
SPARSE REPRESENTATIONS FOR LIMITED DATA TOMOGRAPHY

By

Hstau Y. Liao

and

Guillermo Sapiro

IMA Preprint Series # 2182

( November 2007 )

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

400 Lind Hall
207 Church Street S.E.

Minneapolis, Minnesota 55455–0436
Phone: 612-624-6066 Fax: 612-626-7370

URL: http://www.ima.umn.edu



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
NOV 2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Sparse Representations for Limited Data Tomography (PREPRINT) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Minnesota,Institute for Mathematics and its
Applications,207 Church Street SE,Minneapolis,MN,55455-0436 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In limited data tomography, with applications such as electron microscopy and medical imaging, the
scanning views are within an angular range that is often both limited and sparsely sampled. In these
situations, standard algorithms produce reconstructions with notorious artifacts. We show in this paper
that a sparsity image representation principle, based on learning dictionaries for sparse representations of
image patches, leads to significantly improved reconstructions of the unknown density from its limited
angle projections. The presentation of the underlying framework is complemented with illustrative results
on artificial and real data. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

5 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



SPARSE REPRESENTATIONS FOR LIMITED DATA TOMOGRAPHY

Hstau Y. Liao∗

Laboratory of Computational Biology
and Macromolecular Imaging, HHMI,

Wadsworth Center, Albany, NY 12201, USA

Guillermo Sapiro†

Dept. of Electrical and Computer
Engineering, University of Minnesota,

Minneapolis, MN 55455, USA

ABSTRACT

In limited data tomography, with applications such as elec-
tron microscopy and medical imaging, the scanning views
are within an angular range that is often both limited and
sparsely sampled. In these situations, standard algorithms
produce reconstructions with notorious artifacts. We showin
this paper that a sparsity image representation principle,based
on learning dictionaries for sparse representations of image
patches, leads to significantly improved reconstructions of the
unknown density from its limited angle projections. The pre-
sentation of the underlying framework is complemented with
illustrative results on artificial and real data.
Keywords: Limited angle tomography, sparse representations,
regularization

1. INTRODUCTION

Tomography,with applications such as electron microscopy,
medical imaging, and industrial non-destructive testing,refers
to the recovery of the density distribution inside the body from
its given projections. We are primarily interested in the class
of tomography which can be modeled by the Radon trans-
form. In limited data tomography, data are collected over
an angular range that is either limited (due to physical con-
straints) or sparsely sampled (e.g., due to cost savings or ra-
diation limitations). The use of standard reconstruction algo-
rithms, such as filtered back-projection (FBP) methods, pro-
duces reconstructions with notorious artifacts, see Figure 1.

In dealing with the ubiquitous limited angle tomography,
several approaches have been tested (e.g., see [1, 2, 3, 4, 5]for
more recent ones). In terms of artifacts, methods that apply
regularization in the image (density) domain show higher de-
grees of success. Nevertheless, they normally assume piece-
wise smoothness of the unknown image and are still vulnera-
ble to the artifacts, unless a “reference image” is used, which
is not always available.

For the sparse angular sampling problem,total variation
(related) methods have been shown to be very promising,
mainly when applied to piecewise constant images [1, 6, 7].
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Fig. 1. Reconstructions of the phantom in Figure 2 from just
11 noiseless projections extended over120 degrees. FBP
(left), a total variation based method (center), and the results
by our proposed method (right).

It was shown in [6] that if the unknown signal is sparse in
some given representation (e.g., in some vector space), then
it can be accurately recovered, with high probability, from
only a few (random) measurements. An example is the exact
recovery of a piecewise constant image like the Shepp-Logan
Phantom (which has only a few non-zero gradients) from only
a few projections. In practice, images in real applicationsare
seldom piecewise constant, and therefore finding an efficient
representation “basis” in which the unknown image is sparse
remains an open problem. Here we address this issue from a
practical viewpoint, by first considering small imagepatches.
We show that by assuming sparsity of the patches with respect
to a basis that in turn is being learned (following [8]), we
can reconstruct images that cannot be efficiently recoveredby
these TV-based methods, see Figure 1. We should add that the
theoretical results in [6] do not address the important caseof
the missing wedge, meaning that not only the data is sparsely
sampled but also a continuous range of projections is missing
(often about30% of the total range).

