

AFRL-RI-RS-TR-2008-9
In-House Final Technical Report
January 2008

HYBRID ARCHITECTURES FOR EVOLUTIONARY
COMPUTING ALGORITHMS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-9 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

MICHAEL J. HAYDUK, Chief JAMES A. COLLINS, Deputy Chief
Emerging Computing Technology Branch Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jan 03 – Sep 07
5a. CONTRACT NUMBER

In-House

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

HYBRID ARCHITECTURES FOR EVOLUTIONARY COMPUTING
ALGORITHMS

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
HA

6. AUTHOR(S)

Daniel J. Burns

5f. WORK UNIT NUMBER
EC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/RITC
525 Brooks Rd
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITC
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-9

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-0064

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report documents the results of an in-house project aimed at identifying, developing and evaluating applications of evolutionary
computing methods to hard optimization problem test cases on a single PC computer, a cluster of computers, and hardware FPGA
platforms. We surveyed the evolutionary computing literature and chose to focus on the Genetic Algorithm (GA). We applied the
GA to Non-Linear Coupled Ordinary Differential Equation (ODE) Parameterization, the DNA Code Word Library Problem, and the
Networked Sensor Power Management Policy Problem. The first problem used an ODE biomodel for Antigen-Antibody binding,
and we demonstrated speed-ups on the order of 100-1000x by moving from interpreted languages to compiled C. We parallelized
this C code using the Message Passing Interface (MPI), and demonstrated linear speed-ups on a cluster. A GA solution for the DNA
Code Word Library Problem was also parallelized, and was faster than any algorithm found in the literature. We also developed
hardware accelerated prototypes for the GA for this problem that achieved speed-ups on the order of 1000x. These prototypes used
random and rank based selection, single point crossover mating, a declone operator, systolic arrays for the LLCS and Gibbs energy
metrics, a multi-deme GA, and exhaustive search for producing locally optimum codes.
15. SUBJECT TERMS
Genetic Algorithm, Optimization, Ordinary Differential Equation, parallel, distributed, Field Programmable Gate Array, hardware
acceleration, DNA, Codes, Gibbs energy

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Daniel J. Burns

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

150
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

List of Figures ... ii
List of Tables .. iii

1.0 Introduction ………………………………………………………..…………………. 1
1.1 Project Goals ... 2
1.2 Summary of the Accomplishments of Spiral 1 …………………........................... 2
1.3 Summary of the Accomplishments of Spiral 2 ……………………....................... 5
1.4 Summary of the Early Accomplishments of Spiral 3 ……..……………............... 7

2.0 Technical Approach - Spiral 3 (hybrid software/hardware accelerated platform) …… 11
2.1 General problem and platform considerations for hardware acceleration………... 11
2.2 Software tools for hardware development ……………………………………….. 12
2.3 Hardware Prototype Platforms ………………………………..………………….. 16
2.4 Prototype versions and design features .………………………………………….. 17

2.4.1 Version 1: GA/DNA Codes with exhaustive search ……………………….. 19
2.4.2 Version 2: GA/DNA Codes with multi-deme GA …………......................... 20
2.4.3 Version 3: GA/DNA Codes with thermodynamic constraints ……………... 22
2.4.4 Version 4: GA/DNA Codes with rank based selection and declone ……….. 23

3.0 Results - Spiral 3 (hybrid software/hardware accelerated platform) ………………… 25

3.1 Summary of Major Findings ………..…………..…………………..……………. 25
3.2 Prototype test results ………………… ………………………………………...... 25

3.2.1 Version 1: GA/DNA with exhaustive search ………………………………. 25
3.2.2 Version 2: GA/DNA with multi-deme GA ………………………………… 28
3.2.3 Version 3: GA/DNA with thermodynamic constraints …………………….. 29
3.2.4 Version 4: GA/DNA with rank based selection and declone ………………. 31

4.0 Conclusions and Future Work .. 38

5.0 Acknowledgements ... 41

References …………………………………………………………………....................... 42

Appendices …………………………………………................………….......................... 45

Appendix A. ISLPED 2006 paper. [Reference 17] ……………………………… 45
Appendix B. MAPLD 2005 paper. [Reference 19] ……………………………… 46
Appendix C. GECCO 2006 paper. [Reference 23] ………………………………. 47
Appendix D. MAPLD 2006 paper [Reference 24] ………………………………. 48
Appendix E. SSCI 2007 [Reference 25] …………………………………………. 49
Appendix F. GECCO 2007 [Reference 27] ……………………………………… 50
Appendix G. DNA 2007 [Reference 28] ………………………………………… 51
Appendix H. SIBD 2007 paper. [Reference 32] …………………………………. 52

ii

List of Figures

Figure 1. Speed Test_1 solution time of the target population ………………………... 3
Figure 2. Speed-up curves for distributed GA ODE Parameterizer versions …………. 6
Figure 3. Comparison of GA, Markov and stochastic DNA Code Word Library

Generation methods ………………………………………............................. 7
Figure 4. Upper level functional block diagram of fitness evaluator …......................... 9
Figure 5. Figure 5. State diagram of declone operator (in Xilinx StateCadtool) …….. 14
Figure 6. Partial code fragment of the declone operator, hand coded from state

Diagram …………………………………………………………………….. 15
Figure 7. Test waveforms for the declone process, showing a clone found and

replaced with new random individual (in ModelSim) …………………….. 16
Figure 8. Host/PE communication handshaking startup ………..…………..………… 19
Figure 9. PE flow chart ……………………………………………………………...... 19
Figure 10. Multiple copies of PE and an arbiter on single FPGA chip ………………… 21
Figure 11. DNA Code generation application average performance using various

optimization algorithms …………………………………………………….. 26
Figure 12. Sizes of libraries built with 10 min. of GA followed by exhaustive search … 27
Figure 13. Figure 13. Histogram of number of words added by exhaustive search for

the runs of Figure 12 ………………………………………………………... 27
Figure 14. Performance comparison of prototype version 2, using 1 and 2 PEs ………. 28
Figure 15. Effect of % mutation on performance, prototype version 2 ………………… 28
Figure 16. Performance of version 2 for different population sizes ……………………. 29
Figure 17. Performance of software and hardware version of prototype 3 (Gibbs

energy metric) ………………………………………………………………. 30
Figure 18. Library sizes found by GA and exhaustive search for prototype version 3

using thermodynamic constraints (fixed threshold, multiple range values)…. 31
Figure 19. Performance effect of population size in terms of generations vs. words

found ………………………………………………………………………… 32
Figure 20. Performance effect of population size, version 4, generation vs. # words 33
Figure 21. Population size 32, mating selection pressure varied, version 4 ……………. 34
Figure 22. Population size 256, mating selection pressure varied, version 4 …………. 34
Figure 23. Sort clock cycles, population size 32 ……………………………………….. 35
Figure 24. Selection/mating clock cycles, population size 32 ………………………….. 35
Figure 25. Sort clock cycles, population size 256 ……………………………………… 35
Figure 26. Selection/mating clock cycles, population size 256 ………………………… 35
Figure 27. Edit distance varied, population size 16, # keepers 8, version 4 ……………. 36
Figure 28. Max_match 6 and 8 codes (edit distance 10 and 8), version 4 ……………… 37
Figure 29. Speed-up and resources for the various platforms considered by this project. 39

iii

List of Tables
Table I. Synthesis resource utilization report for Do_CheckerMatrix.vhdl ………. 9
Table II. Hardware platform reconfigurable logic and on-chip memory resources … 16
Table III. Prototype versions and design features …………………………………… 17
Table IV. Command line arguments for GA/DNA FPGA application …………….. 18

1

1.0 Introduction

This final technical report documents the results of work performed under an in-house
project that investigated novel computing architectures that facilitate the application of stochastic
evolutionary computing (EC) algorithms to hard, NP-complete optimization problems. This
project was undertaken at a time when an increasing number of researchers were successfully
applying such methods in a number of diverse problem domains.

While we focus here mainly on the results of the last phase of the project, spiral 3

(hybrid software/hardware acceleration), for completeness, in this section we briefly summarize
the project goals, main tasks, and results of spiral 1 (workstation software), spiral 2 (distributed
software on workstation cluster), and the early work during spiral 3 (hybrid software/hardware
acceleration). Further detail on the earlier work may be found in a previously written in-house
interim technical report that is available through the Defense Technical Information Center [1].
Then in Section 2 we describe the main work of spiral 3, i.e. progress on building and testing
single chip prototypes that were hardware accelerated versions of a particular genetic algorithm
(GA) along with an optimization problem application. Section 3 discusses the results of testing
done with various prototype versions, and Section 4 concludes and discusses some suggestions
for spin-offs and future work. Section 5 acknowledges those who contributed to this work, and
Reference and Appendices of papers published and presented during this project follow.
Throughout this technical report, we have made an effort to write about the work and its
significance to inform readers with a variety of technical familiarity.

Spiral 3 investigated the hypothesis that simple EC methods like the genetic algorithm

(GA) might offer advantages in terms of achieving extreme speed-ups by implementation in
hardware. This typically would not be obvious or appreciated by problem domain experts
working only on software solutions. We know that hardware implementations are often highly
parallelized, and many EC algorithms are ‘embarrassingly parallel’ to begin with, meaning that
many sets of repetitious calculations involving the fitness function may have to be performed
over and over again for a large number of individuals in a population. If the calculation in the
problem fitness function (and GA operators) involve simple mathematics (e.g. Boolean and
integer operations), and if they can be pipelined in a fast data path, hardware acceleration may
yield significant speed-ups (i.e. >50X). The results of spiral 3 have clearly shown this to be the
case for a very difficult DNA Code generation problem that is of current interest to us, by
demonstrating extreme speed-ups of up to 1,000X in prototype single chip Field Programmable
Gate Array (FPGA) designs that solve this problem for the first time in an all hardware approach.

 This project was carried out in the Advanced Computing Division of the Information

Directorate (RI) of the Air Force Research Laboratory (AFRL) at the Rome Research Site,
Rome, NY, with limited support of the principal investigator’s time by Defense Advance
Research Project Agency (DARPA) project management funds, and also with contributions by
summer faculty and students.

2

1.1 Project Goals

 One goal of this project was to determine whether EC algorithms offer any advantages

over more classical methods, especially in the context of parallel and hybrid (or heterogeneous)
hardware/software implementations that are aimed at achieving extreme solution time speed-ups
and problem size scaling. In general, this project investigated ideas aimed at making progress in
the area of improved solution engines for NP-hard optimization problems that are relevant to a
number of RI mission area applications.

Another goal was to synergize with other ongoing in-house and summer faculty research

topics, as well as Air Force Office of Scientific Research (AFOSR) and DARPA programs
managed by RI, and to identify target problems in ongoing programs that might benefit from the
development of new optimization tools for solving hard computational problems. We
accomplished this goal by working on problems drawn from these programs, in particular, work
during the third spiral that focused on a difficult test case problem called the DNA Code Library
Generation problem. This problem is directly related to technical areas of interest to RI that
relate to computing with bio-molecules, and nano-scaffold self-assembly for bio- and nano-
electronics, and it has been the subject of recent AFOSR sponsored efforts proposed and
managed by RI. We also did involve at least 3 summer faculty and 2 summer students during
the course of this project.

Finally, throughout the entire project, two other goals were to raise the level of awareness

of workers at RI about present day research and applications of evolutionary computing methods,
and to mine the RI mission areas for additional candidate problems that could potentially benefit
from this knowledge and the results of this effort.

1.2 Summary of the Accomplishments of Spiral 1 (software on workstation)

During Spiral 1 we surveyed the evolutionary computing literature, attended several
relevant conferences (e.g. the Genetic and Evolutionary Computing Conference), and we
sponsored a few on-site lectures by representative experts in EC. These activities helped us to
identify the genetic algorithm as perhaps the most general purpose and widely used EC
algorithm, and we decided to use the GA as a test case algorithm to carry through all 3 spirals of
this effort. During spiral 1 we developed a number of software prototype optimization tools that
used the GA, in 3 popular programming environments (Labview, MatLab, and compiled C), and
we evaluated their performance relative to alternative approaches when they were applied to a
limited number of test case problems that were of interest to us. The first test case problem was
parameterizing a particular bio-model that consisted of a set of Non-Linear, coupled Ordinary
Differential Equations (ODEs). This problem was of wide interest to workers in certain
biologically oriented DARPA programs AFRL Advanced Computer Architectures Branch
(RITC) managed at the time. The bio-model described antigen-antibody binding at surfaces, and
was supplied by a principal investigator (PI) in the DARPA Simulation of Biological Systems
(SIMBIOSYS) program [2]. The basic problem involved fitting model parameters so the model
would properly predict experimental data. Previous approaches by the PI involved MatLab
optimization methods that did not converge, and it was necessary to reformulate a simplified,
linear version of the model, and to use a step-by-step estimation procedure to obtain workable

3

estimates for the several parameters. This was slow, and we found that a simple GA could quite
easily fit multiple parameters, even when working directly with unreduced non-linear models,
and for sparse and noisy experimental data. The following list summarizes the activity of Spiral
1.
Spiral 1: (PC platform - complete)

• Translated Labview version GA optimization tool and Ag/Ab binding bio-model to C
• Obtained MatLab based Genetic Algorithm Optimization Toolbox from North Carolina

State University, integrated MatLab bio-models from Purdue University SIMBIOSYS
PI and also with C version bio-model derived from Labview version.

• Ported Purdue MatLab bio-model to C, integrated with C version.
• Evaluated the speed, accuracy, convergence, and scaling performances of the Labview,

MatLab, and C versions of GA ODE Parameterization tool
• Evaluated Virginia Tech GEPASI bio-model simulation and fitting tool
• Developed Java Open Agent Architecture (OAA) wrapped compiled C version for

contribution as BioSpice agent under the DARPA BIOCOMP program
• Developed web browser interface version for use by remote, non-programmer users
• Established Evolutionary Computing Interest Group at RI and hosted 7 speakers.

Figure 1 shows an example of the speed-up results obtained by simply porting the GA

bio-model fitter from the initial Labview and MatLab versions to compiled C versions. Note that
the y axis of the chart shows the time required to run 100 generations of the GA fitter, for various
GA population sizes. The final, fastest compiled C versions (lowest curves) used a hand-coded
GA, bio-model, and ODE solver (rather than packaged GA and ODE libraries), and they
achieved speed-ups of 100x - 1000x over the earlier versions (upper curves). The PI’s original
non-automated, reduced order model fitting method was not scripted, and was so slow that it
would not appear in the chart of Figure 1. An important point to make here is that good solutions
to this problem took hours using previous non-GA methods, about 5 hours using the early GA
versions, but only about 20 seconds in the final versions.

Figure 1. Speed Test_1, solution time of the target population.

4

We suspect that in general there is a tendency on the part of problem domain experts to
disregard non-familiar approaches if they are used to working with particular tools in a particular
computing environment. This result demonstrated that game changing performance can be had
really quite easily, by simply hand-coding the problem, and using a more capable optimization
algorithm. Throughout this project we pressed this point to this PI and others in the SIMBIOSYS
program, both during PI meetings, during site visits, and even more widely to PIs in the later
DARPA BIOCOMP program. Eventually we did in fact see the BIOCOMP program develop
sophisticated, work-flow based bio-model parameterization and bifurcation fitting tools that used
both GA and parallel direct search methods to fit large non-linear models [3]. Also, our in-house
evaluation of fitting methods available in the GEPASI bio-model tool [4] showed for our bio-
model, GEPASI’s “evolutionary” and “random” fitting methods were the only ones that did
converge [1, p. 19]. The other optimization methods (Hook and Jeeves, Levenberg-Marquardt,
Levenberg-Marquardt multistart, Nelder and Mead simplex, and Simulated Annealing) did not
converge. Further, the GA method was very much quicker than the “random” method, as would
be expected. This point provides relatively independent confirmation of our own conclusion that
a GA based fitter can be effective and efficient for parameterizing full, non-linear bio-models.

It was also interesting to do a quick literature search on this problem at the end of this
project. A Google search on “direct search genetic algorithm”, “genetic algorithm ODE” and the
like produced a number of references, in addition to our own. For example, a good discussion
of the importance and difficulty of the nonlinear ODE fitting problem can be found in [5,6,7],
which also describe and illustrate the use of iterative, direct search methods for non-linear
models. Two possible objections to these methods that may limit scaling and speed are that
some require the calculation of gradients (which are computationally expensive), and while some
do not, they may require large amounts of memory to keep track of promising remaining areas in
the search space that need to be explored (which may grow exponentially). Finally, at least two
references [8,9] also specifically compare the performance of the GA with direct search and
classical methods, and both conclude that a well tuned GA is as good or better than well tuned
other methods. To some degree this would be expected, since the ‘No Free Lunch’ theorem of
Wolpert and Macready [10] holds that on a particular problem, different search algorithms may
obtain different results, but over all problems, they are indistinguishable. That is not to say,
however, that for certain problems, or for certain tunings of its search parameters, one algorithm
cannot outperform another algorithm. Indeed, that often seems to be the claim of many studies
involving evolutionary methods. Even so, closer inspection often reveals that it may only be
necessary to change the algorithm parameters or the problem to reverse the conclusion (or to
have the GA perform even better)! In the end, there are some characteristics that may doom an
algorithm or a problem’s prospects for speed-up by parallelization or hardware implementation,
including complex and floating point mathematical content, large local memory requirements,
and anything that causes large communication bandwidths between nodes or processes.

In summary, in spiral 1 we found that a GA based optimizer could solve the Non-Linear

ODE Parameterization problem for our test case problem, and that it was superior to common
methods currently being used by some DARPA program PI’s because it worked on full,
unreduced, non-linear models, and can easily deal with sparse and noisy data of the sort provided
by real world experiments, and in our case it operated much faster as well. We also developed
two versions of the tool with enhanced user interfaces. One is a BioSpice agent version, and one

5

is a web browser interface version. The work in this spiral was presented to the 2003 Scientific
Advisory Board during their visit to RI, in the Advanced Computer Architecture focus area
poster session. It was also discussed with relevant DARPA SIMBIOSYS and BIOCOMP
program PI’s at various PI meetings, and it was reported at an evolutionary computing
conference [11].
1.3 Summary of the Accomplishments of Spiral 2 (distributed software on workstation cluster)

During the second spiral we started by basically parallelizing the C code version of the
GA based bio-model parameterization tool, by adding Message Passing Interface (MPI)
communication to implement a distributed GA that ran on a cluster of workstation computers.
We evaluated both a Farming Model GA, in which there is one population, and fitness function
evaluations are farmed out to a number of processors, and an Island Model GA, in which
separate populations are evolved on a number of processors, with periodical migration of a few
good individuals around a ring of processors. The Island Model GA worked very well, and
achieved approximately the expected linear speed-up. We also applied it to two additional
optimization problems of interest to workers in RI, the Networked Sensor Power Management
Policy Problem, and the DNA Code Word Library Generation Problem. In these studies, we also
evaluated our tool’s performance relative to the best non-GA methods found in the literature.
The following list summarizes the activity of Spiral 2.

Spiral 2: (Cluster platform - complete)

• Developed Distributed Farming and Island Model GA applications to Non-Linear ODE
parameterization (C/MPI), evaluated performance scaling vs. # processor nodes.

• Developed 2nd application of Distributed GA to DNA Code Word Library Generation
problem and demonstrated linear speed-up performance scaling vs. # processors nodes.

• Developed 3rd application of GA to Networked Sensor Power Management Problem
• Visited the Air Force Institute of Technology (AFIT), Wright State University, Virginia

Tech. to discuss collaborations.
• Attended the Genetic and Evolutionary Computing Conference (GECCO) and Military

Applications of Programmable Logic Devices (MAPLD) Conferences and presented
spiral 2 results.

The main results of this spiral for the ODE Parameterizer problem are shown in Figure 2.

The ideal and measured speed-up curves are shown for solving the problem using different
numbers of processors in the cluster. Again, the Island model GA was designed to evolve
separate populations at each processing node, and to pass a few good individuals around the ring
of processors after epochs of a few generations. While the speed-up curve for the Island Model
GA (middle curve in Figure 2) is not perfect (top Ideal Linear Speed-up curve), it is much better
than the Farming Model GA (lower curve), and there is no drastic slow down plateau apparent
up to about 29 processors.

6

Figure 2. Speed-up curves for distributed GA ODE Parameterizer versions.

Surprisingly, on-line searches for “ODE parameterization distributed GA” and the like
turn up only our own work. Farming model distributed GA’s are available in the literature, but
not a lot of work on distributed GA’s similar to our own. This leads us to believe that it may be
rather unique, and we are fairly certain that it is a novel and unique approach for solving the
DNA code problem, which we describe next.

During this spiral we developed both a single PC version and a distributed Island Model

version of a second application of a GA optimizer to the DNA Code Word Library Generation
Problem, which is of current interest to workers in RITC and elsewhere. This problem involves
composing highly constrained sets of Watson-Crick pairs of short DNA oligo-nucleotide strands,
e.g. about 16 base pairs long. The pairs in the set each consist of two strands that are perfect
complements that bind, or cross-hybridize well to each other, but poorly to their own reverse
complements (RCs) and any strand in any of the other pairs in the library. This is a hard problem
that is known to be NP-complete, and at least 4 University groups are actively working on it
because there are important applications of such DNA Codes to the design of bio-assay micro-
array chips, self-assembly of nano-structures, and schemes for data storage and computation
using bio-molecules. Random search and exhaustive search have proven ineffective for building
large libraries, and current techniques use stochastic and heuristic methods.

Our approach to this problem starts building a library by finding one pair using random
search. It then breeds additional words using a GA guided by a multi-objective fitness function
that measures the string edit distance (calculated by the Levenshtein Martix) and that also counts
the number of pairs presently in the library that reject a given candidate pair. The GA uses an
efficient mutation heuristic that chooses a base pair to mutate at random, checks the fitness of
words with all possible single base changes at that position, and uses the mutation that improves
fitness the most. The populations may also be decloned periodically to help widen the search.

Figure 3 shows the results of using a distributed GA solver for this problem, as well as

comparison to results obtained for two non-GA algorithms found in the literature (Markov and
Stochastic). The curves show the average time required to discover words, for multiple runs of
the algorithm (lower is better). The upper curve (Stochastic) is similar to our GA, but it starts
with a random library of DNA words that do not satisfy the required non-cross hybridizing
constraints, and tries to improve them by mutations. Our GA starts with an empty library, breeds

7

better word candidates, and adds good words to the library only as they are found. Thus, the
Stochastic method must do many more constraint evaluations from the beginning, and is slow
compared to GA

The lower curves in Figure 3 compare the performances of Markov and GA, for the case

of 1 and 16 processors used in the cluster. In both cases GA actually finds words faster up to the
time at which words become very difficult to find, at which point both algorithms turn up and
have difficulty finding the last few words. We also note that algorithm parameter tuning does
effect these results, and that to date Markov has actually found slightly larger libraries than GA,
but GA consistently finds a large portion of the total number of words that can be found faster.

DNA Library Synthesis Algorithm Performance Comparison
16/10, RC LLCS codes, avg of multiple runs, 1 and 16 proc.

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1 10 100 1000
words found

tim
e

(s
ec

)

GA 1p 30r GA 16p 30r
Mkv 1p 15r Mkv 16p 15r
stoch 1p 1r

Figure 3. Comparison of Markov, GA, and stochastic DNA Code Word Library
Generation methods.

In summary, during spiral 2, a distributed Island Model GA optimization solver was

developed and successfully applied to three problems: Non-Linear ODE Parameterization; DNA
Code Word Library Generation; and Sensor Network Energy Management. This distributed GA
version exhibited good speed-up scaling vs. number of processors on a 30 node cluster. The GA
based DNA Code Word solver exhibited performance that we believe rivals the best known
algorithms in the world for this problem. The work done on the GA/DNA Codes application
during this spiral was reported at a conference on nano-self assembly [12], and at a conference
on evolutionary algorithms [13-15]. The work on evolutionary optimization of sensor network
power management was reported at a conference on evolutionary computing [16], and at a
conference on low power electronics [17].

1.4 Summary of the Early Accomplishments of Spiral 3 (hybrid software/hardware acceleration)

During the first part of spiral 3 we began developing a hardware accelerated version of a

GA optimizer and the DNA Code Word Problem. We chose to go forward into this spiral with
the DNA Code Word Library Generation problem because it is an integer problem. First we
spent some time investigating Higher Order Language (HOL) tools for translating C to Very
High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), our preferred

8

language for designing hardware logic. We worked with one supplier’s tool (Impulse C) almost
to the point of success, i.e. we were able to design and simulate an array calculator for the
Length of the Longest Common Subsequence (LLCS) that implemented the heart of the fitness
function calculation. However, we were not able to produce a VHDL version of the entire C
application that included the GA, DNA Library Generator, and LLCS calculator automatically
from the tool.

We then hand crafted a ripple through version of the LLCS systolic array that synthesized

with an expected clock frequency of 10MHz, which represents a speed-up of 100x over the
software C version. We also designed a 2D pipelined systolic array version that synthesized with
an expected 80MHz clock frequency (close to the targeted 1000x speed-up). We also
determined that the LLCS calculator array took less than 20% of the target FPGA chip resources,
which suggested that there were excellent prospects for fitting the entire GA/DNA Code
application into one FPGA chip. The following list summarizes the work in the early part of
spiral 3.

Early part of Spiral 3 (hybrid software/hardware acceleration)

• Identified, purchased and installed VHDL software development tools, reconfigurable logic
hardware platforms, and FPGA synthesis tools

• Collaborated with Impulse, Inc. evaluating Co_Developer C to VHDL translator tool
• Preliminary design completed for GA optimization algorithm FPGA core written in VHDL for

hardware implementation aimed at extreme speed-up.
• Final design in VHDL of a Levenshtein Matrix systolic array calculator for hardware

acceleration of the fitness function evaluation for the DNA Code Generation Problem.

An example of the main results of the early part of spiral 3 are shown in Figure 4 and

Table I. Figure 4 shows a high level functional block diagram of the first version of an overall
application prototype. The design included a test bench to simulate the host PC while initializing
and controlling the application, a number of on-chip SelectBlock memories (BRAMs) to hold the
GA population, the fitness values, and the DNA Library words. It also shows an entity called
MemBlock.vhd for sequencing the fitness evaluation of each population individual against all
words in the library, and for storing the results. Finally, it contains an entity called Spit_Me for
streaming a set of operands into the 2D LLCS systolic array pipeline calculator called
Do_CheckerMatrix. The design of Figure 4 was simulated and shown to operate correctly, and
was synthesized successfully.

9

Figure 4. Upper level functional block diagram of fitness evaluator.

 Table I shows the synthesis run report for the Do_CheckerMatrix.vhdl LLCS systolic
array, for the case of 512 population size and 16 mer (32 bit) DNA word libraries. It is clear that
much larger populations and libraries could be used, since only 3 of the 144 SelectBlock RAMS
were used for this case. Since our target FPGA platform had on the order of 35,000 Logic Units
(LUTs), it appeared that systolic array would use about 20% of its resources, with about 80%
available for the GA and DNA Code Word Library application, which was very encouraging.
This also indicated that it might even be possible to support multiple fitness evaluators and even
multiple GA populations on one FPGA.

Table I. Synthesis resource utilization report for Do_CheckerMatrix.vhdl

Number of Slices: 4283
Number of Slice Flip Flops: 2544
Number of 4 input LUTs: 7532
Number of bonded IOBs: 98
Number of BRAMs: 3
Minimum clock period: 12.37ns (80.8MHz)

At this point, much of the GA and DNA Code building parts of the main program were

still blocks of sequential behavioral VHDL, rather than parallel clocked processes that would
synthesize and operate in an efficient manner. In fact, although they simulated correctly, they
did not synthesize, which highlights a shortcoming of today’s synthesis tools. (We think they
should be able to synthesize such blocks of correct behavioral code). The next steps were to re-
write these parts of the application as clocked parallel processes, and to integrate the entire GA

10

core, DNA Code application, and LLCS fitness function evaluator into one FPGA and test it. In
the next section we review progress on those tasks and follow-on work that demonstrated several
versions with various improvements and experimental features.

Finally, papers describing the early work in spiral 3 were give at an AFRL conference on

algorithms [18], and a conference on reconfigurable logic applications [19].

11

2.0 Technical Approach - spiral 3 (hybrid software/hardware accelerated
platform)

In this section we briefly comment on the suitability of the DNA problem for use as a test
case problem in this spiral, and we mention some architectural alternatives and their limitations
imposed by the platforms we had available for this work. We also briefly discuss the software
design tools and hardware platforms used during this project. Then we describe the main design
features of each of a series of single chip FPGA prototypes that we actually implemented and
tested. These are all the first known examples of hardware accelerated versions of the LLCS
fitness metric in a 2D systolic array, and the overall GA/DNA Code application problem. The
main accomplishments of spiral 3 are given in the following list, and details are provided in the
sub-sections that follow. Test results obtained with these prototypes are given in Section 3.

Spiral 3 (hybrid hardware/software accelerated platforms)

• Designed hardware FPGA cores for operators of general purpose and multi-deme GAs
• Designed the first known hardware DNA Code Library generation application
• Designed the first known hardware systolic array calculators for DNA code word

hybridization metrics, including the Length of the Longest Common Sub-string (LLCS)
and the stacked pair nearest neighbor model Gibbs Free Energy of Binding

• Designed and tested a series of 4 prototype FPGAs that integrated various combinations
of hardware genetic algorithm and metric calculators with the hardware DNA Code
Library building application, as well as exhaustive search versions for extending codes

• Published several papers and made several presentations at Conferences that spanned a
wide range of topics, including reconfigurable logic, evolutionary computing, DNA
computing, computational intelligence for bioinformatics, and bio-threat detection.

2.1 General problem and platform considerations for hardware acceleration

The DNA Code problem is a particularly good candidate for acceleration in hardware

because it involves simple 32 bit integer and Boolean math throughout. While this is true of a
number of other problem types as well, it is not generally true of all problem types. So, the
hardware GA and its operators are most applicable to other problems that are compatible with
hardware acceleration, with appropriate modifications to the genotype (the variables representing
solutions to a problem), and fitness function (the model of the problem and constraints that are
evaluated to measure how well each individual in the population solves the problem). Floating
point calculations are generally thought of as a factor that limits prospects for hardware
acceleration. Although both single and floating point FPGA cores are available, they do take up
resources, and cost time if conversions must be done from integer to floating point and back in a
data path. However, many floating point problems can be approximated well enough using fixed
point methods that use integers to represent and calculate on discrete floating point values over a
limited range.

Speeding up the DNA Code problem would be very valuable because solving it actually

requires solving a series of NP-complete problems, each with increasingly difficult constraints
on cross hybridization that accumulate as words enter the library. We started this speed-up effort
by first profiling the execution time of the overall application and its subroutines, and we found

12

that over 98% of the solution time was spent evaluating the LLCS cross hybridization metric in
the fitness function. At first we targeted that calculation for efficient hardware implementation,
but it became obvious that even if we could reduce the LLCS calculation time to nearly 0, the
execution time of the speed of the overall application would then be dominated by the GA
control loop and its operators. Clearly, we would have to implement the GA and its operators in
hardware as well. Various other hybrid implementations are possible, e.g. GA in software on the
host (or an embedded) PC with LLCS metric in hardware, and these might actually have been
easier to design and implement. However, extreme acceleration can best be achieved by a 100%
hardware solution. The main reason for this is that communication between the host PC and the
FPGA hardware processing element (PE) takes place across the host system internal data bus.
The workstations used for this project used the PCI protocol (32 bits at 33MHz), the PCI-X
protocol (64 bits at up to 133MHz), or the PCMCIA/PCI protocol (32 bits at 48 MHz) to
communicate with the FPGA cards. Also, other uses of the system bus by the host operating
system may introduce delays and bus latencies that are significant. A 100% hardware solution
minimizes Host to PE communication and results in better speed.

Finally, at this writing, multi-core processors and the Cell Broadband EngineTM have only

just recently appeared, and they were not evaluated as execution platforms during this project. It
would appear that both would be good candidates for implementing highly parallelizable EC
algorithms, although they both lack a reconfigurable logic capability that might better support the
2D systolic array used in our approach.

2.2 Software tools for hardware development

In general, the process of rewriting the C application in VHDL started with the C code

version from spiral 2. We stripped out the MPI calls that implemented a distributed GA, and re-
coded it in behavioral VHDL, i.e. in blocks of sequential, or behavioral VHDL code that closely
mirrored the program flow of the C version. A number of separate parallel processes were then
pulled out of the main program code to implement portions of the application in clocked VHDL
code (e.g. mutation, mating, decloning, etc). Following this, the main control program was
recoded as a clocked VHDL process. Finally, a C host program was written to interface with the
user to allow specification of problem and GA variables, initialize the PE, monitoring progress
during runs, and receiving a final reporting of results at the end of a run or series of runs. In
general, there was significant communication between the host and PE at the beginning and end
of runs, but very little communication during runs.

We used the Mentor Graphics ModelSim XE III tool [20] for code development and

simulation. This tool enables one to observe the operation of the code in terms of signals and
data values that flow through the control and data paths. This can be done in two ways, by
inserting statements that cause messages and results to print in a monitor window during
simulation, and by setting up and observing various sets of signal waveforms vs. time as the
simulation executes.

At various times parts of the code, and later the entire application, were synthesized using

either the Synplicity Synplify tool [21]. We also used the Xilinx Integrated Software

13

Environment (ISE) Version 8.1 set of tools [22] to synthesize parts of the application and check
the expected execution speed and the required amount of resources.

 In general, we used two versions of the tools during this project: free versions of all

three tools that were hosted on a desktop workstation (that are available for download on the web
for evaluation); and an expensive fuller versions that were hosted on one of our internal servers
(Gonzo). Summer faculty workers who contributed to this project also used academic versions
of all three of these tools, both at AFRL and at their University. The free version of ModelSim
was crippled, which means that it executed very slowly when the number of lines of code
exceeded a certain limit (e.g. 5,000 lines). This made it impossible to simulate multiple, long
runs of the entire GA/DNA Code application, e.g. to determine the average number of words that
can be found by a run. It was impractical to simulate runs longer than a few hundred
milliseconds of simulated FPGA execution time, because that took many minutes. This meant
that the only practical way to test the application was after synthesis in hardware. For example,
we later typically used hardware GA run times of about 5-10 minutes, and hardware exhaustive
searches that took about 2 hours, which would be impossible to simulate in ModelSim. We did
not use a hardware in the loop debugger in this work. This was somewhat troublesome because
we did experience bugs at times that simulated OK in ModelSim, but did not operate properly in
when synthesized and tested on the FPGA.

Another useful design tool that we used both on paper and in the Xilinx ISE tool set was

a simple graphical state diagram editor (StateCAD). Experienced VHDL designers may just sit
down and write code, but for complex designs with many parallel interacting processes it is often
helpful to make state diagrams of each process. These diagrams resemble flow charts that C
programmers may be familiar with, but instead of sequences of calculations, they specify the
inputs, state machine transitions, and outputs of each process in a graphical manner. The
designer can then manually code VHDL from the diagram, or have the tool automatically
generate VHDL in some cases. For illustration purposes, Figures 5-7 show examples of a state
diagram, VHDL code derived from it, and a waveform debugging display, respectively, for the
declone operator coded for this project.

14

Figure 5. State diagram of declone operator (in Xilinx StateCad tool).

15

declone_pop: PROCESS (global_reset, M_Clk)
BEGIN
 IF rising_edge (M_Clk) THEN
 IF (global_reset = '1') THEN -- OR terminate = '1') THEN
 declone_start <= '0';
 found_bad_one <= '0';
 F1_Addr_A_declone <= All_0s_9b;
 L1_Addr_A_declone <= All_0s_9b;
 F1_Data_In_A_declone <= All_0s_32b;
 P1_Data_In_A_declone <= All_0s_32b;
 F1_Write_A_declone <= '0';
 P1_Write_A_declone <= '0';
 PopWord_s <= All_0s_32b;
 RCPopWord_s <= All_0s_32b;
 Declone_sm <= IDLE_DECLONE;

 ELSE
 CASE Declone_sm IS

 WHEN IDLE_DECLONE =>
 IF (GA_Mode /= Mode_Declone) THEN
 Declone_sm <= IDLE_DECLONE;
 ELSE
 Declone_sm <= INIT_DECLONE;
 END IF;

 WHEN INIT_DECLONE =>
 declone_start <= '1';
 found_bad_one <= '0';
 --P1_Addr_A_declone <= All_0s_9b; -- elsewhere
 --F1_Addr_A_declone <= All_0s_9b; -- elsewhere
 L1_Addr_A_declone <= All_0s_9b;
 Declone_sm <= WHILE_1;

 WHEN WHILE_1 =>
 -- bail if the Lib Addr is past last word.
 -- here we have not delayed a clk after addr 0 was set
 -- before entering, so no check is done if Addr=0.
 -- DO lags Addr by a clock, this is what is checked
 -- for NumGoodWords=3 (lib words in Addrs 0,1,2)
 -- Addr DO
 -- 0 x (no check)
 -- 1 0
 -- 2 1
 -- 3 2
 -- 4 bails (no check)
 IF (L1_Addr_A_declone > NumGoodWords_s) THEN
 found_bad_one <= '0';
 L1_Addr_A_declone <= All_0s_9b;
 Declone_sm <= DONE_1;

 -- bail if the Pop Addr is past last word
 ELSE
 IF (P1_Addr_A_declone > NumPop_s) THEN
 found_bad_one <= '0';
 --P1_Addr_A_declone <= All_0s_9b; -- elsewhere
 --F1_Addr_A_declone <= All_0s_9b; -- elsewhere
 declone_start <= '0';
 Declone_sm <= IDLE_DECLONE;
 ELSE
 -- check if Pop or RCPop word is already in Lib
 IF ((L1_Addr_A_declone /= All_0s_9b) AND
 ((P1_DO_A = L1_DO_A) OR

 (((All_1s_32b) XOR
(reverse_any_bus(P1_DO_A))) = L1_DO_A)
)
) THEN
 -- yes - set flag and bail L1 addr loop
 found_bad_one <= '1';
 L1_Addr_A_declone <= All_0s_9b;
 Declone_sm <= DONE_2;
 ELSE
 -- no - check against next lib word
 found_bad_one <= '0';
 L1_Addr_A_declone <= L1_Addr_A_declone +
One_1_9b;
 Declone_sm <= WHILE_1;
 END IF;
 END IF;
 END IF;

 WHEN DONE_1 =>
 … (code removed for report)

 WHEN WHILE_2 =>
 … (code removed for report)

 WHEN DONE_2 =>
 … (code removed for report)

 WHEN DONE_3 =>
 … (code removed for report)

 WHEN OTHERS =>
 declone_start <= '0';
 Declone_sm <= IDLE_DECLONE;

 END CASE;

 END IF; -- if global reset
 END IF; -- if M_Clk
END PROCESS;

P1_Addr_B_declone_process: process (global_reset,M_Clk)
begin
 IF rising_edge (M_Clk) THEN
 IF (global_reset = '1') THEN -- OR terminate = '1') THEN
 P1_Addr_A_declone <= All_0s_9b;
 F1_Addr_A_declone <= All_0s_9b;
 ELSE
 IF (Declone_sm = INIT_DECLONE) THEN
 P1_Addr_A_declone <= All_0s_9b;
 F1_Addr_A_declone <= All_0s_9b;
 END IF;

 IF ((Declone_sm = WHILE_1) AND
 (P1_Addr_A_declone > Numpop_s)
) THEN
 P1_Addr_A_declone <= All_0s_9b;
 F1_Addr_A_declone <= All_0s_9b;
 END IF;

 … (code removed for report)

 END IF; -- for reset
 END IF; -- for clock
END PROCESS;

Figure 6. Partial code fragment of the declone operator, hand coded from state diagram.

16

Figure 7. Test waveforms for the declone process, showing a clone found and replaced

with new random individual (in ModelSim).

We note here that waveforms of the type shown in Figure 7 must be inspected for a

variety of conditions in order to prove that the code operates correctly in each state with different
inputs. These displays can also be used to count clock cycles and construct execution time
models that can predict the time required to execute the operators with various GA parameter
values, e.g. population size, library size, etc. Another alternative for building such models is to
instrument the code with timers, or clock cycle counters, that can report back to the host program
how much time is spent in each process, say over a call or a generation. Such a version is
actually under development, and is mentioned again in Section 5 under future work.

