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ABSTRACT 
In cooperation with the major propulsion engine 
manufacturers, the authors are developing and 
demonstrating a unique very high frequency (VHF) 
vibration monitoring system that integrates various vibro-
acoustic data with intelligent feature extraction and fault 
isolation algorithms to effectively assess engine gearbox 
and generator health. The system is capable of reporting 
on the early detection and progression of faults by 
utilizing piezoelectric, optical, and acoustic frequency 
measurements for improved, incipient anomaly 
detection. These gas turbine engine vibration monitoring 
technologies will address existing operation and 
maintenance goals for current military system and 
prognostics health management algorithms for 
advanced engines. These system features will be 
integrated in a state-of-the-art vibration monitoring 
system that will not only identify faults more confidently 
and at an earlier stage, but also enable the prediction of 
the time-to-failure or a degraded condition worthy of 
maintenance action.   

The authors have made significant progress toward 
identifying, computing, and comparing the high 
frequency feature sets generated with various vibro-
acoustic measurement techniques. Specifically, the 
technology has been demonstrated on two subscale test 
stands. The first is a generator test rig that was 
equipped with a laser vibrometer and two high-frequency 
accelerometers. Various mechanical and electrical faults 
were seeded, with an emphasis on generator bearing 
faults. Initial results show very good detection capability 
in frequency bands well above those used in traditional 
vibration analysis. Another focus, accessory gearbox 
systems, was addressed for feasibility through a 
gearbox test rig, which was instrumented with high 
bandwidth accelerometers and wideband and 

narrowband acoustic emissions (AE) sensors. Baseline, 
seeded fault, and fault progression tests were 
conducted, including tests with various levels of gear 
tooth corrosion. Successful detection of this fault was 
then demonstrated using a number of new, innovative 
approaches. A statistical analysis was also performed to 
compare the approaches, with narrowband acoustic 
emission and high frequency vibration features 
performing the best. 

INTRODUCTION 
The ability to successfully detect and isolate faults is 
critical to the performance of diagnostic algorithms and 
the implementation of Prognostics and Health 
Management (PHM). Prognostics rely on incipient (early) 
fault detection and isolation to provide a reliable and 
timely prediction. A well designed PHM system seeks to 
extend, as far as practical, the feature’s detection 
horizon. The detection horizon is the elapsed time 
between the first detection of a fault and the resultant 
mechanical failure. Figure 1 shows a timeline 
representation of several diagnostic feature types and 
their order with respect to each other in increasing 
detection horizon. Incorporating features that increase 
detection horizon is key in the design of a high 
performance diagnostics/prognostics system. 

Vibro-acoustic data continues to provide some of the 
most quantitative and reliable indicators of bearing, gear, 
and rotating member fatigue detection and diagnosis. 
The indicators are typically spread throughout the vibro-
acoustic regime. Figure 2 illustrates the regions of 
response, health management uses, and sensing 
capabilities of vibro-acoustic data. Healthy machine 
vibration energy for a gas turbine engine dominates the 
frequency region from DC through 100 kHz or so. This 
region is also appropriate for rotordynamic fault 
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detection, such as misalignment and imbalance. The 
typical utility of high frequency measurements to the 
diagnostics and prognostics approach is documented in 
several studies. [1, 2, 3] For instance, the earliest 

indications of bearing problems appear in ultrasonic 
frequencies (>30 kHz). As wear increases, the 
component noise drops in frequency range.  
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Figure 1 - Typical Turbo machinery Diagnostics Detection Horizon Comparison 

During fault progression, slight defects begin to ring the 
bearing at natural frequencies and overall high 
frequency energy and demodulated spectra values 
increase. Further in the progression, bearing defect 
frequencies and harmonics appear in the conventional 
spectrum analysis (if the overall machinery noise is not 
too high). As wear progresses, more harmonics appear 
with stronger sidebands around the defect frequencies. 
High frequency demodulation and enveloping confirms 
this progression of damage. At the very end of life, the 
magnitudes of 1 times RPM are affected and more 
harmonics appear in the frequency analysis. Defect 
frequencies start to disappear and are replaced by high 
frequency random noise as the damage induces more 
random, chaotic vibration. Just prior to failure, spectrum 
energy will usually grow by excessive amounts. 
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Figure 2 - Vibro-Acoustic Spectrum, Health 
Management Uses, and Enabling Sensing Capability 

The authors have applied their in-depth vibration 
analysis knowledge to select and integrate an optimal 
set of very high frequency (VHF) features into a 
comprehensive vibration monitoring system that is 
capable of incipient fault detection and fault progression 
tracking. In the end, enormous economic savings will be 

realized by improving overall engine diagnostic and 
prognostic capabilities through optimal utilization of the 
proposed technologies. The very high frequency 
vibration measurement and associated feature analysis, 
when combined with predictive models, will help reduce 
time to diagnosis, reduce engine removal rates, produce 
optimal maintenance & inspection intervals, and reduce 
support costs for these critical areas of concern. 

