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Abstract

Standard Galerkin finite element methods for variably saturated groundwater flow
have several deficiencies. For instance, local oscillations can appear around sharp
infiltration fronts without the use of mass-lumping, and velocity fields obtained from
differentiation of pressure fields are discontinuous at element boundaries. Here, we
consider conforming finite element discretizations based on a multiscale formula-
tion along with recently developed, local postprocessing schemes. The resulting ap-
proach maintains the basic flexibility and appeal of traditional finite element meth-
ods, while controlling nonphysical oscillations and producing element-wise mass-
conservative velocity fields. Accuracy and efficiency of the proposed schemes are
evaluated through a series of steady-state and transient variably saturated ground-
water flow problems in homogeneous as well as heterogeneous domains.
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1 Introduction

Richards’ equation is a widely studied nonlinear parabolic equation describ-
ing water flow in variably saturated porous media [1]. Analytical solutions for
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Richards’ equation are limited in number and applicability due to its non-
linearity and the degree of spatial heterogeneity found in many problems of
interest [2]. Numerical solutions of Richards’ equation are therefore important
for modeling groundwater flow and contaminant transport in the subsurface.

The qualities that make it difficult, if not impossible, to solve analytically
also contribute to the challenge of developing accurate and efficient numerical
methods for Richards’ equation. In order to be robust, spatial and tempo-
ral approximations must be capable of resolving sharp fronts infiltrating dry
media and handling transitions to elliptic or nearly elliptic conditions in sat-
urated regions [3]. Regardless of the discretization used, the result is almost
always a large nonlinear system that is hard to solve efficiently [4, 5].

While finite difference, finite volume, and finite element approximations are
all regularly used for Richards’ equation [6–8], the focus here is on finite ele-
ment methods (FEMs), which are appealing because they are well-suited for
unstructured spatial meshes and so can be readily applied to irregular do-
mains and facilitate some classes of adaptive refinement [9]. Classical FEMs
do not perform well for Richards’ equation. Most notably, lumping and up-
winding schemes are required to prevent significant non-physical oscillations
[6, 10] and straightforward evaluation of Darcy’s law leads to an approximate
groundwater velocity field that is not locally conservative over mesh elements.
By this we mean that normal fluxes are discontinuous across element bound-
aries, and the velocity field’s divergence over an element does not balance the
discrete mass accumulation [11].

Many remedies to these deficiencies have been proposed. Mass lumping and
upwinding are commonly introduced to smear steep transition zones, while
postprocessing schemes or mixed FEM formulations have been considered to
obtain locally conservative velocity fields [6, 10, 12–14]. An exhaustive review
of available discretization techniques is beyond the scope of this work. A review
of recent methods can be found in [15]

The purpose of this work is to evaluate two complementary strategies for im-
proving conforming Galerkin (CG) FEM approximations of Richards’ equa-
tion on simplicial meshes in one, two, or three dimensions. Specifically, we
consider a multiscale, stabilized finite element formulation [16] and a pair of
local postprocessing techniques from [17] and [18] that produce element-wise
conservative velocity fields. The approaches are also orthogonal in the sense
that the velocity postprocessing methods are applicable for generic CG ap-
proximations [17] or fairly general data sets [18], and the stabilized solution
is not restricted to the proposed postprocessing [19]. On the other hand, the
combined approach is appealing, since it maintains the basic flexibility and
simplicity of traditional FEMs while controlling nonphysical oscillations and
producing element-wise conservative velocity fields.
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This paper is organized as follows. In the next section we review relevant
work on FEMs and locally conservative velocity approximations. In §3 we
summarize our formulation of Richards’ equation, while multiscale stabilized
CG methods based on the work of [20] are described in §4.1 – §4.3, and al-
gorithms for obtaining locally conservative approximations based on [17, 18]
are presented in §4.4. Finally, in §5 we provide numerical results comparing
these methods using several error and computational work measures, followed
by discussion and conclusions.

2 Background

2.1 Finite element approximations for Richards’ equation

A variety of FEM-based schemes have been applied to Richards’ equation. For
instance, [6] presented a CG method for Richards’ equation based on modified
Picard linearization for temporal derivatives and mass-lumping, which corre-
sponds to a reduced order quadrature formula for the mass accumulation term.
The resulting approximation is globally conservative with good control of spu-
rious numerical oscillations. Along with the similar “chord-slope” technique
from [21], this can be considered the standard approach for treating accumula-
tion terms in Richards’ equation. Later, [10] demonstrated that mass-lumping
combined with appropriate “upwinded” relative permeability evaluation can
lead to monotone approximations independent of mesh resolution.

Standard CG schemes do not directly yield element-wise conservative veloc-
ity fields as defined above, and an additional postprocessing step is needed
[22, 23, 47]. This complication is avoided by finite element formulations that
include an explicit velocity representation, such as mixed FEMs and local dis-
continuous Galerkin (LDG) methods [24, 25]. While they have proven success-
ful for many subsurface flow problems including Richards’ equation [12, 14, 26],
mixed FEMs are not without drawbacks. The resulting linear systems are sad-
dle point problems without hybridization [24], and the number of unknowns
is greater than a nodal CG approximation of the same order on the same
mesh [25]. As with CG methods, overshoot and undershoot can also occur
for sharp front problems without upwinding and reduced order quadrature
approximations [4]. Similarly, LDG approximations can exhibit overshoot and
undershoot when direct evaluation of relative hydraulic conductivities is used
without upwinding [3]. It should be noted that this behavior is a function
of grid resolution. For sufficiently refined meshes, oscillations are eliminated.
Sufficient resolution is, however, unreachable in many cases without the use
of adaptive mesh refinement [12, 27].
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A thorough evaluation of the relative merits of mixed and CG FEM discretiza-
tions for Richards’ equation is beyond the scope of this work. Direct compar-
isons between a mixed hybrid FEM and a traditional, local velocity postpro-
cessing technique [28] for saturated groundwater flow can be found in [29–31].
Broadly speaking, the added degrees of freedom typically associated with a
mixed method must be weighed against the accuracy and generality of a given
postprocessing technique for CG FEMs. Moreover, these approaches are not
necessarily mutually exclusive (see for instance the combination of CG and
LDG approximations in [25]). In our view, a fully satisfactory approach has
not been reached, since existing mixed and CG discretizations require some
type of lumping and reduced order approximation to avoid oscillation.

2.2 Variational multiscale finite element methods

Upwinding and mass lumping have been recognized for some time as an at-
tempt to properly account for “subgrid” effects in discretizations [32]. From
this perspective, it is unresolved features in the solution that produce quali-
tatively incorrect features such as spurious local maxima and minima. Stabi-
lized methods like the streamline upwind Petrov Galerkin (SUPG) discretiza-
tion were originally introduced as artificial viscosity methods that attempted
to introduce minimal amounts of numerical viscosity to control oscillations
on coarse meshes [33]. In the last twenty years, stabilized FEMs have been
widely used within the computational fluid dynamics community for modeling
advection-diffusion-reaction systems as well as incompressible Navier-Stokes
problems [34–36].

Residual-based, stabilized finite elements were recast as the multiscale vari-
ational method in [20]. This provided a framework for relating unresolved
solution components and stabilization terms used to supplement standard
Galerkin formulations. Variational multiscale-based approximations have since
become increasingly popular [16, 37, 38] and were applied to two-phase flow
in porous media in [39] as well as [40].

The focus of traditional stabilized methods was improved numerical approx-
imation, particularly the resolution of internal or boundary layers [33, 41].
This is also the perspective taken in [40]. The emphasis of [42] as well as the
related multiscale finite element and finite volume methods from [43–46] is on
incorporation of fine-scale heterogeneity into the resolved (or coarse-scale) so-
lution. In the development below, we will focus on improved resolution of sharp
fronts, since this is a particular challenge in extending numerical methods for
saturated flow to Richards’ equation. To our knowledge the variational multi-
scale framework has not been applied to Richards’ equation, nor has the issue
of obtaining locally conservative groundwater velocity fields from stabilized,

4



conforming FEMs been addressed.

2.3 Velocity postprocessing techniques

As mentioned above, standard CG methods for groundwater flow do not di-
rectly yield locally conservative velocity approximations. A global postpro-
cessing technique can be found in [13] while a local postprocessing algorithm
based on dual meshes and stream functions can be found in [28]. On the other
hand, the recent popularity of discontinuous Galerkin methods has renewed
interest in local conservation for CG discretizations. The general conservation
properties of CG methods for advection-diffusion-reaction equations and in-
compressible Navier-Stokes were investigated in [19, 22]. Furthermore a gen-
eral method for obtaining locally conservative velocities from standard CG
solutions was outlined, which required the solution of a global linear system.

Here, we focus on two recent postprocessing schemes from [17] and [18] that
can be computed locally and are quite general in their domain of applica-
bility. The two methods are related, since they arise from equivalent global
formulations based on piecewise constant corrections to a velocity field that
is singly defined on element boundaries, but not locally conservative element-
wise [17, 18]. The approaches differ in that [17] focuses explicitly on velocities
obtained from CG solutions, while [18] addresses more general velocity fields
(e.g., non-conservative velocity fields arising from field measurements as well
as numerical methods).

