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ABSTRACT

In limited data tomography, with applications such as elec- §
tron microscopy and medical imaging, the scanning views
are within an angular range that is often both limited and
sparsely sampled. In these situations, standard algasithm &
produce reconstructions with notorious artifacts. We show  Z5EEE -
this paper that a sparsity image representation prindiplsed ~ Fig. 1. Reconstructions of the phantom in Figure 2 from just
on learning dictionaries for sparse representations ofjgma 11 noiseless projections extended ov@0 degrees. FBP
patches, leads to significantly improved reconstructidtise>  (left), a total variation based method (center), and thaitss
unknown density from its limited angle projections. The-pre by our proposed method (right).

sentation of the underlying framework is complemented with

illustrative results on artificial and real data.

regularization some given representation (e.g., in some vector space), the

it can be accurately recovered, with high probability, from

only a few (random) measurements. An example is the exact

recovery of a piecewise constant image like the Shepp-Logan

Phantom (which has only a few non-zero gradients) from only

a few projections. In practice, images in real applicatiare

to the recovery of the density distribution inside the badyf seldom piegewi“se c_or:gtant,_and therefore fin_ding an efficien
representation “basis” in which the unknown image is sparse

its given projections. We are primarily interested in thassl rfemains an onen problem. Here we address this issue from a
of tomography which can be modeled by the Radon trans- pen p '

form. In limited data tomographydata are collected over practical viewpoint, by first considering small imagatches

an angular range that is either limited (due to physical con\-Ne show that by assuming sparsity of the patches with respect

. . to a basis that in turn is being learned (following [8]), we
straints) or sparsely sampled (€.g., due to cost savings-or can reconstruct images that cannot be efficiently recoveyed
diation limitations). The use of standard reconstructilgoa 9 y ey

rithms, such as filtered back-projection (FBP) methods. prc)these TV-based methods, see Figure 1. We should add that the

duces reconstructions with notorious artifacts, see Eigur :Eeorgtlclal resudlts in [6] d(.) ncitha?dr(?[ss tlh?r:mgotrtqnt cése |
In dealing with the ubiquitous limited angle tomography, € missing wedge, meaning that not only tne data IS sparsely

several approaches have been tested (.g., see [L, 2, 30t 5] sampled but also a continuous range of projections is ngissin
more recent ones). In terms of artifacts, methods that applg/Often abouB0% of the total range).

regularization in the image (density) domain show higher de

grees of success. Nevertheless, they normally assume piece 2. SPARSITY MODELSIN TOMOGRAPHY

wise smoothness of the unknown image and are still vulnera- ) )

ble to the artifacts, unless a “reference image” is usedghvhi 2-1. Sparsity representation of patches

is not always available.

L NN

1. INTRODUCTION

Tomographywith applications such as electron microscopy,
medical imaging, and industrial non-destructive testiafgrs

The present work is motivated by the image processing suc-

For the sparse angular sampling probléatal variation  cess of theSparselandnodel for signal recovery problems
(related) methods have been shown to be very promising, 9]. For signals from a clasg c RY, this model suggests the

mainly when applied to piecewise constant images [1, 6, 7layistence of a specific redundant dictiondrye RN %X that

*Work supported by a postdoctoral fellowship at the IMA, U Wésota. ContaiHSK_atoms SUCh_ tha_t forany signal € T', there eXiSFS
TWork supported in part by NSF, NGA, ONR, DARPA, NIH, and ARO. a sparse linear combination of atoms frdmthat approxi-




mates it well. More formally, this means thdt € I', 3a €  the pixel (or voxel, if in 3D) intensities of the reconstredt
R¥, such thatr ~ Da and |||, < N. image. If the reconstruction process is linear, these tiaicer
D can be predefined (such as wavelets) or learned (e.g., liies can be estimated (see, e.g., [11]). This however is not
the K-SVD algorithm [8]), as in this work. Due to its highly the case, if we attempt to use the regularization in (1), due
effectiveness for tasks such as image denoising, demogaici to the non-linearity introduced by the operatipi,, which
and inpainting, in particular when the dictionary is leatf@  affects the (non-deterministie). Nevertheless, assuming a
10], here we extend this idea to tomographic reconstruction deterministica and uniform noise, we can restore linearity
To make this framework practical, the Sparseland modeland compute a first order approximation to these uncertain-
like many other image-domain regularization methods, conties. It turns out that the largest uncertainties occur fgain
siders the processing of small overlapping image patches, i the boundaries within the first few pixels, whereas in the in-
such patches are the ones that admit a sparse representati@nior they are relatively uniform. As a result, we propase t
Assume that the patches are of siZe x v/n (i.e.,n pixelsin  solve the tomographic reconstruction problem via
each patch), then the idea is that a patéh can be approxi-
mated byDc«, whereM is an x N binary matrix that extracts o~ ) , <
the patch from the image, D € R"*¥ is the learned dictio- {O‘v D, I} = arg mn MRz —yll; + Zﬂj llevsllo +

