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1.0 Introduction 
 

This final technical report documents the results of work performed under an in-house 
project that investigated novel computing architectures that facilitate the application of stochastic 
evolutionary computing (EC) algorithms to hard, NP-complete optimization problems.  This 
project was undertaken at a time when an increasing number of researchers were successfully 
applying such methods in a number of diverse problem domains. 

 
While we focus here mainly on the results of the last phase of the project, spiral 3 

(hybrid software/hardware acceleration), for completeness, in this section we briefly summarize 
the project goals, main tasks, and results of spiral 1 (workstation software), spiral 2 (distributed 
software on workstation cluster), and the early work during spiral 3 (hybrid software/hardware 
acceleration).  Further detail on the earlier work may be found in a previously written in-house 
interim technical report that is available through the Defense Technical Information Center [1].  
Then in Section 2 we describe the main work of spiral 3, i.e. progress on building and testing 
single chip prototypes that were hardware accelerated versions of a particular genetic algorithm 
(GA) along with an optimization problem application.   Section 3 discusses the results of testing 
done with various prototype versions, and Section 4 concludes and discusses some suggestions 
for spin-offs and future work.  Section 5 acknowledges those who contributed to this work,  and 
Reference and Appendices of papers published and presented during this project follow.  
Throughout this technical report, we have made an effort to write about the work and its 
significance to inform readers with a variety of technical familiarity.   

 
Spiral 3 investigated the hypothesis that simple EC methods like the genetic algorithm 

(GA) might offer advantages in terms of achieving extreme speed-ups by implementation in 
hardware.  This typically would not be obvious or appreciated by problem domain experts 
working only on software solutions.  We know that hardware implementations are often highly 
parallelized, and many EC algorithms are ‘embarrassingly parallel’ to begin with,  meaning that 
many sets of repetitious calculations involving the fitness function may have to be performed 
over and over again for a large number of individuals in a population.  If the calculation in the 
problem fitness function (and GA operators) involve simple mathematics (e.g. Boolean and 
integer operations), and if they can be pipelined in a fast data path, hardware acceleration may 
yield significant speed-ups (i.e. >50X).  The results of spiral 3 have clearly shown this to be the 
case for a very difficult DNA Code generation problem that is of current interest to us, by 
demonstrating extreme speed-ups of up to 1,000X in prototype single chip Field Programmable 
Gate Array (FPGA) designs that solve this problem for the first time in an all hardware approach.  

 
 This project was carried out in the Advanced Computing Division of the Information 

Directorate (RI) of the Air Force Research Laboratory (AFRL) at the Rome Research Site, 
Rome, NY, with limited support of the principal investigator’s time by Defense Advance 
Research Project Agency (DARPA) project management funds, and also with contributions by 
summer faculty and students.    
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1.1 Project Goals 
 
  One goal of this project was to determine whether EC algorithms offer any advantages 

over more classical methods, especially in the context of parallel and hybrid (or heterogeneous) 
hardware/software implementations that are aimed at achieving extreme solution time speed-ups 
and problem size scaling.  In general, this project investigated ideas aimed at making progress in 
the area of improved solution engines for NP-hard optimization problems that are relevant to a 
number of RI mission area applications.   

 
Another goal was to synergize with other ongoing in-house and summer faculty research 

topics, as well as Air Force Office of Scientific Research (AFOSR) and DARPA programs 
managed by RI, and to identify target problems in ongoing programs that might benefit from the 
development of new optimization tools for solving hard computational problems.  We 
accomplished this goal by working on problems drawn from these programs, in particular, work 
during the third spiral that focused on a difficult test case problem called the DNA Code Library 
Generation problem.  This problem is directly related to technical areas of interest to RI that 
relate to computing with bio-molecules, and nano-scaffold self-assembly for bio- and nano- 
electronics, and it has been the subject of recent AFOSR sponsored efforts proposed and 
managed by RI.   We also did involve at least 3 summer faculty and 2 summer students during 
the course of this project.   

 
Finally, throughout the entire project, two other goals were to raise the level of awareness 

of workers at RI about present day research and applications of evolutionary computing methods, 
and to mine the RI mission areas for additional candidate problems that could potentially benefit 
from this knowledge and the results of this effort.  
 
1.2 Summary of the Accomplishments of Spiral 1 (software on workstation) 
   

During Spiral 1 we surveyed the evolutionary computing literature, attended several 
relevant conferences (e.g. the Genetic and Evolutionary Computing Conference), and we 
sponsored a few on-site lectures by representative experts in EC.  These activities helped us to 
identify the genetic algorithm as perhaps the most general purpose and widely used EC 
algorithm, and we decided to use the GA as a test case algorithm to carry through all 3 spirals of 
this effort.  During spiral 1 we developed a number of software prototype optimization tools that 
used the GA, in 3 popular programming environments (Labview, MatLab, and compiled C), and 
we evaluated their performance relative to alternative approaches when they were applied to a 
limited number of test case problems that were of interest to us.  The first test case problem was 
parameterizing a particular bio-model that consisted of a set of Non-Linear, coupled Ordinary 
Differential Equations (ODEs).   This problem was of wide interest to workers in certain 
biologically oriented DARPA programs AFRL Advanced Computer Architectures Branch 
(RITC) managed at the time.  The bio-model described antigen-antibody binding at surfaces, and 
was supplied by a principal investigator (PI) in the DARPA Simulation of Biological Systems 
(SIMBIOSYS) program [2].  The basic problem involved fitting model parameters so the model  
would properly predict experimental data.  Previous approaches by the PI involved MatLab 
optimization methods that did not converge, and it was necessary to reformulate a simplified, 
linear version of the model, and to use a step-by-step estimation procedure to obtain workable 
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estimates for the several parameters.  This was slow, and we found that a simple GA could quite 
easily fit multiple parameters, even when working directly with unreduced non-linear models, 
and for sparse and noisy experimental data.  The following list summarizes the activity of Spiral 
1. 
Spiral 1: (PC platform - complete) 

• Translated Labview version GA optimization tool and Ag/Ab binding bio-model to C 
• Obtained MatLab based Genetic Algorithm Optimization Toolbox from North Carolina 

State University, integrated MatLab bio-models from Purdue University SIMBIOSYS 
PI and also with C version bio-model derived from Labview version.  

• Ported Purdue MatLab bio-model to C, integrated with C version. 
• Evaluated the speed, accuracy, convergence, and scaling performances of the Labview, 

MatLab, and C versions of GA ODE Parameterization tool 
• Evaluated Virginia Tech GEPASI bio-model simulation and fitting tool 
• Developed Java Open Agent Architecture (OAA) wrapped compiled C version for 

contribution as BioSpice agent under the DARPA BIOCOMP program 
• Developed web browser interface version for use by remote, non-programmer users 
• Established Evolutionary Computing Interest Group at RI and hosted 7 speakers. 

 
Figure 1 shows an example of the speed-up results obtained by simply porting the GA 

bio-model fitter from the initial Labview and MatLab versions to compiled C versions.  Note that 
the y axis of the chart shows the time required to run 100 generations of the GA fitter, for various 
GA population sizes.  The final, fastest compiled C versions (lowest curves) used a hand-coded 
GA, bio-model, and ODE solver (rather than packaged GA and ODE libraries), and they 
achieved speed-ups of 100x - 1000x over the earlier versions (upper curves).  The PI’s original 
non-automated, reduced order model fitting method was not scripted, and was so slow that it 
would not appear in the chart of Figure 1.  An important point to make here is that good solutions 
to this problem took hours using previous non-GA methods, about 5 hours using the early GA 
versions, but only about 20 seconds in the final versions.   
     

 
Figure 1. Speed Test_1, solution time of the target population. 
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We suspect that in general there is a tendency on the part of problem domain experts to 
disregard non-familiar approaches if they are used to working with particular tools in a particular 
computing environment.  This result demonstrated that game changing performance can be had 
really quite easily, by simply hand-coding the problem, and using a more capable optimization 
algorithm. Throughout this project we pressed this point to this PI and others in the SIMBIOSYS 
program, both during PI meetings, during site visits, and even more widely to PIs in the later 
DARPA BIOCOMP program.  Eventually we did in fact see the BIOCOMP program  develop 
sophisticated, work-flow based bio-model parameterization and bifurcation fitting tools that used 
both GA and parallel direct search methods to fit large non-linear models [3].  Also, our in-house 
evaluation of fitting methods available in the GEPASI bio-model tool [4] showed for our bio-
model, GEPASI’s “evolutionary” and “random” fitting methods were the only ones that did 
converge [1, p. 19].  The other optimization methods (Hook and Jeeves, Levenberg-Marquardt, 
Levenberg-Marquardt multistart, Nelder and Mead simplex, and Simulated Annealing) did not 
converge.  Further, the GA method was very much quicker than the “random” method, as would 
be expected.  This point provides relatively independent confirmation of our own conclusion that 
a GA based fitter can be effective and efficient for parameterizing full, non-linear bio-models.       
 

It was also interesting to do a quick literature search on this problem at the end of this 
project.  A Google search on “direct search genetic algorithm”, “genetic algorithm ODE” and the 
like produced a number of references, in addition to our own.  For example,  a good discussion 
of the importance and difficulty of the nonlinear ODE fitting problem can be found in [5,6,7], 
which also describe and illustrate the use of iterative, direct search methods for non-linear 
models.  Two possible objections to these methods that may limit scaling and speed are that 
some require the calculation of gradients (which are computationally expensive), and while some 
do not, they may require large amounts of memory to keep track of promising remaining areas in 
the search space that need to be explored (which may grow exponentially).  Finally,  at least two 
references  [8,9] also specifically compare the performance of the GA with direct search and 
classical methods, and both conclude that a well tuned GA is as good or better than well tuned 
other methods.  To some degree this would be expected, since the ‘No Free Lunch’ theorem of 
Wolpert and Macready [10] holds that on a particular problem, different search algorithms may 
obtain different results, but over all problems, they are indistinguishable.  That is not to say, 
however, that for certain problems, or for certain tunings of its search parameters, one algorithm 
cannot outperform another algorithm.  Indeed, that often seems to be the claim of many studies 
involving evolutionary methods.  Even so, closer inspection often reveals that it may only be 
necessary to change the algorithm parameters or the problem to reverse the conclusion (or to 
have the GA perform even better)!  In the end, there are some characteristics that may doom an 
algorithm or a problem’s prospects for speed-up by parallelization or hardware implementation, 
including complex and floating point mathematical content, large local memory requirements, 
and anything that causes large communication bandwidths between nodes or processes.   

 
In summary, in spiral 1 we found that a GA based optimizer could solve the Non-Linear 

ODE Parameterization problem for our test case problem, and that it was superior to common 
methods currently being used by some DARPA program PI’s because it worked on full, 
unreduced, non-linear models, and can easily deal with sparse and noisy data of the sort provided 
by real world experiments, and in our case it operated much faster as well.  We also developed 
two versions of the tool with enhanced user interfaces. One is a BioSpice agent version, and one 
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is a web browser interface version. The work in this spiral was presented to the 2003 Scientific 
Advisory Board during their visit to RI, in the Advanced Computer Architecture focus area 
poster session.  It was also discussed with relevant DARPA SIMBIOSYS and BIOCOMP 
program PI’s at various PI meetings, and it was reported at an evolutionary computing 
conference [11]. 
1.3 Summary of the Accomplishments of Spiral 2 (distributed software on workstation cluster) 
 

During the second spiral we started by basically parallelizing the C code version of the 
GA based bio-model parameterization tool, by adding Message Passing Interface (MPI) 
communication to implement a distributed GA that ran on a cluster of workstation computers.  
We evaluated both a Farming Model GA, in which there is one population, and fitness function 
evaluations are farmed out to a number of processors, and an Island Model GA, in which 
separate populations are evolved on a number of processors, with periodical migration of a few 
good individuals around a ring of processors.  The Island Model GA worked very well, and 
achieved approximately the expected linear speed-up.  We also applied it to two additional 
optimization problems of interest to workers in RI,  the Networked Sensor Power Management 
Policy Problem, and the DNA Code Word Library Generation Problem.  In these studies, we also 
evaluated our tool’s performance relative to the best non-GA methods found in the literature.  
The following list summarizes the activity of Spiral 2. 

 
Spiral 2: (Cluster platform - complete) 

• Developed Distributed Farming and Island Model GA applications to Non-Linear ODE 
parameterization (C/MPI), evaluated performance scaling vs. # processor nodes. 

• Developed 2nd application of Distributed GA to DNA Code Word Library Generation 
problem and demonstrated linear speed-up performance scaling vs. # processors nodes. 

• Developed 3rd application of GA to Networked Sensor Power Management Problem 
• Visited the Air Force Institute of Technology (AFIT), Wright State University, Virginia 

Tech. to discuss collaborations.  
• Attended the Genetic and Evolutionary Computing Conference (GECCO) and Military 

Applications of Programmable Logic Devices (MAPLD) Conferences and presented 
spiral 2 results. 

 
The main results of this spiral for the ODE Parameterizer problem are shown in Figure 2.  

The ideal and measured speed-up curves are shown for solving the problem using different 
numbers of processors in the cluster. Again, the Island model GA was designed to evolve  
separate populations at each processing node, and to pass a few good individuals around the ring 
of processors after epochs of a few generations.  While the speed-up curve for the Island Model 
GA (middle curve in Figure 2) is not perfect (top Ideal Linear Speed-up curve), it is much better 
than the Farming Model GA (lower curve), and there is no drastic slow down plateau apparent 
up to about 29 processors.  
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Figure 2.  Speed-up curves for distributed GA ODE Parameterizer versions. 

Surprisingly, on-line searches for “ODE parameterization distributed GA” and the like 
turn up only our own work.  Farming model distributed GA’s are available in the literature, but 
not a lot of work on distributed GA’s similar to our own.  This leads us to believe that it may be 
rather unique, and we are fairly certain that it is a novel and unique approach for solving the 
DNA code problem, which we describe next.   

 
During this spiral we developed both a  single PC version and a distributed Island Model 

version of a second application of a GA optimizer to the DNA Code Word Library Generation 
Problem, which is of current interest to workers in RITC and elsewhere.  This problem involves 
composing highly constrained sets of Watson-Crick pairs of short DNA oligo-nucleotide strands, 
e.g. about 16 base pairs long.  The pairs in the set each consist of two strands that are perfect 
complements that bind, or cross-hybridize well to each other, but poorly to their own reverse 
complements (RCs) and any strand in any of the other pairs in the library. This is a hard problem 
that is known to be NP-complete, and at least 4 University groups are actively working on it 
because there are important applications of such DNA Codes to the design of bio-assay micro-
array chips, self-assembly of nano-structures, and schemes for data storage and computation 
using bio-molecules.  Random search and exhaustive search have proven ineffective for building 
large libraries, and current techniques use stochastic and heuristic methods. 
 

Our approach to this problem starts building a library by finding one pair using random 
search.  It then breeds additional words using a GA guided by a multi-objective fitness function 
that measures the string edit distance (calculated by the Levenshtein Martix) and that also counts 
the number of pairs presently in the library that reject a given candidate pair.  The GA uses an 
efficient mutation heuristic that chooses a base pair to mutate at random, checks the fitness of 
words with all possible single base changes at that position, and uses the mutation that improves 
fitness the most.  The populations may also be decloned periodically to help widen the search.  

 
Figure 3 shows the results of using a distributed GA solver for this problem, as well as 

comparison to results obtained for two non-GA algorithms found in the literature (Markov and 
Stochastic).  The curves show the average time required to discover words, for multiple runs of 
the algorithm (lower is better).  The upper curve (Stochastic) is similar to our GA, but it starts 
with a random library of DNA words that do not satisfy the required non-cross hybridizing 
constraints, and tries to improve them by mutations.  Our GA starts with an empty library, breeds 
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better word candidates,  and adds good words to the library only as they are found.  Thus, the  
Stochastic method must do many more constraint evaluations from the beginning, and is slow 
compared to GA  

 
The lower curves in Figure 3 compare the performances of Markov and GA, for the case 

of 1 and 16 processors used in the cluster. In both cases GA actually finds words faster up to the 
time at which words become very difficult to find, at which point both algorithms turn up and 
have difficulty finding the last few words.  We also note that algorithm parameter tuning does 
effect these results, and that to date Markov has actually found slightly larger libraries than GA, 
but GA consistently finds a large portion of the total number of words that can be found faster.     

 
DNA Library Synthesis Algorithm Performance Comparison
16/10, RC LLCS codes, avg of multiple runs, 1 and 16 proc.
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Figure 3.  Comparison of Markov, GA, and stochastic DNA Code Word Library 
Generation methods.   
  
In summary, during spiral 2, a distributed Island Model GA optimization solver was 

developed and successfully applied to three problems:  Non-Linear ODE Parameterization; DNA 
Code Word Library Generation; and Sensor Network Energy Management.  This distributed GA 
version exhibited good speed-up scaling vs. number of processors on a 30 node cluster. The GA 
based DNA Code Word solver exhibited performance that we believe rivals the best known 
algorithms in the world for this problem.  The work done on the GA/DNA Codes application  
during this spiral was reported at a conference on nano-self assembly [12], and at a conference 
on evolutionary algorithms [13-15].  The work on evolutionary optimization of sensor network 
power management was reported at a conference on evolutionary computing [16], and at a 
conference on low power electronics [17].  

 
1.4 Summary of the Early Accomplishments of Spiral 3 (hybrid software/hardware acceleration) 

 
During the first part of spiral 3 we began developing a hardware accelerated version of a 

GA optimizer and the DNA Code Word Problem.  We chose to go forward into this spiral with 
the DNA Code Word Library Generation problem because it is an integer problem. First we  
spent some time investigating Higher Order Language (HOL) tools for translating C to Very 
High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), our preferred 
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language for designing hardware logic.  We worked with one supplier’s tool (Impulse C) almost 
to the point of success, i.e. we were able to design and simulate an array calculator for the 
Length of the Longest Common Subsequence (LLCS) that implemented the heart of the fitness 
function calculation.  However, we were not able to produce a VHDL version of the entire C 
application that included the GA, DNA Library Generator, and LLCS calculator automatically 
from the tool.  

 
We then hand crafted a ripple through version of the LLCS systolic array that synthesized 

with an expected clock frequency of 10MHz, which represents a speed-up of 100x over the 
software C version.  We also designed a 2D pipelined systolic array version that synthesized with 
an expected 80MHz clock frequency (close to the targeted 1000x speed-up).  We also 
determined that the LLCS calculator array took less than 20% of the target FPGA chip resources, 
which suggested that there were excellent prospects for fitting the entire GA/DNA Code 
application into one FPGA chip.  The following list summarizes the work in the early part of 
spiral 3. 

 
Early part of Spiral 3 (hybrid software/hardware acceleration) 

• Identified, purchased and installed VHDL software development tools, reconfigurable logic 
hardware platforms, and  FPGA synthesis tools 

• Collaborated with Impulse, Inc. evaluating Co_Developer C to VHDL translator tool 
• Preliminary design completed for GA optimization algorithm FPGA core written in VHDL for 

hardware implementation aimed at extreme speed-up. 
• Final design in VHDL of a Levenshtein Matrix systolic array calculator for hardware 

acceleration of the fitness function evaluation for the DNA Code Generation Problem. 
 
An example of the main results of the early part of spiral 3 are shown in Figure 4 and 

Table I.  Figure 4 shows a high level functional block diagram of the first version of an overall 
application prototype.  The design included a test bench to simulate the host PC while initializing 
and controlling the application, a number of on-chip SelectBlock memories (BRAMs) to hold the 
GA population, the fitness values, and the DNA Library words.  It also shows an entity called 
MemBlock.vhd for sequencing the fitness evaluation of each population individual against all 
words in the library, and for storing the results. Finally, it contains an entity called Spit_Me for 
streaming a set of operands into the 2D LLCS systolic array pipeline calculator called 
Do_CheckerMatrix.  The design of Figure 4 was simulated and shown to operate correctly, and 
was synthesized successfully.    
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Figure 4. Upper level functional block diagram of fitness evaluator. 

 
 Table I shows the synthesis run report for the Do_CheckerMatrix.vhdl LLCS systolic 
array, for the case of 512 population size and 16 mer (32 bit) DNA word libraries.  It is clear that 
much larger populations and libraries could be used, since only 3 of the 144 SelectBlock RAMS 
were used for this case.  Since our target FPGA platform had on the order of 35,000 Logic Units 
(LUTs), it appeared that systolic array would use about 20% of its resources, with about 80% 
available for the GA and DNA Code Word Library application, which was very encouraging.  
This also indicated that it might even be possible to support multiple fitness evaluators and even 
multiple GA populations on one FPGA.    

 
Table I. Synthesis resource utilization report for  Do_CheckerMatrix.vhdl 

Number of Slices:  4283 
Number of Slice Flip Flops: 2544 
Number of 4 input LUTs: 7532 
Number of bonded IOBs: 98 
Number of BRAMs: 3 
Minimum clock period: 12.37ns  (80.8MHz) 

 
At this point, much of the GA and DNA Code building parts of the main program were 

still blocks of sequential behavioral VHDL, rather than parallel clocked processes that would 
synthesize and operate in an efficient manner.  In fact, although they simulated correctly, they 
did not synthesize, which highlights a shortcoming of today’s synthesis tools. (We think they 
should be able to synthesize such blocks of correct behavioral code).  The next steps were to re-
write these parts of the application as clocked parallel processes, and to integrate the entire GA 
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core, DNA Code application, and LLCS fitness function evaluator into one FPGA and test it.  In 
the next section we review progress on those tasks and follow-on work that demonstrated several 
versions with various improvements and experimental features. 

 
Finally, papers describing the early work in spiral 3 were give at an AFRL conference on 

algorithms [18],  and a conference on reconfigurable logic applications [19].   
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2.0 Technical Approach - spiral 3 (hybrid software/hardware accelerated 
platform)  
 

In this section we briefly comment on the suitability of the DNA problem for use as a test 
case problem in this spiral, and we mention some architectural alternatives and their limitations 
imposed by the platforms we had available for this work.  We also briefly discuss the software 
design tools and hardware platforms used during this project.  Then we describe the main design 
features of each of a series of single chip FPGA prototypes that we actually implemented and 
tested.  These are all the first known examples of hardware accelerated versions of the LLCS 
fitness metric in a 2D systolic array, and the overall GA/DNA Code application problem.  The 
main accomplishments of spiral 3 are given in the following list, and details are provided in the 
sub-sections that follow. Test results obtained with these prototypes are given in Section 3.   
 
