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Summary. We discuss tools for the evaluation of probabilistic forecasts and the critique of
statistical models for ordered discrete data. Our proposals include a non-randomized version
of the probability integral transform, marginal calibration diagrams and proper scoring rules,
such as the predictive deviance. In case studies, we critique count regression models for
patent data, and assess the predictive performance of Bayesian age-period-cohort models for
larynx cancer counts in Germany.
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1. Introduction

One of the major purposes of statistical analysis is to make predictions, and to provide
suitable measures of the uncertainty associated with them. Hence, forecasts ought to be
probabilistic in nature, taking the form of probability distributions over future quantities
and events (Dawid, 1984).

Here, we consider the evaluation of probabilistic forecasts, or predictive distributions,
for count data, as they occur in a wide range of epidemiological, ecological, environmental,
climatological, demographic and economic applications (Christensen and Waagepetersen,
2002; Gotway and Wolfinger, 2003; McCabe and Martin, 2005; Elsner and Jagger, 2006;
Frühwirth-Schnatter and Wagner, 2006; Nelson and Leroux, 2006). Our focus is on the low
count situation in which continuum approximations fail; however, our results apply to high
counts and rates as well, as they occur routinely in epidemiological projections (Knorr-Held
and Rainer, 2001; Clements, Armstrong and Moolgavkar, 2005). To this date, statistical
methods for the assessment of predictive performance have been studied primarily from
biomedical, meteorological and economic perspectives (Pepe, 2003; Jolliffe and Stephenson,
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2003; Clements, 2005), focusing on predictions of dichotomous events or real-valued continu-
ous variables. Here, we consider the hybrid case of count data, in which methods developed
for either type of situation continue to be relevant but require technical adaption.

Gneiting, Balabdaoui and Raftery (2007) contend that the goal of probabilistic fore-
casting is to maximize the sharpness of the predictive distributions subject to calibration.
Calibration refers to the statistical consistency between the probabilistic forecasts and the
observations, and is a joint property of the predictive distributions and the events or values
that materialize. Sharpness refers to the concentration of the predictive distributions, and
is a property of the forecasts only.

In Section 2 we introduce tools for calibration and sharpness checks, among them a
non-randomized version of the probability integral transform (PIT) that is tailored to count
data, and the marginal calibration diagram. Section 3 discusses the use of scoring rules
as omnibus performance measures. We stress the importance of propriety (Gneiting and
Raftery, 2007), note examples, relate to classical measures of predictive performance, and
identify the predictive deviance as a variant of the proper logarithmic score. Section 4 turns
to a cross-validation study, in which we apply these tools to critique count regression models
for pharmaceutical and biomedical patents. The epidemiological case study in Section 5
evaluates the predictive performance of Bayesian age-period-cohort models for larynx cancer
counts in Germany. We consider a recent suggestion by Baker and Bray (2005), according
to which the inclusion of all age groups in the analysis, as opposed to older age groups only,
leads to improved predictions. The paper closes with a discussion in Section 6.

For count data, a probabilistic forecast is a predictive probability distribution, P , on
the set of the nonnegative integers. We denote its probability mass function by (pk)

∞

k=0 and
the respective cumulative distribution function (CDF) by (Pk)

∞

k=0. Generalizations of our
proposed methodology to probabilistic forecasts for any type of ordered discrete data, as
opposed to count data, are straightforward and given in an appendix. The tools are simple
yet powerful, and they apply generally to problems of forecast evaluation, model criticism
and model diagnosis.

2. Calibration and sharpness

As noted, probabilistic forecasts strive to maximize the sharpness of the predictive distri-
butions subject to calibration. Calibration refers to the statistical consistency between the
probabilistic forecasts and the observations, and its assessment requires frequentist thinking
(Rubin, 1984). Gneiting et al. (2007) distinguish various modes of calibration and propose
tools for the assessment of calibration and sharpness for probabilistic forecasts of continuous
variables. Here, we adapt their proposals to the case of count data.