FIRSTCHECK™: SENSOR VALIDATION 

 An important assumption in the deployment of an 
automated PHM system is that the data used by the 
system is accurate and valid. However, there are various 
factors associated with sensor hardware degradation 
and inadequate data collection methods that can 
compromise the integrity of vibration data. For example, 
accelerometers can be damaged by exposure to 
excessive shock or temperature or by improper handling 
by maintenance personnel. Other factors are more 
insidious and arise from loose electrical connections, 
poor solder joints, loose mounts, ground loops, 
electromagnetic interference (EMI) and Radio 
Frequency Interference (RFI) noise, or degradation of 
sensing instrumentation due to thermal effects. Data 
acquisition effects, such as A/D clipping and insufficient 
dynamic range, can also alter the dynamic 
characteristics of the signal. These issues can be very 
problematic and lead to significant safety concerns (i.e., 
onboard) and cost increases (i.e., during development or 
validation testing, where lost data means that a test may 
have to be repeated). In addition, changes in the 
dynamics of a vibration signal characteristic due to 
sensor faults can be deceptively similar to those due to 
mechanical failures (or vice versa), which will inevitably 
result in false alarms. Rigorous and automated analysis 
of the integrity of vibration data is therefore critical to 
providing accurate health assessments. 

Based on the authors’ experience, vibration monitoring 
algorithms can be impeded by faulty accelerometer data. 
Figure 3 shows the result of the authors’ analysis of a 
gear pinion failure that occurred on the test stand of a 
high-speed (thousands of RPMs), high-power (tens of 
thousands of horsepower) military fighter aircraft drive 
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train. As seen, several vibration features react 
simultaneously, indicating that a potential fault is present 
in the system. Information gathered solely from this 
sensor would confidently indicate a fault. However, upon 
further investigation of the raw sensor data (shown in the 
top plot of Figure 3), one can see that this reaction was 
caused by faulty (intermittent) data and, therefore, 
should not be trusted.  

In order to address this potential source of false alarms 
and validate the integrity of the signal, the developed 
approach first evaluates the high frequency vibration 
signal using a technique termed FirstCheck™. This 
technique tracks specific signal characteristics and 
statistical-based features to identify basic sensor 
failures, such as clipping, weak signal, over-
amplification, and DC-bias, as well as other forms of 
corrupt data. This approach is more effective than 
traditional energy measures (i.e., peak-to-peak 
strength), which cannot detect a corrupt vibration signal 
when its values are within normal range but lacking in 
frequency content. Similar to mechanical fault detection 
algorithms, the developed approach uses a baseline of 
healthy sensor values to ensure that the algorithm does 
not disregard a valid signal. 

IMPACTENERGY™:  BEARING FAULT DETECTION 
AND ISOLATION 

Within the developed approach, bearing fault detection 
and isolation is performed using a set of algorithms 
termed ImpactEnergy™. Although bearing characteristic 
frequencies are easily calculated, they are not always 
easily detected by conventional frequency domain 
analysis. Incipient bearing damage is most often 
characterized by short-burst impulses in the vibration 
signature. Vibration amplitudes at these frequencies due 
to incipient faults (and sometimes more developed 
faults) are often indistinguishable from background noise 
or obscured by much higher amplitude vibration from 
other sources, including engine rotors, blade passing, 
and gear meshing. Similarly, time domain energy 

features, such as RMS and Kurtosis, are not significantly 
affected by such short bursts of low intensity vibrations. 
Therefore, traditional time domain or frequency domain 
analyses often encounter problems in detecting the early 
stages of bearing failure. 