The approach taken in [17] is based on the idea of enriching the solution
space with additional discontinuous degrees of freedom after a CG solution
has been obtained. The CG solution is modified strictly to satisfy the local
conservation property, which results in a postprocessing method that depends
only on the mesh and information left over from the CG solve. A local approach
[17, algorithm 2] is derived by using piecewise linear enrichment and domain
decomposition. The result is a locally conservative velocity field defined on
element boundaries (i.e., a numerical trace) after directly solving small linear
systems over the mesh node stars, which are simply the collection of elements
sharing a given node for each node in the mesh.

The perspective taken in [18] is to minimize the correction necessary to obtain
local conservation in a suitably chosen norm. A Gauss-Seidel like iteration
is then derived which requires strictly local updates using coefficients that
depend only on mesh information. The overhead for an iteration of the Sun-
Wheeler Gauss-Seidel approach is less than that of [17], since it uses element
interface connectivity and does not require solution of local systems. On the
other hand, the algorithm is iterative with a convergence rate that depends
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on the mesh [18].

In both approaches, the output is a locally conservative velocity field defined
on element boundaries. This may be sufficient for many applications, like
use of the velocity for a finite volume transport calculation. Alternatively, the
element boundary data can be used to define a local Neumann problem on each
element that can then be solved with a mixed finite element space to obtain
a conservative, globally defined velocity field. In some cases, like the lowest
order Raviart-Thomas space, the local step reduces to a simple projection[18].
With a global mixed FEM velocity representation, not only local conservation
but also higher order compatibility with transport discretizations, in the sense
of [47], is then available.

2.4 Nonconforming finite element approximation

To better evaluate accuracy and computational expense for the postprocessing
techniques from §4.4.1 and §4.4.2, we would like to compare them to veloci-
ties obtained from mixed finite element approximations, since these are well-
established, locally conservative methods [24, 48]. For simplicity, we follow an
approach similar to that taken in [49] and exploit a correspondence between
P 1 nonconforming and mixed hybrid FEM approximations [50].

To be more specific, a very simple postprocessing step was shown in [51] to
give correspondence between the standard P 1 nonconforming approximation
and a mixed hybrid FEM solution for elliptic problems with isotropic conduc-
tivity and a piecewise constant data assumption. Arbogast et. al [52] showed
correspondence between mixed and nonconforming methods for a larger class
of elliptic problems including lower order terms. In general, the correspon-
dence requires supplementing standard nonconforming spaces with bubbles
and a series of L2 projections in the weak formulation. On the other hand,
[53] presented a postprocessing approach in which the RT0 velocity and po-
tential could be obtained via postprocessing of P 1 nonconforming solutions
for the potential variable without reference to bubble functions in the case of
full tensor conductivities as well as quasi-linear elliptic equations. This is the
approach followed below for comparison with the CG velocity postprocessing
techniques.

3 Richards’ equation

We begin with a mass conservation statement for the aqueous phase in an air-
water system where the solid phase is assumed to be immobile and interphase
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mass transfer is negligible

mt + ∇ · (ρq) = b, for x, t ∈ Ω × [0, T ]

m= ρθ (1)

along with the standard extension of Darcy’s law to variably saturated condi-
tions [54]

q=−krKs (∇ψ − ρgu) (2)

Here ψ and θ are the pressure head and volume fraction, respectively, and
ρ = ̺/̺0 is a normalized density. The relative permeability, kr is assumed to
be a scalar, but the saturated conductivity Ks is not. b is a generic source term,
and gu is a unit vector accounting for the direction of gravity [11]. Finally, Ω
represents the spatial domain and [0, T ] the time interval of interest.

An equation of state for ̺ and constitutive (p-s-k) relations are necessary to
close eqns (1) and (2). In the following, we assume that the aqueous phase
density can be written

̺= ̺0e
βc(ψ−ψ0) (3)

for a reference pressure head, ψ0. We also adopt standard van Genuchten [55]
and Mualem [56] relations to describe the interdependence of fluid pressure,
saturation, and the relative permeability, although the approaches considered
are not restricted by these choices. For ψ < 0, the van Genuchten-Mualem
p-s-k’s are

se =
(θ − θr)

(θs − θr)

se = [1 + (αvg|ψ|)nvg ]−mvg

kr =
√
se
[

1 − (1 − s1/mvg
e )mvg

]2
(4)

where se is the effective saturation, θr is the residual volumetric water content,
θs is the saturated volumetric water content, αvg is a parameter related to the
mean pore size, nvg is a parameter related to the uniformity of the soil pore-
size distribution, and mvg = 1 − 1/nv. For ψ ≥ 0, the porous medium is fully
saturated, and eqn (4) reverts to se = 1 and kr = 1.

Initial and boundary conditions for eqns (1) and (2) are written

ψ(x, 0) =ψ0 (5)
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ψ(x, t) =ψb, x ∈ ΓD (6)

ρq · n=σb, x ∈ ΓN (7)

where Γ = ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, and n is the unit outer normal on
∂Ω.

Several variations of eqns (1) and (2) are common depending on the choice of
solution variable (ψ or θ) and the manner in which the accumulation term in
eqn (1) is handled. Here, we follow the basic approach outlined in [7], which
can be seen as a generalization of the standard mixed form [6]. That is, we
take ψ as the dependent variable, apply temporal approximations directly to
mt rather than using the chain rule, and rely upon the nonlinear solution
approach to resolve the dependence of m on ψ [7, 11].

4 Numerical methods

Starting from the basic mass-conservative formulation in §3, we describe a
multiscale-stabilized finite element method for Richards’ equation below. We
then present straightforward extensions of postprocessing algorithms from [17]
and [18] to obtain locally conservative velocity fields from CG solutions of
nonlinear scalar parabolic PDEs. Lastly, we summarize our approaches for
time integration and solving the linear and nonlinear systems that arise from
the multiscale finite element discretization.

4.1 Weak formulation

In an attempt to simplify presentation of the numerical methods below, we
first substitute eqn (2) into eqn (1) and write the result as a generic nonlinear
advection-diffusion equation

mt + ∇ · (f − a∇ψ) = b (8)

where

f = ρ2krKsgu,

a = ρkrKs

σ = f − a∇ψ = ρq (9)

We then apply Hughes’ variational multiscale paradigm [20] to eqn (8) in a
manner similar to the approach taken in [40]. To begin, trial solutions are
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sought in

V = {v ∈ H1(Ω) : v = ψb on ΓD} (10)

while test functions are taken from

W = {w ∈ H1(Ω) : w = 0 on ΓD} (11)

where H1(Ω) is the Sobolev space of functions that are square integrable and
have square-integrable first derivatives over Ω. For t ∈ [0, T ] fixed, a solution
ψ ∈ V is sought such that

∫

Ω

[mt + ∇ · (f − a∇ψ) − b]w dx= 0, (12)

∫

Ω

ψ(x, 0)w dx=
∫

Ω

ψ0(x)w dx, ∀w ∈ W (13)

Integrating eqn (14) by parts gives the weak statement, find ψ ∈ V such that

∫

Ω

mtw dx−
∫

Ω

(f − a∇ψ) · ∇w dx+
∫

ΓN

σbw ds−
∫

Ω

bw dx

= 0, ∀w ∈W (14)

4.2 Temporal approximation

Before applying a finite element approximation we discretize in time, following
[57]. Specifically, we use fully implicit backwards difference formula (BDF)
methods [58] in which all terms in eqn (14) are approximated at the new time
level tn+1 and the accumulation term is approximated as

mt ≈ m̂t = αn+1m(ψn+1) + βn (15)

Here αn+1 depends on the order of approximation and time step history, while
β depends on the order of approximation, time step history, and solution
history. For instance, with a first order (backward Euler) approximation, α =
1/∆tn+1, βn = −m(ψn)/∆tn+1 for ∆tn+1 = tn+1 − tn.
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4.3 Multiscale finite element approximation

In order to present the multiscale formulation, we insert some notation. Let
Th be a simplicial triangulation of Ω in R

nd , nd = 2, 3, containing Ne elements,
{Ωe}, e = 1, . . . , Ne, Nf element boundaries, or faces, {γf}, f = 1, . . . , Nf , and
Nn nodes, {xn}, n = 1, . . . , Nn. The collection of faces in the domain interior
is denoted ΓI . We also assume that the intersection of elements Ωe,Ωe′ ∈ Th
is either empty, a unique γf ∈ ΓI , an edge (for R

3), or a point. The diameter
of Ωe is he and its unit outer normal is written ne.