Spiral 3 (hybrid hardware/software accelerated platforms) 

• Designed hardware FPGA cores for operators of general purpose and multi-deme GAs 
• Designed the first known hardware DNA Code Library generation application 
• Designed the first known hardware systolic array calculators for DNA code word 

hybridization metrics, including the Length of the Longest Common Sub-string (LLCS) 
and the stacked pair nearest neighbor model Gibbs Free Energy of Binding   

• Designed and tested a series of 4 prototype FPGAs that integrated various combinations 
of hardware genetic algorithm and metric calculators with the hardware DNA Code 
Library building application, as well as exhaustive search versions for extending codes    

• Published several papers and made several presentations at Conferences that spanned a 
wide range of topics, including reconfigurable logic, evolutionary computing, DNA 
computing, computational intelligence for bioinformatics, and bio-threat detection. 

 
2.1 General problem and platform considerations for hardware acceleration 

 
The DNA Code problem is a particularly good candidate for acceleration in hardware 

because it involves simple 32 bit integer and Boolean math throughout.  While this is true of a 
number of other problem types as well, it is not generally true of all problem types.  So, the 
hardware GA and its operators are most applicable to other problems that are compatible with 
hardware acceleration, with appropriate modifications to the genotype (the variables representing 
solutions to a problem), and fitness function (the model of the problem and constraints that are 
evaluated to measure how well each individual in the population solves the problem).  Floating 
point calculations are generally thought of as a factor that limits prospects for hardware 
acceleration.  Although both single and floating point FPGA cores are available, they do take up 
resources, and cost time if conversions must be done from integer to floating point and back in a 
data path.  However, many floating point problems can be approximated well enough using fixed 
point methods that use integers to represent and calculate on discrete floating point values over a 
limited range.   

 
Speeding up the DNA Code problem would be very valuable because solving it actually 

requires solving a series of NP-complete problems, each with increasingly difficult constraints 
on cross hybridization that accumulate as words enter the library.  We started this speed-up effort 
by first profiling the execution time of the overall application and its subroutines, and we found 
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that over 98% of the solution time was spent evaluating the LLCS cross hybridization metric in 
the fitness function.  At first we targeted that calculation for efficient hardware implementation, 
but it became obvious that even if we could reduce the LLCS calculation time to nearly 0, the 
execution time of the speed of the overall application would then be dominated by the GA 
control loop and its operators. Clearly, we would have to implement the GA and its operators in 
hardware as well. Various other hybrid implementations are possible, e.g. GA in software on the 
host (or an embedded) PC with LLCS metric in hardware, and these might actually have been 
easier to design and implement.  However, extreme acceleration can best be achieved by a 100% 
hardware solution.  The main reason for this is that communication between the host PC and the 
FPGA hardware processing element (PE) takes place across the host system internal data bus. 
The workstations used for this project used the PCI protocol (32 bits at 33MHz), the PCI-X 
protocol (64 bits at up to 133MHz), or the  PCMCIA/PCI protocol (32 bits at 48 MHz)  to 
communicate with the FPGA cards.    Also,  other uses of the system bus by the host operating 
system may introduce delays and bus latencies that are significant.  A 100% hardware solution 
minimizes Host to PE communication and results in better speed.    

 
Finally, at this writing, multi-core processors and the Cell Broadband EngineTM have only 

just recently appeared, and they were not evaluated as execution platforms during this project.  It 
would appear that both would be good candidates for implementing highly parallelizable EC 
algorithms, although they both lack a reconfigurable logic capability that might better support the 
2D systolic array used in our approach.      
 
2.2 Software tools for hardware development 

 
In general, the process of rewriting the C application in VHDL started with the C code 

version from spiral 2.  We stripped out the MPI calls that implemented a distributed GA, and re-
coded it in behavioral VHDL, i.e. in blocks of sequential, or behavioral VHDL code that closely 
mirrored the program flow of the C version.  A number of separate parallel processes were then 
pulled out of the main program code to implement portions of the application in clocked VHDL 
code (e.g. mutation, mating, decloning, etc).  Following this, the main control program was 
recoded as a clocked VHDL process.  Finally, a C host program was written to interface with the 
user to allow specification of problem and GA variables, initialize the PE, monitoring progress 
during runs, and receiving a final reporting of results at the end of a run or series of runs. In 
general, there was significant communication between the host and PE at the beginning and end 
of runs, but very little communication during runs.  

 
We used the Mentor Graphics ModelSim XE III tool [20] for code development and 

simulation.  This tool enables one to observe the operation of the code in terms of signals and 
data values that flow through the control and data paths.  This can be done in two ways, by 
inserting statements that cause messages and results to print in a monitor window during 
simulation, and by setting up and observing various sets of signal waveforms vs. time as the 
simulation executes. 

   
At various times parts of the code, and later the entire application, were synthesized using 

either the Synplicity Synplify tool [21].  We also used the Xilinx Integrated Software 
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Environment (ISE) Version 8.1 set of tools [22] to synthesize parts of the application and check 
the expected execution speed and the required amount of resources. 

  
 In general, we used two versions of the tools during this project:  free versions of all 

three tools that were hosted on a desktop workstation (that are available for download on the web 
for evaluation); and an expensive fuller versions that were hosted on one of our internal servers 
(Gonzo).   Summer faculty workers who contributed to this project also used academic versions 
of all three of these tools, both at AFRL and at their University.  The free version of ModelSim 
was crippled, which means that it executed very slowly when the number of lines of code 
exceeded a certain limit (e.g. 5,000 lines).  This made it impossible to simulate multiple, long 
runs of the entire GA/DNA Code application, e.g. to determine the average number of words that 
can be found by a run.  It was impractical to simulate runs longer than a few hundred 
milliseconds of simulated FPGA execution time, because that took many minutes. This meant 
that the only practical way to test the application was after synthesis in hardware.  For example, 
we later typically used hardware GA run times of about 5-10 minutes, and hardware exhaustive 
searches that took about 2 hours, which would be impossible to simulate in ModelSim.  We did 
not use a hardware in the loop debugger in this work.  This was somewhat troublesome because 
we did experience bugs at times that simulated OK in ModelSim, but did not operate properly in 
when synthesized and tested on the FPGA.      

 
Another useful design tool that we used both on paper and in the Xilinx ISE tool set was 

a simple graphical state diagram editor (StateCAD).  Experienced VHDL designers may just sit 
down and write code, but for complex designs with many parallel interacting processes it is often 
helpful to make state diagrams of each process.  These diagrams resemble flow charts that C 
programmers may be familiar with, but instead of sequences of calculations, they specify the 
inputs, state machine transitions, and outputs of each process in a graphical manner.  The 
designer can then manually code VHDL from the diagram, or have the tool automatically 
generate VHDL in some cases.  For illustration purposes, Figures 5-7 show examples of a state 
diagram, VHDL code derived from it, and a waveform debugging display, respectively, for the 
declone operator coded for this project.    
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Figure 5.  State diagram of declone operator (in Xilinx StateCad tool). 
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------------------------ 
declone_pop: PROCESS (global_reset, M_Clk) 
BEGIN 
  IF rising_edge (M_Clk) THEN 
     IF (global_reset = '1') THEN -- OR terminate = '1') THEN 
         declone_start        <= '0'; 
         found_bad_one        <= '0'; 
         F1_Addr_A_declone    <= All_0s_9b; 
         L1_Addr_A_declone    <= All_0s_9b; 
         F1_Data_In_A_declone <= All_0s_32b; 
         P1_Data_In_A_declone <= All_0s_32b; 
         F1_Write_A_declone   <= '0'; 
         P1_Write_A_declone   <= '0'; 
         PopWord_s            <= All_0s_32b; 
         RCPopWord_s          <= All_0s_32b; 
         Declone_sm           <= IDLE_DECLONE; 
        
     ELSE 
         CASE Declone_sm IS 
            
           WHEN IDLE_DECLONE => 
               IF (GA_Mode /= Mode_Declone) THEN  
                   Declone_sm    <= IDLE_DECLONE; 
               ELSE 
                   Declone_sm    <= INIT_DECLONE; 
               END IF; 
                
           WHEN INIT_DECLONE => 
               declone_start     <= '1'; 
               found_bad_one     <= '0'; 
               --P1_Addr_A_declone <= All_0s_9b; -- elsewhere 
               --F1_Addr_A_declone <= All_0s_9b; -- elsewhere 
               L1_Addr_A_declone <= All_0s_9b; 
               Declone_sm        <= WHILE_1;  
                
           WHEN WHILE_1 => 
               -- bail if the Lib Addr is past last word. 
               -- here we have not delayed a clk after addr 0 was set 
               -- before entering, so no check is done if Addr=0. 
               -- DO lags Addr by a clock, this is what is checked  
               -- for NumGoodWords=3 (lib words in Addrs 0,1,2) 
               -- Addr DO  
               -- 0    x (no check) 
               -- 1    0 
               -- 2    1 
               -- 3    2 
               -- 4    bails (no check) 
               IF (L1_Addr_A_declone > NumGoodWords_s) THEN 
                  found_bad_one     <= '0'; 
                  L1_Addr_A_declone <= All_0s_9b; 
                  Declone_sm        <= DONE_1;   
                
               -- bail if the Pop Addr is past last word 
               ELSE 
                IF (P1_Addr_A_declone > NumPop_s) THEN 
                  found_bad_one <= '0'; 
                  --P1_Addr_A_declone <= All_0s_9b; -- elsewhere 
                  --F1_Addr_A_declone <= All_0s_9b; -- elsewhere 
                  declone_start <= '0'; 
                  Declone_sm        <= IDLE_DECLONE;   
                ELSE 
                 -- check if Pop or RCPop word is already in Lib 
                 IF ((L1_Addr_A_declone /= All_0s_9b) AND  
                     ((P1_DO_A = L1_DO_A) OR  

                      (((All_1s_32b) XOR 
(reverse_any_bus(P1_DO_A))) = L1_DO_A) 
                     )  
                    ) THEN   
                    -- yes - set flag and bail L1 addr loop 
                    found_bad_one <= '1';                
                    L1_Addr_A_declone <= All_0s_9b;   
                    Declone_sm <= DONE_2;    
                 ELSE 
                    -- no - check against next lib word 
                    found_bad_one     <= '0';                
                    L1_Addr_A_declone <= L1_Addr_A_declone + 
One_1_9b; 
                    Declone_sm        <= WHILE_1;   
                 END IF; 
                END IF; 
               END IF; 
            
           WHEN DONE_1 => 
               … (code removed for report) 
           
           WHEN WHILE_2 => 
               … (code removed for report) 
         
           WHEN DONE_2 => 
               … (code removed for report) 
            
           WHEN DONE_3 => 
               … (code removed for report) 
                
           WHEN OTHERS => 
               declone_start     <= '0'; 
               Declone_sm    <= IDLE_DECLONE; 
 
         END CASE; 
 
     END IF;  -- if global reset  
  END IF; -- if M_Clk      
END PROCESS; 
------------------------ 
P1_Addr_B_declone_process:  process (global_reset,M_Clk) 
begin 
  IF rising_edge (M_Clk) THEN 
    IF (global_reset = '1') THEN -- OR terminate = '1') THEN 
      P1_Addr_A_declone    <= All_0s_9b; 
      F1_Addr_A_declone    <= All_0s_9b; 
    ELSE 
      IF (Declone_sm = INIT_DECLONE) THEN 
         P1_Addr_A_declone <= All_0s_9b; 
         F1_Addr_A_declone <= All_0s_9b; 
      END IF;  
         
      IF ((Declone_sm = WHILE_1) AND  
          (P1_Addr_A_declone > Numpop_s)  
         ) THEN 
         P1_Addr_A_declone <= All_0s_9b; 
         F1_Addr_A_declone <= All_0s_9b; 
      END IF;      
        
      … (code removed for report) 
 
    END IF;  -- for reset  
  END IF; -- for clock 
END PROCESS; 
------------------------ 

Figure 6.  Partial code fragment of the declone operator, hand coded from state diagram. 
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Figure 7. Test waveforms for the declone process, showing a clone found and replaced 

with new random individual (in ModelSim). 
 
We note here that waveforms of the type shown in Figure 7 must be inspected for a 

variety of conditions in order to prove that the code operates correctly in each state with different 
inputs.  These displays can also be used to count clock cycles and construct execution time 
models that can predict the time required to execute the operators with various GA parameter 
values, e.g. population size, library size, etc.  Another alternative for building such  models is to 
instrument the code with timers, or clock cycle counters, that can report back to the host program 
how much time is spent in each process, say over a call or a generation.  Such a version is 
actually under development, and is mentioned again in Section 5 under future work.  

 
Finally, we also note that the ISE tools could be used to check speed and resources for 

only portions of the design, but not the entire project, at least when targeting the WildCard and 
WildStar boards.  This was because the vendor (Annapolis Microsystems) only provides libraries 
that support synthesis with the Synplify tool.  The amount of work needed to modify the libraries 
to support the ISE tool would have been prohibitive, so we just used Synplify for synthesis.  

 
2.3 Hardware Prototype Platforms 

 
Four hardware platforms were used at various times by different people during this 

project, as shown in Table II.  The WildCard and WildStar platforms were mainly used at RITC, 
while both of those and the XUP V2P platform were used by summer faculty and students. 

 
Table II. Hardware prototype platform reconfigurable logic and on-chip memory resources. 

FPGA board Xilinx FPGA Logic 
Cells 

BRAMS 
(Kbits) 

Embedded 
PPCs 

Cost Bus 

XUP V2P XC2VP30 30,816 2,448 2 $1.6K various 
(standalone 

w/ cable to PC) 
WildCard2 XC2V3000-4 28,672 1,728 0 $3.5K PCMCIA 

(notebook) 
WildCard4 XC4VSX35-10 34,560 3,456 0 $1.8K PCMCIA 

(notebook) 
WildStar XC2VP70 74,448 5,904 2 $16K PCI-X 

(workstation) 
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In terms of technology generation and potential speed, the oldest, and slowest chip is the 
XC2V Virtex 2 family device on the WildCard2, followed by the XC2VP Virtex-2 Pro chips on 
the XUP V2P and WildStar boards, and finally the relatively newer and faster XC4VSX Virtex 4 
family device on the WildCard4.   In general, we were able to obtain higher clock frequency 
estimates and actual post-synthesis actual clock speeds for the boards that used the later 
generation chips.  It should be noted, however, that our clock speed result depended on a number 
of factors, such as subtle differences in the design versions we implemented from time to time on 
the different platforms, the stochastic nature of the synthesis tools, and the amount of effort 
requested of the synthesis tools by the operator at synthesis time.   Generally we used similar 
project setup files and tried to keep these variables constant. 

 
2.4 Prototype versions and design features 
 

Table III shows information about each of a series of 4 versions of prototype designs that 
we implemented and tested during spiral 3.  The first column indicates the version number and 
application name, the fitness metric, and major new features of the version. The remaining 
columns show how many copies of the PEs and the metric calculator were used in the versions, 
the types of GA operators, the hardware platform(s), and conferences where the designs were 
described and references. 

 
Table III. Prototype version and design features. 

(version) application name,  
fitness metric,  
new features 

# PEs/fitness 
evaluators 

selection/ 
mating 

mutation 
 

Hardware 
platform(s) 

Publication [reference] 
(or in writing) 

(1) GA/DNA Codes,      
      RC LLCS metric, 
      exhaustive search (ES) 

1/1 GA 
1/2 ES 

n/a best of 
48 

XUP V2P 
WildCard-II 
WildStar-II 

GECCO 2006 [23] 
MAPLD 2006 [24] 

(2) GA/DNA Codes, 
     RC LLCS metric, 
     multi-deme GA 

2-5/1 GA 
1/2 ES 

random/ 
single 
point 

best of 
48 

XUP V2P 
WildCard-II 
WildStar-II 

CIBCB 2007 [25] 
(IEEE J. Computational 
Intelligence) [26] 
GECCO 2007 [27] 

(3) GA/DNA Codes, 
     RC Gibbs metric, 
     thermodynamic 

constraints 

1/1 GA n/a best of 
48 or 
new 
random 

WildStar-II DNA 2007 [28] 
(Springer LNCS) [29] 

(4) GA/DNA Codes, 
     RC LLCS Codes,   
     rank base selection and 

declone 

1/1 GA 
1/2 ES 

rank 
based/ 
single 
point cross 

best of 
48 or 
new 
random 

WildCard-II 
WildStar-II 
WildCard4 

(GECCO 2008?) [30] 

 
These versions shared many basic design features.  For example, they each consisted of a 

C host program, and a PE image that was synthesized from a collection of VHDL process files.  
In general, the operator used them by invoking the compiled host program in a DOS window on 
the host PC workstation (or notebook).  A number of command line arguments could be 
specified at run time for both the GA and DNA Code building parts of the application, as shown 
in Table IV.   
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Table IV. Command line arguments for GA/DNA FPGA application. 

option <type> description (range) default 
-a <int>   set # bases in code words (must be 16) 16 
-d <int>   set device \"slot\" number 0 
-e <int>   set exhaustive population checking flag (0/1) 0 
-f <int>   set PE clock frequency (MHz) (10-300) 100 
-g <int>   set max_gens (1-4,000,000) 10,000 
-h         show this help  
-i <int>   set initial population size (10-511) 16 
-k <int>   set # keepers (10-511) 16 
-l <int>   set initialization type (0/1/2 easy/random/passed in) 1 
-m <int>   set max_match (2-16) 10 
-r <int>   set running population size (10-511) 16 
-s <int>   set random_number_seed (0-max int) 1 
-t <int>   set maximum run time (sec) (1-10,000)  60 
-v         sets verbose mode to show progress messages  
-w <int>   set # code words to generate (20-300) 100 
-x <int>   set mutation type (0) 0 
-z <float>   set percent mutations (0-100) 1.0 
 

 
The host program started by initializing its own data arrays in memory, downloading the 

PE image file to the PE (that defined its function).  Then it interpreted the command line 
arguments and set up a block of integer parameters, passed them to the PE, and verified that the 
PE had received the parameters.  Then it entered a main loop and received words back from the 
PE as they were found.  At first, communication between host and PE was done on the 
Annapolis boards using example programs supplied by the vendor, but later a new interface was 
written that provided for double sampling across the clock boundary between the interface bus 
and PE bus, which ran at different frequencies.  This approach seemed to cure what appeared to 
be intermittent communication noise. We used a handshaking protocol to keep the host and PE in 
synch during communication events between host and PE. An example of part of the 
communication flow at startup is shown in Figure 8.  The PE reported words back to the host as 
they were found.  The host kept track of elapsed run time,  time stamped the words as they were 
found, and stored them in memory and in disk files for later analysis.  The host program also 
controlled running a sequence of tests, and produced curves of words found vs. time for each run 
and averaged over multiple runs.  It also tracked the total number of words found by the GA, and 
optionally by exhaustive search for each run and averaged over all runs.   

 
Figure 9 shows a simplified program flow chart for the PE.  It began by initializing the 

DNA Code word library to either empty or to an initial set of words that could be passed in from 
the host.  It also initialized the GA population to the specified size, and checked the fitness of the 
individuals in the initial population. Then it entered a main loop that found words until the run 
was terminated by one of three criteria (maximum elapsed time, maximum number of 
generations, or the desired number of words were found). Each pass through the loop defined a 
generation, including a population checking step, and a mutation and checking step, and finally a 
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step that produced a population for next generation by applying sorting, selection, and mating 
operators.  New words were picked up and added to the library during each of the two checking 
phases if their fitness was such that they satisfied the constraints required to enter the library.   
The following sections describe the features of each version that was designed and tested.  

 

 
Figure 8. Host/PE communication handshaking at startup.  

Figure 9.  PE flow chart.
 

2.4.1 Version 1: GA/DNA Codes with exhaustive search 
 
Prototype version 1 implemented a first cut that we thought would be a maximally fast 

version of the application.  It used no selection and mating operators at all in the GA, because we 
had observed during tests of the software versions in spiral 2 that mating did not always help 
speed the discovery of codewords.  It also used a unique, accelerated mutation operator that 
selected individuals at random for mutation, as would typically be done, but which then checked 
every possible mutation of the 16 mer that could be made.  This was attractive for two reasons.  
First, it avoids what would be considerable delay and overhead associated with randomly 
selecting the same individual over and over again to generate those mutations.  Second, it makes 
better use of the systolic array fitness metric calculator by checking a group of mutations and 
spreading the checker’s pipeline latency of 15 clocks over 47 fitness calculations instead of 1 
calculation.  This is important during the early part of the run when the number of words in the 
library is small.  For example, with n words in the library, the utilization factor of the systolic 
array (calculations/clocks) is about n*47/(n*47+15), which for n=1 is 0.76.  If we checked each 
of the 47 mutations by itself, the utilization factor would be n/(n+15), which for n=1 is 0.062.  
Actually, further improvement ns speed could have been made by streaming sets of mutations for 
multiple individuals together through the calculator, e.g. for 2 individuals utilization would reach 
0.85, for 3 individuals 0.9, and for 10 individuals 0.97.  But that improvement was not pursued 
because n grows rapidly as words are found, and the utilization factor quickly approaches 1.0, 
e.g. at n=25 it is 0.987, and at n=50 it is 0.994.  Another consideration for the mutation operator 
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is that it may or may not identify a mutation that improves fitness compared to the original 
individual.  If it does, the best of the 47 tried is used to replace the original individual in the 
population.  If it does not, there are several options, including using the original individual, 
picking one of the 47 a mutations randomly, or replacing the individual with a new random 
individual.  Most of the early versions used the second option, but later versions optionally used 
either the second or third (which typically worked better).  Finally, GA/DNA version 1 used 
about 42% of the WildCard-II FPGA chip resources, and about 16% of the WildStar card FPGA 
resources, and both ran at 100MHz. 

 
Another feature of this version was the capability to do exhaustive search (ES) to extend 

an existing library.  This involved checking every word in the universe of 2^(32-1) = 4.3E9 
possible words against the library, after the library was initially built by running GA.  This has 
hitherto been impractical for codes with word length 16, because it would take an estimated 62 
days on a 2GHz Pentium workstation.  This hardware version does this checking in only 1.5 
hours running at 100MHz.  The ES capability actually was implemented as a separately 
synthesized version of the PE, but it is described here since it was developed along with version 
1.  The PE image for ES was loaded and run under control of the host program, typically after an 
initial library was composed by running GA/DNA version 1 for a chosen amount of time, eg. 
typically about 10 minutes. The ES version finds all the remaining words that can possibly be 
added to the library by using a 32 bit counter (rather than the GA population) that starts at 0 and 
sequences though all possible candidate words, checking each against the library.  When a new 
word is found, it simply adds it to the library, and the search continues.  The ES version actually 
used 2 LLCS systolic arrays to do the checking, one to process the candidate words, and another 
to process the reverse complements of the candidate words.  

 
While ES does not guarantee finding the global optimum sized library because that would 

require doing a run with each possible sequence of random numbers, which is impossible due to 
time constraints. However, it does guarantee finding what we call a locally optimum library, in 
the sense of the 2^(32-1) possible 32 bit 16 mers have been checked for possible addition to the 
library.  We can now easily run multiple runs with different random number seeds to generate 
many locally optimum libraries, and for the first time we have gathered statistics on the average 
size of libraries.  This approach may actually yield better estimates of the upper bound on library 
size than present theoretical methods.   Finally, the ES version with 2 fitness checkers uses about 
75% of the WildCard-II resources, and <40% of the WildStar board FPGA resources, and both 
run at 100MHz. 