The developed algorithms integrate traditional time-
domain statistical analysis and frequency-based spectral 
analysis techniques with high-frequency demodulation 
and advanced feature extraction algorithms to provide a 
more effective PHM solution. The advantages of using 
the high frequency response to identify and track 
bearing damage is well documented [4, 5] and proven to 
be effective. Demodulation (or enveloping) allows the 
broadband energy caused by failure effects to be 
differentiated from normal system noise. This approach 
provides the ability to detect defect impulse events much 
easier than traditional analysis techniques. A key 
consideration is selecting the bandpass filter that is 
centered on the expected carrier frequencies. Through 
proprietary knowledge and field-application experience, 
the authors have developed a process to identify key 
carrier frequencies [6, 7]. 

For complete characterization of bearing health from 
incipient fault to failure, the algorithms include 
processing to extract an extensive set of time and 
frequency domain features from both the raw 
(unprocessed) and demodulated vibration signals. This 
extensive feature set provides an effective fault isolation 
capability. Time domain features include traditional 
statistical measures, such as RMS, Kurtosis, and Crest 
Factor. Frequency domain features include the power 
levels of specific bearing defect frequencies, which are 
compared against known, healthy baseline thresholds. 
These features can be very useful in diagnosing a fault 
[7]. In addition, observing the magnitude of the rate of 
change of these features can also provide a prognostic 
benefit.  

GEARMOD™: GEAR FAULT DETECTION AND 
ISOLATION 

The authors have developed a set of algorithms, termed 
GearMod™, that are used to extract diagnostic features 
that can be employed for gear fault detection and 
isolation. These algorithms contains a broad range of 
statistical methods based on time synchronous 
averaged (TSA) and other processed signals. The time 
synchronous averaging technique is a very useful noise 
reduction tool that reduces random noise levels and 
disturbances from events unrelated to the gear of 
interest. TSA has been extensively used to preprocess 
gear vibration signals [8, 9]. The fundamental principal of 
TSA is that the vibration signals related to shaft and gear 
rotation will repeat periodically with each rotation. 
Therefore, TSA divides the vibration signal into 
contiguous segments (with each segment representing 
one shaft rotation) and calculates the average of the 
segments. This process reinforces vibration components 
that are synchronous to the shaft rotation and cancels 
out others that are out of phase in consecutive rotations. 

 
Figure 3 – False Alarm Caused by Faulty Sensor  

3



The algorithms calculate time-domain features, such as 
RMS, Skewness, Kurtosis, Energy Operator Kurtosis, 
and Crest Factor, as well as features from the spectrum 
of the averaged signal, including FM0, Sideband Index, 
and Sideband Level Factor. Additional features are also 
calculated using proprietary methods [10, 11]. 
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STATISTICAL ANALYSIS AND THRESHOLD SETTING 

Statistical detection analysis, for the purposes of 
selecting and implementing an optimal threshold for 
“calling out” specific fault or anomalous conditions, is 
based upon separability (also discernability) of features 
between no-fault and faulted conditions. The Probability 
of False Alarm, P(FA), and the Probability of Detection, 
P(D), are correlated because both are measured with 
respect to a particular threshold applied to the 
reduced/fused features. If the threshold is raised to 
decrease the probability of false alarm, the probability of 
detection is also inherently decreased. These 
dependencies are shown in Figure 4.  
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Figure 4 – Statistical Feature Analysis 

The distribution of feature values for a no-fault (“normal” 
or “healthy”) condition is on the left and the range of 
feature values for a component with a fault is on the right 
side. The upper left figure emphasizes the no fault 
(“healthy”) distribution. In this case, P(FA) is on the right 
side of the threshold and the Probability of Correct 
Rejection, P(CR), which represents the range of feature 
values that would not have produced a fault indication 
given the threshold shown, is to the left. The bottom left 
plot emphasizes the fault (“unhealthy”) distribution. Here, 

the P(D) can be seen on the right side of the threshold. 
These are the feature values that would have correctly 
indicated that a fault existed. The miss rate or Probability 
of Missed Detection, P(MD), is the area below the 
threshold and represents feature values that would not 
have indicated a fault given the threshold set-point. To 
decrease P(FA), which is typically desired, we would 
need to increase the threshold (move it to the right); 
however, this has the unfortunate effect of decreasing 
the probability of detection. Figure 6 is another 
illustration of the inherent tradeoff between P(CR) and 
P(MD) and also includes the basic relevant equations. 
The cumulative distribution function is plotted over the 
range of features for both the no-fault and faulted cases. 
Additional information regarding application of these 
techniques can be found in [12, 13]. 

