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ON THE NON-UNIFORM COMPLEXITY OF BRAIN CONNECTIVITY

Gloria Haro, Christophe Lenglet, Guillermo Sapiro, and Paul Thompson
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ABSTRACT

A stratification and manifold learning approach for analyz-
ing High Angular Resolution Diffusion Imaging (HARDI)
data is introduced in this paper. HARDI data provides high-
dimensional signals measuring the complex microstructure
of biological tissues, such as the cerebral white matter. We
show that these high-dimensional spaces may be understood
as unions of manifolds of varying dimensions/complexity and
densities. With such analysis, we use clustering to character-
ize the structural complexity of the white matter. We briefly
present the underlying framework and numerical experiments
illustrating this original and promising approach.
Key words:Stratification and manifold learning, DTI, HARDI,
complexity, white matter connectivity.

1. INTRODUCTION

Diffusion MRI is a powerful extension of MRI that maps how
local diffusion affects the MR signal, in multiple sampling di-
rections, providing exquisite insight into local white matter
fiber orientation. Water diffusion in the brain occurs prefer-
entially along fiber bundles and is hindered in orthogonal di-
rections, reflecting brain architecture at a microscopic scale.
In the Diffusion Tensor (DT) model [2], a tensor describes
local 3D diffusion as the3 × 3 covariance matrix of a Gaus-
sian distribution, modeling the averaged diffusion properties
of water molecules (in a typical 1-3mm sized voxel). High
Angular Resolution Imaging (HARDI) overcomes limitations
of DTI for characterizing complex tissue geometries such as
fiber crossing, measuring diffusion along 30-100 or more di-
rections uniformly distributed on the sphere. From this high-
dimensional signalSj(x), j = 1, ..., n, wherex ∈ Ω ⊂ R3

is a voxel of interest andΩ the acquisition grid, spherical
functions such as the ADC profile or the Orientational Dis-
tribution Function (ODF) may be approximated using a mod-
ified spherical harmonic (SH) basis [3]. The ODF provides
a non-parametric model of fiber distribution, and is the radial
projection of the underlying probability density function for
molecular motion.

Analyzing the structure of such complex datasets will lead
to a better understanding of brain tissue microstructure and
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connectivity. Methods such as [4, 8, 9] have been proposed
to characterize the anisotropy of tissues and differentiate be-
tween isotropic, mono- and multi-fiber configurations, from
the SH expansion or full profile of the ADC and from ODFs
[12]. These techniques consider each voxel independently
and do not try to explain the dataset’s global structure.

Concepts from Riemannian geometry (e.g., [1, 6] and ref-
erences therein) and manifold learning, [13], have been used
to characterize the distribution of tensors, perform statistical
analysis and segment DTI, e.g., using diffusion maps to clus-
ter ODF fields [15]. These approaches consider the elements
of interest (tensors, ODFs) on a single manifold (e.g., a sub-
manifold ofR6 in the tensor case). However, diffusion MRI
data does not belong to a single manifold but to astratifica-
tion, i.e., the union of manifolds with different dimensions
(complexities) and densities. Regions with or without fiber
crossings clearly belong to manifolds with different dimen-
sionality/complexity (requiring a different number of param-
eters). The single dimension (complexity) assumption is ac-
curate only for small regions. The effort should then switch
toward the study ofstratifications[5], of which manifolds are
a particular case. Studying the different manifolds in the data
may also indicate the existence of different complexities in
the data. Here we use stratification toquantifythe local com-
plexity of DTI and HARDI datasets and relate these findings
to neuro-anatomical knowledge.

As we show experimentally, we can cluster diffusion MRI
datasets by considering them as point clouds inRm (m ≥ 6
depends on the order of the SH approximation of ODFs),
without any spatial knowledge. We show that the estimated
complexity correlates with the expected fiber geometry in
well-known regions of interest.