 
The capabilities of the hardware GA/DNA Code and ES prototypes described here are 

thought to be novel and unique, and they were described in papers at an evolutionary computing 
conference [23], and at an embedded hardware conference [24].     
            

2.4.2 Version 2: GA/DNA Codes with multi-deme GA 
 
The second prototype version added the capability to run multiple populations on the 

same single FPGA chip, effectively creating a multiple node distributed Island Model GA on a 
single chip.  This was motivated by our observation in spiral 1 that a multi-deme GA could 
provide about linear speed-up vs. the number of demes, or populations. It was actually possible 
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to instantiate 2 PEs on the WildCard-II FPGA chip, and 5 PEs on the WildStar card FPGA.  
These designs also include an arbiter to handle communication between the multiple instances of 
the PE on the FPGA chip, as shown in Figure 10.  Periodically each of the PEs send a migration 
request to the arbiter, typically after a set number (or epoch number) of generations. The arbiter 
acknowledges a request if its migration controller is in the idle state. After receiving the 
acknowledgement from the arbiter, the PE sends its best few individuals and their fitness values 
to the arbiter. These data are placed in a memory together with similar data received from other 
PEs. The arbiter sorts and picks the best m individuals, where m is the number of individuals to 
be migrated, and sends them back to the PE which initiated the request for migration. For the 
case of 2 PEs on a chip served by one arbiter, this is equivalent to a directed ring configuration. 
However, for the case of more than 2 PEs on a chip, this approach implements a star, or local 
pooling configuration. Above the chip level, the host PC is free to implement any 
communication configuration among multiple host nodes in a cluster, e.g. with standard MPI. 
Thus, multiple multi-deme GA chips could be used in a hierarchical system or a ring of host 
workstations.    
 

 
Figure 10.  Multiple copies of PE and an arbiter on single FPGA chip. 

 
Sorting, selection, and mating operators were also added to the GA for this version.  In 

order to minimize resource utilization and maximize speed, very simple versions of these 
operators were used.  Sorting was implemented by scanning the population repeatedly up to k 
times in order to identify and pick up, or keep, the k best individuals from the p population 
individuals.  Typically, p ranged from 16 to 512, and k was some fraction of p, perhaps 1/8, 
although we could vary both. The selection method randomly picked two of the k individuals 
kept by the sort.  Then a base index (0-15) was chosen, and the two parents were cut at this base 
boundary into a head and tail.  Single point crossover was used to produce two children from the 
heads and tails of the two parents (head1+tail2 and head2 + tail1), and the children were added to 
the kept list.  This was repeated until the new population grew from k to p.  We note that this 
selection method lacks the selection pressure of rank or fitness proportional probabilistic 
selection (which was done later in version 4), but it was fast.  Following mating, mutation was 
done by the same method described in 2.3.1 for version 1, until a chosen number of mutations 
had occurred.  This version actually had a couple of minor design bugs that should have been 
fixed, but we don’t think they seriously degraded performance.  One was that when a word was 
picked up into the library it was left in the population, rather than being replaced by a new 
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random word.  Another was that the mutated word address was generated as a 9 bit random 
number (0-511), meaning that addresses up to 511 were used, even though the population p 
could be 4 to 511. Since only words 0 to (p-1) were sorted, checked and searched for pickup, 
mutation operations were wasted for if p was < 511.  Both of these bugs were fixed in later 
versions.   Finally, the multi-deme GA/DNA application used almost all of the resources of the 
FPGA chips, with 2 PEs instantiated on the WildCard-II board, and 5 PEs instantiated on the 
WildStar board.  The same 100MHz exhaustive search PE described previously was used to 
extend codes generated by this version, which again took 42% or 16% of the 2 cards’ resources.   

 
We believe that this hardware multi-deme GA, and the hardware DNA Code building 

application are both novel and unique at this writing. The have been described in papers at a 
bioinformatics conference [25] and journal [26], and an evolutionary computing conference [27].   

 
2.4.3 Version 3: GA/DNA Codes with thermodynamic constraints 
 
The version 3 prototype was similar to the version 1 prototype, except that it used a 

single PE, and a single population GA, but it substituted an improved hybridization fitness metric 
called the Gibbs free energy metric for the LLCS metric.  The Gibbs metric calculates an 
estimate of the binding energy of two mers using a nearest neighbor model that considers the 
specific contiguous two-by-two sets of base pairs (2 stems) that occur along the mers, again in all 
alignments of the mers.  In software, this requires the calculation of 3 matrices instead of 1 for 
the LLCS, and the hardware implementation takes significantly more resources than LLCS.  The 
original software dynamic programming algorithm for calculating Gibbs energy requires access 
to possibly distant cells along the diagonal to the upper left of the cell being calculated.  This is 
problematic in a hardware implementation of a 2D systolic array, not only because of wiring 
requirements, but also because at the time this ‘look back’ needs to be done, the cells that 
calculated the data are already busy calculating on other operands, and the data is lost.  One 
possible solution would be to add multiple registers (or use memory) to store the needed data.  
However, a much better solution was found that involves modifying the equations to also 
calculate a running minimum quantity in each hardware cell (in 2 of the 3 arrays), which are then 
passed forward to adjacent cells.  This satisfied the data locality requirement for building a 
pipelined 2D systolic array, i.e. all the data necessary to calculate the outputs of each cell are 
available at the inputs of the cell (rather than on wires coming from non-adjacent cells).     

 
The constraints in the fitness function were also modified for this version.  In the 

previous versions that used the LLCS metric, in order to enter the library a candidate word (and 
its reverse complement) must have a certain minimum edit distance when compared to its own 
reverse complement, and when compared to all of the words already in the library (and their 
reverse complements).  Using the Gibbs energy metric, in order to enter the library the Gibbs 
energies of all potential unintended cross-hybridizations (e.g. measured between each candidate 
word and its reverse complement, and each library word and their reverse complements) had to 
fall below a certain threshold and within a certain range.  The threshold and range could be 
adjusted to ensure that binding energies of unintended cross-hybridizations was poor (had  
suitable low melting temperatures) compared to the energies of intended hybridizations within 
Watson Crick pairs in the library (had higher melting temperatures).       
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This version also added 2 new options for the mutation operator.  One was to simply 
replace the individual chosen for mutation with a new random individual, instead of generation 
of the 47 possible mutations.  The other was similar to the previously used mutation operator, i.e. 
all 47 possible mutations were tried, but when no better word was found, either one of the 
mutations could be selected at random, or a new random individual could be inserted in place of 
the original word.  The pickup procedure was also modified to replace a word that was picked up 
and put into the library with a new random word, rather than leaving it is the population.   An 
additional feature was added to a later variation of this version that optionally used a counter 
instead of a random number generator to source new word values to be inserted in the 
population, e.g. when a word was picked up into the library, or when a mutation did not result in 
an improvement.  This was done to enable comparing deterministic versions of the hardware and 
software algorithms, i.e. ones that used identical sequences of ‘random numbers’ in both 
software and hardware.  The PE for version 3 would not fit into either of the WildCard boards, 
but it did fit on the WildStar board.  It used about 92% of the WildStar card’s resources, and   
operated at 100MHz.  Also, an exhaustive search version of this PE was done, and it used 90% 
of the WildStar resources, and ran at 100MHz. 

 
Finally, we believe that this version’s hardware implementation of the Gibbs metric in a 

systolic array covering all alignments of short mers is novel and unique at this writing, and it has 
been described in a paper at a conference that focuses on bio-molecular computing [28], and in a 
book series that published expanded versions of invited papers from the conference [29].    

 
2.4.4 Version 4: GA/DNA Codes with rank based selection and declone 
  
The last hardware version described here, version 4, was a modification of version 1 that 

added an improved selection and mating operator, and a decloning procedure for removing 
clones from the population every few of generations.  This version used the LLCS metric, 1 PE, 
and also fixed the 2 bugs mentioned previously in version 1.  The new selection method used 
rank based selection of parents for mating.  First the population is partially sorted according to 
fitness to identify the top k individuals that are kept.  Then, parents are chosen from the k 
individuals with probabilities that are proportional to their rank.  Thus, better individuals are 
chosen more often to act as parents.  Mating is then done using single point crossover, as before, 
until the population grows back to the original size.  Finally, mutation is done using the best of 
47 method, with a new random individual inserted if none of the mutations were better.    

 
One potential difficulty when using a GA is a lack of diversity after many generations, 

e.g. the population may develop multiple copies of the same individual, especially if the 
mutation rate is too low.  This may collapse the search to a local minimum.  However, this 
problem can be fixed by detecting this situation and doing a restart, or by periodically 
introducing many new random individuals, or by running a decloning procedure that replaces 
each clone with a new random individual.  We chose to implement a decloning procedure, but 
since this process costs time (of order p*c, where p is the population size and c is the number of 
clones), we added a declone interval counter to enable running the declone procedure only every 
few generations. The decloning procedure also checked for and removed words in the population 
that were duplicates of words (or their reverse complements) already in the library (or their 
reverse complements). Such words have fairly good fitness, because they are rejected only by the 
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duplicate word (and its reverse complement) that are already in the library, but their fitness will 
never improve.   Finally, this version used about 47% of the resources of the Wildcard4 board 
FPGA, and it ran at 100MHz.      

 
Version 4 has been synthesized and tested, but not described in a paper at this writing.  It 

would be appropriate to describe this version and compare the results with that of the other 
versions (especially versions 1 and 2)  at an evolutionary computing conference [30] .  In fact, 
we have proposed to the organizers of GECCO 2008 to do a workshop that would focus on 
hardware implementations of EC algorithms and applications, and received a positive response. 

 
We also note that there was some work done during this spiral on other features of some 

of these versions that is not reported here, because it was related to future work.  For example, 
we did design a 32 x 32 mer version of the LLCS systolic array, and synthesized it to determine 
the impact on size, and found that it took 50,686 LUTS, compared to 12,827 LUTS for the 16 x 
16 mer array.  This is slightly less that 4 times the resources, and is slightly better than what 
might be expected.  This version would not fit on the WildCard boards, but would fit onto the 
WildStar board. 
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3.0 Results - spiral 3 (hybrid software/hardware accelerated platform)  
 

This section summarizes the major findings of spiral 3 and then reviews some specific 
test results for each of the 4 main prototypes.  
 

3.1 Major Findings 
 

These hardware accelerated prototypes all represent the first ever full integrations of a 
genetic algorithm and an exhaustive search capability for generating non-cross-hybridizing DNA 
Codes up to word length 16. They also achieved extreme speed-ups on the order of 1000X that 
enabled us to do extensive multiple run statistical tests that resulted in a number of first time 
observations. For example, using prototype version 1, we determined that running a simplified 
GA with a modified locally exhaustive mutation only operator for 5-10 minutes routinely finds 
over 98% of the total number of codewords that can be found (by extending the code using our 
hardware exhaustive search prototype).  This result was completely unknown in the literature 
prior to this work, mainly due to the fact that exhaustive search of words of length 16 was 
impractical.  We also observed typical code sizes of about 122 word pairs for length 16, distance 
6, reverse complement LLCS codes, and we think that this actually represents a higher upper 
bound than that predicted by existing theoretical methods.  The second prototype represents  
what we think is the first ever implementation of a hardware multi-deme GA, and the first   
integrated with any type of non-trivial hardware application problem.  It demonstrated the 
expected 2X speed-up for a 2 node version, again on the difficult DNA Code problem.   This 
version has paved the way for hierarchical implementations that could use a cluster of 
workstations hosting such FPGA chips.   The third prototype represents what we believe is the 
first ever hardware implementation of a Gibbs free energy of binding metric calculator for short 
DNA strands.   The testing done with this prototype also established that it ran at 45MHz on a 
XC2VP70 FPGA chip, achieving about a 260x speed-up over a compiled C software version 
running on a Dell Precision 670 workstation with 3 GHz Pentium 4 processor.  The fourth 
prototype demonstrated that a full GA, i.e. one with typical operators such as rank base selection, 
single point crossover, single point mutations, and population decloning took about 47% of LUT 
resources, and less that 10% of the on-chip block RAMs of even the smallest FPGA chip 
available to us, the Wildcard-II’s XC2V3000 chip.  This suggests that a variety of other problem 
types that require even more complex fitness function calculators and more memory could be 
implemented in hardware hosted on a notebook computer as well.   

 
3.2 Prototype Test Results 

 
This section presents test data illustrating the main results obtained with each of the 

prototype versions.  More details on each can be found in references shown in Table III.    
 

3.2.1 Version 1: GA/DNA with exhaustive search 
 
Figure 11 shows the main results obtained by tests of this version [24].  Again, it utilized 

a minimal GA that did only a simple, modified mutation operator that selected an individual for 
mutation, and quickly checked all 47 possible mutations of the individual.  This figure shows the 
performance of the algorithm in terms of the time taken to discover words as the library fills, 
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where lower curves indicate faster (better) performance.  The upper curve in Figure 11 is for a 
non-GA algorithm that used a Markov process that was among the best found in the literature at 
the time [31]. 

  

 
Figure 11.  DNA Code generation application average performance using various optimization 
algorithms. Top: Markov guided; second from top: software GA; third from top: hardware GA 
run at 30MHz; third from top: hardware GA run at 100MHz; lower left: simulated hardware GA.   

 
Note that the software GA found words somewhat faster that Markov toward the middle 

of the curve, and that the curves for both algorithms turn up at about 200 words (about 90% of 
the words that will be found), as the constraints posed by having so many words in the library 
make it difficult to find more words (the remaining 10%).   Comparing the curves for software 
GA and the lower hardware GA curve shows that this version achieved about a 1000X speed-up.  
We note that the software GA was run on a 2.4GHz Pentium 4 workstation, and the hardware 
GA was run on a 100MHz FPGA.   We also note that further improvements could be had by 
transferring the hardware to either a latest generation FPGA (~450MHz) or to an Application 
Specific Integrated Circuit (ASIC), which would be expected to achieve about 500MHz – 1.0 
GHz clock speeds.    

 
Figures 12 and 13 shows results obtained by composing initial libraries by running GA 

for 10 minutes, and then extending the codes by running exhaustive search (which takes an 
additional 1.5 hours) [25].  Figure 12 shows the total number of words found by GA and ES for a 
series of 90 runs generating length 16, distance 6 RC LLCS codes.  On average, 120.4 words 
were found by GA, and 121.7 were found by GA + ES, which means that GA alone on average 
found 98.9% of the word pairs that can be found.  Figure 13 shows a histogram of the number of 
runs vs. the number of word pairs that are added by ES, for a series of 32 runs.  It shows that in 
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about 1/3 of the runs GA found all the word pairs that can be found,  for about 2/3’s of the runs 
GA found all but 1 or 2 word pairs, and that for 3 runs ES added 4 word pairs.    

 

 
Figure 12.  Sizes of libraries built with 10 min. of GA followed by exhaustive search. 

 
 

 
Figure 13.  Histogram of number of words added by exhaustive search for the runs of Figure 12. 

 
At this writing we do not have data for generating such codes with any other algorithm, 

because to date these types of experiments have been computationally impractical.  For example, 
without the 1000X speed-up enabled by the hardware ES, 32 runs of GA in software would have 
taken about 1000 x 32 x 10 min. = 320,000 min. = 7.4 months, and 32 runs of ES in software 
would have taken 1000 x 32 runs x 1.5 hours/run = 48,000 hours, or about 5.5 years.  With this 
prototype they took about 2 days.  While it is true that a 1,000 node cluster could also have run 
these tests in 2 days in software, we know of no one who has done it,  Further, the FPGA 
platform costs only $1.8K, and used only 1 notebook computer.   
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3.2.2 Version 2: GA/DNA with multi-deme GA 
 
Figure 14 shows test results obtained with prototype version 2, which incorporated a 

multi-deme GA [27].  As expected, it shows approximately a 2X speed-up using 2 PEs vs. using 
1 PE.  Both curves are without mating and migration.      

 

 
Figure 14. Performance comparison of prototype version 2, using 1 and 2 PEs. 

 
Also from [27], Figure 15 shows an interesting effect that helps make a point about 

moving from software to hardware implementations.  It shows the performance of this version 
with different % mutation parameter values.  This parameter effectively controls the number of 
times per generation that the algorithm selects individuals for mutation during execution of the 
mutation operator.  Indirectly, it also effects how often the mating and migration operators are 
performed, i.e. fewer mating operations take place in a given amount of time if the % mutation  
is larger.  This is because more candidates are checked per generation during mutation, and less 
time is spent doing mating and migration.  What is interesting is that in a software 
implementation such an effect, though present, would probably not even be noticed because the 
time spent on algorithm overhead is so small compared to fitness checking (2% in our case).  
This highlights the importance of thinking about what happens in the optimization algorithm 
when fitness evaluation time shrinks.  Factors that effect the algorithm overhead time become 
important, and may impact the choice of operators and their parameters.  It does not always 
follow that what works well in software predicts what will work well in hardware, and this may 
require some re-thinking when crafting hardware GAs.     

 

 
Figure 15. Effect of % mutation on performance, prototype version 2.  
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To carry this thought further, Figure 16 shows the effect of population size on 
performance, again from [27] with this multi-deme GA prototype.  What we see is that again 
smaller population sizes are more efficient in terms of finding word faster, and again the reason 
is that algorithm overhead execution time has become important.  Specifically, the time it takes 
to do the sort in the mating step (to identify the 8 keepers, which is the same for all the curves) 
grows linearly with population size, and so smaller population sizes have an advantage.  
Working in software the tendency may be to think that larger population sizes are better for 
diversity and performance, and they well may be if algorithm time is dwarfed by fitness function 
evaluation time.  But in this case we see just the opposite working in hardware.  A couple of 
comments are in order here, however, to explain why we do not see a clear linear relationship in 
the performance change vs. population size. One is that there is a confounding factor in this 
experiment, i.e. the selection pressure is changing because the number of keepers was constant 
across the tests.  Thus, there was more selection pressure for the higher population sizes.  
Although this would be expected to improve performance, here it does not.  Another is that we 
usually did not keep track of the number of generations, but do have some evidence that clones 
appear in the populations eventually, and this can hurt performance.      

 
 

 
Figure 16.  Performance of version 2 for different population sizes. 

 
 

3.2.3 Version 3: GA/DNA with thermodynamic constraints 
 
Figure 17 compares the performance of software and hardware versions of the third 

prototype that used thermodynamic constraints on cross-hybridization to compose 16 mer DNA 
Codes, i.e. using the Gibbs free energy metric instead of the LLCS metric.  For details on what 
this metric is, and how it is implemented in hardware, the reader is referred to [28].  Here we just 
say that this metric is preferred by many researchers as being superior to the LLCS metric.  
Although it is more complex than LLCS, and requires fixed point calculations, it can be 
implemented in 3 systolic arrays that fit into the FPGA on the WildStar platform.  The systolic 
arrays effectively calculate the metric for all alignments of the 2 mers.  The top 2 curves in 
Figure 17 are for software versions, and the lower 2 curves are for hardware versions.  The 
hardware versions achieved about a 260X performance speed-up over the software versions.   
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Figure 17.  Performance of software and hardware version of prototype 3 (Gibbs energy metric). 

 
There are 2 software and 2 hardware curves in Figure 17 because two variations of each 

were written in order to address a concern that exists when characterizing the performance of 
stochastic algorithms such as the GA.  The concern is that each time the algorithm is run, the 
pseudo random number generator must be initially seeded with a random number.  This is 
typically accomplished by keying the seed to the absolute clock time.  As the GA runs it samples 
random numbers from the generator only occasionally, and the results of the run depend on 
exactly what set of random numbers are sampled.  It is almost impossible to drive the software 
and hardware versions with exactly the same set of random numbers, even if they are initialized 
with the same seed.  This is because they use different implementations of pseudo random 
number generators.  Therefore, the software and hardware versions do not find the same set of 
words, and hence are not doing exactly the same calculations.  We typically can only make 
statistical observations about how one version compares to another, e.g. by running a number of 
tests at different times, with different random number seeds, and averaging the results.  This 
approach takes time.  However, one way to overcome this problem is to implement exactly the 
same number generator in both versions, and seed them the same.  This should result in exactly 
the same sequence of random numbers being generated in both versions, they should do the same 
calculations and find the same words.  However, it would be hard to implement the random 
number generator used in the software version in hardware, and it would be slow to implement 
the hardware version’s generator in software.  Therefore, a compromise is to use something a lot 
simpler in place of the random number generator, e.g. a counter. While it is known that this 
negatively impacts exploration of a large search space, it does in theory guarantee that both 
algorithms will do exactly the same calculations.  This means that speed comparisons can be 
based on only 1 run of each version instead of 20-30 runs. However, we note that in order to  
determine something like the average library length that can be found, one still has to do 
statistical test of multiple runs with different random number sequences (preferably with a 
pseudo random number generator, not a counter).  At any rate, it is interesting to note that the 
GA still works quite well when driven by a counter, but it does find words about 4 times faster 
when driven by a pseudo random number generator. 

 
The constraints on Gibbs energy for this version were set by specifying values for two 

parameters, a threshold, and a range.  Together these parameters determine the allowable ranges 
of Gibbs energies for intended and unintended cross hybridizations in the library.  A number of 
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experiments were done to characterize the performance for different threshold and range 
parameter settings.  An example of the results is shown in Figure 18 for an experiment that ran 
GA until no further words were found for 10 minutes, and then extending the resulting libraries 
with exhaustive search [28].  This was repeated for multiple values of the range parameter, with 
the threshold parameter fixed.  

 

 
Figure 18. Library sizes found by GA and exhaustive search for prototype version 3 using 

thermodynamic constraints (fixed threshold, multiple range values). 
 
We note two things about the results of this experiment.  First, it becomes slightly harder 

to find words when the allowed range is smaller, which might be expected.   Second, exhaustive 
search adds about 10-20 words to the 420-440 word libraries that GA found, which means that 
GA has found between 97% – 99 % of the words that can be found.  The very good performance 
of the GA alone is similar to our observations with the previous prototypes.  

  
The significance of the hardware accelerator is that it enables us to evaluate different 

code word search algorithms and explore the upper bound on the size of code word libraries in a 
reasonable amount of time. For example, without the hardware accelerator, each experiment in 
the second set would have taken more than 20 days.  The total amount of testing done with this 
prototype that was reported in  [28]  is estimated to have taken about 16 hours in hardware, but 
would have taken almost 6 months if done in software. 