P(CR)

P(MD) 
C

D
F

Feature Magnitude 

Threshold
1

0

P(CR)

P(MD) 
C

D
F

Feature Magnitude 

Threshold
1

0

P(FA) = 1-P(CR)

P(D) = 1-P(MD)

g

P(FA) = 1-P(CR)

P(D) = 1-P(MD)

P(FA) = 1-P(CR)

P(D) = 1-P(MD)

g

 
Figure 5 – CDF Representation of Feature Statistics 

Generator VHF Health Management Development 

The authors performed baseline and seeded faults tests 
using an in-house generator test rig to collect VHF 
vibration data that could be used to develop techniques 
for machine fault detection and prediction (Figure 6).The 
rig consists of an adjustable speed 10 HP drive motor 
driving a three-phase generator through a drive shaft, 
which is coupled to the motor shaft through spider 
couplings. The motor is controlled by a Variable 
Frequency Drive (VFD). 

VFD

Drive Shaft

Drive Belt

Generator

3-Phase 
Output

10 HP Driving 
Motor

 
Figure 6 - Generator Test Stand Overview 
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Dents
   

Figure 7 – Bearing Seeded Faults, Including 3/32” Inch Dent (Left, Internal View), 1/16” Hole (Middle, External 
View), and Scuffing (Right)

The generator test stand was instrumented to allow for 
measurement of VHF vibration. This instrumentation 
includes high bandwidth piezoelectric accelerometers 
and a laser vibrometer, as seen in Table 1. 

Table 1– Generator VHF Instrumentation 

Sensor Type Bandwidth Location Sample 
Rate 

Accelerometer 
(PCB 353B16) 70 kHz Front 

Bearing 
200 
kS/s 

Accelerometer 
(PCB 353B16) 70 kHz Rear 

Bearing 
200 
kS/s 

Laser 
Vibrometer 
(Polytec) 

500 kHz Front 
Bearing 1 MS/s 

Three bearing seeded faults were performed on the test 
stand (each fault was seeded into a different bearing, 
that is, the front bearing was replaced each time with a 
different faulted bearing). Fault seeding was complicated 
by the inability to disassemble and reassemble the 
bearing; therefore, only faults that did not require 
disassembly were used. The first fault was seeded by 
applying a 3/32nd inch diamond-tip Dremel bit to the 
outer raceway surface, producing a number of small 
dents on the outer raceway. The second fault was 
seeded into the outer raceway by drilling through the 
external casing of the bearing using a 1/16th inch 
carbide drill bit. Finally, a third fault was seeded by 
inserting 1/10th of a gram medium-grit lapping powder, 
and manually rotating the bearing at slow speed 
approximately 100 times to cause the silicon carbide to 
damage the inner surfaces of the bearing. The bearing 
was subsequently degreased (to remove the lapping 
material), and repacked with clean grease. This 
procedure resulted in scuffing of most of the rotating 
parts in the bearing. Full investigation of the fault 
produced would require bearing disassembly (rendering 
it useless), and was therefore not performed. The three 
bearing seeded faults can be seen in Figure 7. 

Data was analyzed using both conventional signal 
processing techniques and VHF techniques, including 
the authors’ ImpactEnergy™ bearing PHM algorithm. 
The results showed a clear advantage of using the 

ImpactEnergy™ algorithm and amply demonstrated the 
potential of VHF monitoring to extend the detection 
horizon of common bearing faults on generator systems. 
Figure 8 shows sample Fast Fourier Transform (FFT) 
plots obtained from conventional analysis and the 
ImpactEnergy™ signal. As the figure shows, the fault 
frequency of the bearing outer race (BPFO) is not 
distinguishable above noise for the conventional 
analysis. However, this frequency is clearly identifiable 
after applying the ImpactEnergy™ algorithm, indicating 
that a bearing fault is present.  