2. STRATIFICATION LEARNING

A framework for the regularized and robust estimation of
non-uniform dimensionality and density in high-dimensional
noisy data, i.e., stratifications, was introduced in [5]. High-
dimensional sample points are modeled as a process of Trans-
lated Poisson mixtures, with regularizing restrictions, and a
noise model is incorporated. Levina and Bickel [7] proposed
a geometric and probabilistic method to estimate the local
dimension and density of point cloud data. In [5] we showed
how noise is naturally incorporated in this model, to obtain a



dimension estimator which is robust to noise (noise brings the
data outside of the manifold into the ambient space, thereby
misleading the dimensionality computation). We tackle the
more general case where the point cloud data is a sampling of
two or more manifolds of different dimensions and densities
(a stratification); we cluster the noisy data points according
to these parameters. We do not assume subspaces are linear
(e.g., [14]), and we simultaneously estimate the soft cluster-
ing and the intrinsic dimension and density of the clusters
while being robust to noise and outliers.

If we sample anm-dimensional manifold withT points,
the proportion of points falling into a ball aroundxt is k

T ≈
ρ(xt)V (m)Rk(xt)m [7]. The given point cloud, embedded
in high dimensionsD, is X = {xt ∈ RD; t = 1, . . . , T},
k is the number of points inside the ball,ρ(xt) is the local
sampling density at pointxt, V (m) is the volume of the unit
sphere inRm, andRk(xt) is the Euclidean distance fromxt to
its k-th nearest neighbor (kNN). The inhomogeneous process
N(R, xt), which counts the number of points falling into a
small D-dimensional sphereB(R, xt) of radiusR centered
atxt, is a binomial process. Under certain assumptions it can
be approximated by a Poisson process and the rateλ of the
counting processN(R, xt) can be expressed asλ(R, xt) =
ρ(xt)V (m)mRm−1. The local intrinsic dimension estimator
at each pointxt is obtained from the Maximum Likelihood
estimator based on a Poisson distribution with this rate.

Usually, noise contaminates the point samples, so the
observed point process is not a simple sampling of a low-
dimensional manifold but a perturbation of this sample pro-
cess. We model this with a Translated Poisson Process [10],
which translates an underlying (unobservable) point process
into an output (observable) point process. The input and
output spaces of the points are not necessarily of the same
dimension. An input point at locationx in the input spaceX
is randomly translated to a locationz in the output spaceZ,
according to a conditional probability densityf(z|x), called
the transition density. We consider the particular case where
each point is translated independently of the others and no
deletions or insertions occur in the translation process. Then,
any translated Poisson process with an integrable intensity
function {λ(x) : x ∈ X} is also a Poisson process with
intensityµ(z) =

∫
X

f(z|x)λ(x)dx [10].
Since the intensity of the Poisson process in our model is

parametrized by the Euclidean distances of the points (and not
by the points themselves), we consider a random translation
in the distances. This means that we do not observe the origi-
nal distances but noisy distances. Letf(s|r) be the transition
density which defines the random process which translates a
distancer in the input space to a distances in the observ-
able space. Ifλ(r, xt) is the local rate of the Poisson process
which defines the counting process in the input space, then
µ(s), the intensity of the Poisson process in the output space,

is given byµ(s, xt) =
∫ R′

0
f(s|r)ρ(xt)V (m)mrm−1dr. We

considerR′ > R since points originally at distance greater

thanR from xt can be placed within a distance less thanR
after the translation process.

