

(
π(J1/3∇x ·w)

J1/3
−∇x ·w

)
δij (96)

Note that, for all geometrical transformations, we use J = detF, not detF̄.

The symmetrical part of Eq. (96) can be written in direct notation:

(
∇xw

)sym
= (∇xw)sym +

1

3

(
π(J1/3∇x.w)

J1/3
−∇x.w

)
I,

= ε(w) +
1

3
(tr [ε̄(w)]− tr [ε(w)]) I,

= ε(w) + ε̄dil(w)− εdil(w),

= ε̄(w). (97)

Thus, we can write the stationarity of the modified potential energy given in
Eq. (86) pushed forward to the deformed configuration as

0 =

∫
B′
σ̄ij(φ)ε̄ij(w)dv −

∫
B′
wifidv −

∫
∂hB′

wihidγ, (98)

where f ◦ φ = F , and (h ◦ φ)dγ = HdΓ. This is the finite deformation coun-
terpart of Eq. (43), and leads to the corresponding variational formulation.

Find φ ∈ S, such that ∀w ∈ Vφ
ā(w,φ) = (w, f) + (w,h)∂hB′ , (99)

where ā(w,φ) is the first integral in Eq. (98) and Vφ = {w ◦ φ : Ω →
R3 | w ◦ φ|∂φB = 0} is the tangent space to S at φ.

4.3 Linearized operator

To solve the resultant nonlinear problem, we derive the corresponding con-
sistent linearized operator (see Hughes and Pister [36] and Simo and Hughes
[53]) that will be used in the iterative Newton algorithm. Taking inspiration
from the linearized operator for the standard compressible finite deformation
case and the geometrically linear B̄ theory, we might expect to attain the usual
linearized operator in terms of “barred” quantities, namely,∫

B′
(wi,j cijkl uk,l + wk,j σij uk,i) dv (100)

However, as observed by Simo et al. [60], we also find that the structure of the
tangent operator associated with the projection method in the fully nonlinear
case leads to additional “unexpected” terms.
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To obtain the tangent operator we need to compute the directional deriva-
tive of the internal virtual work given by the first integral in Eq. (98), or its
reference configuration version given in Eq. (90):

∫
B

∂
[
S̄IJ(φ+ εU)DĒIJ(φ+ εU).W

]
∂ε

|ε=0 dV (101)

This calculation is rather complex and is presented in detail in Appendix B.
The complete linearized operator is given in the following expression:

∫
B′
wi,j c̄ijkluk,ldv +

∫
B′
wk,jσ̄ijuk,idv

+

∫
B′
σ̄ij

(
1

3
(∇x · u−∇x · u)wi,j +

1

3
(∇x ·w −∇x ·w)ui,j

+
1

9
(∇x · u−∇x · u)(∇x ·w −∇x ·w)δij

+
1

9
(∇x · u ∇x ·w −∇x · u ∇x ·w)δij

+
1

3
tr
[
∇xu∇xw −∇xu∇xw

]
δij

)
dv, (102)

where the notations introduced in Eqs. (B.5), (B.20) and (B.21) have been
used. Note that, contrary to the F̄ approach presented in de Souza Neto et al.
[20, 22], the proposed method leads to a symmetric linearized operator.

Remark 1 From the implementational point of view, the same problems con-
cerning the sparsity structure of the global system that were noted in the linear
case arise here too. The “expected” contributions to the linearized operator,
that is, the terms in Eq. (100), require a modification of the sparsity structure
of the system equivalent to what is needed in the linear case. The additional
“unexpected” terms require much more computational and storage effort be-
cause of terms involving projections of quantities that depend both on the
weighting and solution spaces. However, the same strategy as in the linear case
can be used. Although this requires the assembly of more “mixed” terms, the
computational and storage cost of matrix-vector products is in our experience
much smaller than the computation and assembly of the global matrix.

The discrete form of the consistent tangent operator given in Eq. (102) is
presented in Appendix C.
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5 Numerical examples in the nonlinear regime

The performance of the proposed F̄ methodology is numerically assessed in this
section. The first example, which is a nonlinear generalization of the Cook’s
membrane problem presented earlier, is widely used in the literature. Other
two- and three-dimensional examples found in the literature are presented and
results are compared with the other techniques mentioned in the introduction.

5.1 Cook’s membrane

The setup of the nonlinear Cooke’s membrane example is similar to the one
previously presented in the geometrically linear case. The geometry, loading
and boundary conditions are given in Figure 8. This example has been solved
in References [2, 14, 19, 20, 22, 41, 42, 46, 50, 57] with enhanced assumed
strain methods, the F̄ method of de Souza Neto et al., and stabilized mixed
formulations.