2.1 Probability integral transform

Dawid (1984) proposed the use of the probability integral transform (PIT) for calibration
checks. This is simply the value that the predictive cumulative distribution function attains
at the value that materializes. If the observation is drawn from the predictive distribution
— an ideal and desirable situation — and the predictive distribution is continuous, the PIT
has a standard uniform distribution. Calibration then is checked empirically, by plotting
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the empirical CDF of a set of PIT values and comparing to the identity function, or by
plotting the histogram of the PIT values and checking for uniformity (Diebold, Gunther
and Tay, 1998; Gneiting et al., 2007). The PIT histogram is typically used informally
as a diagnostic tool; formal tests can also be employed though they require care in their
interpretation (Hamill, 2001; Jolliffe, 2007). Deviations from uniformity hint at reasons
for forecast failures and model deficiencies. U-shaped histograms indicate underdispersed
predictive distributions, hump or inverse-U shaped histograms point at overdispersion, and
skewed histograms occur when central tendencies are biased.

In the case of count data, the predictive distribution is discrete. Here, the PIT is no longer
uniform under the hypothesis of an ideal forecast, for which the observed count is a random
draw from the predictive distribution. To remedy this, several authors have suggested a
randomized PIT. Specifically, if P is the predictive distribution, x ∼ P is a random count
and v is standard uniform and independent of x, then

u = Px−1 + v(Px − Px−1), x ≥ 1, (1)

u = vP0, x = 0, (2)

is standard uniform (Smith, 1985, pp. 286–287; Frühwirth-Schnatter, 1996, p. 297; Liesenfeld,
Nolte and Pohlmeier, 2006, pp. 819–820). For time series data one typically considers one-
step (or k-step) ahead predictions, based on a time series model fitted on past and current
data, and checks for the independence of the randomized PIT, in addition to checks for
uniformity.

Here we propose a non-randomized yet uniform version of the PIT histogram. To this
end, we replace the randomized PIT value in (1) and (2) by its conditional cumulative
distribution function given the observed count x, that is, by

F (u) =











0, u ≤ Px−1,
(u− Px−1)/(Px − Px−1), Px−1 ≤ u ≤ Px,
1, u ≥ Px,

(3)

if x ≥ 1, and

F (u) =

{

u/P0, u ≤ P0,
1, u ≥ P0,

(4)

if x = 0, similarly to the discrete grade transformation in relative distribution methodologies
for the social sciences (Handcock and Morris, 1999, p. 180). Calibration can then be assessed
by aggregating over the predictions and comparing the mean PIT,

F̄ (u) =
1

n

n
∑

i=1

F (i)(u), 0 ≤ u ≤ 1, (5)

where F (i) is based on the predictive distribution P (i) and the observed count x(i), to the
distribution function of the standard uniform law, that is, the identity function.

We prefer to perform this comparison by plotting a non-randomized PIT histogram,
which can be interpreted diagnostically in the ways described above. Specifically, we pick
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the number of bins, J , compute fj = F̄ ( j
J
) − F̄ ( j−1

J
) for equally spaced bins j = 1, . . . , J ,

plot a histogram with height fj for bin j, and check for uniformity. Under the hypothesis
of calibration, that is, if x(i) ∼ P (i) for all forecast cases i = 1, . . . , n, it is straightforward
to verify that F̄ (u) has expectation u, so that we expect uniformity. Typically, J = 10 or
J = 20 are good choices for the number of bins in the PIT histogram.

It is important to note that uniformity of the PIT histogram is a strong requirement,
being equivalent to all prediction intervals showing nominal coverage. In particular, the
sometimes practice of tabulating empirical coverage for selected prediction intervals can be
interpreted as a special case of the use of the PIT histogram. Consider the prediction interval
with lower and upper probability limits α and β. The nominal coverage is β − α. Using
randomization, we find the empirical coverage as the frequency of randomized PIT values
that fall into the interval [α, β]. We prefer to use the non-randomized approach, in which the
empirical coverage is computed as the difference F̄ (β) − F̄ (α) of the mean non-randomized
PIT (5) at the probability limits α and β. Of course, this difference is the expected value of
the empirical coverage computed on the basis of the randomized PIT, when the expectation
is taken with respect to the randomization.

