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LEARNING MULTISCALE SPARSE REPRESENTATIONS FOR

IMAGE AND VIDEO RESTORATION
∗

JULIEN MAIRAL† , GUILLERMO SAPIRO‡ , AND MICHAEL ELAD§

Abstract. A framework for learning multiscale sparse representations of color images and video
with overcomplete dictionaries is presented in this paper. Following the single-scale grayscale K-SVD
algorithm introduced in [1], which formulates the sparse dictionary learning and image representation
as an optimization problem efficiently solved via orthogonal matching pursuit and SVD, this proposed
multiscale learned representation is obtained based on an efficient quadtree decomposition of the
learned dictionary and overlapping image patches. The proposed framework provides an alternative
to pre-defined dictionaries such as wavelets, and leads to state-of-the-art results in a number of
image and video enhancement and restoration applications. The presentation of the framework here
proposed is accompanied by numerous examples demonstrating its practical power.

Key words. Image and video processing, sparsity, dictionaries, multiscale representation, de-
noising, inpainting, interpolation, learning.

AMS subject classifications. 49M27, 62H35

1. Introduction. Consider a signal x ∈ R
n. We say that it admits a sparse

approximation over a dictionary D ∈ R
n×k, composed of k elements referred to as

atoms, if one can find a linear combination of “few” atoms from D that is “close” to
the signal x. The so-called Sparseland model suggests that such dictionaries exist for
various classes of signals, and that the sparsity of a signal decomposition is a powerful
model in many image and video processing applications [1, 19, 25, 35].

An important assumption, commonly and successfully used in image process-
ing, is the existence of multiscale features in images. Attempting to design the best
multiscale dictionary which fulfils a sparsity criterion has been a major challenge in
recent years. Such attempts include wavelets [26], curvelets [5, 6], contourlets [14, 15],
wedgelets [16], bandlets [27, 28], and steerable wavelets [20, 38]. These methods lead
to many effective algorithms in image processing, e.g., image denoising [34]. In this
paper, instead of designing the best pre-defined dictionary for image reconstruction,
we propose to learn it from examples.

In [1], the K-SVD algorithm is proposed for learning a single-scale dictionary for
sparse representation of grayscale image patches. By means of a sparsity prior on all
fixed-sized overlapping patches in the image, the K-SVD is used for removing white
Gaussian noise, leading to a highly efficient algorithm [19]. This has been extended to
color images, with state-of-the-art results in denoising, inpainting, and demosaicing
applications [25], and more recently to video denoising [35]. In this paper, we extend
the basic K-SVD work, providing a framework for learning multiscale and sparse image
representation. In addition to the presentation of the new methodology, we apply it to
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various image and video processing tasks, obtaining results that outperform previous
works. Our results for denoising grayscale images outperform for instance works such
as [9, 18, 19, 21, 34, 37]. The proposed algorithm also competes favorably with the
most recent and state-of-the-art result in this field [11], which is based on the non-
local means algorithm [4]. Our framework for color image denoising also competes
favorably with the best known algorithm in this field [10], and the results for the other
presented applications such as color video denoising and inpainting of small holes in
image and video, are also among the best we are aware of.

The task of learning a multiscale dictionary has been addressed in [32] in the
general context of sparsifying image content. Our approach differs from this work
in many ways, including: (i) their training algorithm employs a simple steepest de-
scent while ours uses more effective iterations, thus leading to faster convergence; (ii)
the structure of the multiscale process; and (iii) the way the found dictionaries are
deployed for denoising is entirely different, as we base our algorithm on the energy
minimization method introduced in [19]. This explains the significantly superior per-
formance we obtain. Other results on learning single-scale image dictionaries include
for example [36, 37, 42].

The structure of this paper is as follows: In Section 2, we briefly review relevant
background: The original K-SVD denoising algorithm [1], the extensions to color
image denoising, non-homogeneous noise, and inpainting [25], and the K-SVD for
denoising videos [35]. Section 3 is devoted to the presentation of our multiscale scheme,
and this section is followed by two sections that introduce important algorithmic
improvements to the original single-scale K-SVD. Section 6 presents some applications
of the multiscale K-SVD, covering grayscale and color image denoising and image
inpainting. In Section 7 we show the performance for video processing. Section
8 concludes this paper with a brief description of its contributions and some open
questions for future work.

2. The single-scale K-SVD. The single-scale K-SVD has already shown very
good performance for grayscale image denoising [18, 19], color image denoising [25],
inpainting and demosaicing [25], and video denoising [35]. In this section, we briefly
review these algorithms.

2.1. The grayscale image denoising K-SVD algorithm. We now briefly
review the main ideas of the K-SVD framework for sparse image representation and
denoising. The reader is referred to [18, 19] for additional details.

Let x0 be a clean image and y = x0+w its noisy version with w being an additive
zero-mean white Gaussian noise with a known standard deviation σ. The algorithm
aims at finding a sparse approximation of every

√
n × √

n overlapping patch of y,
where n is fixed a-priori. This representation is done over an adapted dictionary D,
learned for this set of patches. These approximations of patches are averaged to obtain
the reconstructed image. This algorithm (shown in Figure 2.1) can be described as
the minimization of an energy:

{

α̂ij , D̂, x̂
}

= arg min
D,αij ,x

λ||x − y||22 +
∑

ij

µij ||αij ||0 +
∑

ij

||Dαij − Rijx||22 . (2.1)

In this equation, x̂ is the estimator of x0, and the dictionary D̂ ∈ R
n×k is an estimator

of the optimal dictionary, which leads to the sparsest representation of the patches
in the recovered image. The indices [i, j] mark the location of the patch in the image
(representing it’s top-left corner). The vector α̂ij ∈ R

k is the sparse representation
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for the [i, j]-th patch in x̂ using the dictionary D̂. The notation ||.||0 is the ℓ0 quasi-
norm, a sparsity measure, which counts the number of non-zero elements in a vector.
The operator Rij is a binary matrix which extracts the square

√
n × √

n patch of
coordinates [i, j] from the image written as a column vector. The main steps of the
algorithm are (refer to Figure 2.1):

• Sparse Coding Step: This is performed with an Orthogonal Matching Pursuit
(OMP) [12, 13, 29], which proves to be very efficient for diverse approximation
problems [17, 40, 41]. The approximation stops when the residual reaches a
sphere of radius

√
nCσ representing the probability distribution of the noise

(C being a constant). More on this can be found in [25].
• Dictionary Update: This is a sequence of one-rank approximation problems

that update both the dictionary atoms and the sparse representations that
use it, one at a time.