The material model used is Neo-Hookean following the additive decomposition
of the stored energy function given in Eq. (75). The isochoric and volumetric
parts of Ψ are (see, e.g., [58]):

Ψ(J,C) = U(J) + Ψiso(J−2/3C) (103)

U(J) =
1

2
κ

(
1

2
(J2 − 1)− ln J

)
(104)

Ψiso(J−2/3C) =
1

2
µ
(
J−2/3tr[C]− 3

)
(105)

where κ is the bulk modulus and µ the shear modulus. Following Reference
[20], the values for the material parameters are κ = 40.0942 × 104MPa and
µ = 80.1938MPa which corresponds to a Poisson ratio of ν = 0.4998. The load
value is identical to the one used in the linear case, that is, F = 100N/mm. The
quantity of interest is again the vertical displacement of the top right corner
of the plate. The convergence as a function of the number of elements per edge
and total number of degrees of freedom are used as criteria to investigate the
performance of the method. The results for the vertical displacement versus
the number of elements per edge are given in Figure 14 and the ones for the
vertical displacement versus the total number of degrees of freedom are given
in Figure 15.

The results are similar to the ones obtained with the B̄ method in the linear
case. The converged result obtained for quartic NURBS functions is very close
to values obtained with previously published results. Without any treatment of
the incompressibility condition, increasing the polynomial order of the NURBS
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edge with and without F̄ for various NURBS orders obtained from k-refinement.

T
op

ri
gt

h
co

rn
er

d
is

p
la

ce
m

en
t

/
m

m

F̄ Q2/Q1

4.5

5

5.5

6

6.5

7

7.5

100 1000

Number of Degrees Of Freedom
10

F̄ kref Q4/Q3

No F̄ Q1
No F̄ kref Q2
No F̄ kref Q3
No F̄ kref Q4
F̄ Q1/Q0
F̄ kref Q2/Q1
F̄ kref Q3/Q2

No F̄ Q2

F̄ Q1/Q0

No F̄ Q3

No F̄ Q4

F̄ Q4/Q3F̄ Q3/Q2

Fig. 15. Vertical displacement of top right corner versus number of degrees of free-
dom with and without F̄ for various NURBS orders obtained from k-refinement.
Note that Q1 results without F̄ are not shown on the figure.

37



functions improves the results, however, we can see that C1 quadratic NURBS
still suffer from locking for coarse meshes: we need a 32×32 elements mesh to
attain the converged result. The use of F̄ significantly improves the results, and
good convergence is attained even with Q1/Q0. Note that the results obtained
with Q1/Q0 are better than Q2 and that Q2/Q1 give better results than Q3.
For high-order NURBS with F̄, we obtain converged results with very coarse
meshes. The results in term of displacement versus total number of degrees
of freedom show again the advantages of k -refinement. Note that in terms of
unknowns, Q2/Q1 is more accurate than Q4. Q3/Q2 and Q4/Q3 give better
results still, but the improvement over Q2/Q1 is not as great as in the linear
case.

Iteration number Relative norm of the residual

1 1.00000000×10−1

2 9.99179792×10−2

3 1.31723792×10−2

4 9.23073640×10−3

5 3.33352491×10−7

Table 2
Cook’s membrane. Evolution of the relative norm of the residual during the last
Newton step for a 8× 8 elements mesh with the proposed F̄ technique with Q1/Q0.

We finally investigate the behavior of the consistently linearized operator de-
scribed previously. We see in Table 2 the evolution of the relative Euclidian
norm of the residual over the iterations for the last loading step for an 8 × 8
element mesh with the proposed F̄ technique with Q1/Q0. This illustrates that
the tangent matrix obtained from the consistent linearization of the problem
results in quadratic convergence rate. The doubling of zeros behind the decimal
point as we get very close to the solution is typically seen in our calculations.

5.2 Plane strain compression of a block

The next example is the plane strain compression of a rectangular block. This
problem has been studied in Reference [50] as a severe benchmark for enhanced
element formulations as they often exhibit locking in such situations [2, 21].
The geometry, loading and boundary conditions are given in Figure 16. For
symmetry reasons, only one half of the specimen needs to be considered.

The material model is Neo-Hookean with a slightly different stored energy
function than the one used in the previous example:

Ψ(J,C) =
1

2
µ (tr[C]− 3)− µ ln J +

1

4
κ
(
J2 − 1− 2 ln J

)
(106)
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Fig. 16. 2D plane strain compression test: geometry, boundary conditions, loading,
and typical results of Von Mises Stress field on the deformed configuration.