The multiscale view of stabilization involves splitting V and W into resolved
and unresolved scales

V =Vh ⊕ δV (16)

W =Wh ⊕ δW (17)

In our case Vh and Wh are just the usual conforming piecewise linear Galerkin
spaces

Vh = {vh ∈ V ∩ C0(Ω̄) : vh|Ωe ∈ P 1(Ωe)} (18)

Wh = {wh ∈W ∩ C0(Ω̄) : wh|Ωe ∈ P 1(Ωe)} (19)

while δV and δW remain infinite dimensional. The solution is then written
uniquely as ψh + δψ, and the subgrid error, δψ, is approximated using local
problems over each element. Note that we also assume that the boundary and
initial data, eqns (5)–(7), can be accurately approximated at the grid-scale.

Inserting eqns (15) and (19) into eqn (14) and taking advantage of its linearity
in w allows us to write a coupled problem for the solution ψh + δψ at tn+1

Fh =
∫

Ω

m̂twh dx−
∫

Ω

(f − a∇ψ) · ∇wh dx+
∫

ΓN

σbwh ds−
∫

Ω

bwh dx

= 0, ∀wh ∈Wh (20)

Fδ =
∫

Ω

m̂tδw dx−
∫

Ω

(f − a∇ψ) · ∇δw dx+
∫

ΓN

σbδw ds−
∫

Ω

bδw dx

= 0, ∀δw ∈ δW (21)

where we have dropped time level indicators for convenience, with the under-
standing that all terms are evaluated at tn+1. Before proceeding, we point out
that our goal is to obtain a modified version of eqn (20)
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Gh =Fh −
∑

e

∫

Ωe

L∗
s,hwhτRh(ψh) dx = 0,∀wh ∈Wh (22)

and a corresponding linearized system of equations to use in a Newton solution
algorithm for ψh. Here, Rh is an approximation to the strong residual

R= m̂t + ∇ · (f − a∇ψ) − b (23)

and L∗
s,h approximates the formal adjoint of a linear operator Ls defined below.

In order to linearize eqns (20) and (21), we label the Newton increment v =
vh + δv and seek an approximate solution ψ+ = ψ−

h + v. We linearize around
the coarse-scale quantity ψ−

h at each iteration and assume δv− = 0 [40]. The
coupled, linearized problem is

∫

Ω

m̂′
tvwh dx−

∫

Ω

(

f ′v − a
′∇ψ−

h v − a∇v
)

· ∇wh dx = −F−
h

∀wh ∈ Wh (24)
∫

Ω

m̂′
tvδw dx−

∫

Ω

(

f ′v − a
′∇ψ−

h v − a∇v
)

· ∇δw dx = −F−
δ

∀δw ∈ δW (25)

Here, the ′ symbol represents differentiation with respect to ψ and nonlinear-
ities are evaluated at ψ−

h . Below, a superscript − is used to denote evaluation
at ψ−

h where necessary to avoid confusion.

4.3.1 Subgrid-scale approximation

We make a number of modeling assumptions to obtain a computationally
tractable subgrid-scale approximation. First, we take a domain decomposition
approach to obtain local (element) problems for δv. This is accomplished by
assuming δw = δv = 0 on ∂Ωe for all e. On each Ωe, eqn (25) can then be
written

∫

Ωe

m̂′
tδvδw dx−

∫

Ωe

(

f ′δv − a
′∇ψ−

h δv − a∇δv
)

· ∇δw dx=

−
∫

Ωe

m̂′
tvhδw dx+

∫

Ωe

(

f ′vh − a
′∇ψ−

h vh − a∇vh
)

· ∇δw dx− F−
δ,e (26)

where
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Fδ,e =
∫

Ωe

m̂tδw dx−
∫

Ωe

(f − a∇ψh) · ∇δw dx−
∫

Ωe

bδw dx (27)

Integrating the second term on the right hand side by parts gives

∫

Ωe

m̂′
tδvδw dx−

∫

Ωe

(

f ′δv − a
′∇ψ−

h δv − a∇δv
)

· ∇δw dx=

−
∫

Ωe

m̂′
tvhδw dx−

∫

Ωe

∇ ·
[

f ′vh − a
′∇ψ−

h vh − a∇vh
]

δw dx− F−
δ,e (28)

which motivates definition of the linearized operator

Lv= m̂′
tv + ∇ ·

[

f ′v − a
′∇ψ−

h v − a∇v
]

= m̂′
tv + Lsv (29)

After again integrating Fδ,e and the left hand side by parts, eqn (28) can be
written

∫

Ωe

Lδvδw dx=−
∫

Ωe

Lvhδw dx−
∫

Ωe

R(ψ−
h )δw dx (30)

where Lvh can be understood as a grid-scale linearization of R(ψ−
h ) on each

Ωe. To simplify evaluation of L and R, we consider using the nonconservative
approximations

Rh = m̂t + f ′ · ∇ψh − a
′∇ψh · ∇ψh − b (31)

Lhvh = m̂′
tvh + f ′ · ∇vh − a

′∇ψh · ∇vh (32)

where coefficients are evaluated pointwise using ψ−
h on each Ωe and second or-

der terms are dropped, since P 1 trial functions are used. Conservative approx-
imations could also be formulated, but as the approximations above are simple
and do not affect the conservation properties of the grid-scale discretization,
we use them for this work.

4.3.2 Grid-scale equation

Returning to eqn (24), we collect terms for vh and δv and write

∫

Ω

m̂′
tvhwh dx−

∫

Ω

(

f ′vh − a
′∇ψ−

h vh − a∇vh
)

· ∇wh dx

12



+
∑

e

∫

Ωe

m̂′
tδvwh dx−

∑

e

∫

Ωe

(

f ′δv − a
′∇ψ−

h δv − a∇δv
)

· ∇wh dx

=−F−
h

Although not strictly necessary, we neglect the effects of subgrid scale variation
on the grid-scale accumulation term (a “static subgrid scales” assumption [38])
and integrate the fourth term on the left hand side by parts to obtain

∫

Ω

m̂′
tvhwh dx−

∫

Ω

(f ′vh − a
′∇ψhvh − a∇vh) · ∇wh dx

+
∑

e

∫

Ωe

L∗
swhδv dx = −F−

h (33)

where boundary terms

∑

e

∫

∂Ωe

a∇wh · neδv ds (34)

in the integration by parts have again been neglected in the introduction of
the formal adjoint of Ls

L∗
sw=−

(

f ′ − a
′∇ψ−

h

)

· ∇w −∇ · (a∇w) (35)

As with Lh, we drop second order terms in eqn (35) and approximate L∗
s as

L∗
s,hwh =−f ′ · ∇w − a

′∇ψ−
h · ∇w (36)

To obtain a system in terms of the grid-scale quantities alone, we use a sim-
ple algebraic subgrid scale (ASGS) approximation [16, 33] and again neglect
temporal variation in the subgrid scale Newton correction [38]. We then insert

δv≈−τ
(

Lhvh + R−
h

)

(37)

into eqn (33) to obtain a linearized, grid-scale equation

∫

Ω

m̂′
tvhwh dx−

∫

Ω

(

f ′vh − a
′∇ψ−

h vh − a∇vh
)

· ∇wh dx

−
∑

e

∫

Ωe

L∗
s,hwhτLhvh dx = −F−

h +
∑

e

∫

Ωe

L∗
s,hwhτR−

h,e dx (38)
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The right hand side of eqn (38) is just −Gh from eqn (22). The left hand side
contains the standard conforming Galerkin terms for the Newton Jacobian plus
an additional term arising from the stabilization. This yields a quasi-Newton
method, since the linear operator on the left hand side is not precisely the
Jacobian of Gh due to the linearization of the stabilization terms.

4.3.3 Stabilization parameter

There are a number of ways to define the stabilization parameter τ . Typically,
these are motivated by analysis of linear advection-diffusion-reaction equa-
tions [33, 59]. For the 1D linear advection-diffusion equation with constant
coefficients, the solution of the subgrid error approximation yields

τ =
he
2a′

[

coth

(

hef
′

2a′

)

− 2a′

hef ′

]

(39)

which was already widely used in earlier stabilized methods [20]. Here, we use
a straightforward multi-dimensional approximation of τ on Ωe, similar to that
used in [33, 40, 59],

τ =





(

2
‖f ′ − a

′∇ψh‖2

he

)2

+ 9

(

4
‖a‖∞
h2
e

)2




− 1
2

(40)

where ‖ ‖2 is the vector 2-norm and ‖ ‖∞ is the matrix ∞-norm.

4.3.4 Shock capturing diffusion

The ASGS approximation above does not in general ensure that no spurious
local extrema will be generated. Particularly for nonlinear problems, steep
gradients in the solution can form which produce small undershoot or over-
shoot near the front. In such cases, it is common to include a shock capturing
numerical diffusion term so that the grid-scale residual equation becomes

Gh =Fh −
∑

e

∫

Ωe

L∗
s,hwhτRh(ψh) dx+

∑

e

∫

Ωe

ν∇ψh · ∇wh dx

= 0,∀wh ∈ Wh (41)

There are several different approaches for defining the associated numerical
diffusion parameter [60], but here we simply use the standard isotropic defini-
tion [60, 61] for each Ωe
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ν = νc
he
2

|Rh,e|
‖∇ψh‖2

(42)

where νc is a problem dependent parameter.