• Reconstruction: The last step is a simple averaging between the patches’
approximations and the noisy image. The denoised image is x̂. Equation
(2.4) emerges directly from the energy minimization in Equation (2.1).

Parameters: λ (Lagrange multiplier); C (noise gain); J (number of iterations);
k (number of atoms); n (size of the patches).
Initialization: Set x̂ = y; Initialize D̂ = (d̂l ∈ R

n×1)l∈1...k (e.g., redundant
DCT).
Loop: Repeat J times

• Sparse Coding: Fix D̂ and use OMP to compute coefficients α̂ij ∈ R
k×1

for each patch by solving:

∀ij α̂ij = arg min
α

||α||0 subject to ||Rij x̂ − D̂α||22 ≤ n(Cσ)2. (2.2)

• Dictionary Update: Fix all α̂ij , and for each atom d̂l, l ∈ 1, 2, . . . , k in D̂,
– Select the set of patches ωl that use this atom,

ωl := {[i, j]|α̂ij(l) 6= 0}.
– For each patch [i, j] ∈ ωl, compute its residual:

el
ij = Rijx̂ − D̂α̂ij + d̂lα̂ij(l).

– Set El as the matrix whose columns are the e
l
ij , and α̂l the vector

whose elements are the α̂ij(l).

– Update d̂l and the α̂ij(l) by minimizing:

(d̂l, α̂
l) = arg min

α,||d||2=1

||El − dαT ||2F . (2.3)

This one-rank approximation is performed by a truncated SVD of El.
Reconstruction: Perform a weighted average:

x̂ =
(

λI +
∑

ij

R
T
ijRij

)−1(

λy +
∑

ij

R
T
ijD̂α̂ij

)

. (2.4)

Fig. 2.1. The single-scale K-SVD-based grayscale image denoising algorithm.

When it was designed, this algorithm provided state-of-the-art results. One of
its main contributions was its possibility to learn a dictionary on a large database
of images (the so-called global approach), thereby exploiting intrinsic information
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of natural images, or to learn a dictionary over all the overlapping patches of one
image (adaptive approach), exploiting gathered information from the whole image
at a specific location. As in [25], we typically learn off-line a global dictionary and
then use it as an initial dictionary at the beginning of the iterative adaptive approach
presented in Figure 2.1.

2.2. The color image denoising extension. In [25], we showed that we can
apply the K-SVD for color image by denoising each RGB patch directly as a long
concatenated RGB vector. Within this framework, the algorithm is able to learn the
correlation between the RGB channels, and exploit it effectively. This was shown to
provide improved results over the denoising of each color channel separately.

Nevertheless, we observed on some images a color bias, and especially so when
we used the global dictionaries. Our study has shown that this phenomenon happens
because the dictionary redundancy was too small to represent the diversity of colors
among natural images. We used therefore a different metric during the orthogonal
matching pursuit that maintains the average color of the original image. With this
intention, we introduced a new parameter γ that enforces the average color of the
patches. Additional details and numerous examples are given in [25], showing that the
proposed framework leads to state-of-the-art results, which are further improved with
the multiscale approach and additional algorithmic improvements here introduced.

2.3. Handling non-homogeneous noise and inpainting. The problem of
handling non-homogenous noise is very important as non-uniform noise across color
channels is very common in digital cameras. In [25], we presented a variation of the
K-SVD, which permits to address this issue. Within the limits of this model, we were
able to fill-in relatively small holes in the images and we presented state-of-the-art
results for image demosaicing, outperforming every specialized interpolation-based
methods, such as [7, 22, 23, 31].

Let us now consider the case where w is a white Gaussian noise with a different
standard deviation σp > 0 at each location p. Assuming these standard deviations
are known, we introduced a vector β composed of weights for each location:

βp =
minp′∈ Image σp′

σp

.

This leads us to define a weighted K-SVD algorithm based on a different metric
for each patch. Since the fine details of this approach are given in [25], we restrict the
discussion here to a rough coverage of the main idea. Denoting by ⊗ the element-wise
multiplication between two vectors, we aim at solving the following problem, which
replaces Equation (2.1):

{

α̂ij , D̂, x̂
}

= arg min
D,αij ,x

λ||β ⊗ β ⊗ (x − y)||22 +
∑

ij

µij ||αij ||0 +

∑

ij

||(Rijβ) ⊗ (Dαij − Rijx)||22 . (2.5)

As explained in [25], there are two main modifications in the minimization of this
energy. First, the Sparse Coding step takes the matrix β into account by using a
different metric within the OMP. Second, the Dictionary Update variation is more
delicate and Equation (2.3) is replaced by

(d̂l, α̂
l) = arg min

α,||d||2=1

||βl ⊗ (El − dαT )||2F , (2.6)
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where βl is the matrix whose size is the same as El and where each column corre-
sponding to an index [i, j] is Rijβ. This problem is known as a weighted one-rank
approximation matrix (see [39]). The algorithm that we used to approximate a solu-
tion is presented Figure 2.2.

Input: E (n×m matrix), β (n×m matrix of weights), iter (number of iterations,
typically 5).
Output: diter (n × 1 vector), αiter (m × 1 vector)
Problem to solve:

arg min
α,‖d‖2=1

‖β ⊗ (E − dαT )‖2
F .

Initialization: d0 = 0, α0 = 0.
Loop: For i from 1 to iter, use a truncated SVD to solve:

(di, αi) = arg min
α,‖d‖2=1

‖β ⊗ E + (1n×m − β) ⊗ di−1α
T
i−1 − dαT ‖2

F ,

where 1n×m is an n × m matrix filled with ones.

Fig. 2.2. A weighted one-rank approximation algorithm.

Inpainting, e.g., [2, 8], consists of filling-in holes in images. Within the limits of our
model, it becomes possible to address a particular case of inpainting. By considering
small random holes as areas with infinite power noise, our weighted K-SVD algorithm
proved to be very efficient. This inpainting case could also be considered as a specific
case of interpolation. The mathematical formulation from Equation (2.5) remains the
same, but some values from the matrix β are just equal to zero. Details about this
are provided in [25], together with a discussion on how to handle the demosaicing
problem that has a fixed and periodic pattern of missing values.