 
3.2.4 Version 4: GA/DNA with rank based selection and declone 
  
This final version incorporated the LLCS metric, a single population PE, rank based 

selection, single point crossover, and periodic decloning.  Also, fixes were inserted for the 
previous bug involving best of 47 mutation when none increased fitness (the individual was 
replaced with a new random individual), for the word picked up from the population (they were 
replaced with new random individuals), and for restricting the addresses of mutation trials (to the 
maximum number of individuals in the population).  Even though we had previously observed 
that mating did not significantly improve performance of the DNA code building application 
working with software versions in spiral 2, we implemented these operators in this version 
because they are generally used in many applications of GAs found in the literature.  We thought 
this would increase the likelihood that our work could be transitioned to other problems with 
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minimal work.  We note here that our version 2 prototype did include mating and migration, but 
in the interest of design simplicity, the parent selection method was random, i.e. parents were 
chosen with uniform probability from the number kept by the sort.  Selecting with uniform 
probability from the fraction of kept individuals does apply some selection pressure toward good 
individuals, and that pressure can be increased by keeping few individuals from which to select 
parents for the next generation.  However, methods such as rank based selection can be used to 
apply even more selection pressure.  This 4th version used a common method called rank base 
selection that selects parents according to a list of graded probabilities calculated from their rank, 
i.e. their position in a list sorted by fitness.  This causes more fit individuals to be chosen more 
often as parents. It is known that this can be good and bad, good in the sense that better 
individuals might be bred faster in the population, but bad in the sense that the population may 
prematurely converge to a local optimum because it fills with clones.  Many researchers try a 
number of different things to tune the performance of a GA to a particular problem, including 
varying the population size, the number kept from generation to generation (also called the 
crossover rate, or fraction kept), and variation of the selection,  mating, and mutation operators.      

 
Figure 19 shows the results of tests done with this version that looked again at the effect 

of population size on performance, as we did for some of the previous versions.   
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Figure 19. Performance effect of population size, version 4, time vs. # words. 

 
 
Again we see that smaller populations find words faster.  To help understand why, we 

modified this version to also report the generation on which words were found, as shown in 
Figure 20, which is for the same test as Figure 19.  In both of these Figures, the results are 
averaged over 30 runs, (and so the average generation number can be a fraction).  Also, there 
was a time limit of 5 minutes placed on the runs, so the point at the top right of these curves 
represent the average of only those runs that had not reached the 5 minute limit.  The apparent 
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reason why the curves dip is that runs that find a lot of words generally find them faster, too.   
While this is not important, we would like to understand why this happens.  We had surmised 
that both of those observations about smaller populations were due to lower overhead in the sort 
operation, which would allow more random individuals to be checked by the mutation operator 
without being slowed down by the mating operator.  Figure 20 can be interpreted to show that, 
indeed, this is the case.   

The first thing to note in Figure 20 is that in terms of generations, all of the population 
sizes find words at about the same rate in the middle of the curves, e.g. word # 175 is found on 
about generation 9, regardless of the population size. Stated another way, runs with small 
population size find the same number of words at each generation that runs with larger 
population size do.  It follows that if a generation takes longer to process (e.g. because the sort, 
checking after mating, and decloning operator execution times increase with population size), 
using large population simply penalizes run time.   It is somewhat surprising that such a small 
population still finds words so efficiently.  The reason might be the type of modified mutation 
operator we used, i.e. one that tries all 47 possible mutations.  This means that every generation z 
x p * 47 mutations are checked, where z=% mutations, and p=population size.  Even if z=1, 
p=16, this means 1 x 16 x 47 =  752 new mutations are checked each generation, whereas fewer 
than 16 new individuals are checked by the mating operator.  
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Figure 20. Performance effect of population size, version 4, generation vs. # words. 

 
 
The second thing to note in Figure 20 is that the upper right tails of the curves show that 

runs with smaller population size find more words in the end than those for larger population 
sizes.  Clearly, they also complete many more generations before they reach the time limit at the 
end of the test.  No doubt the larger population runs would find just as many words, given more 
time to execute their longer generations.   
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The next experiment we did looked at the effect of selection pressure in the mating 
operator on performance.   Figures 21 and 22 show the averaged results for 30 runs with  
population sizes of 32 and 256, respectively, and the number of keepers k varied in order to 
increase selection pressure.  For these tests, mutation was minimized (1%), the population was 
decloned every 10 generations, and the termination time set to 30 seconds. 
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Figure 21.Population size 32, mating selection pressure varied, version 4. 
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Figure 22. Population size 256, mating selection  pressure varied, version 4. 
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The results in Figures 21 and 22 show that in the middle of the curves, increasing 
selection pressure (fewer # of keepers) actually degrades performance.  All we can really say is 
that if there is a beneficial effect of increasing selection pressure in the mating operator, it is 
masked by a higher time cost of running the mating operator.   However, at the right tails of the 
curves in Figure 21 (population size 32) we see that higher selection pressure found more words, 
but in Figure 22 (population size 256) lower selection pressure found more words. To understand 
these effects, next we looked at the execution times of the sort and selection/mating operators in 
as functions of population size and # keepers.  We did this by inspecting waveforms produced by 
ModelSim simulations and constructing clock cycle models for these operators.  We used these 
models to generate the curves shown in Figures 23-26. 

 
 

Sort Operation - Total clocks vs # Keepers
for Population Sizes 16-512

0.0E+00

4.0E+02

8.0E+02

1.2E+03

1.6E+03

2.0E+03

0 4 8 12 16 20 24 28 32
# keepers

cl
oc

k 
pe

rio
ds

16

3 2

6 4

12 8

2 5 6

5 12

 

Mating Operation - Total clocks vs # Keepers
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Figure 23. Sort clock cycles,                                    Figure 24.  Selection/mating clock cycles,  
population size 32. (curve 2nd from bottom).           population size 32. (curve 2nd from bottom). 
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Figure 25. Sort clock cycles,                                   Figure 26. Selection/mating clock cycles, 
population size 256. (curve 2nd from top).               population size 256. (curve 2nd from top). 
 
 

These curves show that the absolute time cost of sorting is much larger than that of 
selection/mating for all population sizes. They also show that sorting time increases linearly with 
the number of keepers, while selection/mating time is relatively constant vs. k.  Finally, they 
show that the sensitivity of sorting time to increasing k is much larger for population size 256. 
Clearly, when these effects are taken together, we would expect a large beneficial effect on 
performance as the number of keepers is decreased.  However, this is just the opposite of what 
we see in the middle of the curves of Figures 21 and 22, i.e. there is a degradation in 
performance as the number of keepers is decreased.   This indicates that there must be another 
factor at work.  At this writing we can only speculate that one possibility is that clones may be 
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arising in the population more often for smaller k, which would also cause mutation trials to be 
on duplicate words.  This would also cause slightly longer decloning times.  Another way to 
think about this is that keeping a larger number of (presumably more diverse) individuals from 
generation to generation, rather than replacing them with a smaller number of individuals bred 
from a small number of parents, might effectively result in a wider search.  This could be further 
studied by monitoring the # clones that appear, which could be done in future work.    

 
One caveat is that certain assumptions had to be made when building the models,  e.g. 

during the sort a number of passes are made through the population to pick up individuals with 
the best remaining fitness.  We assumed that on average one individual would be picked up for 
each pass, meaning that NumKeepers/2 passes world occur. It is entirely possible that multiple 
individuals could have the same fitness and be picked up on the same pass, and that would tend 
to make the curves of Figures 23 and 25 flatter.     

 
Finally, we note that the response to varying selection pressure may be very problem 

dependant.  In the present case it appears that mating does not help performance, but mating may 
be very beneficial for other problem types, so it is good to have FPGA cores for doing it.   
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Figure 27.  Edit distance varied, population size 16, # keepers 8, version 4. 

 
 

Another experiment we did looked at the effect of the max_match parameter on the 
number of code words that can be found.  The max_match parameter can be used to change the 
edit distance (which is code word length-max_match).  The results Figure 27 show that more 
words are found as max_match increases.  This is expected, because as max_match increases, the 
allowable edit distance decreases, meaning that the constraint on unintended cross hybridizations 
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is less severe. More words can be added to the library when unintended cross hybridizations are 
allowed to be more likely that when they are constrained to be less likely.    

 
Figure 28 shows a blow-up of the data in the lower left corner of  Figure 27, plus another 

curve that is the average of 30 runs of 16/m8 with GA run for 20 minutes instead of 30 sec 
(which should have found more words if they could be found).  We have seen that for 16/10 
codes, on average GA finds over 98% of the words that can be found.  We do not know if this is 
the case for 16/6 and 16/8 codes at this writing, because we have not done exhaustive search on 
the resulting codes. At any rate, this is some of the only data we have seen for these code 
length/distances.   
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Figure 28. Max_match 6 and 8 codes (edit distance 10 and 8), version 4. 

 
 
Finally, we note that some additional work is being done by our summer faculty to 

develop GA/DNA Code  FPGA versions that incorporate additional features.  That work is not 
covered in this report, but will be described elsewhere.   One of these involves expanding the 
LLCS systolic array so that it computes on 32 mers instead of 16 mers.  This is important 
because some biological applications of the LLCS metric involve computing on 25 mers, and 
even 60 mers.  This preliminary work has successfully implemented and tested a 32 x 32 mer 
LLCS systolic array that fits on the WildStar FPGA, and operates at 45MHz.  This version 
achieved about a 4,000X speed-up over software when building 32/20 codes, and about 
100,000X speed-up composing 32/16 codes.   These extreme speed-ups are due to the very long 
execution times of the software versions (which scale as n2), and the fact that the execution time 
changes very little as the systolic array size is increased. 
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4.0 Conclusions and Future Work 
 
  We believe that this in-house project has accomplished its first goal, i.e. it demonstrated 

that the genetic algorithm, the workhorse evolutionary computing algorithm, can achieve results 
as good or better than classical methods, at least for the problem types we applied it to during 
this project (non-linear ODE parameterization, and DNA Code generation).   We demonstrated 
this by building and testing prototype solution engines in spiral 1 in a variety of languages on a 
single workstation, in spiral 2 in C/MPI implementations on a cluster of workstations, and finally 
in spiral 3 on hybrid workstations equipped with special purpose boards hosting FPGAs.   Part of 
this goal was to determine whether the evolutionary algorithm offered any advantages over  
classical methods,  and  in spiral 1 we did observe that for the non-linear model parameterization 
application the GA did converge when working with full, unreduced models, where a number of 
classical methods failed to converge unless reduced order models and step-wise parameter fitting 
methods were used.    In the context of distributed, cluster based applications in spiral 2, again 
for the parameterization problem, we observed that the Island Model GA displayed 
approximately linear solution time speed-up vs. the number of nodes used, and also that it does 
not suffer from some of the limitations of alternative deterministic distributed global optimum 
seeking algorithms whose memory usage may grow exponentially if the solution space has many 
local optima.   The sizes of the data structures required to run the GA are defined at time zero, 
and they do not change as the algorithm proceeds.  Finally, in spiral 3 we were able to hand craft 
a full hardware implementations of a GA that was integrated with a DNA Code building 
application, and we were able to build and test several versions that explored variations of the 
GA operators and code building constraints.  We compared our test results to those found in the 
literature, using both software GA and non-GA methods, and observe that the performance of 
our hardware GA/DNA Code building prototypes met or exceeded their speeds.  We also 
observe that there are no other fully hardware implementations of any other algorithm for this 
application.  Hardware implementations of the GA are in fact straight forward due to the simple, 
repetitive nature of the basic algorithm, and the regularity and parallelizability of its operators.  
For example, almost all memory accesses in our integrated algorithm/application are done to 
sequential, contiguous addresses, e.g. when processing the individuals in the GA population. We 
were also able to successfully exploit high speed data pipelining methods in 2D systolic arrays 
we designed for checking fitness with the LLCS and Gibbs energy metrics.  That simply would 
not be possible for a number of other optimization algorithms that do one trial at a time, 
separated by (possibly time consuming) calculations to guide the choice of the next trial.     

 
Figure 29 depicts a summary of the speed-up results obtained across the various 

platforms, including a couple of additional options that we did not prototype, but which we 
include because they might be important to look at in future work.  At the beginning of this 
project, implementation on the third platform, GA on PC and FF (fitness function) in FPGA, 
would have suffered a severe a speed bottleneck associated with communication between the 
host PC and FPGA across the peripheral bus (33 or 66 MHz).  However, at this writing at the end 
of the project, a new platform of this sort has appeared which has an FPGA chip in a socket on 
the CPU mother board which can use the high speed internal bus.  Our organization is obtaining 
early version of this platform, and our GA/DNA code application may provide an early test case.  
If the communication rate for simultaneous input and output data streams between the CPU and 
FPGA can be maintained at about 100MHz, this platform may meet or exceed the performance 
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of a 100MHz all FPGA solution.     Finally, we note that time, workload, and urgency constraints 
conspired to prevent us from fully exploring the last platform shown, the cluster of FPGAs 
approach.  Even so, we did develop a single chip prototype that demonstrated linear speed-up for 
a multi-deme GA, and another single chip prototype that simultaneously used two instances of 
the LLCS systolic array for exhaustive checking.  Future work could address adapting these 
versions to run on a cluster of FPGAs, and we would expect both to exhibit linear speed-ups vs. 
the number of FPGA nodes.     Finally, we find it extremely interesting to note that the single 
FPGA chip platform approach that we did study is far less expensive than the software on a 
cluster of workstations approach, yet it delivered far greater speed-ups.  While this will not be 
true in general for any problem type, we expect it will hold true for those types of problems that 
involve fitness functions with simple mathematics (i.e. with integer and Boolean operands), 
especially where the function evaluation can be cast into a pipelined systolic array. 
 

 

 
Figure 29.  Speed-up and resources for the various platforms considered by this project. 

 
 

Other goals of this project were to synergize with other ongoing in-house and summer 
faculty research topics, and the AFOSR and DARPA programs managed by RI, and to identify 
target problems in ongoing programs that might benefit from the development of new 
optimization tools for solving hard computational problems.   We believe that we accomplished 
these goals by identifying and drawing our main application problems from both our ongoing 
involvements in the DARPA in the SIMBIOSYS and BIOCOMP programs, and our AFOSR 
sponsored projects working in the area of computing with bio-molecules, and nano-scaffold self-
assembly for bio- and nano- electronics.   Another a aspect of accomplishing this goal involved 
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active interaction and collaborations with workers at Purdue, SUNY Geneseo, Wright State 
University, AFIT, SUNY Binghamton, and UNC Charlotte to obtain test case models, exchange 
ideas, compare results, and in general advocate the use of the methods investigated by this 
project.   Finally, we synergized with our summer faculty programs by hosting three summer 
faculty and two summer students who contributed ideas and work to this project (see section 6.0 
Acknowledgements).   

 
Two other goals of this project were to raise the level of awareness of workers at RI 

about present day research and applications of evolutionary computing methods, and to mine the 
RI mission areas for additional candidate problems that could potentially benefit from this 
knowledge and the results of this effort.  We believe that we accomplished these goals by 
helping to establish an EC Interest Group at RI that hosted a number of lectures by EC experts 
and practitioners, and by attending and publishing the results of this effort at numerous external 
Conferences and workshops.   In addition to our main test case problems, we also identified and 
worked on at least three other problems to a lesser extent, including power management policy 
optimization in distributed sensor networks, low power bus coding for VLSI on-chip 
communication busses, and probe design for diagnostic micro-arrays.  

 
Some of the most important  technical accomplishments of this program involved the 

successful design and demonstration of working prototypes that were the first  single chip FPGA 
solutions that integrated a hardware GA, and a separate hardware exhaustive search (ES) engine 
with a hardware version of a complex DNA Code generation application problem. The extreme 
speed-ups on the order of 1000X achieved by both of these designs enabled us to run 
experiments that yielded a first ever observation that GA alone can find about 99% of the DNA 
Code words that can be found. It is also very significant that the hardware ES makes experiments 
practical that simply would not be if done in software, for example, some of our routine tests that 
took 2 days with these hardware prototypes would have taken about 5.5 years in software.  While 
it is true that a 1,000 node cluster could also have run these tests in 2 days in software (assuming 
that the performance scaling was perfectly linear), the FPGA platform we used costs 
significantly less ($1.8K plus a notebook computer),  uses less power, and requires no facility.  

 
We can think of several avenues to explore in future work.  One would be to revisit the 

use of Higher Order Languages, and try to take more advantage of design tools that allow users 
to code in a C-like language, or even MatLab.  We did succeed in producing a 16 x 16 LLCS 
fitness checking prototype early in spiral 3 using the Impulse C tool, which simulated correctly 
in the Impulse Co-Developer tool, and resulted in VHDL code.  However, we were not able to 
obtain VHDL for the whole application, we believe because of limitation of the tool for 
extracting state machines from our very large application. Therefore, we were unable to 
synthesize and test code from this tool path, and we do not know how it would compare to our 
own hand crafted version in terms of resource utilization and speed.  While success along these 
lines would probably increase the likelihood that researchers in various problem domain areas 
might pick up and use hardware acceleration methods, today this is not the general case, and 
hardware applications typically are done with help from a computer expert on the team. 

 
Another possible area for future work would be to look at other GA operators and other 

EC algorithms, hopefully in the context of problems that are solved well, but that need speed-up.    
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Still another area for possible future would be to pursue even higher performance 
hardware implementations of the accelerators that we designed in this effort.    For example, 
newer generation FPGA chips are now available that have in excess of 200,000 LUTs  (e.g the 
largest Xilinx Virtex 5 chip).  We note that our software GAs ran on 2.4GHz Pentium 4 
workstations, and on our hardware GAs ran on Virtex-II and Virtex 4 FPGA chips at 30-
120MHz.   Future generations of both workstations and FPGAs will push both of these 
benchmarks upward.  We also note that further improvements might be had by pursuing  
distributed GA implementations on multiple core workstations (2 and 4 core Intel and AMD 
processors are available at this writing), on the Sony playstation and IBM cell blade platforms, or 
on an Application Specific Integrated Circuit (ASIC) which would be expected to achieve 
perhaps 500MHz – 1.0 GHz clock speeds.  We also note that at this writing there are no known 
commercially available EC chips that could act as a hardware accelerator for optimization 
problems, or even examples provided by FPGA vendors, so the cores we developed have the 
potential to help fill those gaps. 

 
For this work we focused mainly on length 16, max_match 10 (16/10) DNA codes, and 

we generated only limited data with tests that composed 16/6, 16/8, and 16/12 codes.  There 
might be academic and practical interest in using these prototypes to study codes generated with 
a variety of conditions, and codes with longer lengths (e.g. with our new prototype for 32 mers).   
 

Finally, we note that a potentially high payoff spin-off application for the prototypes 
developed in this project has been identified.  It is the acceleration of what is called the Probe Set 
Design problem that is encountered in the design of gene expression and gene identification 
diagnostic micro-arrays.  This problem involves time consuming checking of similarity metrics 
between a set of short probe oligos (e.g. a set of thousands of 25 or 50-60 mers) against whole 
genomes.  The goal is to identify a set of probes that can be placed in wells on a micro-array that 
when washed with an analyate with unknown genomic contents, will accurately identify the 
source organisms.  The probe mers must be chosen carefully so that the patterns of bindings 
between the probes on the chip and the targets in the genomes can be interpreted unambiguously.  
There are various approaches that have been used to compose probe sets, and they involve 
computations of LLCS, Smith-Waterman similarity, and Gibbs energy free energy between the 
short mer probes and short mer segments drawn from target organism genomes.  This problem is 
directly applicable to the task of designing and updating micro-arrays that can identify the 
presence of, say the top 20 biological threats.  At present, we are exploring possibilities for 
applying our work in this area.  To date we have attended a conference on the subject, written a 
C version of s simple form of the problem, and given a poster on our results [32].  We are also 
having discussions with workers at UNC Charlotte who have begun to implement a hardware 
accelerated Smith-Waterman algorithm [33].         
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ABSTRACT 
In this work we consider lifetime-aware resource management for 
sensor network using distributed genetic algorithm (GA). Our goal 
is to allocate different detection methods to different sensor nodes in 
the way such that the required detection probability can be achieved 
while the network lifetime is maximized. The contribution of this 
paper is twofold. Firstly, the resource management problem is 
formulated as a constraint optimization problem and is solved using 
a distributed GA. Secondly, empirical analysis results are provided 
that reveals the relationship between the configuration parameters 
and the quality of the search. A regression model is designed to 
estimate the runtime of the distributed GA given the configuration 
parameters. The model is utilized to find energy efficient 
configurations of the algorithm. 

Categories and Subject Descriptors 
J.7 [Computer Applications]: Sensors and Sensor Networks 

General Terms 
Experimentation 

Keywords 
Distributed Genetic Algorithm, Sensor Network, Energy Aware 
Design, Resource Management 
1. INTRODUCTION 
Due to the fast development of information technology, the 
networked distributed system is gradually replacing the 
conventional centralized system. It is a vision of the future that large 
numbers of low cost smart mobile devices will be integrated into the 
daily life of ordinary people. Accumulated, they provide the 
information processing capability that is equivalent to a high 
performance processing station. The emerging concept of Ambient 
Intelligence [1] and the recent developments of sensor networks [2], 
and wearable computers [3] reflect such vision. A distributed system 
consists of multiple heterogeneous networked processing elements, 
which are battery-powered and work on a set of tasks 
collaboratively. Each processing element has limited resources, such 
as battery energy, communication bandwidth, etc. It is a challenging 
task to efficiently utilize these resources to deliver required services 
during the runtime in a dynamic environment. 