 
Figure 8 - Comparison of Conventional Analysis vs. 
ImpactEnergy™ FFT Plots 

Furthermore, as seen in Figure 9, the conventional 
analysis was only able to detect the most severe fault 
(1/16” diameter hole, shown in red). The other faults are 
not distinguishable from the healthy case. The 
ImpactEnergy™ results, on the other hand, proved very 
effective at detecting the bearing faults. In fact, the 
ImpactEnergy™ feature was clearly separable for the 
least severe fault (scuffing case, shown in cyan) and 
was nearly two orders of magnitude higher than the 
baseline feature for the more severe faults (note that the 
y-axis of the second subplot is in log scale). 
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Figure 9 - ImpactEnergy™ and Conventional Results from Generator Bearing Fault 

Statistical analysis was also performed and used to 
compare the performance of the ImpactEnergy™ 
algorithm against conventional bearing analysis. As 
seen in Figure 10, the ImpactEnergy™ feature was 
much more separable for the fault cases analyzed than 
the conventional feature (note that the x-axis in the 
figure is a log-scale). For this analysis, a Probability of 
False Alarm [P(FA)] of 1% was specified and the 
baseline data (blue curve) was used to determine the 
threshold (black line) that would be needed to produce 
this P(FA). Using Figure 10, the Probability of Missed 
Detection [P(MD)] for each fault can then be determined 
by evaluating the intersection of the faulted curve with 
the threshold. 

P(MD) = 0.49

 

Figure 10 – Statistical Analysis of Conventional and 
ImpactEnergy™ Feature Results 

Table 2 shows the P(MD) for these cases. As seen, the 
conventional analysis performed very poorly for the 
3/32” dent and scuffing faults. ImpactEnergy™, on the 

other hand, had a relatively low probability of missed 
detection rate for the scuffing fault (this was a very minor 
fault), and virtually zero probability of missed detection 
for the remaining, more severe cases. 

Table 2 – Probability of Missed Detection for 
Conventional and ImpactEnergy™ Approaches 

P(MD) for Various Bearing Outer 
Race Faults 

Algorithm 3/32" 
Diameter 

Dent 

1/16" 
Diameter 

Hole 
Scuffing 

Conventional 
Analysis 1.00 0.0017 1.00 

ImpactEnergy™ 
Analysis ~0 5.30e-010 0.49 

Electrical Fault Simulation 

A number of electrical faults were also simulated on the 
generator test stand. The authors applied their 
FirstCheck™ algorithm to identify and classify two 
particular faults, namely an open stator and failed field 
current faults. The open stator fault was meant to 
simulate the fault that would occur if the stator should 
lose its connection inside the system. It was simulated 
by disconnecting the positive output from generator 
phase 1 from the resistive load. The second electrical 
fault was meant to simulate a failed field current. The 
test stand rotor is powered by a 12-volt, 1-amp power 
supply that is connected to the alternator through a side 
terminal and grounded through the alternator housing. 
The failed field current fault was simulated by 
unplugging this power supply before operation, thereby 
preventing the electromagnetic induction of a field 
current. Although both faults are representative of an 
actual fault, both represent complete failure and should 
be readily detectable. As seen in Figure 11 and Figure 
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12, FirstCheck™ proved very effective at detecting the 
electrical failures.  
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Figure 11 - FirstCheck™ Feature 1 Results for 
Voltage and Current Signals 
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Figure 12 - FirstCheck™ Feature 2 Results for 
Voltage and Current Signals 

In the figures, two FirstCheck™ features are plotted for 
the voltage and current signals from each phase of the 
generator. As seen, these features are very separable 
for the failed field current (green) and the stator open 
faults (red), which would allow for accurate detection of 
these faults. 

Gearbox VHF Health Management Development 

The authors also performed baseline and seeded fault 
tests for VHF algorithm development on an in-house 
gearbox test rig. The Gearbox Test Stand consists of a 
1HP motor driving a small industrial gearbox. A Variable 
Frequency Drive (VFD) controller allows motor operation 
from slow speeds up to 3,600 RPM. An intermediate 
shaft allows additional bearings to be incorporated in the 
system, increasing the variety of faults that can be 
studied. The gearbox contains a right angle straight 

bevel 2-gear mesh. The speed reduction ratio is 1.5:1. 
The gearbox is splash lubricated using an aerospace 
grade lubricant that meets military specifications. The 
gearbox is V-belt driven. Faults can be simulated by 
using components such as bearings and gears that have 
seeded defects. Provisions are included for collecting 
data with a variety of sensors.  

 
Figure 13 – Gearbox Test Stand 

The rig was instrumented with VHF sensors, including 
two high-bandwidth (PCB 353B16) piezoelectric 
accelerometers and two Acoustic Emission sensors (one 
narrowband and one wideband), as seen in Table 3.  