2.4. The video denoising algorithm. The video extension of the K-SVD has
been developed and described in [35]. This work exploits the temporal correlation
in video signals to increase the denoising performance of the algorithm, providing
state-of-the-art results for removing white Gaussian noise.

As explained in [35], applying the previously described K-SVD on the whole
video volume as one signal is problematic due to the rapid changes in the video
content, implying that one dictionary will not be able to fit well to the whole data.
At the other extreme, an alternative method that applies the K-SVD single-image
denoising algorithm, as described above, to the image sequence is also expected to
perform poorly, since we do not exploit the temporal correlation. Therefore, a different
approach is proposed in [35], based on the following concepts:

• 3D Atoms: Each frame should be denoised separately, but patches are con-
structed from more than one frame, grasping both spatial and temporal be-
haviors.

• Dictionary propagation: The initial dictionary for each frame is the one
trained for the previous one. Fewer training iterations are thus required.

• Extended temporal set of patches: Patches in neighboring frames are also used
for dictionary training and image cleaning for each frame.

Translating this three concepts into a mathematical formulation leads to the fol-
lowing modified version of Equation (2.1), the reader should refer to [35] for additional
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details:

∀t ∈ 1 . . . T ,
{

α̂ijk, D̂t, x̂t

}

= arg min
Dt,αijk,xt

λ||xt − yt||22 +

∑

ij

t+∆t
∑

k=t−∆t

µijk||αijk||0 + ||Dtαijk − Rijkx||22 . (2.7)

Having concluded the brief background presentation, we proceed to present a
multiscale framework that permits to improve all of the above mentioned algorithms.
We should note that the approach we are about to present is one among several pos-
sibilities for introducing multiscale analysis into the dictionary learning and sparse
image/video representation framework. This means that further work could (and
should) be done to explore alternative possibilities, in-spite of the fact that the ap-
proach here presented already leads to state-of-the-art results.

3. The multiscale sparse representation. Since it is well accepted that image
information spreads across multiple scales, designing a K-SVD type of algorithm that
is able to adapt and capture information at multiple scales is the main goal of this
paper. This section discusses the main principles of our proposed approach.

One simple and naive strategy to introduce multiscale analysis consists of using
large patches with a high redundancy factor ( k

n
), and hope for the appearance of

intrinsic multiple scales among the learned dictionary’s atoms. However, we have
observed no significant differences between the results with the parameters {n = 8 ×
8, k = 256} compared to {n = 16×16, k = 1024}. A number of reasons might explain
the “failure” of this direct approach. First, it might be that for low dimensions (small
n) there is no need for multiscale structure for representation and denoising, becoming
more crucial only as the dimension grows. In that respect, 16×16 blocks might not be
enough for the original K-SVD algorithm to show the multiscale structure. Another
explanation is that the K-SVD may be trapped in a local minima, avoiding the true
multiscale result. By explicitly imposing such multiscale structure, we may help in this
regard. This leads us naturally to the proposed framework. We note that although
we present a multiscale extension of the K-SVD for image and video enhancement,
learning multiscale dictionaries is important per se, also for other applications.

3.1. The basic model. In our proposed multiscale framework, we focus on the
use of different sizes of atoms simultaneously. Considering the design of a patch-based
representation and a denoising framework, we put forward a simple quadtree model
of large patches as shown on Figure 3.1. This is a classical data structure, also used
in wedgelets for example [16]. A fixed number of scales, N , is chosen, such that it
corresponds to N different sizes of atoms. A large patch of size n pixels is divided
along the tree to sub-patches of sizes ns = n

4s , where s = 0 . . . N − 1 is the depth in
the tree. Then, one different dictionary Ds composed of ks atoms of size ns is learned
and used per each scale s.

The overall idea of the multiscale algorithm we propose stays as close as possible
to the original K-SVD algorithm, Figure 2.1, with an attempt to exploit the several
existing scales. This aims at solving the same energy minimization problem of Equa-
tion (2.1), with a multiscale structure embedded within the dictionary D, which is
a joint one, composed of all the atoms of all the dictionaries Ds located at every
possible position in the quadtree. For the scale s, there exists 4s such positions. This
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Fig. 3.1. Quadtree model selected for the proposed multiscale framework.

makes a total of
∑N−1

s=0 4sks atoms in D. This is illustrated in Figure 3.2, where an
example of a possible multiscale decomposition is presented.

= α0 + α1 + α2 + α3 + α4 + α5 +

α6 + α7 + α8 + α9 + α10 + . . .

Fig. 3.2. Possible decomposition of a 20 × 20 patch with a 3-scales dictionary.

Addressing the minimization problem of Equation (2.1) with a multiscale dictio-
nary D implies to consider equally the atoms from the different scales. Therefore, we
chose to normalize all the atoms of the dictionaries to one. This policy is important
during the Sparse Coding step and proved to provide better results than choosing one
different norm per scale in our experiments.

The original K-SVD exploits the overlapping/shift-invariant treatment of the
patches’ representation, which has been found to be critical for denoising [18, 19,
25, 37]. One characteristic of our multiscale model is that it permits to force and ex-
ploit this overlapping/shift-invariant sparsity at each scale: The use of the quadtree
does not allow for all possible shifts for the sub-patches inside one large patch, by
letting only 4s different shifts at the scale s for a sub-patch. This prevents them from
constantly adapting their position to a noisy pattern and thereby learning it.

Integrating the multiscale structure requires the following key modifications to
the basic algorithm:

• Sparse Coding: This remains unchanged if we introduce some simple notation.
In Equation (2.2), assume that Rij remains the matrix that extracts the

patch of size n0 = n with coordinates [i, j]. The multiscale dictionary D̂ is
the joint one, composed of all the atoms of all the dictionaries D̂s = (d̂sl ∈
R

n×1)l∈1...ks
located at every possible position in the quadtree structure. For

the scale s, we denote their index as p among the 4s possible shifts. The
OMP is implemented efficiently using a Modified Gram-Schmidt algorithm
[3]. During each selection procedure of the OMP, a scale s, a position p
and an atom d̂sl are chosen. For each patch, this step can be achieved in
O((

∑N−1
s=0 ks)n||α̂||0) operations.
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• Dictionary Update: This step is slightly changed, as we update each atom
d̂sl (1 ≤ l ≤ ks) in each scale (from s = 0 to s = N − 1):

– Select the set of sub-patches from the scale s that use the l-th atom,

ωsl := {[i, j, s, p]|α̂ij(s, l, p) 6= 0},

where [i, j, s, p] denotes the sub-patch at the scale s and position p from
the patch [i, j], and α̂ij(s, l, p) is the coefficient corresponding to this

sub-patch and the atom d̂sl.
– For each sub-patch [i, j, s, p] ∈ ωsl, compute

el
ijsp = Tsp(Rijx̂ − D̂α̂ij) + d̂slα̂ij(s, l, p),

where Tsp ∈ {0, 1}ns×n0 is a binary matrix which extracts the sub-patch
[i, j, s, p] from a patch [i, j].