2.2 Marginal calibration diagram

We now consider what Gneiting et al. (2007) refer to as marginal calibration. The idea is
straightforward: If each observed count is a random draw from the respective probabilistic
forecast, and if we aggregate over the individual predictive distributions, we expect the
resulting mixture distribution and the histogram of the observed counts to be statistically
compatible. A marginal calibration diagram illustrates the predicted probability mass for
specific x values or intervals (xa, xb], when averaged over the predictive distributions, along
with the respective empirical frequency of count observations. Major discrepancies hint at
reasons for forecast failures and model deficiencies. An example of this type of diagnostic
tool is shown in Figure 4 below.

2.3 Sharpness

Sharpness refers to the concentration of the predictive distributions. In the context of
prediction intervals, this can be rephrased simply: The shorter the intervals, the sharper, and
the sharper the better, subject to calibration. Prediction intervals for continuous predictive
distributions are uniquely defined, and Gneiting et al. (2007) suggest to tabulate their ave-
rage width, or to plot sharpness diagrams as a diagnostic tool. Sharpness continues to be
critical for count data; however, we have found these tools to be less useful for discrete
predictive distributions, for the ambiguities in specifying prediction intervals. Our preferred
way of addressing sharpness is indirectly, via proper scoring rules; see below.

2.4 Simulation study

We consider the negative binomial distribution NB(λ, a) with mean λ ≥ 0 and dispersion
parameter a ≥ 0, hence variance λ(1 + aλ). If a = 0, this is simply the Poisson distribu-
tion P(λ). We sample 200 counts from an NB(5, 1

2
) distribution, and consider probabilistic

forecasters whose predictive distribution is NB(5, 0) = P(5), NB(5, 1
2
) and NB(5, 1). Fig-
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Figure 1. Non-randomized PIT histograms for probabilistic forecasts for a sample of 200
counts from a negative binomial distribution NB(λ, a) with mean λ = 5, dispersion parameter
a = 1

2
and variance λ(1 + aλ). The predictive distribution is negative binomial with mean

λ = 5 and dispersion parameter a = 0, a = 1
2

and a = 1 (from left to right). The PIT
histograms are U-shaped, uniform and inversely U-shaped, indicating underdispersed, well-
calibrated and overdispersed predictive distributions, respectively.
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Figure 2. Boxplots for various scores in the situation of Figure 1.
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ure 1 shows non-randomized PIT histograms with J = 10 equally spaced bins for these
three cases. The PIT histograms are U-shaped, uniform and inversely U-shaped, indicating
underdispersed, well-calibrated and overdispersed predictive distributions, respectively.

3. Scoring rules

Scoring rules provide summary measures in the evaluation of probabilistic forecasts, by
assigning a numerical score based on the predictive distribution and on the event or value
that materializes. We take scoring rules to be negatively oriented penalties that a forecaster
wishes to minimize. Specifically, if the forecaster quotes the predictive distribution P and
the count x materializes, the penalty is s(P, x). We write s(P,Q) for the expected value of
s(P, · ) under Q. In practice, scores are reported as averages over suitable sets of probabilistic
forecasts, and we use upper case to denote a mean score; say

S =
1

n

n
∑

i=1

s(P (i), x(i)),

where P (i) and x(i) refer to the ith predictive distribution and the ith observed count, re-
spectively. In particular, Table 1 below shows mean scores.

3.1 Propriety

Suppose, then, that the forecaster’s best judgement is the predictive distribution Q. The
forecaster has no incentive to predict any P 6= Q, and is encouraged to quote her true belief,
P = Q, if

s(Q,Q) ≤ s(P,Q) (6)

with equality if and only if P = Q. A scoring rule with this property is said to be strictly

proper. If s(Q,Q) ≤ s(P,Q) for all P and Q, the scoring rule is said to be proper. Propriety
is an essential property of a scoring rule that encourages honest and coherent predictions
(Bröcker and Smith, 2007; Gneiting and Raftery, 2007). Strict propriety ensures that both
calibration and sharpness are being addressed.