4.4 Velocity postprocessing algorithms

The goal of our postprocessing is to obtain a velocity field σ̂h that conserves
mass discretely on each Ωe, e = 1, . . . , Ne, has continuous normal component
across each γf ∈ ΓI , and satisfies the boundary condition eqn (7) along ΓN .
To do this, we extend the techniques of Larson and Niklasson [17] and Sun
and Wheeler [18] to eqns (8) and (9) in a straightforward manner.

4.4.1 Larson-Niklasson [17] postprocessing

Before proceeding, some additional notation is required. The set of elements
sharing node xn, or its star, is written E(n). The number of elements sharing
xn is N∗

n,e = card(E(n)). For each interior face γf = ∂Ωℓ ∩ ∂Ωr, we write
nℓ and nr for the unit outer normal to Ωℓ and Ωr, respectively. The global
element identifiers for Ωℓ and Ωr are also written eℓ(f) and er(f). An arbitrary
choice of nf = nℓ is made in order to associate a unique unit normal vector
with each γf . The set of faces contained in ∂Ωe that are in ΓI ∪ ΓD is written
Fi,d(e). The global identifiers for the nodes contained in a face γf are denoted
N (f). A local numbering of elements e 7→ e∗ for Ωe ∈ E(n) is also associated
with each node-star. Figures 1 and 2 illustrate our notational conventions for
a two-dimensional triangulation.

Since we consider only piecewise-linear approximations, global basis functions
are naturally associated with nodes xn, n = 1, . . . , Nn. For each node, we then
write the corresponding test function with wh(xn) = 1 as wh,n and the discrete
residual associated with each e ∈ E(n) as

Gh,n,e =
∫

Ωe

m̂twh,n dx−
∫

Ωe

(f − a∇ψh) · ∇wh,n dx+
∫

∂Ωe∩ΓN

σbwh,n ds

−
∫

Ωe

bwh,n dx−
∫

Ωe

L∗
s,hwh,nτRh(ψh) dx

+
∫

Ωe

ν∇ψh · ∇wh,n dx (43)

In terms of the local numbering on E(n), the conservation residual associated
with Ωe is similarly
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Fig. 2. Notation example for γf ∈ ΓI (left) and γf ∈ ΓN (right)

Rn,e∗ = Gh,n,e

+
∑

f∈Fi,d(e)

∫

γf

[

σ̄h,f +
(

Un,e∗
ℓ
(f) − Un,e∗r(f)

)

nf
]

wh,n · ne ds (44)

where σ̄h,f is the average velocity accross γf given by

σ̄h,f =
(f − a∇ψ) |Ωel(f) + (f − a∇ψ) |Ωer(f)

2
(45)

and where e∗ℓ(f) and e∗r(f) refer to the local numbering of the elements neigh-
boring γf , and Un,e∗ , e

∗ = 1, . . . , N∗
n,e are the piecewise constant corrections

for which the algorithm solves.

At each node, we then have a system of N∗
n,e equations from (44)

Rn(Un) = 0 (46)
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where Rn = [Rn,1, . . . , Rn,N∗
n,e

]T and Un = [Un,1, . . . , Un,N∗
n,e

]T . Solution of eqn
(46) corresponds to a pure Neumann problem on E(n) when xn ∈ ΓI , which is
unique up to a constant [17]. To handle this non-uniqueness, we simply enforce
Un,1 = 0 for nodes in ΓI . Note that this arbitrary condition does not affect
the resulting velocity, which is unique [17].

To solve eqn (46), we first compute Rn(0) which is just the conservation
residual for σ̄h. Un follows from

Un =−J
−1
n R(0) (47)

Here

Jn,ij =
∂Rn,i

∂Un,j
, i = 2, . . . , N∗

n,e and j = 1, . . . , N∗
n,e (48)

with Jn,1,j = δ1,j and Rn,1 = 0 for xn ∈ ΓI ∪ ΓN in order to enforce Un,1 = 0.

Eqn (47) is just a single step of Newton’s method for eqn (46), which suffices
since eqn (46) is linear in Un even though it is nonlinear in ψh. Looking at
eqn (44), the entries of Jn are not dependent on the solution, coefficients, or
boundary conditions, and depend only on the computational mesh for interior
nodes. For nodes on ∂Ω, Jn depends on boundary condition types but not
actual values. The local systems Jn, n = 1, . . . , Nn can be built and stored in
factored form and only need updating when the mesh adapts or ΓN changes.

Once a solution for Un,e∗ , e
∗ = 1, . . . , N∗

n for each n = 1, . . . , Nn, has been
obtained, the corrected velocity on each γf ∈ ΓI ∪ ΓD is

σ̂h,f = σ̄h,f +
∑

n∈N (f)

(

Un,e∗
ℓ
(f) − Un,e∗r(f)

)

nfwh,n (49)

with Un,e∗r(f) omitted when γf ∈ ΓD. We set σ̂h,f = σbnf for γf ∈ ΓN .

σ̂h,f · nf is continuous across γf by construction. To see that it is locally
conservative, note that Rn,e = 0 for all n and e, and consider Ωe with ∂Ωe ∩
ΓN = ∅

0 =
∑

n∈N (e)

Rn,e

=
∑

n∈N (e)

Gh,n,e (50)

+
∑

n∈N (e)

∑

f∈Fi,d(e)

∫

γf

[

σ̄h,f +
(

Un,e∗
ℓ
(f) − Un,e∗r(f)

)

nf
]

wh,n · ne ds
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(51)

Since the test functions are a partition of unity, it follows that

0 =
∫

Ωe

(m̂t − b) dx

+
∑

f∈Fi,d(e)

∫

γf



σ̄h,f +
∑

n∈N (e)

(

Un,e∗
ℓ
(f) − Un,e∗r(f)

)

nfwh,n



 · ne ds

=
∫

Ωe

(m̂t − b) dx+
∑

f∈Fi,d(e)

∫

γf

σ̂h,f · ne ds (52)

which gives the desired mass conservation statement. For elements on the
Neumann boundary conservation follows likewise since σ̂h,f · ne = σb.

After obtaining σ̂h,f on each γf , f = 1, . . . , Nf we obtain a representation
over all of Ω by projecting σ̂h,f onto a local RT0 velocity space [52]

V̂h(Ωe) = [P 0(Ωe)]
nd ⊕ xP 0(Ωe) (53)

Since σ̂h,f is piecewise linear with continuous normal component, the projec-

tion onto V̂h(Ωe) is well defined and the resulting global velocity field is in
H(div,Ω). An RT0 representation is particularly convenient, since the normal
flux through element faces

∫

γf

σ̂h,f · nf ds (54)

can be used as the degree of freedom along with the local basis [9]

Ne,if =
1

nd|Ωe|
(

x − xn,if

)

, if = 1, . . . , nd + 1 (55)

where if is a local identifier on Ωe for γf and xn,if is the node across from face
if .

In fact, one could also project σ̂h,f onto the linear Brezzi-Douglas-Duran-
Fortin (BDDF1) space [62] (the Brezzi-Douglas-Marini space for nd = 2),
since σ̂h,f is piecewise linear. However, this requires more storage (n2

d + nd
versus nd + 1 local degrees of freedom), while only first order accuracy can be
expected from σ̂h in general [17].
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4.4.2 Sun-Wheeler [18] postprocessing

Although its original context is more general, we restate the Gauss-Seidel algo-
rithm from [18] for the applications of interest here, CG solutions for Richards’
equation. The notational conventions differ from the original presentation as
well in order to be more consistent with the formulations above.

The Sun-Wheeler Gauss-Seidel algorithm assumes that an initial, well-defined
velocity field σ̄h,f is available and that σ̄h,f is globally conservative. It then
relies on constant element boundary corrections, {∆Uf}, f = 1, . . . , Nf . For
given σ̄h,f and {∆Uf}, we define the element conservation residual

Re =
∑

n∈N (e)

Gh,n,e +
∑

γf∈∂Ωe

∫

γf

(σ̄h,f + ∆Ufnf) · ne ds,

e = 1, . . . , Ne (56)

and its average R̄e = Re/|Ωe|. The assumption of global conservation implies
that no correction is necessary for γf ∈ ∂Ω, so we introduce the additional
notation Nfi for the number of interior element boundaries and a reordering
for convenience so that γf ∈ ΓI for 1 ≤ f ≤ Nfi , γf ∈ ∂Ω for Nfi < f ≤ Nf ,
and ∆Uf = 0 for f > Nfi .

The algorithm is build around the idea of minimizing the L2 norm of R̄





∫

Ω

R̄2 dx





1/2

(57)

with respect to the element boundary correction {∆Uf}. Here R̄ is the piece-
wise constant function with R̄|Ωe = R̄e. This is a linear least squares problem,
the direct solution of which requires the solution of a globally coupled linear
system.