– Set Esl as the matrix whose columns are the e
l
ijsp, and α̂sl the vector

whose elements are the α̂ij(s, l, p).

– Update d̂sl and the α̂ij(s, l, p) using a SVD as before:

(d̂sl, α̂
sl) = arg min

α,||d||2=1

||Esl − dαT ||2F . (3.1)

• Reconstruction: Remains the same as in Equation (2.4), while using the
new notation just introduced. Note that each patch is reconstructed from
multiple scales, and since a pixel belongs to multiple (overlapping) patches,
it is reconstructed with multiple scales and at multiple positions.

The computational time of the Sparse Coding stage is paramount compared to the
Dictionary Update and the Reconstruction stages. The total complexity is therefore
O((

∑N−1
i=0 ks)nLJM) where L is the average sparsity factor (number of coefficients

obtained in the decomposition), and M is the number of patches processed.

3.2. Extension to various image and video enhancement tasks. We now
show how this framework is extended to different applications.

• Color image denoising: As in the case of the single-scale algorithm, extending
the color framework to the multiscale version requires to consider a concate-
nated RGB vector. Then, the same quadtree structure and the same scheme
is applied. The only difference respect to the grayscale algorithm is the use
of the parameter γ, which was introduced to solve the bias-color problem
that we described in [25]. We recall that it enforces the average color of the
patches during the OMP, thereby creating a new metric. In the multiscale
case, we can not enforce the average color of a patch, since it would introduce
a bias for the sub-patches in the quadtree. Therefore, this enforcement of the
average color should be done only for the smallest sub-patches. For instance,
assume we have N = 3 scales, and a patch of size n = 20× 20× 3. Then, we
enforce the average color of each 5 × 5 × 3 sub-patch within the dictionaries
and patches.

• Non homogeneous denoising and inpainting: For extending the non-homoge-
neous denoising and inpainting algorithm to the multiscale version, one should
first notice that for a patch of index [i, j], the matrix Rijβ that we introduced
in Section 2.3 can be used directly during the Sparse Coding stage, since it
operates as a single-scale one with a large dictionary. Then, the Dictionary
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Update step requires a decomposition of Rijβ in a quadtree structure, pro-
viding a set of matrix TspRijβ for each scale s and position p within the
scale. Equation (3.1) has to be adapted to match Equation (2.6):

(d̂sl, α̂
sl) = arg min

α,||d||2=1

||βsl ⊗ (Esl − dαT )||2F , (3.2)

where βsl is a matrix whose size is the same as Esl and where each column
corresponding to an index [i, j] and position p within the scale s is TspRijβ.
Again, the algorithm from Figure 2.2 remains relevant.

• Video denoising: We now show how to combine the multiscale color K-SVD
algorithm and the video one. Both are using patches and atoms with many
channels: The R,G,B layers for the color processing, and temporal frames
for the video processing (4D-atoms). Concatenating the color channels and
different frames in single vectors permits to address the color video denoising
problem by minimizing the same energy as in Equation (2.7). For the mul-
tiscale extension for denoising image sequences, one can see the K-SVD for
video as successive K-SVD for images applied to multi-channels images. It
consists indeed of putting the quadtree structure on the considered channel
images, and to consider the learning of the dictionaries at each scale, by pro-
ceeding exactly like it was done for the single-image case. Here, extending
the grayscale video denoising to color consists of handling concatenated RGB
vectors. Interestingly, we found that when handling a video, we can omit the
use of warped metric that uses the parameter γ.

• Non-homogeneous denoising and inpainting for video: Using the same matrix
βt introduced for the weighted K-SVD algorithm for the frame at time t, the
video inpainting problem can be treated as suffering from non-homogeneous
noise. This leads to the following energy minimization formulation:

∀t ∈ 1 . . . T ,
{

α̂ijk, D̂t, x̂t

}

= arg min
Dt,αijk,xt

λ||βt ⊗ βt ⊗ (xt − yt)||22 +

∑

ij

t+∆t
∑

k=t−∆t

µijk||αijk||0 + ||(Rijβk) ⊗ (Dtαijk − Rijkx)||22.

Handling the inpainting problem for video via an extension of the previous
algorithm is possible since we can regard the processing per each frame as
separate, although involving adjacent frames. This permits to use the matrix
β exactly the same way as we already did for single images. This handles in-
painting of relatively small holes. For addressing the general video inpainting
problem, one should refer to [33, 43]. Due to the multiscale nature of the pro-
posed scheme, somewhat larger holes can be treated successfully, compared
to the single scale algorithm.

4. Additional algorithmic improvements. We now introduce important ad-
ditional refinements, which further improve the results without increasing the com-
putational cost.

First, for the grayscale K-SVD we find it useful to force the presence of a constant
(DC) atom in each dictionary, and to give it a preference by multiplying this atom
by a constant η (2.5 for example) during the selection procedure of the OMP (refer
to [13]). This makes sense since a constant atom does not introduce any noise in the
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reconstruction. For the color extension, we introduced one constant atom per channel,
i.e., one red, one green, and one blue atom, and for the video K-SVD algorithm, one
constant atom (or constant-per-channel in the color case) per frame in the 3D-patches.

Secondly, as discussed in [25], the stopping criterion during the OMP is based
on the norm of an n-dimensional Gaussian vector which is distributed following the
generalized Rayleigh law. This means that one has to stop the approximation when
the residual reaches a fuzzy sphere. According to this law, the bigger n is, the thinner
the sphere is, and the more accurate the stopping criterion

√
nC(n)σ becomes (C is a

parameter that depends on n). Thus one asset of increasing n through our multiscale
scheme is to provide an improved stopping criterion.