2. SPARSITY MODELS IN TOMOGRAPHY

2.1. Sparsity representation of patches

The present work is motivated by the image processing suc-
cess of theSparselandmodel for signal recovery problems
[9]. For signals from a classΓ ⊂ R

N , this model suggests the
existence of a specific redundant dictionaryD ∈ R

N×K that
containsK atoms, such that for any signalx ∈ Γ, there exists
a sparse linear combination of atoms fromD that approxi-



mates it well. More formally, this means that∀x ∈ Γ, ∃α ∈
R

K , such thatx ≈ Dα and ‖α‖
0
≪ N.

D can be predefined (such as wavelets) or learned (e.g., by
the K-SVD algorithm [8]), as in this work. Due to its highly
effectiveness for tasks such as image denoising, demosaicing,
and inpainting, in particular when the dictionary is learned [9,
10], here we extend this idea to tomographic reconstruction.

To make this framework practical, the Sparseland model,
like many other image-domain regularization methods, con-
siders the processing of small overlapping image patches, i.e.,
such patches are the ones that admit a sparse representation.
Assume that the patches are of size

√
n×√

n (i.e.,n pixels in
each patch), then the idea is that a patchMx can be approxi-
mated byDα, whereM is an×N binary matrix that extracts
the patch from the imagex, D ∈ R

n×K is the learned dictio-
nary, andα ∈ R

K×J , with J being the number of patches.
The goal then is to learnD such thatα is sparse andx is ef-
ficiently and accurately reconstructed by the joint sparse rep-
resentation of all its corresponding overlapping patches.We
now briefly present the framework while revisiting the appli-
cation of this model to image denoising.

2.2. Image denoising model

In [9], the authors considered the classical model for image
degradation,y = x + w, wherex ∈ R

N is the clean image,
w ∈ R

N is assumed to be white Gaussian noise with afixed
standard deviationσ (the case of non-uniformσ is dealt with
in [10]), andy ∈ R

N is the noisy observed image. The energy
minimization formulation corresponding to the simultaneous
learning ofD, computation ofα, and restoration ofx, is

{
α̂, D̂, x̂

}
= arg min

α,D,x




λ ‖x − y‖2

2
+

J∑

j=1

µj ‖αj‖0
+

J∑

j=1

‖Dαj − Mjx‖2

2




 , (1)

whereλ and theµj (j = 1, ..., J) are positive, and the columns
of α ∈ R

K×J are the coefficient vectorsαj (j = 1, ..., J), in
a way that thej-th patchMjx is approximated byDαj . The
vectorx̂ ∈ R

N is an estimate of the true image. The first term
in (1) enforces the matching to the data. The second and the
last terms provide regularization, considering that the solution
has a sparse representation for every overlapping patch over
the learned dictionarŷD. Details on the optimization of this
variational formulation are presented below.

2.3. Image reconstruction model: The tomography case

For reconstruction in limited angle tomography, we model the
measurementy ∈ R

I asy = Rx+w, whereR ∈ R
I×N is the

(discrete) Radon transform (I projections), andw ∈ R
I is the

noise, which causes (in general non-uniform) uncertainties in

the pixel (or voxel, if in 3D) intensities of the reconstructed
image. If the reconstruction process is linear, these uncertain-
ties can be estimated (see, e.g., [11]). This however is not
the case, if we attempt to use the regularization in (1), due
to the non-linearity introduced by the operation‖·‖

0
, which

affects the (non-deterministic)α. Nevertheless, assuming a
deterministicα and uniform noise, we can restore linearity
and compute a first order approximation to these uncertain-
ties. It turns out that the largest uncertainties occur mainly at
the boundaries within the first few pixels, whereas in the in-
terior they are relatively uniform. As a result, we propose to
solve the tomographic reconstruction problem via