Finally, we also note that the ISE tools could be used to check speed and resources for

only portions of the design, but not the entire project, at least when targeting the WildCard and
WildStar boards. This was because the vendor (Annapolis Microsystems) only provides libraries
that support synthesis with the Synplify tool. The amount of work needed to modify the libraries
to support the ISE tool would have been prohibitive, so we just used Synplify for synthesis.

2.3 Hardware Prototype Platforms

Four hardware platforms were used at various times by different people during this

project, as shown in Table II. The WildCard and WildStar platforms were mainly used at RITC,
while both of those and the XUP V2P platform were used by summer faculty and students.

Table II. Hardware prototype platform reconfigurable logic and on-chip memory resources.

FPGA board Xilinx FPGA Logic
Cells

BRAMS
(Kbits)

Embedded
PPCs

Cost Bus

XUP V2P XC2VP30 30,816 2,448 2 $1.6K various
(standalone

w/ cable to PC)
WildCard2 XC2V3000-4 28,672 1,728 0 $3.5K PCMCIA

(notebook)
WildCard4 XC4VSX35-10 34,560 3,456 0 $1.8K PCMCIA

(notebook)
WildStar XC2VP70 74,448 5,904 2 $16K PCI-X

(workstation)

17

In terms of technology generation and potential speed, the oldest, and slowest chip is the
XC2V Virtex 2 family device on the WildCard2, followed by the XC2VP Virtex-2 Pro chips on
the XUP V2P and WildStar boards, and finally the relatively newer and faster XC4VSX Virtex 4
family device on the WildCard4. In general, we were able to obtain higher clock frequency
estimates and actual post-synthesis actual clock speeds for the boards that used the later
generation chips. It should be noted, however, that our clock speed result depended on a number
of factors, such as subtle differences in the design versions we implemented from time to time on
the different platforms, the stochastic nature of the synthesis tools, and the amount of effort
requested of the synthesis tools by the operator at synthesis time. Generally we used similar
project setup files and tried to keep these variables constant.

2.4 Prototype versions and design features

Table III shows information about each of a series of 4 versions of prototype designs that
we implemented and tested during spiral 3. The first column indicates the version number and
application name, the fitness metric, and major new features of the version. The remaining
columns show how many copies of the PEs and the metric calculator were used in the versions,
the types of GA operators, the hardware platform(s), and conferences where the designs were
described and references.

Table III. Prototype version and design features.

(version) application name,
fitness metric,
new features

PEs/fitness
evaluators

selection/
mating

mutation

Hardware
platform(s)

Publication [reference]
(or in writing)

(1) GA/DNA Codes,
 RC LLCS metric,
 exhaustive search (ES)

1/1 GA
1/2 ES

n/a best of
48

XUP V2P
WildCard-II
WildStar-II

GECCO 2006 [23]
MAPLD 2006 [24]

(2) GA/DNA Codes,
 RC LLCS metric,
 multi-deme GA

2-5/1 GA
1/2 ES

random/
single
point

best of
48

XUP V2P
WildCard-II
WildStar-II

CIBCB 2007 [25]
(IEEE J. Computational
Intelligence) [26]
GECCO 2007 [27]

(3) GA/DNA Codes,
 RC Gibbs metric,
 thermodynamic

constraints

1/1 GA n/a best of
48 or
new
random

WildStar-II DNA 2007 [28]
(Springer LNCS) [29]

(4) GA/DNA Codes,
 RC LLCS Codes,
 rank base selection and

declone

1/1 GA
1/2 ES

rank
based/
single
point cross

best of
48 or
new
random

WildCard-II
WildStar-II
WildCard4

(GECCO 2008?) [30]

These versions shared many basic design features. For example, they each consisted of a

C host program, and a PE image that was synthesized from a collection of VHDL process files.
In general, the operator used them by invoking the compiled host program in a DOS window on
the host PC workstation (or notebook). A number of command line arguments could be
specified at run time for both the GA and DNA Code building parts of the application, as shown
in Table IV.

18

Table IV. Command line arguments for GA/DNA FPGA application.

option <type> description (range) default
-a <int> set # bases in code words (must be 16) 16
-d <int> set device \"slot\" number 0
-e <int> set exhaustive population checking flag (0/1) 0
-f <int> set PE clock frequency (MHz) (10-300) 100
-g <int> set max_gens (1-4,000,000) 10,000
-h show this help
-i <int> set initial population size (10-511) 16
-k <int> set # keepers (10-511) 16
-l <int> set initialization type (0/1/2 easy/random/passed in) 1
-m <int> set max_match (2-16) 10
-r <int> set running population size (10-511) 16
-s <int> set random_number_seed (0-max int) 1
-t <int> set maximum run time (sec) (1-10,000) 60
-v sets verbose mode to show progress messages
-w <int> set # code words to generate (20-300) 100
-x <int> set mutation type (0) 0
-z <float> set percent mutations (0-100) 1.0

The host program started by initializing its own data arrays in memory, downloading the

PE image file to the PE (that defined its function). Then it interpreted the command line
arguments and set up a block of integer parameters, passed them to the PE, and verified that the
PE had received the parameters. Then it entered a main loop and received words back from the
PE as they were found. At first, communication between host and PE was done on the
Annapolis boards using example programs supplied by the vendor, but later a new interface was
written that provided for double sampling across the clock boundary between the interface bus
and PE bus, which ran at different frequencies. This approach seemed to cure what appeared to
be intermittent communication noise. We used a handshaking protocol to keep the host and PE in
synch during communication events between host and PE. An example of part of the
communication flow at startup is shown in Figure 8. The PE reported words back to the host as
they were found. The host kept track of elapsed run time, time stamped the words as they were
found, and stored them in memory and in disk files for later analysis. The host program also
controlled running a sequence of tests, and produced curves of words found vs. time for each run
and averaged over multiple runs. It also tracked the total number of words found by the GA, and
optionally by exhaustive search for each run and averaged over all runs.

Figure 9 shows a simplified program flow chart for the PE. It began by initializing the

DNA Code word library to either empty or to an initial set of words that could be passed in from
the host. It also initialized the GA population to the specified size, and checked the fitness of the
individuals in the initial population. Then it entered a main loop that found words until the run
was terminated by one of three criteria (maximum elapsed time, maximum number of
generations, or the desired number of words were found). Each pass through the loop defined a
generation, including a population checking step, and a mutation and checking step, and finally a

19

step that produced a population for next generation by applying sorting, selection, and mating
operators. New words were picked up and added to the library during each of the two checking
phases if their fitness was such that they satisfied the constraints required to enter the library.
The following sections describe the features of each version that was designed and tested.

Figure 8. Host/PE communication handshaking at startup.

Figure 9. PE flow chart.

2.4.1 Version 1: GA/DNA Codes with exhaustive search

Prototype version 1 implemented a first cut that we thought would be a maximally fast

version of the application. It used no selection and mating operators at all in the GA, because we
had observed during tests of the software versions in spiral 2 that mating did not always help
speed the discovery of codewords. It also used a unique, accelerated mutation operator that
selected individuals at random for mutation, as would typically be done, but which then checked
every possible mutation of the 16 mer that could be made. This was attractive for two reasons.
First, it avoids what would be considerable delay and overhead associated with randomly
selecting the same individual over and over again to generate those mutations. Second, it makes
better use of the systolic array fitness metric calculator by checking a group of mutations and
spreading the checker’s pipeline latency of 15 clocks over 47 fitness calculations instead of 1
calculation. This is important during the early part of the run when the number of words in the
library is small. For example, with n words in the library, the utilization factor of the systolic
array (calculations/clocks) is about n*47/(n*47+15), which for n=1 is 0.76. If we checked each
of the 47 mutations by itself, the utilization factor would be n/(n+15), which for n=1 is 0.062.
Actually, further improvement ns speed could have been made by streaming sets of mutations for
multiple individuals together through the calculator, e.g. for 2 individuals utilization would reach
0.85, for 3 individuals 0.9, and for 10 individuals 0.97. But that improvement was not pursued
because n grows rapidly as words are found, and the utilization factor quickly approaches 1.0,
e.g. at n=25 it is 0.987, and at n=50 it is 0.994. Another consideration for the mutation operator

20

is that it may or may not identify a mutation that improves fitness compared to the original
individual. If it does, the best of the 47 tried is used to replace the original individual in the
population. If it does not, there are several options, including using the original individual,
picking one of the 47 a mutations randomly, or replacing the individual with a new random
individual. Most of the early versions used the second option, but later versions optionally used
either the second or third (which typically worked better). Finally, GA/DNA version 1 used
about 42% of the WildCard-II FPGA chip resources, and about 16% of the WildStar card FPGA
resources, and both ran at 100MHz.

Another feature of this version was the capability to do exhaustive search (ES) to extend

an existing library. This involved checking every word in the universe of 2^(32-1) = 4.3E9
possible words against the library, after the library was initially built by running GA. This has
hitherto been impractical for codes with word length 16, because it would take an estimated 62
days on a 2GHz Pentium workstation. This hardware version does this checking in only 1.5
hours running at 100MHz. The ES capability actually was implemented as a separately
synthesized version of the PE, but it is described here since it was developed along with version
1. The PE image for ES was loaded and run under control of the host program, typically after an
initial library was composed by running GA/DNA version 1 for a chosen amount of time, eg.
typically about 10 minutes. The ES version finds all the remaining words that can possibly be
added to the library by using a 32 bit counter (rather than the GA population) that starts at 0 and
sequences though all possible candidate words, checking each against the library. When a new
word is found, it simply adds it to the library, and the search continues. The ES version actually
used 2 LLCS systolic arrays to do the checking, one to process the candidate words, and another
to process the reverse complements of the candidate words.

While ES does not guarantee finding the global optimum sized library because that would

require doing a run with each possible sequence of random numbers, which is impossible due to
time constraints. However, it does guarantee finding what we call a locally optimum library, in
the sense of the 2^(32-1) possible 32 bit 16 mers have been checked for possible addition to the
library. We can now easily run multiple runs with different random number seeds to generate
many locally optimum libraries, and for the first time we have gathered statistics on the average
size of libraries. This approach may actually yield better estimates of the upper bound on library
size than present theoretical methods. Finally, the ES version with 2 fitness checkers uses about
75% of the WildCard-II resources, and <40% of the WildStar board FPGA resources, and both
run at 100MHz.

The capabilities of the hardware GA/DNA Code and ES prototypes described here are

thought to be novel and unique, and they were described in papers at an evolutionary computing
conference [23], and at an embedded hardware conference [24].

2.4.2 Version 2: GA/DNA Codes with multi-deme GA

The second prototype version added the capability to run multiple populations on the

same single FPGA chip, effectively creating a multiple node distributed Island Model GA on a
single chip. This was motivated by our observation in spiral 1 that a multi-deme GA could
provide about linear speed-up vs. the number of demes, or populations. It was actually possible

21

to instantiate 2 PEs on the WildCard-II FPGA chip, and 5 PEs on the WildStar card FPGA.
These designs also include an arbiter to handle communication between the multiple instances of
the PE on the FPGA chip, as shown in Figure 10. Periodically each of the PEs send a migration
request to the arbiter, typically after a set number (or epoch number) of generations. The arbiter
acknowledges a request if its migration controller is in the idle state. After receiving the
acknowledgement from the arbiter, the PE sends its best few individuals and their fitness values
to the arbiter. These data are placed in a memory together with similar data received from other
PEs. The arbiter sorts and picks the best m individuals, where m is the number of individuals to
be migrated, and sends them back to the PE which initiated the request for migration. For the
case of 2 PEs on a chip served by one arbiter, this is equivalent to a directed ring configuration.
However, for the case of more than 2 PEs on a chip, this approach implements a star, or local
pooling configuration. Above the chip level, the host PC is free to implement any
communication configuration among multiple host nodes in a cluster, e.g. with standard MPI.
Thus, multiple multi-deme GA chips could be used in a hierarchical system or a ring of host
workstations.

Figure 10. Multiple copies of PE and an arbiter on single FPGA chip.

Sorting, selection, and mating operators were also added to the GA for this version. In

order to minimize resource utilization and maximize speed, very simple versions of these
operators were used. Sorting was implemented by scanning the population repeatedly up to k
times in order to identify and pick up, or keep, the k best individuals from the p population
individuals. Typically, p ranged from 16 to 512, and k was some fraction of p, perhaps 1/8,
although we could vary both. The selection method randomly picked two of the k individuals
kept by the sort. Then a base index (0-15) was chosen, and the two parents were cut at this base
boundary into a head and tail. Single point crossover was used to produce two children from the
heads and tails of the two parents (head1+tail2 and head2 + tail1), and the children were added to
the kept list. This was repeated until the new population grew from k to p. We note that this
selection method lacks the selection pressure of rank or fitness proportional probabilistic
selection (which was done later in version 4), but it was fast. Following mating, mutation was
done by the same method described in 2.3.1 for version 1, until a chosen number of mutations
had occurred. This version actually had a couple of minor design bugs that should have been
fixed, but we don’t think they seriously degraded performance. One was that when a word was
picked up into the library it was left in the population, rather than being replaced by a new

PPEE11

PPEE11

PPEEnn

AArrbbiitteerr HHoosstt

22

random word. Another was that the mutated word address was generated as a 9 bit random
number (0-511), meaning that addresses up to 511 were used, even though the population p
could be 4 to 511. Since only words 0 to (p-1) were sorted, checked and searched for pickup,
mutation operations were wasted for if p was < 511. Both of these bugs were fixed in later
versions. Finally, the multi-deme GA/DNA application used almost all of the resources of the
FPGA chips, with 2 PEs instantiated on the WildCard-II board, and 5 PEs instantiated on the
WildStar board. The same 100MHz exhaustive search PE described previously was used to
extend codes generated by this version, which again took 42% or 16% of the 2 cards’ resources.

We believe that this hardware multi-deme GA, and the hardware DNA Code building

application are both novel and unique at this writing. The have been described in papers at a
bioinformatics conference [25] and journal [26], and an evolutionary computing conference [27].

2.4.3 Version 3: GA/DNA Codes with thermodynamic constraints

The version 3 prototype was similar to the version 1 prototype, except that it used a

single PE, and a single population GA, but it substituted an improved hybridization fitness metric
called the Gibbs free energy metric for the LLCS metric. The Gibbs metric calculates an
estimate of the binding energy of two mers using a nearest neighbor model that considers the
specific contiguous two-by-two sets of base pairs (2 stems) that occur along the mers, again in all
alignments of the mers. In software, this requires the calculation of 3 matrices instead of 1 for
the LLCS, and the hardware implementation takes significantly more resources than LLCS. The
original software dynamic programming algorithm for calculating Gibbs energy requires access
to possibly distant cells along the diagonal to the upper left of the cell being calculated. This is
problematic in a hardware implementation of a 2D systolic array, not only because of wiring
requirements, but also because at the time this ‘look back’ needs to be done, the cells that
calculated the data are already busy calculating on other operands, and the data is lost. One
possible solution would be to add multiple registers (or use memory) to store the needed data.
However, a much better solution was found that involves modifying the equations to also
calculate a running minimum quantity in each hardware cell (in 2 of the 3 arrays), which are then
passed forward to adjacent cells. This satisfied the data locality requirement for building a
pipelined 2D systolic array, i.e. all the data necessary to calculate the outputs of each cell are
available at the inputs of the cell (rather than on wires coming from non-adjacent cells).

The constraints in the fitness function were also modified for this version. In the

previous versions that used the LLCS metric, in order to enter the library a candidate word (and
its reverse complement) must have a certain minimum edit distance when compared to its own
reverse complement, and when compared to all of the words already in the library (and their
reverse complements). Using the Gibbs energy metric, in order to enter the library the Gibbs
energies of all potential unintended cross-hybridizations (e.g. measured between each candidate
word and its reverse complement, and each library word and their reverse complements) had to
fall below a certain threshold and within a certain range. The threshold and range could be
adjusted to ensure that binding energies of unintended cross-hybridizations was poor (had
suitable low melting temperatures) compared to the energies of intended hybridizations within
Watson Crick pairs in the library (had higher melting temperatures).

23

This version also added 2 new options for the mutation operator. One was to simply
replace the individual chosen for mutation with a new random individual, instead of generation
of the 47 possible mutations. The other was similar to the previously used mutation operator, i.e.
all 47 possible mutations were tried, but when no better word was found, either one of the
mutations could be selected at random, or a new random individual could be inserted in place of
the original word. The pickup procedure was also modified to replace a word that was picked up
and put into the library with a new random word, rather than leaving it is the population. An
additional feature was added to a later variation of this version that optionally used a counter
instead of a random number generator to source new word values to be inserted in the
population, e.g. when a word was picked up into the library, or when a mutation did not result in
an improvement. This was done to enable comparing deterministic versions of the hardware and
software algorithms, i.e. ones that used identical sequences of ‘random numbers’ in both
software and hardware. The PE for version 3 would not fit into either of the WildCard boards,
but it did fit on the WildStar board. It used about 92% of the WildStar card’s resources, and
operated at 100MHz. Also, an exhaustive search version of this PE was done, and it used 90%
of the WildStar resources, and ran at 100MHz.

Finally, we believe that this version’s hardware implementation of the Gibbs metric in a

systolic array covering all alignments of short mers is novel and unique at this writing, and it has
been described in a paper at a conference that focuses on bio-molecular computing [28], and in a
book series that published expanded versions of invited papers from the conference [29].

2.4.4 Version 4: GA/DNA Codes with rank based selection and declone

The last hardware version described here, version 4, was a modification of version 1 that

added an improved selection and mating operator, and a decloning procedure for removing
clones from the population every few of generations. This version used the LLCS metric, 1 PE,
and also fixed the 2 bugs mentioned previously in version 1. The new selection method used
rank based selection of parents for mating. First the population is partially sorted according to
fitness to identify the top k individuals that are kept. Then, parents are chosen from the k
individuals with probabilities that are proportional to their rank. Thus, better individuals are
chosen more often to act as parents. Mating is then done using single point crossover, as before,
until the population grows back to the original size. Finally, mutation is done using the best of
47 method, with a new random individual inserted if none of the mutations were better.

One potential difficulty when using a GA is a lack of diversity after many generations,

e.g. the population may develop multiple copies of the same individual, especially if the
mutation rate is too low. This may collapse the search to a local minimum. However, this
problem can be fixed by detecting this situation and doing a restart, or by periodically
introducing many new random individuals, or by running a decloning procedure that replaces
each clone with a new random individual. We chose to implement a decloning procedure, but
since this process costs time (of order p*c, where p is the population size and c is the number of
clones), we added a declone interval counter to enable running the declone procedure only every
few generations. The decloning procedure also checked for and removed words in the population
that were duplicates of words (or their reverse complements) already in the library (or their
reverse complements). Such words have fairly good fitness, because they are rejected only by the

24

duplicate word (and its reverse complement) that are already in the library, but their fitness will
never improve. Finally, this version used about 47% of the resources of the Wildcard4 board
FPGA, and it ran at 100MHz.

Version 4 has been synthesized and tested, but not described in a paper at this writing. It

would be appropriate to describe this version and compare the results with that of the other
versions (especially versions 1 and 2) at an evolutionary computing conference [30] . In fact,
we have proposed to the organizers of GECCO 2008 to do a workshop that would focus on
hardware implementations of EC algorithms and applications, and received a positive response.

We also note that there was some work done during this spiral on other features of some

of these versions that is not reported here, because it was related to future work. For example,
we did design a 32 x 32 mer version of the LLCS systolic array, and synthesized it to determine
the impact on size, and found that it took 50,686 LUTS, compared to 12,827 LUTS for the 16 x
16 mer array. This is slightly less that 4 times the resources, and is slightly better than what
might be expected. This version would not fit on the WildCard boards, but would fit onto the
WildStar board.

25

3.0 Results - spiral 3 (hybrid software/hardware accelerated platform)

This section summarizes the major findings of spiral 3 and then reviews some specific
test results for each of the 4 main prototypes.

3.1 Major Findings

These hardware accelerated prototypes all represent the first ever full integrations of a
genetic algorithm and an exhaustive search capability for generating non-cross-hybridizing DNA
Codes up to word length 16. They also achieved extreme speed-ups on the order of 1000X that
enabled us to do extensive multiple run statistical tests that resulted in a number of first time
observations. For example, using prototype version 1, we determined that running a simplified
GA with a modified locally exhaustive mutation only operator for 5-10 minutes routinely finds
over 98% of the total number of codewords that can be found (by extending the code using our
hardware exhaustive search prototype). This result was completely unknown in the literature
prior to this work, mainly due to the fact that exhaustive search of words of length 16 was
impractical. We also observed typical code sizes of about 122 word pairs for length 16, distance
6, reverse complement LLCS codes, and we think that this actually represents a higher upper
bound than that predicted by existing theoretical methods. The second prototype represents
what we think is the first ever implementation of a hardware multi-deme GA, and the first
integrated with any type of non-trivial hardware application problem. It demonstrated the
expected 2X speed-up for a 2 node version, again on the difficult DNA Code problem. This
version has paved the way for hierarchical implementations that could use a cluster of
workstations hosting such FPGA chips. The third prototype represents what we believe is the
first ever hardware implementation of a Gibbs free energy of binding metric calculator for short
DNA strands. The testing done with this prototype also established that it ran at 45MHz on a
XC2VP70 FPGA chip, achieving about a 260x speed-up over a compiled C software version
running on a Dell Precision 670 workstation with 3 GHz Pentium 4 processor. The fourth
prototype demonstrated that a full GA, i.e. one with typical operators such as rank base selection,
single point crossover, single point mutations, and population decloning took about 47% of LUT
resources, and less that 10% of the on-chip block RAMs of even the smallest FPGA chip
available to us, the Wildcard-II’s XC2V3000 chip. This suggests that a variety of other problem
types that require even more complex fitness function calculators and more memory could be
implemented in hardware hosted on a notebook computer as well.

3.2 Prototype Test Results

This section presents test data illustrating the main results obtained with each of the

prototype versions. More details on each can be found in references shown in Table III.

3.2.1 Version 1: GA/DNA with exhaustive search

Figure 11 shows the main results obtained by tests of this version [24]. Again, it utilized

a minimal GA that did only a simple, modified mutation operator that selected an individual for
mutation, and quickly checked all 47 possible mutations of the individual. This figure shows the
performance of the algorithm in terms of the time taken to discover words as the library fills,

26

where lower curves indicate faster (better) performance. The upper curve in Figure 11 is for a
non-GA algorithm that used a Markov process that was among the best found in the literature at
the time [31].

Figure 11. DNA Code generation application average performance using various optimization
algorithms. Top: Markov guided; second from top: software GA; third from top: hardware GA
run at 30MHz; third from top: hardware GA run at 100MHz; lower left: simulated hardware GA.

Note that the software GA found words somewhat faster that Markov toward the middle

of the curve, and that the curves for both algorithms turn up at about 200 words (about 90% of
the words that will be found), as the constraints posed by having so many words in the library
make it difficult to find more words (the remaining 10%). Comparing the curves for software
GA and the lower hardware GA curve shows that this version achieved about a 1000X speed-up.
We note that the software GA was run on a 2.4GHz Pentium 4 workstation, and the hardware
GA was run on a 100MHz FPGA. We also note that further improvements could be had by
transferring the hardware to either a latest generation FPGA (~450MHz) or to an Application
Specific Integrated Circuit (ASIC), which would be expected to achieve about 500MHz – 1.0
GHz clock speeds.

Figures 12 and 13 shows results obtained by composing initial libraries by running GA

for 10 minutes, and then extending the codes by running exhaustive search (which takes an
additional 1.5 hours) [25]. Figure 12 shows the total number of words found by GA and ES for a
series of 90 runs generating length 16, distance 6 RC LLCS codes. On average, 120.4 words
were found by GA, and 121.7 were found by GA + ES, which means that GA alone on average
found 98.9% of the word pairs that can be found. Figure 13 shows a histogram of the number of
runs vs. the number of word pairs that are added by ES, for a series of 32 runs. It shows that in

27

about 1/3 of the runs GA found all the word pairs that can be found, for about 2/3’s of the runs
GA found all but 1 or 2 word pairs, and that for 3 runs ES added 4 word pairs.

Figure 12. Sizes of libraries built with 10 min. of GA followed by exhaustive search.

Figure 13. Histogram of number of words added by exhaustive search for the runs of Figure 12.

At this writing we do not have data for generating such codes with any other algorithm,

because to date these types of experiments have been computationally impractical. For example,
without the 1000X speed-up enabled by the hardware ES, 32 runs of GA in software would have
taken about 1000 x 32 x 10 min. = 320,000 min. = 7.4 months, and 32 runs of ES in software
would have taken 1000 x 32 runs x 1.5 hours/run = 48,000 hours, or about 5.5 years. With this
prototype they took about 2 days. While it is true that a 1,000 node cluster could also have run
these tests in 2 days in software, we know of no one who has done it, Further, the FPGA
platform costs only $1.8K, and used only 1 notebook computer.

Locally optimum library lengths for 32 runs of
GA for 600 sec. followed by Exhaustive Search (ES)

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31
run #

w

or
ds

 in
 fi

na
l l

ib
ra

ry

added by ES

Before_ES

28

3.2.2 Version 2: GA/DNA with multi-deme GA

Figure 14 shows test results obtained with prototype version 2, which incorporated a

multi-deme GA [27]. As expected, it shows approximately a 2X speed-up using 2 PEs vs. using
1 PE. Both curves are without mating and migration.

Figure 14. Performance comparison of prototype version 2, using 1 and 2 PEs.

Also from [27], Figure 15 shows an interesting effect that helps make a point about

moving from software to hardware implementations. It shows the performance of this version
with different % mutation parameter values. This parameter effectively controls the number of
times per generation that the algorithm selects individuals for mutation during execution of the
mutation operator. Indirectly, it also effects how often the mating and migration operators are
performed, i.e. fewer mating operations take place in a given amount of time if the % mutation
is larger. This is because more candidates are checked per generation during mutation, and less
time is spent doing mating and migration. What is interesting is that in a software
implementation such an effect, though present, would probably not even be noticed because the
time spent on algorithm overhead is so small compared to fitness checking (2% in our case).
This highlights the importance of thinking about what happens in the optimization algorithm
when fitness evaluation time shrinks. Factors that effect the algorithm overhead time become
important, and may impact the choice of operators and their parameters. It does not always
follow that what works well in software predicts what will work well in hardware, and this may
require some re-thinking when crafting hardware GAs.

Figure 15. Effect of % mutation on performance, prototype version 2.

29

To carry this thought further, Figure 16 shows the effect of population size on
performance, again from [27] with this multi-deme GA prototype. What we see is that again
smaller population sizes are more efficient in terms of finding word faster, and again the reason
is that algorithm overhead execution time has become important. Specifically, the time it takes
to do the sort in the mating step (to identify the 8 keepers, which is the same for all the curves)
grows linearly with population size, and so smaller population sizes have an advantage.
Working in software the tendency may be to think that larger population sizes are better for
diversity and performance, and they well may be if algorithm time is dwarfed by fitness function
evaluation time. But in this case we see just the opposite working in hardware. A couple of
comments are in order here, however, to explain why we do not see a clear linear relationship in
the performance change vs. population size. One is that there is a confounding factor in this
experiment, i.e. the selection pressure is changing because the number of keepers was constant
across the tests. Thus, there was more selection pressure for the higher population sizes.
Although this would be expected to improve performance, here it does not. Another is that we
usually did not keep track of the number of generations, but do have some evidence that clones
appear in the populations eventually, and this can hurt performance.

Figure 16. Performance of version 2 for different population sizes.

3.2.3 Version 3: GA/DNA with thermodynamic constraints

Figure 17 compares the performance of software and hardware versions of the third

prototype that used thermodynamic constraints on cross-hybridization to compose 16 mer DNA
Codes, i.e. using the Gibbs free energy metric instead of the LLCS metric. For details on what
this metric is, and how it is implemented in hardware, the reader is referred to [28]. Here we just
say that this metric is preferred by many researchers as being superior to the LLCS metric.
Although it is more complex than LLCS, and requires fixed point calculations, it can be
implemented in 3 systolic arrays that fit into the FPGA on the WildStar platform. The systolic
arrays effectively calculate the metric for all alignments of the 2 mers. The top 2 curves in
Figure 17 are for software versions, and the lower 2 curves are for hardware versions. The
hardware versions achieved about a 260X performance speed-up over the software versions.

30

Figure 17. Performance of software and hardware version of prototype 3 (Gibbs energy metric).

There are 2 software and 2 hardware curves in Figure 17 because two variations of each

were written in order to address a concern that exists when characterizing the performance of
stochastic algorithms such as the GA. The concern is that each time the algorithm is run, the
pseudo random number generator must be initially seeded with a random number. This is
typically accomplished by keying the seed to the absolute clock time. As the GA runs it samples
random numbers from the generator only occasionally, and the results of the run depend on
exactly what set of random numbers are sampled. It is almost impossible to drive the software
and hardware versions with exactly the same set of random numbers, even if they are initialized
with the same seed. This is because they use different implementations of pseudo random
number generators. Therefore, the software and hardware versions do not find the same set of
words, and hence are not doing exactly the same calculations. We typically can only make
statistical observations about how one version compares to another, e.g. by running a number of
tests at different times, with different random number seeds, and averaging the results. This
approach takes time. However, one way to overcome this problem is to implement exactly the
same number generator in both versions, and seed them the same. This should result in exactly
the same sequence of random numbers being generated in both versions, they should do the same
calculations and find the same words. However, it would be hard to implement the random
number generator used in the software version in hardware, and it would be slow to implement
the hardware version’s generator in software. Therefore, a compromise is to use something a lot
simpler in place of the random number generator, e.g. a counter. While it is known that this
negatively impacts exploration of a large search space, it does in theory guarantee that both
algorithms will do exactly the same calculations. This means that speed comparisons can be
based on only 1 run of each version instead of 20-30 runs. However, we note that in order to
determine something like the average library length that can be found, one still has to do
statistical test of multiple runs with different random number sequences (preferably with a
pseudo random number generator, not a counter). At any rate, it is interesting to note that the
GA still works quite well when driven by a counter, but it does find words about 4 times faster
when driven by a pseudo random number generator.

The constraints on Gibbs energy for this version were set by specifying values for two

parameters, a threshold, and a range. Together these parameters determine the allowable ranges
of Gibbs energies for intended and unintended cross hybridizations in the library. A number of

31

experiments were done to characterize the performance for different threshold and range
parameter settings. An example of the results is shown in Figure 18 for an experiment that ran
GA until no further words were found for 10 minutes, and then extending the resulting libraries
with exhaustive search [28]. This was repeated for multiple values of the range parameter, with
the threshold parameter fixed.

Figure 18. Library sizes found by GA and exhaustive search for prototype version 3 using

thermodynamic constraints (fixed threshold, multiple range values).

We note two things about the results of this experiment. First, it becomes slightly harder

to find words when the allowed range is smaller, which might be expected. Second, exhaustive
search adds about 10-20 words to the 420-440 word libraries that GA found, which means that
GA has found between 97% – 99 % of the words that can be found. The very good performance
of the GA alone is similar to our observations with the previous prototypes.

The significance of the hardware accelerator is that it enables us to evaluate different

code word search algorithms and explore the upper bound on the size of code word libraries in a
reasonable amount of time. For example, without the hardware accelerator, each experiment in
the second set would have taken more than 20 days. The total amount of testing done with this
prototype that was reported in [28] is estimated to have taken about 16 hours in hardware, but
would have taken almost 6 months if done in software.

3.2.4 Version 4: GA/DNA with rank based selection and declone

This final version incorporated the LLCS metric, a single population PE, rank based

selection, single point crossover, and periodic decloning. Also, fixes were inserted for the
previous bug involving best of 47 mutation when none increased fitness (the individual was
replaced with a new random individual), for the word picked up from the population (they were
replaced with new random individuals), and for restricting the addresses of mutation trials (to the
maximum number of individuals in the population). Even though we had previously observed
that mating did not significantly improve performance of the DNA code building application
working with software versions in spiral 2, we implemented these operators in this version
because they are generally used in many applications of GAs found in the literature. We thought
this would increase the likelihood that our work could be transitioned to other problems with

32

minimal work. We note here that our version 2 prototype did include mating and migration, but
in the interest of design simplicity, the parent selection method was random, i.e. parents were
chosen with uniform probability from the number kept by the sort. Selecting with uniform
probability from the fraction of kept individuals does apply some selection pressure toward good
individuals, and that pressure can be increased by keeping few individuals from which to select
parents for the next generation. However, methods such as rank based selection can be used to
apply even more selection pressure. This 4th version used a common method called rank base
selection that selects parents according to a list of graded probabilities calculated from their rank,
i.e. their position in a list sorted by fitness. This causes more fit individuals to be chosen more
often as parents. It is known that this can be good and bad, good in the sense that better
individuals might be bred faster in the population, but bad in the sense that the population may
prematurely converge to a local optimum because it fills with clones. Many researchers try a
number of different things to tune the performance of a GA to a particular problem, including
varying the population size, the number kept from generation to generation (also called the
crossover rate, or fraction kept), and variation of the selection, mating, and mutation operators.

Figure 19 shows the results of tests done with this version that looked again at the effect

of population size on performance, as we did for some of the previous versions.

Words found vs Time
ga_dna_wc_ii_flat 5/18/07 version

0.1

1.0

10.0

100.0

1000.0

100 125 150 175 200 225 250

words found

tim
e

(s
ec

)

v3/16/16/z1/30

v3/16/10/z1/r30

v3/128/128/z1/30

v3/128/10/z1/r30

v3/256/256/z1/30

v3/256/10/z1/r30

v3/511/511/z1/30

v3/511/10/z1/r30

Figure 19. Performance effect of population size, version 4, time vs. # words.

Again we see that smaller populations find words faster. To help understand why, we

modified this version to also report the generation on which words were found, as shown in
Figure 20, which is for the same test as Figure 19. In both of these Figures, the results are
averaged over 30 runs, (and so the average generation number can be a fraction). Also, there
was a time limit of 5 minutes placed on the runs, so the point at the top right of these curves
represent the average of only those runs that had not reached the 5 minute limit. The apparent

33

reason why the curves dip is that runs that find a lot of words generally find them faster, too.
While this is not important, we would like to understand why this happens. We had surmised
that both of those observations about smaller populations were due to lower overhead in the sort
operation, which would allow more random individuals to be checked by the mutation operator
without being slowed down by the mating operator. Figure 20 can be interpreted to show that,
indeed, this is the case.

The first thing to note in Figure 20 is that in terms of generations, all of the population
sizes find words at about the same rate in the middle of the curves, e.g. word # 175 is found on
about generation 9, regardless of the population size. Stated another way, runs with small
population size find the same number of words at each generation that runs with larger
population size do. It follows that if a generation takes longer to process (e.g. because the sort,
checking after mating, and decloning operator execution times increase with population size),
using large population simply penalizes run time. It is somewhat surprising that such a small
population still finds words so efficiently. The reason might be the type of modified mutation
operator we used, i.e. one that tries all 47 possible mutations. This means that every generation z
x p * 47 mutations are checked, where z=% mutations, and p=population size. Even if z=1,
p=16, this means 1 x 16 x 47 = 752 new mutations are checked each generation, whereas fewer
than 16 new individuals are checked by the mating operator.

Words found vs Generation
ga_es_dna_wc_ii_flat 5/18/07 version

0.1

1.0

10.0

100.0

1000.0

10000.0

100 125 150 175 200 225 250

words found

ge
ne

ra
tio

n

v3/16/16/z1/30

v3/16/10/z1/r30

v3/128/128/z1/30

v3/128/10/z1/r30

v3/256/256/z1/30

v3/256/10/z1/r30

v3/511/511/z1/30

v3/511/10/z1/r30

Figure 20. Performance effect of population size, version 4, generation vs. # words.

The second thing to note in Figure 20 is that the upper right tails of the curves show that

runs with smaller population size find more words in the end than those for larger population
sizes. Clearly, they also complete many more generations before they reach the time limit at the
end of the test. No doubt the larger population runs would find just as many words, given more
time to execute their longer generations.

34

The next experiment we did looked at the effect of selection pressure in the mating
operator on performance. Figures 21 and 22 show the averaged results for 30 runs with
population sizes of 32 and 256, respectively, and the number of keepers k varied in order to
increase selection pressure. For these tests, mutation was minimized (1%), the population was
decloned every 10 generations, and the termination time set to 30 seconds.

Words Found vs Time
-i 32 -r 32

0.001

0.01

0.1

1

10

100

50 100 150 200 250
Words Found

Ti
m

e
(s

ec
)

32/4

32/8

32/16

Figure 21.Population size 32, mating selection pressure varied, version 4.

Words Found vs Time
-i 256 -r 256

0.001

0.01

0.1

1

10

100

50 100 150 200 250
Words Found

Ti
m

e
(s

ec
)

256/4

256/8

256/16

256/32

256/64

256/128

Figure 22. Population size 256, mating selection pressure varied, version 4.

35

The results in Figures 21 and 22 show that in the middle of the curves, increasing
selection pressure (fewer # of keepers) actually degrades performance. All we can really say is
that if there is a beneficial effect of increasing selection pressure in the mating operator, it is
masked by a higher time cost of running the mating operator. However, at the right tails of the
curves in Figure 21 (population size 32) we see that higher selection pressure found more words,
but in Figure 22 (population size 256) lower selection pressure found more words. To understand
these effects, next we looked at the execution times of the sort and selection/mating operators in
as functions of population size and # keepers. We did this by inspecting waveforms produced by
ModelSim simulations and constructing clock cycle models for these operators. We used these
models to generate the curves shown in Figures 23-26.

Sort Operation - Total clocks vs # Keepers
for Population Sizes 16-512

0.0E+00

4.0E+02

8.0E+02

1.2E+03

1.6E+03

2.0E+03

0 4 8 12 16 20 24 28 32
keepers

cl
oc

k
pe

rio
ds

16

3 2

6 4

12 8

2 5 6

5 12

Mating Operation - Total clocks vs # Keepers
for Population Sizes 16-512

0.0E+00

4.0E+02

8.0E+02

1.2E+03

1.6E+03

2.0E+03

0 4 8 12 16 20 24 28 32

keepers

cl
oc

k
pe

rio
ds

16

3 2

6 4

12 8

2 5 6

5 12

Figure 23. Sort clock cycles, Figure 24. Selection/mating clock cycles,
population size 32. (curve 2nd from bottom). population size 32. (curve 2nd from bottom).

Sort Operation - Total clocks vs # Keepers
for Population Sizes 16-512

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

0 32 64 96 128 160 192 224 256
keepers

cl
oc

k
pe

rio
ds

16

3 2

6 4

12 8

2 5 6

5 12

Mating Operation - Total clocks vs # Keepers
for Population Sizes 16-512

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

0 32 64 96 128 160 192 224 256

keepers

cl
oc

k
pe

rio
ds

16

3 2

6 4

12 8

2 5 6

5 12

Figure 25. Sort clock cycles, Figure 26. Selection/mating clock cycles,
population size 256. (curve 2nd from top). population size 256. (curve 2nd from top).

These curves show that the absolute time cost of sorting is much larger than that of
selection/mating for all population sizes. They also show that sorting time increases linearly with
the number of keepers, while selection/mating time is relatively constant vs. k. Finally, they
show that the sensitivity of sorting time to increasing k is much larger for population size 256.
Clearly, when these effects are taken together, we would expect a large beneficial effect on
performance as the number of keepers is decreased. However, this is just the opposite of what
we see in the middle of the curves of Figures 21 and 22, i.e. there is a degradation in
performance as the number of keepers is decreased. This indicates that there must be another
factor at work. At this writing we can only speculate that one possibility is that clones may be

36

arising in the population more often for smaller k, which would also cause mutation trials to be
on duplicate words. This would also cause slightly longer decloning times. Another way to
think about this is that keeping a larger number of (presumably more diverse) individuals from
generation to generation, rather than replacing them with a smaller number of individuals bred
from a small number of parents, might effectively result in a wider search. This could be further
studied by monitoring the # clones that appear, which could be done in future work.