To localize the computation, a series of corrections that are nonzero on only
a single element boundary are defined

∆Uf ′ = cfδff ′ , 1 ≤ f, f ′ ≤ Nfi (58)

where cf is chosen to minimize eqn (57), which leads to

cf(R) =
|Ωl|Rr − |Ωr|Rl

|γf |(|Ωl| + |Ωr|)
(59)

where Ωl and Ωr are the elements sharing face f , nf is directed from Ωl to
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Ωr, and R is the piecewise constant function with R|Ωe = Re. After a face cor-
rection is computed, the affected element conservation residuals are updated
in the manner of the classical Gauss-Seidel iteration for linear systems. The
algorithm is not however equivalent to Gauss-Seidel for the global linear least
squares problem.

To be concrete, the Sun-Wheeler iteration process is given in Algorithm 1.
In Algorithm 1, km is the maximum number of iterations allowed, ǫmc is the
mass conservation tolerance, and f ∈ Fi(e) corresponds to the set of interior
element boundaries in ∂Ωe.

Algorithm 1 Sun-Wheeler Gauss-Seidel algorithm [18]

Require: σ̄h,f that is globally conservative

1: k = 0. ∆U
0,Nfi
f = 0, f = 1, . . . , Nf . R

0,Nfi
e defined from eqn (56), e =

1, . . . , Ne.

2: while k < km and maxe |Rk,Nfi
e | < ǫmc do

3: Rk,0
e = R

k−1,Nfi
e , e = 1, . . . , Ne.

4: ∆Uk,0
f = ∆U

k−1,Nfi
f , f = 1, . . . , Nfi .

5: for f = 1, . . . , Nfi do

6: ∆Uk,f
f ′ = ∆Uk,f−1

f ′ + cf(R
k,f−1)δff ′, f

′ = 1, . . . , Nfi .

7: Rk,f
e = Rk,f−1

e +
∑

f ′∈Fi(e)

∫

γf ′
cf (R

k,f−1)δff ′nf ′ ·ne ds, f ′ = 1, . . . , Nfi ,

e = 1, . . . , Ne.
8: end for

9: end while

Note that the original presentation of the algorithm in [18] was written in
terms of R̄ and a different sign convention.

At the algorithm conclusion, we have a corrected velocity field defined on
element boundaries

σ̂h,f = σ̄h,f + ∆Ufnf (60)

that can be extended to element interiors through the projection process onto
local RT0 spaces as in eqn (54) above. In general, higher order mixed spaces
can be used to define local Neumann problems to meet higher order compati-
bility conditions [18, 47].

A precondition for the Sun-Wheeler algorithm is a globally conservative veloc-
ity field defined on element boundaries, σ̂h,f . One established strategy for ob-
taining σ̂h,f is an initial postprocessing that requires a projection over γf ∈ ΓD
[22]. Another approach is to enforce Dirichlet boundary conditions weakly in
the original finite element solution as in [25, 63]. We take the latter approach
here. Specifically, when the Sun-Wheeler Gauss-Seidel postprocessing is used,
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we modify the weak formulation in eqn (20) by reintroducing trial functions
corresponding to ΓD and adding the boundary integral

∫

ΓD

[

(f − a∇ψ) · n + σp(ψh − ψb)
]

ds (61)

where in this work σp = 1/h.

4.5 Solution methods

4.5.1 Nonlinear and linear solvers

The finite element method above leads to a discrete nonlinear system of equa-
tions that must be solved at each time step. These nonlinear problems are
usually large for two and three-dimensional domains and difficult to solve.
Variants of Picard iteration along with Newton or quasi-Newton methods have
all been considered for Richards’ equation [4, 5, 64]. However, no method has
yet proven universally successful in our opinion.

The numerical experiments below are performed on a hierarchy of uniformly
refined meshes, T ih, i = 1, . . . , Nm. Here, we use a standard Newton iteration
with Armijo line search [65] on each level. For the steady-state examples,
nested iteration (NLNI) [66, 67] is used to generate the initial Newton iterate
on each level, to speed convergence. The resulting linear systems on each level
are solved using the sparse direct SuperLU solver [68] for simplicity, since the
focus of this work is the finite element formulation and velocity postprocessing.
Other multilevel techniques and globalization strategies are certainly possible
and can be advantageous in some cases [4, 67].

4.5.2 Local postprocessing systems

The postprocessing algorithm presented in §4.4.1 requires solution of Nn in-
dependent linear systems of size N∗

n,e × N∗
n,e. To solve eqn (47), we use the

LAPACK LU routines dgetrf and dgetrs. The node-star systems are refac-
tored only when the mesh and/or ΓN changes.

4.6 Time integration

For simplicity, we restrict the temporal approximation order to one in the
transient test problem below, since the focus of this work is on the spatial
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discretization and velocity postprocessing schemes. To control error, we require
at each tn+1 that

‖mp,n+1
h −mn+1

h ‖∞ < ǫr‖mn+1
h ‖∞ + ǫa (62)

where mp,n+1
h is a first order predictor for the solution at tn+1 computed by

extrapolating from mn
h and mn−1

h . A classical step-size controller is used for
time step selection with maximum increase and decrease factors of two and
one-tenth, respectively [69, p. 168]. For stabilized CG approximations, the
evaluation of τ and νc is lagged a time step after an initial startup phase in
an effort to simplify the nonlinear solves [70]. ∆t is decreased by a factor of
ten when a nonlinear solver failure is encountered.

5 Results

The finite element formulations given above admit many variations. In the
following section, we present a series of numerical experiments designed to
verify the basic methodology and investigate the relative performance of some
of these variations. We consider a standard CG approximation as well as a
multiscale-stabilized approach with shockcapturing (CG-S). Abbreviations for
the methods used are given in Table 1.

For comparison, we also include results obtained with the P 1 nonconforming
(NC) approach from [53] as discussed in §2.4. The NC approximation yields
velocity fields equivalent to an RT0 approximation for the problems consid-
ered below with the advantage of a simple implementation within the same
computational framework as the CG methods considered. The primary draw-
back is that a piecewise constant, average approximation for source terms and
material coefficients is necessary for the nonconforming solution while this is
not required for the CG solutions.

We combine the CG methods from Table 1 with different approaches for ob-
taining a velocity field, σ̂h. We denote the combined approach as (X-*) where
X is one of CG,CG-S, or CG-V and the suffix depends on the evaluation
of σ̂h. We allow for pointwise evaluation of σ̂h via eqn (9) (PE) as well as
the Larson-Niklasson postprocessing algorithm from §4.4.1 (LN) and the Sun-
Wheeler algorithm from §4.4.2 (SW) with local RT0 representations.
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Table 1
Summary for FEMs compared in numerical experiments

Abbrev. Definition

CG conforming Galerkin approximation, eqn (41) with τ = 0, νc = 0

CG-S multiscale stabilized CG with shockcapturing, eqn (41), νc = 0.1†

CG-V lumped CG approximation with vertex quadrature, τ = 0, νc = 0

NC P 1 nonconforming approach [53]

† νc = 0.5 for Problem V.

5.1 Test problems

Five example problems were selected for the numerical experiments. The ma-
jority are steady-state, since the emphasis of this work is on spatial approxi-
mation techniques. The first two problems are linear with a known analytical
solution, which facilitates verification of the numerical model and evaluation
of the methods’ performance for cases where the solution is smooth. The third
example is a steady-state recharge problem in a homogeneous domain and
tests each method’s ability to resolve fronts, since the solution contains an
internal layer. The fourth problem consists of constant recharge in a block
heterogeneous domain, while the fifth example considers transient infiltration
into the same domain.

5.1.1 Problems I and II

The first two test problems are for steady-state, fully saturated flow in two
(Problem I) and three-dimensional domains (Problem II). Sinusoidal and poly-
nomial heterogeneity distributions are used in order to allow calculation of
analytical solutions in two and three space dimensions, respectively. To be
specific, we set Ω = [0, 1]nd and

ψ(x) = sin2(2πx1) + cos2(2πx2) + sin2(2πx3) + x1 + x2 + x3 + 5

Ks,ij(x) = (5 + x2
i )δij (63)

for nd = 2 and

ψ(x) =
3
∑

i=1

x2
i

Ks,ij(x) = (5 + x2
ixi+1)δij (64)
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for nd = 3. In eqn (64) xi+1 is taken modulo 3. For simplicity, the gravity term
is ignored. The source term, b(x), and boundary conditions are calculated from
eqn (1) assuming eqns (63) and (64). For Problem II, Dirichlet conditions are
set everywhere except the face x3 = 0. Dirichlet conditions are set everywhere
except the segment x2 = 1, for Problem I.