A scoring rule s for count data is regular if s(P, x) is finite, except possibly that s(P, x) =
∞ if px = 0. Let P denotes the class of probability measures on the set of the nonnegative
integers. The Savage representation theorem (Savage, 1971; Gneiting and Raftery, 2007)
states that a regular scoring rule S for count data is proper if and only if

s(P, x) = h(P ) −
∞
∑

k=0

h′k(P )pk + h′x(P )

where h : P →
�

is a concave function and h′(P ) is a subgradient of h at the point P , for all
P ∈ P. The statement holds with proper replaced by strictly proper, and concave replaced
by strictly concave.

Phrased slightly differently, a regular scoring rule s is proper if and only if the expected
score function h(P ) = s(P, P ) is concave on P, and the sequence (s(P, k))∞k=0 is a subgradient
of h at the point P , for all P ∈ P. The expected score function allows for an interpretation
as a generalized entropy function (Gneiting and Raftery, 2007).

6



3.2 Examples of proper scoring rules

The logarithmic score is defined as

logs(P, x) = − log px. (7)

This is the only proper scoring rule that depends on the predictive distribution P only
through the probability mass px at the observed count (Good, 1952). The associated ex-
pected score or generalized entropy function is the classical Shannon entropy.

There is a close relationship between the logarithmic score and the predictive deviance,
defined as

dev(P, x) = −2 log px + 2 log fx,

where fx is “some fully specified standardizing term that is a function of the data alone”
(Spiegelhalter, Best, Carlin and van der Linde, 2002, p. 587). If the predictive distribution
is a member of a one-parameter exponential family, such as the binomial or Poisson, the
standardizing term is routinely taken to be the saturated deviance (McCullagh and Nelder,
1989, pp. 33-34; Knorr-Held and Rainer, 2001, p. 114; Spiegelhalter et al., 2002, p. 606;
Clements et al., 2005, p. 581). However, when the predictive distributions come from possibly
distinct parametric or non-parametric families, it is vital that the standardizing terms in the
deviance are common (Spiegelhalter et al., 2002, p. 634). We contend that the choice is
rather arbitrary and propose for simplicity that the standardizing term is taken to be zero
(Gschlößl and Czado, 200x, sect. 6.3), which corresponds to the use of the logarithmic score.

Let ‖p‖2 =
∑

∞

k=0 p
2
k, which can frequently be computed analytically, as shown in Ap-

pendix A for the Poisson and negative binomial distributions. The quadratic score or Brier

score and the spherical score are then defined as

qs(P, x) = −2px + ‖p‖2 (8)

and
sphs(P, x) = −

px

‖p‖
, (9)

respectively. Wecker (1989) proposed the use of the quadratic score in the assessment of
time series predictions of counts.

The ranked probability score (Epstein, 1969) was originally introduced for ranked cate-
gorical data. It is easily adapted to count data, by defining

rps(P, x) =
∞
∑

k=0

{Pk − 1(x ≤ k)}2 . (10)

Equation (14) in Gneiting and Raftery (2007) implies an alternative representation expressed
in terms of expectations, which we now assume to be finite, namely

rps(P, x) = EP |X − x| −
1

2
EP |X −X ′|,

7



where X andX ′ are independent copies of a random variable with distribution P . The ranked
probability score generalizes the absolute error, to which it reduces if P is a point forecast.
Hence, it provides a direct way of comparing point forecasts and predictive distributions.
The scores introduced in this section are strictly proper, except that the ranked probability
score requires Q to have finite first moment for strict inequality in (6) to hold.

There is no automatic choice of a proper scoring rule to be used in any given situation,
unless there is a unique and clearly defined underlying decision problem. However, in many
types of situations probabilistic forecasts have multiple simultaneous uses, and it may be
appropriate to use a variety of diagnostic tools and scores, to take advantage of their differing
emphasis and strengths. For instance, there is a distinct difference between the ranked
probability score and the other scores discussed in this section, in that the former blows up
score differentials between competing forecasters in case predicted and/or observed counts
are unusually high. Hence, a few, or even a single high count case can dominate and obscure
differences in the mean score. We will see an example of this in Section 5 below. This type
of behavior might be desirable, if the high count cases are the crucial ones, or might be
undesirable, depending on the application at hand.