Maximizing the likelihood of the new Translated Poisson
process, we obtain the following expression for the local di-
mensionm(xt) at pointxt when we use thek nearest neigh-
bors (k-NN) instead of the points closer thanR,

m(xt)=

[
1

k − 1

k−1∑
i=1

∫ R′

0
f(Ri(xt)|r)rm−1 log Rk(xt)

r dr∫ R′

0
f(Ri(xt)|r)rm−1dr

]−1

,

(1)
where, by an abuse of notation, we identifym = m(xt) in
the right hand side. This expression reduces to the Levina
and Bickel estimator [7] whenf(s|r) = δ(s − r), i.e., there
is no translation of the original points (the noise-free case).
Equation (1) is a nonlinear recursive expression inm which is
difficult to solve. We approximate it by an easier to compute
closed expression, with explicit bounds on the approximation,

m(xt) ≈

[
1

k − 1

k−1∑
i=1

∫ R′

0
f(Ri|r) log Rk

r dr∫ R′

0
f(Ri|r)dr

]−1

, (2)

see [5] for details.
These estimators are local as they come from a Maximum

Likelihood (ML) at each pointxt based on a Translated Pois-
son distribution modeling the counting process in the local
ball B(R, xt). We compute an ML on the whole point cloud
data at the same time (not just for each point independently),
based on a Translated Poisson Mixture Model, which accom-
modates noise and different classes (each with its own dimen-
sion and sampling density). This technique gives a soft clus-
tering according to dimensionality and density, and estimates
both quantities for each class. This Translated Poisson Mix-
ture Model (TPMM) is solved with an EM algorithm, which
leads to explicit estimations of each cluster dimensionality
and density, as well as the probability of each point to be-
long to each cluster, see [5] for details on the theory and the
very efficient computation.

We tested the framework for clustering real data in com-
puter vision applications (scanned digits, faces under vary-
ing pose and illumination, different activities and motion in
video), obtaining state-of-the-art results for the soft clustering
on non-linear stratifications. Here we extend this framework
to the stratification defined by HARDI, providing insight into
the varying complexity of brain connections.

3. BRAIN MICROSTRUCTURE COMPLEXITY

Diffusion-weighted imagesSj , j = 1...n, were acquired on
a 4T Bruker/Siemens MRI scanner using an optimized diffu-
sion tensor sequence.1 30 images were acquired, 3 with no

1Imaging parameters were:21 axial slices (5 mm thick), FOV=23 cm,
TR/TE=6090/91.7 ms, 0.5 mm gap, with a128 × 100 acquisition matrix
(1.8 mm in-plane resolution).



diffusion sensitizationS0 andn=27 diffusion-weighted im-
ages at b=1100 s/mm2. Gradient directions were evenly dis-
tributed on the hemisphere.

Diffusion tensors were computed with the standard least-
squares procedure using the linearized Stejskal-Tanner equa-
tion for free anisotropic diffusion [11]. The signal attenua-
tionS(qj , τ) obtained with the classical Pulsed Gradient Spin
Echo (PGSE) sequence, for a given diffusion gradient wave-
vectorqj and diffusion timeτ , is related to the displacement
probability function of water moleculesP (r, τ) by a Fourier

transform,S(qj , τ) = S0

∫
R3 P (r, τ)e−2πiqT

j rdr. ODFs, de-
fined as the radial projection of the PDFP (r, τ), only con-
serve the angular information ofP , which is sufficient to re-
cover the underlying orientation distribution of fibers. ODFs
were approximated by a linear transform of the signals SH co-
efficientsS(q, τ) [3]. We examined the complexity of the sig-
nal attenuation, diffusion tensors, and SH series coefficients
of the ODFs. They respectively correspond to point clouds
in R30, R6 andR(l+1)(l+2)/2, for SH series of orderl. The
k-NN estimation of the local dimension only weakly exploits
the spatial information provided by the regular sampling of
points on the acquisition gridΩ ⊂ R3, leaving room for fu-
ture improvements.

We first studied how the input model influences the con-
sistency of the dimension/density estimation and clustering.
In neighborhoods of sizek = 60, our algorithm analyzed
the raw HARDI signal (points inR30), the4th and6th order
ODFs (points respectively inR15 andR28), and their sharp-
ened versions (Fig. 1). ODF sharpening, [3], enhances the
angular contrast of the spherical functions to better differenti-
ate fiber compartments and potentially improve tractography.
Clusterings from4th and6th order ODFs are almost identi-
cal, as 30 gradients may be insufficient to fit a detailed6th

order model.