{
α̂, D̂, x̂

}
= arg min

α,D,x




λ ‖Rx − y‖2

2
+

J∑

j=1

µj ‖αj‖0
+

J∑

j=1

‖Dαj − Mjx‖2

2




 , (2)

subject to the condition of known boundary within a few pix-
els, due to the large uncertainties there. Note that while the
measurements are in the Radon domain (first term in (2)), the
imposed sparsity and learned dictionary are in the image (den-
sity) domain.

2.4. Optimization algorithm

The proposed algorithm follows [8], and consists of steps of
the K-SVD algorithm (downloaded from www.cs.technion.ac.
il/~elad/) for image denoising, alternated with a Radon inver-
sion algorithm. Letd1, ..., dK be the columns ofD, which
are the atoms in the dictionary. Letαk∈ R

J denote thek-
th row of α. The K-SVD algorithm for denoising of gray
scale images essentially minimizes the objective functionin
(1) with respect to the “coordinates”αj(j = 1, ..., J), dk(k =
1, ..., K), αk(k = 1, ..., K), andx. First (the sparse coding
step), the minimization is carried out with respect to eachαj

(j = 1, ..., J) via standard orthogonal matching pursuit (find
the best atoms from the given dictionary), and then (the dic-
tionary update step) the algorithm optimizes the last term of
(1) with respect todk andαk simultaneously (where only the
nonzero components ofαk are considered, improve via SVD
the atom for all the patches that selected it in the sparse cod-
ing step), for eachk = 1, ..., K. This process is repeated
a few times, untilD andα have been learned. Finally (the
averaging step), the objective function is minimized with re-
spect tox (this is a simple weighted average of the overlap-
ping patches). Here we skip the averaging step, optimizing
(2) with respect to the imagex, which is a simple quadratic
optimization solved using Matlab. There is a critical “sparsity
threshold”ε in the KSVD algorithm: higher (lower)ε induces
fewer (more) atoms to approximate a patch in the sparse cod-
ing step. It is determined by the pixel uncertainties that, as
discussed above, in the case of tomography are difficult to



Fig. 2. 128 × 128 mathematical phantom with a fore-
ground that has a uniform density (left,Phantom A), and
checkerboard-like patterns (right, Phantom B).

compute. Therefore, we setε as a free parameter. See [10]
for more discussion about this parameter.

3. EXPERIMENTAL RESULTS

In the experiments presented below, we used (see (2)) a La-
grange multiplierλ = 1, size of the patchesn = 25, size
of the redundant dictionaryK = 64, and known boundary
values up to three pixels thick. The initial dictionary was the
Discrete Cosine Transform.

3.1. Simulated data

We created two mathematical 2D phantoms. Both phantoms
contain four primitives, with constant density in the first one,
calledPhantom A, and checkerboard-like patterns in the sec-
ond one, calledPhantom B. See Figure 2. The former is bi-
nary with background intensity 0.1 and foreground intensity
1; and the latter has a minimal intensity -1 and maximal in-
tensity 1. On a gray scale, black represents the minimum and
white represents the maximum.

The simulated data sets consisted of 11 projections ex-
tended uniformly over two thirds of the standard (e.g., in elec-
tron tomography) full180◦ range. Typically, when standard
reconstruction algorithms (such as the FBP) are used, many
more (the order of hundreds) projections extending over the
full angular range are required. We considered both perfect
and noisy projection data. The noise in the measurements
was independent Gaussians with unit standard deviation.

For comparisons, we performed the reconstructions using
a FBP method, a TV-based method (see Appendix), and the
proposed approach. See figures 1 and 3 . Note that, because
of the missing angular range, which is in the horizontal di-
rection, edges along this direction are notoriously difficult to
recover. We usedε = 0.01 andε = 0.05, respectively, for
the Phantom A and Phantom B. In all cases, the number of
iterations wasH = 1, 000.