Following Reference [50], the values for the material parameters are κ =
400889.806MPa and µ = 80.194MPa. The load factor p/p0 is increased by
steps of 0.5 with a reference value of p0 = 20MPa (a unit thickness is consid-
ered). Note that a “dead” load is considered as shown in Figure 16, that is,
one assumes a fixed vertical surface load specified on the reference configura-
tion during the entire deformation of the structure. The Dirichlet boundary
conditions are the following: no vertical displacement on the bottom and no
horizontal displacement on the top. The quantity of interest is the compres-
sion level of the upper middle point. The evolution of the compression level
versus the number of elements per edge for loading ratios from p/p0 = 10 to
p/p0 = 60 is studied.

In Figure 17, we compare the results obtained with the proposed F̄ approach
with linear elements (i.e.,Q1/Q0) with the mixed element, referred to asQ1/P0

(on the left), and with the enhanced element Q1SP , both from [50]. For all
loading levels, convergence is attained for meshes of 16× 16 elements or less.
Note that, with coarse meshes, the F̄ method performs better than both the
Q1/P0 and Q1SP elements at high compression levels while at low compression
levels the situation is reversed. Results obtained with the proposed F̄ approach
for linear, quadratic and cubic NURBS (i.e., Q1/Q0, Q2/Q1 and Q3/Q2) are
then compared in Figure 18. Although quadratic and cubic functions tend to
produce a stiffer response than linears, we can see that in all cases we reach
convergence for 16×16 element meshes. Quadratic and cubic NURBS produce
better results for coarser meshes. Note that the jump from Q2/Q1 to Q3/Q2

only slightly improves the results as was observed for the previous example.
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Fig. 17. Compression level in % versus number of elements per side for the two-di-
mensional plane strain block for various load levels. Left side: F̄ Q1/Q0 compared to
the mixed u-p formulation Q1/P0 (results from [50]). Right side: F̄ Q1/Q0 compared
to the stabilized element Q1SP (results from [50]).

5.3 Three-dimensional compression of a block

The next example is the three-dimensional generalization of the previous one.
It was studied in Reference [51] as a benchmark for the three-dimensional ver-
sion of the Q1SP element. This problem is of interest to test the performance
of enhanced elements in three dimensional compression cases. The geometry,
loading and boundary conditions are given in Figure 19, along with a typi-
cal plot of the Von Mises stress field on the final deformed configuration. For
symmetry reasons, only one quarter of the specimen is considered.

The material model is Neo-Hookean with a somewhat different stored energy
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Fig. 19. 3D compression test: geometry, boundary conditions, loading, and typical
results of the Von Mises stress field on the deformed configuration.

function than the previous ones:

Ψ(J,C) =
1

2
µ (tr[C]− 3)− µ ln J +

1

2
κ (ln J)2 . (107)

Following Reference [51] the values for the material parameters are κ =
400889.806MPa and µ = 80.194MPa. Loading factors from p/p0 = 20 to
p/p0 = 80 are studied with a reference value of p0 = 4MPa. Note that a
“dead” load is considered as shown in Figure 19, that is, one assumes a fixed
vertical surface load specified on the reference configuration during the entire
deformation of the structure. The Dirichlet boundary conditions are: no ver-
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tical displacement on the bottom surface and no horizontal displacement on
the top surface.
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Fig. 20. Compression level in % versus number of elements per side for the three-di-
mensional block for various load levels. Left side: F̄ Q1/Q0 compared to the mixed
u-p formulation Q1/P0 ([51]). Right side: F̄ Q1/Q0 compared to the stabilized ele-
ment Q1SP ([51]).

The quantity of interest is the compression level of the upper center point. The
evolution of the compression level versus the number of elements per edge for
various loading ratios is studied.

In Figure 20, we compare the results obtained with the proposed F̄ approach
with linear elements (i.e., Q1/Q0) with the mixed element Q1/P0 (on the left)
and with the enhanced element Q1SP , both from [51]. We can see that con-
vergence is obtained for meshes of 8 × 8 × 8 elements and that with coarser
meshes the results obtained with Q1/Q0 are almost identical to the ones ob-
tained with Q1/P0. Results obtained with linear, quadratic and cubic NURBS
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orders obtained from k-refinement.

are presented in Figure 21. As for the two-dimensional case, quadratic and
cubic functions tend to give a stiffer response than linear functions. Never-
theless, results are sligthly better with the higher-order functions than with
linear functions. The improvement obtained by going from quadratic to cubic
NURBS is quite pronounced, especially for the coarse 2× 2× 2 element mesh.