3.3 Classical measures of predictive performance

We now discuss traditional summary measures of predictive performance. For simplicity,
we assume hereinafter that all moments considered are finite. Suppose first that µ ∈

�
is

point forecast and the count x materializes. Typically, one uses the absolute error, ae(µ, x) =
|x − µ|, or the squared error, se(µ, x) = (x − µ)2, as a measure of predictive performance,
averaging, again, over suitable sets of forecasts, to obtain the mean absolute error and mean
squared error, respectively. Of course, these measures apply to probabilistic forecasts as well.
For example, we can define the squared error score,

ses(P, x) = (x− µP )2 , (11)

where µP is the mean of the predictive distribution P . Viewed as a scoring rule for proba-
bilistic forecasts, this score is proper, but not strictly proper.

We now turn to studentized errors. It has frequently been argued that the squared

Pearson residual or normalized squared error score,

nses(P, x) =
(

x− µP

σP

)2

, (12)

where µP and σ2
P denote the mean and the variance of P , ought be approximately one

when averaged over the predictions (Carroll and Cressie, 1997, p. 52; Liesenfeld et al., 2006,
pp. 811, 818). Gotway and Wolfinger (2003, p. 1423) call the mean normalized squared error
score the average empirical-to-model variability ratio, arguing also that it should be close to
one. One way of justifying this is by noting that the function

f(µP , σ
2
P ) = (nses(P,Q) − 1)2

has a minimum at µP = µQ and σ2
P = σ2

Q. The normalized squared error score and its
expectation nses(P,Q) when P is the predictive distribution and x ∼ Q realizes, depend

8
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Figure 3. Non-randomized PIT histograms for patent data count regressions.

on P only through the first two moments, so the function f is well-defined. Still, we follow
Frühwirth-Schnatter (1996, p. 297) in arguing that the PIT histogram is a more informative
and more robust tool for unmasking dispersion errors.

The scores in this section depend on the predictive distribution P only through the first
two moments. Dawid and Sebastiani (1999) provide a comprehensive study of proper scoring
rules for which this property holds. A particularly appealing example is the scoring rule

dss(P, x) =
(

x− µP

σP

)2

+ 2 log σP , (13)

to which we refer as the Dawid-Sebastiani score. It was proposed by Gneiting and Raftery
(2007) as a proper alternative to the improper predictive model choice criterion of Gelfand
and Ghosh (1998).

3.4 Simulation study

We now return to the simulation study in Section 2.4. We sample 200 counts from
an NB(5, 1

2
) distribution, and suppose that the predictive distribution is NB(5, 0) = P(5),

NB(5, 1
2
) and NB(5, 1), respectively. For each probabilistic forecast and each of six scoring

rules (logarithmic, quadratic, spherical, ranked probability, Dawid-Sebastiani and normalized
squared error scores), Figure 2 summarizes the scores for the 200 individual forecasts. The
first five scoring rules, which are proper, show the lowest scores for the NB(5, 1

2
) forecast,

which is correctly identified as superior. A similar statement holds for the normalized squared
error score, which is closest to its target value one for this forecast. The respective mean
normalized squared error scores are 3.84, 1.10 and 0.64, thereby supporting the dispersion
assessments that the PIT histograms in Figure 1 make more powerfully. Of course, the
predictive mean, and therefore the mean squared error, is the same for all three forecasts.

4. Case study: Model critique for count regression

Count data often show substantial extra variation or overdispersion relative to a Poisson
regression model (Dean and Lawless, 1989; Winkelmann, 2005). Various alternatives have
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been suggested to accommodate this, such as negative binomial and mixed Poisson models
(Lawless, 1987). In this section, we investigate whether the non-randomized PIT histogram,
the marginal calibration diagram and proper scoring rules are effective tools for model crit-
icism (O’Hagan, 2003) in this context. We adopt a leave-one-out cross-validation approach,
in which the prediction for each observation is based on a count regression model fitted on
the remaining data only.