5.1.2 Problem III

The third example involves steady-state variably saturated groundwater flow
assuming constant recharge, σb = −2 × 10−2 [m/d] into a two-dimensional
homogeneous domain, Ω = [0, 1] × [0, 5] [m2]. The medium corresponds to
the “Sand” test problem used in [71, see Table 1] as well as [3, 7]. To be
concrete, VGM p-s-k relations are used with nvg = 4.26, and αvg = 5.47,
while θs = 0.301, θr = 0.093, and the saturated conductivity is isotropic with
Ks = 5.04 [m/d]. We neglect compressibility of the aqueous phase, βc = 0 for
simplicity, however.

A fixed pressure head, ψ = 1 [m] is specified on the domain bottom and no
flow along the vertical boundaries. A constant value of ψ = 1 [m] is also used
as the initial guess for the Newton solve. The resulting solution contains a
steep transition zone and a constant velocity σ = [0, σb]T everywhere. Even
though the solution is essentially one-dimensional, it provides a reasonable
test for the ability of the finite element methods to resolve the boundary layer
and maintain symmetry in the velocity field.

5.1.3 Problems IV and V

The fourth and fifth examples are based on the second test problem from [10].
VGM p-s-k relations are again used with four separate media types configured
in a simple block pattern. The domain consists of two shallow layers near the
surface and a third, larger region with a small high conductivity sub-block. The
media properties and domains are summarized in Table 2. To be consistent
with [10], we set βc = 0 as well. The physical domain is Ω = [0, 8] × [0, 6.5]
[m2].

Problem IV is a steady-state example. A constant recharge of σb = -2×10−2

[m/d] is set on the top left 2.25 meters of the domain. No flow boundaries are
set along the remainder of the top boundary, as well as the left boundary. Hy-
drostatic conditions are set on the right boundary with a water table elevation
of 2.17 [m].

Problem V considers transient infiltration and has no flow boundary conditions
along the right boundary rather than fixed ψ. We set the initial condition to
ψ0 = −89.96 [m].
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Table 2
Media properties for Problems IV and V

Type Ks [m/d] θs [-] θr [-] αv [1/m] nv [-] Location

1 7.89 0.3680 0.1020 3.334 1.982 [0, 8] × [6.0, 6.5]

2 4.69 0.3510 0.09849 3.63 1.632 [0, 8] × [5.5, 6.0]

3 4.143 0.3250 0.08590 3.455 5 Ω†

4 41.143 0.3250 0.08590 3.455 5 [1, 3] × [4, 5]

† medium type is 3 by default

5.2 Error and work measures

To measure accuracy of numerical approximations for ψ and σ, we use relative
error in discrete Lp norms

εu,p =
‖uh − ũ‖p

‖ũ‖p
(65)

where u is generic variable placeholder and p = 1,2, or ∞. ũ is the analytical
solution when available or a reference numerical solution otherwise. When
analytical solutions are not available, the discrete solution on the finest mesh in
the multilevel hierarchy is used as the reference solution and coarser solutions
are projected onto the finest mesh in order to approximate error. This was
judged to give an acceptable measure of solution quality even though error
in the reference solution is nonnegligible for Problems IV and V given their
heterogeneous, nonlinear character [11].

Mass conservation error is recorded as

εmc = max
Ωe

∣

∣

∣

∣

∣

∣

∣

∫

Ωe

m̂t dx+
∫

∂Ωe

σ̂h · ne ds−
∫

Ωe

b dx

∣

∣

∣

∣

∣

∣

∣

(66)

where σ̂h is a velocity field obtained from one of the postprocessing methods
described above: PE, LN, SW, or the NC approximation.

There are several ways to measure computational effort, including number of
degrees freedom, Ndof as well as total CPU time [72]. We rely primarily on
total degrees of freedom here, since the majority of the computations for the
methods compared are implemented within the same general-purpose finite
element library. The sparsity pattern of the NC approximation can affect per-
formance [73] in general, but the impact on SuperLU is minimal beyond the
difference in total degrees of freedom. Since the LN postprocessing algorithm
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requires building and factoring local systems for each E(n), we report the ap-
proximate CPU overhead for each mesh as well, where the CPU times are
averaged over at least 1000 repetitions. For the SW algorithm, we report the
CPU time required to reach convergence or exhaust the allowed number of
iterations for each simulation.

5.3 Implementation details

Element integrals in Problem I and II were approximated using Gaussian
quadrature that is exact for quartics and cubics, respectively. Fourth-order
Gaussian quadrature was again used for the CG approximations in Prob-
lem III, while only third-order quadrature was used for the nonlinear, hetero-
geneous examples. Second-order quadrature with points taken from element
boundary barycenters was used for the NC approximations in the nonlinear
examples. The nonlinear solver employed a relative residual convergence test.
For Problem III, absolute and relative tolerances of ǫnl,a = 1 × 10−8 and
ǫnl,r = h × 10−3, where h is the mesh diameter were used. For Problems IV
and V, ǫnl,a = 1 × 10−6, while ǫnl,r = h × 10−6. The absolute and relative
temporal integration tolerances were set to ǫa = ǫr = 10−3 for Problem V. A
convergence tolerance of ǫmc = 10−6 and was used for the SW postprocessing
in all cases and the maximum number of iterations was set kmax = 10000.

The computations were performed using a finite element library under devel-
opment by researchers at the US Army Corps of Engineers, Clemson Univer-
sity, North Carolina State University, the University of Texas at Austin, and
Applied Research Associates, Inc. High level routines and methods were im-
plemented in Python, while low-level computationally intensive portions were
in c and F77. Simulations were run on a 3 GHz duo core Intel Xeon Mac Pro
desktop with 8 GB memory. Python 2.5, gcc 4.0.1, and g77 3.4.0 were used
to interpret and compile the code.

5.4 Simulation Results

5.4.1 Problems I and II

Tables 3 and 5 record the accuracy of the CG and NC approximations for
ψ on uniformly refined meshes for Problem I and Problem II, respectively,
while Tables 4 and 6 compare accuracy and local mass conservation for the
different velocity postprocessing techniques. The CPU overhead for building
and factoring the local node-star systems, eqn (46), on each mesh are reported
in Table 7.
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Stabilization and vertex quadrature were not considered for Problems I and
II, since the solutions were smooth. Looking at Tables 3 and 5, both CG
and NC methods obtained second-order convergence for ψ, as expected. For
Problem I, the accuracy of the NC solution was clearly limited by the use of
piecewise constant average values for b, since the CG and NC error values were
nearly identical, even though Ndof for the NC approximation was significantly
higher. For Problem II, the NC errors were significantly lower for a given level
of refinement, but the CG accuracy was slightly better per degree of freedom.

Global accuracy of the velocity postprocessing methods was similar for Prob-
lem I. In particular, point-wise evaluation was first-order accurate even though
local mass conservation failed. For Problem II the CG-PE approximation was
again first order accurate, but the actual error values were two to three times
higher. The accuracy of the LN and SW velocity fields was essentially the
same. On each level, the NC approximation error for σ̂h was significantly
lower than that of the LN and SW approximations, but the postprocessing
algorithms accuracy was competitive if not better in terms of accuracy per
degree of freedom. The costs in CPU time clearly increased for nd = 3 due to
the increased nodal and element boundary connectivity.

Table 3
εψ,2, Problem I

Method Level h Ndof εψ,2 Rate

CG 1 0.354 25 1.23×10−2 -

NC 1 0.354 56 5.76×10−2 -

CG 2 0.177 81 1.520×10−2 -0.225

NC 2 0.177 208 1.51×10−2 1.85

CG 3 0.0884 289 3.97×10−3 1.93

NC 3 0.0884 800 4.14×10−3 1.94

CG 4 0.0442 1089 1.01×10−3 1.98

NC 4 0.0442 3136 1.05×10−3 1.98

CG 5 0.0221 4225 2.52×10−4 2.00

NC 5 0.0221 12416 2.64×10−4 1.99

5.4.2 Problem III

Figure 3 compares approximate solutions for m from Problem III after uni-
formly refining an initial eight element mesh four times. The resulting mesh
was still fairly coarse, with 512 elements, 800 edges, and 289 nodes. For simplic-
ity, the NC approximation is shown using nodal values obtained by averaging
the corresponding vertex values from neighboring elements. Accuracy of the
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Table 4
εσ,2 and εmc, Problem I

Method Level εσ,2 rate ε
†
mc

CG-PE 1 4.44×10−1 - 1.30×101

CG-LN 1 7.60×10−1 - 0

CG-SW 1 8.30×10−1 - 9.94×10−7

NC 1 6.98×10−1 - 0

CG-PE 2 4.25×10−1 -8.84×10−1 6.54×100

CG-LN 2 4.21×10−1 6.32×10−1 0

CG-SW 2 4.56×10−1 8.63×10−1 9.94×10−7

NC 2 4.16×10−1 7.45×10−1 0

CG-PE 3 2.19×10−1 9.58×10−1 2.07×100

CG-LN 3 2.19×10−1 9.39×10−1 0

CG-SW 3 2.22×10−1 1.04×100 9.94×10−7

NC 3 2.17×10−1 9.37×10−1 0

CG-PE 4 1.11×10−1 9.89×10−1 6.28×10−1

CG-LN 4 1.10×10−1 9.84×10−1 0

CG-SW 4 1.11×10−1 1.00×100 9.99×10−1

NC 4 1.10×10−1 9.81×10−1 0

CG-PE 5 5.54×10−2 9.97×10−1 2.05×10−1

CG-LN 5 5.53×10−2 9.96×10−1 0

CG-SW 5 5.54×10−2 1.00×100 1.0×10−6

NC 5 5.53×10−2 9.95×10−1 0

† 0 means <1×10−12

CG and NC approximations is summarized in Table 8, where εσ1,∞ and εσ1,∞

are discrete L∞ errors for the transverse and longitudinal velocity coordinates,
respectively. εψ,∞ was estimated using the a reference solution obtained from
seven levels of refinement (Ndof = 16641 ) in the case of the CG methods, and
six levels of refinement for the NC solution (Ndof = 12416). Table 9 gives the
CPU effort for the velocity postprocessing schemes.