5.4 Thick cylindrical shell

In the fourth example, we consider a geometry which cannot be represented
exactly by piecewise linear polynomials. It involves the compression of a thick
hollow cylinder, for which the exact initial geometry can be obtained with
quadratic NURBS. This example was treated in [13, 51] and interest was
focused on comparisons with shell formulations and shear locking. As we
have seen in the Cooke’s membrane problem, the proposed method is able
to avoid both volumetric and shear locking. We note for this case that the
usual Galerkin formulation using cubic and quartic functions also produced
good results, without evidence of volumetric locking. The reason for this is
that the traction-free cylindrical surfaces alleviate the tendency to lock. This
tendency is also seen in plane stress analyses where there is no locking problem
whatsoever. However, using the F̄ method in conjunction with these high-order
functions improves the results further. Therefore, we consider the thick cylin-
der with a compressible material in a bending case where shear locking is
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Fig. 22. Thick cylindrical shell: geometry, loading, boundary conditions and typical
results for the shear component σyz of the Cauchy stress tensor on the deformed
configuration (note that the scale has been reduced to see the interesting features).

expected to occur to further assess this observation.

The geometry, boundary conditions, loading, and a typical result of the shear
stress component σyz of the Cauchy stress tensor on the final deformed config-
uration are given in Figure 22. As in [51], we use only one quadratic element
through the thickness, which is enough to capture the bending behavior. Be-
cause of symmetry, only one fourth of the structure is considered. The mate-
rial model considered is the same as in the previous example with parameters
κ = 240000MPa and µ = 6000MPa, which corresponds to a Poisson’s ratio
of ν = 0.4, therefore no volumetric locking is expected. Note that again a dead
load is considered as shown in Figure 22, that is, one considers a fixed vertical
line load specified on the reference configuration during the entire deformation
of the structure. The quantity of interest is the vertical displacement of point
A shown in Figure 22.

The results of the vertical displacement at point A are shown in Figure 23,
where we compare the results obtained with and without F̄ with C1-quadratic
and C2-cubic NURBS, Q1SP and the enhanced assumed strain nonlinear shell
element proposed in [13], versus the number of elements in the circumferential
direction. As in [51], we used the following sequence of meshes (circumference
× thickness × axis): 4×1×2, 8×1×4, 16×1×8, 32×1×16 that were obtained
from k-refinement. We can see that all cases are converging to approximately
the same value obtained in [51] with both Q1SP and shell elements, and that
cubic functions give better results especially for the coarsest meshes. The use
of F̄ with quadratic functions improves the results by approximatively 50% for
the coarse mesh, and 10% for the next mesh. Note also that, for cubic NURBS,
the use of F̄ improves the results for the coarse mesh by approximatively 10%,
and that the two curves collapse for the third discretization.
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Fig. 23. Vertical displacement of point A versus number of elements in the circum-
ferential direction with and without F̄ for various NURBS orders obtained from
k-refinement, for Q1SP (results from [51]) and for an enhanced assumed strain
nonlinear shell element (results from [13, 51]).

5.5 Pinched torus

The last example again exploits the ability of NURBS to exactly represent
conic sections. It consists of the pinching of a toroidal solid, and is similar to
an example proposed in [14].

Shear modulus µ 5.67 MPa

Bulk modulus κ 2.8333 103 MPa

Inner radius r 8 m

Outer radius R 10 m

Reference pressure p0 0.195 MPa

BC in plane x = 0 ux = 0

BC in plane y = 0 uy = 0

BC in plane z = 0 uz = 0
Table 3
Pinched torus: material properties and boundary conditions.

The geometry, loading, boundary conditions and mesh are shown in Figure 24,
and the material parameters are given in Table 3. The same Neo-Hookean ma-
terial model as for the Cook’s membrane is considered, which corresponds to a
Poisson’s ratio of ν = 0.4998. Due to symmetry condition, only one quarter of
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the structure is considered, with the corresponding symmetry boundary con-
ditions applied. The quarter mesh with 4×16×2 elements (that is 4 elements
in the “large” circumferential direction, 16 elements in the “small” circum-
ferential direction and 2 elements in the radial direction) shown in Figure 24
with quadratic and cubic NURBS is used.