One caveat is that certain assumptions had to be made when building the models, e.g.

during the sort a number of passes are made through the population to pick up individuals with
the best remaining fitness. We assumed that on average one individual would be picked up for
each pass, meaning that NumKeepers/2 passes world occur. It is entirely possible that multiple
individuals could have the same fitness and be picked up on the same pass, and that would tend
to make the curves of Figures 23 and 25 flatter.

Finally, we note that the response to varying selection pressure may be very problem

dependant. In the present case it appears that mating does not help performance, but mating may
be very beneficial for other problem types, so it is good to have FPGA cores for doing it.

Words Found vs Time
16/10 vs 16/8 -i 16 -r 16, -k 8

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500
Words Found

Ti
m

e
(s

ec
)

16/m12/30S

16/m10/30S

16/m8/30S

16/m6/30S

Figure 27. Edit distance varied, population size 16, # keepers 8, version 4.

Another experiment we did looked at the effect of the max_match parameter on the
number of code words that can be found. The max_match parameter can be used to change the
edit distance (which is code word length-max_match). The results Figure 27 show that more
words are found as max_match increases. This is expected, because as max_match increases, the
allowable edit distance decreases, meaning that the constraint on unintended cross hybridizations

37

is less severe. More words can be added to the library when unintended cross hybridizations are
allowed to be more likely that when they are constrained to be less likely.

Figure 28 shows a blow-up of the data in the lower left corner of Figure 27, plus another

curve that is the average of 30 runs of 16/m8 with GA run for 20 minutes instead of 30 sec
(which should have found more words if they could be found). We have seen that for 16/10
codes, on average GA finds over 98% of the words that can be found. We do not know if this is
the case for 16/6 and 16/8 codes at this writing, because we have not done exhaustive search on
the resulting codes. At any rate, this is some of the only data we have seen for these code
length/distances.

Words Found vs Time
16/8 for max_match =6,8

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25
Words Found

Ti
m

e
(s

ec
)

16/8/m8/1200S
16/m8/30S
16/m6/30S

Figure 28. Max_match 6 and 8 codes (edit distance 10 and 8), version 4.

Finally, we note that some additional work is being done by our summer faculty to

develop GA/DNA Code FPGA versions that incorporate additional features. That work is not
covered in this report, but will be described elsewhere. One of these involves expanding the
LLCS systolic array so that it computes on 32 mers instead of 16 mers. This is important
because some biological applications of the LLCS metric involve computing on 25 mers, and
even 60 mers. This preliminary work has successfully implemented and tested a 32 x 32 mer
LLCS systolic array that fits on the WildStar FPGA, and operates at 45MHz. This version
achieved about a 4,000X speed-up over software when building 32/20 codes, and about
100,000X speed-up composing 32/16 codes. These extreme speed-ups are due to the very long
execution times of the software versions (which scale as n2), and the fact that the execution time
changes very little as the systolic array size is increased.

38

4.0 Conclusions and Future Work

 We believe that this in-house project has accomplished its first goal, i.e. it demonstrated

that the genetic algorithm, the workhorse evolutionary computing algorithm, can achieve results
as good or better than classical methods, at least for the problem types we applied it to during
this project (non-linear ODE parameterization, and DNA Code generation). We demonstrated
this by building and testing prototype solution engines in spiral 1 in a variety of languages on a
single workstation, in spiral 2 in C/MPI implementations on a cluster of workstations, and finally
in spiral 3 on hybrid workstations equipped with special purpose boards hosting FPGAs. Part of
this goal was to determine whether the evolutionary algorithm offered any advantages over
classical methods, and in spiral 1 we did observe that for the non-linear model parameterization
application the GA did converge when working with full, unreduced models, where a number of
classical methods failed to converge unless reduced order models and step-wise parameter fitting
methods were used. In the context of distributed, cluster based applications in spiral 2, again
for the parameterization problem, we observed that the Island Model GA displayed
approximately linear solution time speed-up vs. the number of nodes used, and also that it does
not suffer from some of the limitations of alternative deterministic distributed global optimum
seeking algorithms whose memory usage may grow exponentially if the solution space has many
local optima. The sizes of the data structures required to run the GA are defined at time zero,
and they do not change as the algorithm proceeds. Finally, in spiral 3 we were able to hand craft
a full hardware implementations of a GA that was integrated with a DNA Code building
application, and we were able to build and test several versions that explored variations of the
GA operators and code building constraints. We compared our test results to those found in the
literature, using both software GA and non-GA methods, and observe that the performance of
our hardware GA/DNA Code building prototypes met or exceeded their speeds. We also
observe that there are no other fully hardware implementations of any other algorithm for this
application. Hardware implementations of the GA are in fact straight forward due to the simple,
repetitive nature of the basic algorithm, and the regularity and parallelizability of its operators.
For example, almost all memory accesses in our integrated algorithm/application are done to
sequential, contiguous addresses, e.g. when processing the individuals in the GA population. We
were also able to successfully exploit high speed data pipelining methods in 2D systolic arrays
we designed for checking fitness with the LLCS and Gibbs energy metrics. That simply would
not be possible for a number of other optimization algorithms that do one trial at a time,
separated by (possibly time consuming) calculations to guide the choice of the next trial.

Figure 29 depicts a summary of the speed-up results obtained across the various

platforms, including a couple of additional options that we did not prototype, but which we
include because they might be important to look at in future work. At the beginning of this
project, implementation on the third platform, GA on PC and FF (fitness function) in FPGA,
would have suffered a severe a speed bottleneck associated with communication between the
host PC and FPGA across the peripheral bus (33 or 66 MHz). However, at this writing at the end
of the project, a new platform of this sort has appeared which has an FPGA chip in a socket on
the CPU mother board which can use the high speed internal bus. Our organization is obtaining
early version of this platform, and our GA/DNA code application may provide an early test case.
If the communication rate for simultaneous input and output data streams between the CPU and
FPGA can be maintained at about 100MHz, this platform may meet or exceed the performance

39

of a 100MHz all FPGA solution. Finally, we note that time, workload, and urgency constraints
conspired to prevent us from fully exploring the last platform shown, the cluster of FPGAs
approach. Even so, we did develop a single chip prototype that demonstrated linear speed-up for
a multi-deme GA, and another single chip prototype that simultaneously used two instances of
the LLCS systolic array for exhaustive checking. Future work could address adapting these
versions to run on a cluster of FPGAs, and we would expect both to exhibit linear speed-ups vs.
the number of FPGA nodes. Finally, we find it extremely interesting to note that the single
FPGA chip platform approach that we did study is far less expensive than the software on a
cluster of workstations approach, yet it delivered far greater speed-ups. While this will not be
true in general for any problem type, we expect it will hold true for those types of problems that
involve fitness functions with simple mathematics (i.e. with integer and Boolean operands),
especially where the function evaluation can be cast into a pipelined systolic array.

Figure 29. Speed-up and resources for the various platforms considered by this project.

Other goals of this project were to synergize with other ongoing in-house and summer
faculty research topics, and the AFOSR and DARPA programs managed by RI, and to identify
target problems in ongoing programs that might benefit from the development of new
optimization tools for solving hard computational problems. We believe that we accomplished
these goals by identifying and drawing our main application problems from both our ongoing
involvements in the DARPA in the SIMBIOSYS and BIOCOMP programs, and our AFOSR
sponsored projects working in the area of computing with bio-molecules, and nano-scaffold self-
assembly for bio- and nano- electronics. Another a aspect of accomplishing this goal involved

40

active interaction and collaborations with workers at Purdue, SUNY Geneseo, Wright State
University, AFIT, SUNY Binghamton, and UNC Charlotte to obtain test case models, exchange
ideas, compare results, and in general advocate the use of the methods investigated by this
project. Finally, we synergized with our summer faculty programs by hosting three summer
faculty and two summer students who contributed ideas and work to this project (see section 6.0
Acknowledgements).

Two other goals of this project were to raise the level of awareness of workers at RI

about present day research and applications of evolutionary computing methods, and to mine the
RI mission areas for additional candidate problems that could potentially benefit from this
knowledge and the results of this effort. We believe that we accomplished these goals by
helping to establish an EC Interest Group at RI that hosted a number of lectures by EC experts
and practitioners, and by attending and publishing the results of this effort at numerous external
Conferences and workshops. In addition to our main test case problems, we also identified and
worked on at least three other problems to a lesser extent, including power management policy
optimization in distributed sensor networks, low power bus coding for VLSI on-chip
communication busses, and probe design for diagnostic micro-arrays.

Some of the most important technical accomplishments of this program involved the

successful design and demonstration of working prototypes that were the first single chip FPGA
solutions that integrated a hardware GA, and a separate hardware exhaustive search (ES) engine
with a hardware version of a complex DNA Code generation application problem. The extreme
speed-ups on the order of 1000X achieved by both of these designs enabled us to run
experiments that yielded a first ever observation that GA alone can find about 99% of the DNA
Code words that can be found. It is also very significant that the hardware ES makes experiments
practical that simply would not be if done in software, for example, some of our routine tests that
took 2 days with these hardware prototypes would have taken about 5.5 years in software. While
it is true that a 1,000 node cluster could also have run these tests in 2 days in software (assuming
that the performance scaling was perfectly linear), the FPGA platform we used costs
significantly less ($1.8K plus a notebook computer), uses less power, and requires no facility.

We can think of several avenues to explore in future work. One would be to revisit the

use of Higher Order Languages, and try to take more advantage of design tools that allow users
to code in a C-like language, or even MatLab. We did succeed in producing a 16 x 16 LLCS
fitness checking prototype early in spiral 3 using the Impulse C tool, which simulated correctly
in the Impulse Co-Developer tool, and resulted in VHDL code. However, we were not able to
obtain VHDL for the whole application, we believe because of limitation of the tool for
extracting state machines from our very large application. Therefore, we were unable to
synthesize and test code from this tool path, and we do not know how it would compare to our
own hand crafted version in terms of resource utilization and speed. While success along these
lines would probably increase the likelihood that researchers in various problem domain areas
might pick up and use hardware acceleration methods, today this is not the general case, and
hardware applications typically are done with help from a computer expert on the team.

Another possible area for future work would be to look at other GA operators and other

EC algorithms, hopefully in the context of problems that are solved well, but that need speed-up.

41

Still another area for possible future would be to pursue even higher performance
hardware implementations of the accelerators that we designed in this effort. For example,
newer generation FPGA chips are now available that have in excess of 200,000 LUTs (e.g the
largest Xilinx Virtex 5 chip). We note that our software GAs ran on 2.4GHz Pentium 4
workstations, and on our hardware GAs ran on Virtex-II and Virtex 4 FPGA chips at 30-
120MHz. Future generations of both workstations and FPGAs will push both of these
benchmarks upward. We also note that further improvements might be had by pursuing
distributed GA implementations on multiple core workstations (2 and 4 core Intel and AMD
processors are available at this writing), on the Sony playstation and IBM cell blade platforms, or
on an Application Specific Integrated Circuit (ASIC) which would be expected to achieve
perhaps 500MHz – 1.0 GHz clock speeds. We also note that at this writing there are no known
commercially available EC chips that could act as a hardware accelerator for optimization
problems, or even examples provided by FPGA vendors, so the cores we developed have the
potential to help fill those gaps.

For this work we focused mainly on length 16, max_match 10 (16/10) DNA codes, and

we generated only limited data with tests that composed 16/6, 16/8, and 16/12 codes. There
might be academic and practical interest in using these prototypes to study codes generated with
a variety of conditions, and codes with longer lengths (e.g. with our new prototype for 32 mers).

Finally, we note that a potentially high payoff spin-off application for the prototypes
developed in this project has been identified. It is the acceleration of what is called the Probe Set
Design problem that is encountered in the design of gene expression and gene identification
diagnostic micro-arrays. This problem involves time consuming checking of similarity metrics
between a set of short probe oligos (e.g. a set of thousands of 25 or 50-60 mers) against whole
genomes. The goal is to identify a set of probes that can be placed in wells on a micro-array that
when washed with an analyate with unknown genomic contents, will accurately identify the
source organisms. The probe mers must be chosen carefully so that the patterns of bindings
between the probes on the chip and the targets in the genomes can be interpreted unambiguously.
There are various approaches that have been used to compose probe sets, and they involve
computations of LLCS, Smith-Waterman similarity, and Gibbs energy free energy between the
short mer probes and short mer segments drawn from target organism genomes. This problem is
directly applicable to the task of designing and updating micro-arrays that can identify the
presence of, say the top 20 biological threats. At present, we are exploring possibilities for
applying our work in this area. To date we have attended a conference on the subject, written a
C version of s simple form of the problem, and given a poster on our results [32]. We are also
having discussions with workers at UNC Charlotte who have begun to implement a hardware
accelerated Smith-Waterman algorithm [33].

5.0 Acknowledgements...

Kevin May, a Clarkson University senior, contributed greatly to the distributed GA ODE
and DNA Code Word applications, and the VHDL fitness evaluator, while he was a student
intern at RITC during the summers of 2003-2005, and winter breaks 2003 and 2004. Dr. Larry
Merkle of Rose Hulman Institute of Technology contributed ideas for the software distributed
GA and hardware GA Core during a Visiting Summer Faculty Research assignment at RI in the

42

summer of 2004. Clare Thiem/RITC provided interface to the DARPA BIOCOMP and
SIMBIOSYS programs. The DARPA SIMBIOSYS program manager (Dr. Anantha Krisnan),
and the DARPA BIOCOMP program manager (Dr. Sri Kumar) provided partial support for this
work through agent fees, with help from the local RI program contact for the BIOCOMP
program (Dr. Robert Kaminski/RIGA). Dr. Thomas Renz, RITC lead for the BioMolecular
Computing Program, provided much inspiration and support. Ann Rundell, Purdue University,
provided MatLab codes for the Ag-Ab binding model during spirals 1 and 2. Dr. John
Gallagher, Wright State University, and Prof. Gary Lamont, Air Force Institute of Technology,
provided references and valuable discussions about compact/mini-pop GAs, and multi-objective
optimization using GA, respectively. Dr. Tony Macula, SUNY Geneseo, and Morgan Bishop,
JEANSEE Corp., Geneseo, NY, contributed the Markov DNA Code Word generation results.
David Pelliren, Impulse Accelerated Technologies, provided assistance in evaluating
Co_Developer software. Dr. Qinru Qiu, Dept. ECE, State University of NY at Binghamton,
contributed the work on the Sensor Network Energy Management Problem. Dr. Qinru Qiu, Dr.
Qing Wu, and Prakash Mukre at SUNY Binghamton contributed greatly to the implementation
of the FPGA prototypes. Andrew Flack, an undergraduate student at the University of Rochester,
contributed to the study of the application of the results of this project to the probe design
problem.

References
[1] D.J. Burns, “Hybrid Architectures for Evolutionary Computing Algorithms”, In-house Interim Report,
AFRL-IF-RS-TR-2006-14, DTIC Accession No: ADA444730, Jan. 2006.
http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA444730

[2] A.E. Rundel, H. HogenEsch, T.J. Webstster, “Optimizing the Immuno-Surface Characteristics for
Bio-Sensors and Filters Through Modeling and Experiments”, Final Technical Report, DTIC Accession #
ADA436117, June 2005.
http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA436117

[3] J.J Tyson, B. Novak, K. Chen, J.C. Sible, F.R. Cross, L.T. Watson, C.A. Shaffer, “Eukaryotic Cell
Cycle as a Test Case for Modeling Cellular Regulation in a Collaborative Problem-Solving
Environment”, Final Technical Report, DTIC Accession # ADA464845, Mar. 2007.
http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA464845

[4] P. Mendes, “GEPASI: A Software Package for Modeling Dynamics, Steady States and Control of
Biochemical and Other Systems”, Comp. Applic. Biosci., 9, 1993, pp. 563-571.
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/9/5/563 or http://www.gepasi.org/

[5] M. Rodriguez-Fernandez, J.A. Egea, and J.R. Banga, “Novel metaheuristic for parameter estimation in
nonlinear dynamic biological systems“, BMC Bioinformatics, 2006; 7: 483, published online 2006
November 2.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1654195

[6] L. Brus, “Recursive Black-box Identification of Nonlinear State-space ODE Models”, IT Licentiate
Thesis, 2006-001, , Department of Information Technology, UPPSALA UNIVERSITY, Sweden, Jan.
2006.
http://www.it.uu.se/research/publications/lic/2006-001/2006-001.pdf

43

[7] J.W. Zwolak, J.J. Tyson and L.T. Watson, Globally Optimized Parameters for a Model of Mitotic
Control in Frog Eggs”, IEE Proc.-Syst. Biol., Vol. 152, No. 2, June 2005, pp. 81-92.
http://mpf.biol.vt.edu/people/jzwolak/papers/iee05.pdf

[8] J.C. Meza, R.S. Judson, T.R. Faulkner, and A.M. Treasurywala, “A comparison of a direct search
method and a genetic algorithm for conformational searching”, J. Comput. Chem., 1996, 17, (9), pp.
1142–1151. http://crd.lbl.gov/~meza/papers/gavspds_jcc.pdf

[9] T.T.Hanp LALONG, Q.Tuan PHAM, “A Comparison of the Performance of Classical Methods and
Genetic Algorithms for Optimization Problems Involving Numerical Models”, pp. 2019-2025.
http://ieeexplore.ieee.org/iel5/9096/28878/01299921.pdf

[10] http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization

 [11] D. J. Burns, K.T. May, “On Parameterizing Models of Antigen-Antibody Binding Dynamics on
Surfaces – a Progressive Genetic Algorithm Approach and the Need for Speed”, Genetic and
Evolutionary Computing Conference - 2004, Seattle, WA, June 2004, in Lecture Notes in Computer
Science, Springer Berlin/Heidlberg, Vol. 3102/2004, pp. 497-498.
http://www.springerlink.com/content/ucg2e2ybt6t33v3g/fulltext.pdf see also
http://www.rose-
hulman.edu/~merkle/Professional/Publications%20and%20Presentations/Others/2004_08%20VFRP.pdf

[12] D.J. Burns, K.T. May, M. Bishop, “DNA Code Word Library Generation Using a Parallel Genetic
Algorithm”, Foundations of Nanoscience – Self Assembled Architectures and Devices (FNANO 2005),
Snowbird, UT, Apr. 2005, pp 128-129. (available from http://sciencetechnica.com/)

[13] DJ.. Burns, “Hybrid Architectures for Evolutionary Computing Algorithms”, EC In Practice session
presentation, Genetic and Evolutionary Computation Conference, GECCO-2005, Washington, DC, June
2005.

[14] D.J. Burns, K. May, M. Bishop, “DNA Codeword Library Design Using a Parallel Genetic
Algorithm”, Workshop on Military and Security Applications of Evolutionary Computing, Genetic and
Evolutionary Computation Conference, GECCO-2005, Washington, DC, June 2005.

[15] K.T May, “DNA Codeword Library Design Using A Parallel Genetic Algorithm with FPGA
Hardware Fitness Function Co-Processor”, GECCO 2005 Undergraduate Student Workshop Washington,
DC25 June 2005.

[16] Qinru Qiu, Qing Wu, D. Burns, D. Holzhauer, “Distributed Genetic Algorithm for Energy-Efficient
Resource Management in Sensor Networks”, GECCO 2006, open poster session, Seattle, WA, July, 2006

[17] Qinru Qiu, Qing Wu, D. Burns, D. Holtzhauer, “Lifetime Aware Resource Management for Sensor
Networks Using a Distributed Genetic Algorithm”, IEEE/ACM Intl. Symposium on Low Power
Electronics and Design (ISLPD-2006) Tegernsee, Germany Oct, 2006. (See Appendix A).

[18] D. Burns, K. May, T. Renz, V. Ross, “Spiraling in on Speed-Ups of Genetic Algorithm Solvers for
Coupled Non-Linear ODE System Parameterization and DNA Code Word Library Synthesis”, 2005
Science and Technology Algorithm Workshop (STAR 2005), Dayton, OH, 30 Aug – 1 Sep 2005.

[19] D. Burns, K. May, T. Renz, V. Ross, “Spiraling in on Speed-Ups of Genetic Algorithm Solvers for
Coupled Non-Linear ODE System Parameterization and DNA Code Word Library Synthesis”, 8th

44

Military and Aerospace Programmable Logic Devices (MAPLD) International Conference (2005)
Washington, DC Sep 2005. (See Appendix B).

[20] http://www.xilinx.com/ise/verification/mxe_details.html

[21] http://www.synplicity.com/products/synplifypro/

[22] http://www.xilinx.com/ise/logic_design_prod/webpack.htm .

[23] D. Burns, M. Bishop, “FPGA Implementation of Systolic Array Levenshtein Matrix Distance
Calculator for Reverse complement DNA Code Design “, Proceedings of the Workshop on Military and
Security Applications of Evolutionary Computing, ASM Genetic and Evolutionary Computing
Conference (GECCO 2006), Seattle. WA, July 2006, Distributed on CD-Rom at GECCO 2006. (See
Appendix C).

[24] D. Burns, Qinru Qiu, Qing Wu, “FPGA Implementation of Systolic Array Levenshtein Matrix
Distance Calculator for Reverse complement DNA Code Design”, Poster Session, 2006 Military and
Aerospace Applications of Programmable Logic Devices International Conference (2006 MAPLD),
Washington, DC, Sep. 2006. (See Appendix D).

[25] Q. Qiu, D. Burns, Q. Wu, P. Mukre, “Hybrid Architecture for Accelerating DNA Codeword
Searching”, Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB 2007), IEEE Symposium Series on Computational Intelligence
(SSCI-2007), Honolulu, HI, Apr. 2007. (See Appendix E).

[26] IEEE Journal of Computational Intelligence, (invited, in preparation).

[27] Q. Qiu, D. Burns, P. Mukre, Q. Wu, “Hardware Acceleration of Multi-deme Genetic Algorithm for
the Application of DNA Codeword Searching”, to appear in the Proceedings of the 2007 Genetic and
Evolutionary Computing Conference (GECCO 2007), London, UK, July 2007. (See Appendix F).

[28] Q. Qiu, P. Mukre, M. Bishop, D. Burns, Q. Wu, “Hardware Acceleration for Thermodynamically
Constrained DNA Codeword Searching Hardware Acceleration of Multi-deme Genetic Algorithm for the
Application of DNA Codeword Searching”, to appear in the Proceedings of The 13th Intl. Meeting on
DNA Computing (DNA 13), Memphis, TN, June 2007. (See Appendix G).

[29] Springer Lecture Notes in Computer Science (invited, in press)

[30] GECCO 2008 (in preparation).

[31] Bishop, M. , Macula, A. , Pogozelski, W. , and Rykov, V. , “DNA Codeword Library Design”,
Foundations of Nanoscience – Self Assembled Architectures and Devices (FNANO 2005), Snowbird,
UT, Apr. 2005, p 49. (available from http://sciencetechnica.com/)

[32] D. Burns, Q. Qiu, Q. Wu, and A. Flack, “On the Hardware Acceleration of the Probe Design
Problem”, 6th Annual System Integration in Biodefense Conference (poster paper), Washington, DC,
Aug. 2007. (See Appendix H).

[33] R. Karanam, A. Ravindran, A. Mukherjee, C. Gibas, and A. Wilkison, “Using FPGA-based Hybrid
Computers for Bioinformatics Applications”, XCell Journal, Issue 58, Third Quarter, 2006.
http://www.xilinx.com/publications/xcellonline/xcell_58/xc_pdf/p080-083_58-dna.pdf

45

Appendices

Appendix A: ISLPED 2006 paper. [Reference 17]. (Click to view Appendix_A.pdf).

46

Appendix B: MAPLD 2005 paper [Reference 19]. (Click to view Appendix_B.pdf).

Spiraling in on Speed-Ups of Genetic Algorithm
Solvers

for Coupled Non-Linear ODE System
Parameterization

and DNA Code Word Library Synthesis Problems
Dan Burns1, Kevin May1,2, Thomas Renz1, and Virginia Ross1

1 Air Force Research Laboratory
Information Technology Division

burnsd, renzt, rossv @rl.af.mil
315-330-2335, -3423, -4384

2 Clarkson University
maykn@clarkson.edu

47

Appendix C. GECCO 2006 paper. [Reference 23]. (Click to view Appendix_C.pdf).

48

Appendix D. MAPLD 2006 paper [Reference 24]. (Click to view Appendix_D.pdf).

 Burns, et. al. Paper 1035/MAPLD 2006

FPGA Implementation of a Genetic Algorithm and
Systolic Array Levenshtein Matrix Edit Distance

Calculator for Reverse Compliment DNA Code Design

Dan Burns1, Qinru Qiu2, Qing Wu2, and Virginia Ross1

1 Air Force Research Laboratory
Information Technology Division

burnsd, rossv @rl.af.mil
315-330-2335, -4384

2 The State University of New York at Binghamton
qqiu, qwu @binghamton.edu

49

Appendix E. SCCI 2007 paper [Reference 25]. (Click to view Appendix_E.pdf).

50

Appendix F. GECCO 2007 paper [Reference 27]. (Click to view Appendix_F.pdf).

51

Appendix G. DNA 2007 paper [Reference 28]. (Click to open Appendix G.)

52

Appendix H. SIBD 2007 paper. [Reference 32]. (Click to view Appendix_H.pdf).

Lifetime Aware Resource Management for Sensor Network
Using Distributed Genetic Algorithm

Qinru Qiu Qing Wu
Department of Electrical and Computer Engineering

Binghamton University
Binghamton, NY 13902

001-607-777-4918, 001-607-777-4536
{qqiu, qwu}@binghamton.edu

Daniel Burns Douglas Holzhauer
Air Force Research Laboratory, Rome Site

26 Electronic Parkway
Rome, NY 13441

001-315-330-2335, 001-315-330-4920
{Daniel.Burns, Douglas.Holzhauer}@rl.af.mil

ABSTRACT
In this work we consider lifetime-aware resource management for
sensor network using distributed genetic algorithm (GA). Our goal
is to allocate different detection methods to different sensor nodes in
the way such that the required detection probability can be achieved
while the network lifetime is maximized. The contribution of this
paper is twofold. Firstly, the resource management problem is
formulated as a constraint optimization problem and is solved using
a distributed GA. Secondly, empirical analysis results are provided
that reveals the relationship between the configuration parameters
and the quality of the search. A regression model is designed to
estimate the runtime of the distributed GA given the configuration
parameters. The model is utilized to find energy efficient
configurations of the algorithm.

Categories and Subject Descriptors
J.7 [Computer Applications]: Sensors and Sensor Networks

General Terms
Experimentation

Keywords
Distributed Genetic Algorithm, Sensor Network, Energy Aware
Design, Resource Management
1. INTRODUCTION
Due to the fast development of information technology, the
networked distributed system is gradually replacing the
conventional centralized system. It is a vision of the future that large
numbers of low cost smart mobile devices will be integrated into the
daily life of ordinary people. Accumulated, they provide the
information processing capability that is equivalent to a high
performance processing station. The emerging concept of Ambient
Intelligence [1] and the recent developments of sensor networks [2],
and wearable computers [3] reflect such vision. A distributed system
consists of multiple heterogeneous networked processing elements,
which are battery-powered and work on a set of tasks
collaboratively. Each processing element has limited resources, such
as battery energy, communication bandwidth, etc. It is a challenging
task to efficiently utilize these resources to deliver required services
during the runtime in a dynamic environment.

Resource management is defined as the process that assigns tasks to
different processing elements, schedules their start times and
decides the level of service quality, which determines the resource
usage, such as the energy dissipation and communication
bandwidth, to run these tasks. The execution of each task represents
a positive gain when measuring or quantifying the performance of
the system. It also associates a cost, which represents the resource
usage. The resource management problem can be formulated as a
multi-objective optimization problem, i.e. maximizing the gain
while minimizing the cost. It can also be formulated as a constraint
optimization problem, i.e. maximizing the gain while satisfying the
cost constraint or vise versa.
In this paper we focus on the management of the energy resource in
an environment monitoring sensor network that is used to monitor,
model and forecast physical processes, such as environment
pollution, flooding, and fire etc. The basic configuration of each
node in this network consists of a microprocessor, a wireless
transceiver and an array of sensors such as light detector, barometer,
humidity and thermopile sensors. A set of data acquisition and
signal processing applications is available on each node. They
provide the tradeoffs between detection quality and resource
utilization. For example, increasing the sampling rate improves the
probability of detecting an abnormal event however it increases the
power consumption as well.
There is usually a significant cost associated with deploying an
environment monitoring system. It is desirable that the system can
work for a reasonably long time after it is deployed. A common
approach is to incorporate certain level of redundancy in the system.
More than one node usually will be deployed to cover the same
region. These nodes may be turned on alternatively to extend the
network lifetime or simultaneously to increase the detection
probability. If the minimum detection accuracy is given as a user
constraint, the resource management problem for the system is to
determine which sensor nodes should be turned on to process which
data acquisition and signal processing application such that the
network lifetime can be maximized while meeting the required
detection accuracy. This is a well known general assignment
problem which has been proven to be NP-complete [4].
Most of the traditional resource optimization algorithms are solved
in a centralized, off-line approach which is not suitable for a
distributed system. In this paper we study the use of distributed
genetic algorithm (GA) to solve the above mentioned optimization
problem, potentially using processing capabilities residing on nodes
of the distributed sensor network. One of the major characteristics of
the GA is that it is “embarrassingly parallel”, in the sense that, its
workload can easily be evenly distributed among processors,
making it an appropriate choice for solving optimization problems

Copyright 2006 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
ISLPED’06, October 4–6, 2006, Tegernsee, Germany.
Copyright 2006 ACM 1-59593-462-6/06/0010...$5.00.

191

in distributed systems. The configurations of the distributed, multi-
deme GA, such as the population size, the migration rate, and the
parallelism, has a significant impact on the quality of the search [8].
Finding efficient configurations of the distributed GA is an
important research topic. The contribution of this paper is twofold.
Firstly, the resource management problem is formulated as a
constraint optimization problem and is solved using a distributed
GA. The simulation results show that the resulting task allocation
scheme increases the system lifetime by 14.4% in average,
comparing to heuristic approaches. Secondly, empirical analysis
results are provided that reveals the relationship between the
configuration parameters and the quality of the search. A regression
model is presented that estimates the runtime of the distributed GA
given the configuration parameters. This model is then used to find
energy efficient configurations of the algorithm.
Many previous works on sensor network resource management and
task allocation address network communication issues [5][6]. In
these schemes the nodes are dynamically awakened to route a
message. In reference [7] the resource allocation problem in a
vehicle tracking system is modeled as a virtual market and solved
using feedback control. This work focuses more on the tracking of a
moving object rather than the collaborative detection of a static
event. Therefore it cannot be applied in the environment monitoring
system. Reference [9] focuses on task allocation on the gateways in
a cluster-based sensor network. The problem is also formulated as a
constraint optimization problem and is solved using simulated
annealing, which is a centralized stochastic searching algorithm.
Compared with reference [9], the resource management problem
considered in this paper has a different set of constraints and
objective functions and is solved using a distributed GA.
The rest of this paper is organized as follows. Section 2 introduces
the sensor network architecture. Section 3 presents the distributed
GA algorithm. Section 4 provides the empirical analysis of the
relationship between the configuration parameters and the quality of
search of GA and derives the regression model for runtime
estimation. Section 5 discusses the utilization of the regression
model to design energy efficient distributed GA. Sections 6 and 7
provide the experimental results and summaries, respectively.

2. SENSOR NETWORK ARCHITECTURE
We consider the sensor network that is deployed with a certain level
of redundancy. The network can be partitioned into several clusters.
Each cluster consists of p sensor nodes that are responsible for
performing monitoring and hazard detection in the same region.
Each sensor node is low cost and low quality; however combined
together they provide very accurate detection. The nodes in the
same cluster have direct communication with each other via wireless
communication channels. The nodes in different clusters
communicate with each other through gateways. In this work we
assume that the clustering and routing scheme is provided. We also
assume that each cluster has advanced data fusion capability so that
the traffic of inter-cluster communication is low.
An array of w sensors is installed on each node. The reading from
these sensors can be sampled by l different sampling frequencies.
Obviously, higher sampling frequency leads to higher detection
probability while consumes more energy. The sampled data from
sensor i can be analyzed in xi different ways. They provide different
tradeoffs between accuracy and energy dissipation. A detection
method (i.e. task) is considered as a combination of sensing
function, sampling frequency and signal processing algorithm.

Each task-processor pair (i, k), 1 ≤ i ≤ n and 1 ≤ k ≤ p, associates
with two variables powi,k and probi,k, which represent the power

consumption and the detection probability of task i when it is
running on processor k. The probi,k is a function of the location and
the environment of the sensor node. We assume that this function is
pre-calibrated and installed on each sensor node before its
deployment. The sensor node will collect the environment
information and calculate the detection probability using the
provided function periodically. To improve the detection
probability, the node is allowed to use more than one detection
method at the same time. The combined detection probability of
node k can be calculated as ∏

Δ∈
−−

ki
kiprob)1(1 , , where Δk is the set

of tasks that are allocated to node k. The total node power
consumption can be calculated as ∑

Δ∈ ki
kipow , . The detection

probability Prob of a cluster with p nodes is calculated as
∏ ∏
≤≤ Δ∈

−−=
pk i

ki
k

probProb
1

,)1(1 .

The goal of resource management is to find the Δk for each
processor k so that the combined detection probability of the cluster
is larger than the user defined constraint while the network lifetime
is maximized. In this work, we define the network lifetime as the
time from the deployment of the sensor network to the time when
the first node runs out of battery energy. We assume that each
sensor node is built with the smart battery Bus (SMBus) [10] which
enables the system software to keep tracking of the remaining
battery capacity and estimate the remaining lifetime.

3. RESOURCE MANAGEMENT USING
DISTRIBUTED GA

A Genetic Algorithm (GA) is a stochastic search technique based on
the mechanism of natural selection and recombination. It starts with
an initial population of individuals, i.e. a set of randomly generated
candidate solutions. The solutions are represented by chromosomes,
which are collections of numbers or symbols that map onto
parameters of the problem. Individuals are evolved from generation
to generation, with selection, mating, and mutation operators that
provide an effective combination of exploration of the global search
space and pressure to converge to the global minimum. The solution
quality is measured by a fitness function.
The Island multi-deme GA is one of the parallel GA models that are
widely used [8]. In this model, the population is divided into several
sub-populations and distributed on different processors. Each sub-
population evolves independently for a few generations, before one
or more of the best individuals of the sub-populations migrate across
processors. The time between migrations is called epoch.
In this work the Island multi-deme GA is used to optimize the
resource management for a cluster of sensor nodes. Each individual
solution is a chromosome of n symbols, where n is the total number
of tasks in the cluster. We assume that each task can only be
selected by at most one sensor node in a cluster because multiple
executions of the same task only generate redundant information. If
the jth task is allocated to node x then the jth entry of the
chromosome is equal to x. If the jth entry of the chromosome is -1
then this task is not allocated to any of the processors. Denote the
user specified minimum detection probability as probth, the fitness
function is:

⎪⎩

⎪
⎨
⎧ <

= ∑
Δ∈≤≤

ki
kikpk

th

powB
Prob Prob

fitness otherwise)/(min
 if 0

,1

 (1)

where Bk is the remaining battery capacity of node k. The fitness of
an individual is 0 if the corresponding resource management scheme

192

np=8

0.0112

0.012

0.0128

0.0136

0 100 200 300 400
pop

fit
ne

ss

c=5 c=10
c=15 c=20
c=25 c=30

np=3

0.0112

0.0116

0.012

0.0124

0.0128

0 100 200 300 400
pop

fit
ne

ss

c=5 c=10
c=15 c=20
c=25 c=30

cannot meet the user specified detection threshold; otherwise its
fitness is equal to the minimum remaining lifetime of the nodes.
Single point crossover mating function is used in our experiment.
The mutation probability is set to 1%, and involves flipping bits in
integer representations of the parameters stored in chromosomes.
The GA is running on np processors. Each sub-population is
initialized randomly and its size is denoted as pop. The sub-
population evolves independently for c generations, and then 5 of
the best individuals are broadcast to all other processors. The three
parameters, np, pop and c, will be referred as the configuration
parameters in the rest of this paper. The value of the configuration
parameters has significant impact on the convergence speed of the
GA and the quality of the solution. An empirical analysis is next.

4. CONFIGURATION PARAMETERS
We are interested in understanding the effect of configuration
parameters on the quality of the search of the distributed GA that is
previously discussed. Some work has been carried out in this area
[8]. However, most of these involve the analysis of simple
optimization problems such as the fully deceptive function [12].
Whether their results can be applied to our problem is unknown.
Due to the extremely large search space and very complicated
stochastic behavior of the GA, we found that it is difficult to
perform an analytical study. Therefore, extensive experiments have
been simulated and the relation between the configuration
parameters and the quality of search is derived empirically.

Figure 1 Normalized fitness vs. Sub-population size
Two sets of experiments have been carried out. In these
experiments, we model a cluster of 10 sensor nodes. There are 100
tasks available. The GA is running on np sensor nodes with np ≤ 10.
The detection probability and the power consumption of each task
are uniformly distributed random variables whose range is 1% ~
25% and 0.1Watt ~ 10Watt respectively. The battery of each sensor
has the capacity of 5000 Ampere⋅hour and the Vdd is 1V. Because
GA is a stochastic algorithm, we run each simulation 50 times and
report the mean value.
The first set of experiments is designed to find out the effect of the
configuration parameters on the quality of the solution. We swept
the np from 2 to 8, the pop from 25 to 350, and the c from 1 to 35.
For each configuration, the distributed GA is simulated. The GA
will stop when the fitness of the best individual does not improve
for 2000 generations. The relation between the pop and the
normalized fitness of the best individual is reported. Figure 1 shows
two sets of data for np (i.e. the number of processors) equal to 8 and
3. The results show that increasing both the pop and the np improves
the quality of the solution. However, varying c has very little impact
on it. Therefore the quality of the solution is determined by the size
of the total population which is the product of the pop and np.
The second set of experiments is designed to find out the effect of
the configuration parameters on the runtime of the GA. The value of
np, pop and c are swept in the same way as the first experiment. The
GA stops when the fitness of the best individual exceeds the

threshold which is set to be 5 times of the expected fitness of a
random individual. The number of generations that the GA has
iterated is reported. Due to the iterative nature of GA, it is
reasonable to assume that the runtime of each generation is
approximately the same and it increases linearly as population size
increases. Therefore we use the product of pop and the number of
generations that the GA has iterated as a measure of the runtime.

Figure 2 Runtime vs. configuration parameters

The relation among pop, c, np and the runtime are extracted from
the results of second experiment. Figure 2 (a)-(c) show some of the
data that we have obtained. Several observations can be made from
these data. First, when the size of the sub-population increases, the
runtime increases linearly. Combined with the results from the first
experiment we can see that if the goal of the GA is to find the best
possible solution, then a large population should be used. However,
if the goal of the GA is to find a good solution in a short time, then
increasing the population size will not help. Instead a small
population should be used. Second, reducing the migration rate will
result an almost linear increase in solution time. The slope is the
same for different sub population size. Third, increasing the number
of processors will reduce runtime, and this effect is more dominant
when the sub-population is small.
In order to consider the combined effect of all of the three
configuration parameters, we introduce a new variable called
effective population (Epop). The size of the effective population
increases when the size of the sub-population, the parallelism or the
migration rate increases. It can be calculated as the following:

 cnppoppopEpop /)1(−⋅+= (2)
Given the effective population, the runtime of the distributed GA
can be predicted. Let G denote the number of generations that the
GA has iterated before it finds the solution with the required fitness.
Figure 3 (a) gives the relation between Epop and G. It shows that G
is a continuous and differentiable function of Epop.
Based on the observation, we construct a prediction model to predict
the number of generations that the GA has iterated.

(a) Runtime vs. Sub-population

np=8

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

0 100 200 300
pop

ru
nt

im
e

c=5 c=10
c=15 c=20
c=25 c=30

np=8

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

0 10 20 30c

ru
nt

im
e

ppo=50 pop=100
pop=150 pop=200
pop=250

(b) Runtime vs. length of epoch

(c) Runtime vs. parallelism

c=30

0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

2.0E+05

2 4 6 8
np

ru
nt

im
e

pop=25 pop=50
pop=100 pop=150
pop=200 pop=250

193

 ∑
=

++=
5

1
0 //

i

i
i EpopaEpopaaG (3)

The coefficients a, a0 …, a5 are obtained using regression analysis.
Note that the value of the coefficients will change if the experiment
setup changes. Here the experiment setup includes the threshold of
fitness and the distribution function of prob and power. For each
new setup, regression analysis should be performed to obtain the
values of the coefficients.