From Table 8, it is clear that the LN technique conserved mass up to the non-
linear solver error, regardless of the CG variation with which it was combined.
Similarly, the SW algorithm conserved mass up to the imposed conservation
tolerance, ǫmc = 10−6. The NC velocity approximation was essentially exact
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Table 5
εψ,2, Problem II

Method Level h Ndof εψ,2 Rate

CG 1 0.433 125 2.75×10−2 -

NC 1 0.433 864 3.63×10−3 -

CG 2 0.217 729 6.87×10−3 2.00

NC 2 0.217 6528 8.85×10−4 2.05

CG 3 0.108 4913 1.72×10−3 2.00

NC 3 0.108 50688 2.17×10−4 2.03

Table 6
εσ,2 and εmc, Problem II

Method Level εσ,2 rate ε
†
mc

CG-PE 1 1.22×10−1 - 2.87×10−1

CG-LN 1 6.38×10−2 - 0

CG-SW 1 5.80×10−2 - 9.90×10−7

NC 1 1.29×10−2 - 0

CG-PE 2 6.09×10−2 1.01×100 8.27×10−2

CG-LN 2 2.74×10−2 1.22×100 0

CG-SW 2 2.95×10−2 9.75×10−1 9.97×10−7

NC 2 6.69×10−3 9.50×10−1 0

CG-PE 3 3.04×10−2 1.00×100 2.21×10−2

CG-LN 3 1.19×10−2 1.20×100 0

CG-SW 3 1.39×10−2 1.09×100 1.00×10−6

NC 3 3.39×10−3 9.82×10−1 0

† 0 means <1×10−12

up to the nonlinear solver tolerance, while the error in both postprocessing
schemes was significantly lower than the error in the directly evaluated ve-
locity field (CG-PE). The LN approximations were more accurate than SW
solutions on the level four mesh, and the CG-V velocities were more accu-
rate than those obtained from the CG-S approximation, apparently due to
excessive numerical diffusion from the shock capturing term.

Comparing error values for ψ and the solution profiles from Figure 3, εψ,∞
corresponds to undershoot at the front. The lumped (CG-V) and consistent
(CG) approximations incur the most undershoot. The multiscale stabilized
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Table 7
CPU overhead for velocity postprocessing algorithms, Problems I and II

Problem Level Nn Nf LN CPU† [s] SW CPU∗ [s]

I 1 25 56 0 0 (83)

I 2 81 208 0 1.67×10−2 (342)

I 3 289 800 2.15×10−3 1.17×10−1 (907)

I 4 1089 3136 6.47×10−3 9.67×10−1 (1687)

I 5 4225 12416 3.22×10−2 1.78×100 (831)

II 1 125 864 2.41×10−3 3.33×10−2 (243)

II 2 729 6528 2.45×10−2 3.83×10−1 (466)

II 3 4913 50688 2.65×10−1 4.23×100 (484)

† 0 means <1×10−3 [s]

∗ number of iterations in parentheses

approach with shock-capturing was the only method able to resolve the solu-
tion monotonically on the coarser meshes. As one would expect, the relative
advantage of the CG-S approach decreased as the mesh was refined and the
other methods were then able to resolve the internal layer. For instance, the
NC solution did not fully avoid undershoot until the fifth level of refinement
although the nodal averages shown in 3 are clearly more accurate than the
CG-S solution.

Table 8
Problem III solution error

Method Level† Ndof εψ,∞ εmc εσ1,∞ εσ2,∞

CG-PE 4 289 8.72×10−2 2.26×10−3 4.40×10−3 2.19×100

CG-LN 4 289 8.72×10−2 1.35×10−8 4.37×10−4 1.89×10−1

CG-S-LN 4 289 4.36×10−2 3.00×10−7 3.90×10−4 3.65×10−1

CG-S-SW 4 289 4.36×10−2 9.97×10−7 2.10×10−3 6.91×10−1

CG-V-LN 4 289 1.75×10−1 9.33×10−9 2.29×10−4 9.84×10−2

CG-V-SW 4 289 1.75×10−1 9.93×10−7 6.99×10−4 2.49×10−1

NC 4 800 9.49×10−2 0 5.21×10−8 1.66×10−4

CG-PE 5 1089 3.28×10−2 7.17×10−4 2.22×10−3 1.61×100

CG-LN 5 1089 3.28×10−2 6.10×10−8 3.29×10−4 1.71×10−1

CG-S-LN 5 1089 2.30×10−2 8.88×10−8 3.39×10−4 3.58×10−1

CG-S-SW 5 1089 2.30×10−2 9.97×10−7 1.11×10−3 3.98×10−1

CG-V-LN 5 1089 5.58×10−2 4.92×10−9 2.54×10−4 1.12×10−1

CG-V-SW 5 1089 5.58×10−2 9.98×10−7 4.99×10−4 1.45×10−1

NC 5 3136 2.32×10−2 0 2.71×10−7 1.55×10−5

† h = 0.319 on level 4, and h = 0.160 on level 5
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Table 9
CPU overhead for velocity postprocessing algorithms, Problem III

Method Level Its. CPU [s]

LN 4 - 1.35×10−3

CG-V-SW 4 250 3.33×10−2

CG-S-SW 4 595 6.67×10−2

LN 5 - 5.52×10−3

CG-V-SW 5 83 3.33×10−2

CG-S-SW 5 207 1.17×10−1

Fig. 3. Profile of m along x = 0.5[m] on mesh level 4
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5.4.3 Problem IV

Figure 4 illustrates the problem domain and initial mesh generated by Triangle
[74] for Problem IV and V. Performance of the methods for Problem IV is
summarized in Table 10. CPU overhead for the LN and SW algorithms is
shown in Table 11. NLNI failed with the CG approximation for Problem IV,
due to failure in the Newton solve on coarser levels in the mesh hierarchy.
Instead, the CG results in Table 10 were obtained by solving Newton’s method
independently on levels 3,4, and 5, and we also provide the ratio of the CPU
time for the LN and SW algorithms to the CPU time for Newton’s method
as a percentage, which demonstrates the minor cost of the post-processing
approaches relative to the cost of calculating the finite element solution.
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Figure 5 compares the LN σ̂h obtained from the CG-S approximation and the
NC solution for σ̂h after three levels of refinement. The CG-V-LN solutions
for ψ and σ̂h on level five are shown in Figure 6. The velocity fields in Figure
5 are similar and close to the CG-V-LN solution on five levels of refinement
except for a deviation in the CG-S-LN solution around (4.5,2.5). This was
generally true of the various method combinations listed in Table 10 with the
exception of the point-wise evaluated σ̂h, and the CG-S-SW σ̂h on level three
which had nearly an order of magnitude greater error than the remaining
approximations.

Both postprocessing schemes maintained local mass conservation, but the rel-
ative expense of the SW approach increased for Problem IV. This was par-
ticularly evident with the stabilized approximations (CG-S), where between
two and four times as many iterations were required than with the lumped
approximation. Accuracy in terms of εψ,2 was comparable among the methods,
given the level of error likely in the finest level approximation.