We study the relationship of the number of patent applications to research and develop-
ment (R&D) spending and sales using data from 1976 for 70 pharmaceutical and biomedical
companies (Hall, Cummins, Laderman and Mundy, 1988). This data set was also studied
by Wang, Cockburn and Puterman (1998), who used a mixed Poisson regression approach
to address the overdispersion that is commonly observed in patent counts (Hausman, Hall
and Griliches, 1984; Czado, Erhardt and Min, 2006). Here we take a simpler approach and
compare Poisson regression to negative binomial regression, using the specification

log λ = β0 + β1
R&D

sales
+ β2 (R&D)1/5

for the predictive mean λ. Figure 3 shows non-randomized PIT histograms based on the
leave-one-out predictive distributions, using Poisson and negative binomial count regression
models fitted with the R functions glm() and glm.nb() (Venables and Ripley, 1997, Section
7.4). The PIT histogram for the Poisson case indicates under-dispersion of the Poisson
regression model. The histogram for the negative binomial case does not show any lack
of model fit. Figure 4 shows a marginal calibration diagram, as introduced in Section 2.2.
We see that the predicted frequencies for the negative binomial regression are closer to the
observed ones, when compared to the Poisson regression.

Figure 5 uses boxplots to display scores for the two competing methods. The five proper
scores all prefer the negative binomial over the Poisson regression model. Superficially,
the same appears to be true for the normalized squared error score. However, the mean
normalized squared error can blow up under outliers, which is the case here. Outliers beyond
the range of the boxplot lead to mean normalized squared error scores of 12.5 and 91.6 for
the Poisson and negative binomial case, respectively. This is in stark contrast to the PIT
histograms in Figure 3 and the boxplots in Figure 5, and provides an example of potentially
misleading inferences that non-robust performance measures may suggest.

In conclusion, our diagnostic tools all point at the superiority of the negative binomial
regression model. The non-randomized PIT histogram and the marginal calibration diagram
furthermore allow us to diagnose the reason for this critique, in that the Poisson model is
strongly underdispersed.

5. Case study: Predicting cancer incidence

Bayesian age-period-cohort models are used increasingly to project cancer incidence and
mortality rates. Data from younger age groups (typically age < 30 years) for which rates are
low are often excluded from the analysis. However, a recent empirical comparison (Baker
and Bray, 2005) based on data from Hungary suggests that age-specific predictions based on
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Figure 5. Boxplots for various scores for patent data count regressions.
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Table 1

Four predictive models for larynx cancer counts in Germany, 1998–2002, and the respective

mean scores. The best value in each column is shown in bold face.

Model age disp LogS QS SphS RPS DSS SES NSES

1 + + 4.27 −0.041 −0.153 14.0 6.74 852.9 1.66

2 + – 4.35 −0.040 −0.152 12.9 6.89 684.4 2.05

3 – + 4.29 −0.040 −0.152 14.2 6.78 870.0 1.69

4 – – 4.35 −0.039 −0.151 12.2 6.90 564.8 2.12

full data are more accurate. A natural question arises here in how to quantify the quality of
the predictive distributions.

Baker and Bray (2005, p. 799) predict mortality rates, using what they call the sum of

squared standardized residuals to assess the quality of the forecasts. From personal commu-
nication with the authors, the standardization is not based on the predictive variance, so the
aforementioned residuals are not the squared Pearson residuals in (12). Instead, Baker and
Bray (2005) use the traditional standard error of a rate estimate for standardization and
argue, in discussing their Table 1, that smaller values of this quantity correspond to more
accurate predictions. Clements et al. (2006) question the assessment in Baker and Bray
(2005) and suggest the use of the predictive deviance, originally proposed by Knorr-Held
and Rainer (2001). They argue that “the Bayesian age-period-cohort model suffers from
very wide credible intervals”, but do not relate the width of the intervals to properties of
calibration, and do not specifically recommend the use of proper scoring rules.