The σxx and σzz components of the Cauchy stress tensor plotted on the fi-
nal deformed configuration with and without F̄ for C1-quadratic and C2-cubic
functions are shown in Figure 25. The differences on the final deformed con-
figurations show that Q2 without F̄ suffers form locking. Although F̄ Q2/Q1

and Q3 without F̄ look similar, we can see that F̄ Q3/Q2 improves the result.
The stress contours for the component σxx of the Cauchy stress tensor shows
typical oscillations due to locking for Q2 without F̄. These oscillations are not
observed in the three other cases for this component. However, we can see on
the bottom part of Figure 25, that oscillations are present for both quadratic
and cubic meshes without F̄ for the component σzz of the Cauchy stress ten-
sor. Note that, for both components and both orders of approximation, the
results with F̄ do not present such oscillations: the stresses are smooth and
very similar for Q2/Q1 and Q3/Q2.

The vertical displacement at point A for quadratic and cubic functions with
and without F̄ versus the loading step is shown in Figure 26. We also see that
Q2 suffers from locking and that at the final load the difference between Q2 and
Q2/Q1 is approximatively of 50%. As we increase the order of approximation
without F̄, we see that the results converge to those of Q2/Q1. Using C2 cubic
functions without F̄ significantly improve the results which are very close to
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Fig. 25. Pinched torus: component (a) σxx and (b) σzz of the Cauchy stress tensor
on the deformed configuration with and without F̄ for C1-quadratic functions and
C2-cubic functions (note that the scales have been reduced to see the interesting
features).

47



those of Q2/Q1. However, we can see that F̄ Q3/Q2 improves the result further.
Note that, h-refining the mesh in the circumferential direction, that is, using
a mesh of 8 × 16 × 2 elements, and F̄ Q2/Q1 allows us to obtain exactly the
same results as for F̄ Q3/Q2 on the cruder mesh.
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Fig. 26. Pinched torus: vertical displacement at point A versus load step number
with and without F̄ for various NURBS orders obtained from k-refinement.

5.6 Elastic-plastic Cook’s membrane

We present some preliminary results for elastic-plastic behavior at finite strain
with the proposed F̄ approach. We consider the same hyperelastic extension of
J2-flow theory with poly-convex hyperelastic uncoupled stored energy function
and nonlinear isotropic hardening as in Simo [55, 56] and Simo and Hughes
[58]. It consists of a Neo-Hookean model for the elastic part, and an associative
flow rule based on a Von Mises yield criterion with isotropic hardening follow-
ing a saturation law for the plastic part. The nonlinear isotropic hardening
rule is defined by the following equation:

k(α) = σ0 + (σ∞ − σ0)[1− exp(−δα)] +Kα, with δ > 0, (108)

where σ0 is the initial flow stress, σ∞ is the saturation flow stress, δ is the sat-
uration exponent, K is the linear hardening coefficient, and α is the equivalent
plastic strain.
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The Neo-Hookean material model and boundary conditions are identical to
the ones previously used for this problem, and the load value is chosen to be
F = 5N/mm. The material parameters are those used in Simo and Armero
[57], and are presented in Table 4.

Shear modulus µ 80.1938 MPa

Bulk modulus κ 164.21 MPa

Initial flow stress σ0 0.450 MPa

Saturation flow stress σ∞ 0.715 MPa

Saturation exponent δ 16.93

Linear hardening coefficient K 0.12924 MPa
Table 4
Elastic-plastic Cook’s membrane: material properties.

The results, shown in Figure 27 for the vertical displacement of the top right
point versus number of elements per side, compare well to those obtained in [2,
57]. Similar convergence behavior, when increasing the order of approximation
with the proposed F̄ method, to those obtained in the nearly incompressible
linear and nonlinear elastic cases is obtained. One can also see the equivalent
plastic strain for a 16×16 element mesh with F̄ using cubic NURBS functions
in Figure 28.
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Fig. 27. Nonlinear elastic-plastic Cook’s membrane with nonlinear isotropic hard-
ening. Vertical displacement of top right corner versus number of elements per edge
with and without F̄ for various NURBS orders obtained from k-refinement.
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6 Conclusions

In this paper we have presented B̄ and F̄ projection methods for nearly incom-
pressible small deformation and large deformation elasticity in the framework
of isogeometric analysis. These methods make use of the higher continuity
property of high-order NURBS obtained from k -refinement, a unique feature
of isogeometric analysis. We first presented an extension of the well known
B̄ method in this context. This allowed us to concentrate on the choice of
projection spaces and techniques to solve problems with higher-order func-
tions. The results obtained showed the efficacity of the projection methods
to solve nearly incompressible problems with a pure displacement formulation
using higher-order functions with higher continuity. The small increase in the
number of unknowns when increasing the order of approximation within the
k -refinement process (contrary to p-refined finite elements) was also shown to
be an interesting feature of isogeometric analysis.