nary, anda € R¥>/ with J being the number of patches. j=1

The goal then is to lear® such thatx is sparse and is ef- J

ficiently and accurately reconstructed by the joint spagge r Z | Do — Mja:Hg , (2)
resentation of all its corresponding overlapping patcives. j=1

now briefly present the framework while revisiting the appli ) -~ o _
cation of this model to image denoising. subject to the condition of known boundary within a few pix-

els, due to the large uncertainties there. Note that whée th
measurements are in the Radon domain (first termin (2)), the
imposed sparsity and learned dictionary are in the image (de
In [9], the authors considered the classical model for imageéity) domain.

degradationy = z + w, wherexz € R" is the clean image,

w € RY is assumed to be white Gaussian noise wiflxed 2.4. Optimization algorithm

standard deviation (the case of non-uniform is dealt with ) ]

in [10]), andy € RV is the noisy observed image. The energyThe proposed a!gonthm follows [8], and consists of s.teps of
minimization formulation corresponding to the simultango  the K-SVD algorithm (downloaded from www.cs.technion.ac.

learning of D, computation ofy, and restoration af, is il/~elad/) for image denoising, alternated with a Radoremv
’ ' ’ sion algorithm. Letd, ...,dx be the columns o, which

2.2. Image denoising model

J are the atoms in the dictionary. Lat'c R’ denote thek-
{a,ﬁ,f} = arg min { A ||z — yl\g + Zuj llally + th row of «. The K-SVD algorithm for denoising of gray
aDz J=1 scale images essentially minimizes the objective fundtion
S (1) with respect to the “coordinateg’;(j = 1, ..., J), di(k =
2 1,..,K), o*(k = 1,..., K), andx. First the sparse coding
Z 1Dy = Myl ¢ @) step, the minimization is carried out with respect t h
= , pect to eag

( = 1,...,J) via standard orthogonal matching pursuit (find
where) and theu; (j = 1, ..., J) are positive, and the columns the best atoms from the given dictionary), and thixe dic-
of & € RE<7 are the coefficient vectors; (j = 1,...,.J),in _tionary update stepthe algorithm optimizes the last term of
a way that thej-th patchM;z is approximated byDa;. The (1) with respect tal;, anda” smulta_neously (where o_nly the
vector? € RY is an estimate of the true image. The first termnonzero components of* are considered, improve via SVD
in (1) enforces the matching to the data. The second and tiBe atom for all the patches that selected it in the sparse cod
last terms provide regularization, considering that thetsmn N9 step), for eaclk = 1,..., K. This process is repeated
has a sparse representation for every overlapping patah ov@ few times, untilD ando have been learned. Finallyhe
the learned dictionar). Details on the optimization of this averaging step the objective function is minimized with re-
variational formulation are presented below. spect toz (this is a simple weighted average of the overlap-
ping patches). Here we skip the averaging step, optimizing
(2) with respect to the image, which is a simple quadratic
optimization solved using Matlab. There is a critical “sgir
For reconstruction in limited angle tomography, we model th threshold= in the KSVD algorithm: higher (loweg induces
measurement € R/ asy = Rz+w, whereR € R’*N isthe  fewer (more) atoms to approximate a patch in the sparse cod-
(discrete) Radon transforni projections), andy € R’ isthe  ing step. It is determined by the pixel uncertainties that, a
noise, which causes (in general non-uniform) uncertantie discussed above, in the case of tomography are difficult to

2.3. Imagereconstruction model: Thetomography case



Fig. 2. 128 x 128 mathematical phantom with a fore-
ground that has a uniform density (lef@Bhantom A, and
checkerboard-like patterns (right, Phantom B).

compute. Therefore, we setas a free parameter. See [10]
for more discussion about this parameter.