It is actually not necessary to perform a complete multiscale algorithm to take ad-
vantage of this property. During the Sparse Coding stage, instead of processing each
patch separately, one can choose to process some adjacent sets of non-overlapping
patches simultaneously and consider them as a larger patch (and therefore associ-
ated with a better stopping criterion). In practice, we choose m adjacent and non-
overlapping patches of size n, and we first process them independently using their own
stopping criterion

√
nC(n)σ. Then, as long as the cumulative error of the m patches is

larger than the (better) stopping criterion
√

nmC(nm)σ, we refine the approximation
by progressively adding terms, one at a time, to the sparse expansion of the worse
of the m patches. Then we consider a new set of m patches and continue the sparse
approximation. This does not increase the complexity of the algorithm and provides
noticeable improvement.

Finally, we mention a numerical shortcut that was proposed in [35] and we found
to be useful. In Figure 2.1, the Sparse Coding and Dictionary Update stages are
performed over the full set of overlapping patches. Performing these steps over a
partial and random subset of these patches during all the iterations (apart from the
last one), leads to a substantial reduction in the computational time and the memory
requirements.

5. A block denoising variation. Analyzing the performance of the K-SVD-
based image denoising algorithm raises some interesting questions. Let us consider
an “homogeneous” image that can be represented reliably using one dictionary Dopt.
Then, the bigger the image is, the better the denoising results are, since we get more
examples to train on and thus the more likely the K-SVD is to find Dopt. When the
image has a wide variability of content, one could try to use a larger dictionary (with
more redundancy), but our extensive experiments show that this does not significantly
improve the results. This might be explained by the increased risk of getting stuck in a
local minima in the K-SVD training, or perhaps the reason is the reduced performance
of the OMP, due to bad coherence of the resulting larger dictionary. This is why the
K-SVD has been used so far with a fixed size and relatively small dictionary, which
already provides excellent performance.

Nevertheless, one way of addressing the above mentioned problem is to handle
separately different zones of the images. In this paper, we chose to naturally define
a block denoising algorithm, but future work will consist of combining our denoising
algorithm with a segmentation of the input image. More precisely, what we do is to
consider blocks of the same size from one image, with a small overlap of the same
width as the patches’s size as illustrated Figure 5.1.1 Given a judiciously adapted

1Note that since pixels are recovered as linear combination of overlapping patches, this will
attenuate the common artifacts at the boundary of the segments.
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block size, this approach introduces two advantages: First of all, the performance in
terms of denoising results is better since the dictionaries are better adapted to their
own regions, as we can notice on Figure 5.1. Secondly, this approach has the same
computational complexity with a lower memory usage, since both are linear in the
number of denoised pixels.2

Fig. 5.1. Illustration of the block denoising algorithm. Four dictionaries trained on four dif-
ferent blocks (out of the overall 9 that we have) of a noisy image barbara with σ = 15 during a
denoising process are reported on the figure. As can be seen, each dictionary is more adapted to the
content it is serving. E.g., the top left dictionary does not contain textured atoms, as those are not
needed in this part of the image. On the other hand, the bottom right dictionary is practically loaded
with such textured atoms, as those are crucial and dominant in that part of the image.

One natural question that is raised here is whether there exists a generic optimal
size to choose for these blocks. Answering this requires to take into account several
considerations:

• The bigger the blocks are, the more information from the image is taken into
account each time the K-SVD is performed. On the downsize, though, bigger
blocks imply more diversity of the image content, and less flexibility of the
dictionary to handle this content well.

• The smaller a block is, the better the K-SVD can adapt the dictionary to it.
However, smaller blocks imply a risk of over-fitting, where the dictionary is
learning the given examples, and absorbs some of the noise in them as well.

• The bigger σ is, the more patches (and thus bigger blocks) are required to
make the K-SVD robust to the noise.

As expected, our experiments showed that the best size for the block denoising algo-
rithm was linked to the amount of noise in the image. The smaller the noise variance
is, the smaller the average best size to get the best denoising performance.

6. Application in image processing. Applying our multiscale scheme to some
image processing tasks proved to noticeably improve the results compared to the

2Note that we neglect the small increase in the number of pixels due to the small overlapping of
the blocks.
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single-scale original algorithm, leading to state-of-the-art results in many image pro-
cessing tasks. We turn to present such results below.

6.1. Grayscale image denoising. We now present denoising results obtained
within the proposed multiscale sparsity framework and the algorithmic improvements
that we have introduced. In Table 6.1, our results for N = 1 (single-scale) and N = 2
scales are carefully compared to the original K-SVD algorithm [18, 19] and the recent
results reported in [11].3 The best results are shared between our algorithm and [11].
As it can be observed, the differences are insignificant. Our average performance is
better for σ ≤ 10 and for σ = 50, while the results from [11] are slightly better or
similar to ours for other noise levels. Tuning more carefully the parameters of these
two algorithms is not expected to change by much these near-equivalent performance.
Our framework is of course a general multiscale representation applicable to numerous
image processing tasks, some of them here demonstrated.

The PSNR values in Table 6.1, corresponding to the results in [11, 18, 19] and
our algorithm, are averaged over 5 experiments for each image and each level of noise,
to cope with the variability of the PSNR with the different noise realizations.

We also compared our results with a very recent paper [24], which is an extension
of [34] with noticeable improvements. In this work, the authors presented some exper-
iments over a data set that has five images in common with the one we chose (house,
peppers, lena, barbara, boat), and 4 standard deviations for the noise (10, 25, 50, 100).
For very high noise (σ = 100), their algorithm performs better than ours and slightly
better than [11]. Nevertheless, for other values of noise, we have an improved average
PSNR of 0.20dB over these five images.

During our experiments, the number of atoms ks for each scale was set to 256, the
parameter λ to 0.45n2/σ, and η, which gives a preference of the constant atom during
the OMP, was set to 2.5. The other parameters used are reported in Table 6.2. The
initial dictionaries are the results of an off-line training on a large generic database
of images [18, 25]. Some of these dictionaries are shown in Figure 6.1. The so-called
sparsity factor L for these off-line training was set to L = 6 for N = 1, L = 20 for
N = 2, 3.