This study demonstrates that the good properties of NURBS previously ob-
served in other applications are also present with projection methods. The
recent work on the use of high continuity functions (especially C1 quadrat-
ics) compared with C0 functions, in fluid mechanics [1, 4, 5] and structural
vibrations [18], gives us a better understanding of the effect of increased con-
tinuity on approximation. We anticipate that such properties could provide
interesting improvements in large scale nonlinear solid mechanics.
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As a first step, we proposed a new F̄ projection method to treat the in-
compressibility constraint in the geometrically nonlinear regime. Although it
shares features with the F̄ method of de Souza Neto et al. [20, 22], we think
of it as a more theoretically sound method since it is based on a modified
minimum potential energy principle and leads to a symmetric consistent tan-
gent which is not the case with the method of de Souza Neto et al. Moreover,
the method does not make any assumption on the polynomial order of the
approximation space and is therefore not limited to piecewise linear elements.

The numerical results show that the method compares well with previously
published methods, especially for the Cook’s membrane problem for which we
obtained virtually identical results to those of [20, 22] with piecewise linear
functions. We also investigated two- and three-dimensional compression prob-
lems where the limits of enhanced strain elements are usually reached, and
we observed good performance of the F̄ isogeometric formulation even with
low order functions. The ability of the method to overcome shear locking for
quadratic and higher-order basis functions was also demonstrated although
no particular attention was paid to that topic in the design of the method.
Finally, some preliminary calculations considering an elastic-plastic behavior
coupled with the proposed F̄ method were presented, and show very promising
results.

The proposed approach takes advantage of a simple pure displacement, pro-
jection method and high-order k -refined NURBS in the isogeometric analysis
framework. It opens a new door to the use of precise CAD geometry rep-
resentations and higher-continuity properties of NURBS-based isogeometric
analysis in nonlinear structural mechanics applications. Areas of further re-
search in structural mechanics needed include continuing the investigation of
the approach initiated herein with elastic-plastic materials, and extending it
to frictional contact.
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A Directional derivative of the modified Green-Lagrange strain
tensor

To obtain the directional derivative of Ē, we first need to compute the deriva-
tive of the modified deformation gradient F̄:

∂F̄(φ+ εW)

∂ε
|ε=0 =

∂

∂ε

[
J1/3(φ+ εW)

J1/3(φ+ εW)
F(φ+ εW)

]
|ε=0 (A.1)

Using the linearity of the projection operator and expanding the former ex-
pression, we get:

∂F̄(φ+ εW)

∂ε
|ε=0 =

1

3J1/3(φ)

{
π
(
J1/3(φ)∇x ·W

)
− J1/3(φ)∇x ·W

}
F

+
J1/3(φ)

J1/3(φ)
∇XW (A.2)

For simplicity, we make use of the notation introduced in Eq. (73):

α =
J1/3(φ)

J1/3(φ)
, (A.3)

and therefore Eq. (A.2) becomes:

DF̄(φ) ·W = α∇XW +
1

3

(
π(J1/3(φ)∇x ·W)

J1/3(φ)
−∇x ·W

)
F̄. (A.4)

The definition of the modified Green-Lagrange strain tensor in terms of the
modified deformation gradient is used in conjunction with the previous equa-
tion:

2DĒ(φ) ·W =
(
DF̄(φ) ·W

)T
F̄(φ) + F̄T (φ)DF̄(φ) ·W, (A.5)

which finally allows us to write:

DĒ(φ) ·W =
1

3

(
π(J1/3(φ)∇x ·W)

J1/3(φ)
−∇x ·W

)
F̄T F̄ + α

(
F̄T∇XW

)sym

(A.6)
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B Consistent linearized operator

We begin by recalling Eq. (101):

∂
[
S̄IJ(φ+ εU)DĒIJ(φ+ εU) ·W

]
∂ε

|ε=0 =
∂S̄IJ
∂EKL

(
DĒKL ·U

) (
DĒIJ ·W

)
+ S̄IJD

(
F̄iJWi,I

)
(B.1)

We focus on the first term of this equation. We define the modified fourth
order material tensor as we previously defined Eq. (89), the modified second
Piola-Kirchhoff stress tensor:

C̄IJKL = CIJKL(Ē) =
∂2Ψ

∂EIJEKL
(Ē(φ)) =

∂SIJ
∂EKL

(Ē) =
∂SIJ
∂EKL

(B.2)

Using the result from Appendix A (i.e., Eq. (A.6)), the first term of Eq. (B.1)
becomes

C̄IJKLF̄iJWi,IF̄jLUj,K . (B.3)

As done previously, we can push forward this equation to the current config-
uration using:

Wi,I = wi,kF̄kI = α

(
wi,k +

1

3

[
∇x ·w −∇x ·w

]
δik

)
FkI , (B.4)

where we have introduced for brevity the following notation in both the ref-
erence and current configuration:

∇x ·W =
π(J1/3(φ)∇x ·W)

J1/3(φ)
=

π(J1/3(φ)∇x ·w)

J1/3(φ)
= ∇x ·w (B.5)

The push forward of Eq. (B.3) is:

C̄IJKLF̄iIF̄jJ F̄kKF̄lLwi,j uk,l. (B.6)

We can consider the classical push forward on the current configuration of the
modified material tensor in terms of “bar” quantities, that is:

c̄ijkl =
1

J
C̄IJKLF̄iIF̄jJ F̄kKF̄lL, (B.7)

and finally obtain the expected material contribution to the linearized operator
on the current configuration: ∫

B′
wi,j c̄ijkluk,ldv (B.8)
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We now consider the second term in Eq. (B.1), which can in turn be split into
two terms:

S̄IJD
(
F̄iJWi,I

)
·U = S̄IJ

[
DF̄iJ ·U

]
Wi,I + S̄IJ F̄iJ

[
DWi,I ·U

]
(B.9)

The first term represents the geometrical contribution to the linearized oper-
ator in terms of “bar” quantities, and the second term is the one responsible
for the additional contribution. We first focus on the geometrical contribution.
Using the result obtained in Appendix A (i.e., Eq. (A.6)), we have:

DF̄iJ ·U = Ui,J , (B.10)

which can be introduced in Eq. (B.9), using the definition of the modified
Cauchy stress tensor given in Eq. (94):

S̄IJUi,J Wi,I = Jσ̄ijwk,j uk,i. (B.11)

The geometrical contribution to the linearized operator finally takes the ex-
pected form: ∫

B′
wk,jσ̄ijuk,idv. (B.12)

To determine the second term in Eq. (B.9), we need to compute:

DWi,I ·U, (B.13)

where

Wi,I =
1

3
(∇x ·W −∇x ·W)F̄iIF̄iJ + αF̄iJWi,I (B.14)

Rewriting the divergence of W as

∇x ·W = Wi,i = Wi,IF
−1
Ii = tr(∇XW F−1), (B.15)

we get
D(∇x ·W) ·U = tr(∇XW ·D(F−1)) U. (B.16)

Since we have the following equation for the directional derivative of the inverse
of the deformation gradient:

D(F−1) ·U = −F−1 ∇XU F−1, (B.17)

Eq. (B.16) can be simplified as:

D(∇x ·W) ·U = −tr [∇xw∇xu] . (B.18)

Proceeding analogously, we can determine the next expression:

D(∇x ·W) ·U = D

(
π(J1/3∇x ·W)

J1/3

)
·U. (B.19)
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Following Eq. (B.5), we introduce the following notations:

∇x ·w ∇x · u =
π
(
J1/3∇x ·w ∇x · u

)
J1/3

, (B.20)

tr [∇xw∇xu] =
π
(
J1/3tr [∇xw∇xu]

)
J1/3

, (B.21)

which allows us to express Eq. (B.19) as:

D(∇x ·W) ·U =
1

3
∇x ·w ∇x · u− tr [∇xw∇xu]− 1

3
∇x · u ∇x ·w. (B.22)

We can gather all terms to obtain the following expression for Eq. (B.13):

DWi,I ·U =
1

3
(∇x · u−∇x · u)∇xw F̄ +

1

3
(∇x ·w −∇x ·w)∇xu F̄

+
1

9
(∇x · u−∇x · u)(∇x ·w −∇x ·w)F̄ (B.23)

+
1

3

(
1

3
∇x · u ∇x ·w − tr [∇xw∇xu]− 1

3
∇x · u ∇x ·w

)
F̄.