Table 3 – Gearbox Test Stand Sensor Specifications 

Sensor Sensitivity Freq. 
Range 

Resonan
t Freq. 
(kHz) 

Accelerometer 
(PCB 353B16) 10 mV/g 

0.35 
Hz –    

30 kHz 
≥ 70 

AE 
Narrowband 

(Physical 
Acoustics Corp. 

R30α) 

-62 (dB, 
ref.1V/µBar) 

100 - 
400 330 

AE Broadband 
(Physical 

Acoustics Corp. 
WSα) 

-62 (dB, 
ref.1V/µBar) 

100 - 
1,000 650 

Two separate gearboxes were seeded with a corrosion 
fault to quickly achieve a more severe level of pitting 
damage. In both cases, gear tooth pitting was chemically 
induced by subjecting selected teeth on the driving 
(pinion) gear to a Ferric Chloride (FeCl3) acid solution.  
Both a mild and a severe fault were seeded, as seen in 
Figure 14.  Baseline and water contamination ramp 
testing were also performed with the objective of 
establishing the baseline water contamination within the 
gear lube and quantifying evaporation rates.  The faulted 
gearboxes were then installed on the test rig to evaluate 
the effect of greater surface degradation levels. Vibration 
data was collected from the two gearboxes while 
operating at maximum speed and both 15% and 100% 
torque load. The data was analyzed to determine the 
effects of the seeded fault on the gearbox vibration 
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signature. In both cases, higher levels of vibration and 
subsequent increases in various calculated vibration 
features were observed.  

 

Figure 14 – Seeded Corrosion Faults (left – mild, 
right – severe)  

The data collected from the test were used to compare 
the fault detection capabilities of the various VHF 
sensors using conventional and innovative VHF 
approaches. Both vibration and Acoustic Emission (AE) 
data were collected from gearbox baseline, fault 
progression, and seeded fault tests. This data, which 
represents over 245 hours of testing, was evaluated 
using the developed VHF algorithms. First, the 
FirstCheck™ algorithms were applied to check the 
integrity of the accelerometer and AE signals. Next, 
mode detection was applied to filter out any transients in 
the data and avoid the affects of large changes in 
operational mode (i.e., speed, load, etc). This was 
performed since steady state operation is preferred and 
resulted in a band of driving shaft speed that ranged 
from 1,320 -1,380 RPM. Despite this initial filter, small 
changes in operational mode can still affect features that 
represent energy level (i.e., RMS, FM0, Energy Ratio, 
etc.) and, as a result, normalization was also applied to 
reduce feature sensitivity to changes in operating 
conditions, such as speed, torque, and temperature etc.  
Next, the vibration and AE signals were evaluated. 
GearMod™ was used to extract gear vibration features 
from the data within the defined operational mode of the 
system. Processing was performed for both 
accelerometers for the driving and driven gears. In 
addition, advanced signal processing techniques were 
applied to the narrowband and wideband acoustic 
emission data to extract VHF AE features.  

The authors then used baseline and faulty data from 
healthy and corroded gears to compare the detection 
capability of vibration and AE approaches. Statistical 
analysis methods were also used to present the feature 
Probability Density Function (PDF) and Cumulative 
Density Function (CDF), and to calculate the 2% False 
Alarm Threshold (FAT), Missed Detection Rate (MDR), 
and Detection Rate (DR). The upper parts of Figure 15 
through Figure 17 are the feature values of healthy 
(circle in black) and corroded (circle in blue) data from 
the front accelerometer, narrowband AE, and wideband 
AE sensors. The lower left plots show the PDF 

representation of the feature in both gear conditions, 
healthy in black line and corroded in blue line, and the 
2% FAT. The lower right plots show the CDF plots, and 
include the MDR and DR values.  
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Figure 15 – Healthy and Corroded Gear Feature 
Response and Statistical Analysis Results with 
Accelerometer Data 

Figure 16 and Figure 17 show the normalized feature 
values of the narrowband and wideband AE signals. The 
narrowband AE sensor was not installed for the period of 
sample points 1 through 734, which was eliminated in 
the plots. Also the sensor power supply was off during 
the samples 2,330 through 2,421. As seen in the figure, 
the wideband AE is relatively consistent, while the one of 
narrowband AE fluctuates and is sensitive to torque 
changes. These initial results suggest that the wideband 
AE is more robust and suitable to trend the overall 
gearbox health condition.  
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Figure 16 – Healthy and Corroded Gear Feature 
Response and Statistical Analysis Results with 
Narrowband AE Data 
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Figure 17 – Healthy and Corroded Gear Feature 
Response and Statistical Analysis Results with 
Wideband AE Data 

Table 4 summarizes the results of the statistical analysis 
of each approach. As seen in Table 4, the vibration and 
narrowband AE approach performed the best, with the 
narrowband AE sensor producing the lowest missed 
detection rate. Although the wideband AE approach 
showed the worst performance, additional features are 
being considered to improve its performance. The 
authors will further evaluate the sensor approaches with 
other features and select an optimal set of features for 
more accurate fault detection.  