Fig. 3. Top row: 128<128 reconstructions of the Phantom

A from 11 noiseless projections. FBP (left), a TV-based al-
3. EXPERIMENTAL RESULTS gorithm (center), and the results by our proposed method
i (right). Bottom row: same order but for the Phantom B and

In the experiments presented below, we used (see (2)) a L@pjsy data. Note that TV-based minimization works well with

grange multiplierA = 1, size of the patches = 25, sizé  phaniom A (piecewise constant) but not with Phantom B
of the redundant dictionar)’ = 64, and known boundary

values up to three pixels thick. The initial dictionary whe t Table 1. Estimation error .
Discrete Cosine Transform.

Technique A/B (noiseless)| A/B (noisy)
) FBP 20/28 18.6/23

3.1. Simulated data TV minimization 4.3/19 11.1215
We created two mathematical 2D phantoms. Both phantoms Proposed 4.8/10.8 8.7/12.2

contain four primitives, with constant density in the firsieo
calledPhantom Aand checkerboard-like patterns in the sec-
ond one, calle®Phantom B See Figure 2. The former is bi- 3-2. Real data

nary with background intensity 0.1 and foreground intgnsit We performed reconstructions 821 x 221 images from den-

tl; antd tlheolatter has a Tln;JTaIkmtensny tl ?Qd m_a?qmal 'nr";gl data produced by the Focus intraoral X-ray source and the
ensity 1. n a gray scaie, black represents the minimum a igma intraoral sensor (Instrumentarium Dental; courtdsy
white represents the maximum.

The simulated dat ; isted of 11 ot Maaria Rantala, from PaloDex, see [5] for more details). We
€ simulated dala Sets consisted o Projections €4 ve availables projections, uniformly distributed over ap-
tended uniformly over two thirds of the standard (e.g., ecel

iron t hv) fulll80° Tvpicallv. wh tandard proximately the fulll80° of a section of the third molar tooth.
ron tomograp y) Y range. fypically, when standar A typical section has four basic components: surrounding ai
reconstruction algorithms (such as the FBP) are used, ma

o . layer of enamel, interior dentin, and pulp (the two dark
more (the order of hundreds) projections extending over thﬁoles), see Figure 4. To produce satisfactory results, & wa

full ang_ular range are required. We_ considered both perfe(f'Fecessary onlyf = 100 iterations. To test the effectiveness
and hoisy projection daFa. Th_e noise In the meaguremenzﬁ our method, we reconstructed from (i) all tB& projec-
was independent Gaussians with unit standard deviation. tions, (ii) 15 (out of the23) consecutive projections (leaving

For comparisons, we performed the reconstructions usmﬁwen a wedae of uncovered anales). and ifbut of the 23
a FBP method, a TV-based method (see Appendix), and t@% g gles), i )

proposed approach. See figures 1 and 3 . Note that, beca Jf Cltrllotﬂz 2&?23:::22;2; \';Ivr;g:)rwgrgljﬁir:]iu;ﬁg f?gerg.g;‘;
of the missing angular range, which is in the horizontal di'to 0.001 in 100 iterations émd in the case (iii), fromO01 to
rection, edges along this direction are notoriousl_y diffitn 0.001. Again, we obser\,/e from Figure 4 tha'; our approach
recover. We used = 0.01 ande = 0.05, respectively, for elivers reconstructions with less artifacts, withoutrgeme
the Phantom A and Phantom B. In all cases, the number (%g the contrast.
iterations was{ = 1, 000.
These preliminary results suggest that our proposed re-
construction method outperforms both qualitatively (degs 4. CONCLUSIONSAND DISCUSSION
artifacts and more contrast) and quantitatively a FBP ntetho
and a TV-based method. See Table 1, where the estimatidn this work, we introduced the framework of learning sparse
error is defined to b§z — ||, with  andz,, respectively, representations for density reconstruction in limitedlang-
the reconstructed and the true image mography. The reconstruction algorithm aims at minimizing
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Fig. 4. Reconstructions of a section of a tooth fr@ (top
row), 15 (middle row) and8 (bottom row) projections, using

a FBP method (left column), a total-variation based method [4

(center column), and our proposed method (right column).
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