In this section, we use scoring rules to investigate whether the conclusion drawn by Baker
and Bray (2005) applies to larynx cancer data from Germany, 1952–2002. Our assessment
is based on counts rather than rates. We fit four different predictive models depending on
whether or not data from age groups < 30 years have been included in the analysis, and
whether or not the model allows for overdispersion, as shown in Table 1.

Let nij be the number of persons at risk in age group i and year j. We assume that
the respective number of deaths Xij is binomially distributed with parameters nij and πij.
A Poisson model would be a nearly identical choice. Following Besag, Green, Higdon and
Mengersen (1995) and Knorr-Held and Rainer (2001), we decompose the logarithmic odds
ηij = log{πij/(1−πij)} additively, into an overall level µ, age effects θi, period effects ϕj and
cohort effects ψk, namely

ηij = µ+ θi + ϕj + ψk.

Note that there is a problem in defining cohorts because age groups (in 5-year steps) and
periods (in 1-year steps) are not on the same grid. We follow Fienberg and Mason (1979)
and Knorr-Held and Rainer (2001) and use the cohort index k = 5 · (I − i) + j, where I is
the number of age groups.

Typically, parametric time trends for age, period and cohort effects are too restrictive.
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Figure 6. Observed (×) and fitted/predicted number of deaths from larynx cancer per
100,000 males in Germany in age groups 50–54, 55–59, . . . , 85–, based on Model 4.
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On the other hand, period and cohort effects as factors cause instability of the maximum
likelihood estimates, possibly resulting in a saw-tooth pattern, as noted first by Holford
(1983). Also, it is not obvious how to use maximum likelihood estimates for prediction.
Osmond (1985) suggested to compute unknown period and cohort effects for future periods
by linear regression applied to a subjectively chosen number of the most recent estimates on
each scale. One criticism of this method is that it is arbitrary in the choice of the number of
past values to use. In a recent comparative study, Bray (2002, pp. 161–162) concludes that
“empirical projections based on the method of Osmond (1985) are poor.”

Here we use non-parametric smoothing priors within a hierarchical Bayesian framework,
for which model-based extrapolation of period and cohort effects for future periods is straight-
forward (Besag et al., 1995). This choice has the additional advantage that adjustments for
overdispersion are easy to make. Inference and prediction based on Markov chain Monte
Carlo techniques is done as described in Knorr-Held and Rainer (2001).

Observed and fitted/predicted numbers of deaths from larynx cancer per 100,000 males
are displayed in Figure 6. We show posterior means and 90% pointwise prediction intervals
based on Model 4, which does not adjust for overdispersion and includes data only from age
group 30–34 onward. For better comparison, incidence rates per 100,000 men are shown.
The subsequent analysis is based on counts.

To assess the predictive performance of the different models, we predict mortality counts
for the five years 1998–2002. For all different models, we consider predictions in the 12
age groups with age > 30 years. Table 1 shows mean scores, averaged over all 12 · 5 = 60
projections. Interestingly, the scores do not agree. One set of scores (logarithmic, quadratic,
spherical, Dawid-Sebastiani and normalized squared error scores) points to Model 1 as the
best, which includes data from the very young age groups and adjusts for overdispersion.
The other set of scores (ranked probability and squared error scores) prefers Model 4.

The disagreement can be explained as follows. The scores in the first set are roughly
independent of the size of the counts in the different age groups. This is most obvious for
the normalized squared error score, but approximately also true for the other scores. In
contrast, the ranked probability and squared error scores are highly dependent on the size
of the counts. Hence the results in the mid age groups, where the counts are highest and
Model 4 is more competitive, dominate the mean score.

These results might support Baker and Bray’s (2005) contention that age-specific pre-
dictions based on full data yield sharper predictive distributions, and more accurate point
forecasts for the younger age groups that benefit from the strong cohort effect that is present
here, particularly for the younger birth cohorts. Of course, these findings are tentative, being
based on 60 dependent predictions only, and further experiments are called for.