These preliminary results suggest that our proposed re-
construction method outperforms both qualitatively (e.g., less
artifacts and more contrast) and quantitatively a FBP method
and a TV-based method. See Table 1, where the estimation
error is defined to be‖x̂ − x0‖2

, with x̂ andx0, respectively,
the reconstructed and the true image.

Fig. 3. Top row: 128×128 reconstructions of the Phantom
A from 11 noiseless projections. FBP (left), a TV-based al-
gorithm (center), and the results by our proposed method
(right). Bottom row: same order but for the Phantom B and
noisy data. Note that TV-based minimization works well with
Phantom A (piecewise constant) but not with Phantom B.

Table 1. Estimation error .

Technique A/B (noiseless) A/B (noisy)
FBP 20/28 18.6/23

TV minimization 4.3/19 11.1/21.5
Proposed 4.8/10.8 8.7/12.2

3.2. Real data

We performed reconstructions on221×221 images from den-
tal data produced by the Focus intraoral X-ray source and the
Sigma intraoral sensor (Instrumentarium Dental; courtesyof
Maaria Rantala, from PaloDex, see [5] for more details). We
have available23 projections, uniformly distributed over ap-
proximately the full180◦ of a section of the third molar tooth.
A typical section has four basic components: surrounding air,
a layer of enamel, interior dentin, and pulp (the two dark
holes), see Figure 4. To produce satisfactory results, it was
necessary onlyH = 100 iterations. To test the effectiveness
of our method, we reconstructed from (i) all the23 projec-
tions, (ii) 15 (out of the23) consecutive projections (leaving
then a wedge of uncovered angles), and (iii)8 (out of the 23)
projections approximately uniformly distributed over thefull
180◦. In the first two cases,ε was lowered linearly from0.005

to 0.001 in 100 iterations, and in the case (iii), from0.01 to
0.001. Again, we observe from Figure 4 that our approach
delivers reconstructions with less artifacts, without sacrific-
ing the contrast.

4. CONCLUSIONS AND DISCUSSION

In this work, we introduced the framework of learning sparse
representations for density reconstruction in limited angle to-
mography. The reconstruction algorithm aims at minimizing



Fig. 4. Reconstructions of a section of a tooth from23 (top
row), 15 (middle row) and8 (bottom row) projections, using
a FBP method (left column), a total-variation based method
(center column), and our proposed method (right column).

a functional, encouraging a sparse representation of the im-
age patches while keeping the data constraints provided by
the available projections. Preliminary experimental results
from both simulated and real data demonstrated that the pro-
posed reconstruction method outperforms a FBP and a TV-
based method.

As mentioned above, the sparsity-levelε is closely related
to the non-uniform uncertainty level, and it was here left asan
algorithm parameter. Automatically computing this parame-
ter is the subject of important future research.

Results in the image enhancement literature have shown
that significant improvements, leading to state-of-the-art re-
construction, can be achieved by initially considering a dic-
tionary learned from large databases from the same data class
[8, 10], which are then adapted to the particular image. We
plan to continue our line of research in this direction, and re-
sults will be reported elsewhere.

Appendix- A TV-based algorithm: Regarding the implementation
of the TV-based method, we found that a simple algorithm, consist-
ing of alternating between TV-minimization and imposing the mea-
surement constraints, produces significantly better results than solv-
ing a constrained TV minimization using, e.g.,l1-magichttp://www.
acm.caltech.edu/l1magic/. The results produced by the l1-magic (us-
ing the default parameters and starting with the FBP reconstruction),
were very similar to the starting image. The algorithm for all the TV
reconstructions in this paper consisted of 3,000 to 4,000 iterations
of: (i) one step of gradient descent for the TV minimization with
fixed step size, and (ii) five cycles of ART. It was observed that, in
general, the reconstructions did not improve considerablyafter 2,000
iterations and the optimal step size was between10

−3 and10
−4.
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