From these experiments, we draw two conclusions: First of all, the algorithmic im-
provements and the block denoising approach with N = 1 lead to better performance
than the original K-SVD, and this is achieved without increasing the computational
cost. Secondly, the two-scales algorithm provides further noticeable improvement over
the single-scale K-SVD, which makes N = 2 a relevant choice, although it introduces
a higher computational cost. A few examples for N = 2 are presented Figure 6.2.
Using N = 3 scales can provide further improvement at a higher computational cost,
as illustrated in Table 6.3 for σ = 10, 15 and images of size 256 × 256. A visual com-
parison between the use of different scales is shown in Figure 6.3. In these images, as
the denoising performance is already very good for one and two scales, the visual im-
provements are difficult to observe. Nevertheless, on the zoomed parts of the images,
one can notice that N = 3 provides a more precise brick texture on the image house

and less artifacts in the flat areas of the image cameraman.
Some examples of multiscale learned dictionaries are presented in figures 6.1, 6.4,

6.5, and 6.6. As we can observe, the very strong structure from the image barbara can
be observed through the different scales.

3The results in [11] are the best known denoising results at the time of writing this paper. These
go beyond the performance reported in [18, 19, 21, 34], which until recently were the leading ones,
each in its short period of time.
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With N > 3, our multiscale scheme proves not to be flexible enough to be used,
since it leads to significant computational cost and optimization problems of the in-
volved parameters. Further work is required to modify this scheme to allow such
flexibility. Using image pyramids is a topic we are currently considering.

We implemented a parallel version of the algorithm in C++ using OpenMP for
parallelism and the Intel Math Kernel Library for the matrix computation. On a
recent quad-core Intel Xeon 2.33 GHz, J = 30 iterations for one 200 × 200 block of
the image lena with σ = 15 took approximately 8 seconds for N = 1 scale and 58
seconds for N = 2 scales, using the parameters from the above experiments.4

σ house peppers cameraman lena barbara

5
39.37 39.82 37.78 38.09 37.87 38.26 38.60 38.73 38.08 38.30

39.81 39.92 38.07 38.20 38.12 38.32 38.72 38.78 38.34 38.32

10
35.98 36.68 34.28 34.68 33.73 34.07 35.47 35.90 34.42 34.96

36.38 36.75 34.58 34.62 34.01 34.17 35.75 35.84 34.90 34.86

15
34.32 34.97 32.22 32.70 31.42 31.83 33.70 34.27 32.37 33.08

34.68 35.00 32.53 32.47 31.68 31.72 34.00 34.14 32.82 32.96

20
33.20 33.79 30.82 31.33 29.91 30.42 32.38 33.01 30.83 31.77

33.51 33.75 31.15 31.08 30.32 30.37 32.68 32.88 31.37 31.53

25
32.15 32.87 29.73 30.19 28.85 29.40 31.32 32.06 29.60 30.65

32.39 32.83 30.03 30.04 29.28 39.37 31.63 31.92 30.17 30.29

50
27.95 29.45 26.13 26.35 25.73 25.86 27.79 28.86 25.47 27.14

28.24 29.40 26.34 26.64 26.06 26.17 28.15 28.80 26.08 26.78

100
23.71 25.43 21.75 22.91 21.69 22.62 24.46 25.51 21.89 23.49

23.83 24.84 21.94 22.64 22.05 22.84 24.49 25.06 22.07 22.95

σ boat couple hill Average

5
37.22 37.28 37.31 37.50 37.02 37.13 37.91 38.14

37.35 37.35 37.42 37.54 37.11 37.17 38.12 38.20

10
33.64 33.90 33.52 34.03 33.37 33.60 34.30 34.73

33.93 33.98 33.84 33.97 33.59 33.70 34.62 34.74

15
31.73 32.10 31.45 32.10 31.47 31.86 32.34 32.86

32.04 32.13 31.83 31.94 31.78 31.88 32.67 32.78

20
30.36 30.85 30.00 30.74 30.18 30.70 30.96 31.57

30.74 30.82 30.42 30.59 30.53 30.66 31.34 31.46

25
29.28 29.84 28.90 29.68 29.18 29.82 29.88 30.56

29.67 29.82 29.31 29.51 29.52 29.78 30.25 30.45

50
25.95 26.56 25.32 26.32 26.27 27.04 26.33 27.20

26.36 26.74 25.78 26.36 26.52 27.04 26.69 27.24

100
22.81 23.64 22.60 23.39 23.98 24.44 22.86 23.93

22.96 23.67 22.73 23.16 23.92 24.16 23.00 23.67

Table 6.1

PSNR results of our denoising algorithm compared with some other ones. Each cell is divided
into four parts. The top-left part shows the results from the original K-SVD [1], the top-right from
the most recent state-of-the-art [11]. The bottom-left is devoted to our results for N = 1 scale and
the bottom-right to N = 2 scales. Each time the best results are in bold.

4The code will be made publicly available upon publication.
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N N = 1

σ 5 10 15 20 25 50 100
√

n 8 8 8 8 8 8 8

J 30 30 30 30 30 15 15

µ 0.5 0.5 0.5 0.5 0.5 1.0 1.0

m 1 1 64 64 64 64 64

C 1.128 1.128 1.041 1.023 1.023 1.018 1.018√
Sb 150 150 200 200 200 512 768

N N = 2

σ 5 10 15 20 25 50 100
√

n 10 12 16 16 16 20 20

J 30 30 30 30 30 15 15

µ 0.5 0.5 0.5 0.5 0.5 1.0 1.0

m 4 4 16 16 16 64 64

C 1.069 1.042 1.026 1.026 1.020 1.010 1.008√
Sb 150 200 200 250 400 512 768

Table 6.2

Parameters used for the grayscale denoising experiments presented on Figure 6.2 and Table
6.1. n is the size of the patches. J is the number of learning iterations. µ is the fraction of patches
used during the training. m is the number of adjacent and non-overlapping patches processed at the
same time (see Section 4). C is the parameter from Equation (2.2). The block denoising algorithm
has been applied to

√
Sb ×

√
Sb blocks when

√
Sb was smaller than the size of the input image.

(a) s = 0 (b) s = 1 (c) s = 2

Fig. 6.1. A learned 3-scales global dictionary, which has been trained over a large database of
natural images.