Figure 3 Runtime vs. effective population
The above model gives quite accurate prediction of the number of
generations that GA has iterated given the configuration parameters.
Figure 3 (b) compares the prediction model with the simulated
results. The blue dots give the G value obtained from simulation and
the magenta dots give the G value obtained using the prediction
model. The runtime T is measured as the product of pop and the
number of generations popGT ⋅= .

5. ENERGY EFFICIENT CONFIGURATIONS OF
DISTRIBUTED GA

Sensor nodes are energy constraint systems. Any application
running on the sensor node should be designed carefully to achieve
high speed and energy efficiency. In this section we will discuss
how to select the configuration parameters to minimize the energy
dissipation of the distributed GA.
In a computing system with fixed supply voltage (Vdd) and clock
frequency, reducing the runtime of an algorithm leads to linear
reduction of the energy dissipation if the processor can be turned off
after the program finishes. More energy saving is possible by using
dynamic voltage and frequency scaling (DVFS), which is one of the
runtime power management approaches that is supported by many
processors for the state-of-the-art mobile computing platforms. It is
a property of CMOS digital circuit that reducing the Vdd can reduce
the energy dissipation quadratically but increase the circuit delay
linearly [11]. In a system with DVFS capability, the program is
running at the minimum supply voltage and clock frequency so that
it finishes just before the deadline. Due to the convex relation
between the energy and the runtime, this gives more energy saving
than running the program at the nominal speed and turn off the
processor after the program finishes.
Population migration among the processors is an important feature
in distributed GA. The communication energy to broadcast the best
individuals must be considered. Under the assumption of a fixed
transmission power and a constant transmission speed, the
communication energy is proportional to the size of the transmitted
data. The communication energy will not be affected by DVFS.
The computing energy is a product of the runtime and the power
consumption of the processor. Therefore, the runtime model
proposed in Section 4 is the key for the energy estimation of the
distributed GA. While increasing the migration rate, decreasing the
population size and increasing the parallelism reduce the runtime of

GA and consequently reduce the computing energy, frequent
population migration leads to high communication energy. The
configuration parameters must be selected carefully to minimize the
overall system energy dissipation, which is the sum of computing
energy and communication energy.
Let Tnom denote the process time for a single individual in each
generation at nominal Vdd and let pnom denote the power
consumption of the processor at nominal Vdd. The energy dissipation
of GA on a processor without DVFS can be calculated as:

 bitnomnom ENcGTpTE ⋅⋅+⋅⋅= / , (4)
where G is the number of generations that GA has iterated, T is the
runtime of the GA that is measured as the product of pop and G, c is
the length of an epoch, N is the size of data that is broadcasted
during each population migration, and Ebit is the energy to transmit
one bit data. The first term in equation (4) is the computing energy
and the second term is the communication energy. Furthermore,

nomnom pT ⋅ represents the computing energy to processor one

individual in each generation and bitEN ⋅ represents the
communication energy to broadcast the best individual during one
migration. Tnom, pnom, and Ebit are hardware related constant
parameters. N is determined by the size of migrations which is also
a constant value. Because we are not interested in calculating the
absolute energy dissipation, we simplify equation (4) and consider a
normalized energy dissipation which is calculated as the following,

 mig
nomnom

norm E
c
GT

pT
EE +=
⋅

= , (5)

where Emig is the ratio of communication energy versus computing

energy and it is calculated as
nomnom

bit
mig pT

ENE
⋅
⋅

= . As we can see the

value of Emig is determined by the system hardware configuration.
For example, the power consumption of a Lucent ORiNOCO USB
Wireless Adapter is 360mA in TX mode and 245mA in RX mode.
The typical active power of an Intel XScale processor is 300mA.
Assume that the data is transmitted at 1Mbit/s. If N equals to 1k
bytes and Tnom equals to 5μs, which is the time to run 10k
instructions at 200MHz clock, then Emig is approximately 160.
Enorm is an increasing function of pop and a decreasing function of
np because changing these two parameters only affects the
computing energy. The only configuration parameter that affects
both the computing and communication energy is c. Provided with
the value of pop, np, Emig, it is not difficult to find the optimal c that

minimizes Enorm by solving the differential equation 0=
∂

∂
c

Enorm .

Because GA is running on multiple sensor nodes, the total energy
dissipation can be calculated as normtotal EnpE ⋅= where np is the
parallelism of the GA.
If the DVFS is available on the processor, then the computing
energy can be scaled quadratically as the runtime decreases. The
energy dissipation of GA on each processor can be calculated as the
following,

 bitnomnom ENcGsTpTEDVFS ⋅⋅+⋅⋅⋅= /2 (6)

Here s is the scaling factor and it is calculated as
req

nom

T
TTs ⋅

= , where

Treq is the deadline before which the GA must return a solution with
the required fitness. Again, we simplify equation (6) and consider
the normalized energy dissipation as the following,

(a) G vs. effective population G (b) Comparing predicted and actual G

50

150

250

350

450

0 500 1000 1500

Effective Population

G
en

er
at

io
ns

50

150

250

350

450

0 500 1000 1500

Effective Population

G
en

er
at

io
ns

Actual runtime

Estimated runtime

194

 migreqnomnorm EcGTTTEDVFS '/)/(3 ⋅+⋅= , (7)

migE ' is calculated as
reqnom

bit
mig Tp

ENE
⋅

⋅
=' which stands for the ratio

of the communication energy for one migration versus the
computing energy of the program if if takes exactly Treq time when
running at the nominal Vdd. For the previous mentioned hardware
system, which consists of Lucent ORiNOCO USB Wireless Adapter
and Intel XScale processor, if the Treq is 1ms then E’mig is
approximately 0.8.
Again, the total energy dissipation can be calculated as

npEDVFSEDVFS normtotal ⋅= and the optimal c that minimizes the
energy dissipation can be found by solving the differential

equation 0=
∂

∂
c

EDVFSnorm .

Plug in the runtime estimation of G and T into equation (4)~(7), the
energy dissipation of GA can be expressed as a function of the
configuration parameters. Figure 4 (a) shows the relation between
Enorm and c in a system without DVFS. The np and pop are set to 5
and 100 respectively. The Emig varies from 90 to 180. As we can see
from the figure, the energy is an increasing function of c for small
Emig and a decreasing function of c for large Emig. Furthermore,
when the Emig falls into certain range, the energy is first a decreasing
then an increasing function of c. In this case, we need to solve the
previous mentioned differential equation to find the most energy
efficient migration rate. When the parameter c gets larger, the Enorm
under different Emig approach to the same value. This is because the
migration rate is so low that a small difference in the
communication energy does not have a significant affect on the total
energy.

Figure 4 Energy vs. configuration parameters without DVFS

Figure 5 Energy vs. configuration parameters with DVFS
Figure 4 (b) shows the relation between Etotal and np in a system
without DVFS. The parameters c and pop are set to 5 and 100
respectively. Emig varies from 90 to 180. It is interesting to note that

the total energy always increases no matter how we change the Emig.
This indicates that without DVFS the energy efficiency will
decrease as the parallelism increases.
Figure 5 (a) shows the relation between EDVFSnorm and c in a
system with DVFS. The np is set to 5, the pop is set to 100 and the
E’mig varies from 1.0 to 0.4. In this figure, we see the similar trend
as what has been shown for the system without DVFS. Figure 5 (b)
shows the relation between the EDVFStotal and np with E’mig varies
from 0.4 to 0.1. As we can see that for systems with E’mig≥0.3,
increasing the parallelism always increases the total energy
dissipation. However, for systems with E’mig < 0.3, increasing the
parallelism will first increase then decrease the total energy. This is
because increasing the parallelism reduces the overall computing
energy quadratically and increases the overall communication
energy linearly. Eventually the quadratic decreasing in computing
energy will become dominant.

6. EXPERIMENTAL RESULTS
In order to evaluate the performance of the GA based resource
management scheme, a C++ based software program is constructed
to emulate the environment monitoring sensor network. The cluster
consists of 10 low cost and low quality sensor nodes and 100 tasks.
The battery of each sensor has the capacity of 5000 Ampere⋅hour.
The detection probability and the power consumption of each task
are randomly generated. Different distributions with different
variances are tested in the experiment. Furthermore, to emulate the
behavior of the real sensor network which is deployed in a dynamic
environment, the detection probability of the sensors is constantly
changing. Every 1000 hours, for a set of x sensor nodes, their
detection probability probi, 1 ≤ i ≤ 100 will be regenerated and
reapplied to model the change of their environment. The x is set to
be 1, 2, and 5.
The environment setup is named by a quintuplet (distribution, prob
variance, power variance, biased/unbiased, x). The first field
specifies the type of distribution that is used to generate the
detection probability and power consumption of each task. It can
either be uniform distribution or normal distribution. The second
and third filed specifies the variance of the detection probability and
the power consumption respectively. The fourth field is either
biased or unbiased. When an environment setup is biased, half of the
sensor nodes have lower power consumption than the others. This
field is designed to model a heterogeneous network. The final field
specifies the number of sensors whose detection probability changes
due to changes in the environment. Table 1 column 1 gives the list
of environment setups that were tested in our experiments. Note that
the variance of power consumption is different for the biased and
unbiased environment.
Our distributed GA algorithm which is presented in section 4 is
denoted as GA-lifetime, since its objective is to maximize the
lifetime of the sensor network. The program is distributed on 5
processors (np = 5). The subpopulation size is set to 100 (pop = 100)
and the number of generations in each epoch is 5 (c = 5).
We designed two algorithms to compare with the GA-lifetime. The
first one is also a distributed GA whose objective is to minimize the
total power consumption of the cluster. Therefore it is denoted as
GA-power. Instead of using equation (1), the GA-power uses a
fitness function as the following.

⎪⎩

⎪
⎨
⎧ <

= ∑
Δ∈ ki

kipow
Prob

fitness otherwise /1
Prob if 0

,

th
.

np=5 pop=100

1.5E+04

1.6E+04

1.7E+04

1.8E+04

1.9E+04

0 10 20 30
c

En
or

m

Emig=180 Emig=150
Emig=120 Emig=90

(b) Etotal vs. np (a) Enorm vs. c

c=5 pop=100

0.E+00
2.E+04
4.E+04
6.E+04
8.E+04
1.E+05
1.E+05
1.E+05

2 7 12
np

Et
ot

al

Emig=180
Emig=150
Emig=120
Emig=90

np=5 pop=100

20

30

40

50

60

0 10 20 30
c

ED
VF

Sn
or

m

E'mig=1.0 E'mig=0.8
E'mig=0.6 E'mig=0.4

c=5 pop=100

20

60

100

140

180

0 5 10
np

ED
VF

St
ot

al

E'mig=0.4 E'mig=0.3
E'mig=0.2 E'mig=0.1

(a) EDVFSnorm vs. c (b) EDVFStotal vs. np

195

-20

-10

0

10

20

30

40

50

60

x=1 x=2 x=5%
 li

fe
tim

e
im

pr
ov

em
en

t

normal, 2, 2, unbiased, *
normal, 1, 1, unbiased, *
normal, 2, 5.5, biased, *
normal, 1.5, 4.2, biased, *
uniform, 8.3, 8.3, unbiased, *
uniform, 8.3, 7.1, biased, *

-20

0

20

40

60

x=1 x=2 x=5%
 li

fe
tim

e
im

pr
ov

em
en

t

normal, 2, 2, unbiased, *
normal, 1, 1, unbiased, *
normal, 2, 5.5, biased, *
normal, 1.5, 4.2, biased, *
uniform, 8.3, 8.3, unbiased, *
uniform, 8.3, 7.1, biased, *

The second one is a heuristic algorithm which selects and allocates
task based on the power versus detection probability ratio. For each
task, it first selects the sensor node that has the highest power vs.
detection probability ratio. Then it arranges the available tasks
based on the descending order of this ratio. From the beginning of
the list the algorithm selects the tasks one by one and assigns them
to the sensor node, which is the most power efficient, until the
overall detection probability of the cluster exceeds the user defined
threshold Probth. In our experiment, the Probth is set to 99.9%. The
same threshold is applied to two other programs as well. We applied
the above mentioned three resource management algorithms in the
sensor network emulator. The lifetime of the network is recorded.
The results are provided in Table 1. The first column specifies the
environment setup and the last three columns specify the network
lifetime (in hours) with different resource management algorithms.

Table 1 Network lifetime under different algorithms
Figure 6 shows the percent lifetime improvement of GA-lifetime
relative to the heuristic algorithm. We can see that the GA-lifetime
generally works better than the heuristic algorithm. The average
lifetime improvement is 14.4%. The only case for which the
heuristic algorithm works better than the GA-lifetime is when the
detection probability and power consumption of the tasks are
distributed uniformly and the network is unbiased. This is because,
in this environment setup, the detection probability and power
consumption have significant variety. Therefore, there exist some
task-processor pairs that are much more power efficient than others.
A similar reason can be used to explain why the GA-lifetime works
relatively better in the environment setup with normal distribution.
Figure 7 shows the comparison between the GA-lifetime and the
GA-power. The average lifetime improvement of GA-lifetime over
GA-power is 6.5%. This indicates that merely reducing the power
consumption is not a good way to improve the network lifetime. If a
sensor node has more remaining battery, it should be allocated with
more tasks even though it is not the most power efficient node that
can be used to process these tasks. In another word, to extend the
network lifetime, it is more important to evenly distribute the tasks.

We also observe that the GA-power outperforms the GA-lifetime
when the environment setup is uniform and unbiased. This shows us
that these two algorithms are complementary to each other, and they
can be applied in different situations.

Figure 6 GA-lifetime vs. heuristic algorithm

Figure 7 GA-lifetime vs. GA-power

7. CONCLUSIONS
In this paper we present a distributed GA algorithm that solves the
resource management problem in a sensor network. A regression
estimation model is presented that estimates the runtime of this
algorithm. It is used to find the energy efficient configurations of the
GA. The experimental results show that the proposed algorithm
improves network lifetime by 14.4% in average.

8. REFERENCES
[1] ISTAG, “Ambient Intelligence: From Vision to Reality,” Sept. 2003.
[2] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam and E. Cayirci, “A Survey on

Sensor Networks,” IEEE Communications Magazine, Volume 40, Issue 8, pp.
102-114, Aug. 2002.

[3] E. R. Post and M. Orth, “Smart Fabric, or Wearable Computing,” Proc. First Int’l
Symp. Wearable Computers, pp. 167-168, Oct. 1997.

[4] H. Feltl and G. R. Raidl, “Evolutionary computation and optimization (ECO): An
improved hybrid genetic algorithm for the generalized assignment problem,”
Proceedings of the 2004 ACM symposium on Applied computing, March 2004.

[5] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energyefficient
communication protocol for wireless microsensor networks,” Proceeding of
International Conference on System Sciences (HICSS), Jan. 2000.

[6] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Topology
management for sensor networks: Exploiting latency and density,” Proceeding of
International Symposium on Mobile Ad Hoc Networking and Computing, 2002.

[7] G. Mainland, D. C. Parkes, and M. Welsh, “Decentralized, Adaptive Resource
Allocation for Sensor Networks,” Symposium on Networked Systems Design and
Implementation, May 2005.

[8] E. Cantu-Paz, “A Survey of Parallel Genetic Algorithms,” Calculateurs
Paralleles, Reseaux et Systems Repartis, Vol. 10, No. 2.

[9] M. Younis, K. Akkaya, and A. Kunjithapatham, “Optimization of task allocation
in a cluster-based sensor network,” Proceedings of IEEE International
Symposium on Computers and Communication, 2003.

[10] http://smbus.org/.
[11] M. Pedram, "Power Minimization in IC Design: Principles and Applications,"

ACM Trans. on Design Auto. of Elec. Systems, Vol. 1, No. 1, pp. 3-56, 1996.
[12] E. Cantu-Paz, “Markov chain models of parallel genetic algorithms,” IEEE

Transactions on Evolutionary Computation, Vol. 4, Issue 3, pp 216-226, Sep.
2000.

ENVIRONMENT SETUP GA-
LIFETIME

GA-
POWER

HEURIS
TIC

uniform, 8.3, 7.1, biased, 1 44752.22 41930.85 40066.12
uniform, 8.3, 7.1, biased, 2 42158.9 35224.52 35028.29
uniform, 8.3, 7.1, biased, 5 42186.89 33207.64 31848.58

uniform, 8.3, 8.3, unbiased, 1 23874.2 26462.19 26776.26
uniform, 8.3, 8.3, unbiased, 2 26828.16 31983.17 32294.36
uniform, 8.3, 8.3, unbiased, 5 27656.94 29365.77 29794.95

normal, 2, 5.5, biased, 1 480000 430909.1 450000
normal, 2, 5.5, biased, 2 511200.4 436666.7 450000
normal, 2, 5.5, biased, 5 507500 404285.7 416923.1

normal, 2, 2, unbiased, 1 14531.39 14218.28 10358.73
normal, 2, 2, unbiased, 2 13892.64 10881.77 9143.943
normal, 2, 2, unbiased, 5 15708.92 16131.24 14628.62

normal, 1, 1, unbiased, 1 2788.086 2224.231 2255.613
normal, 1, 1, unbiased, 2 2759.893 2597.652 2248.155
normal, 1, 1, unbiased, 5 2857.993 2647.201 2647.037

normal, 1.5, 4.2, biased, 1 43315.71 40533.04 34495.43
normal, 1.5, 4.2, biased, 2 49774.59 52759.19 47284.2
normal, 1.5, 4.2, biased, 5 50744.86 50134.21 48893.41

196

Burns P1026/MAPLD 20051

Spiraling in on Speed-Ups of Genetic Algorithm Solvers
for Coupled Non-Linear ODE System Parameterization

and DNA Code Word Library Synthesis Problems

Dan Burns1, Kevin May1,2, Thomas Renz1, and Virginia Ross1

1 Air Force Research Laboratory
Information Technology Division

burnsd, renzt, rossv @rl.af.mil
315-330-2335, -3423, -4384

2 Clarkson University
maykn@clarkson.edu

Burns P1026/MAPLD 20052

This paper reports comparative results and lessons learned by
developing Genetic Algorithm (GA) based optimization tools for a hard
floating point (FP) and a hard integer (INT) problem, through 3 spirals on
different platforms

– Software on one PC (Labview, MatLab, C) ~100X Speed-Up (FP & INT)
– Distributed software on PC cluster (C/MPI) ~30X linear Speed-Up (FP &

INT)
– Hardware on FPGA (VHDL) ~500X fitness function Speed-Up (INT)

We encountered difficulties related to
– Speed-up options for double precision floating point math
– Tool maturity issues for "automated" transition from C to VHDL
– Automated synthesis of pipelined 2D systolic array for a matrix calculation
– Support for MPI or FPGA-FPGA communication on a cluster with FPGA's

Best platform depends on the type of problem. Experience highlights
the potential for ~1000x speed-up of integer problem using all FPGA
platforms

Abstract

Burns P1026/MAPLD 20053

Outline

• Motivations
• Background: Genetic Algorithm and FPGA Core
• Test Case Problem 1:

– Parameterization of Non-Linear Coupled ODE’s
– Speed-ups: MatLab to C, PC to cluster

• Test Case Problem 2:
– DNA Code Word Library Synthesis
– Speed-ups: PC to cluster, PC to FPGA

• Conclusions and Future Work

Burns P1026/MAPLD 20054

• New/improved architectures/paradigms/engines for hard optimization
problems that calculate in minutes vs. months (speed-up ~40,000x)

• Explore Evolutionary Computing methods for solving optimization
problems, seeking extreme speed-ups over traditional approaches

• Good potential for original work in mission area application domains:
– dynamic reconfiguration of network hosted with constrained resources
– optimization of distributed database architectures and operations
– assignment of routing & loading of vehicles
– composing and evaluating adversary courses of action (Bayesian Belief

Networks)
– generation of adaptable filters for hyper-spectral imaging and compression
– biological process modeling to support DARPA related to bio-hazard sensors

and AFOSR/AFRL efforts and bio-molecular computing paradigms
o Test Case 1: Parameterization of sets of non-linear, coupled ODE’s
o Test Case 2: DNA Code Word Library Synthesis for bio-molecular

computing and nano-self assembly applications
• No turn-key commercial GA FPGA cores available

Motivations

Burns P1026/MAPLD 20055

Background: Genetic Algorithm

• Inspired by processes of
natural selection.

• Population initialized as
collection of random
individuals.

• Individuals evaluated
according to fitness function.

• Genetic operators applied to
population.
– Selection: Offspring population

biased toward more fit
individuals.

– Recombination: Features from
multiple parents combined in
offspring.

– Mutation: Random variation
added to offspring.

Selection
Recombination
Mutation

1
2
3

μ

• Applied successfully as
optimum-seeking
techniques.
– Useful for objective functions

that are discontinuous,
nonconvex, ...

population at
generation g

population at
generation g+1

Burns P1026/MAPLD 20056

• individuals are “records” with Chromosome , Fitness, Evaluated flag, Elite flag
• preliminary VHDL by L. Merkle/Rose Hulman, at AFRL, summer, 2004 (grey)
• completed VHDL by Kevin May/Clarkson Univ., at AFRL, summer 2005 (yellow)

Genetic Algorithm
FPGA Core

Burns P1026/MAPLD 20057

Test Case Problem 1:
Parameterization of Non-Linear ODE’s

• Start with a model, and either measured experimental data or synthetic
known data calculated using a set of parameter values for an experiment

• Determine the constants in the model so that the model predicts
experimental or known data

• For a complex non-linear model containing many floating point parameters,
this is an NP-hard problem that demands efficient, robust search methods.

Burns P1026/MAPLD 20058

• Classical
– Hill-climbing (doesn’t work if error landscape has many local minima)
– Reduce order, do sequential partial fitting with linear tools (slow, complex)

– E.g. MatLab optimization toolbox
o Fminbnd - Golden Section search and parabolic interpolation
o Fminsearch - Nelder-Mead simplex search method

• Evolutionary, e.g. Genetic Algorithm (GA)
– Assigns parameters of candidate solutions to genes in individuals in a large

population and breeds better individuals over many generations using
selection, recombination or mating and mutation operators guided by a fitness
function that grades the quality of the solutions the individuals represent.

– Fitness function can be the least square error or maximum single point error
between known data and the data calculated for an individual.

– Floating point parameter values searched over ranges are scaled to integer
gene values for the GA to manipulate.

• Both methods require many trial solutions of the model. This motivates
us to pursue speed-ups using a cluster or hardware accelerator.

Background: Methods for Parameterizing
Non-Linear ODE Models

Rundell, A.; DeCarlo, R.; Doerschuk, P.; HogenEsch, H.; “Parameter Identification for an
Autonomous 11th Order Nonlinear Model of a Physiological Process”, Proceedings of the
1998 American Control Conference, 6: 3585-3589, 1998.

Burns P1026/MAPLD 20059

Analytical Two Compartment Model of
Antigen/Antibody Binding at Surfaces

Eqn. for C1

x0*xb term in Eqn. for Rf in Eqn. for xb makes the system non-linear

Eqn. for xb

Eqn. for Rf

Eqn. for x0

Zheng, Y.; Rundell, A., “Biosensor Immuno-surface Engineering Inspired by B-cell Membrane Bound
Antibodies: Modeling and Analysis of Multivalent Antigen Capture by Immobilized Antibodies, IEEE
Transactions on NanoBioscience, 2(1):14-25, 2003.

Burns P1026/MAPLD 200510

GA for ODE Parameterization Problem

genes

sort

mate
mutate

Floating point parameters in Model
are scaled to integers for GA.

Burns P1026/MAPLD 200511

Speed Evaluation on PC Platform
- GA Non-Linear ODE Parameterizer

Speed Test_1
(init 200, kprs 20%, muts 10%, gens 100, 30 runs, targ err 2.5, tmax .1,

dt .001, # eqns 7+xt, fitting 4 params)

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+01 1.0E+02 1.0E+03 1.0E+04
in Target Population

Ta
rg

et
 P

op
ul

at
io

n
So

lu
tio

n
Ti

m
e

(s
)

LabView (? Runs, KM PC) LabView (1 Run, DB PC)
LabView (1 Run, DB PC DO) C (1 run)
C (30 runs) M (1 run DB PC)
M_v2 (1 run DB PC) M_v2 (20 runs DB PC)
C_v2 (30 runs)

Results: C ~100-1000x faster than Labview or MatLab(v6).

Burns P1026/MAPLD 200512

Speed-Up vs Number of Processors
 for Farming and Island Model Parallellized Genetic Algorithms

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Number of Processors

Sp
ee

d-
up

Farm ing Model GA

Is land Model GA

Ideal Linear Speed-Up

Speed-up Evaluation on Cluster Platform
- Distributed GA Non-Linear ODE Parameterizer

• Island Model distributed GA migrates 5 best individuals around a ring
topology every epoch of 40 generations

• Coded in C/MPI

Burns P1026/MAPLD 200513

GA Non-Linear ODE Parameterizer
- Future Work?

• Evaluate floating point speed-up options
• Equations involve 3-8 terms, some with 8 double

precision multiplies and 1 divide
• Possible things to try:

– Eric Cigan and Robert Anderson "An Automated System for
Floating- to Fixed-Point Conversion of High Performance of
MATLAB Algorithms in FPGAs and ASICs“, MAPLD 2004,
Paper 228

– Xiaojun Wang, Miriam Leeser, Haiqian Yu, "A Parameterized
Floating-Point Library Applied to Multispectral Image
Clustering“, MAPLD 2004, Paper 166

• Tune MPI and check on larger cluster

Burns P1026/MAPLD 200514

Test Case 2: DNA Code Word Library
Synthesis Problem

• Create library of pairs of complimentary DNA sequences which are free
from undesired cross hybridization across pairs

– e.g. A. Brenneman and A E. Condon, “Strand Design for Bio-Molecular
Computers”, (Survey Paper), Theoretical Computer Science, Vol. 287:1,
2001, pages 39-58.

– Applications in micro-array chips, schemes for computing with bio-molecules,
self-assembly of nano-structures

• Great candidate problem for GA since exhaustive checking is impractical
– Problem complexity increases as more words are desired and library

constraints increase.
– Able to keep large running population of library candidates

• Levenshtein Matrix is used to evaluate Candidates vs. Library and assign
a fitness value to each candidate

– Insertion – Deletion metric
– Accounts for ~98% of total time - motivation for FPGA accelerator

Burns P1026/MAPLD 200515

Each pair in library must bind
perfectly (e.g. 10/10 bases match)

4

0

1

0

0 Constraint Checking
• To admit a new pair into the library, both strands in the

new pair must bind poorly with all strands in all pairs
already in library.

• Must check the quality of binding for all forward and
reverse slidings of new stands with respect to all old
strands. Quality indicated by # of binding base pairs.

Fitness Function Metrics
• Max_Match: The maximum number of complimentary

bases for any sliding position, i.e. the string edit
distance measured by the Levenstein Matrix.

• Number_of_Rejecters: The number of strands already
in the library of strand pairs reject a new strand, using
a threshold “maximum match” criteria.

Burns P1026/MAPLD 200516

DNA Library Synthesis Algorithm Performance Comparison
word length 16, match 10, Lv RC codes, 214 word libraries

Mkv 15 run avg, GA 30 run avg. (1 and 16 proc), stoch 1 run 1 proc

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1 10 100 1000

words found

tim
e

(s
ec

)

GA 1p 30r GA 16p 30r
Mkv 1p 15r Mkv 16p 15r
stoch 1p 1r

• GA (red) finds words faster than Markov for both 1 and 16 processor cases.
• Markov (green) found more words for 1 processor case.
• Stochastic (blue) is very slow due to initially full library that is improved by mutation.

Speed-up Evaluation on Cluster Platform
- Markov, GA, and stochastic algorithms for
DNA Code Word Library Generation Problem

Burns P1026/MAPLD 200517

smart_flip_20.00
pop_to_word0.02
are_you_in_there0.06
compliment_x_str0.08
s2i0.23
clean_up_pop0.38
do_checks0.44
i2s0.65
do_matrix_v698.13
Subroutine Name % Time

Time Profiling to ID FPGA Candidate
- Distributed GA DNA Code Word Library Code

• Time profiling done with GNU gprof
• Levenstein Matrix Calculation Identified as Candidate for Hardware Acceleration

Burns P1026/MAPLD 200518

GA Core Data Path
- Fitness Evaluator

GA Testbench

MemBlock.vhd

NumLib

NumPop

MaxMatch

LibOut

PopOut

NumLib
NumPop
MaxMatch
LibIn

PopIn

DI

DO

ADDR

DI

DO

ADDR

DI

DO

ADDR

LibOut

LibAdd

PopOut

PopAdd

FitIn

FitAdd

North_word

West_word

answerFitOut

RamB16_S36’s

Feeder Arrays
A
B

North

West

Can be used later by GA for sort, mate, etc.

code word library (512 x 32b)

population (512 x 32b)

fitnesses (512 x 16b)

Levenstein Matrix Checker

Burns P1026/MAPLD 200519

Levenshtein Matrix Calculation
Hardware Accelerator Versions

• Ripple Through 2D Pipelined Array
– Present 2 words along the top and left edges of a 2D matrix of 16 x 16

Processing Elements (PE’s), wait for results to ripple through matrix, read
result from lower right cell, repeat for 2 new words

– 185ns per word pair

• 2D Pipelined Systolic Array
– Concurrent comparisons for multiple word pairs in different parts of array
– Present 2 new words along top and left edges of 2D matrix of PE’s
– At Tn, odd half of the checkerboard loads inputs, even half calculates.
– At Tn+1 odd half of the checkerboard calculates, even half loads inputs
– Input words are shifted into array down and right from edges
– Entry of 2 bit sub-words into edges is stagger delayed by registers
– 19.6ns per word pair, 314ns latency (16x2x9.8ns)

Burns P1026/MAPLD 200520

Levenstein Matrix Calculation
Ripple Through 2D Pipeline Array

32

32

4

Do_Matrix.vhd

W
es

t_
W

or
d

North_Word

answer

UL

L

A

B

ans

U

4_Bit_Compare

• Each cell or PE is a 4-bit
MAX/MAX/MAX/ADD/CMP circuit

Resources and Performance:
Number of Slices: 4273 out of 33792 12%
Number of Slice Flip Flops: 1 out of 67584 0%
Number of 4 input LUTs: 7593 out of 67584 11%
Number of bonded IOBs: 69 out of 1104 6%
Estimated Delay: 185ns (5.4 MHz)

• Much slower than 10ns target.

16x16 PE’s

• {U, L, UL}
signals wired
from adjacent
cells’ ‘ans’
output registers.

• {A, B} shift
registers pass
North and West
Word 2bit base
tokens down
cols and across
rows.

• {U, L, UL}
connect to 0’s
depending on
location on
edges

Burns P1026/MAPLD 200521

Systolic Array Feeder Registers

• Feeder registers fetch pairs of North and West
words from Pop and Lib memories for checking

• Calculations flow down and right along diagonals
in alternating checkerboard load/calc cycles

• 2 bit base tokens are wired to edge PE {A,B}
inputs in a staggered wiring pattern running up
into the arrays to delay until needed by PE’s

• North and West words shifted upward into word
register arrays every 2 clocks, even on 1st clock,
odd on next clock, in synch with alternating
checkerboard input/calc in cells

Resources and Performance:
Slices: 4150 out of 33792 12%
Slice Flip Flops: 2456 out of 67584 3%
4 input LUTs: 7300 out of 67584 10%
bonded IOBs: 69 out of 1104 6%
GCLKs: 1 out of 16 6%
Minimum period: 9.8ns (102MHz)
Latency is 32 clocks, answer every 2 clocks

4

answer

32
A

32

B

North_Word

W
es

t_
W

or
d

answer

Register

R
eg

is
te

r

Burns P1026/MAPLD 200522

Memory Interface

NumLib

NumPop

MaxMatch

LibIn

PopIn

LibOut

LibAdd

PopOut

PopAdd

FitIn FitAdd

FitOut

MemBlock.vhd

DI

DO

ADDR

RamB16_S36*

DIP

WE
EN
SSR

DOP

• The MemBlock entity is responsible for receiving the
population and library from the GA and storing them,
as well as the population’s calculated fitness, in
onboard block memories (RamB16_S36)

• The Memblock entity instantiates three of the block
rams to hold the population, library, and fitnesses

• Memblock also instantiates the Feeder Arrays entity,
which sequences all of the words to be compared
from the population and library and returns the fitness
measures.

• Each RamB16_36 can hold 18Kb (512 32bit words)

• EN (enable) and WE (write_enable) activate
reading and writing and are controlled by
output signals from the MemBlock entity.

• DIP and DOP parity bits and SSR
synchronous set-reset pin not used here.

Resources and Performance:
Slices: 4283 of 33792 12%
Slice Flip Flops: 2544 of 67584 3%
4 input LUTs: 7532 of 67584 11%
Bonded IOBs: 98 of 1104 8%
BRAMs: 3 of 144 2%
Minimum clock period: 12.4ns (80.8 MHz)

Burns P1026/MAPLD 200523

• Individuals are “records” with Chromosome , Fitness, Evaluated flag, Elite flag
• Preliminary VHDL by L. Merkle/Rose Hulman, at AFRL, summer, 2004 (grey)
• Completed VHDL by Kevin May/Clarkson Univ., at AFRL, summer 2005 (yellow)

Genetic Algorithm
FPGA Core

Burns P1026/MAPLD 200524

GA Core Datapath
– Top-level Module

• EA parameters and objective function
parameters are written into I/O ports

• When start signal is asserted, EA executes
• StartAck is asserted when EA completes
• Statistics are read from I/O ports

Burns P1026/MAPLD 200525

GA Core Datapath
– Population Module

• Array of individuals
• Population size register
• Permutation generator
• Current permutation element

register
• Current index register

Burns P1026/MAPLD 200526

GA Core Datapath
– PRNG Module

• When resetAndLoad is asserted,
pseudorandom number generator
is initialized with seed input

• Each clock cycle, a new
pseudorandom number appears
on the prn output

Burns P1026/MAPLD 200527

GA and Fitness Function (FF) on PC
0.2us GA +9.8us FF
(complete)

Island Model GA and FF
on Cluster
(complete)

GA on PC FF on FPGA
(VHDL, synthesis complete)

GA and FF on one FPGA
(current work)

GA and FF on HHPC
(future work)

Speed-up Resources

Low500-1,000x
10us/(10 to 20ns)

High15,000-
30,000x
(30 x 1,000x)

Low50x
10us/(0.2us+9.8ns)*

High30X
(30 nodes)

Low1
(0.2us+9.8us)

Speed-up and Resources
for Different Platforms

Burns P1026/MAPLD 200528

Design Tool Paths

PROM, ACE, or JTAG XC2V6000-4FF1517C

C

VHDL

CoDeveloper

VHDL

Burns P1026/MAPLD 200529

Collaborators

Professor Gary B. Lamont, Ph.D.
Department of Electrical & Computer Engineering

AFIT/ENG
WRIGHT-PATTERSON AFB

DAYTON, OH

Dr. John C. Gallagher
Department of Computer Science and Engineering

Wright State University
Dayton, OH 45435-0001

Dr. Ann Rundell, Assistant Professor
Department of Biomedical Engineering

Purdue University
West Lafayette, IN

Dr. Larry Merkle
Rose-Hullman Institute of Technology

Terre Haute, IN

Dr. Tony Macula
State University of New York at Geneseo

Geneseo, NY

Morgan Bishop
JEANSEE Corp.

Geneseo, NY

Burns P1026/MAPLD 200530

Conclusions

• Speed-ups on various platforms demonstrated
– Choice of programming language on PC: 100-1000X
– C/MPI on Cluster: (linear)
– VHDL for FPGA: 500x faster than C

• Distributed Island Model GA successfully applied to two test
case problems

– Non-Linear ODE Parameterizer
– DNA Code Word Library Generation

• Systolic array fitness function evaluator synthesized
– Levenstein Matrix Systolic Array
– Clocks at 80MHz, 500x speed-up over software

• Modular GA Core datapath defined

Burns P1026/MAPLD 200531

Future work

• Complete full 1 FPGA prototype
• Transition to PCMCIA, G5 platforms
• Cluster of FPGAs - communication!
• Add other EC algorithms to FPGA Core

Burns P1026/MAPLD 200532

Genetic Algorithm Hardware References

S. Scott, A. Samal, and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third International
Symposium on Field-programmable Gate Arrays, Monterey, CA, pp. 53-59, Feb. 1995.

• Problem: suite of 7 simple equation test case problems
• HW: Borg board using 2 XC4003’s, 8K RAM, 3 XC4005’s, 8MHz clock
• SW: Silicon Graphics 4D/440 with four MIPS R3000 CPUs at 33 MHz.
• Speed-up: 13-19x in terms of clock cycles, 100x thought to be possible.

P. Graham and B. Nelson, “Genetic algorithms in Software and in Hardware - a Performance Analysis of Workstation and
Custom Computing Machine Implementations”, 1996 Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, Napa Valley, CA, USA, April 1996, pp. 216 – 225.

• Problem: 25 city Traveling Salesman Problem
• SW: HP PA-RISC 125 MHz workstation
• HW: 4 SPLASH 2 FPGA system with 4 memories running at 11 MHz
• Speed-up: 4X in terms of execution time, 50X in terms of clock cycles
• ARPA contract to National Semiconductor in 1994

C. Aporntewan, and P. Chongstitvatana, “A hardware implementation of the Compact Genetic Algorithm”, Proceedings of the
2001 Congress on Evolutionary Computation, 2001, Volume 1, May 2001, pp. 624 - 629 vol. 1.

• Problem: 32 bit one max problem
• SW: 200MHz Ultra Sparc II, SunOS.
• HW: Xilinx Virtex V1000FG680, 42 ns Tclk, (23.6Mhz)
• Speed-up: 1000X (0.15 sec vs 150 sec)

B.E. Wells, C. Patrick, L. Trevino, J. Weir, and J. Steincamp, “ Applying a Genetic Algorithm to Reconfigurable Hardware – a
Case Study”, 2004 MAPLD, paper 169.

• Problem: 65 city Traveling Salesman Problem
• SW: 3.2 Ghz Intel Xeon processor with a large 3-level cache, Linux (Kernel 2.4.21 SMP), hosting a single user. GCC

C compiler (version 3.2.2) with maximum supported level of optimization.
• HW: one Xilinx Virtex II 6000 in HC-36 Hypercomputer™ system from Star Bridge Systems, Inc. 66MHz clock.
• Speed-up: 11.4X in terms of execution time (using 8 function evaluators)

Burns P1026/MAPLD 200533

M.K. Pakhira, R.K. De, “A Hardware Pipeline for Function Optimization Using Genetic Algorithms”, Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, Washington, DC, June 2005, pp. 949-956.

• Problem: suite of 7
• SW: classical (CGA), parallel GA (PGA)
• HW: pipelined GA (PLGA)
• Speed-up: 13-53x over CGA, 1.5-2.3x PLGA over PGA

G.M. Megson and I.M. Bland, “The Systolic Array Genetic Algorithm, An Example of a Systolic Arrays as a Reconfigurable Design
Methodology”, Proceedings of the 1998 IEEE Symposium on FPGA’s for Custom Computing Machines, Apr. 1998, pp. 260-261.

• Problem: None (just doing the GA)
• SW: None
• HW: XC4036XL-09, 690 CLB’s
• Speedup: n/a 34.3ns per gene (28.3 MHz)

Genetic Algorithm Hardware References

From A. Brenneman and A E. Condon, “Strand Design for Bio-Molecular Computers”
(Survey Paper), Theoretical Computer Science, Vol. 287:1, 2002, pages 39-58:

[11] R. Deaton, R. C. Murphy, M. Garzon, D. R. Franceschetti, and S. E. Stevens, Jr., "Good encodings for DNA-based solutions to
combinatorial problems," Proc. DNA Based Computers II, DIMACS Workshop June 10-12, 1996, L. F. Landweber and E. B. Baum,
Editors, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 44, 1999, pages 247- 258.
[12] M. Garzon, R. Deaton, P. Neathery, D. R. Franceschetti, and S. E. Stevens, Jr., "On the encoding problem for DNA computing,"
Preliminary Proc. 3rd DIMACS Workshop on DNA Based Computers, June 23-25, 1997, pages 230- 237.
[13] R. Deaton, M. Garzon, R. C. Murphy, J. A. Rose, D. R. Franceschetti, and S. E. Stevens, Jr., "Genetic search of reliable encodings
for DNA-based computation," Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors), Proceedings of the First
Annual Conference on Genetic Programming 1996.