Using this expression we finally obtain the last unexpected contribution to the
linearized operator:∫

B′
σ̄ij

(
1

3
(∇x · u−∇x · u)wi,j +

1

3
(∇x ·w −∇x ·w)ui,j

+
1

9
(∇x · u−∇x · u)(∇x ·w −∇x ·w)δij

+
1

9
(∇x · u ∇x ·w −∇x · u ∇x ·w)δij (B.24)

+
1

3
tr
[
∇xu∇xw −∇xu∇xw

]
δij

)
dv

C Discrete consistent linearized operator

To express the discrete version of the consistent linearized operator given in
Eq. (102), we start by introducing the following:

C̄iIjJ = C̄KILJ F̄iKF̄jL. (C.1)
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The “material” contribution to the discrete consistent linearized operator (i.e.,
the first term in Eq. (102)) is

n∑
A,B=1

(∫
B
α2C̄iIjJ

[
wAi N

A
,I −

1

3
FiIN

A
,KF

−1
Kkw

A
k

] [
uBj N

B
,J −

1

3
FjJN

B
,LF

−1
Ll u

B
l

]
dV

+
ñ∑

C,D=1

{
1

3
uBj (J1/3NB

,LF
−1
Lj , ÑC)M̃−1

CD(ÑD,J
−1/3C̄iIlJ F̄lJN

A
,I )wAi

+
1

3
wAi (J1/3NA

,KF
−1
Ki , ÑC)M̃−1

CD(ÑD,J
−1/3C̄kIjJ F̄kIN

B
,J )uBj (C.2)

+
1

9

ñ∑
E,F=1

wAi (J1/3NA
,KF

−1
Ki , ÑC)M̃−1

CD

(C̄kIlJFkIFlJJ
−2/3ÑD, ÑE)M̃−1

EF (ÑF , J
1/3NB

,LF
−1
Lj )uBj

−1

9
wAi (J1/3NA

,KF
−1
Ki , ÑC)M̃−1

CD(ÑD, J
−1/3C̄kIlJFkIF̄lJN

B
,LF

−1
Lj )uBj

−1

9
uBj (J1/3NB

,LF
−1
Lj , ÑC)M̃−1

CD(ÑD, J
−1/3C̄kIlJFkIF̄lJN

A
,KF

−1
Ki )w

A
i

})
.

The “geometrical” contribution to the discrete consistent linearized operator
(i.e., the second term in Eq. (102)), and parts of the “unexpected” contribu-
tions are:

n∑
A,B=1

(∫
B
α2S̄IJ

[
wAi N

A
,I −

2

3
FiIN

A
,KF

−1
Kkw

A
k

] [
uBj N

B
,J −

3

3
FjJN

B
,LF

−1
Ll u

B
l

]
dV

+
ñ∑

C,D=1

{
2

3
wAi (J1/3NA

,KF
−1
Ki , ÑC)M̃−1

CD(ÑD,J
−1/3S̄IJ F̄jIN

B
,J )uBj

+
2

3
uBj (J1/3NB

,LF
−1
Lj , ÑC)M̃−1

CD(ÑD,J
−1/3S̄IJ F̄iJN

A
,I )wAi (C.3)

−2

9
wAi (J1/3NA

,KF
−1
Ki , ÑC)M̃−1

CD(ÑD, J
−1/3S̄IJ F̄kIFkJN

B
,LF

−1
Lj )uBj

−2

9
uBj (J1/3NB

,LF
−1
Lj , ÑC)M̃−1

CD(ÑD, J
−1/3S̄IJ F̄kIFkJN

A
,KF

−1
Ki )w

A
i

})
.

Finally, the remaining terms of the “unexpected” contribution are:

n∑
A,B=1

(
1

3

∫
B
α2S̄IJFkIFkJw

A
i N

A
,KF

−1
KjN

B
,LF

−1
Li u

B
j dV (C.4)

+
ñ∑

C,D=1

{
− 1

3
wAi (J1/3NA

,KF
−1
KjN

B
,LF

−1
Li , ÑC)M̃−1

CD(ÑD, J
−1/3S̄IJ F̄kIFkJ)uBj

+
1

9
wAi (J1/3NA

,KF
−1
KiN

B
,LF

−1
Lj , ÑC)M̃−1

CD(ÑD, J
−1/3S̄IJ F̄kIFkJ)uBj

})
.
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The corresponding discrete internal forces can be expressed as:

n∑
A=1

(∫
B
S̄IJ

[
αF̄iIN

A
,J −

1

3
NA
,LF

−1
Li F̄kIF̄kJ

]
wAi dV (C.5)

+
1

3

ñ∑
C,D=1

{
(J1/3NA

,LF
−1
Li , ÑC)M̃−1

CD(ÑD, J
−1/3S̄IJ F̄kIFkJ)wAi

})
.
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