Resource management is defined as the process that assigns tasks to 
different processing elements, schedules their start times and 
decides the level of service quality, which determines the resource 
usage, such as the energy dissipation and communication 
bandwidth, to run these tasks. The execution of each task represents 
a positive gain when measuring or quantifying the performance of 
the system.  It also associates a cost, which represents the resource 
usage. The resource management problem can be formulated as a 
multi-objective optimization problem, i.e. maximizing the gain 
while minimizing the cost. It can also be formulated as a constraint 
optimization problem, i.e. maximizing the gain while satisfying the 
cost constraint or vise versa. 
In this paper we focus on the management of the energy resource in 
an environment monitoring sensor network that is used to monitor, 
model and forecast physical processes, such as environment 
pollution, flooding, and fire etc. The basic configuration of each 
node in this network consists of a microprocessor, a wireless 
transceiver and an array of sensors such as light detector, barometer, 
humidity and thermopile sensors. A set of data acquisition and 
signal processing applications is available on each node. They 
provide the tradeoffs between detection quality and resource 
utilization. For example, increasing the sampling rate improves the 
probability of detecting an abnormal event however it increases the 
power consumption as well. 
There is usually a significant cost associated with deploying an 
environment monitoring system. It is desirable that the system can 
work for a reasonably long time after it is deployed. A common 
approach is to incorporate certain level of redundancy in the system. 
More than one node usually will be deployed to cover the same 
region. These nodes may be turned on alternatively to extend the 
network lifetime or simultaneously to increase the detection 
probability. If the minimum detection accuracy is given as a user 
constraint, the resource management problem for the system is to 
determine which sensor nodes should be turned on to process which 
data acquisition and signal processing application such that the 
network lifetime can be maximized while meeting the required 
detection accuracy. This is a well known general assignment 
problem which has been proven to be NP-complete [4].  
Most of the traditional resource optimization algorithms are solved 
in a centralized, off-line approach which is not suitable for a 
distributed system. In this paper we study the use of distributed 
genetic algorithm (GA) to solve the above mentioned optimization 
problem, potentially using processing capabilities residing on nodes 
of the distributed sensor network. One of the major characteristics of 
the GA is that it is “embarrassingly parallel”, in the sense that, its 
workload can easily be evenly distributed among processors, 
making it an appropriate choice for solving optimization problems 
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in distributed systems. The configurations of the distributed, multi-
deme GA, such as the population size, the migration rate, and the 
parallelism, has a significant impact on the quality of the search [8]. 
Finding efficient configurations of the distributed GA is an 
important research topic. The contribution of this paper is twofold. 
Firstly, the resource management problem is formulated as a 
constraint optimization problem and is solved using a distributed 
GA. The simulation results show that the resulting task allocation 
scheme increases the system lifetime by 14.4% in average, 
comparing to heuristic approaches. Secondly, empirical analysis 
results are provided that reveals the relationship between the 
configuration parameters and the quality of the search. A regression 
model is presented that estimates the runtime of the distributed GA 
given the configuration parameters. This model is then used to find 
energy efficient configurations of the algorithm. 
Many previous works on sensor network resource management and 
task allocation address network communication issues [5][6]. In 
these schemes the nodes are dynamically awakened to route a 
message. In reference [7] the resource allocation problem in a 
vehicle tracking system is modeled as a virtual market and solved 
using feedback control. This work focuses more on the tracking of a 
moving object rather than the collaborative detection of a static 
event. Therefore it cannot be applied in the environment monitoring 
system. Reference [9] focuses on task allocation on the gateways in 
a cluster-based sensor network. The problem is also formulated as a 
constraint optimization problem and is solved using simulated 
annealing, which is a centralized stochastic searching algorithm. 
Compared with reference [9], the resource management problem 
considered in this paper has a different set of constraints and 
objective functions and is solved using a distributed GA.  
The rest of this paper is organized as follows. Section 2 introduces 
the sensor network architecture. Section 3 presents the distributed 
GA algorithm. Section 4 provides the empirical analysis of the 
relationship between the configuration parameters and the quality of 
search of GA and derives the regression model for runtime 
estimation. Section 5 discusses the utilization of the regression 
model to design energy efficient distributed GA. Sections 6 and 7 
provide the experimental results and summaries, respectively.   

2. SENSOR NETWORK ARCHITECTURE 
We consider the sensor network that is deployed with a certain level 
of redundancy. The network can be partitioned into several clusters. 
Each cluster consists of p sensor nodes that are responsible for 
performing monitoring and hazard detection in the same region. 
Each sensor node is low cost and low quality; however combined 
together they provide very accurate detection. The nodes in the 
same cluster have direct communication with each other via wireless 
communication channels. The nodes in different clusters 
communicate with each other through gateways. In this work we 
assume that the clustering and routing scheme is provided. We also 
assume that each cluster has advanced data fusion capability so that 
the traffic of inter-cluster communication is low.  
An array of w sensors is installed on each node. The reading from 
these sensors can be sampled by l different sampling frequencies. 
Obviously, higher sampling frequency leads to higher detection 
probability while consumes more energy. The sampled data from 
sensor i can be analyzed in xi different ways. They provide different 
tradeoffs between accuracy and energy dissipation. A detection 
method (i.e. task) is considered as a combination of sensing 
function, sampling frequency and signal processing algorithm.  

Each task-processor pair (i, k), 1 ≤ i ≤ n and 1 ≤ k ≤ p, associates 
with two variables powi,k and probi,k, which represent the power 

consumption and the detection probability of task i when it is 
running on processor k. The probi,k is a function of the location and 
the environment of the sensor node. We assume that this function is 
pre-calibrated and installed on each sensor node before its 
deployment. The sensor node will collect the environment 
information and calculate the detection probability using the 
provided function periodically. To improve the detection 
probability, the node is allowed to use more than one detection 
method at the same time. The combined detection probability of 
node k can be calculated as ∏

Δ∈
−−

ki
kiprob )1(1 , , where Δk is the set 

of tasks that are allocated to node k. The total node power 
consumption can be calculated as ∑

Δ∈ ki
kipow , . The detection 

probability Prob of a cluster with p nodes is calculated as 
∏ ∏
≤≤ Δ∈

−−=
pk i

ki
k

probProb
1

, )1(1 .  

The goal of resource management is to find the Δk for each 
processor k so that the combined detection probability of the cluster 
is larger than the user defined constraint while the network lifetime 
is maximized. In this work, we define the network lifetime as the 
time from the deployment of the sensor network to the time when 
the first node runs out of battery energy. We assume that each 
sensor node is built with the smart battery Bus (SMBus) [10] which 
enables the system software to keep tracking of the remaining 
battery capacity and estimate the remaining lifetime. 

3. RESOURCE MANAGEMENT USING 
DISTRIBUTED GA 

A Genetic Algorithm (GA) is a stochastic search technique based on 
the mechanism of natural selection and recombination. It starts with 
an initial population of individuals, i.e. a set of randomly generated 
candidate solutions. The solutions are represented by chromosomes, 
which are collections of numbers or symbols that map onto 
parameters of the problem.  Individuals are evolved from generation 
to generation, with selection, mating, and mutation operators that 
provide an effective combination of exploration of the global search 
space and pressure to converge to the global minimum. The solution 
quality is measured by a fitness function.  
The Island multi-deme GA is one of the parallel GA models that are 
widely used [8]. In this model, the population is divided into several 
sub-populations and distributed on different processors. Each sub-
population evolves independently for a few generations, before one 
or more of the best individuals of the sub-populations migrate across 
processors. The time between migrations is called epoch.  
In this work the Island multi-deme GA is used to optimize the 
resource management for a cluster of sensor nodes. Each individual 
solution is a chromosome of n symbols, where n is the total number 
of tasks in the cluster. We assume that each task can only be 
selected by at most one sensor node in a cluster because multiple 
executions of the same task only generate redundant information. If 
the jth task is allocated to node x then the jth entry of the 
chromosome is equal to x. If the jth entry of the chromosome is -1 
then this task is not allocated to any of the processors. Denote the 
user specified minimum detection probability as probth, the fitness 
function is: 

⎪⎩

⎪
⎨
⎧ <

= ∑
Δ∈≤≤

ki
kikpk

th

powB
Prob Prob

fitness otherwise              )/(min
 if                                  0

,1

             (1) 

where Bk is the remaining battery capacity of node k. The fitness of 
an individual is 0 if the corresponding resource management scheme 
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cannot meet the user specified detection threshold; otherwise its 
fitness is equal to the minimum remaining lifetime of the nodes. 
Single point crossover mating function is used in our experiment. 
The mutation probability is set to 1%, and involves flipping bits in 
integer representations of the parameters stored in chromosomes.   
The GA is running on np processors. Each sub-population is 
initialized randomly and its size is denoted as pop. The sub-
population evolves independently for c generations, and then 5 of 
the best individuals are broadcast to all other processors. The three 
parameters, np, pop and c, will be referred as the configuration 
parameters in the rest of this paper. The value of the configuration 
parameters has significant impact on the convergence speed of the 
GA and the quality of the solution. An empirical analysis is next. 

4. CONFIGURATION PARAMETERS 
We are interested in understanding the effect of configuration 
parameters on the quality of the search of the distributed GA that is 
previously discussed. Some work has been carried out in this area 
[8]. However, most of these involve the analysis of simple 
optimization problems such as the fully deceptive function [12]. 
Whether their results can be applied to our problem is unknown. 
Due to the extremely large search space and very complicated 
stochastic behavior of the GA, we found that it is difficult to 
perform an analytical study. Therefore, extensive experiments have 
been simulated and the relation between the configuration 
parameters and the quality of search is derived empirically.  
 
 
 
 
 

 
 

Figure 1 Normalized fitness vs. Sub-population size 
Two sets of experiments have been carried out. In these 
experiments, we model a cluster of 10 sensor nodes. There are 100 
tasks available. The GA is running on np sensor nodes with np ≤ 10. 
The detection probability and the power consumption of each task 
are uniformly distributed random variables whose range is 1% ~ 
25% and 0.1Watt ~ 10Watt respectively. The battery of each sensor 
has the capacity of 5000 Ampere⋅hour and the Vdd is 1V. Because 
GA is a stochastic algorithm, we run each simulation 50 times and 
report the mean value. 
The first set of experiments is designed to find out the effect of the 
configuration parameters on the quality of the solution. We swept 
the np from 2 to 8, the pop from 25 to 350, and the c from 1 to 35.  
For each configuration, the distributed GA is simulated. The GA 
will stop when the fitness of the best individual does not improve 
for 2000 generations. The relation between the pop and the 
normalized fitness of the best individual is reported. Figure 1 shows 
two sets of data for np (i.e. the number of processors) equal to 8 and 
3. The results show that increasing both the pop and the np improves 
the quality of the solution. However, varying c has very little impact 
on it. Therefore the quality of the solution is determined by the size 
of the total population which is the product of the pop and np. 
The second set of experiments is designed to find out the effect of 
the configuration parameters on the runtime of the GA. The value of 
np, pop and c are swept in the same way as the first experiment. The 
GA stops when the fitness of the best individual exceeds the 

threshold which is set to be 5 times of the expected fitness of a 
random individual. The number of generations that the GA has 
iterated is reported. Due to the iterative nature of GA, it is 
reasonable to assume that the runtime of each generation is 
approximately the same and it increases linearly as population size 
increases. Therefore we use the product of pop and the number of 
generations that the GA has iterated as a measure of the runtime. 
 
 
 
 
 
 
 
 

 
 
 

 

 
 

 
 

 
Figure 2 Runtime vs. configuration parameters  

 
The relation among pop, c, np and the runtime are extracted from 
the results of second experiment. Figure 2 (a)-(c) show some of the 
data that we have obtained. Several observations can be made from 
these data. First, when the size of the sub-population increases, the 
runtime increases linearly. Combined with the results from the first 
experiment we can see that if the goal of the GA is to find the best 
possible solution, then a large population should be used. However, 
if the goal of the GA is to find a good solution in a short time, then 
increasing the population size will not help. Instead a small 
population should be used. Second, reducing the migration rate will 
result an almost linear increase in solution time. The slope is the 
same for different sub population size. Third, increasing the number 
of processors will reduce runtime, and this effect is more dominant 
when the sub-population is small. 
In order to consider the combined effect of all of the three 
configuration parameters, we introduce a new variable called 
effective population (Epop). The size of the effective population 
increases when the size of the sub-population, the parallelism or the 
migration rate increases. It can be calculated as the following: 

                   cnppoppopEpop /)1( −⋅+=                                  (2) 
Given the effective population, the runtime of the distributed GA 
can be predicted. Let G denote the number of generations that the 
GA has iterated before it finds the solution with the required fitness. 
Figure 3 (a) gives the relation between Epop and G. It shows that G 
is a continuous and differentiable function of Epop. 
Based on the observation, we construct a prediction model to predict 
the number of generations that the GA has iterated.  
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(b) Runtime vs. length of epoch  

(c) Runtime vs. parallelism 
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The coefficients a, a0 …, a5 are obtained using regression analysis. 
Note that the value of the coefficients will change if the experiment 
setup changes. Here the experiment setup includes the threshold of 
fitness and the distribution function of prob and power. For each 
new setup, regression analysis should be performed to obtain the 
values of the coefficients. 
  
 
 
 
 
 
 
 

Figure 3 Runtime vs. effective population  
The above model gives quite accurate prediction of the number of 
generations that GA has iterated given the configuration parameters. 
Figure 3 (b) compares the prediction model with the simulated 
results. The blue dots give the G value obtained from simulation and 
the magenta dots give the G value obtained using the prediction 
model. The runtime T is measured as the product of pop and the 
number of generations popGT ⋅= . 

5. ENERGY EFFICIENT CONFIGURATIONS OF 
DISTRIBUTED GA  

Sensor nodes are energy constraint systems. Any application 
running on the sensor node should be designed carefully to achieve 
high speed and energy efficiency. In this section we will discuss 
how to select the configuration parameters to minimize the energy 
dissipation of the distributed GA. 
In a computing system with fixed supply voltage (Vdd) and clock 
frequency, reducing the runtime of an algorithm leads to linear 
reduction of the energy dissipation if the processor can be turned off 
after the program finishes. More energy saving is possible by using 
dynamic voltage and frequency scaling (DVFS), which is one of the 
runtime power management approaches that is supported by many 
processors for the state-of-the-art mobile computing platforms. It is 
a property of CMOS digital circuit that reducing the Vdd can reduce 
the energy dissipation quadratically but increase the circuit delay 
linearly [11]. In a system with DVFS capability, the program is 
running at the minimum supply voltage and clock frequency so that 
it finishes just before the deadline. Due to the convex relation 
between the energy and the runtime, this gives more energy saving 
than running the program at the nominal speed and turn off the 
processor after the program finishes.  
Population migration among the processors is an important feature 
in distributed GA. The communication energy to broadcast the best 
individuals must be considered. Under the assumption of a fixed 
transmission power and a constant transmission speed, the 
communication energy is proportional to the size of the transmitted 
data. The communication energy will not be affected by DVFS. 
The computing energy is a product of the runtime and the power 
consumption of the processor. Therefore, the runtime model 
proposed in Section 4 is the key for the energy estimation of the 
distributed GA. While increasing the migration rate, decreasing the 
population size and increasing the parallelism reduce the runtime of 

GA and consequently reduce the computing energy, frequent 
population migration leads to high communication energy. The 
configuration parameters must be selected carefully to minimize the 
overall system energy dissipation, which is the sum of computing 
energy and communication energy.  
Let Tnom denote the process time for a single individual in each 
generation at nominal Vdd and let pnom denote the power 
consumption of the processor at nominal Vdd. The energy dissipation 
of GA on a processor without DVFS can be calculated as: 

                        bitnomnom ENcGTpTE ⋅⋅+⋅⋅= / ,                       (4) 
where G is the number of generations that GA has iterated, T is the 
runtime of the GA that is measured as the product of pop and G, c is 
the length of an epoch, N is the size of data that is broadcasted 
during each population migration, and Ebit is the energy to transmit 
one bit data. The first term in equation (4) is the computing energy 
and the second term is the communication energy. Furthermore, 

nomnom pT ⋅  represents the computing energy to processor one 

individual in each generation and bitEN ⋅ represents the 
communication energy to broadcast the best individual during one 
migration. Tnom, pnom, and Ebit are hardware related constant 
parameters. N is determined by the size of migrations which is also 
a constant value. Because we are not interested in calculating the 
absolute energy dissipation, we simplify equation (4) and consider a 
normalized energy dissipation which is calculated as the following, 

                         mig
nomnom

norm E
c
GT

pT
EE +=
⋅

= ,                      (5) 

where Emig is the ratio of communication energy versus computing 

energy and it is calculated as 
nomnom

bit
mig pT

ENE
⋅
⋅

= . As we can see the 

value of Emig is determined by the system hardware configuration. 
For example, the power consumption of a Lucent ORiNOCO USB 
Wireless Adapter is 360mA in TX mode and 245mA in RX mode. 
The typical active power of an Intel XScale processor is 300mA. 
Assume that the data is transmitted at 1Mbit/s. If N equals to 1k 
bytes and Tnom equals to 5μs, which is the time to run 10k 
instructions at 200MHz clock, then Emig is approximately 160.  
Enorm is an increasing function of pop and a decreasing function of 
np because changing these two parameters only affects the 
computing energy. The only configuration parameter that affects 
both the computing and communication energy is c.  Provided with 
the value of pop, np, Emig, it is not difficult to find the optimal c that 

minimizes Enorm by solving the differential equation 0=
∂

∂
c

Enorm .  

Because GA is running on multiple sensor nodes, the total energy 
dissipation can be calculated as normtotal EnpE ⋅= where np is the 
parallelism of the GA. 
If the DVFS is available on the processor, then the computing 
energy can be scaled quadratically as the runtime decreases. The 
energy dissipation of GA on each processor can be calculated as the 
following, 

                   bitnomnom ENcGsTpTEDVFS ⋅⋅+⋅⋅⋅= /2               (6) 

Here s is the scaling factor and it is calculated as
req

nom

T
TTs ⋅

= , where 

Treq is the deadline before which the GA must return a solution with 
the required fitness. Again, we simplify equation (6) and consider 
the normalized energy dissipation as the following, 

(a) G vs. effective population G (b) Comparing predicted and actual G 
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                 migreqnomnorm EcGTTTEDVFS '/)/( 3 ⋅+⋅= ,               (7) 

migE '  is calculated as 
reqnom

bit
mig Tp

ENE
⋅

⋅
='  which stands for the ratio 

of the communication energy for one migration versus the 
computing energy of the program if if takes exactly Treq time when 
running at the nominal Vdd. For the previous mentioned hardware 
system, which consists of Lucent ORiNOCO USB Wireless Adapter 
and Intel XScale processor, if the Treq is 1ms then E’mig is 
approximately 0.8. 
Again, the total energy dissipation can be calculated as 

npEDVFSEDVFS normtotal ⋅=  and the optimal c that minimizes the 
energy dissipation can be found by solving the differential 

equation 0=
∂

∂
c

EDVFSnorm . 

Plug in the runtime estimation of G and T into equation (4)~(7), the 
energy dissipation of GA can be expressed as a function of the 
configuration parameters. Figure 4 (a) shows the relation between 
Enorm and c in a system without DVFS. The np and pop are set to 5 
and 100 respectively. The Emig varies from 90 to 180. As we can see 
from the figure, the energy is an increasing function of c for small 
Emig and a decreasing function of c for large Emig. Furthermore, 
when the Emig falls into certain range, the energy is first a decreasing 
then an increasing function of c. In this case, we need to solve the 
previous mentioned differential equation to find the most energy 
efficient migration rate. When the parameter c gets larger, the Enorm 
under different Emig approach to the same value. This is because the 
migration rate is so low that a small difference in the 
communication energy does not have a significant affect on the total 
energy. 
  
 
 
 
 
 
 
 
 

Figure 4 Energy vs. configuration parameters without DVFS 
 
 
 
 
 
 
 
 
 
 

Figure 5 Energy vs. configuration parameters with DVFS 
Figure 4 (b) shows the relation between Etotal and np in a system 
without DVFS. The parameters c and pop are set to 5 and 100 
respectively. Emig varies from 90 to 180. It is interesting to note that 

the total energy always increases no matter how we change the Emig. 
This indicates that without DVFS the energy efficiency will 
decrease as the parallelism increases.  
Figure 5 (a) shows the relation between EDVFSnorm and c in a 
system with DVFS. The np is set to 5, the pop is set to 100 and the 
E’mig varies from 1.0 to 0.4. In this figure, we see the similar trend 
as what has been shown for the system without DVFS. Figure 5 (b) 
shows the relation between the EDVFStotal and np with E’mig varies 
from 0.4 to 0.1. As we can see that for systems with E’mig≥0.3, 
increasing the parallelism always increases the total energy 
dissipation. However, for systems with E’mig < 0.3, increasing the 
parallelism will first increase then decrease the total energy. This is 
because increasing the parallelism reduces the overall computing 
energy quadratically and increases the overall communication 
energy linearly. Eventually the quadratic decreasing in computing 
energy will become dominant. 

6. EXPERIMENTAL RESULTS 
In order to evaluate the performance of the GA based resource 
management scheme, a C++ based software program is constructed 
to emulate the environment monitoring sensor network.  The cluster 
consists of 10 low cost and low quality sensor nodes and 100 tasks. 
The battery of each sensor has the capacity of 5000 Ampere⋅hour. 
The detection probability and the power consumption of each task 
are randomly generated. Different distributions with different 
variances are tested in the experiment. Furthermore, to emulate the 
behavior of the real sensor network which is deployed in a dynamic 
environment, the detection probability of the sensors is constantly 
changing. Every 1000 hours, for a set of x sensor nodes, their 
detection probability probi, 1 ≤ i ≤ 100 will be regenerated and 
reapplied to model the change of their environment. The x is set to 
be 1, 2, and 5.  
The environment setup is named by a quintuplet (distribution, prob 
variance, power variance, biased/unbiased, x). The first field 
specifies the type of distribution that is used to generate the 
detection probability and power consumption of each task. It can 
either be uniform distribution or normal distribution. The second 
and third filed specifies the variance of the detection probability and 
the power consumption respectively. The fourth field is either 
biased or unbiased. When an environment setup is biased, half of the 
sensor nodes have lower power consumption than the others. This 
field is designed to model a heterogeneous network. The final field 
specifies the number of sensors whose detection probability changes 
due to changes in the environment. Table 1 column 1 gives the list 
of environment setups that were tested in our experiments. Note that 
the variance of power consumption is different for the biased and 
unbiased environment. 
Our distributed GA algorithm which is presented in section 4 is 
denoted as GA-lifetime, since its objective is to maximize the 
lifetime of the sensor network. The program is distributed on 5 
processors (np = 5). The subpopulation size is set to 100 (pop = 100) 
and the number of generations in each epoch is 5 (c = 5).  
We designed two algorithms to compare with the GA-lifetime.  The 
first one is also a distributed GA whose objective is to minimize the 
total power consumption of the cluster. Therefore it is denoted as 
GA-power. Instead of using equation (1), the GA-power uses a 
fitness function as the following. 
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The second one is a heuristic algorithm which selects and allocates 
task based on the power versus detection probability ratio. For each 
task, it first selects the sensor node that has the highest power vs. 
detection probability ratio. Then it arranges the available tasks 
based on the descending order of this ratio. From the beginning of 
the list the algorithm selects the tasks one by one and assigns them 
to the sensor node, which is the most power efficient, until the 
overall detection probability of the cluster exceeds the user defined 
threshold Probth. In our experiment, the Probth is set to 99.9%. The 
same threshold is applied to two other programs as well. We applied 
the above mentioned three resource management algorithms in the 
sensor network emulator. The lifetime of the network is recorded. 
The results are provided in Table 1. The first column specifies the 
environment setup and the last three columns specify the network 
lifetime (in hours) with different resource management algorithms. 

Table 1 Network lifetime under different algorithms 
Figure 6 shows the percent lifetime improvement of GA-lifetime 
relative to the heuristic algorithm. We can see that the GA-lifetime 
generally works better than the heuristic algorithm. The average 
lifetime improvement is 14.4%. The only case for which the 
heuristic algorithm works better than the GA-lifetime is when the 
detection probability and power consumption of the tasks are 
distributed uniformly and the network is unbiased. This is because, 
in this environment setup, the detection probability and power 
consumption have significant variety. Therefore, there exist some 
task-processor pairs that are much more power efficient than others. 
A similar reason can be used to explain why the GA-lifetime works 
relatively better in the environment setup with normal distribution.  
Figure 7 shows the comparison between the GA-lifetime and the 
GA-power. The average lifetime improvement of GA-lifetime over 
GA-power is 6.5%. This indicates that merely reducing the power 
consumption is not a good way to improve the network lifetime. If a 
sensor node has more remaining battery, it should be allocated with 
more tasks even though it is not the most power efficient node that 
can be used to process these tasks. In another word, to extend the 
network lifetime, it is more important to evenly distribute the tasks. 