Fig. 2. Increasing complexity in the forceps minor.

However, clusterings obtained from the ODFs are clearly
better than those from the raw HARDI data; we can read-
ily distinguish (Fig. 1) the gray matter in green, com-

Table 1. Influence of the input model on complexity.
Color Red Green Blue Yellow L. blue Purple
HARDI
Dim. 1.55 4.88 5.92 4.32 5.59 5.67
Dens. 9.27 16.01 10.69 2.42 13.18 15.85
Prob. 0.65 0.18 0.005 0.002 0.026 0.088
ODF 4
Dim. 1.33 4.53 4.64 2.56 5.32 5.41
Dens. 12.53 26.70 20.59 7.73 25.96 28.57
Prob. 0.70 0.16 0.014 0.002 0.038 0.092
ODF 6
Dim. 1.34 4.52 4.64 2.57 5.33 5.40
Dens. 12.54 26.64 20.57 7.74 25.94 28.49
Prob. 0.70 0.16 0.014 0.002 0.037 0.092

plex white matter in purple (e.g., forceps minor/major,
anterior/posterior corona radiata or superior longitudinal
fasciculus), anisotropic white matter in light blue (e.g.,
genu/splenium of the corpus callosum or internal capsule),
and highly anisotropic white matter in blue (e.g., genu of the
corpus callosum, cortico-spinal tract). However, the cluster
dimensions/densities do not match the expected decrease in
complexity when going from complex to very anisotropic
white matter (Table 1), perhaps because the raw HARDI
signal is noisy.4th and6th order ODFs regularize the spher-
ical distribution by only considering low-frequency spher-
ical harmonics and impose some smoothness on the fitted
ODFs. This translates into improved clustering results and
estimated dimensions/densities nicely matching the white
matter complexity. The complex white matter is perfectly
labeled (purple; Fig. 1), whereas some large areas were
missing (and labeled as gray matter) when working on the
raw HARDI signal. Highly anisotropic areas (blue) such as
the genu/splenium of the corpus callosum and cortico-spinal
tract are more consistently labeled. Sharpening the4th order
ODFs had little effect, but decreased clustering accuracy for
the 6th order ODFs, perhaps by enhancing high-frequency
noise in the higher-order model.

We compared our estimates to the known complexity of
white matter configurations, in the genu of corpus callosum
and forceps minor. Callosal fibers are tightly packed at the
interhemispheric plane, but diverge and mingle with other
fiber bundles as they progress toward the frontal lobes. Our
method identifies and quantifies this increase in complexity.
The dimension and density of the four submanifolds increase
(Fig. 2) as fibers leave the very anisotropic genu region. This
clearly demonstrates our methods value for studying white
matter microstructure.

Finally, we applied our algorithm to the6-dimensional
diffusion tensor dataset, clearly differentiating the gray/white
matter and CSF. However, the difference in complexity be-
tween gray and white matter was low and the CSF was
clearly isolated, although it was not when working with
ODFs. In gray and white matter, diffusion tensors have dif-
ferent anisotropy but similar mean diffusivity (Fig. 3), so
the model complexity stays roughly constant. Conversely,



Fig. 1. Influence of the input model on the labeling of 2 axial slices.

Fig. 3. Correct labeling of the ventricles from DTI.

HARDI differentiated gray matter from complex, anisotropic
and even very anisotropic white matter, but could not clearly
label the CSF where ODFs are intrinsically 2D, they have
great angular resolution but lack the amplitude information
of DTI (see center panel, Fig. 3).

4. CONCLUDING REMARKS

We presented a stratification learning method to study the
non-uniform complexity of HARDI datasets. We labeled
known neuro-anatomical areas by examining the complexity
of the point clouds obtained from a set of Orientational Dis-
tribution Functions. Considering such high-dimensional data
as belonging to a union of manifolds is a natural and powerful
way to understand cerebral white matter connectivity.
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