Code Word Library Design Problem References

Distributed and Hardware Genetic Algorithms Applied

 to the DNA Code Word Library Generation Problem
Daniel J. Burns

Air Force Research Laboratory/IFTC
525 Brooks Rd.

Rome, NY 13441
315-330-2335

burnsd@rl.af.mil

Morgan Bishop
JEANSEE Corp.
525 Brooks Rd.

Rome, NY 13441
315-330-1556

bishopm@rl.af.mil

ABSTRACT
Two high speed implementations of the genetic algorithm (GA)
are described and their performances are evaluated on a highly
constrained DNA Code Word Library Generation test case
problem. The first is a distributed, or multi-deme, Island Model
GA coded in C that uses the Message Passing Interface (MPI)
protocol and runs on multiple processors in a cluster. The second
is a single population GA coded in VHDL that implements both
the GA and the fitness function evaluator in hardware on a single
Field Programmable Logic Array (FPGA) chip. While the
distributed GA is generally applicable to many problem types, the
hardware GA is especially applicable to problems characterized
by a fitness function requiring the calculation of a matrix of
relatively simple integer-only or Boolean logic functions that can
be efficiently implemented in a hardware systolic array.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving - Control
Methods and Search - heuristic methods; B.2.4 [Hardware]:
Arithmetic and logic structures – High speed Arithmetic –
algorithms;B.7.1. [Hardware]: Integrated Circuits - Types and
Design Styles – Gate Arrays

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Genetic Algorithm, distributed, parallel, hardware, systolic array,
speedup, DNA Codes.

1. INTRODUCTION
The Genetic Algorithm (GA) is one of many algorithms available
attacking hard optimization problems. The simple operators used
for selection, mating, and mutation suggest that the GA may
ultimately hold a speed advantage over algorithms with more
complex arithmetic content, especially when implemented in
hardware to achieve high speed solutions. This may be important
in applications where real-time decisions are critical, or where
best solution times are now hours or months. Fitness function
evaluation may consume a large portion of the total solution time
for many problems. In such cases it may be useful to parallelize
the application, or to implement it in hardware. At this point it
becomes an open question whether the GA or any other algorithm
can ultimately yield the fastest possible solutions. The relative
advantage of one optimization algorithm over another depends in
part on the set of arithmetic operations required by the algorithm,
and on how efficiently the operations can be executed by a typical
CPU or when implemented in special purpose hardware. For
example, an algorithm requiring floating point multiplications or
gradient calculations involving division may be slower than one
with only integer arithmetic and Boolean operations. Similarly,
the nature of the application problem fitness function also
influences whether a problem is a good candidate for hardware
acceleration. In this paper we describe a DNA Code Word Library
generation problem that has an integer-only, array type fitness
function. Then we describe two GA solvers for this problem that
pursue extreme speed-ups. The first is a distributed, Island Model
GA that runs on a cluster and achieves ~30x speedup. The second
is a hardware implementation of both the GA and fitness function
evaluator that achieves ~700X speedup. This work represents
preliminary steps toward a third version that targets a hybrid
cluster architecture incorporating FPGAs at each processing node.
This architecture should be able to achieve speedups of over
10,000, and reduce computation times from months to minutes.

The remainder of this paper is organized as follows. Section 2
describes the test case DNA Code Word Library Generation
Problem, its mapping to a GA solution, and results using a
baseline software GA run on one processor. Section 3 discusses
the parallel GA implementation used in the present work. Section
4 discusses the Hardware GA used in the present work. Section 5
discusses the systolic array fitness function evaluator used in the
Hardware GA. Section 6 presents results on the test case problem
for the two GA versions. Finally, we offer suggestions for future
work in Section 7, conclusions in Section 8, and in Section 9
acknowledge others who made contributions to this work.

ACM acknowledges that this contribution was authored or co-authored
by a contractor or affiliate of the [U.S.] Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.

GECCO’06, July 8–12, 2004, Seattle, WA, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

2. DNA CODE WORD LIBRARY
GENERATION PROBLEM
DNA code word libraries contain multiple pairs of Watson-Crick
complementary DNA sequences that are free from undesired
cross-hybridization between any two non-complementary pairs.
They play vital roles in the development of biological and hybrid
information systems that operate at the nanoscale [2], e.g. in
biological microarrays, nano-circuits, memory devices, robust
DNA tags, in breadth-first parallel filtering schemes for solving
optimization problems with bio-molecules, and in nano-
fabrication schemes that would use self-assembled DNA
templates to organize the layout of nano-devices. Various
methods have been proposed for building such codes, including
the GA [6], Markov generated [2], and Stochastic [13] methods.
Recent work [9] has shown that a hybrid GA blended with
Conways lexicode algorithm [4] achieves better performance than
either alone in terms of generating useful codes quickly.
Exhaustive checking is impractical for finding large libraries of
code words of lengths greater than about 12 base pairs.

The core of difficulty for this problem is searching the very large
number of candidate strands that might be added to the library,
and the computational cost of calculating strand binding free
energies from thermodynamics in all of the n2 possible secondary
structures which may form from any two DNA strands of equal
length. The Levenshtein distance, or edit distance metric is a
reasonable but computationally more efficient tool for screening
candidate strings during code design. The edit distance defines the
minimum number of insertions, deletions, or substitutions needed
to transform one string into another. Edit distance can be
considered a generalization of the Hamming distance (HD), and a
minimum edit distance constraint is much more difficult to meet
than HD. HD only considers substitution edits with the strands
aligned fully side by side, and it can be calculated in O(2n) time.
The Levenshtein distance covers all ‘slidings’ of two strands past
each other, and it utilizes the dynamic procedure shown in Figure
1, which completes in O(n2) time (in a sequential program).

cell entry Mi,j = max(Mi-1,j, Mi,j-1 , k + Mi-1,j-1)

where k = 1 if s1i = s2j else k = 0, and

s1 = sequence along top row, s2 = sequence along left column

Figure 1. Calculation of the Levenshtein edit distance metric.

The DNA code word problem can be mapping to a GA by
representing a strand as a string of bits using a substitution such as
A=00, C=01, G=10, T=11. Thus a strand with 16 bases can be
represented by a 32 bit integer. Well known GA operators such as
single point crossover and bit flip mutations are applicable, with

modifications. We allow single point crossover to cut only at base
pair boundaries, and we use a mutation operator that selects the
best of all possible single base mutations. The code design
requirement specifies the desired length of the strands or words,
e.g. n = 16 bases, and the desired edit distance, e.g. d = 10. In
order for a pair of complimentary code words to enter the library,
the new word and its reverse compliment (RC) word must meet
the edit distance requirement when tested against each other and
against each word and each RC word already in the library.

The GA fitness function consists of two numbers that are
tabulated for each candidate word in the population. The first is
the maximum of the absolute differences between the desired edit
distance and the actual edit distances measured between the
candidate word and its RC and every word and every RC word
already in the library, which we call the max_match. The second
is the number of words in already in the library that reject the new
word, which we call the number_of_rejecters. A new word and
its RC word can enter the library when the number of rejecters =
0. We pack the two numbers into one 32 bit word, with the
number_of_rejecters in the upper bits and max_match in the lower
bits to obtain a fitness metric that goes to 0 as a word gets ‘better’.

Figure 2 shows the results of a typical run (on one processor node,
in compiled C) in terms of # Words Found vs. Time, for good
parameter tunings of both the baseline software Stochastic (top
left curve), Markov (middle), and GA (lower) algorithms. Here
the GA uses a population size of 100, no mating, and 1%
mutations. The GA is slower at the beginning, about 10-100
times faster in the middle, and about the same near the end of the
run. Since optimal (the largest possible) code word sets are not
needed in practical applications, one could say that the GA is
superior at finding practical code sets. A version of the stochastic
method was coded and compared, but was not competitive with
these times. Stochastic is similar to GA with only mutation,
except that it starts with a full library and seeks to improve the
fitness of all words, which requires more checks from the start.

Figure 2. Relative performance of GA, Stochastic, and
Markov methods.

To get a sense of problem difficulty, we can calculate the number
of edit distance calculations that must be made between a word
and its RC and all pairs in the library during a generation.
Assuming a population size of 100, a mating probability of 80%, a

mutation probability 1%, and an existing library of 100 pairs,
mating requires (80 children x 2 checks) x (100 words x 2
checks) or 32,000 checks. Mutation requires another (0.01 x
100) x (47 possible mutations x 2 checks) x (100 words x 2
checks) = 18800 checks. At 10 us per check this takes 0.5
seconds, but the constraints are so severe that many words must
be checked to find one that can be added to the library, leading to
run times of hours to assemble large libraries. Since the edit
distance calculation consumes a large portion of the computation
time involved in building such codes, regardless of the search
algorithm used, this problem is a good candidate for speedup by
parallel and hardware implementations, which are discussed next.

3. THE PARALLEL GA
Both the DNA Code Word Library generation problem and the
GA are embarrassingly parallel. Much previous work has been
done on parallel and distributed GAs [5,7].

We use an Island Model GA that passes the top 5 individuals to
adjacent nodes in one direction in a ring configuration after
epochs of 40 generations. We choose the population size so that
the minimum number on individuals at each processor node was
about 100. We typically use from 1 to 30 nodes in the cluster,
with a total population size of 3000 individuals, split as evenly as
possible among the processors. In our version of the Island
Model, communication occurs between a master node and all
other nodes at startup, when one of the termination criteria is met
(maximum time, maximum # of generations, or desired # words
found), and also in two other cases. First, when any processor
finds a word, it is shared immediately with all other processors in
order to keep them all working on extending identical libraries.
Second, the top 5 individuals are passed around the ring in one
direction at epoch boundaries. We did limited experiments with
epoch lengths between 3 and 100 and found that 40 worked well.
We observed that single point crossover mating was very
disruptive to average population fitness, so we typically set
crossover to a low value, or used only mutation. We replace
clones in the population with new random individuals at the end
of each generation. We used either rank or fitness based
selection, with neither clearly better. Our experiments typically
did 30 runs using 1 processor, 30 runs using 2 processors, etc.,
and we averaged the results over all 30 runs for each # of
processors.

Figure 3 shows typical results in terms of the average # words
found vs time (left), and a speed-up curve (right). The different
plots at the left correspond to different #’s of processors, and each
point in each curve is the average over 15 runs. The speedup
curve shows the average time to find 200 words vs # processors
used, normalized to the value for 15 processors. The 3 speedup
curves show ideal linear speedup (red), uncensored speedup
(blue), and censored speedup (green). Censored speedup was
intended to exclude atypical runs. The 2 rows of boxes (lower
right) show the number of runs at each processor value that found
all 200 words (all did), and the lower row of boxes show the
number of runs that finished in a time within one standard
deviation of the average time of all successful runs. In this
experiment the # processors was scanned from 15 to 30, the code
words were 16 bases long with a desired max_match edit distance
of 10, the GA used a population of 3000, there was no crossover,
the mutation probability was 1% , and the 5 best individuals were
passed at epochs of 40 generations. These results show an
approximately linear speedup with # processors.

Figure 3. Average # words found vs # processors and speedup
curve for an experiment scanning the # processors from 15 to
30 (average of 15 runs at each # processor value).

This code was instrumented with MPI extensions that allow
logging the time of the beginning and end of events at each
processor during execution. This analysis is useful for optimizing
the type and placement of MPI communication events. Figure 4
shows typical results after tuning the MPI communication calls.
This tuning decreased the generation time from ~65 ms to ~8 ms.

Figure 4. Timing of communication (blue and green) and
calculation (red line) during a GA generation for nodes 0-9.
Generation boundary is at the beginning of the green area.

The communication overhead is about 25% for the cycle shown in
Figure 4. There is skew and jitter in the total generation times
among the processors due to startup effects, MPI response
latencies, and due to the stochastic nature of the GA. This analysis
is also useful for determining a population size large enough to
guarantee that communication delays do not dominate the total
generation time. Finally, the code was instrumented with GNU
Gprof [8] to observe the duration of various tasks in the
generation cycle (black in Fig. 4). This analysis showed that the
subroutine that calculates the edit distance consumed 98.13% of
the generation time. Therefore, the fitness function evaluator
could be sped up (e.g. by hardware acceleration) by a factor of
about 98.13/(100-98.13) = 112 before the GA algorithm time
would be equal the fitness function evaluation time. Significant
speedup beyond that would require both hardware fitness function
evaluator and a hardware GA, which we discuss next.

4. THE HARDWARE GA
There has been some interest in speeding up GAs by
implementing them in hardware. Reviews and examples of past
work can be found in [12,11,1,14]. These studies are usually
coupled with a particular type of GA and problem, and the results
are often highly problem dependant. Overall speedups of 3-1000X
have been reported.

Our design is different than previous work in that we have
targeted a single chip FPGA implementation with the population
stored and manipulated in fast, on-chip SRAMs that avoid delays
associated with using off chip memory. Also, we use a systolic
array on the same chip for the fitness function evaluator. We
used the relatively inexpensive, commercially available Annapolis
Microsystems Wildcard (PCMCIA) FPGA board that contains a
Xilinx Virtex-II X2CV3000 FPGA chip. Basically, in this
approach a PC executes a C ‘Host’ program that passes run
parameters to an FPGA processing element ‘PE’ that implements
the GA and DNA Code Word application. The Host then receives
reports from the PE when words are found, and when the
hardware application terminates. The PE function is described in
VHDL, which we composed and simulated using the Mentor
Graphics ModelSim tool. We used the Xilinx ISE Webpack or
Synplicity Synplify tools for synthesis.

The FPGA design effort was focused mainly on implementing a
fast function evaluator because the total execution time is
dominated by fitness function evaluation. Details of the design
will be described elsewhere, but here we give an outline of the
main processes. They are initialization, checking fitness, picking
up good words from the population into the library, mutation,
decloning, and reporting results to the host. The FPGA chip
contains static block RAMs (BRAMs) that can be configured as
96 separate 512 word x 32 bit RAMs. We use one BRAM to
hold the population (up to 512 individuals), a second BRAM to
hold the fitnesses, and third BRAM to hold the code word library.
We use an overall architecture that was simply a pipeline of
processes connected between sets of these 3 BRAM types. The
BRAMs are dual ported, which facilitates connection between
separate input and output processes. We determined that with a
population size of 100 and with 100 words in the library, the time
overhead for passing the entire population, fitness, and library
BRAMs around the pipeline was less than 2% of generation time.

A 32 bit pseudo-random number generator (PRNG) was
implemented in this design by an array of 32 32 bit linear
feedback shift registers. The output word is formed by
concatenating one bit from each of the 32 registers. The PRNG
can be seeded by the Host to repeat a run with the same sequence
of random numbers, or with a different set. A new random
number is available at each PE clock edge, and all possible 32 bit
numbers are represented in the sequence before it repeats. The
population can be initialized with random individuals, and the
library can be initialized as empty, or it can be seeded by the Host
with an existing partial library.

The main GA is a tight loop of three processes, the first picking
up good new words from the population into the library, the
second for mutation, and the third for decloning. The pickup
process looks for new good words in the population, and when it

find one it moves it to the library and replaces it with a new
random individual. When a new word enters the library, all of the
fitnesses must be recalculated. In this step operand pairs are read
from the population and library BRAMs and presented to the
fitness evaluator at the PE clock rate, as described in the next
Section. Each population word is checked against its own RC,
and against each library word and each RC library word. The
results are also analyzed and the fitness metrics are determined at
the PE clock rate and stored in the fitness BRAM. During the
mutation process words are selected from the population, and for
each word all 47 possible single base mutations are assembled
into a BRAM and their finesses are checked in a manner similar to
population checking. The mutation that results in the best
improved fitness is used to replace the original word, or if no
mutation improves fitness, one of the 47 mutations is chosen
randomly to replace the original word. When the required
number of words are mutated, or if a mutation is found with 0
fitness that can enter the library, the mutation process ends and the
decloning process starts. This process actually does several
things. First it finds and records the best fitness in the population
(without sorting). Then it replaces any words in the population
that are already in the library with new random individuals. Such
words will have quite good fitness, since only two words in the
library will reject them, but their fitness will never be good
enough. Finally, any clones in the population are replaced with
new random individuals because there is no point in keeping
clones given the type of mutation we use. We do not use mating,
so the next generation then starts with the pickup up process.

Although we don’t typically use mating for this problem, it was
implemented in VHDL. In the interest of speed, we used a table
look up method that implements rank based selection from the top
k individuals of a population of n individuals, where k and n are
BRAM addresses between 0 and 511. For example, for the case
of selection from the top 10 individuals in a population of 100, a
table of 10 9 bit numbers is calculated from the appropriate
cumulative selection probabilities. The index of a parent is chosen
by sampling a 9 bit random number from the lower bits of the 32
bit PRNG, and running an index pointing into the table up from 0
until it points to tabled value larger than the random number. One
less than this index is used as the parent’s index. Using this
approach the Host can calculate the tabled values for any k and n
<=511 and pass them in to the PE at the start of a run. This avoids
resynthesis of the FPGA, which takes time.

All communication between the Host and PE is handled by an
interface that is supplied as an example with the Wildcard
software. It allows both the Host and PE to read and write to a
common 32b register and a common BRAM that reside in the PE.
Communication occurs at the beginning of a run to set GA and
code design parameters, again when the PE finds each word, and
finally at the end of a run. The PE records the generation each
new word is found on, and also the best fitness in the population
vs generation, and it passes this information back to the Host.

At this writing the entire design has been composed and
simulated. The PRNG and fitness evaluator described in the next
section have been synthesized. Together they use less than 20%
of the FPGA chip resources, and the maximum clock frequency is
higher than our 100MHz goal.

5. THE HARDWARE SYSTOLIC ARRAY
FITNESS FUNCTION EVALUATOR
Systolic arrays [10] basically can perform calculations in a 3
dimensional array of cells simultaneously (2 physical dimensions
and the time dimension). They are driven with fast streams of
operands flowing into two edges of an array. In the case of the
Levenshtein calculation, the results corresponding to any two
operands flow as a diagonal front away from those edges toward
the opposite corner of the array where a stream of results is read
out from the lower right cell output. After a latency period of 18
clocks an answer for each set of input operands appears in the
output stream at every clock period.

Figure 5 shows a block diagram of the systolic array fitness
function evaluator and its feeder registers. Register arrays are
needed along the top and bottom edges to sequence portions of the
operands into the inputs of the edge cells at the right times. Bases
in the input words at the right along the top edge and toward the
bottom along the left edge must be delayed in a staggered manner
before being presented to the edge cells. Each cell in the array
contains the circuitry for calculating the max() function shown in
Figure 1, as well as registers for passing bases in the operands
down along columns and to the right along rows through the
array. The array operates in a checkerboard fashion, with the cells
on the even rows on even columns and odd rows on odd columns
in one group, and the others in a second group. The first group
loads inputs on one clock edge, and latches outputs on the next
clock edge. The cells in the second group do the opposite.

Figure 5. Block diagram of hardware systolic array for fitness
function evaluation.

In the present design we actually use two instances of the fitness
function evaluator, one for pickup process, and one for the
mutation process. This is a side effect of writing the source code
with ‘hierarchical’ structure (with multiple processes that can be
added or debugged and changed easily), rather than in a ‘flat’
structure (with all functionality in one big process). Since only
one hardware process can drive a signal, we need to duplicate or
multiplex the inputs and outputs of any component that is used by
more than one process. Multiplexing adds delay and complexity
and can make routing interconnects more difficult, so we
duplicated the fitness evaluator to avoid that potential problem.

6. RESULTS AND DISCUSSION
Results for the baseline software GA DNA Code Word
application run on one processor were shown in Figure 2 and
compared favorably with results using the best known algorithm
found in the literature, the Markov method. Figure 3 also showed
that the performance of the distributed version of the GA scales
approximately linearly with the number of processors used. These
results are shown again in Figure 6 along with a performance
curve for 1 run of a simulation of the hardware version (blue), and
one run of the baseline software GA run on 1 processor using the
same conditions as the hardware for comparison (lower red).
These two new curves were for a population size 16, vs 100 for
the previous (upper) GA curve in Figure 6.

The results show that the hardware version is about 100 times
faster in the early stage of the problem with few words found.
The hardware version (lowest curve) was not extended because
the simulation is too slow to run out to more than a few words.

Figure 6. Relative performance of GA, Markov, and hardware
GA.

To get a better idea of how the hardware version should perform
in the later stages of the problem, we analyzed the simulated
waveforms of the hardware version and constructed a clock cycle
accurate spreadsheet model that calculates total generation time as
a function of population size and the number of words in the
library. We then used the model to construct a curve of
generation time vs # words in the library, for the case of
population size 100. The clock frequency of the FPGA was
assumed to be 100MHz. We also measured the corresponding
actual generation times for the baseline software GA run on one
processor, also for population size 100. The results are shown in
Figure 7, and they indicate that the hardware version (lower
curve) should be about 700X faster than the software version
(upper curve).

Figure 7. Comparison of generation time # words in library
for software and hardware GA DNA Code Word application.
(Population size = 100, composing 16/10 RC codes, no mating,
1% mutations).

7. FUTURE WORK
We plan to synthesize the hardware version and evaluate its
performance. It would be desirable to add thermodynamic
binding free energy calculations and other metrics used in the
Markov method, such as tabulating stacked pairs, which are
adjacent bases that bind between two words. This would enable a
search for an improved (faster) mutation heuristic that would seek
to eliminate stacked pairs. An exhaustive search option would
also be useful. Presently there is no way to know whether
another word exists that can be added to a library without
searching. We estimate that with about 250 words in the library
the present hardware systolic fitness function evaluator could
check all 2^(32-1) candidate words in about 3 hours. This would
actually be faster than the using the present algorithms, which can
run for days before finding words. This would be useful to those
interested in improving the known bounds on the size of optimal
code word libraries. Finally, it would be of interest to implement
a distributed hardware GA version. It might be possible to
process more than one population on the same chip. Another
approach would be to use fast FPGA to FPGA communication
mechanisms to implement a mutli-chip distributed hardware GA.
It would also be of interest to explore hardware versions of the
Markov method, or other evolutionary algorithms.

8. CONCLUSIONS:
We have shown that a GA approach to solving the DNA Code
Generation Problem is competitive with the best known methods
in the literature. We have described a hardware systolic array
implementation of the Levenstrein matrix calculation that
achieves about a factor of 1000X speedup of the fitness function
evaluator for this problem. We have shown that distributed and
hardware GAs offer significant performance improvements of
30X and ~700X, respectively.

9. ACKNOWLEDGEMENTS
Larry Merkle of Rome Hullman Institute of Technology
contributed valuable guidance and encouragement to this project
during a Summer Research Faculty assignment at AFRL. Kevin
May contributed to the coding of the distributed and hardware GA

 fitness function evaluator, and he tested the distributed GA while
an undergraduate at Clarkson University studying Computer
Engineering. Tony Macula of the Mathematics Dept. of SUNY
Genesseo contributed suggestions for the fitness function and
developed the Markov generated algorithm.

10. REFERENCES
[1] Aporntewan, C. and Chongstitvatana, P. , “A Hardware

Implementation of the Compact Genetic Algorithm”,
Proceedings of the 2001 Congress on Evolutionary
Computation, pp. 624-629, 2001.

[2] Bishop, M. , Macula, A. , Pogozelski, W. , and Rykov, V. ,
“DNA Codeword Library Design”, Proc. Foundations of
Nanoscience – Self Assembled Architectures and Devices,
(FNANO), April 2005.

[3] Brenneman, A. and Condon, A.E., “Strand Design for Bio-
Molecular Computation” , Theoretical Computer Science,
Vol. 287, Issue 1, Sept. 2002, Natural computing, pp. 39-58.

[4] Brualdi, R. and Pless, V. , Greedy Codes, Journal of
Combinatorial Theory,(A) 64:10-30, 1993.

[5] Cant-Paz, E. , Efficient and Accurate Parallel Genetic
Algorithms, Kluwer Academic Publishers,Norwell, MA,
2000.

[6] Deaton, R., Garzon, M, Murphy, R.C., Rose, J. A.
Franceschetti, D. R. and Stevens, S. E., Jr., "Genetic search
of reliable encodings for DNA-based computation," Koza,
John R., Goldberg, David E., Fogel, David B., and Riolo,
Rick L. (editors), Proceedings of the First Annual
Conference on Genetic Programming 1996.

[7] De Jong, K.A. and Sarma, J. , “On Decentralizing Selection
Algorithms”, Genetic Algorithms: Proceedings of the Sixth
International Conference (ICGA95), pp. 17-23. Morgan
Kaufmann, July, 1995

[8] gprof: http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html.
[9] Houghten, S.K. , Ashlock, D. and Lennarz, J. , Bounds on

Optimal Edit Metric Codes, Brock University Tech. Rept. #
CS-05-07, July, 2005.

[10] Kung, S.Y. , VLSI Array Processors, Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1987.

[11] Megson, G.M. and Bland, I.M. , “Synthesis of a Systolic
Array Genetic Algorithm”, 12th International Parallel
Processing Symposium / 9th Symposium on Parallel and
Distributed Processing (IPPS/SPDP '98), pp. 316-320,
Proceedings. IEEE Computer Society 1998.

[12] Scott, S. D. , Samal, A., and Seth, S. , "HGA: A hardware
based genetic algorithm", Proc. ACM/SIGDA 3rd Int. Symp.
FPGA's, 1995, pp. 53-59.

[13] Tulpan, D.C. , Hoos, H. , Condon, A. ,“Stochastic Local
Search Algorithms for DNA Word Design”, Eighth
International Meeting on DNA Based Computers(DNA8),
June 2002.

[14] Wells, E.B., et. al., "Applying a Genetic Algorithm to
Reconfigurable Hardware -- a Case Study", paper 179, 2004
MAPLD Conference, Washington, DC, 2004.
http://klabs.org/mapld04/papers/e/e169_wells_p.doc

Burns, et. al. Paper 1035/MAPLD 20061

FPGA Implementation of a Genetic Algorithm and
Systolic Array Levenshtein Matrix Edit Distance

Calculator for Reverse Compliment DNA Code Design

Dan Burns1, Qinru Qiu2, Qing Wu2, and Virginia Ross1

1 Air Force Research Laboratory
Information Technology Division

burnsd, rossv @rl.af.mil
315-330-2335, -4384

2 The State University of New York at Binghamton
qqiu, qwu @binghamton.edu

Burns, et. al. Paper 1035/MAPLD 20062

This paper describes the design, synthesis, and performance of a single FPGA chip design that
achieves a 1000X speed-up on a highly constrained DNA Code generation problem.

• The Application:
– schemes for DNA assisted nano- self assembly, and information processing methods

that store and manipulate data by means of biomolecules, biological assay chips.

• The Problem:
– Generate optimal libraries of hundreds of minimally interacting DNA code word pairs
– There are no known explicit construction methods for such codes
– The bounds on optimal code sizes are unknown and experimentally determined

• The Solution:
– One Xilinx XC2V3000 chip hosted on an Annapolis WildCard-II PCMCIA card on a

Pentium 3 notebook platform that achieves performance on the level of a 1000 node
cluster of Pentium 4s.

– Main features include
• a hardware genetic algorithm guides search over a 4.2B code word space (32 bits)
• 32b x 32b systolic array calculates the Levenshtein Edit Distance between

candidate and selected code words (metric in Genetic Algorithm Fitness Function)
• All data arrays stored on-chip all in BRAM
• 100MHz synthesis results using both Xilinx ISE and Synplicity Synplify tool paths
• Hybrid algorithm using 10-20 minutes of GA followed by 1.5 hr exhaustive search

Abstract

Burns, et. al. Paper 1035/MAPLD 20063

Abstract (cont.)

• Problems Encountered:
– Host/PE communication troublesome, fixed by double buffering registers across

PCMCIA/PE clock boundaries and custom functions
– Large sections of behavioral VHDL code that simulated correctly in ModelSim failed to

synthesize, forcing re-write in all-clocked VHDL
– Annapolis card software library supports only the Synplicity tool set
– No known heuristic algorithms (including GA) are provably capable of producing

globally or even locally optimal codes. Therefore, we implemented a hybrid algorithm
that runs GA for a few minutes, followed by hardware Exhaustive Search (ES) that
finishes in about 1.5 hours. ES uses 2 systolic array fitness evaluators to run
~260*3*4.3 Billion checks of all possible additional words, producing the only known
locally optimum codes.

• Follow-on and Future Work:
– scaling to longer word lengths, updated fitness metric calculator
– a new single chip hardware multi-population distributed GA for additional speed-up
– Use of the multi-pop GA chip in a cluster of FPGA’s approach to yield > 500,000X

speed-ups

Burns, et. al. Paper 1035/MAPLD 20064

Outline

• Motivations
• Background

– DNA Code Word Library Generation Problem
– Speed-ups: PC to cluster, PC to FPGA
– Genetic Algorithm

• FPGA Implementation and Results
• Difficulties and Solutions
• Conclusions and Future Work

Burns, et. al. Paper 1035/MAPLD 20065

• New/improved architectures/paradigms/engines for
solving hard optimization problems in minutes vs.
months (target speed-up ~43,200x)

• Explore hardware based Evolutionary Computing
methods for solving hard optimization problems,
seeking extreme speed-ups over traditional algorithms

• Pursue applications relevant to AFOSR/AFRL missions
o Test Case: DNA Code Word Library Synthesis for bio-

molecular computing paradigms and schemes for
nano-scale self-assembly

• No turn-key commercial GA FPGA cores available
• Software distributed GA shows only linear speed-up

Motivations

Burns, et. al. Paper 1035/MAPLD 20066

Background - Uses of
DNA Code Word Libraries

DNA-Based Cryptography

Ashish Gehani, Thomas LaBean and John Reif
Department of Computer Science,

Duke University, Box 90129, Durham, NC
27708-0129. E-mail: fgeha,thl,reifg@cs.duke.edu

Gehani, A., LaBean, T.H., and Reif, J.H. 1999. DNA-based
Cryptography. 5th DIMACS Workshop on DNA Based Computers,
MIT, June, 1999.

ARKADII G. D.YACHKOV, ANTHONY J. MACULA, WENDY K.
POGOZELSKI, THOMAS E. RENZ, VYACHESLAV V. RYKOV, AND DAVID
C. TORNEY, “NEW INSERTION-DELETION LIKE METRICS FOR DNA
HYBRIDIZATION THERMODYNAMIC MODELING”, Journal of
Computational Biology, Vol. 13, No. 4: pp. 866-881, May, 2006.

Burns, et. al. Paper 1035/MAPLD 20067

DNA Code Word Library
Generation Problem

W1-W1’

W2-W2’

W3-W3’

good binding limited binding
W1-RC(W1), W1’-RC(W1’),
W1-W2, W1-W2’, W1’-W2, W1’-W2’,…

W2-W3, W2-W3’, W2’-W3, W2’-W3’, …

W3-W4, W3-W4’, W3’-W4, W3’-W4’, …

W1
W1’

W2
W2’

W3
W3’

Library of DNA Code
Word Pairs

DNA Code Word Libraries are used in breadth-first parallel filtering methods
for solving optimization problems with bio-molecules, in nano-fabrication
schemes that would use self-assembled DNA templates to organize the layout
of small components, in conceptual methods storing and accessing data in
biological and hybrid information systems, in diagnostic microarrays, and as
data communication codes that can correct frame registration and bit errors.
(Quaternary Reverse Compliment Edit Distance Codes)

Compose libraries composed of many pairs of short DNA strands that bind
perfectly within each pair, but ‘poorly’ across pairs or with Rev. Compliments

Burns, et. al. Paper 1035/MAPLD 20068

Each pair in library must bind
perfectly (e.g. 10/10 bases match)

4

0

1

0

0 Constraint Checking
• To admit a new pair into the library, both strands in the

new pair must bind poorly with all strands in all pairs
already in library.

• Must check the quality of binding for all forward and
reverse slidings of new stands with respect to all old
strands. Quality indicated by # of binding base pairs.

Fitness Function Metrics
• Max_Match: The maximum number of complimentary

bases for any sliding position, i.e. the string edit
distance measured by the Levenstein Matrix.

• Number_of_Rejecters: The number of strands already
in the library of strand pairs reject a new strand, using
a threshold “maximum match” criteria.

Burns, et. al. Paper 1035/MAPLD 20069

Background – the Genetic Algorithm
- an embarasingly parallel search algorithm that scales

• Inspired by processes of
natural selection.

• Population initialized as
collection of random
individuals.

• Individuals evaluated
according to fitness function.

• Genetic operators applied to
population.
– Selection: Offspring population

biased toward more fit
individuals.

– Recombination: Features from
multiple parents combined in
offspring.

– Mutation: Random variation
added to offspring.

Selection
Recombination
Mutation

1
2
3

μ

• Applied successfully as
optimum-seeking
techniques.
– Useful for objective functions

that are discontinuous,
nonconvex, multi-objective, ...

population at
generation g

population at
generation g+1

Burns, et. al. Paper 1035/MAPLD 200610

(Selection & Mating)

(Decloning)

(Sorting)

Pop & Lib
Initialization

Final Reporting

Parameter
Passing

From Host

Pick-Up
Good Words

Mutations

Done?

GA/DNA Main Process Flow Chart

Sort: to # keepers from # pop

Selection: rank based probability

Mating: single point crossover

Mutations: 1% of pop indvs, best of all 47
possible single base changes

Termination: time, # generations, # words

(items in parens not used in FPGA version)

Burns, et. al. Paper 1035/MAPLD 200611

DNA Library Synthesis Algorithm Performance Comparison
word length 16, match 10, Lv RC codes, 214 word libraries

Mkv 15 run avg, GA 30 run avg. (1 and 16 proc), stoch 1 run 1 proc

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1 10 100 1000

words found

tim
e

(s
ec

)

GA 1p 30r GA 16p 30r
Mkv 1p 15r Mkv 16p 15r
stoch 1p 1r

• GA (red) finds words faster than Markov for both 1 and 16 processor cases.
• Markov (green) found more words for 1 processor case.
• Stochastic (blue) is very slow due to initially full library that is improved by mutation.

Speed-up Evaluation on Cluster Platform
- Markov, GA, and stochastic algorithms for DNA Code

Word Library Generation Problem

Burns, et. al. Paper 1035/MAPLD 200612

• Population Individuals are 32 bit integers that represent DNA strands
• 32 bit PRNG needed to initialize population, replace picked-up words, for selection, recombination, and

mutation heuristics. Done with feedback LSR.
• Full GA shown above, but selection and recombination not used to date in FPGA.

Burns, et. al. Paper 1035/MAPLD 200613

Host/PE Process Interaction (1/4)

Host waits for PE
‘Ready for Pars’ PE says ‘Ready to take Pars’

Host does
Global Reset

PE waits for
Global Reset

PE does
Global Reset

actions

PE waits for
‘Take Pars’

Host says ‘Take Pars’

Host waits for
‘PE Has Pars’

Host says ‘Loading Pars’
and loads Pars to LAD SRAM

PE takes Pars from BRAM B side

PE says ‘PE Has Pars’

Global_Reset signal pulse

LAD_Bus_Out.Data_Out

LADRegister

LADRegister

LAD_Bus_Out.Data_Out

Burns, et. al. Paper 1035/MAPLD 200614

Host and PE Process Interaction Time Line (2/4)

Host waits for
‘PE Has a Report’

Host interprets report type
(New Word, Termination for All/Gens/Time

PE waits for
‘Host has report’

Host stores
Word, Gen, Time

Host sets Termination Flag

PE initializes GA_DNA

new word
found?

PE runs a GA generation

PE loads SRAMs
and says

‘PE Has a Report’
+ Report Code

N

Y

LADBRAM(0)

Host tells PE
‘Waiting for PE Has a Report’

PE waits for
Host to say

‘Waiting for PE Has a Report’
LADRegister

Host says
“Host has Report’

LADRegister

New word Termination

Burns, et. al. Paper 1035/MAPLD 200615

GA Core Data Path
- Fitness Evaluator

GA Testbench

MemBlock.vhd

NumLib

NumPop

MaxMatch

LibOut

PopOut

NumLib
NumPop
MaxMatch
LibIn

PopIn

DI

DO

ADDR

DI

DO

ADDR

DI

DO

ADDR

LibOut

LibAdd

PopOut

PopAdd

FitIn

FitAdd

North_word

West_word

answerFitOut

RamB16_S36’s

Feeder Arrays
A
B

North

West

Can be used later by GA for sort, mate, etc.

code word library (512 x 32b)

population (512 x 32b)

fitnesses (512 x 16b)

Levenstein Matrix Checker

Burns, et. al. Paper 1035/MAPLD 200616

Levenstein Matrix Calculation
Ripple Through 2D Pipeline Array

32

32

4

Do_Matrix.vhd

W
es

t_
W

or
d

North_Word

answer

UL

L

A

B

ans

U

4_Bit_Compare

• Each cell or PE is a 4-bit
MAX/MAX/MAX/ADD/CMP circuit

Resources and Performance:
Number of Slices: 4273 out of 33792 12%
Number of Slice Flip Flops: 1 out of 67584 0%
Number of 4 input LUTs: 7593 out of 67584 11%
Number of bonded IOBs: 69 out of 1104 6%
Estimated Delay: 185ns (5.4 MHz)

• Much slower than 10ns target.

16x16 PE’s

• {U, L, UL}
signals wired
from adjacent
cells’ ‘ans’
output registers.

• {A, B} shift
registers pass
North and West
Word 2bit base
tokens down
cols and across
rows.

• {U, L, UL}
connect to 0’s
depending on
location on
edges

Burns, et. al. Paper 1035/MAPLD 200617

GA/DNA Application Core Datapath
Platform: Notebook PC Host/WildCard II FPGA Processing Element (PE)

Software Template: LAD Interface Example

added or
modified

Burns, et. al. Paper 1035/MAPLD 200618

Design Tool Paths

XC2V3000

(XC4VSX35)

(XC2V6000)

C

VHDL

Burns, et. al. Paper 1035/MAPLD 200619

Average Performance Over Multiple Runs
Markov (16 runs), Software GA in C on PC (30 runs),

Hardware GA (30 runs), Hardware GA + Exh. Search (20 runs)

Time vs # Words Found

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Code Words found

Ti
m

e
(s

ec
)

16_10_RC_100_100_100_1%_GA_1pr

16_10_RC_Mkv_1pr

16_10_RC_16_16_16_1%_fpga (Simulated, 100MHz)
FPGA actual avg 30 runs

fpga avg 20 runs

• lower FPGA results are GA for 300sec or 120words, followed by Exhaustive Search to find all words remaining words,
with 2 fitness evaluators, 100MHz on WildCard_II
• real speed-up is now ~ 1000X with 1 FPGA chip
• Simulated (ModelSim) hardware curve is for 100MHz, with one 1 clock systolic array
• upper actual FPGA v1 is 30MHz, one 2 clock SA, GA for 300sec followed by Exhaustive Search (ES) with 2 fitness
evaluators to find all words remaining words
• lower actual FPGA v2 is 100MHz, GA for 300s or 240w one 2 clk SA + Exh Srch 100MHz, two 2 clk SA to optimal, with
initial 22 word set passed in, checking whole pop each mutation

1000X

Burns, et. al. Paper 1035/MAPLD 200620

file_in.txt

GGTCTCATCTACATTC
CATGTATCACATGCCA

file_out.txt

GGTCTCATCTACATTC
CATGTATCACATGCCA
CTGGTGCTGCGAGTCC
GGCAGAGTTAGCGACA
GTTAAGCTCGGAATCA
TATGCGTCACGTACGA

File I/O to enable extension
of partial Code Word Libraries

Output of FPGA version
verified by SynDCode

Codes are verified by SynDCode at
http://s53n101.academic.geneseo.edu/

Burns, et. al. Paper 1035/MAPLD 200621

Histogram of Library Lengths Found
Hardware GA for 5 minutes + Exhaustive Search for 1.5 hr

0
2
4
6
8

10
12
14

115 120 125 130 135 140

Library Length

fr
eq

ue
nc

y GA + ES, pre-seeded

• Hardware GA: 60 tests = 90 hrs actual time
• Equivalent time on 30 node cluster would be 4 months

Hardware GA + Exhaustive Search
Average and Largest Library Results

Burns, et. al. Paper 1035/MAPLD 200622

GA and Fitness Function (FF) on PC
0.2us GA +9.8us FF
(complete)

Island Model GA and FF
on Cluster
(complete)

GA on PC FF on FPGA
(VHDL, synthesis complete)

GA and FF on one FPGA
(current work)

GA and FF on HHPC
(future work)

Speed-up Resources

Low1,000x
10us/10ns

High512,000x
(1,000x * 2 pops *
2xFPGA * 64 nodes
* 2 chips/node)

Low50x
10us/(0.2us+9.8ns)*

High30X
(30 nodes)

Low1
(0.2us+9.8us)

Speed-up and Resources
for Different Platforms

Burns, et. al. Paper 1035/MAPLD 200623

Collaborators

Professor Gary B. Lamont, Ph.D.
Department of Electrical & Computer Engineering

AFIT/ENG
WRIGHT-PATTERSON AFB

DAYTON, OH

Dr. Larry Merkle
Rose-Hullman Institute of Technology

Terre Haute, IN

Dr. Tony Macula
State University of New York at Geneseo

Geneseo, NY

Burns, et. al. Paper 1035/MAPLD 200624

Conclusions

• Genetic Algorithm performance on the DNA Code Word
Library Generation problem is competitive with best known
algorithms

• Hardware GA/DNA single FPGA version achieves extreme
(1000x) speed-up with WildCard-II in a notebook PC

• While the distributed GA is generally applicable to many
problem types, the hardware GA is especially suited to
problems that have fitness functions involving a matrix of
relatively simple integer-only or Boolean logic functions,
especially if it can be efficiently implemented in a hardware
systolic array.