We also observe that the GA-power outperforms the GA-lifetime 
when the environment setup is uniform and unbiased. This shows us 
that these two algorithms are complementary to each other, and they 
can be applied in different situations. 

 
 
 
 
 
 
 
 

Figure 6 GA-lifetime vs. heuristic algorithm 
 

 
 
 
 
 
 
 
 

Figure 7 GA-lifetime vs. GA-power 

7. CONCLUSIONS 
In this paper we present a distributed GA algorithm that solves the 
resource management problem in a sensor network. A regression 
estimation model is presented that estimates the runtime of this 
algorithm. It is used to find the energy efficient configurations of the 
GA. The experimental results show that the proposed algorithm 
improves network lifetime by 14.4% in average.    
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ENVIRONMENT SETUP GA-
LIFETIME 

GA-
POWER 

HEURIS
TIC 

uniform, 8.3, 7.1, biased, 1 44752.22 41930.85 40066.12 
uniform, 8.3, 7.1, biased, 2 42158.9 35224.52 35028.29 
uniform, 8.3, 7.1, biased, 5 42186.89 33207.64 31848.58 
 
uniform, 8.3, 8.3, unbiased, 1 23874.2 26462.19 26776.26 
uniform, 8.3, 8.3, unbiased, 2 26828.16 31983.17 32294.36 
uniform, 8.3, 8.3, unbiased, 5 27656.94 29365.77 29794.95 
 
normal, 2, 5.5, biased, 1 480000 430909.1 450000 
normal, 2, 5.5, biased, 2 511200.4 436666.7 450000 
normal, 2, 5.5, biased, 5 507500 404285.7 416923.1 
 
normal, 2, 2, unbiased, 1 14531.39 14218.28 10358.73 
normal, 2, 2, unbiased, 2 13892.64 10881.77 9143.943 
normal, 2, 2, unbiased, 5 15708.92 16131.24 14628.62 
 
normal, 1, 1, unbiased, 1 2788.086 2224.231 2255.613 
normal, 1, 1, unbiased, 2 2759.893 2597.652 2248.155 
normal, 1, 1, unbiased, 5 2857.993 2647.201 2647.037 
 
normal, 1.5, 4.2, biased, 1 43315.71 40533.04 34495.43 
normal, 1.5, 4.2,  biased, 2 49774.59 52759.19 47284.2 
normal, 1.5, 4.2,  biased, 5 50744.86 50134.21 48893.41 
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This paper reports comparative results and lessons learned by 
developing Genetic Algorithm (GA) based optimization tools for a hard 
floating point (FP) and a hard integer (INT) problem, through 3 spirals on 
different platforms

– Software on one PC (Labview, MatLab, C) ~100X Speed-Up (FP & INT)
– Distributed software on PC cluster (C/MPI) ~30X linear Speed-Up (FP & 

INT)
– Hardware on FPGA (VHDL) ~500X fitness function Speed-Up (INT)

We encountered difficulties related to
– Speed-up options for double precision floating point math
– Tool maturity issues for "automated" transition from C to VHDL
– Automated synthesis of pipelined 2D systolic array for a matrix calculation
– Support for MPI or FPGA-FPGA communication on a cluster with FPGA's

Best platform depends on the type of problem.  Experience highlights 
the potential for ~1000x speed-up of integer problem using all FPGA 
platforms 

Abstract
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Outline

• Motivations
• Background: Genetic Algorithm and FPGA Core
• Test Case Problem 1: 

– Parameterization of Non-Linear Coupled ODE’s
– Speed-ups: MatLab to C, PC to cluster

• Test Case Problem 2:
– DNA Code Word Library Synthesis
– Speed-ups: PC to cluster, PC to FPGA 

• Conclusions and Future Work
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• New/improved architectures/paradigms/engines for hard optimization 
problems that calculate in minutes vs. months (speed-up ~40,000x)

• Explore Evolutionary Computing methods for solving optimization 
problems, seeking extreme speed-ups over traditional approaches

• Good potential for original work in mission area application domains: 
– dynamic reconfiguration of network hosted with constrained resources
– optimization of distributed database architectures and operations
– assignment of routing & loading of vehicles
– composing and evaluating adversary courses of action (Bayesian Belief 

Networks)
– generation of adaptable filters for hyper-spectral imaging and compression
– biological process modeling to support DARPA related to bio-hazard sensors 

and AFOSR/AFRL efforts and bio-molecular computing paradigms
o Test Case 1: Parameterization of sets of non-linear, coupled ODE’s
o Test Case 2: DNA Code Word Library Synthesis for bio-molecular 

computing and nano-self assembly applications
• No turn-key commercial GA FPGA cores available

Motivations
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Background:  Genetic Algorithm

• Inspired by processes of 
natural selection.

• Population initialized as 
collection of random 
individuals.

• Individuals evaluated 
according to fitness function.

• Genetic operators applied to 
population.
– Selection:  Offspring population 

biased toward more fit 
individuals.

– Recombination:  Features from 
multiple parents combined in 
offspring.

– Mutation:  Random variation 
added to offspring.

Selection
Recombination
Mutation

1
2
3

μ

• Applied successfully as 
optimum-seeking 
techniques.
– Useful for objective functions 

that are discontinuous, 
nonconvex, ...

population at
generation g

population at
generation g+1
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• individuals are “records” with Chromosome , Fitness, Evaluated flag,  Elite flag
• preliminary VHDL by L. Merkle/Rose Hulman, at AFRL, summer, 2004 (grey)
• completed VHDL by Kevin May/Clarkson Univ., at AFRL, summer 2005 (yellow)

Genetic Algorithm
FPGA Core
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Test Case Problem 1: 
Parameterization of Non-Linear ODE’s

• Start with a model, and either measured experimental data or synthetic
known data calculated using a set of parameter values for an experiment

• Determine the constants in the model so that the model predicts  
experimental or known data

• For a complex non-linear model containing many floating point parameters, 
this is an NP-hard problem that demands efficient, robust search methods.
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• Classical
– Hill-climbing (doesn’t work if error landscape has many local minima) 
– Reduce order, do sequential partial fitting with linear tools (slow, complex)

– E.g. MatLab optimization toolbox
o Fminbnd - Golden Section search and parabolic interpolation
o Fminsearch - Nelder-Mead simplex search method 

• Evolutionary, e.g. Genetic Algorithm (GA)
– Assigns parameters of candidate solutions to genes in individuals in a large 

population and breeds better individuals over many  generations using 
selection, recombination or mating and mutation operators guided by a fitness 
function that grades the quality of the solutions the individuals represent. 

– Fitness function can be the least square error or maximum single point error 
between known data and the data calculated for an individual.

– Floating point parameter values searched over ranges are scaled to integer 
gene values for the GA to manipulate.

• Both methods require many trial solutions of the model.  This motivates 
us to pursue speed-ups using a cluster or hardware accelerator.

Background: Methods for Parameterizing
Non-Linear ODE Models

Rundell, A.; DeCarlo, R.; Doerschuk, P.; HogenEsch, H.; “Parameter Identification for an 
Autonomous 11th Order Nonlinear Model of a Physiological Process”, Proceedings of the 
1998 American Control Conference, 6: 3585-3589, 1998.
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Analytical Two Compartment Model of 
Antigen/Antibody Binding at Surfaces

Eqn. for C1

x0*xb term in Eqn. for Rf in Eqn. for xb makes the system non-linear

Eqn. for xb

Eqn. for Rf

Eqn. for x0

Zheng, Y.; Rundell, A., “Biosensor Immuno-surface Engineering Inspired by B-cell Membrane Bound 
Antibodies: Modeling and Analysis of Multivalent Antigen Capture by Immobilized Antibodies,  IEEE 
Transactions on NanoBioscience, 2(1):14-25, 2003.
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GA for ODE Parameterization Problem

genes

sort

mate
mutate

Floating point parameters in Model 
are scaled to integers for GA.
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Speed Evaluation on PC Platform 
- GA Non-Linear ODE Parameterizer

Speed Test_1
(init 200, kprs 20%,  muts 10%, gens 100, 30 runs, targ err 2.5, tmax .1, 

dt .001, # eqns 7+xt, fitting 4 params )
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LabView (1 Run, DB PC DO) C (1 run)
C (30 runs) M (1 run DB PC)
M_v2 (1 run DB PC) M_v2 (20 runs DB PC)
C_v2 (30 runs)

Results:  C ~100-1000x faster than Labview or MatLab(v6).
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Speed-Up vs Number of Processors
 for  Farming and Island Model Parallellized Genetic Algorithms
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Speed-up Evaluation on Cluster Platform
- Distributed GA Non-Linear ODE Parameterizer

• Island Model distributed GA migrates 5 best individuals around a ring 
topology every epoch of 40 generations

• Coded in C/MPI
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GA Non-Linear ODE Parameterizer
- Future Work?

• Evaluate floating point speed-up options
• Equations involve 3-8 terms, some with 8 double 

precision multiplies and 1 divide
• Possible things to try:

– Eric Cigan and Robert Anderson "An Automated System for 
Floating- to Fixed-Point Conversion of High Performance of 
MATLAB Algorithms in FPGAs and ASICs“, MAPLD 2004, 
Paper 228

– Xiaojun Wang, Miriam Leeser, Haiqian Yu, "A Parameterized 
Floating-Point Library Applied to Multispectral Image 
Clustering“, MAPLD 2004, Paper 166

• Tune MPI and check on larger cluster
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Test Case 2: DNA Code Word Library 
Synthesis Problem

• Create library of pairs of complimentary DNA sequences which are free 
from undesired cross hybridization across pairs

– e.g. A. Brenneman and A E. Condon, “Strand Design for Bio-Molecular 
Computers”, (Survey Paper), Theoretical Computer Science, Vol. 287:1, 
2001, pages 39-58.

– Applications in micro-array chips, schemes for computing with bio-molecules, 
self-assembly of nano-structures

• Great candidate problem for GA since exhaustive checking is impractical
– Problem complexity increases as more words are desired and library 

constraints increase.
– Able to keep large running population of library candidates

• Levenshtein Matrix is used to evaluate Candidates vs. Library and assign 
a fitness value to each candidate

– Insertion – Deletion metric
– Accounts for ~98% of total time - motivation for FPGA accelerator
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Each pair in library must bind 
perfectly (e.g. 10/10 bases match)

4

0

1

0

0 Constraint Checking
• To admit a new pair into the library, both strands in the 

new pair must bind poorly with  all strands in all pairs 
already in library.

• Must check the quality of binding for all forward and 
reverse slidings of new stands with respect to all old 
strands.  Quality indicated by # of binding base pairs.

Fitness Function Metrics
• Max_Match: The maximum number of complimentary 

bases for any sliding position, i.e. the string edit 
distance measured by the Levenstein Matrix.

• Number_of_Rejecters: The number of strands already 
in the library of strand pairs reject a new strand, using 
a threshold “maximum match” criteria.
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DNA Library Synthesis Algorithm Performance  Comparison
word length 16,  match 10, Lv RC codes, 214 word libraries

Mkv 15 run avg, GA 30 run avg. (1 and 16 proc), stoch 1 run 1 proc

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1 10 100 1000

# words found

tim
e 

(s
ec

)

GA    1p 30r GA  16p 30r
Mkv   1p 15r Mkv 16p 15r
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• GA (red) finds words faster than Markov for both 1 and 16 processor cases.
• Markov (green) found more  words for 1 processor case.
• Stochastic (blue) is very slow due to initially full library that is improved by mutation.

Speed-up Evaluation on Cluster Platform
- Markov, GA, and stochastic algorithms for 
DNA Code Word Library Generation Problem
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smart_flip_20.00 
pop_to_word0.02 
are_you_in_there0.06 
compliment_x_str0.08 
s2i0.23 
clean_up_pop0.38 
do_checks0.44 
i2s0.65 
do_matrix_v698.13
Subroutine Name    % Time

Time Profiling to ID FPGA Candidate
- Distributed GA DNA Code Word Library Code 

• Time profiling done with GNU gprof
• Levenstein Matrix Calculation Identified as Candidate for Hardware Acceleration



Burns P1026/MAPLD 200518

GA Core Data Path
- Fitness Evaluator

GA Testbench

MemBlock.vhd

NumLib

NumPop

MaxMatch

LibOut
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NumLib
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MaxMatch
LibIn
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DO
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LibAdd

PopOut

PopAdd

FitIn

FitAdd

North_word

West_word

answerFitOut

RamB16_S36’s

Feeder Arrays
A
B

North

West

Can be used later by GA for sort, mate, etc.

code word library (512 x 32b)

population (512 x 32b)

fitnesses (512 x 16b)

Levenstein Matrix Checker
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Levenshtein Matrix Calculation
Hardware Accelerator Versions

• Ripple Through 2D Pipelined Array
– Present 2 words along the top and left edges of a 2D matrix of 16 x 16 

Processing Elements (PE’s), wait for results to ripple through matrix, read 
result from lower right cell, repeat for 2 new words

– 185ns per word pair

• 2D Pipelined Systolic Array
– Concurrent comparisons for multiple word pairs in different parts of array
– Present 2 new words along top and left edges of 2D matrix of PE’s
– At Tn,   odd half of the checkerboard loads inputs, even half calculates. 
– At Tn+1 odd half of the checkerboard calculates, even half loads inputs
– Input words are shifted into array down and right from edges
– Entry of 2 bit sub-words into edges is stagger delayed by registers
– 19.6ns per word pair, 314ns latency (16x2x9.8ns) 
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Levenstein Matrix Calculation
Ripple Through 2D Pipeline Array

32
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Do_Matrix.vhd
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North_Word

answer

UL
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U

4_Bit_Compare

• Each cell or PE is a 4-bit 
MAX/MAX/MAX/ADD/CMP circuit

Resources and Performance: 
Number of Slices: 4273  out of  33792    12%  
Number of Slice Flip Flops:         1  out of  67584      0%  
Number of 4 input LUTs:       7593  out of  67584    11%  
Number of bonded IOBs:          69   out of   1104       6%
Estimated Delay:   185ns   (5.4 MHz)

• Much slower than 10ns target.

16x16 PE’s

• {U, L, UL} 
signals wired 
from adjacent 
cells’ ‘ans’
output registers.

• {A, B} shift 
registers  pass 
North and West 
Word 2bit base 
tokens down 
cols and across 
rows.

• {U, L, UL} 
connect to 0’s 
depending on 
location on 
edges
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Systolic Array Feeder Registers

• Feeder registers fetch pairs of North and West 
words from Pop and Lib memories for checking

• Calculations flow down and right along diagonals 
in alternating checkerboard load/calc cycles

• 2 bit base tokens are wired to edge PE {A,B} 
inputs in a staggered wiring pattern running up 
into the arrays to delay until needed by PE’s

• North and West words shifted upward into word 
register arrays every 2 clocks, even on 1st clock, 
odd  on next clock, in synch with alternating  
checkerboard input/calc in cells

Resources and Performance:
Slices:                    4150 out of  33792   12%
Slice Flip Flops:     2456 out of  67584      3%
4 input LUTs:         7300 out of  67584    10%
bonded IOBs:            69 out of    1104      6%
GCLKs:                       1 out of        16       6%
Minimum period:  9.8ns (102MHz)
Latency is 32 clocks, answer every 2 clocks

4

answer

32
A

32

B

North_Word

W
es

t_
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d

answer

Register
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Memory Interface

NumLib

NumPop

MaxMatch

LibIn

PopIn

LibOut

LibAdd

PopOut

PopAdd

FitIn FitAdd

FitOut

MemBlock.vhd

DI

DO

ADDR

RamB16_S36*

DIP

WE
EN
SSR

DOP

• The MemBlock entity is responsible for receiving the 
population and library from the GA and storing them, 
as well as the population’s calculated fitness, in 
onboard block memories (RamB16_S36)

• The Memblock entity instantiates three of the block 
rams to hold the population, library, and fitnesses

• Memblock also instantiates the Feeder Arrays entity, 
which sequences all of the words to be compared 
from the population and library and returns the fitness 
measures.

• Each RamB16_36 can hold 18Kb (512  32bit words)

• EN (enable) and WE (write_enable) activate 
reading and writing and are controlled by 
output signals from the MemBlock entity.

• DIP and DOP parity bits and SSR  
synchronous set-reset pin not used here.

Resources and Performance:
Slices:                   4283 of  33792       12%
Slice Flip Flops:    2544 of  67584         3%
4 input LUTs:        7532 of  67584       11%
Bonded IOBs:           98 of    1104         8%
BRAMs:                     3 of      144          2%
Minimum clock period: 12.4ns  (80.8 MHz)
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• Individuals are “records” with Chromosome , Fitness, Evaluated flag,  Elite flag
• Preliminary VHDL by L. Merkle/Rose Hulman, at AFRL, summer, 2004 (grey)
• Completed VHDL by Kevin May/Clarkson Univ., at AFRL, summer 2005 (yellow)

Genetic Algorithm
FPGA Core
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GA Core Datapath
– Top-level Module

• EA parameters and objective function 
parameters are written into I/O ports

• When start signal is asserted, EA executes
• StartAck is asserted when EA completes
• Statistics are read from I/O ports
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GA Core Datapath
– Population Module

• Array of individuals
• Population size register
• Permutation generator
• Current permutation element 

register
• Current index register
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GA Core Datapath
– PRNG Module

• When resetAndLoad is asserted, 
pseudorandom number generator 
is initialized with seed input

• Each clock cycle, a new 
pseudorandom number appears 
on the prn output
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GA and Fitness Function (FF) on PC 
0.2us GA +9.8us FF
(complete)

Island Model GA and FF 
on Cluster
(complete)

GA on PC FF on FPGA
(VHDL, synthesis complete)

GA and FF on  one FPGA
(current work)

GA and FF on HHPC
(future work)

Speed-up     Resources

Low500-1,000x
10us/(10 to 20ns)

High15,000-
30,000x
(30 x 1,000x)

Low50x
10us/(0.2us+9.8ns)*

High30X
(30 nodes)

Low1
(0.2us+9.8us)

Speed-up and Resources
for Different Platforms
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Design Tool Paths

PROM, ACE, or JTAG XC2V6000-4FF1517C

C

VHDL

CoDeveloper

VHDL
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Conclusions

• Speed-ups on various platforms demonstrated
– Choice of programming language on PC: 100-1000X
– C/MPI on Cluster: (linear)
– VHDL for FPGA: 500x faster than C

• Distributed Island Model GA successfully applied to two test 
case problems

– Non-Linear ODE Parameterizer
– DNA Code Word Library Generation

• Systolic array fitness function evaluator synthesized
– Levenstein Matrix Systolic Array 
– Clocks at 80MHz, 500x speed-up over software

• Modular GA Core datapath defined
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Future work

• Complete full 1 FPGA prototype
• Transition to PCMCIA, G5 platforms
• Cluster of FPGAs - communication!
• Add other EC algorithms to FPGA Core
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Genetic Algorithm Hardware References

S. Scott, A. Samal, and S. Seth, “HGA: A Hardware Based Genetic Algorithm”, Proceedings of the 1995 ACM Third International 
Symposium on Field-programmable Gate Arrays, Monterey, CA, pp. 53-59, Feb. 1995.

• Problem: suite of 7 simple equation test case problems
• HW: Borg board using 2 XC4003’s, 8K RAM, 3 XC4005’s, 8MHz clock
• SW: Silicon Graphics 4D/440 with four MIPS R3000 CPUs at 33 MHz. 
• Speed-up: 13-19x in terms of clock cycles, 100x thought to be possible.

P. Graham and B. Nelson, “Genetic algorithms in Software and in Hardware - a Performance Analysis of Workstation and 
Custom Computing Machine Implementations”, 1996 Proceedings of the IEEE Symposium on FPGAs for Custom Computing 
Machines, Napa Valley, CA, USA, April 1996, pp. 216 – 225.

• Problem: 25 city Traveling Salesman Problem 
• SW: HP PA-RISC 125 MHz workstation
• HW: 4 SPLASH 2 FPGA system with 4 memories running at 11 MHz
• Speed-up: 4X in terms of execution time, 50X in terms of clock cycles
• ARPA contract to National Semiconductor in 1994

C. Aporntewan, and P. Chongstitvatana, “A hardware implementation of the Compact Genetic Algorithm”, Proceedings of the 
2001 Congress on Evolutionary Computation, 2001, Volume 1, May 2001, pp. 624 - 629 vol. 1.

• Problem: 32 bit one max problem
• SW: 200MHz Ultra Sparc II, SunOS.
• HW: Xilinx Virtex V1000FG680, 42 ns Tclk, (23.6Mhz)
• Speed-up: 1000X (0.15 sec vs 150 sec)

B.E. Wells, C. Patrick, L. Trevino, J. Weir, and J. Steincamp, “ Applying a Genetic Algorithm to Reconfigurable Hardware – a 
Case Study”, 2004 MAPLD, paper 169.

• Problem: 65 city Traveling Salesman Problem
• SW: 3.2 Ghz Intel Xeon processor with a large 3-level cache, Linux (Kernel 2.4.21 SMP), hosting a single user. GCC 

C compiler (version 3.2.2) with maximum supported level of optimization.
• HW: one Xilinx Virtex II 6000 in HC-36 Hypercomputer™ system from Star  Bridge Systems, Inc.  66MHz clock.
• Speed-up: 11.4X in terms of execution time (using 8 function evaluators) 
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• Problem: suite of 7 
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G.M. Megson and I.M. Bland, “The Systolic Array Genetic Algorithm, An Example of a Systolic Arrays as a Reconfigurable Design 
Methodology”, Proceedings of the 1998 IEEE Symposium on FPGA’s for Custom Computing Machines, Apr. 1998, pp. 260-261.
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• HW: XC4036XL-09, 690 CLB’s
• Speedup: n/a 34.3ns per gene (28.3 MHz)
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ABSTRACT 
Two high speed implementations of the genetic algorithm (GA) 
are described and their performances are evaluated on a highly 
constrained DNA Code Word Library Generation test case 
problem. The first is a distributed, or  multi-deme, Island Model 
GA coded in C that uses the Message Passing Interface (MPI) 
protocol and runs on multiple processors in a cluster.  The second 
is a single population GA coded in VHDL that implements both 
the GA and the fitness function evaluator in hardware on a single 
Field Programmable Logic Array (FPGA) chip.  While the  
distributed GA is generally applicable to many problem types, the 
hardware GA is especially applicable to problems characterized 
by a fitness function requiring the calculation of a matrix of 
relatively simple integer-only or Boolean logic functions that can 
be efficiently implemented in a hardware systolic array.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving - Control 
Methods and Search  - heuristic methods; B.2.4 [Hardware]: 
Arithmetic and logic structures – High speed Arithmetic – 
algorithms;B.7.1. [Hardware]: Integrated Circuits - Types and 
Design Styles – Gate Arrays 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Genetic Algorithm, distributed, parallel, hardware, systolic array, 
speedup, DNA Codes. 