Fig. 4. Domain and initial mesh for Problems IV and V
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(8,5.5)[m]

Type 4
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Type 3
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Table 10
Solution errors, Problem IV

Method Level† Ndof εmc εψ,2 εσ,2

CG-LN 3 1351 3.55×10−11 2.37×10−2 1.20×10−1

CG-V-LN 3 1351 1.20×10−8 3.64×10−2 1.22×10−1

CG-V-SW 3 1351 1.00×10−6 3.64×10−2 1.83×10−1

CG-S-PE 3 1351 1.86×10−1 6.35×10−2 1.94×100

CG-S-LN 3 1351 1.08×10−6 6.35×10−2 1.83×10−1

CG-S-SW 3 1351 9.98×10−7 6.35×10−2 1.18×100

NC 3 3926 0 1.44×10−2 1.18×10−1

CG-LN 4 5277 2.71×10−11 9.45×10−3 5.35×10−2

CG-V-LN 4 5277 8.00×10−9 2.08×10−2 5.37×10−2

CG-V-SW 4 5277 1.00×10−7 2.08×10−2 8.56×10−2

CG-S-PE 4 5277 2.45×10−2 8.59×10−3 2.12×10−1

CG-S-LN 4 5277 6.67×10−7 8.59×10−3 5.72×10−2

CG-S-SW 4 5277 1.00×10−6 8.59×10−3 1.01×10−1

NC 4 15580 0 6.27×10−3 5.24×10−2

† h = 0.707 on level 3, h = 0.354 on level 4, and h = 0.177 on level 5

Table 11
CPU overhead for LN and SW algorithms, Problem IV

Method Level Its. CPU [s] % of Newton CPU

LN 3 - 7.14×10−3 0.0734

CG-V-SW 3 651 4.67×10−1 4.80

CG-S-SW 3 1714 1.20×100 12.3

LN 4 - 3.45×10−2 0.106

CG-V-SW 4 586 1.52×100 4.69

CG-S-SW 4 1195 3.12×100 9.63

LN 5 - 1.56×10−1 0.274

CG-V-SW 5 140 1.60×100 2.81

CG-S-SW 5 575 8.15×100 14.3
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Fig. 5. σ̂h CG-S-LN level 3 (left), NC (right)
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Fig. 6. CG-V level 5 ψ (left), σ̂h (right)
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5.4.4 Problem V

Problems IV and V differed only in the boundary condition on the right face of
the domain and the transient nature of Problem V. Since Problem IV demon-
strated the accuracy of the postprocessing schemes for heterogeneous prob-
lems, the simulations for Problem V focused on the ability of the CG-S and
CG-V methods to resolve the infiltration front monotonically and the overall
expense of the LN and SW schemes when used at each time step of a tran-
sient simulation. Table 12 shows mass conservation error and computational
effort for the LN and SW algorithms when combined with the CG-S and CG-
V discretizations. Figures 8 and 9 compare the solution fronts at T = 30 [d]
for CG-S and CG-V on three levels of refinement. Figure 9 shows the CG-V
solution for ψ on five levels of refinement. Upwinding was not necessary for
the CG-V approximation for these refinement levels, and both solutions had
little or no overshoot. Although we did not do a detailed comparison of the
NC solution to the CG-S and CG-V solutions for this problem, we did find
that the NC solution had significant undershoot.

The three-level CG-V solution smeared the infiltration front enough to almost
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reach the lower right corner of the physical domain at T = 30 [d]. On the
other hand, the CG-S solution smeared the infiltration front out significantly
in the horizontal direction, so that the leading edge of the front lagged the
CG-V solution along the bottom no-flow boundary. The lateral smearing of
the CG-S solution was caused primarily by the isotropic nature of the shock-
capturing diffusion and the relatively large value νc = 0.5 necessary to obtain
an oscillation-free solution.

The CPU times reported in Table 12 include the initial expense required for
building and factoring the local node-star systems as well as the per iteration
backsubstitutions. Since the mesh and boundary conditions did not change for
Problem V, the overall computational advantage for the LN postprocessing
increased significantly. In addition, we note that the SW algorithm failed to
converge within the maximum allowed iterations for two time steps on level
four and failed for four time steps on level five. However, the maximum mass
conservation error in these cases was 3.19×10−5.

Table 12
LN and SW performance, Problem V

Method Level εmc at T = 30[d] Avg. its. Avg. CPU† [s]

CG-V-LN 3 1.18×10−7 - 1.52×10−3 (5.62×10−3)

CG-V-SW 3 9.97×10−7 451 3.13×10−1

CG-S-LN 3 3.61×10−7 - 1.52×10−3 (5.62×10−3)

CG-S-SW 3 1.00×10−6 2289 1.58×100

CG-V-LN 4 2.09×10−7 - 9.70×10−3 (2.49×10−2)

CG-V-SW 4 9.99×10−7 377 9.74×10−1

CG-S-LN 4 4.73×10−8 - 9.70×10−3 (2.49×10−2)

CG-S-SW 4 1.00×10−6 2072 5.39×100

CG-V-LN 5 5.37×10−7 - 4.17×10−2 (1.14×10−1)

CG-V-SW 5 9.97×10−7 185 2.13×100

CG-S-LN 5 1.52×10−7 - 4.17×10−2 (1.14×10−1)

CG-S-SW 5 1.00×10−6 584 8.20×100

† CPU required to build and factor LN node-star systems in parentheses

5.5 Discussion

There were two basic aims of this work. The first was to formulate a mul-
tiscale, stabilized finite element approximation for Richards’ equation. The
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Fig. 7. ψ CG-V level 3 solution

0
2

4
6

8 0

1

2

3

4

5

6

7

−100

−50

0

 

y [m]

x [m]

 

−80

−70

−60

−50

−40

−30

−20

−10

second was to detail two postprocessing techniques that are capable of pro-
ducing locally conservative velocity fields from traditional and stabilized finite
element solutions for pressure-head. The goal of the numerical experiments was
to determine if the multiscale-stabilized strategy could provide improved ap-
proximations for ψ and to evaluate the accuracy and computational efficiency
of the velocity postprocessing algorithms.

The numerical experiments covered a range of conditions from steady-state
single-phase flow to variably saturated, block heterogeneous infiltration prob-
lems. The multiscale stabilization was compared to a traditional conforming
finite element approximation with and without mass-lumping, while the im-
pact of velocity postprocessing was measured by comparison to direct evalua-
tion of σ via Darcy’s law. As a point of reference, we also considered a locally
conservative nonconforming finite element approximation that coincides with
a mixed hybrid finite element approximations in many cases.

The velocity postprocessing algorithm from Larson and Niklasson [17] com-
bined with a local RT0 representation worked well with each of the con-
forming Galerkin methods considered. Local mass conservation was always
obtained, and global accuracy was improved. The postprocessing algorithm
applied to piecewise linear discretizations produces linear normal fluxes on
element boundaries, which naturally matches a linear BDM1 or BDDF1 rep-
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Fig. 8. ψ CG-S level 3 solution
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resentation on element interiors. While not shown, we found that use of a
local BDM1 or BDDF1 representation improved accuracy for some cases such
as Problem I. In general, the improvements were not sufficient to justify the
added storage (n2

d +nd versus nd +1 local degrees of freedom), since the post-
processed boundary fluxes were only first order accurate [17]. On the other
hand, local projections onto higher-order mixed spaces following the approach
laid out in [18] could still be used to obtain velocity fields satisfying higher
order compatibility conditions [47]. The algorithm is theoretically scalable for
parallel implementations.

The Sun-Wheeler postprocessing scheme produced mass-conservative velocity
fields with accuracy similar to that of the Larson and Niklasson algorithm,
with the exception of coarse grid, multiscale-stabilized solutions to Problem
IV. The Sun-Wheeler algorithm usually required more CPU time than the
Larson-Niklasson approach, and it failed to converge in the maximum number
of iterations allowed for a few (four) time steps in Problem V. The CPU time
required for both methods was a small fraction of the total solver time in most
cases, however, and the mass conservation residual was still small (at least
3.18×10−5) when the Sun-Wheeler iterations failed to converge. The Sun-
Wheeler algorithm as presented is inherently sequential with a convergence
rate depending on the mesh, but implementation is quite simple.
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Fig. 9. ψ CG-V level 5 solution

We have tried to be comprehensive in the numerical experiments, yet there
are several factors that were not accounted for directly. For instance, the
Sun-Wheeler algorithm requires minimal storage, while the Larson-Niklasson
approach required storage of the local, factored node-star systems in our
implementation. This memory overhead can be non-trivial for large, three-
dimensional problems. Similarly, we did not consider local mesh refinement,
which would have required rebuilding some of the Larson-Niklasson node-star
systems and likely increased its overhead. We also did not include the global
algorithms from [17, 18] which might be competitive with a sufficiently fast
linear solver [18].

The RT0 velocity fields from the velocity postprocessing schemes were typi-
cally comparable in accuracy to RT0 velocity fields obtained from the non-
conforming discretization, and were often cheaper to obtain in terms of total
degrees of freedom. While these results do not attempt to provide a compre-
hensive evaluation of the relative merits of primal conforming and mixed finite
element approximations, they do indicate that the proposed approach should
be at least competitive with mixed methods for Richards’ equation.

The effectiveness of the multiscale stabilization strategy varied somewhat.
For a steady-state, variably saturated example where the solution contained a
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sharp internal layer (Problem III), it improved resolution over the other meth-
ods considered on coarse grids. On the other hand, its advantages over tradi-
tional mass-lumping were more limited for Problem V. Although the frame-
work used here is quite general, the stabilization and shock capturing parame-
ters were evaluated using direct extensions of standard formulas for nonlinear
advection-diffusion-reaction problems, and the discrete strong residual was ap-
proximated using the chain-rule for simplicity. These approaches clearly need
refinement to obtain more robust and accurate approximations for Richards’
equation.
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