Burns, et. al. Paper 1035/MAPLD 200625

Future work

• Complete single chip FPGA multi-pop GA prototype

• New systolic array to incoporate improved GA fitness
metric (weighted pair binding energy calculation)

• Do complete GA FPGA Core including selection,
mating, decloning

• Transition new multi-pop GA core to cluster of FPGAs
platform

• Identify additional optimization problem types that can
use a hardware GA and Systolic Array fitness evaluator

Burns, et. al. Paper 1035/MAPLD 200626

Genetic Algorithm Hardware References

S. Scott, A. Samal, and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third International
Symposium on Field-programmable Gate Arrays, Monterey, CA, pp. 53-59, Feb. 1995.

• Problem: suite of 7 simple equation test case problems
• HW: Borg board using 2 XC4003’s, 8K RAM, 3 XC4005’s, 8MHz clock
• SW: Silicon Graphics 4D/440 with four MIPS R3000 CPUs at 33 MHz.
• Speed-up: 13-19x in terms of clock cycles, 100x thought to be possible.

P. Graham and B. Nelson, “Genetic algorithms in Software and in Hardware - a Performance Analysis of Workstation and
Custom Computing Machine Implementations”, 1996 Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, Napa Valley, CA, USA, April 1996, pp. 216 – 225.

• Problem: 25 city Traveling Salesman Problem
• SW: HP PA-RISC 125 MHz workstation
• HW: 4 SPLASH 2 FPGA system with 4 memories running at 11 MHz
• Speed-up: 4X in terms of execution time, 50X in terms of clock cycles
• ARPA contract to National Semiconductor in 1994

C. Aporntewan, and P. Chongstitvatana, “A hardware implementation of the Compact Genetic Algorithm”, Proceedings of the
2001 Congress on Evolutionary Computation, 2001, Volume 1, May 2001, pp. 624 - 629 vol. 1.

• Problem: 32 bit one max problem
• SW: 200MHz Ultra Sparc II, SunOS.
• HW: Xilinx Virtex V1000FG680, 42 ns Tclk, (23.6Mhz)
• Speed-up: 1000X (0.15 sec vs 150 sec)

B.E. Wells, C. Patrick, L. Trevino, J. Weir, and J. Steincamp, “ Applying a Genetic Algorithm to Reconfigurable Hardware – a
Case Study”, 2004 MAPLD, paper 169.

• Problem: 65 city Traveling Salesman Problem
• SW: 3.2 Ghz Intel Xeon processor with a large 3-level cache, Linux (Kernel 2.4.21 SMP), hosting a single user. GCC

C compiler (version 3.2.2) with maximum supported level of optimization.
• HW: one Xilinx Virtex II 6000 in HC-36 Hypercomputer™ system from Star Bridge Systems, Inc. 66MHz clock.
• Speed-up: 11.4X in terms of execution time (using 8 function evaluators)

Burns, et. al. Paper 1035/MAPLD 200627

M.K. Pakhira, R.K. De, “A Hardware Pipeline for Function Optimization Using Genetic Algorithms”, Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, Washington, DC, June 2005, pp. 949-956.

• Problem: suite of 7
• SW: classical (CGA), parallel GA (PGA)
• HW: pipelined GA (PLGA)
• Speed-up: 13-53x over CGA, 1.5-2.3x PLGA over PGA

G.M. Megson and I.M. Bland, “The Systolic Array Genetic Algorithm, An Example of a Systolic Arrays as a Reconfigurable Design
Methodology”, Proceedings of the 1998 IEEE Symposium on FPGA’s for Custom Computing Machines, Apr. 1998, pp. 260-261.

• Problem: None (just doing the GA)
• SW: None
• HW: XC4036XL-09, 690 CLB’s
• Speedup: n/a 34.3ns per gene (28.3 MHz)

Genetic Algorithm Hardware References

From A. Brenneman and A E. Condon, “Strand Design for Bio-Molecular Computers”, (Survey Paper), Theoretical Computer Science,
Vol. 287:1, 2002, pages 39-58:

[11] R. Deaton, R. C. Murphy, M. Garzon, D. R. Franceschetti, and S. E. Stevens, Jr., "Good encodings for DNA-based solutions to
combinatorial problems," Proc. DNA Based Computers II, DIMACS Workshop June 10-12, 1996, L. F. Landweber and E. B. Baum,
Editors, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 44, 1999, pages 247- 258.
[12] M. Garzon, R. Deaton, P. Neathery, D. R. Franceschetti, and S. E. Stevens, Jr., "On the encoding problem for DNA computing,"
Preliminary Proc. 3rd DIMACS Workshop on DNA Based Computers, June 23-25, 1997, pages 230- 237.
[13] R. Deaton, M. Garzon, R. C. Murphy, J. A. Rose, D. R. Franceschetti, and S. E. Stevens, Jr., "Genetic search of reliable encodings
for DNA-based computation," Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors), Proceedings of the First
Annual Conference on Genetic Programming 1996.

Code Word Library Design Problem References

Hybrid Architecture for Accelerating DNA
Codeword Library Searching

Qinru Qiu Daniel Burns∗ Qing Wu Prakash Mukre
Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902

∗Air Force Research Laboratory, Rome Site, 26 Electronic Parkway, Rome, NY 13441
qqiu@binghamton.edu, Daniel.Burns@rl.af.mil, qwu@binghamton.edu, pmukre1@binghamton.edu

Abstract — A large and reliable DNA codeword library is the key
to the success of DNA based computing. Searching for the set of
reliable DNA codewords is an NP-hard problem, which can take
days on the state-of-art high performance cluster computers.
This work presents a hybrid architecture that consists of a
general purpose microprocessor and a hardware accelerator for
accelerating the discovery of DNA reverse complement, edit
distance codes. Two applications of this architecture were
implemented and evaluated, including a code generator that uses
a genetic algorithm (GA) to produce nearly locally optimal codes
in a few minutes, and a code extender that uses exhaustive search
to produce locally optimum codes in about 1.5 hours for the case
of length 16 codes. The experimental results demonstrate that the
GA can find ~99% of the words in locally optimum libraries, and
that the hybrid architecture provides more than 1000X speed-up
compared to a software only implementation.

I. INTRODUCTION

The DNA molecule is now used in many areas far beyond
its traditional function. The first DNA-based computation was
proposed by Adleman [1]. It demonstrates the effectiveness of
using DNA to solve hard combinatorial problems. DNA
molecules have also been used as information storage media
and three dimensional structural materials for nanotechnology.

One of the major concerns of DNA computing is reliability.
In DNA computing, the information is encoded as DNA
strands. Each DNA strand is composed of short codewords.
DNA computing is based on the hybridization process, which
allows short single-stranded DNA sequences (i.e.
oligonucleotides) to self-assemble to form long DNA
molecules. The reliability of the computing is determined by
whether the oligonuleotides can hybridize in a predetermined
way. The key to success in DNA computing is the availability
of a large collection of DNA codeword pairs that do not
crosshybridize.

Various quality metrics have been proposed to guide the
construction process [1]-[5]. The computation of these metrics
dominates the run time of the code building process. While
metrics based on the Gibbs energy and nearest neighbor
thermodynamics and consideration of secondary structure
formation give accurate measurement of hybridization, they are
computationally costly, motivating the use of simplified
metrics. One such metric is the Levenshtein distance, or the so-
called deletion-correcting or edit distance, which has been used
to construct DNA codes [6].

 Regardless of the quality metric used, composing DNA
codes is NP-hard because the number of potential codewords
that must be searched increases exponentially with the length
of the DNA codewords. Exhaustive checking is generally
impractical for words of length greater than about 12 base
pairs. Various algorithms have been proposed for building
DNA codes, including the GA [7], Markov processes [8], and
Stochastic methods [9]. Recent work [10] has shown that a
hybrid GA blended with Conway’s lexicode algorithm [11][12]
achieves better performance than either alone in terms of
generating useful codes quickly.

 Search methods for DNA codes are extremely time-
consuming, and this has limited research on DNA codeword
design, especially for codes of length greater than about 12-14
bases. Theory is lacking to provide tight upper bounds on the
size of codeword sets, and the best known bounds are based on
experiments. For example, the largest known reverse
complement edit distance DNA codeword library (length 16,
edit distance 10) consist of 132 pairs, composing such codes
can take several days on a cluster of 10 G5 processors.

 This paper focuses generally on speed-up techniques for
the composition of reverse complement, edit distance, DNA
codes of length 16, using a modified genetic algorithm that
uses a locally exhaustive, mutation-only heuristic tuned for
speed. Ongoing work to be reported elsewhere is addressing
extensions to metrics involving nearest neighbor
thermodynamics, a more general GA, codewords of length 32.

 More specifically, we report a novel accelerator for DNA
codeword composition that incorporates a hardware GA,
hardware edit distance calculation, and hardware exhaustive
search. Hardware exhaustive search extends an initial
codeword library by doing a final scan across the entire
universe of possible codewords, yielding a known locally
optimum code. The proposed architecture consists of a host
PC, a hardware accelerator implemented in reconfigurable
logic on a field programmable gate array (FPGA) and a
software program running in a host PC that controls and
communicates with the hardware accelerator. The
characteristics of the proposed architecture are as follows:

1. High performance. It utilizes programmable logic devices to
enable pipelined and massively parallel processing of the
data. Compared with software-only approaches, the new
architecture can provide more than 1000X speed-up. For
example, instead of 52 days, it only takes 1.5 hours to scan

323

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

the entire codeword space and to find all additional words
that must be added to produce a locally optimum code.

2. High flexibility. The hardware accelerator can be configured
by software program, and presently it can be run on a
workstation PC equipped with an FPGA board, or on a
notebook computer equipped with a PCMCIA FPGA card.

3. User friendly. The hardware accelerator is transparent to the
user. Its control and access is accomplished by memory
reads and writes based on a set of given protocols.

The remainder of this paper is organized as follows:
Section II provides the necessary biological background and
terminology. Section III introduces the problem definition and
the genetic algorithm for DNA codeword search. Section IV
gives the detailed information about how to accelerate the GA
search fitness calculation. Sections V and VI provide details
about the hybrid architecture and present a performance
comparison between the software version of the GA and the
best known (Markov) algorithm found in the literature, and
early results on locally optimum codes. Finally, conclusions
are given in Section VII.

II. BACKGROUND

The DNA molecule is a nucleic acid. It consists of two
oligonucleotide sequences. Each sequence consists of a sugar-
phosphate backbone and a set of nucleotides (also called bases)
connecting with the backbone. The oligonucleotide sequence is
oriented. One end of the sequence is denoted as 3’ and the
other as 5’. Only strands of opposite orientation can form stable
duplex.

There are four types of bases: Adenine, Thymine, Cytosine,
and Guanine. They are denoted briefly as A, T, C, and G
respectively. Each base can pair up with only one particular
base through hydrogen bonds: A+T, T+A, C+G and G+C.
Sometimes we say that A and T are complementary to each
other while C and G are complementary to each other. A
Watson-Crick complement of a DNA sequence is another
DNA sequence which replaces all the A with T or vise versa
and replaces all the T with A or vise versa, and also switches
the 5’ and 3’ ends. A DNA sequence binds most stably with its
Watson-Crick complement. The stability of the binding is
determined by the free energy of the hydrogen bonds.

The calculation of the free energy involves many
considerations. In this paper, we only consider the first order
effect, and use the number of Watson-Crick pairs between two
DNA sequences to represent their bonding strength. Such
approximation is widely adopted by the research works in
DNA codeword design [6][12]. Furthermore, the DNA
sequences of length 10 or greater are usually considered to be
flexible [6]. Therefore, the binding strength of two DNA
strands is measured by the length of the longest complementary
subsequence (not necessarily contiguous) of one strand and the
reverse of the other. For example, Figure 1 shows two DNA
strands that bind with 5 Watson-Crick pairs. The longest
complementary sequence between two flexible DNA strands, A
and B, is the same as the longest common sequence (LCS)
between A and B [6].

Figure 1 Binding between DNA strands.

III. PROBLEM FORMULATION AND OPTIMIZATION
ALGORITHM

We consider each DNA codeword as a sequence of length n
in which each symbol is an element of an alphabet of 4
elements. The longest common sequence between DNA
strands A and B is denoted as LCS(A, B). In this work, we
focus on searching for a set of DNA codeword pairs S, where S
consists of a set of DNA strands of length n and their reverse
complement strands e.g. {(s1, 1s), (s2, 2s), …}, where (s1, 1s)
denotes a strand and its Watson-Crick complement. The
problem can be formulated as the following constrained
optimization problem:

 ||max S (1)

s.t. SsssLCS ∈∀≤ 111 ,),(σ , (2)

 SssssLCS ∈∀≤ 2121 , ,),(σ (3)

 SssssLCS ∈∀≤ 2121 , ,),(σ , (4)

where σ is a predefined threshold. Equation (1) indicates that
our objective is to maximize the size of the DNA codeword
library. The first constraint specifies that a DNA codeword in
the library cannot bind with itself. The second and the third
constraints specify that a DNA codeword in the library cannot
bind with another library word or its Watson-Crick
complement. Both of these two constraints must be satisfied
because a DNA strand always occurs with its Watson-Crick
complement.

A genetic algorithm (GA) is a stochastic search technique
based on the mechanism of natural selection and
recombination. Solutions, which are also called individuals, are
evolved from generation to generation, with selection, mating,
and mutation operators that provide an effective combination
of exploration of the global search space. The Island multi-
deme GA is a widely used parallel GA model in which the
population is divided into several sub-populations and
distributed on different processors. Each sub-population
evolves independently for a few generations, before one or
more of the best individuals of the sub-populations migrate
across processors.

Although it is effective for many other optimization
problems, we observed that selection and mating slowed the
evolution of beneficial fitnesses in the population. Therefore, in
this work, we propose a modified GA without mating. The
approach is similar to Tulpan’s [9], except that we start with an
empty library, and a separate GA population of next word
candidate individuals with random base content. Each
individual in the population is a DNA codeword encoded as a
binary string with length 2n, where n is the length of the
codeword in bases. The four bases (A, T, C, G) are encoded as

A A C G − T G

T T − C G A C

5’ 3’

5’3’

A A C G − T G

T T − C G A C

5’ 3’

5’3’

324

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

(00, 01, 11, 10). Each DNA strand of length 16 can be
represented as a 32 bit integer.

Given a codeword library S, the fitness of each individual d
reflects how well the corresponding codeword fits into the
current codeword library. Two values define fitness,
reject_num and max_match. The reject_num is the number of
codewords in the library which satisfies the condition that

σ>),(dsLCS or σ>),(dsLCS . The max_match can be
calculated as

SsdsLCSdsLCSddLCS ∈∀−−−),),(,),(,),(max(σσσ .
The codeword with lower fitness fits better in the library.

From equations (2)-(4) we know that a valid library word
must have reject_num equal to 0. It is observed that adding a
codeword with reject_num = 0 and max_match > 0 into the
library will restrict the future growth of the library. Such
codewords bind very weakly with other library words, but they
are too far apart in the search space and interfere with closest
packing. To maximize the library size, we want to select only
those codewords that are “just good enough”. To ensure this,
we add another constraint to the optimization problem:

 SssssLCSssLCS ∈∀= 212121 , ,)),(),,(max(σ (5)

Therefore, only codewords with reject_num = 0 (which also
implies max_match = 0) will be added into the library.

A traditional GA mutation function might randomly pick an
individual in the population, randomly pick a pair of bits in the
individual representing one of its 16 bases, and randomly
change the base to one of the 3 other bases in the set of 4
possible bases. In the proposed algorithm, however, we
randomly select an individual, but then to exhaustively check
all of the 48 possible base changes. This is an attempt to speed
beneficial evolution of the population by minimizing the
overhead that would be associated with randomly picking this
individual again and again in order to test those mutations. We
also specify that if none of the 48 mutations were beneficial,
one of them is selected at random. This enables the individual
to remain in the population and possibly experience subsequent
(multiple) mutations. Figure 2 gives the pseudo code for the
modified mutation function.

When an individual in the population achieves a fitness of
0, it is added to the set of good codewords, and the selected
individual in the population is replaced by a new random
individual. The GA is allowed to run until one of three
termination criteria is satisfied: the number of codewords in the
set is as large as desired; the algorithm has run for a specified
maximum number of generations; or the algorithm has run for
a specified maximum amount of time. We store the codeword
values and the elapsed time at which they are each found, in
memory during a run, and we store that data to a disk file at the
end of a run. We also calculate and store the average time at
which the ith words are found across multiple runs to assess
average performance.

Figure 2 Modified mutation algorithm.

IV. HARDWARE ACCELERATION OF LCS
CALCULATION

The most time consuming part of the proposed GA
algorithm is to calculate the fitness value for each individual.
Performance profiling of our software GA version showed that
>98% of the computing time was spent calculating the LCS
distance between DNA strands. The LCS distance is calculated
using dynamic programming. Figure 3 gives the pseudo code
of the algorithm. The intermediate results are stored in an n×n
matrix, where n is the length of the DNA codeword in bases.
The calculation starts at the top left corner of the matrix and the
final result is the value calculated in the cell located at the
bottom right corner. For DNA codewords with length 16, at
least 256 operations are needed before we can obtain the final
result. Therefore, the throughput of the software based LCS
calculation is less than 1/n2.

Figure 3 LCS distance calculation.

The algorithm can be implemented using a 2D systolic
array. The systolic array is an n×n matrix. Figure 4 (a) gives

Mutation()
//M is the set of mutated individuals;
//L is the set of library codewords;
Randomly select an individual s from initial population;
M = Φ;
FOR i = 1 TO n
 B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that

is different from the ith nucleotide of s
 Generate three mutated individuals {s1, s2, s3} by replacing the

ith nucleotide with one of the elements of B;
 M = M ∪ {s1, s2, s3};
END
Evaluate the fitness for each m ∈ M;
IF (∃m, fitness(m) = 0) THEN L = L ∪ {m};
ELSE //evolve the population by replacing the original

individual with a new individual with better fitness
 Select the individual x which has the lowest (best) fitness and

x∈M;
 IF fitness(x) < fitness(s) THEN replace s with x;
 ELSE replace s with a random individual from M;
END

RETURN

LCS(a, b)
 Initialize lcs[0][i] and lcs[i][0], 0≤i≤n-1

FOR i = 0 TO n-1 BEGIN
 FOR j = 0 TO n-1 BEGIN
 IF (a[i] = b[j]) THEN k = 1;
 ELSE k = 0;

 lcs[j][i] = max(lcs[j-1][i], lcs[j][i-1], lcs[j-1][i-
1]+k);
 END
 END

325

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

the structure of each cell in the matrix. Each cell consists of
three registers: A, B and ans. For the cell at location (i, j), the
registers A and B are used to store the ith nucleotide of one
DNA codeword (north word) and the jth nucleotide of the other
DNA codeword (west word) respectively. The register ans is
used to store the intermediate result of the dynamic
programming calculation. Each cell has five inputs. Two of the
inputs connect to the register A and register B of the upper and
left neighbor cells. The other three inputs connect to the ans
registers of the upper, left and diagonal neighbor cells. In the
present hardware version it takes two clock cycles for a cell to
update its answer. In the first clock period, input registers A
and B are updated, and in the second clock period, the cell
output answer is calculated and the register ans is updated. In
order to prevent ripple through operation, the cells in the even
columns and even rows or odd columns and odd rows are
synchronous to each other and operate as described above, but
in the rest of the cells (which are also synchronous) the two
operations are reversed, i.e. the ans output is calculated in the
first clock period and the A and B inputs are updated in the
second clock period.

The overall architecture of the 2D systolic array is shown in
Figure 4 (b). The marked cells calculate their answers in the
same clock cycle while the unmarked cells calculate their
answers in the next clock cycle. In this way, the results
propagate through the array diagonally. The final result is
given by the ans register of the cell at the right bottom corner
of the 2D array. It is easy to see that after a latency period that
is required to fill the pipeline, the throughput of the systolic
array is ½, i.e. 1 output result per 2 clock periods. When n
increases, the throughput remains the same while the hardware
cost increases, as long as the reconfigurable hardware chip has
sufficient resources to implement a full n×n array of cells.
Another detail is that the systolic array must be fed by an array
of registers that delay the entry of the bases on the right of the
North word and at the bottom of the West word. In effect, this
synchronizes the presentation of those parts of the operand
words with the diagonal waves of intermediate calculations in
the cells that proceed from the upper left corner down and to
the right through the array.

Figure 4 2D systolic array for LCS calculation.

We note that version of this array for words of length 32 vs.
16 would use 4X the resources, but clock at the same rate.

V. HYBRID ARECHITECTURE

Figure 5 System architecture.

The proposed hybrid architecture consists of a host CPU, a
hardware accelerator and a software program running on the
host CPU. The host CPU and the hardware accelerator are
connected via the system bus. Figure 5 shows the architecture
of the system. In order to increase the portability of the design,
we divide it into two modules: the bus interface and the
hardware accelerator core. The bus interface module connects
to the bus as a slave. It has a set of command registers and an
information exchange memory, which can be accessed by both
CPU and the hardware accelerator. For different bus
architecture, a new bus interface must be developed.

A. Hardware acceleration for GA based codeword search

A two-level method is adopted to control the hardware
accelerator. At the top level, the operations of the hardware
accelerator are categorized into 7 states: {idle, init, check_pop,
mutation, check_mutate, update_pop, update_lib}. In the init
state, the hardware accelerator generates a random initial
population, and sets up either an empty initial library, or reads
an initial partial library from a disk file. In the mutate state, the
hardware accelerator produces a population of 47 mutated
individuals based on a chosen individual. The hardware
accelerator calculates the fitness for all the individuals in the
initial population, and in the mutated population, in the
“check_pop” and “check_mutate” states, respectively. In the
“update_lib” state, the hardware accelerator writes the newly
discovered acceptable codewords into the library. In the
“update_pop” state, the hardware accelerator writes the best (or
a randomly chosen) mutated individual back to the working
population.

Each state corresponds to an operation in the GA algorithm.
Figure 6 (a) shows the control and data flow graph (CDFG) of
the algorithm based on this state division. The “update_lib”
and “update_pop” operations are one cycle operations because
they only perform a memory write. All the other operations are
multi-cycle operations, which again can be divided into several
sub-states. When the top level state machine enters the
corresponding state of a multi-cycle operation, the second level
state machine is triggered.

We call an operation a blocking operation if its successors
in the CDFG cannot start until this operation is done. Similarly,
an operation is called non-blocking operation if its successors
can start right after this operation started. The “init” and
“mutation” operations are both non-blocking operations. While
the hardware accelerator is generating the initial population and

(a) Cell architecture

A

B ans

North
word

west
word

Upper
ans

Left
ans

Lower
cell

Right
cell

corner
cell

corner
ans

A

B ans

North
word

west
word

Upper
ans

Left
ans

Lower
cell

Right
cell

corner
cell

corner
ans

(b) Checker board
architecture of 2D systolic

North word

W
es

t w
or

d

North word

W
es

t w
or

d

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

326

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

the mutated population, it is at the same time checking the
fitness of the generated individual. The “check_pop” and
“check_mutate” operations are blocking operations. Their
successors, i.e. “mutate” and “update_pop”, cannot start until
they have been finished. Figure 6 (b) shows the scheduling of
the operations.

Figure 6 Top level state machine controller.

A buffer is needed to pass the results of one operation to its
successor. In particular, a first-in-first-out (FIFO) storage
should be used as the output buffer of a non-blocking
operation. However, the implementation of the FIFO is
relatively easy in this design because the non-blocking
operations are always faster than their successors. Therefore, it
is not necessary to check the FIFO underflow condition. We
use dual port memory as the output buffer for the design. Three
memory blocks are used: Initial Population Memory (Mpop),
Mutated Population Memory (Mmutate) and CodeWord Library
Memory (Mlib). The input and output buffer of different
operations are given in Table 1.

Table 1. The input/output buffer of operations.

operations Input Output

init - Mpop

check_pop Mpop Mlib

mutate Mpop Mmute

check_mutate Mmute Mlib

update_lib Mpop Mlib

update_pop Mmute Mpop

B. Hardware software interface

The hardware accelerator and the host CPU program run
asynchronously. Four-way handshaking protocol is used to
synchronize the communication between hardware and
software, as shown in Figure 7. For example, when the
hardware accelerator finds a new codeword, it raises the
“PE_got_new_word” flag to the host program. After detecting
this flag, the host program reads the new codeword then raises

the “host_got_new_word” flag. After detecting this flag, the
hardware accelerator then clears the “PE_got_new_word” flag
and acknowledges the host program by raising the
“PE_got_message” flag.

Figure 7 Hand-shaking between host and PE.

After detecting this flag, the host program then clears the
“host_got_new_word” flag and acknowledges the hardware
accelerator by raising the “host_got_message” flag, and
continues. After detecting this flag, the hardware accelerator
then clears the “PE_got_message” flag and continues. After
the handshaking, the host program and the hardware
accelerator work asynchronously until the host or hardware
accelerator raises another message flag.

C. Parallel GA

Figure 8 Hardware architecture for parallel GA.

The hardware accelerator discussed above uses about
12,263 LUTs (look-up-tables), which is only about 42% of the
programmable resources in a Xilinx Virtex II 3000 FPGA and
about 16% of the programmable resources in a Xilinx
XC2VP70 FPGA. Therefore, we evaluated a further speed-up

Host
Program

PE_got_new_
word?

working

PE_Got_new
_word

Read new word

Host_got_new_word?Host_got_
new_word

PE_got_message?
PE_got_
message

Host_got_message?
Host_got_
message

PEHost
Program

PE_got_new_
word?

workingworking

PE_Got_new
_word

Read new wordRead new word

Host_got_new_word?Host_got_
new_word

PE_got_message?
PE_got_
message

Host_got_message?
Host_got_
message

PE

(b) Scheduling of operations

mutate

non-
blocking

init

check pop

check mute

update

non-
blocking

blocking

blocking

mutate

non-
blocking

init

check pop

check mute

update

non-
blocking

blocking

blocking

GA1
(sub-pop)

Bus Interface

PE_got_new
_word1

GA2
(sub-pop)

GAn
(sub-pop)

Arbitrator

Update
LibraryPE_got_new

_word2
PE_got_new

_wordn

GA1
(sub-pop)

GA1
(sub-pop)

Bus Interface

PE_got_new
_word1

GA2
(sub-pop)

GA2
(sub-pop)

GAn
(sub-pop)

GAn
(sub-pop)

Arbitrator

Update
LibraryPE_got_new

_word2
PE_got_new

_wordn

(a) Control and data flow graph
done

init check
pop

update
lib

mutate check
mutate

update
popstart done

idle

found found

done

initinit check
pop

check
pop

update
lib

update
lib

mutatemutate check
mutate
check
mutate

update
pop

update
popstart done

idleidle

found found

327

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

enhancement that involved implementing multiple parallel
hardware accelerators on a single FPGA, as shown in Figure 8.

The system consists of n hardware accelerator modules,
which are denoted as GA1~GAn, an arbitrator and a bus
interface. The value of n is determined by the size of the
FPGA. For example, n is 2 for the Virtex II 3000 FPGA and 5
for the XC2VP70. Each module implements the above
mentioned genetic algorithm to search for the DNA codeword.
They are independent to each other. The populations in
different GA modules are initialized using different random
seeds.

 All the GA modules are connected to the bus interface
through an arbiter. When a GA module finds a new codeword,
it raises the “PE_got_new_word” flag and requests to be
connected to the bus interface to communicate with the host.
The arbiter broadcasts the new codeword to all other GA
modules and raises the “update_library” flag. The GA module
that receives the “update_library” request must terminate its
current operation and go to “update_lib” state. If multiple GA
modules raise the “PE_got_new_word” flag simultaneously,
the arbiter must select one of them and invalidate the others.
The decision is based on a fixed priority. The arbiter also
connects the selected GA module that has found a new
codeword with the bus interface to communicate with the host.
If another GA module finds a new word, it must wait till the
end of the current host-PE communication procedure to be
connected to the bus interface. Figure 9 shows the state
machine controller of the arbiter. The arbiter will be in the idle
state after reset. When one of the GA modules raises the
“PE_got_new_word” flag, the arbiter will go to the
“update_all_libraries” state during which the arbiter raises the
“update_library” flag. In the next clock period, it goes into the
“PE_communicating” state during which the arbiter connects
the GA module to the bus interface.

 If the communication finishes before another GA module
finds a new word, then the arbitrator goes back to the idle state.
Otherwise, it first goes to the waiting state. After the
communication is done, it goes to the “update_all_libraries”
state and repeats the previous steps.

Figure 9 State machine controller of the arbitrator.

D. Hardware acceleration for exhaustive search

The effectiveness of the stochastic search starts decreasing
when the search space increases and the solution space
decreases. Therefore, as codewords are added to the library, the
time required for the GA to find a new codeword increases
exponentially. Furthermore, using stochastic search, we will
never know whether still another new codeword can be added
to the library. The only way to answer this question is by using
exhaustive search, i.e. checking every possible codeword in the
universe of all possible codewords. The complexity of
exhaustive search increases linearly with the number of
codewords already in the library. However, the complexity of
exhaustive search also increases exponentially with the length
of the codewords. As the name suggests, for a given initial
library, the exhaustive search portion of the hybrid algorithm
must scan the entire codeword space and find all remaining
additional valid codewords that satisfy constraint equations (2)-
(5). For DNA codewords of length 16, and for an initial library
with 100 codewords, exhaustive search would take 52 days on
a 2.0GHz Intel Xeon processor running a software fitness
checker at 10 microseconds per check.

With small modification, we can implement the exhaustive
DNA codeword search using hardware. The hardware
accelerator for exhaustive codeword search consists of only
one memory, which is used to store the codeword library, a 32
bit counter cycled from 0 to its maximum value to represent the
potential new word, and two systolic array fitness checkers.
For each codeword x, the calculation of),(sxLCS and

),(sxLCS , where Ss∈ , are performed simultaneously by the
two fitness checkers. At 100Mhz clock frequency, the
hardware accelerator takes about 1.5 hours to scan the entire
~4.3 billion codeword space for codewords of length 16, which
is over 800 times faster than the workstation PC software only
case. At the completion of exhaustive search we can say that a
codeword set is locally optimum, in the sense that given the
series of random numbers used to drive the stochastic GA in
the early phase of building, no additional codewords can be
added to increase the size of the library. To date, little data has
been published in the literature on locally optimum edit
distance codes of lengths greater than about 12 bases, and this
hardware accelerator enables us to efficiently explore this
aspect of the problem domain for the first time.

VI. EXPERIMENTAL RESULTS

A hardware accelerator that uses a stochastic GA to build
DNA codeword libraries of codeword length 16 has been
designed, implemented, and tested. The first version uses one
fitness evaluator and is implemented on a single FPGA chip.

 The design has actually been ported onto three different
reconfigurable computing platforms, including a Xilinx XUP
Virtex-II Pro evaluation board [13], a laptop computer with the
Annapolis Wildcard FPGA board [14], and a desktop computer
with the Annapolis Wildstar–II FPGA board. Different bus
architectures are used to connect the hardware accelerator to
the host CPU in each of the different platforms. The PLB bus is
used in the Xilinx Virtex-II Pro evaluation board, while the
PCMCIA card bus and PCI-X bus are used in the system with

PE_Comm
unicating

Idle

Update_all
_libraries

Wait

PE_got_new_
word

PE_got_new_
word

Communication
done

Communication
done

PE_Comm
unicating

PE_Comm
unicating

Idle

Update_all
_libraries

Update_all
_libraries

Wait

PE_got_new_
word

PE_got_new_
word

Communication
done

Communication
done

328

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

WildStar and WildCard, respectively. The other difference
among these platforms is the amount of resources available on
the FPGA chips resident on the boards.

 Table 2 shows the size of the reconfigurable logic and the
on-chip memory for the three different computing platforms.
The design is synthesized using Synplify from Synplicity. It
uses 12,263 LUTs (look-up-tables), which is about 42% of the
programmable resources in a Xilinx Virtex II 3000 FPGA. The
hardware accelerator for exhaustive search of DNA codeword
length 16 uses 21,733 LUTs, which is about 75% of Virtex II
3000 FPGA.

Table 2 Available reconfigurable logic and on-chip memory
resources of different platforms.

Figure 10 shows a comparison of the average performance
of the GA based codeword search algorithm running in
software on a single workstation processor (upper curve) and
the hardware accelerated hybrid architecture (lower line). The
performance is measured in terms of the time it takes to build a
large library. Less time is better, so the lower curve is better
than the upper curve. In this plot the x axis is codewords found,
where each codeword consists of a strand and its reverse
complement. The GA is a stochastic algorithm, so each point in
the curves is the average over multiple runs of the times taken
to find the # of codewords on the x axis. For these experiments
we set n and σ to be 16 and 10 respectively. The upper curve
for the software version was run on one workstation with 1 P4
processor. The lower curve for the hardware GA was run with
a 100MHz FPGA clock frequency.

Average Time vs # CodeWords Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04

0 20 40 60 80 100 120

codeword pairs found

Ti
m

e
(s

ec
.)

Software GA, 1 P4 processor, 30 runs
Hybrid Architecture, 100MHz FPGA, 20 runs

Figure 10 Comparison of average performance.

Compared to the software only implementation, the
hardware accelerator running at 100MHz provides

approximately a 1000X speed-up. The speed-up of the
hardware versions is due to the parallel and pipelined
architecture of the hardware. If we were able to increase either
the number of fitness calculating arrays a we would expect
almost linear speed-up (a/0.98). Also, based on previous work
[15] that used a distributed Island Model GA run on a cluster of
workstations, we would expect linear speed-up as the number
of distributed GA populations p is increased.

Figure 11 shows a comparison of the best performance
among software GA, and two versions of the hardware GA.

Time vs # CodeWord Pairs Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04

0 20 40 60 80 100 120

codeword pairs found

Ti
m

e
(s

ec
.)

SW GA (10 P4 Processors)
HW GA, 30MHz
HW GA + ES, 100MHz

Figure 11 Comparison of best performance.

The top red curve for the distributed software multi-deme
GA was run on a cluster using 10 P4 processors. The inter-
processor communication is implemented using MPI (message
passing interface). The middle blue curve for the hardware GA
was run on the Annapolis Wildcard-II in a P3 notebook PC
with a 30MHz FPGA clock frequency. The lower magenta
curve for the hardware GA with exhaustive search was run on a
Wildcard board in a P4 workstation with a 100MHz FPGA
clock frequency. The later run was set up to run the GA until
240 words were found, and then switch to exhaustive search,
after which 8 more words were found.

We also used the exhaustive search version of the hardware
accelerator to investigate the average size of locally optimum
codeword libraries that can be built, and the efficacy of the GA
for building them. Figure 12 shows the distribution of the size
of local optimal DNA codeword libraries that were generated
by running hardware GA for 300 seconds followed by
hardware exhaustive search. The results show that the size of
the local optimal DNA codeword library follows a normal
distribution with mean of about 122 codewords (word/word’
pairs). The experiment consists of 60 tests, which took about
90 hours. The equivalent test on a 30 workstation cluster
would have taken about 3000 hours (4 months).

Computing
platform

FPGA Logic
Cells

BRAMs
(kb)

PPCs

XUP eval.
board

XC2VP30 30,816 2,448 2

WildCard-II Xilinx Virtex II
3000

28,672 1,728 0

WildStar Pro XC2VP70 74,448 5,904 2

329

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Histogram of Library Lengths Found
32 runs of HW GA 300 sec. + ES 1.5 hr

0

5

10

15

20

25

115 120 125 130

Library Length

fr
eq

ue
nc

y

GA + ES, pre-seeded

Figure 12 Size of local optimal DNA codeword libraries built with
300sec. GA plus exhaustive search.

 Figure 13 shows data from a second experiment involving
32 runs of GA for 600 sec. followed by exhaustive search, in
terms of the size of the library built during the GA phase (red)
and the number of words added by exhaustive search (green).

Locally optimum library lengths for 32 runs of

GA for 600 sec. followed by Exhaustive Search (ES)

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31
run #

w

or
ds

 in
 fi

na
l l

ib
ra

ry

added by ES

Before_ES

 Figure 13 Sizes of Libraries built with 600 sec. GA followed by

exhaustive search.

Figure 14 shows a histogram of the # of words added by
exhaustive search for these runs. On average, the GA alone
finds 120.4 words vs. 121.7 with GA + exhaustive search, or
about 98.9% of the words that can be found.

Histogram of # Words added by Exhaustive Search

0

2

4

6

8

10

12

0 1 2 3 4 5

words added by Exhaustive Search

ru

ns

added by ES

Figure 14 Histogram of # words added by Exhaustive Search for

the runs of Figure 13.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel architecture for
accelerating a GA based DNA codeword searching algorithm.
Our preliminary results show that, using a new hybrid
hardware/software implementation, we can speedup the DNA
codeword search procedure by more than 1000X. We have
also described a hardware exhaustive search extension that can
produce known locally optimum codes. In the future, we plan
to extend the current architecture to implement a multi-deme
GA on a single FPGA, a more general GA, more accurate
techniques to measure the binding strength of DNA pairs, and a
checker for codes word of at least length 32.

REFERENCES

[1] L. M. Adleman, “Molecular Computation of Solutions to Combinatorial
Problems,” Science, vol. 266, pp. 1021-1024, November 1994.

[2] A. Brenneman and A. Condon, “Strand Design for Biomolecular
Computation”, Theoretical Computer Science, vol. 287, pp.39-58, 2002.

[3] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang, Multiobjective
Evolutionary Optimization of DNA Sequences for Reliable DNA
Computing”, IEEE Transactions on Evolutionary Computation, vol.
9(20), pp.143-158, 2005.

[4] F. Tanaka, A. Kameda, M. Yamamoto, and A. Ohuchi, Design of
Nucleic Acid Sequences for DNA Computing based on a
Thermodynamic Approach, Nucleic Acids Research, 33(3), pp.903-911,
2005.

[5] J. Santalucia, “ A Unified View of polymer, dumbbell, and
oligonucleotide DNA nearest neighbor thermodynamics”, Proc. Natl.
Acad. Sci., Biochemistry, pp. 1460-1465, February 1998.

[6] A. D’yachkov, P.L. Erdös, A. Macula, V. Rykov, D. Torney, C-S. Tung,
P. Vilenkin and S. White, “Exordium for DNA Codes,” Journal of
Combinatorial Optimization, vol. 7, no. 4, pp. 369-379, 2003.