1. INTRODUCTION 
The Genetic Algorithm (GA) is  one of many algorithms available 
attacking hard optimization problems. The simple operators used 
for selection, mating, and mutation suggest that the GA may 
ultimately hold a speed advantage over algorithms with more 
complex arithmetic content, especially when implemented in 
hardware to achieve high speed solutions.  This may be important 
in applications where real-time decisions are critical, or where 
best solution times are now hours or months.  Fitness function 
evaluation may consume a large portion of the total solution time 
for many problems. In such cases it may be useful to parallelize 
the application, or to implement it in hardware.   At this point it 
becomes an open question whether the GA or any other algorithm 
can ultimately yield the fastest possible solutions.  The relative 
advantage of one optimization algorithm over another depends in  
part on the set of arithmetic operations required by the algorithm, 
and on how efficiently the operations can be executed by a typical 
CPU or when implemented in special purpose hardware. For 
example, an algorithm requiring floating point multiplications or 
gradient calculations involving division may be slower than one 
with only integer arithmetic and Boolean operations.  Similarly, 
the nature of the application problem fitness function also 
influences whether a problem is a good candidate for hardware 
acceleration. In this paper we describe a DNA Code Word Library 
generation problem that has an integer-only, array type fitness 
function. Then we describe two GA solvers for this problem that 
pursue extreme speed-ups. The first is a distributed, Island Model  
GA that runs on a cluster and achieves ~30x speedup.  The second 
is a hardware implementation of both the GA and fitness function 
evaluator that achieves ~700X speedup. This work represents 
preliminary steps toward a third version that targets a hybrid 
cluster architecture incorporating FPGAs at each processing node.  
This architecture should be able to achieve speedups of over 
10,000, and reduce computation times from months to minutes.   

The remainder of this paper is organized as follows.  Section 2 
describes the test case DNA Code Word Library Generation 
Problem,  its mapping to a GA solution, and results using a 
baseline software GA run on one processor.  Section 3 discusses 
the parallel GA implementation used in the present work.  Section 
4 discusses the Hardware GA used in the present work.  Section 5 
discusses the systolic array fitness function evaluator used in the 
Hardware GA.  Section 6 presents results on the test case problem 
for the two GA versions. Finally, we offer suggestions for future 
work in Section 7, conclusions in Section 8, and in Section 9 
acknowledge others who made contributions to this work. 
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2. DNA CODE WORD LIBRARY 
GENERATION PROBLEM 
DNA code word libraries contain multiple pairs of Watson-Crick 
complementary DNA sequences that are free from undesired 
cross-hybridization between any two non-complementary pairs.  
They play vital roles in the development of biological and hybrid 
information systems that operate at the nanoscale [2], e.g. in 
biological microarrays, nano-circuits, memory devices, robust 
DNA tags, in breadth-first parallel filtering schemes for solving 
optimization problems with bio-molecules, and in nano-
fabrication schemes that would use self-assembled DNA 
templates to organize the layout of nano-devices.  Various 
methods have been proposed for building such codes, including 
the GA [6],  Markov generated [2], and Stochastic [13] methods. 
Recent work [9] has shown that a hybrid GA blended with 
Conways lexicode algorithm [4] achieves better performance than 
either alone in terms of generating useful codes quickly.  
Exhaustive checking is impractical for finding large libraries of 
code words of lengths greater than about 12 base pairs.   

The core of difficulty for this problem is searching the very large 
number of candidate strands that might be added to the library, 
and the computational cost of calculating strand binding free 
energies from thermodynamics in all of the n2 possible secondary 
structures which may form from any two DNA strands of equal 
length. The Levenshtein distance, or edit distance metric is a 
reasonable but computationally more efficient tool for screening 
candidate strings during code design. The edit distance defines the 
minimum number of insertions, deletions, or substitutions needed 
to transform one string into another.  Edit distance can be 
considered a generalization of the Hamming distance (HD), and a 
minimum edit distance constraint is much more difficult to meet 
than HD.  HD only considers substitution edits with the strands 
aligned fully side by side, and it can be calculated in O(2n) time.  
The Levenshtein distance covers all ‘slidings’ of two strands past 
each other, and it utilizes the dynamic procedure shown in Figure 
1, which completes in O(n2) time (in a sequential program).  

 

 
cell entry Mi,j = max(Mi-1,j,   Mi,j-1 , k + Mi-1,j-1) 

where k = 1 if  s1i = s2j else k = 0, and  

s1 = sequence along top row,  s2 = sequence along left column 

Figure 1.  Calculation of the Levenshtein edit distance metric. 

 

The DNA code word problem can be mapping to a GA by 
representing a strand as a string of bits using a substitution such as 
A=00, C=01, G=10, T=11.  Thus a strand with 16 bases can be 
represented by a 32 bit integer. Well known GA operators such as 
single point crossover and bit flip mutations are applicable, with  

modifications.  We allow single point crossover to cut only at base 
pair boundaries, and we use a mutation operator that selects the 
best of all possible single base mutations. The code design 
requirement specifies the desired length of the strands or words, 
e.g. n = 16 bases, and the desired  edit distance, e.g. d = 10. In 
order for a pair of complimentary code words to enter the library, 
the new word and its reverse compliment (RC) word must meet 
the edit distance requirement when tested against each other and   
against each word and each RC word already in the library.   

The GA fitness function consists of two numbers that are 
tabulated for each candidate word in the population.  The first is 
the maximum of the absolute differences between the desired edit 
distance and the actual edit distances measured between the 
candidate word and its RC and every word and every RC word 
already in the library, which we call the max_match.  The second 
is the number of words in already in the library that reject the new 
word, which we call the number_of_rejecters.  A new word and 
its RC word can enter the library when the number of rejecters = 
0.  We pack the two numbers into one 32 bit word, with the 
number_of_rejecters in the upper bits and max_match in the lower 
bits to obtain a fitness metric that goes to 0 as a word gets ‘better’.   

Figure 2 shows the results of a typical run (on one processor node, 
in compiled C) in terms of # Words Found vs. Time, for good 
parameter tunings of both the baseline software Stochastic (top  
left curve), Markov (middle), and GA (lower) algorithms. Here 
the GA uses a population size of 100, no mating, and 1% 
mutations.  The GA is slower at the beginning, about 10-100 
times faster in the middle, and about the same near the end of the 
run.  Since optimal (the largest possible) code word sets are not 
needed in practical applications, one could say that the GA is 
superior at finding practical code sets. A version of the stochastic 
method was coded and compared, but was not competitive with 
these times.  Stochastic is similar to GA with only mutation, 
except that it starts with a full library and seeks to improve the 
fitness of all words, which requires more checks from the start.  

 

 
Figure 2. Relative performance of GA, Stochastic,  and 
Markov methods. 

 

To get a sense of problem difficulty, we can calculate the number 
of edit distance calculations that must be made between a word 
and its RC and all pairs in the library during a generation.  
Assuming a population size of 100, a mating probability of 80%, a 



mutation probability 1%, and an existing library of 100 pairs, 
mating requires (80 children x 2 checks) x (100 words x  2 
checks)  or  32,000 checks.  Mutation requires another (0.01 x 
100) x (47 possible mutations x 2 checks) x (100 words x 2 
checks) = 18800 checks.  At 10 us per check this takes 0.5 
seconds, but the constraints are so severe that many words must 
be checked to find one that can be added to the library, leading to 
run times of hours to assemble large libraries.  Since the edit 
distance calculation consumes a large portion of the computation 
time involved in building such codes, regardless of the search 
algorithm used, this problem is a good candidate for speedup by 
parallel and hardware implementations, which are discussed next.  

3. THE PARALLEL GA 
Both the DNA Code Word Library generation problem and the 
GA are embarrassingly parallel.  Much previous work has been 
done on parallel and distributed GAs [5,7].    

We use an Island Model GA that passes the top 5 individuals to 
adjacent nodes in one direction in a ring configuration after 
epochs of 40 generations.  We choose the population size so that 
the minimum number on individuals at each processor node was 
about 100.  We typically use from 1 to 30 nodes in the cluster, 
with a total population size of 3000 individuals, split as evenly as 
possible among the processors.  In our version of the Island 
Model, communication occurs between a master node and all 
other nodes at startup, when one of the  termination criteria is met 
(maximum time, maximum # of generations, or desired # words 
found), and also in two other cases.  First, when any processor 
finds a word, it is shared immediately with all other processors in 
order to keep them all working on extending identical libraries.  
Second, the top 5 individuals are passed around the ring in one 
direction at epoch boundaries.  We did limited experiments with 
epoch lengths between 3 and 100 and found that 40 worked well.  
We observed that single point crossover mating was very 
disruptive to average population fitness, so we typically set 
crossover to a low value, or used only mutation.   We replace 
clones in the population with new random individuals at the end 
of each generation.  We used either rank or fitness based 
selection, with neither clearly better.  Our experiments typically 
did 30 runs using 1 processor, 30 runs using 2 processors, etc., 
and we averaged the results over all 30 runs for each # of 
processors.   

Figure 3 shows typical results in terms of the average # words 
found vs time (left), and a speed-up curve (right).  The different 
plots at the left correspond to different #’s of processors, and each 
point in each curve is the average over 15 runs.  The speedup 
curve shows the average time to find 200 words vs # processors 
used, normalized to the value for 15 processors. The 3 speedup 
curves show ideal linear speedup (red), uncensored speedup 
(blue), and censored speedup (green). Censored speedup was 
intended to exclude atypical runs.  The 2 rows of boxes (lower 
right) show the number of runs at each processor value that found 
all 200 words (all did), and the lower row of boxes show the 
number of runs that finished in a time within one standard 
deviation of the average time of all successful runs. In this 
experiment the # processors was scanned from 15 to 30, the code 
words were 16 bases long with a desired  max_match edit distance 
of 10, the GA used a population of 3000, there was no crossover, 
the mutation probability was 1% , and the 5 best individuals were 
passed at epochs of 40 generations.  These results show an 
approximately linear speedup with # processors.  

 
Figure 3.  Average # words found vs # processors and speedup 
curve for an experiment  scanning the # processors from 15 to 
30 (average of 15 runs at each # processor value).  

This code was instrumented with MPI extensions that allow 
logging the time of the beginning and end of events at each 
processor during execution.  This analysis is useful for optimizing 
the type and placement of MPI communication events.  Figure 4 
shows typical results after tuning the MPI communication calls.  
This tuning decreased the generation time from ~65 ms to ~8 ms.  

 
Figure 4. Timing of communication (blue and green) and 
calculation (red line) during a GA generation for nodes 0-9.  
Generation boundary is at the beginning of the green area. 

 

The communication overhead is about 25% for the cycle shown in 
Figure 4. There is skew and jitter in the total generation times 
among the processors due to startup effects, MPI response 
latencies, and due to the stochastic nature of the GA. This analysis 
is also useful for determining a population size large enough to 
guarantee that communication delays do not dominate the total 
generation time.  Finally, the code was instrumented with GNU 
Gprof [8] to observe the duration of various tasks in the 
generation cycle (black in Fig. 4).  This analysis showed that the 
subroutine that calculates the edit distance consumed 98.13% of 
the generation time.  Therefore, the fitness function evaluator 
could be sped up (e.g. by hardware acceleration) by a factor of 
about 98.13/(100-98.13) = 112 before the GA algorithm time 
would be equal the fitness function evaluation time. Significant 
speedup beyond that would require both hardware fitness function 
evaluator and a hardware GA, which we discuss next. 

 



4. THE HARDWARE GA 
There has been some interest in speeding up GAs by 
implementing them in hardware.  Reviews and examples of past 
work can be found in [12,11,1,14].  These studies are usually 
coupled with a particular type of GA and problem, and the results 
are often highly problem dependant. Overall speedups of 3-1000X 
have been reported. 

Our design is different than previous work in that we have 
targeted a single chip FPGA implementation with the population 
stored and manipulated in fast, on-chip SRAMs that avoid delays 
associated with using off chip memory.  Also, we use a systolic 
array on the same chip for the fitness function evaluator.   We 
used the relatively inexpensive, commercially available Annapolis 
Microsystems Wildcard (PCMCIA) FPGA board that contains a 
Xilinx Virtex-II X2CV3000 FPGA chip.  Basically, in this 
approach a PC executes a C ‘Host’ program that passes run 
parameters to an FPGA processing element ‘PE’ that implements 
the GA and DNA Code Word application.  The Host then receives 
reports from the PE when words are found, and when the 
hardware application terminates.  The PE function is described in 
VHDL, which we composed and simulated using the Mentor 
Graphics ModelSim tool.  We used the Xilinx ISE Webpack or 
Synplicity Synplify tools for synthesis. 

The FPGA design effort was focused mainly on implementing a 
fast function evaluator because the total execution time is 
dominated by fitness function evaluation. Details of the design 
will be described elsewhere, but here we give an outline of the 
main processes.  They are initialization, checking fitness, picking 
up good words from the population into the library, mutation, 
decloning, and reporting results to the host.  The FPGA chip 
contains static block RAMs (BRAMs) that can be configured as 
96 separate 512 word x  32 bit  RAMs.  We use one   BRAM to 
hold the population (up to 512 individuals), a second BRAM to 
hold the fitnesses, and third BRAM to hold the code word library.  
We use an overall architecture that was simply a pipeline of 
processes connected between sets of these 3 BRAM types.   The 
BRAMs are dual ported, which facilitates connection between 
separate input and output processes.  We determined that with a 
population size of 100 and with 100 words in the library, the time 
overhead for passing the entire population, fitness, and library 
BRAMs around the pipeline was less than 2% of generation time. 

A 32 bit pseudo-random number generator (PRNG) was 
implemented in this design by an array of 32 32 bit linear 
feedback shift registers. The output word is formed by 
concatenating one bit from each of the 32 registers.  The PRNG 
can be seeded by the Host to repeat a run with the same sequence 
of random numbers, or with a different set.  A new random 
number is available at each PE clock edge, and all possible 32 bit 
numbers are represented in the sequence before it repeats.   The 
population can be initialized with random individuals,  and the 
library can be initialized as empty, or it can be seeded by the Host 
with an existing partial library.    

The main GA is a tight loop of three processes, the first picking 
up good new words from the population into the library, the 
second for mutation,  and the third for decloning.  The pickup 
process looks for new good words in the population, and when it  

find one it moves it to the library and replaces it with a new 
random individual.  When a new word enters the library, all of the 
fitnesses must be recalculated.  In this step operand pairs are read 
from the population and library BRAMs and presented to the 
fitness evaluator at the PE clock rate, as described in the next 
Section.  Each population word is checked against its own RC, 
and against each library word and each RC library word.  The 
results are also analyzed and the fitness metrics are determined at 
the PE clock rate and stored in the fitness BRAM.  During the 
mutation process words are selected from the population, and for 
each word all 47 possible single base mutations are assembled 
into a BRAM and their finesses are checked in a manner similar to 
population checking.  The mutation that results in the best 
improved fitness is used to replace the original word, or if no 
mutation improves fitness, one of the 47 mutations is chosen 
randomly to replace the original word.   When the required 
number of words are mutated, or if a mutation is found with 0 
fitness that can enter the library, the mutation process ends and the 
decloning process starts.  This process actually does several 
things.  First it finds and records the best fitness in the population 
(without sorting). Then it replaces any words in the population 
that are already in the library with new random individuals.  Such 
words will have quite good fitness, since only two words in the 
library will reject them, but their fitness will never be good 
enough. Finally, any clones in the population are replaced with 
new random individuals because there is no point in keeping 
clones given the type of mutation we use.   We do not use mating, 
so the next generation then starts with the pickup up process.      

Although we don’t typically use mating for this problem, it was 
implemented in VHDL.  In the interest of speed, we used a table 
look up method that implements rank based selection from the top 
k individuals of a population of n individuals, where k and n are 
BRAM addresses between 0 and 511.  For example, for the case 
of selection from the top 10 individuals in a population of 100,  a 
table of 10 9 bit numbers is calculated from the appropriate 
cumulative selection probabilities. The index of a parent is chosen 
by sampling a 9 bit random number from the lower bits of the 32 
bit PRNG, and running an index pointing into the table up from 0 
until it points to tabled value larger than the random number. One 
less than this index is used as the parent’s index.  Using this 
approach the Host can calculate the tabled values for any k and n 
<=511 and pass them in to the PE at the start of a run.  This avoids 
resynthesis of the FPGA, which takes time.    

All communication between the Host and PE is handled by an 
interface that is supplied as an example with the Wildcard 
software. It allows both the Host and PE to read and write to a 
common 32b register and a common BRAM that reside in the PE.  
Communication occurs at the beginning of a run to set GA and 
code design parameters, again when the PE finds each word, and 
finally at the end of a run.  The PE records the generation each 
new word is found on, and also the best fitness in the population 
vs generation, and it passes this information back to the Host.  

At this writing the entire design has been composed and 
simulated.  The PRNG and fitness evaluator described in the next 
section have been synthesized.  Together they use less than 20% 
of the FPGA chip resources, and the maximum clock frequency is 
higher than our 100MHz goal.     



5. THE HARDWARE SYSTOLIC ARRAY 
FITNESS FUNCTION EVALUATOR  
Systolic arrays [10] basically can perform calculations in a 3 
dimensional array of cells simultaneously (2 physical dimensions 
and the time dimension).  They are driven with fast streams of 
operands flowing into two edges of an array. In the case of the 
Levenshtein calculation, the results corresponding to any two 
operands flow as a diagonal front away from those edges toward 
the opposite corner of the array where a stream of results is read 
out from the lower right cell output.  After a latency period of 18 
clocks an answer for each set of input operands appears in the 
output stream at every clock period.  

Figure 5 shows a block diagram of the systolic array fitness 
function evaluator and its feeder registers.  Register arrays are 
needed along the top and bottom edges to sequence portions of the 
operands into the inputs of the edge cells at the right times.  Bases 
in the input words at the right along the top edge and toward the 
bottom along the left edge must be delayed in a staggered manner 
before being presented to the edge cells.  Each cell in the array 
contains the circuitry for calculating the max() function shown in 
Figure 1, as well as registers for passing bases in the operands 
down along columns and to the right along rows through the 
array. The array operates in a checkerboard fashion, with the cells 
on the even rows on even columns and odd rows on odd columns 
in one group, and the others in a second group.  The first group 
loads inputs on one clock edge, and latches outputs on the next 
clock edge.  The cells in the second group do the opposite. 

     

 
Figure 5. Block diagram of hardware systolic array for fitness 
function evaluation. 

 

In the present design we actually use two instances of the fitness 
function evaluator, one for pickup process, and one for the 
mutation process.  This is a side effect of writing the source code 
with ‘hierarchical’ structure (with multiple processes that can be 
added or debugged and changed easily), rather than in a ‘flat’ 
structure (with all functionality in one big process).  Since only  
one hardware process can drive a signal, we need to duplicate or 
multiplex the inputs and outputs of any component that is used by 
more than one process. Multiplexing adds delay and complexity 
and can make routing interconnects more difficult, so we 
duplicated the fitness evaluator to avoid that potential problem.   

6. RESULTS AND DISCUSSION 
Results for the baseline software GA DNA Code Word 
application run on one processor were shown in Figure 2 and 
compared favorably with results using the best known algorithm 
found in the literature, the Markov method.  Figure 3 also showed 
that the performance of the distributed version of the GA scales 
approximately linearly with the number of processors used.  These 
results are shown again in Figure 6 along with a performance 
curve for 1 run of a simulation of the hardware version (blue), and 
one run of the baseline software GA run on 1 processor using the 
same conditions as the hardware for comparison (lower red).  
These two new curves were for a population size 16, vs 100 for 
the previous (upper) GA curve in Figure 6.   

The results show that the hardware version is about 100 times 
faster in the early stage of the problem with few words found.  
The hardware version (lowest curve) was not extended because 
the simulation is too slow to run out to more than a few words.  

 

 
Figure 6. Relative performance of GA, Markov, and hardware 
GA. 

 
To get a better idea of how the hardware version should perform 
in the later stages of the problem, we analyzed the simulated 
waveforms of the hardware version and constructed a clock cycle 
accurate spreadsheet model that calculates total generation time as 
a function of population size and the number of words in the 
library.  We then used the model to construct a curve of 
generation time vs # words in the library, for the case of 
population size 100.    The clock frequency of the FPGA was 
assumed to be 100MHz.  We also measured the corresponding 
actual generation times for the baseline software GA run on one 
processor, also for  population size 100.  The results are shown in 
Figure 7, and they indicate that the hardware version (lower 
curve) should be about 700X faster than the software version 
(upper curve).  
 



 
Figure 7.  Comparison of generation time # words in library 
for software and hardware GA DNA Code Word application. 
(Population size = 100, composing 16/10 RC codes, no mating, 
1% mutations). 

 

7. FUTURE WORK 
We plan to synthesize the hardware version and evaluate its 
performance.   It would be desirable to add thermodynamic 
binding free energy calculations and other metrics used in the 
Markov method, such as tabulating stacked pairs, which are 
adjacent bases that bind between two words.  This would enable a 
search for an improved (faster) mutation heuristic that would seek 
to eliminate stacked pairs.  An exhaustive search option would 
also be useful.   Presently there is no way to know whether 
another word exists that can be added to a library without 
searching.  We estimate that with about 250 words in the library 
the present hardware systolic fitness function evaluator could 
check all 2^(32-1) candidate words in about 3 hours.  This would 
actually be faster than the using the present algorithms, which can 
run for days before finding words. This would be useful to those 
interested in improving the known bounds on the size of optimal 
code word libraries.  Finally, it would be of interest to implement 
a distributed hardware GA version.  It might be possible to 
process more than one population on the same chip.  Another 
approach would be to use fast FPGA to FPGA communication 
mechanisms to implement a mutli-chip distributed hardware GA.  
It would also be of interest to explore hardware versions of the 
Markov method, or other evolutionary algorithms.   

8. CONCLUSIONS: 
We have shown that a GA approach to solving the DNA Code 
Generation Problem is competitive with the best known methods 
in the literature.  We have described a hardware systolic array 
implementation of the Levenstrein matrix calculation that 
achieves about a factor of 1000X speedup of the fitness function 
evaluator for this problem. We have shown that distributed and 
hardware GAs offer significant performance improvements of 
30X and ~700X, respectively.      
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This paper describes the design, synthesis, and performance of a single FPGA chip design that 
achieves a 1000X speed-up on a highly constrained DNA Code generation problem.