6. Discussion

We have introduced a toolbox for the assessment of the predictive performance of probabilis-
tic forecasts for count data, which includes a non-randomized probability integral transform
(PIT) histogram, the marginal calibration diagram and proper scoring rules. Simplicity,
generality and interpretability are attractive features of these tools; they apply both in para-
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metric and non-parametric settings and do not require models to be nested, nor be related in
any way. Typically, they are used diagnostically, to identify model deficiencies and facilitate
model comparison and model selection. Formal inference is often feasible (Clements, 2005;
Jolliffe, 2007), but may not be the goal.

The toolbox applies to two apparently distinct, yet closely related tasks. One is the
evaluation of probabilistic forecasts that take the form of predictive distributions for future
counts. Here, the PIT histogram and the marginal calibration diagram are employed di-
agnostically, and proper scoring rules allow us to rank competing forecasters. The other
task is the critique of statistical models (O’Hagan, 2003); frequently, models can be fitted in
cross-validation mode, and can be assessed based on the quality of the ensuing probabilistic
forecasts. We have demonstrated the use of these tools in case studies in both types of
situations. It is our belief that they can provide similar guidance in a very wide range of
applied statistical problems for ordered discrete data.
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Appendix A
Computation of ‖p‖2

Let ‖p‖2 =
∑

∞

k=0 p
2
k. For the Poisson distribution with parameter λ, we find that ‖p‖2 =

e−2λI0(λ) where I0 is a modified Bessel function (Abramowitz and Stegun, 1970, p. 374). For
the negative binomial distribution with mean λ and dispersion parameter a ≥ 0, we have

‖p‖2 = (1 + 2aλ)−1/a L−1/a

(

1 +
2a2λ2

1 + 2aλ

)

,

where L is a Legendre function of the first kind (Abramowitz and Stegun, 1970, p. 332).

Appendix B
Probabilistic forecasts of ordered discrete data

The tools proposed in this paper generalize easily to probabilistic forecasts for arbitrary
ordered discrete data, which are not necessarily counts. Without loss of generality, we
consider the prediction of a quantity x that can attain a countable number of real numbers
(xk)

∞

k=−∞
, where xk−1 < xk < xk+1 for all k. Let P be a probabilistic forecast for this

quantity. We denote the probability mass function and cumulative distribution function for
the predictive distribution P by (pk)

∞

k=∞
and (Pk)

∞

k=−∞
, respectively. Note that hereinafter

the index k ≥ 0 corresponds to xk, which in general is not an integer. If the quantity can
only attain a finite number of values, we have pk = 0 for all but finitely many indices k. In
the case of count data, we have xk = k for k ≥ 0 and pk = 0 for k < 0.

The probability integral transform (PIT) generalizes easily to this situation. We first
consider its randomized version. If x = xk obtains, we put

u = Pk−1 + v(Pk − Pk−1) (B.1)
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where v is standard uniform and independent of x, which reduces to (1) and (2) in the case
of count data. Grammig and Kehrle (2007) apply this device to assess probabilistic forecasts
of a discrete economic variable. Similar tools have been used to assess the calibration of
probabilistic quantitative precipitation forecasts, which typically take the form of a mixture
of a point mass at zero and a predictive density on the positive half-axis (Krzysztofowicz
and Sigrest, 1999; Sloughter, Raftery, Gneiting and Fraley, 2007).

To generalize the non-randomized PIT, we proceed as follows. If x = xk realizes, we put

F (u) =











0, u ≤ Pk−1,
(u− Pk−1)/(Pk − Pk−1), Pk−1 ≤ u ≤ Pk,
1, u ≥ Pk,

(B.2)

which reduces to (3) and (4) in the case of count data. Again, we aggregate as in (5) and
check the PIT histogram for uniformity.

The marginal calibration diagram does not require any adjustments, nor do the scoring
rules, with the obvious exceptions that ‖p‖2 =

∑

∞

k=−∞
p2

k and that the ranked probability
score (10) is now computed as

rps(P, x) =
∞
∑

k=−∞

{Pk − 1(x ≤ xk)}
2 . (B.3)

19