[7] R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti, and
S.E. Jr. Stevens, "Genetic search of reliable encodings for DNA-based
computation," Proceedings of the First Annual Conference on Genetic
Programming, pp. 9-15, July 1996.

[8] Bishop, M. , Macula, A. , Pogozelski, W. , and Rykov, V. , “DNA
Codeword Library Design”, Proc. Foundations of Nanoscience – Self
Assembled Architectures and Devices, (FNANO), April 2005.

[9] Tulpan, D.C. , Hoos, H. , Condon, A. ,“Stochastic Local Search
Algorithms for DNA Word Design”, Eighth International Meeting on
DNA Based Computers(DNA8), June 2002.

[10] S. Houghten, D. Ashlock and J. Lennarz, “Bounds on Optimal Edit
Metric Codes”, Brock University Technical Report # CS-05-07, July
2005.

[11] O. Milenkovic and N. Kashyap, “On the Design of Codes for DNA
Computing,” Lecture Notes in Computer Science, pp. 100-119, Springer
Verlag, Berlin-Heidelberg, 2006.

[12] R. Brualdi, and V. Pless, “Greedy Codes,” Journal of Combinatorial
Theory Series A, vol. 64, pp. 10-30, 1993.

[13] http://www.xilinx.com/

[14] http://www.annapmicro.com/

[15] D. Burns, K. May, T. Renz, and V. Ross, “Spiraling in on Speed-Ups of
Genetic Algorithm Solvers for Coupled Non-Linear ODE System
Parameterization and DNA Code Word Library Synthesis,” MAPLD
International Conference, 2005.

330

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Hardware Acceleration of Multi-deme Genetic Algorithm
for the Application of DNA Codeword Searching

Qinru Qiu*, Daniel Burns**, Prakash Mukre*, Qing Wu*
*Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902

**Air Force Research Laboratory, Rome Site, 26 Electronic Parkway, Rome, NY 13441
qqiu@binghamton.edu, Daniel.Burns@rl.af.mil, pmukre1@binghamton.edu, qwu@binghamton.edu

ABSTRACT
A large and reliable DNA codeword library is key to the success
of DNA based computing. Searching for sets of reliable DNA
codewords is an NP-hard problem, which can take days on state-
of-art high performance cluster computers. This work presents a
hybrid architecture that consists of a general purpose
microprocessor and a hardware accelerator for accelerating the
multi-deme genetic algorithm (GA) for the application of DNA
codeword searching. The presented architecture provides more
than 1000X speed-up compared to a software only
implementation. A code extender that uses exhaustive search to
produce locally optimum codes in about 1.5 hours for the case of
length 16 codes is also described. The experimental results
demonstrate that the GA can find ~99% of the words in locally
optimum libraries. Finally, we investigate the performance impact
of migration, mating and mutation functions in the hardware
accelerator. The analysis shows that a modified GA without
mating is the most effective for DNA codeword searching.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Performance attributes

General Terms
Performance, Design

Keywords
DNA, Genetic Algorithm, Hardware Acceleration

1. INTRODUCTION
The DNA molecule is now used in many areas far beyond its
traditional function. The first DNA-based computation was
proposed and implemented by Adleman [1]. It demonstrates the
effectiveness of using DNA to solve hard combinatorial problems.
DNA molecules have also been used as information storage media
and three dimensional structural materials for nanotechnology.

One of the major concerns of DNA computing is reliability. In
DNA computing, the information is encoded as DNA strands.
Each DNA strand is composed of short codewords. DNA
computing is based on the hybridization process, which allows
short single-stranded DNA sequences (i.e. oligonucleotides) to

self-assemble to form stable double-stranded duplexes. The
reliability of the computing is determined by whether the
oligonuleotides can hybridize in a predetermined way. The key to
success in DNA computing is the availability of a large collection
of DNA codeword pairs that do not crosshybridize.

Various quality metrics have been proposed to guide the
construction process [1]-[5]. The computation of these metrics
dominates the run time of the code building process. While
metrics based on the Gibbs energy and nearest neighbor
thermodynamics and consideration of secondary structure
formation give accurate measurement of hybridization, they are
computationally costly, as a first step in this work we chose a
simpler metric, the Levenshtein distance, or the so-called
deletion-correcting or edit distance, which has also been used to
construct DNA codes [6].

Regardless of the quality metric used, composing DNA codes is
NP-hard because the number of potential codewords that must be
searched increases exponentially with the length of the DNA
codewords. Exhaustive checking is generally impractical for
words of length greater than about 12 base pairs. Various
algorithms have been proposed for building DNA codes,
including the GA [7], Markov processes [8], and Stochastic
methods [9]. Recent work [10] has shown that a hybrid GA
blended with Conway’s lexicode algorithm [11][12] achieves
better performance than either alone in terms of generating useful
codes quickly.

Search methods for DNA codes are extremely time-consuming,
and this has limited research on DNA codeword design,
especially for codes of length greater than about 12-14 bases.
Theory is lacking to provide tight upper bounds on the size of
codeword sets, and the best known bounds are based on
experiments. For example, the largest known reverse complement
edit distance DNA codeword library (length 16, edit distance 10)
consist of 132 pairs, composing such codes can take several days
on a cluster of 10 G5 processors.

This paper focuses generally on speed-up techniques for the
composition of reverse complement, edit distance, DNA codes of
length 16, using a multi-deme genetic algorithm. We propose a
FPGA (Field Programmable Gate Array) based hardware
accelerator design which performs multi-deme parallel GA on a
single chip. The hardware accelerator and the host PC
communicate via the system bus, and an appropriate software
interface controls communication between them. The proposed
architecture provides more than 1000X speed-up compared to a
software only implementation. A hardware based code extender
that uses exhaustive search to produce locally optimum codes is
also described. The code extender does a final scan across the
entire universe of possible codewords and completes the

Copyright 2007 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

codeword library generated from GA by adding any additional
words that satisfy the specified constraints.

The remainder of this paper is organized as follows: Section 2
provides the necessary biological background and terminology.
Section 3 introduces the problem definition and the genetic
algorithm for DNA codeword search. Section 4 gives the detailed
information about how to accelerate the GA fitness calculation.
Sections 5 and 6 provide details about the hybrid architecture and
some performance analysis of the design. Performance
comparison between the hardware and the software version of the
GA, and early results on locally optimum codes are also presented
in Section 6. Final conclusions are given in Section 7.

2. BACKGROUND
The DNA molecule is a nucleic acid. It consists of two
oligonucleotide sequences. Each sequence consists of a sugar-
phosphate backbone and a set of nucleotides (also called bases)
connecting with the backbone. The oligonucleotide sequence is
oriented. One end of it is denoted as 3’ and the other as 5’.

There are four types of bases: Adenine, Thymine, Cytosine,
and Guanine. They are denoted briefly as A, T, C, and G
respectively. Each base can pair up with only one particular base
through hydrogen bonds: A+T, T+A, C+G and G+C. Sometimes
we say that A and T (C and G) are complementary to each other.
A Watson-Crick complement of a DNA sequence is another DNA
sequence which replaces all the A with T or vise versa and
replaces all the G with C or vise versa, and also switches the 5’
and 3’ ends. A DNA sequence binds most stably with its Watson-
Crick complement and the structure they form is called Watson-
Crick (WC) duplex. Figure 1 (a) shows an example of a WC
duplex. We refer to the non-WC duplex as crosshybridized (CH)
duplex. Figure 1 (b) shows an example of a CH duplex. Only WC
duplexes are needed during DNA computing. Therefore, it is
important to design the DNA codes such that a fixed temperature
can be found that is well above the melting point of all CH
duplexes and well below the melting point of all WC duplexes
that can form from strands in the code.

Predicting crosshybridization involves many considerations. In
this paper, we only consider the first order effect, and use the
maximum number of possible Watson-Crick pairs between two
sequences to represent their bonding strength. Such
approximation is widely adopted by the research works in DNA
codeword design [6][12]. The binding strength of two DNA
strands is measured by the length of the longest complementary
subsequence (not necessarily contiguous) of one strand and the
reverse of the other. For example, Figure 1 (b) shows two DNA
strands that bind with 5 Watson-Crick pairs. The length of the
longest complementary sequence between two flexible DNA
strands, A and B, is the same as the length of the longest common
sequence (LLCS) between A and B [6], where B is the Watson-
Crick complement of B.

.

Figure 1 Binding between DNA strands.

3. PROBLEM FORMULATION AND
OPTIMIZATION ALGORITHM
We consider each DNA codeword as a sequence of length n in
which each symbol is an element of an alphabet of 4 elements.
The length of the longest common sequence between DNA
strands A and B is denoted as LLCS(A, B). In this work, we focus
on searching for a set of DNA codeword pairs S, where S consists
of a set of DNA strands of length n and their reverse complement
strands e.g. {(s1, 1s), (s2, 2s), …}, where (s1, 1s) denotes a
strand and its Watson-Crick complement. The problem can be
formulated as the following constrained optimization problem:

 ||max S such that (1)

 SsssLLCS ∈∀≤ 111 ,),(σ , (2)

 SssssLLCS ∈∀≤ 2121 , ,),(σ (3)

 SssssLLCS ∈∀≤ 2121 , ,),(σ , (4)

where σ is a predefined threshold. Equation (1) indicates that our
objective is to maximize the size of the DNA codeword library.
The first constraint specifies that a DNA codeword in the library
cannot bind with itself. The second and the third constraints
specify that a DNA codeword in the library cannot bind with
another library word or its Watson-Crick complement. Both of
these two constraints must be satisfied because a DNA strand
always occurs with its Watson-Crick complement.

A genetic algorithm (GA) is a stochastic search technique based
on the mechanism of natural selection and recombination.
Solutions, which are also called individuals, are evolved from
generation to generation, with selection, mating, and mutation
operators that provide an effective combination of exploration of
the global search space. The Island multi-deme GA is a widely
used parallel GA model in which the population is divided into
several sub-populations and distributed on different processors.
Each sub-population evolves independently for a few generations,
before one or more of the best individuals of the sub-populations
migrate across processors. In this work, the single point cross-
over mating operator is used.

Each individual in the population is a DNA codeword encoded as
a binary string with length 2n, where n is the length of the
codeword in bases. The four bases (A, C, G, T) are encoded as
(00, 01, 10, 11). Each DNA strand of length 16 can be
represented as a 32 bit integer. Given a codeword library S, the
fitness of each individual d reflects how well the corresponding
codeword fits into the current codeword library. Two values
define the fitness, reject_num and max_match. The reject_num is
the number of codewords in the library which satisfy the
condition that σ>),(dsLLCS or σ>),(dsLLCS . The
max_match can be calculated as

SsdsLLCSdsLLCSddLLCS ∈∀−−−),),(,),(,),(max(σσσ .

The codeword with lower fitness fits better in the library.

From equations (2)-(4) we know that a valid library word must
have reject_num equal to 0. It is observed that adding a codeword
with reject_num = 0 and max_match > 0 into the library will
restrict the future growth of the library. Such codewords bind very
weakly with other library words, but they are too far apart in the

A A C G − T G

T T − C G A C

5’ 3’

5’3’

A A C G − T G

T T − C G A C

5’ 3’

5’3’

A A C G T G

T T G C A C

5’ 3’

5’3’

A A C G T G

T T G C A C

5’ 3’

5’3’

(a) WC duplex (b) CH duplex

search space and interfere with closest packing. To maximize the
library size, we want to select only those codewords that are “just
good enough”. To ensure this, we add another constraint to the
optimization problem:

 SssssLLCSssLLCS ∈∀= 212121 , ,)),(),,(max(σ (5)

Therefore, only codewords with reject_num = 0 (which implies
max_match = 0) will be added into the library.

A traditional GA mutation function might randomly pick an
individual in the population, randomly pick a pair of bits in the
individual representing one of its 16 bases, and randomly change
the base to one of the 3 other bases in the set of 4 possible bases.
In the proposed algorithm, however, we randomly select an
individual, but then to exhaustively check all of the 48 possible
base changes. This is an attempt to speed beneficial evolution of
the population by minimizing the overhead that would be
associated with randomly picking this individual again and again
in order to test those mutations. We also specify that if none of
the 48 mutations were beneficial, one of them is selected at
random. This enables the individual to remain in the population
and possibly experience subsequent (multiple) mutations. Figure
2 gives the pseudo code for the modified mutation function.

When an individual in the population achieves a fitness of 0, it is
added to the set of good codewords, and the selected individual in
the population is replaced by a new random individual. The GA
is allowed to run until one of three termination criteria is satisfied:
the number of codewords in the set is as large as desired; the
algorithm has run for a specified maximum number of
generations; or the algorithm has run for a specified maximum
amount of time. We store the codeword values, the elapsed time
at which they are each found in memory during a run, and store
that data to a disk file at the end of a run. We also calculate and
store the average time at which the ith words are found across
multiple runs to assess average performance.

Figure 2 Modified mutation algorithm.

4. HARDWARE ACCELERATION OF LLCS
CALCULATION
The most time consuming part of the proposed GA algorithm is to
calculate the fitness value for each individual. Performance
profiling of our software GA version showed that >98% of the
computing time was spent calculating the LLCS between strands.

The LLCS is calculated using dynamic programming. Figure 3
gives the pseudo code of the algorithm. The intermediate results
are stored in an n×n matrix, where n is the length of the DNA
codeword in bases. The calculation starts at the top left corner of
the matrix and the final result is the value calculated in the cell
located at the bottom right corner. For DNA codewords with
length 16, at least 256 operations are needed before we can obtain
the final result. Therefore, the throughput of the software based
LLCS calculation is less than 1/n2.

Figure 3 LLCS distance calculation.

Figure 4 2D systolic array for LLCS calculation.
Many systolic algorithms has bee proposed to search for the
longest common sequence (LCS) [16][17]. However, here we are
only interested in finding out the length of the LCS, which is a
much simpler problem. In this work, we implemented a 2D
systolic array for the acceleration of LLCS calculation. The
systolic array is an n×n array of identical cells. Figure 4 (a) gives
the structure of each cell, including its input/output and the
computation implemented. The computation is performed every
other clock period. The overall architecture of the 2D systolic
array as well as the data dependency and timing information are
shown in Figure 4 (b). In order to prevent ripple through
operation, the cells in the even columns and even rows or odd
columns and odd rows are synchronous to each other and perform
the computation in the same clock period. The rest of the cells are
also synchronous to each other but perform the computation in the

Mutation()
//M is the set of mutated individuals;
//L is the set of library codewords;
Randomly select an individual s from initial population;
M = Φ;
FOR i = 1 TO n
 B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that

is different from the ith nucleotide of s
 Generate three mutated individuals {s1, s2, s3} by replacing the

ith nucleotide with one of the elements of B;
 M = M ∪ {s1, s2, s3};
END
Evaluate the fitness for each m ∈ M;
IF (∃m, fitness(m) = 0) THEN L = L ∪ {m};
ELSE //evolve the population by replacing the original

individual with a new individual with better fitness
 Select the individual x which has the lowest (best) fitness and

x∈M;
 IF fitness(x) < fitness(s) THEN replace s with x;
 ELSE replace s with a random individual from M;
END

RETURN

LLCS(a, b)
 Initialize llcs[0][i] and llcs[i][0], 0≤i≤n-1

FOR i = 0 TO n-1 BEGIN
 FOR j = 0 TO n-1 BEGIN
 IF (a[i] = b[j]) THEN k = 1 ELSE k = 0;

 llcs[j][i] = max(llcs[j-1][i], llcs[j][i-1], llcs[j-1][i-1]+k);
 END
 END
END

xi-1,j llcsi-1, j

yi,,j-1
llcsi, j-1

llcsi-1, j-1

yi, j llcsi, j

yi, j
llcsi, j

llcsi, j

IF (yi, j-1 = xi-1, j)
THEN k = 1;
ELSE k = 0;

llcsi,j = max(llcsi-1, j,
llcsi,j-1,
llcsi-1, j-1+k);

xi-1,j llcsi-1, j

yi,,j-1
llcsi, j-1

llcsi-1, j-1

yi, j llcsi, j

yi, j
llcsi, j

llcsi, j

IF (yi, j-1 = xi-1, j)
THEN k = 1;
ELSE k = 0;

llcsi,j = max(llcsi-1, j,
llcsi,j-1,
llcsi-1, j-1+k);

(a) Cell architecture

T

2T

3T

4T

16T
17T 18T 19T 32T

a0 a1 a2 a3 a150 0 0 0 0

b0

b1

b2

b3

b15

0

0

0

0

0

T

2T

3T

4T

16T
17T 18T 19T 32T

a0 a1 a2 a3 a150 0 0 0 0

b0

b1

b2

b3

b15

0

0

0

0

0

(b) 2D systolic array

next clock period. In this way, the results propagate through the
array diagonally. It is easy to see that after a latency period that is
required to fill the pipeline, the throughput of the systolic array is
½, i.e. 1 output result per 2 clock periods.

It is interesting to note that as n increases, the hardware resource
cost increases, but the throughput remains the same, as long as the
reconfigurable hardware chip has sufficient resources to
implement a full n×n array of cells. A version of this chip for
words of length 32 is feasible. Another detail is that the systolic
array must be fed by an array of registers that delay the entry of
the bases on the right of word a and at the bottom of the word b.
In effect, this synchronizes the presentation of those parts of the
operand words with the diagonal waves of intermediate
calculations in the cells that proceed from the upper left corner
down and to the right through the array.

5. HYBRID ARECHITECTURE
The proposed hybrid architecture consists of a host CPU, a
hardware accelerator and a software program running on the host
CPU. The host CPU and the hardware accelerator are connected
via the system bus. In order to increase the portability of the
design, we divide it into two modules: the bus interface and the
hardware accelerator core. The hardware accelerator will also be
called a processing element (PE) in the rest of the paper. The bus
interface module connects to the bus as a slave. It has a set of
command registers and an information exchange memory, which
can be accessed by both CPU and the PE. For different bus
architecture, a new bus interface must be developed.

5.1 Hardware acceleration for multi-deme
parallel GA based codeword search
A two-level method is adopted to control the PE. At the top level,
the operations of the PE are categorized into 9 states: {idle, init,
check_pop, mutation, check_mutate, update_pop, update_lib,
sorting, mating}. In the init state, the PE generates a random
initial population, and sets up either an empty initial library, or
reads an initial partial library from a disk file. In the mutate state,
the PE produces a population of 47 mutated individuals based on
a chosen individual. The PE calculates the fitness for all the
individuals in the initial population, and in the mutated
population, in the “check_pop” and “check_mutate” states,
respectively. In the “update_lib” state, the PE writes the newly
discovered acceptable codewords into the library. In the
“update_pop” state, the PE writes the best (or a randomly chosen)
mutated individual back to the working population. In the
“sorting” state, the PE scans the entire population to pick the best
k individuals. Two parents are randomly picked from these
individuals when the PE is in the “mating” state and single-point
cross-over is performed. A control flag is introduced which can be
used to disable the sorting and mating functions in the PE.

Each state corresponds to an operation in the GA algorithm.
Figure 5 (a) shows the control and data flow graph (CDFG) of the
algorithm based on this state division. The “update_lib” and
“update_pop” operations are one cycle operations because they
only perform a memory write. All the other operations are multi-
cycle operations, which again can be divided into sub-states.
When the top level state machine enters the state of a multi-cycle
operation, the second level state machine is triggered.

We call an operation a blocking operation if its successors in the
CDFG cannot start until this operation is done. Similarly, an
operation is called non-blocking operation if its successors can
start right after this operation started. The “init” and “mutation”
operations are both non-blocking operations. While the PE is
generating the initial population and the mutated population, it is
at the same time checking the fitness of the generated individual.
The “check_pop” and “check_mutate”, “sorting”, and “mating”
operations are blocking operations. Their following operations
cannot start until they have been finished. Figure 5 (b) shows the
scheduling of the operations.

Figure 5 Top level state machine controller.
A buffer is needed to pass the results of one operation to its
successor. In particular, a first-in-first-out (FIFO) storage should
be used as the output buffer of a non-blocking operation.
However, the implementation of the FIFO is relatively easy in this
design because the non-blocking operations are always faster than
their successors. Therefore, it is not necessary to check the FIFO
underflow condition. The output buffers are implemented using
the FPGA built-in block memories. The block memories are dual
port memories which can be read and written simultaneously.
Three memory blocks are used: Initial Population Memory (Mpop),
Mutated Population Memory (Mmutate) and CodeWord Library
Memory (Mlib). The input and output buffers of different
operations are given in Table 1.

Table 1. The input/output buffer of operations.
operations Input Output

init - Mpop
check_pop Mpop Mlib

mutate Mpop Mmute
check_mutate Mmute Mlib

update_lib Mpop Mlib
update_pop Mmute Mpop

sorting Mpop Mpop
mating Mpop Mpop

(b) Scheduling of operations

(a) Control and data flow graph

mating

init
check
pop

update
lib

mutate check
mutate

update
pop

mating_done

done

idle

sorting

update
lib

foundfound generation_
done

!generation_done

matingmating

initinit
check
pop

check
pop

update
lib

update
lib

mutatemutate check
mutate
check
mutate

update
pop

update
pop

mating_done

done

idleidle

sortingsorting

update
lib

update
lib

foundfound generation_
done

!generation_done

mating

sorting

check mutate

init

check pop

mutate

check mutate

update

mutate

update

non-blocking dependency

blocking dependency

mutate

mating

sorting

check mutate

init

check pop

mutate

check mutate

update

mutatemutate

update

non-blocking dependency

blocking dependency

mutatemutate

The PE and the host CPU program run asynchronously. Four-way
handshaking protocol is used to synchronize the communication
between hardware and software.

5.2 Parallel multi-deme GA
The PE discussed above uses about 12,263 LUTs (look-up-
tables), which is only about 42% of the programmable resources
in a Xilinx Virtex II 3000 FPGA and about 16% of the
programmable resources in a Xilinx XC2VP70 FPGA. Therefore,
we evaluated a further speed-up enhancement that involved
implementing multiple parallel PEs on a single FPGA. The
architecture supports the exchange of best individuals among PEs.
Therefore, the overall system performs parallel multi-deme GA.

The system consists of n PE modules, which are denoted as
GA1~GAn, an arbiter and a bus interface. The value of n is
determined by the size of the FPGA. For example, n is 2 for the
Virtex II 3000 FPGA and 5 for the XC2VP70. Each module
implements the above mentioned genetic algorithm to search for
the DNA codeword. They are independent of each other. The
populations in different GA modules are initialized using different
random seeds.

Communication and synchronization are two challenges that need
to be addressed when designing a system that performs parallel
GA. All the GA modules share the same bus interface. Codewords
found by any one GA module must be harvested and passed to the
other GA modules. In this design, all the GA modules are
connected to an arbiter. When a GA module finds a new
codeword, it raises the “PE_got_new_word” flag and requests to
be connected to the bus interface to communicate with the host.
The arbiter broadcasts the new codeword to all other GA modules
and raises the “update_library” flag. The GA module that
receives the “update_library” request must terminate its current
operation and go to “update_lib” state. If multiple GA modules
raise the “PE_got_new_word” flag simultaneously, the arbiter
must select one of them and invalidate the others. The decision is
based on a fixed priority. The arbiter also connects the selected
GA module that has found a new codeword with the bus interface
to communicate with the host. If another GA module finds a new
word, it must wait till the end of the current host-PE
communication procedure to be connected to the bus interface.
Figure 6 (a) shows the state machine controller of the arbiter for
library update.

Figure 6 State machine controller of the arbitrator.
In the multi-deme island GA, the best few individuals of each
sub-population migrate periodically according to an interconnect

configuration, e.g. around a ring in one direction. This procedure
is also controlled by the arbiter. A separate state machine
controller in the arbiter is developed for the migration procedure.
Figure 6 (b) shows the state diagram of the migration controller.
Periodically, the PE sends a migration request to the arbiter. The
arbiter will acknowledge this request if its migration controller is
in the idle state. After receiving the acknowledgement from the
arbiter, the PE sends its best few individuals and their fitness
values to the arbiter. These data are placed in a memory together
with similar data received from other PEs. The arbiter sorts and
picks the best m individuals, where m is the number of individuals
to be migrated, and sends them back to the PE which started the
request for migration. For the case of 2 PEs on a chip served by
one arbiter, this is equivalent to a directed ring configuration.
However, for the case of more than 2 PEs on a chip, this approach
implements a local pooling, or all-to-all configuration. Above the
chip level, the host is still free to implement any communication
configuration among host nodes in a cluster with standard MPI.

5.3 Hardware acceleration for exhaustive
search
The effectiveness of the stochastic search decreases when the size
of the search space increases, or when the solution space
decreases due to additional constraints. As codewords are added
to the library, more library words must be checked against
candidates, and the new words act as new constraints. As a result,
the time required for the GA to find a new codeword increases
exponentially. Furthermore, using stochastic search, we will never
know whether still another new codeword can be added to the
library. The only way to answer this question is by using
exhaustive search, i.e. checking every possible codeword in the
universe of all possible codewords. The complexity of exhaustive
search increases linearly with the number of codewords already in
the library. However, the complexity of exhaustive search also
increases exponentially with the length of the codewords. As the
name suggests, for a given initial library, the exhaustive search
portion of the hybrid algorithm must scan the entire codeword
space and find all remaining additional valid codewords that
satisfy constraint equations (2)-(4). For DNA codewords of length
16, and for an initial library with 100 codewords, exhaustive
search in software would take 52 days on a 2.0GHz Intel Xeon
processor if checking a pair takes 10 microseconds.

With small modification, we can implement the exhaustive DNA
codeword search using hardware. The hardware accelerator for
exhaustive codeword search consists of only one memory, which
is used to store the codeword library, a 32 bit counter cycled from
0 to its maximum value to represent the potential new word, and
two systolic array fitness checkers. For each codeword x, the
calculation of),(sxLLCS and),(sxLLCS , where Ss∈ , are
performed simultaneously by the two fitness checkers.

The hardware accelerator for exhaustive search of DNA
codewords of length 16 uses 21,733 LUTs, which is about 75% of
Virtex II 3000 FPGA. At 100Mhz clock frequency, the hardware
accelerator takes about 1.5 hours to scan the entire ~4.3 billion
codeword space for codewords of length 16, which is over 800
times faster than the workstation PC software only case. At the
completion of exhaustive search we can say that a codeword set is
locally optimum, in the sense that given the series of random
numbers used to drive the stochastic GA in the early phase of

PE_Commun
icating

Idle

Update_all
_libraries

Wait

PE_got_new_word

PE_got_new_word

Communication
done

Communication
done

PE_Commun
icating

Idle

Update_all
_libraries

Wait

PE_got_new_word

PE_got_new_word

Communication
done

Communication
done

(a) Controller for library update (b) Controller for individual Migration

idle

Acknowledge and
receive the data

Send the best
migrated individuals

Merge and sort the
migrated individuals

PE request to migrate

idle

Acknowledge and
receive the data

Send the best
migrated individuals

Merge and sort the
migrated individuals

PE request to migrate

idle

Acknowledge and
receive the data

Acknowledge and
receive the data

Send the best
migrated individuals

Merge and sort the
migrated individuals

PE request to migrate

building, no additional codewords can be added to increase the
size of the library. To date, little data has been published in the
literature on locally optimum edit distance codes of lengths
greater than about 12 bases, and this hardware accelerator enables
us to efficiently explore this aspect of the problem domain for the
first time.

6. EXPERIMENTAL RESULTS
A hardware accelerator that uses a stochastic GA to build DNA
codeword libraries of codeword length 16 has been designed,
implemented, and tested. The first version uses one fitness
evaluator and is implemented on a single FPGA chip.

The design has actually been ported onto three different
reconfigurable computing platforms, including a Xilinx XUP
Virtex-II Pro evaluation board [13], a laptop computer with the
Annapolis Wildcard FPGA board [14], and a desktop computer
with the Annapolis Wildstar–II FPGA board. Different bus
architectures are used to connect the hardware accelerator to the
host CPU in each of the different platformsThe other difference
among these platforms is the amount of resources available on the
FPGA chips resident on the boards.

The first set of experiments evaluates the performance impact of
various parameters of the hardware multi-deme GA, including the
size of the sub-population (pop), the percentage of mutation
during each generation (m%), the length of epoch (E) between
migrations and the number of best individuals that migrate (n).
The total number of mutations that are performed in each
generation is calculated as)%(Lpopm ×× , where L is the length
of the codeword. For each mutation, the routine that is given in
Figure 2 is executed. For this first set of experiments, the
hardware implementations consisted of 2 parallel PEs that
perform GA based codeword searching, each with one LLCS
checker, and without exhaustive search.

Figure 7 Effect of size of sub-population
We first ran the DNA codeword searching varying sub-population
from 16 to 256. The number of keepers, the length of the epoch,
number of migrated individuals, and the percentage mutation
were fixed to be 8, 5, 7 and 10. Figure 7 shows a comparison of
the average performance of those runs, in terms of the time it
takes to build a large library. Less time is better, so the lower
curve is better than the upper curve. In all the plots given by
Figure 7-13, the x axis is the number of codewords found, where
each codeword is either a strand or its reverse complement (a pair
counts for 2). The GA is a stochastic algorithm, so each point in
the curves is the average over 10 runs of the times taken to find
the # of codewords on the x axis. For these experiments we set the
length of the codewords n to be 16, and the permissible match (n-
edit distance) σ to be 10. The experimental results show that with
mating and migration enabled, a small population is superior to a

large population in terms of search speed. This is because the
most time consuming operation in mating and migration is pick
up the best k individuals, which we call the number keepers. This
does not require a full sort of the population, but even so, it is a
sequential procedure that cannot be accelerated by a parallel
architecture for typical population sizes. It takes more time to
index through a larger population multiple times to find its best k
individuals.
In the second experiment, we vary the percentage mutation from 1
to 25 to evaluate its impact on performance. The size of sub-
population, the number of migrated individuals, the length of
epoch and the number of keepers were fixed to be 64, 7, 5 and 8.
Figure 8 shows a comparison of the average performance of
different configurations. As we can see, the percentage mutation
has a significant impact on the system performance.

Figure 8 Effect of mutation
Higher percentage mutation leads to better performance. For
example, to find 206 codewords, the hardware GA configured
with 25% mutation is about 400X faster than the hardware GA
configured with 1% mutation. This can partly be explained by the
overhead of mating. When the size of population is fixed, the
value of percentage mutation determines how many mutation
operations will be performed between two mating operations.
Because each mutation operation takes fixed amount of time, it
also determines the frequency of mating operations. A higher
percentage mutation implies less frequent mating, and thus, lower
overhead from the sorting operation.

In the third and the fourth experiments, we vary the number of
migrated individuals and the number of generations in the epoch
between migrations, respectively, to evaluate the performance
impact of these two parameters. However, the results show that
there is little performance impact from the number of migrated
individuals and the epoch length. Due to the space limit, we do
not report this data in the paper.

The second set of experiments compares the performance of
multi-deme hardware GA with and without mating and migration.
Figure 9 shows a comparison of the average performance of GA
with mating and migration versus GA without mating and
migration when the size of sub-population varies from 16 to 256.
The number of keepers, the length of the epoch, the size of
migrated individuals and the percentage mutation are fixed to be
8, 5, 7 and 10. As we can see, overall, the parallel GA without
mating and migration is more efficient than the parallel GA with
mating and migration. The difference becomes more significant as
the size of population increases. Again, this shows that the
overhead of mating increases as the population size increases.
Figure 10 analyzes the data from this experiment in terms of the
speed improvement of parallel GA without mating and migration,
for different population sizes, normalized to the performance with

#keepers=8, epcoh=5, #migration=7, %mutation=10

1.0E-3
1.0E-2
1.0E-1
1.0E+0
1. 0E+1
1. 0E+2
1.0E+3

92 10
4

11
6

12
8

14
0

15
2

16
4

17
6

18
8

20
0

21
2

22
4

23
6

24
8

Code Word Found

Ti
m

e
(s

ec
)

pop=16 pop=64

pop=256

pop=32 pop=128

#keepers=8, epcoh=5, #migration=7, %mutation=10

1.0E-3
1.0E-2
1.0E-1
1.0E+0
1. 0E+1
1. 0E+2
1.0E+3

92 10
4

11
6

12
8

14
0

15
2

16
4

17
6

18
8

20
0

21
2

22
4

23
6

24
8

Code Word Found

Ti
m

e
(s

ec
)

pop=16 pop=64

pop=256

pop=32 pop=128

pop=16 pop=64

pop=256

pop=32 pop=128

pop=64, #mig=7, epoch=5, #keepers=8

0.0E+0
5.0E+1
1.0E+2
1.5E+2
2.0E+2
2.5E+2
3.0E+2

13
2

14
0

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

1% mutation
5% mutation
10% mutation
25% mutation

Code Word Found

Ti
m

e
(s

ec
)

pop=64, #mig=7, epoch=5, #keepers=8

0.0E+0
5.0E+1
1.0E+2
1.5E+2
2.0E+2
2.5E+2
3.0E+2

13
2

14
0

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

1% mutation
5% mutation
10% mutation
25% mutation

1% mutation
5% mutation
10% mutation
25% mutation

Code Word Found

Ti
m

e
(s

ec
)

population size 16. As we can see, at the beginning of the search,
smaller populations find words faster, but as the number of
codewords increases, the larger populations find word slightly
faster. This effect may be due to the beneficial effect of
processing more mutations in between pick-up operations at the
end of generations (doing wider search) outweighs the negative
effect of the overhead of the pickup operation that also increases
with population size.

Figure 9 Effect of mating and migration.

Figure 10 Effect of size of population in GA w.o. mating and
migration.

Figure 11 shows the performance comparison between a single
PE system and a 2 PE system. Both systems are configured with

population size equal to 16 and both are running without mating
and migration. As expected, the 2-PE system is about twice as fast
as the one PE system

The next set of experiments compares the hardware GA with a
software version of the GA, again without mating and migration,
and with one PE is instantiated in the hardware.

Figure 11 Performance comparison of single PE vs. 2-PE

Figure 12 shows a comparison of the average performance of the
GA based codeword search algorithm running in software on a
single workstation processor (upper curve) and the hardware
accelerated hybrid architecture (lower line). The upper curve for
the software version was run on one workstation with 1 P4
processor. The lower curve for the hardware GA was run with a
100MHz FPGA clock frequency.

Figure 12 Comparison of average performance.
Compared to the software only implementation, the hardware
accelerator running at 100MHz provides approximately a 1000X
speed-up. The speed-up of the hardware versions is due to the
parallel and pipelined architecture of the hardware. Based on
previous work [15] we would expect almost linear speed-up
(a/0.98) vs. the number of fitness calculators, and linear speed-up
as the number of distributed GA populations p is increased.

Figure 13 Comparison of best performance.
Figure 13 shows a comparison of the best performance to date of
the software GA and the hardware GA. In this case, the top red
curve for the distributed software multi-deme GA was run on a
cluster using 10 P4 processors without mating, but with
migration. The inter-processor communication is implemented
using MPI (message passing interface). The middle blue curve for

of codewords

sp
ee

d
im

pr
ov

em
en

t

-0.8
-0.4

0

0.4
0.8
1.2

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

23
6

population = 64
population=128
population=256

of codewords

sp
ee

d
im

pr
ov

em
en

t

-0.8
-0.4

0

0.4
0.8
1.2

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

23
6

-0.8
-0.4

0

0.4
0.8
1.2

14
8

15
6

16
4

17
2

18
0

18
8

19
6

20
4

21
2

22
0

22
8

23
6

population = 64
population=128
population=256

population = 64
population=128
population=256

Ti
m

e
(s

ec
) Time vs # Words Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Code Words found

Software GA
Hardware GA

Ti
m

e
(s

ec
) Time vs # Words Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Code Words found

Software GA
Hardware GA
Software GA
Hardware GA

Measured Performance Building 16/10 Codes

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Code Words Found

Ti
m

e
(s

ec
)

Software GA(10 P4 cluster)
Hardware GA, 30MHz
HW GA + ES, 100MHz

Measured Performance Building 16/10 Codes

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Code Words Found

Ti
m

e
(s

ec
)

Software GA(10 P4 cluster)
Hardware GA, 30MHz
HW GA + ES, 100MHz

Software GA(10 P4 cluster)
Hardware GA, 30MHz
HW GA + ES, 100MHz

Code Word Found

Ti
m

e
(s

ec
)

(a) Population = 16

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(a) Population = 16

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR
2PE
2PE_MATING_MIGR

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(b) Population = 64

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE

2PE_MATING_MIGR

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE

2PE_MATING_MIGR

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(b) Population = 64

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

24
6

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(c) Population = 128

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

24
6

2PE

2PE_MATING_MIGR

2PE

2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(c) Population = 128

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(d) Population = 256

0.00E+00

1.00E+02

2.00E+02

3.00E+02

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

2PE
2PE_MATING_MIGR
2PE
2PE_MATING_MIGR

Code Word Found

Ti
m

e
(s

ec
)

(d) Population = 256

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

1PE

2PE w.o. Mating & MGR

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

1PE

2PE w.o. Mating & MGR

1PE

2PE w.o. Mating & MGR

the hardware GA was run on the Annapolis Wildcard-II in a
notebook PC with a 30MHz FPGA clock frequency, without
mating and migration. The lower magenta curve for the hardware
GA with exhaustive search was run on a Wildcard board in a P4
workstation with a 100MHz FPGA clock frequency, also without
mating and migration (exhaustive search found 8 more words).

Figure 14 Size of local optimal DNA codeword libraries built
with 300sec. GA plus exhaustive search.

In a final set of experiments, we used the exhaustive search
version of the hardware accelerator to determine the average size
of locally optimum codeword libraries that can be built, and the
efficacy of the GA for building them. Figure 14 shows a
histogram of the sizes of libraries generated by running hardware
GA (without mating and migration) for 300 seconds followed by
hardware exhaustive search. The results show that the size of the
local optimal DNA codeword library follows approximately a
normal distribution with mean of about 122 codewords
(word/word’ pairs). The experiment consists of 60 tests, which
took about 90 hours. The equivalent test on a 30 workstation
cluster would have taken about 3000 hours (4 months).

Figure 15 shows data from a second experiment involving 32 runs
of the same hardware GA for 600 sec. followed by exhaustive
search. The number of words found during the GA phase (red)
and the exhaustive search phase (green) is highlighted.

Locally optimum library lengths for 32 runs of
GA for 600 sec. followed by Exhaustive Search (ES)

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31
run #

w

or
ds

 in
 fi

na
l l

ib
ra

ry

added by ES

Before_ES

Figure 15 Sizes of Libraries built with 600 sec. GA followed

by exhaustive search.
The GA phase alone finds an average of 120.4 words, and
exhaustive search raises the number found to 121.7. So, GA
alone found about 98.9% of the words that can be found.

7. CONCLUSIONS AND FUTURE WORK
In this work, we propose a novel architecture for accelerating a
multi-deme parallel GA based DNA codeword searching

algorithm. Our preliminary research results show that, using a
new hardware and software hybrid implementation, we can
speedup the DNA codeword search procedure by more than
1000X. We have also described a hardware exhaustive search
extension that can produce known locally optimum codes. In the
future, we plan to extend the current architecture to incorporate
thermodynamics based metrics for estimating the binding strength
of DNA pairs, and a checker for codes word of at least length 32.

8. References
[1] L. M. Adleman, “Molecular Computation of Solutions to

Combinatorial Problems,” Science, vol. 266, pp. 1021-1024,
November 1994.

[2] A. Brenneman and A. Condon, “Strand Design for Biomolecular
Computation”, Theoretical Computer Science, vol. 287, pp.39-58,
2002.

[3] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang, Multiobjective
Evolutionary Optimization of DNA Sequences for Reliable DNA
Computing”, IEEE Transactions on Evolutionary Computation, vol.
9(20), pp.143-158, 2005.

[4] F. Tanaka, A. Kameda, M. Yamamoto, and A. Ohuchi, Design of
Nucleic Acid Sequences for DNA Computing based on a
Thermodynamic Approach, Nucleic Acids Research, 33(3), pp.903-
911, 2005.

[5] J. Santalucia, “ A Unified View of polymer, dumbbell, and
oligonucleotide DNA nearest neighbor thermodynamics”, Proc. Natl.
Acad. Sci., Biochemistry, pp. 1460-1465, February 1998.