Table 4 – MFS Statistical Analysis Results (2% FAT) 

Metric Accel. Narrowband 
AE Wideband AE 

Missed 
Detection 
Rate (%) 

6.5 0 70 

Detection 
Rate (%) 93 100 30.4 

FUTURE WORK 

The authors will continue to mature VHF vibration 
monitoring and feature extraction algorithms to augment 
the system’s failure prediction capabilities, and will also 
work to develop data fusion, fault detection logic, and 
classification algorithms for the automated interpretation 
of VHF feature sets. Algorithm development will be 
accomplished through collaborative partnerships with 
engine OEMs that will provide data collection and 
implementation opportunities. 

The authors are also currently exploring opportunities to 
test military aircraft engine auxiliary generators in order 
to develop diagnostic and prognostic (D&P) algorithms 
for generator health monitoring. The goal of these tests 
is to collect operational data from military generator(s), 
including VHF data, in order to develop D&P algorithms 
to characterize operational signatures of 
healthy/baseline generators, detect and isolate incipient 

faults, and prognosticate time to failure based on current 
fault status. The authors have also conducted 
discussions regarding potential collection opportunities 
for reduction gearbox, including full scale testing of 
military helicopter gearbox.  

CONCLUSION 

The author’s have successfully demonstrated VHF 
feature extraction using a variety of sensing 
technologies (piezo-electric, laser vibrometer, and 
acoustic emission). Specifically, the technology has 
been demonstrated on two subscale test stands. The 
first is a generator test rig that was equipped with a laser 
vibrometer and two high-frequency accelerometers. 
Various mechanical and electrical faults were seeded, 
with an emphasis on generator bearing faults. Initial 
results show very good detection capability in frequency 
bands well above those used in traditional vibration 
analysis. Another focus, accessory gearbox systems, 
was addressed for feasibility through a gearbox test rig, 
which was instrumented with high bandwidth 
accelerometers and wideband and narrowband acoustic 
emissions (AE) sensors. Baseline, seeded fault, and 
fault progression tests were conducted, including tests 
with various levels of gear tooth corrosion. Successful 
detection of this fault was demonstrated using a number 
of new, innovative approaches. A statistical analysis was 
also performed to compare the approaches, with 
narrowband acoustic emission and high frequency 
vibration features performing the best.  

These techniques are being evolved into a unique very 
high frequency (VHF) vibration monitoring system to 
effectively assess engine gearbox and generator health. 
The system will be capable of reporting on the early 
detection and progression of faults for improved incipient 
anomaly detection. These gas turbine engine vibration 
monitoring technologies will address existing operation 
and maintenance goals for current military system and 
prognostics health management algorithms for 
advanced engines. These system features will be 
integrated in a state-of-the-art vibration monitoring 
system that will not only identify faults more confidently 
and at an earlier stage, but also enable the prediction of 
the time-to-failure or a degraded condition worthy of 
maintenance action.   
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Technical Approach

Target Systems:
1. Gearboxes
2. Generators
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Overview of Developments

VHF Detection of Non-
Mechanical Faults

VHF Gear Fault Analysis

VHF Generator 
Bearing Fault Analysis

VHF Sensor Validation

Acoustic Emission 
Analysis

VHF Sensor Validation
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Sensors for Very High Frequency Acoustics 
and Vibration Measurements

High Bandwidth Piezoelectric Accelerometers
Most commonly used, variety of sizes and 
configurations

Optical Laser Vibrometer System
500 kHz Bandwidth, dynamic range up to 115 dB
50 mm/s vibration velocity range (0-250 kHz band)
1.5 µm/s (6x10-5 in/s, 90 dB) effective bit 
resolution

Acoustic Emissions (AE) Sensors
Provides indications of material fatigue failure
Operate in 1 kHz to 2 MHz range or higher
Narrowband (100-400 kHz) and broadband 
(100-1000 kHz) considered
Often requires signal filters and/or amplifiers