σ n house peppers cameraman Average

10 20 × 20 +0.10dB +0.03dB + 0.00dB +0.04dB

15 20 × 20 -0.07dB +0.18dB +0.28dB +0.13dB

15 24 × 24 +0.02dB +0.13dB +0.15dB +0.10dB

Table 6.3

PSNR improvements obtained using N = 3 scales for σ = 10 and σ = 15 compared to the case
of N = 2 scales. For N = 3, a dictionary with ks = 256 for all s = 0, 1, 2, m = 4, and C = 1.018
were used.
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(a) Original image boat (b) Noisy, σ = 50 (c) Result, PSNR=26.74dB

(d) Original image hill (e) Noisy, σ = 10 (f) Result, PSNR=33.68dB

(g) Original image lena (h) Noisy, σ = 10 (i) Result, PSNR=35.85dB

Fig. 6.2. Examples of denoising results for N = 2 scales.

6.2. Color image denoising. In [25], we presented state-of-the-art results for
color image denoising using the previously described modified version of the K-SVD.
These results have recently been slightly surpassed [10]. Here we apply our multiscale
framework and our algorithmic improvements to the color denoising K-SVD to show
that it can compete and provide again state-of-the-art results. Like in [25], we use a
data set composed of natural images from the Berkeley Segmentation Database [30],
see Figure 6.7.

Numerical results are presented on Table 6.4 and some visual results in Figure
6.8. All the numbers presented here are averaged over 5 experiments for each image
and each level of noise. The parameters used during the experiments are reported in
Table 6.5, where we can observe that our experiments indicate that for N = 2, the
parameter γ proves to be useful only for high noise levels (σ ≥ 25).
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(a) Original
image house

(b) Noisy, σ = 10 (c) N = 1
PSNR=36.36dB

(d) N = 2
PSNR=36.74dB

(e) N = 3
PSNR=36.85dB

(f) Zoom on (a) (g) Zoom on (b) (h) Zoom on (c) (i) Zoom on (d) (j) Zoom on (e)

(k) Original
image cameraman

(l) Noisy, σ = 15 (m) N = 1
PSNR=31.71dB

(n) N = 2
PSNR=31.73dB

(o) N = 3
PSNR=32.01dB

(p) Zoom on (k) (q) Zoom on (l) (r) Zoom on (m) (s) Zoom on (n) (t) Zoom on (o)

Fig. 6.3. A comparison between N = 1, 2, 3 scales.

As we can see, our model with N = 1 is already close to [10] (-0.03dB on average)
and even slightly better for σ ≤ 5 (+0.05dB). With N = 2 scales, we have an average
improvement of +0.06dB over the single-scale algorithm and +0.04dB over [10]. One
can note also that our color denoising algorithm is a lot more efficient than handling
each R,G,B channel separately, providing a very important average improvement of
2.65dB on our dataset. For illustrative purpose, some color multiscale dictionaries are
presented Figure 6.9. Very interestingly, the color information seems to be present
mainly at the coarse scale.

6.3. Image inpainting. Filling-in small holes in images was presented in [25]
using the K-SVD algorithm. Here, we show that using more than one scale can lead
to visually impressive results. For illustrative purposes, we show an example obtained
with N = 2 scales in Figure 6.10, compared with N = 1. This result is quite impressive
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(a) s = 0 (b) s = 1 (c) s = 2

Fig. 6.4. A learned 3-scales dictionary, which has been trained over a noisy version of the
image barbara, with σ = 15. This image is presented Figure 5.1. The initial dictionary is a global
one, presented in Figure 6.1

σ castle mushroom train

5
40.84 38.27 40.20 37.65 39.91 36.52

40.77 40.79 40.26 40.26 40.04 40.03

10
36.61 34.25 35.94 33.46 34.85 31.37

36.51 36.65 35.88 35.92 34.90 34.93

15
34.39 31.95 33.61 31.21 31.95 28.53

34.22 34.37 33.51 33.58 31.98 32.04

20
32.84 30.52 31.99 29.74 29.97 26.79

32.63 32.77 31.86 31.97 29.97 30.01

25
31.68 29.47 30.84 28.69 28.45 26.55

31.45 31.59 30.67 30.75 28.50 28.53

σ horses kangaroo Average

5
40.46 37.17 39.13 35.73 40.11 37.07

40.44 40.45 39.26 39.25 40.15 40.16

10
35.78 32.70 34.29 31.20 35.49 32.60

35.67 35.75 34.31 34.34 35.45 35.52

15
33.18 30.48 31.63 29.05 32.95 30.24

33.11 33.19 31.71 31.75 32.91 32.99

20
31.44 29.13 29.85 27.77 31.22 28.79

31.35 31.47 29.99 30.07 31.16 31.26

25
30.19 28.21 28.65 26.90 29.96 27.96

30.19 30.28 28.82 28.87 29.93 30.00

Table 6.4

PSNR results for our color image denoising experiments. Each cell is composed of four parts:
The top-left is devoted to [10], the top-right to our 2-scales gray image denoising method applied
to each R,G,B channel independently, the bottom-left to the color denoising algorithm with N = 1
scale and the bottom-right to our algorithm with N = 2 scales. Each time the best results are in
bold.



18 J. MAIRAL, G. SAPIRO AND M. ELAD

(a) N = 1, s = 0

(b) N = 2, s = 0 (c) N = 2, s = 1

(d) N = 3, s = 0 (e) N = 3, s = 1 (f) N = 3, s = 2

Fig. 6.5. Multiscale dictionaries that have been trained over a noisy version of the image boat,
with σ = 15, N = 1, N = 2 and N = 3.

bearing in mind that it is able to retrieve the brick texture of the wall, something that
our visual system is not able to do. In this example, the multiscale version provides
an improvement of 2.24dB over the single-scale algorithm.

7. Applications to video processing. We show now that our framework can
be extended to video processing. For illustrative purposes, we choose to give two
examples: Color video denoising and video inpainting.

7.1. Color video denoising. We now present results obtained by combining
the color extension of the multiscale K-SVD and the video one. Figure 7.1 presents
a result obtained on a sequence of 5 images taken from a classical video sequence,
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(a) s = 0 (b) s = 1

Fig. 6.6. A learned 2-scales dictionary, which has been trained on a large set of clean patches
from a database of natural images. Compare with Figure 6.1.