[6] A. D’yachkov, P.L. Erdös, A. Macula, V. Rykov, D. Torney, C-S.
Tung, P. Vilenkin and S. White, “Exordium for DNA Codes,”
Journal of Combinatorial Optimization, vol. 7, no. 4, pp. 369-379,
2003.

[7] R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti,
and S.E. Jr. Stevens, "Genetic search of reliable encodings for DNA-
based computation," Proceedings of the First Annual Conference on
Genetic Programming, pp. 9-15, July 1996.

[8] Bishop, M. , Macula, A. , Pogozelski, W. , and Rykov, V. , “DNA
Codeword Library Design”, Proc. Foundations of Nanoscience –
Self Assembled Architectures and Devices, (FNANO), April 2005.

[9] Tulpan, D.C. , Hoos, H. , Condon, A. ,“Stochastic Local Search
Algorithms for DNA Word Design”, Eighth International Meeting
on DNA Based Computers(DNA8), June 2002.

[10] S. Houghten, D. Ashlock and J. Lennarz, “Bounds on Optimal Edit
Metric Codes”, Brock University Tech. Rer.t # CS-05-07, July 2005.

[11] O. Milenkovic and N. Kashyap, “On the Design of Codes for DNA
Computing,” Lecture Notes in Computer Science, pp. 100-119,
Springer Verlag, Berlin-Heidelberg, 2006.

[12] R. Brualdi, and V. Pless, “Greedy Codes,” Journal of Combinatorial
Theory Series A, vol. 64, pp. 10-30, 1993.

[13] http://www.xilinx.com/
[14] http://www.annapmicro.com/
[15] D. Burns, K. May, T. Renz, and V. Ross, “Spiraling in on Speed-Ups

of Genetic Algorithm Solvers for Coupled Non-Linear ODE System
Parameterization and DNA Code Word Library Synthesis,” MAPLD
International Conference, 2005.

[16] P.D. Michailidis and K.G. Margaritis, “New Processor Array
Architectures for the Longest Common Subsequence Problem,” The
Journal of Supercomputing, vol. 32, pp. 51-69, 2005.

[17] Y.C. Lin and J.W. Yeh, “A Scalabl and Efficient Systolic Algorithm
for the Longest Common subsequence Problem,” Journal of
Information Science and Engineering, vol. 18, pp. 519-532, 2002

Histogram of Library Lengths Found
HW GA 5 min. + ES 1 hr

0

4

8

12

16

116 121 126
Library Length

fr
eq

ue
nc

y GA + ES, pre-seeded

Histogram of Library Lengths Found
HW GA 5 min. + ES 1 hr

0

4

8

12

16

116 121 126
Library Length

fr
eq

ue
nc

y GA + ES, pre-seededGA + ES, pre-seeded

Hardware Acceleration for Thermodynamically
Constrained DNA Code Generation

Qinru Qiu*, Prakash Mukre*, Morgan Bishop**, Daniel Burns**, Qing Wu*
*Department of Electrical and Computer Engineering, Binghamton

University, Binghamton, NY 13902
**Air Force Research Laboratory, Rome Site, 26 Electronic Parkway, Rome,

NY 13441
qqiu@binghamton.edu, pmukre1@binghamton.edu, Morgan.Bishop@rl.af.mil, Daniel.Burns@rl.af.mil,

qwu@binghamton.edu

ABSTRACT. Reliable DNA computing requires a large pool of oligonucleotides that do
not produce cross-hybridize. In this paper, we present a transformed algorithm to calculate
the maximum weight of the 2-stem common subsequence of two DNA oligonucleotides.
The result is the key part of the Gibbs free energy of the DNA crosshybridized duplexes
based on the nearest-neighbor model. The transformed algorithm preserves the physical
data locality and hence is suitable to be implemented using a systolic array. A novel hybrid
architecture that consists of a general purpose microprocessor and a hardware accelerator
for accelerating the discovery of DNA under thermodynamic constraints is designed,
implemented and tested. Experimental results show that the hardware system provides more
than 250X speed-up compared to a software only implementation.
1. INTRODUCTION

A single DNA strand (i.e. oligonucleotides) is a sequence of four possible nucleotides denoted
as A, C, G and T. Short DNA sequences can be synthesized easily and be used for different
applications, including high density information storage [2], molecular computation of hard
combinatorial problems [1], and molecular barcode to identify individual modules in complex
chemical libraries [3]. These applications rely on the specific hybridization between DNA code
word and its Watson-Crick complement. The key to success in DNA computing is the availability
of a large collection of DNA code word pairs that do not crosshybridize.

The capability of hybridization between two oligonucleotides is determined by the base
sequences of the hybridizing oligonucleotides, the location of potential mismatches, the
concentrations of the molar strand, the temperature of the reaction and the length of the sequences
[4]. The melting temperature (Tm) is a parameter that characterizes these factors [4]. It is defined as
the temperature at which 50% of the DNA molecules have been separated to single strand. Another
closely related measure of the relative stability of a DNA duplex is its Gibbs free energy denoted as
ΔGO. The nearest-neighbor (NN) model [8][12] was proven to be effective and accurate estimation
for the free energy. In [14], the concept of t-stem block insertion-deletion codes was introduced that
captures the key aspects of the nearest neighbor model. In the same reference, a dynamic
programming algorithm is presented to calculate the maximum weight of the t-stem common
subsequence.

Search methods for DNA codes are extremely time-consuming [5], and this has limited research
on DNA codeword design, especially for codes of length greater than about 12-14 bases. For
example, the largest known DNA codeword library generated based on the edit distance constraint
with length 16 and edit distance 10 consists of 132 pairs. Composing such codes can take several
days on a cluster of 10 G5 processors.

In [9], we presented a novel accelerator for the composition of reverse complement, edit distance
DNA codes of length 16. It incorporates a hardware GA, hardware edit distance calculation, and
hardware exhaustive search which extends an initial codeword library by doing a final scan across the

entire universe of possible code words. The proposed architecture consists of a host PC, a hardware
accelerator implemented in reconfigurable logic on a field programmable gate array (FPGA) and a
software program running in a host PC that controls and communicates with the hardware accelerator.
The proposed architecture using a modified genetic algorithm that uses a locally exhaustive, mutation-
only heuristic tuned for speed. The proposed architecture successfully reduced the DNA codeword
search time from 6 days (on 10 Pentium processors) to 1.5 hours and achieved an effective 1000X speed-
up.

The edit distance metric only provides the first order approximation of the free energy of the
DNA duplexes. To improve the quality of the code words, more accurate metric based on the
thermodynamics of DNA duplexes must be considered. This paper focuses on implementing the
nearest-neighbor based free energy calculation on the reconfigurable hardware accelerator. We
present a transformed algorithm to calculate the maximum weight of the 2-stem common
subsequence of two DNA oligonucleotides. The result is the key part of the Gibbs free energy of the
DNA crosshybridized (CH) duplexes based on the nearest-neighbor model. The transformed
algorithm preserves the physical data locality and hence is suitable to be implemented using systolic
array. A new hardware accelerator for accelerating the discovery of DNA under thermodynamic
constraints is further presented. The proposed architecture provides more than 250X speed-up
compared to a software only implementation.

The remainder of this paper is organized as follows: Section 2 provides the necessary biological
background and the nearest-neighbor model for free energy calculation. Section 3 introduces the
weighted t-stem block insertion-deletion codes. Section 4 gives the transformed algorithm and its
hardware implementation using 2D systolic array. Section 5 presents our problem formulation and
the solution technique in hardware GA. Section 6 provides a performance comparison between the
software version and the hardware version of the codeword search. Section 7 presents final
conclusions.

2. BACKGROUND

The DNA molecule is a nucleic acid. It consists of two oriented oligonucleotide sequences. One
end of it is denoted as 3’ and the other as 5’. There are four types of bases, denoted briefly as A, T,
C, and G. Each base can pair up with only one particular base through hydrogen bonds: A+T, T+A,
C+G and G+C. Sometimes we say that A and T are complementary to each other while C and G are
complementary to each other. A Watson-Crick complement of a DNA sequence is another DNA
sequence which replaces all the A with T or vise versa and replaces all the T with A or vise versa,
and also switches the 5’ and 3’ ends. A DNA sequence binds most stably with its Watson-Crick
complement and the structure they form is called Watson-Crick (WC) duplex. Figure 1 (a) shows an
example of a WC duplex. We refer to the non-WC duplex as crosshybridized (CH) duplex. Figure 1
(b) shows an example of a CH duplex. Only WC duplexes are needed during DNA computing.
Therefore, it is important to design the DNA codes such that a fixed temperature can be found that
is well above the melting point of all CH duplexes and well below the melting point of all WC

duplexes that can form from strands in the code.
The thermodynamics of binding of nucleic acids has

been widely studied and reported in the literature. The
nearest-neighbor (NN) model [12] was proven to be
effective and accurate for the thermodynamic energy
estimation. The NN model assumes that stability of a
DNA duplex depends on the identity and orientation of

neighboring base pairs. There are 10 possible NN pairs: AA/TT, AT/TA, TA/AT, CA/GT, GT/CA,
CT/GA, GA/CT, CG/GC, GC/CG, and GG/CC. Based on the NN model, the total free energy
change of a DNA duplex at temperature T can be calculated by the following equation:

Terminal ,
NNs
,,,)()(ATT

CrickWatsoni
stackTsymmetryTinitiationTT GiGGGtotalG οοοοο Δ+∑+Δ+Δ=Δ

−∈
,

A A C G −T G

T T −C G A C

5’ 3’

5’3’

A A C G −T G

T T −C G A C

5’ 3’

5’3’

A A C G T G

T T G C A C

5’ 3’

5’3’

A A C G T G

T T G C A C

5’ 3’

5’3’

(a) WC duplex (b) CH duplex

Figure 1 WC duplex and CH duplex

where initiationTG ,
οΔ is the initiation energy, symmetryTG ,

οΔ is a parameter that reflects whether the
duplex is self-complementary, Terminal , ATTGοΔ is a parameter that accounts for the differences
between duplexes with terminal AT versus terminal GC,)(, iG stackT

οΔ gives the thermodynamic
energy of Watson-Crick NN duplex i. Their values at 37oC are given in Table 1.

Example: Using Table 1, the NN free energy of DNA duplex
'5'3
'3'5

−−
−−

GCAACT
CGTTGA

 can be calculated

as:
)()()()()()(,37,37,37,37,37NNs WC , GAGTGGTTGGTGCGGiG stackstackstackstackstacki stackT Δ+Δ+Δ+Δ+Δ=Δ∑∈

ο

-1mol kcal 35.53.145.100.144.117.2 −=−−−−−= .
Table 1 Nearest-neighbor thermodynamic parameters for DNA Watson-Crick pairs at 37OC

[12]
• • A • C • G • T
• A • -

1
• -

1.44
• -

1.28
• -

0.88
• C • -

1.45
• -

1.84
• -

2.17
• -

1.28
• G • -

1.3
• -

2.24
• -

1.84
• -

1.44
• T • -

0.58
• -

1.3
• -

1.45
• -

1.00

While the parameters initiationTG ,
οΔ , symmetryTG ,

οΔ , and Terminal , ATTGοΔ can be obtained in a
straightforward manner, the NN free energy (i.e.)(NN ,∑∈ ΔWCi stackT iGο) is determined by the
structure of the primary sequence of the DNA duplex. This work focuses on accelerating the
calculation of NN free energy using reconfigurable hardware and applies it to hardware based DNA
code word search.

3. T-STEM BLOCK INSERTION-DELETION CODES

In the rest of the paper, we adopt some notations that are used in reference [14]. We use [n] to
denote the set {0, …, n-1} and (n) to denote the sequence 1, 2, …, n. We call)(npα a string if and
only if it is a subsequence of consecutive integers, e.g., α = i, i+1,…,i+k. Let [q]n denote the set of
sequences of length n with entries in [q]. For x = x1, …, xn with nqx][∈ and kiii ,...,, 21=σ where

)(npσ , we use xx pσ to denote the subsequence kiii xxx ,...,, 21 and x[i] to denote the ith entry in

sequence x. Given a non-negative real-valued function, Ω, on [q], we define the weight of
subsequence xσ as ∑Ω=

∈
Ω σ

σ
i

ixx)(.

For)(npσ , a substring σβ p is called a block of σ if β is not a subsequence of any substring
α of σ with αβ ≠ . Denote σ as a sequence of blocks li ββββ ,...,,...,, 21 , if the difference between
the endpoint of βi and the starting point of βi+1 is greater than or equal to t, then σ is a t-gap
sequence of (n). It is denoted as)(nGt∈σ . Given)(npσ ,)(mpτ with |||| τσ = and

)(nGt∈σ ,)(mGt∈τ , let τσ →:f be a unique mapping, σ and τ are said to be t-gap block

isomorphic (denoted as τσ
t
≅) if σα p is a string ⇔ τα p)(f is a string. For nqx][∈ and

mqy][∈ , if τσ yx = and τσ
t
≅ , then we say σx and τy are t-gap block isomorphic and denote it

as τσ yx
t
≅ .

Definition 1 For 12 −≤≤ nt and nqyx][, ∈ , we define the weight of the longest common t-gap

block subsequence of x and y as }:max{),(, τσσφ yxxyx
t

t
q ≅≡ ΩΩ . The weighted distance of two

t-gap block insertion-deletion codes is defined as),(),min(),(,, yxyxyx t
q

t
q ΩΩΩΩ −≡Φ φ .

When t = 1 and σσ xx =Ω ,),(1
, yxqΩΦ is the Levenshtein insertion-deletion distance.

The weight of the longest common t-gap block subsequence of x and y (i.e.),(, yxt
qΩφ) can be

calculated using dynamic programming. For nqyx][, ∈ and njit ≤≤ , , let t
jiM ,,Ω denote

),(],1[],1[ji
t yxΩφ and),(yxsuf denote the length of the longest common suffix between x and y. It

is proved ([14]) that:
 },,max(,,1,,,1,,,

t
ji

t
ji

t
ji

t
ji DMMM Ω−Ω−ΩΩ = ,

(1)
where t

jiD ,,Ω is defined as

{ }
⎪⎩

⎪
⎨
⎧ ≥≤≤+= +−−+−−ΩΩ+−

Ω
otherwise 0

1),(),(1:max],1[],1[],1[],1[1,1,],1[
,,

jiji
t

trjtriirit
ji

yxsufifyxsufrMxD

. (2)
Given two sequences nqyx][, ∈ , τσ yx = with a unique mapping τσ →:f , a t-stem exists if

and only if subsequences]1)(),([]1,[−+−+ = tififtii yx . Let t
τσ be the sequence of the first index of all

the t-stems. For nqx][∈ , let)(]1,[−+taaq xd be a unique number in][tq to represent

11... −++ taaa xxx , we define tntt qx −∈][)(as a sequence whose ith element is equal to

)((]1, −+tiiq xd . For 12 −≤≤ nt , it can be proved that if 0≠t
τσ , then)(

)(
)(t

ft
t

tt yx
ττ σσ

≅ .

Definition 2 Let Ω be a weight function on][tq , the maximum weighted t-stem common

subsequence is defined as
⎭
⎬
⎫

⎩
⎨
⎧

=Ω
)(max),(tt
txyx
τσ

ψ . The t-stem code distance is defined as

),(,min),()()(yxyxyx tttt
Ω

ΩΩ
−⎟

⎠
⎞⎜

⎝
⎛=Ψ ψ .

It is proved ([14]) that the maximum weighted t-stem common subsequence of x and y is equal
to the weight of the longest common t-gap block subsequence of x(t) and y(t), i.e.

())()(
,

,),(ttt
q

t yxyx tΩΩ =φψ .

Let the CH duplex between x and y be denoted as
←
yx : , where y is the WC complement of y

and
←
y is a representation of y in reversed order. If the duplex

←
yx : have a secondary structure,

then its free energy of nearest neighbor stacked pairs can be calculated as),(2 yxΩψ , where the

weight function Ω is equal to o
stackTG ,Δ− .

Example: Consider the CH duplex
'5'3
'3'5

−−
−−

GCTGCTACT
AACGTAGAT

. It corresponds to strings x =

AACGTAGAT and y = CGACGATGA. Because]7,6][5,3[]9,8][4,2[yx = , we have]9,8][4,2[=σ ,

]7,6][5,3[=τ , 8,3,22 =τσ , and

molkcalATGCGGACGxx stackstackstack / 49.4)()()(,37,37,37
)2(

8,3,2
)2(=Δ−Δ−Δ−==σ .

Let A, C, G, T be encoded as 0, 1, 2, and 3, then x = 0, 0, 1, 2, 3, 0, 2, 0, 3 and y = 1, 2, 0, 1, 2,
0, 3, 2, 0. x(2) = 0, 1, 6, 11, 12, 2, 8, 3 and y(2) = 6, 8, 1, 6, 8, 3, 14, 8. It is easy to see that

)2(
6,4,3

)2(
8,3,2 yx = . Let 8,3,2=σ and

6,4,3=τ , because any string in σ
corresponds to a string in τ, and the
gaps between blocks in σ and τ are
equal to 2, we say τσ

2
≅ and

)2(
2

)2(
τσ yx ≅ . Note that although

)2(
6,5,4,3

)2(
8,7,3,2 yx = , because a string in

6,5,4,3=τ does not necessarily correspond to a string in 8,7,3,2=σ , therefore,)2(
8,7,3,2x and

)2(
6,5,4,3y are not t-gap block isomorphic. Using equation (1) and (2) we can find that

=Ω),(2 yxψ ==Ω
)2(

7,3,2
)2()2(),(xyxtφ)()()(,37,37,37 GAGCGGACG stackstackstack Δ−Δ−Δ− molkcal / 91.4= . Figure

2 shows the secondary structures in the CH duplex that for 8,3,22 =τσ and 7,3,22 =τσ .
In this work, we estimate the NN free energy of a CH duplex by calculating their maximum

weighted 2-stem common subsequence. In the next section, we will present a dynamic
programming algorithm that is suitable for a 2D systolic array implementation.

4. CALCULATION OF NN FREE ENERGY USING 2D SYSTOLIC ARRAY
Based on the equations (1) and (2), a dynamic programming algorithm was developed.

Given a CH duplex
←
yx : , we define 3 matrices. They include a suffix matrix (S) which

stores the length of the longest common suffix between x and y, a weighted suffix matrix
(WS) which stores the accumulated weight of each common stem-2 and an energy matrix
(E) which stores the accumulated free energy of the possible NNs. The value of the ijth
entry of these matrices can be calculated using the following equations.

⎩
⎨
⎧ =+

= −−
otherwise 0

][][if 11,1 jyixs
s ji
ij ,

(3)

⎩
⎨
⎧ −=−=−+

= −−
otherwise 0

]1[]1[&][][if])[],1[(1,1
,

iyixjyixixixwws
ws ji

ji ,

(4)

Figure 2 Represent DNA secondary structure using
2-stem insertion-deletion codes

(b) Secondary structure
corresponding to

5’-AACGTAGAT-3’

3’-GCTGCTACT-5’

7,3,22 =τσ
(a) Secondary structure
corresponding to

5’-AACGTAGAT-3’

3’-GCTGCTACT-5’

8,3,22 =τσ
(b) Secondary structure
corresponding to

5’-AACGTAGAT-3’

3’-GCTGCTACT-5’

7,3,22 =τσ
(b) Secondary structure
corresponding to

5’-AACGTAGAT-3’

3’-GCTGCTACT-5’

7,3,22 =τσ
(a) Secondary structure
corresponding to

5’-AACGTAGAT-3’

3’-GCTGCTACT-5’

8,3,22 =τσ
(a) Secondary structure
corresponding to

5’-AACGTAGAT-3’

3’-GCTGCTACT-5’

8,3,22 =τσ

⎪
⎩

⎪
⎨

⎧

=+−

+−+−

=

−−−−

−−−−−−−−

−−−−−−−−

otherwise),,max(
][][if), ,.

, ,max(

,11,1,1

,11,,1,1,,

3,32,2,2,21,1,

jijiji

jijisjsisjsiji

jijijijijiji

ij
eee

jyixeeewsws

ewswsewsws

e
ijijijij

. (5)

The parameter w(a[i-1],a[i]) is the stack-pair free energy specified in Table 1. The bottom right

entry of the E matrix gives the NN free energy of
←
yx : .

Example: Consider x = 5’AATGA3’ and '5'3 CATGGy =
←

 (i.e. '3'5 GTACCy = ,) the matrix S, WS,
and E can be calculated as the following and the NN free energy of the CH duplex is 2.33.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01000
03000
10200
00011
00000

S ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000
033.2000
0088.000
00000
00000

WS ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

33.233.288.000
33.233.288.000
88.088.088.000
00000
00000

E .

Systolic array processing has been widely used in parallel computing to enhance performance.
Its general architecture is given in Figure 3 (b). It has N×N connected processors. Each processor
performs an elementary calculation. The processor P(i,j) reads data from its up stream neighbors
P(i-1,j), P(i,j-1) and P(i-1, j-1), and propagates the results to its down stream neighbors P(i+1,j),
P(i,j+1) and P(i+1, j+1). After an initialization period that is needed to fill the pipeline, a systolic
array generates one result per 2 clock periods.

Equation (3)~(5) cannot be directly mapped to a 2D systolic array architecture because to
calculate ije we need the value of djdiws −− , (djdie −− ,), ijsd ≤≤1 . The variable ije is calculated
by processor P(i,j). The variables djdiws −− , and djdie −− , are calculated by processor P(i-d, j-d). If
the calculation of ije is performed at clock period t, then the calculations of djdiws −− , and

djdie −− , of the same DNA duplex are performed at clock period dt 2− . Because cells in the
systolic array will register the new input and update their results every 2 clock periods, it is not
possible for us to access the data of djdiws −− , and djdie −− , at clock period t if d is greater than 1.
One way to handle this problem is to memorize the values of djdiws −− , and djdie −− , by adding
extra storage elements. Because the maximum value of sij can be as high as the length of the DNA
strand, which in our case is 16, this solution requires us to duplicate each cell in the systolic array
16 times. This is not practical as it significantly increases the hardware cost.

In this work, we use function transformation to simplify the hardware design. We define a
minimum weighted suffix matrix (MIN_WS) which stores the minimum value of the difference
between djdiws −− , and 1,1 −−−− djdie , where ijsd ≤≤1 . The ijth entry of MIN_WS can be
calculated as

⎩
⎨
⎧ =−

= −−
otherwise 1,000,000

][][if),min(1,1 jyixewsmin_ws
min_ws jiij1-j1,-i

ij , (6)

when][][jyix ≠ , min_wsij will be set to an extremely large number, otherwise, it is the minimum
between min_wsi-1,j-1 and wsij-ei-1,j-1. The calculation of eij and wsij is transformed into the following
equations.

⎩
⎨
⎧ ≠=−+

= −−
otherwise0

000,000,1&][][if])[],1[(1,1
,

wsmin_jyixixixwws
ws ijji

ji (7)

⎩
⎨
⎧ =−

=
−−−−

−−

otherwise),,max(
][][if),,max(

,11,1,1

,11,,

jijiji

jiji1-j1,-iji
ij eee

jyixeemin_wsws
e . (8)

Equations (6)~(8) are equivalent to equations (3)~(5), however, only information from adjacent
cells is needed in the calculation, hence, they can be implemented using the systolic array
architecture.

The hardware design of the 2D systolic array can be derived directly from equations (6)~(8).
The systolic array is
an n×n array of
identical cells. Each
cell in the array has 7
inputs, among which
the inputs ei-1,j and
x[i-1, j] are coming
from the cell that is
located above, the
inputs ei,j-1 and y[i, j-
1] are coming from
the cell that is located
to the left, and the
inputs ei-1,j-1, wsi-1,j-1
and min_wsi-1,j-1 are
coming from the cell
that is located to the
upper left. Each cell

performs the computations that are described in equations (6)~(8). For cell (i,j), the outputs xi,j and
yi,j are equal to the inputs xi-1,j and yi,j-1. Figure 3 (a) gives the structure of each cell, including its
input/output and the computation implemented. The variable xi,j and yi,j are represented as 2 bit
binary numbers with A=00, C=01, G=10, and T=11. The variable ei,j, wsi,j and min_wsi,j are
represented as 14 bit signed integer numbers.

The overall architecture of the 2D systolic array as well as the data dependency and timing
information are shown in Figure 3 (b). In order to prevent ripple through operation, the cells in the
even columns and even rows or odd columns and odd rows are synchronous to each other and
perform the computation in the same clock period. The rest of the cells are also synchronous to each
other but perform the computation in the next clock period. In this way, the results propagate
through the array diagonally.

5. PROBLEM FORMULATION AND SOLUTION TECHNIQUE
We consider each DNA codeword as a sequence of length n in which each symbol is an element

of an alphabet of 4 elements. Let):(
←
yxG denote the nearest neighbor free energy of duplex

←
yx : .

In this work, we focus on searching for a set of DNA codeword pairs S, where S consists of a set of
DNA strands of length n and their reverse complement strands e.g. {(s1, 1s), (s2, 2s), …}, where
(s1, 1s) denotes a strand and its Watson-Crick complement. The problem can be formulated as the
following constrained optimization problem:
 ||max S such that (8)

 ,):(),:(max 1111 gssGssGrangeg ≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤−

←←
 (9)

Figure 3 Calculating maximum weighted 2-stem common subsequence
using 2D systolic array

T

2T

3T

4T

16T
17T 18T 19T 32T

x0 x1 x2 x3 x150 0 0 0 0

y0

y1

y2

y3

y15

0

0

0

0

0

T

2T

3T

4T

16T
17T 18T 19T 32T

x0 x1 x2 x3 x150 0 0 0 0

y0

y1

y2

y3

y15

0

0

0

0

0

xi-1,j ei-1,j

yi,,j-1
ei, j-1

ei-1, j-1

xi, j ei, j

yi, j
ei, j

ei, j

wsi-1, j-1

min_wsi-1, j-1

wsi, j
min_wsi, j

xi-1,j ei-1,j

yi,,j-1
ei, j-1

ei-1, j-1

xi, j ei, j

yi, j
ei, j

ei, j

wsi-1, j-1

min_wsi-1, j-1

wsi, j
min_wsi, j

(a) Cell architecture (b) 2D systolic array

 g):(),:(),:(),:(max 21212121
, 122

≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤−

←←←←

≠∈
ssGssGssGssGrangeg

ssSs
 (10)

where g and range are user defined threshold called CH upper bound and CH range. Equation (8)
indicates that our objective is to maximize the size of the DNA codeword library. Constraints
(9)~(10) specify that the NN free energy of any CH duplexes must be lower than or equal to g but
greater than or equal to g-range. For any DNA duplex, the weakest stacked pair is the AT pair with

88.0)(,37 =Δ ATGo
stack and 58.0)(,37 =Δ TAGo

stack . Therefore, for 16],,,[, TGCAxy p ,

min(8.1058.0)88.058.0(*7),)2()2(=++=
ΩΩ

yx . Based on definition 2, the weighted t-stem

distance between x and y is greater than g−8.10 and less than rangeg +−8.10 if

gyxGyxrangeg ≤=≤−
←

Ω):(),(2ψ . Therefore, constraints (9)~(10) ensure that the t-stem distance
between any non-WC pairs in the library is within the range [10.8-g+range, 10.8-g]. The range was
initially introduced because we thought that adding code words that are too far away from the rest
of the library will restrict the future growth of the library. Therefore, we only add code words that
are “just good enough”. Later in the experiments we found that the range has little impact on the
size of the library, however, it has a significant impact on the convergence speed of the GA.

The optimization problem is solved using a genetic algorithm. A genetic algorithm (GA) is a
stochastic search technique based on the mechanism of natural selection and recombination.
Solutions, which are also called individuals, are evolved from generation to generation, with
selection, mating, and mutation operators that provide an effective combination of exploration of
the global search space.

Given a codeword library S, the fitness of each individual d reflects how well the corresponding
codeword fits into the current codeword library. Two values define the fitness, reject_num and
max_match. The reject_num is the number of codewords in the library which does not satisfy the

condition (9)~(10) and
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

←←←←

≠∈
):(),:(),:(),:(maxmax_ 21212121

, 122
ssGssGssGssGmatch

ssSs
.

A traditional GA mutation function might randomly pick an individual in the population,
randomly pick a pair of bits in the individual representing one of its 16 bases, and randomly change
the base to one of the 3 other bases in the set of 4 possible bases. In the proposed algorithm,
however, we randomly select an individual, but then to exhaustively check all of the 48 possible
base changes. This is an attempt to speed beneficial evolution of the population by minimizing the
overhead that would be associated with randomly picking this individual again and again in order to
test those mutations. We also specify that if none of the 48 mutations were beneficial, a random
individual will be generated to replace the original one. For more details about the genetic algorithm
and its hardware implementation, please refer to [9][11]. In this work, we extend the architecture of
the hardware GA presented in [9] to incorporate the consideration of nearest-neighbor free energy.
The 2D systolic array that is presented in section 4 is used as fitness evaluation module and the
main state machine controller of the GA is modified so that it checks all the constraints (9)~(10).

6. EXPERIMENTAL RESULTS
A hardware accelerator that uses a stochastic GA to build DNA codeword libraries of codeword

length 16 has been designed, implemented, and tested. The design was implemented on the
reconfigurable computing platform that is composed of a desktop computer and an Annapolis
WildStar–Pro FPGA board [10]. The FPGA board is plugged into the PCI-X slot of the host
system. The WildStar-Pro uses XC2VP70 FPGA that has 74,448 programmable logic cells. The
hardware accelerator uses about 80% of the logic resource, and it runs at 45 MHz clock frequency.
A hardware based code extender that uses exhaustive search to complete the codeword library

generated from GA has also been designed and implemented. All the code word libraries that have
been found were verified using the online tool SynDCode[13]. Since GA is a stochastic algorithm,
all results reported are the average of 5 runs.

The first set of experiments compares the performance of the hardware-based and the software-
only DNA codeword search. Two search algorithms are implemented. They are denoted as
“deterministic search” (DS) and “randomized search” (RS). The population size is 16. The
population of the DS was initialized using 16 sequential data from 0x000003F0 to 0x000003FF,
which corresponds to DNA codeword 3’AATTTAAAAAAAAAAA’5 and
3’TTTTTAAAAAAAAAAA’5, while the population of the RS was initialized randomly. When a
new codeword is found, or when none of the mutated codewords has lower fitness than the original

individual, a new individual will be
generated to replace the original
one. In the DS, a counter is used to
generate the new individual. The
counter is initialized to
0x000006D6. In the RS, the new
individual is generated randomly.
The random search is more effective
than the deterministic search.
However, in order to compare the
speed of hardware-based
implementation and software-based
implementation, we must ensure

that the two systems perform exactly the same computation tasks. This is achievable only with a
deterministic algorithm. All experiments were run with g = 8.5 and range = 1.0. They are
terminated after 300 code word pairs have been found.

Figure 4 shows the average time it takes to build large thermodynamic constrained DNA code
word libraries using software on a single processor workstation, and using the hardware accelerator.
The lower curve indicates faster speed. As we can see, the software-based deterministic search has
the lowest performance, while the hardware-based random search has the highest performance. The
hardware-based deterministic search provides approximately 240X speed-up compared to the
software-only version while the hardware-based random search provides approximately 260X
speed-up compared to the software-only version. Compared to the deterministic search, random
search provides approximately 3.7X and 4X speed-ups using software-only and hardware-based
implementations, respectively. The plot also shows that the curves for software-only
implementation and hardware-based implementation are almost parallel to each other, which
indicates that they both have the same complexity. Therefore, the performance gain that has been
achieved by using hardware acceleration is a constant ratio.

Figure 4 Comparison between hardware-based and
software-based implementation

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

code word pairs

Ti
m

e
(s

ec
.) HW-deterministic

HW-random

SW-deterministic
SW-random

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

HW-deterministic
SW-deterministic

HW-random
SW-rand
HW-random
SW-rand

code word pairs

Ti
m

e
(s

ec
.) HW-deterministic

HW-random

SW-deterministic
SW-random

(a) Impact of range on the speed of the code word search

0.0E+00
5.0E+02
1.0E+03
1.5E+03
2.0E+03
2.5E+03
3.0E+03
3.5E+03

348 358 368 378 388 398 408 418 428

range=0.05
range=0.1range=0.5
range=1range=3
range=6range=8

Range=0.05 Range=8

Range=1,0.1

Range=6

Range=3

Range=0.5
0.0E+00
5.0E+02
1.0E+03
1.5E+03
2.0E+03
2.5E+03
3.0E+03
3.5E+03

348 358 368 378 388 398 408 418 428

range=0.05
range=0.1range=0.5
range=1range=3
range=6range=8

range=0.05
range=0.1range=0.5
range=1range=3
range=6range=8

Range=0.05 Range=8

Range=1,0.1

Range=6

Range=3

Range=0.5

(b) # code word pairs found in 200 sec.

(c) Time to find 400 code word pairs

Range

400

410

420

430

440

0.05 0.1 0.5 1 3 6 8#
co

de
 w

or
d

pa
irs

Range

400

410

420

430

440

0.05 0.1 0.5 1 3 6 8#
co

de
 w

or
d

pa
irs

0.0E+00
2.0E+02
4.0E+02
6.0E+02
8.0E+02
1.0E+03

0.05 0.1 0.5 1 3 6 8
Range

R
un

tim
e

0.0E+00
2.0E+02
4.0E+02
6.0E+02
8.0E+02
1.0E+03

0.05 0.1 0.5 1 3 6 8
Range

R
un

tim
e

Figure 5 Impact of different ranges on the search speed

The second set of
experiments
evaluated the
impact of CH
range on the speed
and quality (library
size vs time) of the
search. We varied
the CH range from
0.05 to 3 and ran

the GA based code
word search with
g=8.5. Figure 5 (a)
shows library size
vs time for different
CH ranges. Figure 5
(b) and (c) give the
number of code
word pairs found in
200 seconds, and

the time to find 400 code word pairs, for different CH ranges. The results show that the
library growth is slower when the CH range is either too large or too small. In the next
experiment, we ran the GA until it could not find any new code word for 10 minutes,) then
we use exhaustive search to complete the codeword library. Figure 6 (a) shows the runtime
of GA under different ranges and Figure 6 (b) shows the size of the library found by GA
and the size of the final library. As we can see, the GA converges faster when setting the
range to appropriate value. Compared to range = 0.5, the runtime of GA is 26% and 24%
longer at range= 0.05 and 3.0 respectively. Opposite to our original believe, the distance
range does not have significant impact on the library size. The sizes of libraries found by
GA at different ranges only have 4% difference and the sizes of final libraries only have 3%
difference. The exhaustive search usually finishes within 2 hours.

 The third set of experiments compares the search speed for different CH upper bounds (g). We
varied the CH upper bound from 6.5 to 10.0 and run the GA-based code word search. We stop the
search when it found 300 code word pairs or the run time exceeds 15 minutes. Figure 7 (a) shows
the number of code word pairs found in 5 minutes for CH upper bounds from 5 to 8.0 while Figure
7 (b) shows the runtime to find 300 code word pairs for CH upper bound from 8.5 to 10. The results
indicate that as the CH upper bound increases, the chances to find a code word increases
exponentially.

0

5

10

15

20

8.5 9 9.5 10
CH upper bound

R
un

tim
e

(s
ec

)

(b) Time to find 300 code word pairs

0

5

10

15

20

0

5

10

15

20

8.5 9 9.5 108.5 9 9.5 10
CH upper bound

R
un

tim
e

(s
ec

)

(b) Time to find 300 code word pairs
Figure 7 Code word search under different CH upper bound

0

100

200

300

400

5 5.5 6 6.5 7 7.5 8
CH upper bound

#c
od

e
w

or
d

pa
irs

(a) # code word pairs found in 5 minutes

0

100

200

300

400

5 5.5 6 6.5 7 7.5 8
CH upper bound

#c
od

e
w

or
d

pa
irs

(a) # code word pairs found in 5 minutes

Figure 6 Impact of different ranges on the library size

(a) Runtime of GA under different range

10
20
30
40
50
60
70

0 0.05 0.1 0.5 1.0 3.0

G
A

 ru
nt

im
e

10
20
30
40
50
60
70

0 0.05 0.1 0.5 1.0 3.0

G
A

 ru
nt

im
e

(b) Library size under different range

400

410

420

430

440

450

Library found by GA Extended Library

range=0.05 range=0.1 range=0.5
range=1 range=3

co

de
 p

ai
rs

400

410

420

430

440

450

Library found by GA Extended LibraryLibrary found by GA Extended Library

range=0.05 range=0.1 range=0.5
range=1 range=3
range=0.05 range=0.1 range=0.5
range=1 range=3

co

de
 p

ai
rs

The significance of the hardware accelerator is that it enables us to evaluate different code word
search algorithms and explore the lower bound of optimal code word libraries in a reasonable
amount of time. For example, without the hardware accelerator, each experiment in the second set
would take more than 20 days.

7. CONCLUSIONS AND FUTURE WORK
In this work, we propose a systolic array architecture to calculate the nearest-neighbor free

energy of DNA duplexes. A hardware accelerator has been developed that searches for DNA
codewords based on thermodynamic energy constraints. In the future, we plan to extend the current
architecture to search and extend DNA code libraries with word lengths up to 32 bases.

8. REFERENCES
[1] L. M. Adleman, “Molecular Computation of Solutions to Combinatorial Problems,” Science, vol. 266, pp. 1021-

1024, November 1994.
[2] M. Mansuripur, P.K. Khulbe, S.M. Kuebler, J.W. Perry, M.S. Giridhar, and N. Peyghambarian, “Information Storage

and Retrieval using Macromolecules as Storage Media,” Proceedings of Optical Data Storage, 2003.
[3] S. Brenner and R. A. Lerner, “Encoded Combinatorial Chemistry,” Proc. Natl. Acad. Sci. USA, vol 89, pp5381-5383,

June 1992.
[4] R. Deaton and M. Garzon, “Thermodynamic Constraints on DNA-based Computing,” Computing with Bio-

Molecules: Theory and Experiments, Springer-Verlag.
[5] A. Brenneman and A. Condon, “Strand Design for Biomolecular Computation”, Theoretical Computer Science, vol.

287, pp.39-58, 2002.
[6] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang, “Multiobjective Evolutionary Optimization of DNA Sequences for

Reliable DNA Computing”, IEEE Transactions on Evolutionary Computation, vol. 9(20), pp.143-158, 2005.
[7] F. Tanaka, A. Kameda, M. Yamamoto, and A. Ohuchi, “Design of Nucleic Acid Sequences for DNA Computing

based on a Thermodynamic Approach,” Nucleic Acids Research, 33(3), pp.903-911, 2005.
[8] J. Santalucia, “A Unified View of polymer, dumbbell, and oligonucleotide DNA nearest neighbor thermodynamics”,

Proc. Natl. Acad. Sci., Biochemistry, pp. 1460-1465, February 1998.
[9] Qinru Qiu, D. Burns, Q. Wu and Prakash Mukre, “Hybrid Architecture for Accelerating DNA Codeword Library

Searching,” to appear in Proc. IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, April 2007.

[10] http://www.annapmicro.com/
[11] D. Burns, K. May, T. Renz, and V. Ross, “Spiraling in on Speed-Ups of Genetic Algorithm Solvers for Coupled

Non-Linear ODE System Parameterization and DNA Code Word Library Synthesis,” MAPLD International
Conference, 2005.

[12] J. SantaLucia, Jr. and D. Hicks, “The thermodynamics of DNA Structural Motifs,” Annu. Rev. Biophys. Biomol.
Struct. 33:415-40, 2004.

[13] M. A. Bishop, A. J. Macula1, T. E. Renz, “SynDCode: Cooperative DNA Code Generating Tool,” Proc. of 3rd
Annual Conference of Foundations of Nanoscience, April, 2006.

[14] A.G. D’yachkov, A.J. Macula, W.K. Pogozelski, T.E. Renz, V.V. Rykov, and D.C. Torney, “A Weighted Insertion-
Deletion Stacked Pair Thermodynamic Metric for DNA Codes,” Lecture Notes in Computer Science, Vol.
3384/2005, pp. 90-103, Springer Berlin/Heidelber

	AA In-House Final Technical Report v3 db
	Appendix_A
	Appendix_B
	Appendix_C
	Appendix_D
	Appendix_E
	Appendix_F
	Appendix_G
	Appendix_H

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