17



2007-01-3878

Generator PHM Test Stand 
(impact)

Test stand instrumented with high bandwidth 
accelerometers (70 kHz) and laser vibrometer (500 kHz)

Bearing seeded fault tests performed with various levels of 
damage

Data evaluated with ImpactEnergy™ algorithm and 
compared with conventional approaches
Fault progression testing also conducted

Numerous non-mechanical faults also performed

VFD

Drive Shaft

Drive Belt

Generator

3-Phase 
Output

10 HP Driving 
Motor

Bearing 
Seeded 
Faults
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High Frequency Bearing Vibration 
Fault Detection

1. Faults (especially 
incipient) cause impact 
events that distribute 
energy over wide 
frequency range  

2. Often excite higher 
frequency narrow band 
structural resonance (> 
10 kHz)

3. Modulated vibration 
signal carries low 
frequency bearing 
defect information
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Rolling Element Bearing Failure 
Progression

Failure occurs in stages
Symptoms start at high 
frequency excitation 
and move toward lower 
frequencies as damage 
progresses
Fusing features from 
multiple bands can be 
useful

Coupling high frequency 
vibration techniques with 
models can provide best 
confidence in predictions  
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Based on proven digital signal processing 
techniques
Incorporates knowledge of bearing geometry
Extracts, compares and trends critical features 
through 
Performs broadband and narrowband time 
domain analysis
Includes demodulation and frequency domain 
analysis

Impact Technology
Impulse Energy Bearing Health Module:

ImpactEnergy™ - Bearing Health Module
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Example Vibration Spectrum Feature 
Results

22



2007-01-3878

VHF Analysis of Generator Bearing 
Faults Results

VHF analysis provided significantly 
greater detection capability over 
conventional techniques

Conventional: Only most severe 
fault detectable
ImpactEnergy: All faults 
detectable

5.3e-010

0.002

Severe

~0

1.00

Moderate

0.49

1.00

Mild

P(MD) for Various Bearing 
Outer Race Faults

ImpactEnergy™
Analysis

Conventional 
Analysis

Algorithm

P(MD) = 0.49

P(MD) = Probability of Missed Detection

Statistical Analysis

Fault 
Threshold

23



2007-01-3878

Bearing Fault Progression Tests
Spall seeded on bearing outer race and allowed to 

progress for 116 hours on generator test stand
Spall size measured at various points during 
progression

Analysis conducted with numerous ImpactEnergy™
filters to assess performance at various 
bandwidths

Date Size (mm) Hours Run 
October 13 2006 0.27 0 
October 30 2006 ~1 60 
November 9 2006 ~2 116 
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Bearing Fault Progression Results
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Non-mechanical Generator Faults

Number of electrical faults from generator testing also 
evaluated

Open Stator Fault – Phase I wire disconnected
Failed Field Current – Supply power turned off

Both represent severely progressed fault
Data evaluated with modified FirstCheck™ algorithm
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VHF Analysis of Non-Mechanical 
Generator Faults

Demonstrated ability to detect and isolate non-
mechanical generator faults using FirstCheckE™

Detected and isolated Failed Field Current and Stator 
Open Faults using multiple features
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In-House Gearbox Test Stand (MFS)
Test stand instrumented with high bandwidth 

accelerometers and acoustic emission sensors
Collected fault progression and seed fault data 

Corrosion Seeded Fault
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Gear Fault Detection with
Time Synchronous Averaging
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Gearbox Feature Results
Incipient fault successfully detected with 
high frequency accelerometer and 
acoustic emissions sensors
Both provided very high detection rate 
with minimal potential for false alarms
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AE Comparison

Narrowband acoustic emission sensor performed 
better than wideband sensor
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Summary
Collected healthy and faulted data from 

Impact’s in-house generator and gearbox 
test stands

Successfully demonstrated feasibility of VHF 
approach using data collected from existing 
Impact test stands

Successfully demonstrated ability to increase 
detection horizon of generator bearing faults 
using high bandwidth accelerometers and laser 
vibrometer
Successfully detected non-mechanical generator 
faults (field current, stator faults) using 
FirstCheckE™
Successfully demonstrated incipient gear fault 
detection using high-bandwidth piezoelectric 
accelerometers and acoustic emission sensors
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Questions?
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