Fig. 6.7. Data used for evaluating the color denoising experiments. (This is a color figure.)

with added white Gaussian noise of standard deviation σ = 25. On the third column,
we present the results obtained by denoising each frame separately using the multi-
scale K-SVD algorithm for color images using the same parameters as in subsection
6.2. On the last column, we present the output of our multiscale K-SVD algorithm
for denoising color videos that takes into account the temporal correlation. As we
can see, the multiscale and temporal algorithm can provide both PSNR and visual
improvements. The raw performance difference in terms of PSNR between this two
methods is +1.14dB. Looking carefully at the images, we see less artifacts and sharper
details on the last column. In these experiments, we used patches and atoms of size
n = 10 × 10 × 3 × 3 with N = 2 scales. This means that we used three successive
frames to build each patch and dictionaries with three temporal channels. The initial
dictionary is a global one, trained on a large database of videos, with a sparsity factor
L = 20. The parameter γ and η are not used (γ = 0.0 and η = 1.0), but it proved to
be important to introduce some constant atoms red, green and blue for each temporal
channel. The parameters m and C are set respectively to 1 and 1.04. J = 30 iterations
are used during the denoising for the first algorithm (that skips proper treatment of
the temporal domain). As we propagate the dictionary, the number of iterations J
during the denoising of the next frames is set to 10. 15 frames of the test video were
processed, but only 5 are shown in Figure 7.1.

7.2. Video inpainting. Figure 7.2 presents results obtained with the multiscale
K-SVD for video inpainting, and compare to the result obtained when applying the
K-SVD for image inpainting applied to each frame separately. As we can observe,
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(a) Original (b) σ = 10 (c) Denoised

(d) Original (e) σ = 25 (f) Denoised

(g) Original (h) σ = 25

(i) Denoised

Fig. 6.8. Results for color image denoising with 2 scales. For the castle image, the resulting
PSNR is 36.65dB, for the mushroom 30.78dB, and for the horses 30.25dB. (This is a color figure.)
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N N = 1 N = 2

σ 5 10 15 20 25 5 10 15 20 25
p

n
3

6 6 7 7 8 10 10 12 14 14

J 30 30 30 30 30 30 30 30 30 30

µ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

η 2.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 1.5 1.5

γ 0.0 1.25 3.0 5.25 5.25 0.0 0.0 0.0 0.0 1.25

m 64 64 64 64 64 4 16 64 64 64

C 1.016 1.016 1.014 1.014 1.012 1.019 1.01 1.004 1.003 1.003√
Sb 300 300 300 300 300 300 300 300 300 300

Table 6.5

Parameters used for the color denoising algorithm. n is the size of the patches. J is the number
of learning iterations. µ is the fraction of patches used during the training. η gives a preference to
the constant atom during the OMP. γ enforces the average color of the patches (see [25]). m is the
number of patches processed at the same time (see Section 4). C is the parameter from Equation
(2.2). The block denoising algorithm has been applied to

√
Sb ×

√
Sb blocks when

√
Sb was smaller

than the size of the input image.

(a) s = 0 (b) s = 1

(c) s = 0 (d) s = 1

Fig. 6.9. Two learned 2-scales color dictionaries. The top one has been trained over a noisy
version of the image castle, with σ = 10, the initial dictionary was a global one. The bottom
dictionary has been trained on a large set of clean patches from a database of natural images. Since
the atoms can have negative values, the vectors are presented scaled and shifted to the [0, 255] range
per channel. (This is a color figure.)
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(a) Original (b) Damaged (c) Restored, N = 1 (d) Restored, N = 2

Fig. 6.10. Inpainting using N = 2 and n = 16 × 16 (third image), or N = 1 and n = 8 × 8
(fourth image). J = 100 iterations were performed. During the learning, 50% of the patches were
used. A sparsity factor L = 10 has been used during the learning process and L = 25 for the final
reconstruction. The damaged image was created by removing 75% of the data from the original
image. The initial PSNR is 6.13dB. The resulting PSNR for N = 2 is 33.97dB, and 31.75dB for
N = 1.

taking into account the temporal behavior permits to achieve better results in terms
of PSNR and visual quality. The parameters used when we applied the K-SVD for
images on each frame separately were the same as in the experiments in Figure 6.10,
with J = 60. For the multiscale K-SVD for video inpainting algorithm, we used
patches and atoms of size n = 10 × 10 × 5 with N = 2 scales (with 5 temporal
channels). The initial dictionary is a global one, trained on a large database of videos,
with a sparsity factor L = 20. The parameter η is set to 2.0. J = 30 iterations are
used during the processing of the first multi-frame, and then only 10. We present 5
out of the 15 processed frames.

8. Conclusion and future directions. In this paper we presented a K-SVD
based algorithm that is able to learn multiscale sparse image representations. Using
a shift-invariant sparsity prior on natural images, the proposed framework achieves
state-of-the-art image restoration results. We have shown that this framework can be
adapted to video processing, exploiting temporal information. All of the experiments
reported in this paper can be reproduced with a C++ software, which will be freely
available in the authors’ webpage. Our current efforts are devoted in part to the design
of faster algorithms, which can be used with any number of scales. One direction we
are pursuing is to combine the K-SVD with image pyramids. Results along this
direction will be hopefully reported soon.

At the more general level, we ask ourself if we are reaching the performance
limit for many image and video enhancement tasks such as the image denoising and
demosaicing results presented here and in [25]. Understanding these limits is critical
to evaluate the importance of future efforts in these challenging problems.
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(a) Original (b) Damaged (c) Image Denoising (d) Video Denoising

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Fig. 7.1. Results obtained with the proposed multiscale K-SVD for video denoising. From left
to right: 5 frames of an original video, the same frames with Gaussian additive noise (σ = 25), the
results obtained when applying the color image denoising algorithm working on each frame separately
(PSNR: 27.14dB), and the result of the proposed color video denoising multiscale K-SVD (PSNR:
28.28dB). The last row presents a zoomed version of one part of the last frame. (This is a color
figure.)
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(a) Original (b) Damaged (c) Image Inpainting (d) Video Inpainting

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Fig. 7.2. Results obtained with the proposed multiscale K-SVD for video inpainting. From left
to right: 5 frames of a video are shown, the same sequence with 80% of data missing, the results
obtained when applying the image inpainting algorithm to each frame separately (PSNR: 24.38dB),
and the result of the new video inpainting K-SVD (PSNR: 28.49dB). The last row presents a zoomed
version of one part of the last frame.