• The Application:
– schemes for DNA assisted nano- self assembly, and information processing methods 

that store and manipulate data by means of biomolecules, biological assay chips. 

• The Problem:
– Generate optimal libraries of hundreds of minimally interacting DNA code word pairs
– There are no known explicit construction methods for such codes
– The bounds on optimal code sizes are unknown and experimentally determined 

• The Solution:
– One Xilinx XC2V3000 chip hosted on an Annapolis WildCard-II PCMCIA card on a 

Pentium 3 notebook platform that achieves performance on the level of a 1000 node 
cluster of Pentium 4s.

– Main features include 
• a hardware genetic algorithm guides search over a 4.2B code word space (32 bits)
• 32b x 32b systolic array calculates the Levenshtein Edit Distance between 

candidate and selected code words (metric in Genetic Algorithm Fitness Function)
• All data arrays stored on-chip all in BRAM
• 100MHz synthesis results using both Xilinx ISE and Synplicity Synplify tool paths
• Hybrid algorithm using 10-20 minutes of GA followed by 1.5 hr exhaustive search

Abstract
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Abstract (cont.)

• Problems Encountered:
– Host/PE communication troublesome, fixed by double buffering registers across 

PCMCIA/PE clock boundaries and custom functions 
– Large sections of behavioral VHDL code that simulated correctly in ModelSim failed to 

synthesize, forcing re-write in all-clocked VHDL
– Annapolis card software library supports only the Synplicity tool set
– No known heuristic algorithms (including GA) are provably capable of producing 

globally or even locally optimal codes.  Therefore, we implemented a hybrid algorithm 
that runs GA for a few minutes, followed by hardware Exhaustive Search (ES) that 
finishes in about 1.5 hours.  ES uses 2 systolic array fitness evaluators to run 
~260*3*4.3 Billion checks of all possible additional words, producing the only known 
locally optimum codes.

• Follow-on and Future Work:
– scaling to longer word lengths, updated fitness metric calculator
– a new single chip hardware multi-population distributed GA for additional speed-up
– Use of the multi-pop GA chip in a cluster of FPGA’s approach to yield > 500,000X 

speed-ups
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Outline

• Motivations
• Background

– DNA Code Word Library Generation Problem
– Speed-ups: PC to cluster, PC to FPGA
– Genetic Algorithm

• FPGA Implementation and Results
• Difficulties and Solutions
• Conclusions and Future Work
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• New/improved architectures/paradigms/engines for 
solving hard optimization problems in minutes vs. 
months (target speed-up ~43,200x)

• Explore hardware based Evolutionary Computing 
methods for solving hard optimization problems, 
seeking extreme speed-ups over traditional algorithms

• Pursue applications relevant to AFOSR/AFRL missions
o Test Case: DNA Code Word Library Synthesis for bio-

molecular computing paradigms and schemes for 
nano-scale self-assembly

• No turn-key commercial GA FPGA cores available
• Software distributed GA shows only linear speed-up

Motivations
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DNA Code Word Library 
Generation Problem

W1-W1’

W2-W2’

W3-W3’

good binding limited binding
W1-RC(W1), W1’-RC(W1’),
W1-W2, W1-W2’, W1’-W2, W1’-W2’,…

W2-W3, W2-W3’, W2’-W3, W2’-W3’, …

W3-W4, W3-W4’, W3’-W4, W3’-W4’, …

W1
W1’

W2
W2’

W3
W3’

Library of DNA Code 
Word Pairs

DNA Code Word Libraries are used in breadth-first parallel filtering methods 
for solving optimization problems with bio-molecules, in nano-fabrication 
schemes that would use self-assembled DNA  templates to organize the layout 
of small components, in conceptual methods storing and accessing data in 
biological and hybrid information systems, in diagnostic microarrays, and as 
data communication codes that can correct frame registration and bit errors. 
(Quaternary Reverse Compliment Edit Distance Codes)

Compose libraries composed of many pairs of short DNA strands that bind 
perfectly within each pair, but ‘poorly’ across pairs or with Rev. Compliments
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Each pair in library must bind 
perfectly (e.g. 10/10 bases match)

4

0

1

0

0 Constraint Checking
• To admit a new pair into the library, both strands in the 

new pair must bind poorly with  all strands in all pairs 
already in library.

• Must check the quality of binding for all forward and 
reverse slidings of new stands with respect to all old 
strands.  Quality indicated by # of binding base pairs.

Fitness Function Metrics
• Max_Match: The maximum number of complimentary 

bases for any sliding position, i.e. the string edit 
distance measured by the Levenstein Matrix.

• Number_of_Rejecters: The number of strands already 
in the library of strand pairs reject a new strand, using 
a threshold “maximum match” criteria.
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Background – the Genetic Algorithm 
- an embarasingly parallel search algorithm that scales

• Inspired by processes of 
natural selection.

• Population initialized as 
collection of random 
individuals.

• Individuals evaluated 
according to fitness function.

• Genetic operators applied to 
population.
– Selection:  Offspring population 

biased toward more fit 
individuals.

– Recombination:  Features from 
multiple parents combined in 
offspring.

– Mutation:  Random variation 
added to offspring.

Selection
Recombination
Mutation

1
2
3

μ

• Applied successfully as 
optimum-seeking 
techniques.
– Useful for objective functions 

that are discontinuous, 
nonconvex, multi-objective, ...

population at
generation g

population at
generation g+1
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(Selection & Mating)

(Decloning)

(Sorting)

Pop & Lib
Initialization

Final Reporting

Parameter
Passing

From Host

Pick-Up
Good Words

Mutations

Done?

GA/DNA Main Process Flow Chart

Sort:     to # keepers from # pop

Selection:      rank based probability

Mating:      single point crossover 

Mutations:     1% of pop indvs, best of all 47
possible single base changes 

Termination:     time, # generations, # words

(items in parens not used in FPGA version)
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DNA Library Synthesis Algorithm Performance  Comparison
word length 16,  match 10, Lv RC codes, 214 word libraries

Mkv 15 run avg, GA 30 run avg. (1 and 16 proc), stoch 1 run 1 proc
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1 10 100 1000

# words found

tim
e 

(s
ec

)

GA    1p 30r GA  16p 30r
Mkv   1p 15r Mkv 16p 15r
stoch 1p   1r

• GA (red) finds words faster than Markov for both 1 and 16 processor cases.
• Markov (green) found more  words for 1 processor case.
• Stochastic (blue) is very slow due to initially full library that is improved by mutation.

Speed-up Evaluation on Cluster Platform
- Markov, GA, and stochastic algorithms for DNA Code 

Word Library Generation Problem
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• Population Individuals are 32 bit integers that represent DNA strands
• 32 bit PRNG needed to initialize population, replace picked-up words, for selection, recombination, and 

mutation heuristics.  Done with feedback LSR. 
• Full GA shown above, but selection and recombination not used to date in FPGA.
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Host/PE Process Interaction (1/4)

Host waits for PE 
‘Ready for Pars’ PE says ‘Ready to take Pars’

Host does
Global Reset

PE waits for
Global Reset

PE does
Global Reset

actions

PE waits for
‘Take Pars’

Host says ‘Take Pars’

Host waits for  
‘PE Has Pars’

Host says ‘Loading Pars’
and loads Pars to LAD SRAM

PE takes Pars from BRAM B side

PE says ‘PE Has Pars’

Global_Reset signal pulse

LAD_Bus_Out.Data_Out

LADRegister

LADRegister

LAD_Bus_Out.Data_Out
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Host and PE Process Interaction Time Line (2/4)

Host waits for
‘PE Has a Report’

Host interprets report type
(New Word, Termination for All/Gens/Time

PE waits for
‘Host has report’

Host stores 
Word, Gen, Time

Host sets Termination Flag

PE initializes GA_DNA

new word 
found?

PE runs a GA generation

PE loads SRAMs
and says

‘PE Has  a Report’
+ Report Code

N

Y

LADBRAM(0)

Host tells PE 
‘Waiting for PE Has a Report’

PE waits for
Host to say

‘Waiting for PE Has a Report’
LADRegister

Host says 
“Host has  Report’

LADRegister

New word Termination
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GA Core Data Path
- Fitness Evaluator

GA Testbench

MemBlock.vhd

NumLib

NumPop

MaxMatch

LibOut

PopOut

NumLib
NumPop
MaxMatch
LibIn

PopIn

DI

DO

ADDR

DI

DO

ADDR

DI

DO

ADDR

LibOut

LibAdd

PopOut

PopAdd

FitIn

FitAdd

North_word

West_word

answerFitOut

RamB16_S36’s

Feeder Arrays
A
B

North

West

Can be used later by GA for sort, mate, etc.

code word library (512 x 32b)

population (512 x 32b)

fitnesses (512 x 16b)

Levenstein Matrix Checker
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Levenstein Matrix Calculation
Ripple Through 2D Pipeline Array

32

32

4

Do_Matrix.vhd

W
es

t_
W

or
d

North_Word

answer

UL

L

A

B

ans

U

4_Bit_Compare

• Each cell or PE is a 4-bit 
MAX/MAX/MAX/ADD/CMP circuit

Resources and Performance: 
Number of Slices: 4273  out of  33792    12%  
Number of Slice Flip Flops:         1  out of  67584      0%  
Number of 4 input LUTs:       7593  out of  67584    11%  
Number of bonded IOBs:          69   out of   1104       6%
Estimated Delay:   185ns   (5.4 MHz)

• Much slower than 10ns target.

16x16 PE’s

• {U, L, UL} 
signals wired 
from adjacent 
cells’ ‘ans’
output registers.

• {A, B} shift 
registers  pass 
North and West 
Word 2bit base 
tokens down 
cols and across 
rows.

• {U, L, UL} 
connect to 0’s 
depending on 
location on 
edges
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GA/DNA Application Core Datapath
Platform:  Notebook PC Host/WildCard II FPGA Processing Element (PE)

Software Template: LAD Interface Example

added or 
modified
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Design Tool Paths

XC2V3000

(XC4VSX35)

(XC2V6000)

C

VHDL
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Average Performance Over Multiple Runs
Markov (16 runs), Software GA in C on PC (30 runs), 

Hardware GA (30 runs), Hardware GA + Exh. Search (20 runs)

Time vs # Words Found
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# Code Words found
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16_10_RC_100_100_100_1%_GA_1pr

16_10_RC_Mkv_1pr

16_10_RC_16_16_16_1%_fpga (Simulated, 100MHz)
FPGA actual avg 30 runs

fpga avg 20 runs

• lower FPGA results are GA for 300sec or 120words, followed by Exhaustive Search to find all words remaining words, 
with 2 fitness evaluators, 100MHz on WildCard_II
• real speed-up is now ~ 1000X with 1 FPGA chip 
• Simulated (ModelSim) hardware curve is for 100MHz, with one 1 clock systolic array
• upper actual FPGA v1 is  30MHz, one 2 clock SA, GA for 300sec followed by Exhaustive Search (ES) with 2 fitness 
evaluators to find all words remaining words 
• lower actual FPGA v2 is 100MHz, GA for 300s or 240w one 2 clk SA + Exh Srch 100MHz, two 2 clk SA to optimal, with 
initial 22 word set passed in, checking whole pop each mutation

1000X
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file_in.txt

GGTCTCATCTACATTC
CATGTATCACATGCCA

file_out.txt

GGTCTCATCTACATTC
CATGTATCACATGCCA
CTGGTGCTGCGAGTCC
GGCAGAGTTAGCGACA
GTTAAGCTCGGAATCA
TATGCGTCACGTACGA

File I/O to enable extension
of partial Code Word Libraries

Output of FPGA version
verified by SynDCode

Codes are verified by SynDCode at
http://s53n101.academic.geneseo.edu/
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Histogram of Library Lengths Found
Hardware GA for 5 minutes + Exhaustive Search for 1.5 hr

0
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10
12
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115 120 125 130 135 140

Library Length

fr
eq

ue
nc

y GA + ES, pre-seeded

• Hardware GA: 60 tests = 90 hrs actual time
• Equivalent time on 30 node cluster would be 4 months

Hardware GA + Exhaustive Search 
Average and Largest Library Results



Burns, et. al. Paper 1035/MAPLD 200622

GA and Fitness Function (FF) on PC 
0.2us GA +9.8us FF
(complete)

Island Model GA and FF 
on Cluster
(complete)

GA on PC FF on FPGA
(VHDL, synthesis complete)

GA and FF on  one FPGA
(current work)

GA and FF on HHPC
(future work)

Speed-up     Resources

Low1,000x
10us/10ns

High512,000x
(1,000x * 2 pops *  
2xFPGA * 64 nodes 
* 2 chips/node)

Low50x
10us/(0.2us+9.8ns)*

High30X
(30 nodes)

Low1
(0.2us+9.8us)

Speed-up and Resources
for Different Platforms
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Conclusions

• Genetic Algorithm performance on the DNA Code Word 
Library Generation problem is competitive with best known 
algorithms

• Hardware GA/DNA single FPGA version achieves extreme 
(1000x) speed-up with WildCard-II in a notebook PC

• While the  distributed GA is generally applicable to many 
problem types, the hardware GA is especially suited to 
problems that have  fitness functions involving a matrix of 
relatively simple integer-only or Boolean logic functions, 
especially if it can be efficiently implemented in a hardware 
systolic array.
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Future work

• Complete single chip FPGA multi-pop GA prototype

• New systolic array to incoporate improved GA fitness 
metric (weighted pair binding energy calculation) 

• Do complete GA FPGA Core including selection, 
mating, decloning

• Transition new multi-pop GA core to cluster of FPGAs
platform

• Identify additional optimization problem types that can 
use a hardware GA and Systolic Array fitness evaluator
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Abstract — A large and reliable DNA codeword library is the key 
to the success of DNA based computing. Searching for the set of 
reliable DNA codewords is an NP-hard problem, which can take 
days on the state-of-art high performance cluster computers. 
This work presents a hybrid architecture that consists of a 
general purpose microprocessor and a hardware accelerator for 
accelerating the discovery of DNA reverse complement, edit 
distance codes. Two applications of this architecture were 
implemented and evaluated, including a code generator that uses 
a genetic algorithm (GA) to produce nearly locally optimal codes 
in a few minutes, and a code extender that uses exhaustive search 
to produce locally optimum codes in about 1.5 hours for the case 
of length 16 codes. The experimental results demonstrate that the 
GA can find ~99% of the words in locally optimum libraries, and 
that the hybrid architecture provides more than 1000X speed-up 
compared to a software only implementation. 

I. INTRODUCTION  

The DNA molecule is now used in many areas far beyond 
its traditional function. The first DNA-based computation was 
proposed by Adleman [1]. It demonstrates the effectiveness of 
using DNA to solve hard combinatorial problems. DNA 
molecules have also been used as information storage media 
and three dimensional structural materials for nanotechnology.  

One of the major concerns of DNA computing is reliability. 
In DNA computing, the information is encoded as DNA 
strands. Each DNA strand is composed of short codewords.  
DNA computing is based on the hybridization process, which 
allows short single-stranded DNA sequences (i.e. 
oligonucleotides) to self-assemble to form long DNA 
molecules. The reliability of the computing is determined by 
whether the oligonuleotides can hybridize in a predetermined 
way. The key to success in DNA computing is the availability 
of a large collection of DNA codeword pairs that do not 
crosshybridize.   

Various quality metrics have been proposed to guide the 
construction process [1]-[5]. The computation of these metrics 
dominates the run time of the code building process.  While 
metrics based on the Gibbs energy and nearest neighbor 
thermodynamics and consideration of secondary structure 
formation give accurate measurement of hybridization, they are 
computationally costly, motivating the use of simplified 
metrics. One such metric is the Levenshtein distance, or the so-
called deletion-correcting or edit distance, which has been used 
to construct DNA codes [6]. 

 Regardless of the quality metric used, composing DNA 
codes is NP-hard because the number of potential codewords 
that must be searched increases exponentially with the length 
of the DNA codewords.  Exhaustive checking is generally 
impractical for words of length greater than about 12 base 
pairs.  Various algorithms have been proposed for building 
DNA codes, including the GA [7], Markov processes [8], and 
Stochastic methods [9]. Recent work [10] has shown that a 
hybrid GA blended with Conway’s lexicode algorithm [11][12] 
achieves better performance than either alone in terms of 
generating useful codes quickly.   

 Search methods for DNA codes are extremely time-
consuming, and this has limited research on DNA codeword 
design, especially for codes of length greater than about 12-14 
bases.  Theory is lacking to provide tight upper bounds on the 
size of codeword sets, and the best known bounds are based on 
experiments. For example, the largest known reverse 
complement edit distance DNA codeword library (length 16, 
edit distance 10) consist of 132 pairs, composing   such codes 
can take several days on a cluster of 10 G5 processors.  

 This paper focuses generally on speed-up techniques for 
the composition of reverse complement, edit distance, DNA 
codes of length 16, using a modified genetic algorithm that 
uses a locally exhaustive, mutation-only heuristic tuned for 
speed. Ongoing work to be reported elsewhere is addressing 
extensions to metrics involving nearest neighbor 
thermodynamics, a more general GA, codewords of length 32.     

 More specifically, we report a novel accelerator for DNA 
codeword composition that incorporates a hardware GA, 
hardware edit distance calculation, and hardware exhaustive 
search.  Hardware exhaustive search extends an initial 
codeword library by doing a final scan across the entire 
universe of possible codewords, yielding a known locally 
optimum code. The proposed architecture consists of a host 
PC, a hardware accelerator implemented in reconfigurable 
logic on a field programmable gate array (FPGA) and a 
software program running in a host PC that controls and 
communicates with the hardware accelerator. The 
characteristics of the proposed architecture are as follows: 

1. High performance. It utilizes programmable logic devices to 
enable pipelined and massively parallel processing of the 
data. Compared with software-only approaches, the new 
architecture can provide more than 1000X speed-up. For 
example, instead of 52 days, it only takes 1.5 hours to scan 
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the entire codeword space and to find all additional words 
that must be added to produce a locally optimum code.  

2. High flexibility. The hardware accelerator can be configured 
by software program, and presently it can be run on a 
workstation PC equipped with an FPGA board, or on a 
notebook computer equipped with a PCMCIA FPGA card.  

3. User friendly. The hardware accelerator is transparent to the 
user. Its control and access is accomplished by memory 
reads and writes based on a set of given protocols. 

The remainder of this paper is organized as follows: 
Section II provides the necessary biological background and 
terminology.  Section III introduces the problem definition and 
the genetic algorithm for DNA codeword search. Section IV 
gives the detailed information about how to accelerate the GA 
search fitness calculation. Sections V and VI provide details 
about the hybrid architecture and present a performance 
comparison between the software version of the GA and the 
best known (Markov) algorithm found in the literature, and 
early results on locally optimum codes.  Finally, conclusions 
are given in Section VII. 

II. BACKGROUND 

The DNA molecule is a nucleic acid. It consists of two 
oligonucleotide sequences. Each sequence consists of a sugar-
phosphate backbone and a set of nucleotides (also called bases) 
connecting with the backbone. The oligonucleotide sequence is 
oriented. One end of the sequence is denoted as 3’ and the 
other as 5’. Only strands of opposite orientation can form stable 
duplex.  

There are four types of bases: Adenine, Thymine, Cytosine, 
and Guanine. They are denoted briefly as A, T, C, and G 
respectively. Each base can pair up with only one particular 
base through hydrogen bonds: A+T, T+A, C+G and G+C. 
Sometimes we say that A and T are complementary to each 
other while C and G are complementary to each other. A 
Watson-Crick complement of a DNA sequence is another 
DNA sequence which replaces all the A with T or vise versa 
and replaces all the T with A or vise versa, and also switches 
the 5’ and 3’ ends. A DNA sequence binds most stably with its 
Watson-Crick complement. The stability of the binding is 
determined by the free energy of the hydrogen bonds.  

The calculation of the free energy involves many 
considerations. In this paper, we only consider the first order 
effect, and use the number of Watson-Crick pairs between two 
DNA sequences to represent their bonding strength. Such 
approximation is widely adopted by the research works in 
DNA codeword design [6][12]. Furthermore, the DNA 
sequences of length 10 or greater are usually considered to be 
flexible [6]. Therefore, the binding strength of two DNA 
strands is measured by the length of the longest complementary 
subsequence (not necessarily contiguous) of one strand and the 
reverse of the other. For example, Figure 1 shows two DNA 
strands that bind with 5 Watson-Crick pairs. The longest 
complementary sequence between two flexible DNA strands, A 
and B, is the same as the longest common sequence (LCS) 
between A and B  [6].  

 

 

 

Figure 1 Binding between DNA strands. 

III. PROBLEM FORMULATION AND OPTIMIZATION 
ALGORITHM 

We consider each DNA codeword as a sequence of length n 
in which each symbol is an element of an alphabet of 4 
elements. The longest common sequence between DNA 
strands A and B is denoted as LCS(A, B).  In this work, we 
focus on searching for a set of DNA codeword pairs S, where S 
consists of a set of DNA strands of length n and their reverse 
complement strands e.g. {(s1, 1s ), (s2, 2s ), …}, where (s1, 1s ) 
denotes a strand and its Watson-Crick complement.  The 
problem can be formulated as the following constrained 
optimization problem: 

               ||max S                                                               (1) 

s.t. SsssLCS ∈∀≤ 111     ,),( σ ,                                        (2) 

       SssssLCS ∈∀≤ 2121 , ,),( σ                                     (3) 

       SssssLCS ∈∀≤ 2121 , ,),( σ ,                                   (4) 

where σ is a predefined threshold. Equation (1) indicates that 
our objective is to maximize the size of the DNA codeword 
library. The first constraint specifies that a DNA codeword in 
the library cannot bind with itself. The second and the third 
constraints specify that a DNA codeword in the library cannot 
bind with another library word or its Watson-Crick 
complement. Both of these two constraints must be satisfied 
because a DNA strand always occurs with its Watson-Crick 
complement. 

A genetic algorithm (GA) is a stochastic search technique 
based on the mechanism of natural selection and 
recombination. Solutions, which are also called individuals, are 
evolved from generation to generation, with selection, mating, 
and mutation operators that provide an effective combination 
of exploration of the global search space. The Island multi-
deme GA is a widely used parallel GA model in which the 
population is divided into several sub-populations and 
distributed on different processors. Each sub-population 
evolves independently for a few generations, before one or 
more of the best individuals of the sub-populations migrate 
across processors. 

Although it is effective for many other optimization 
problems, we observed that selection and mating slowed the 
evolution of beneficial fitnesses in the population. Therefore, in 
this work, we propose a modified GA without mating. The 
approach is similar to Tulpan’s [9], except that we start with an 
empty library, and a separate GA population of next word 
candidate individuals with random base content. Each 
individual in the population is a DNA codeword encoded as a 
binary string with length 2n, where n is the length of the 
codeword in bases. The four bases (A, T, C, G) are encoded as 

A A C G − T G

T T  − C G A C

5’ 3’

5’3’

A A C G − T G

T T  − C G A C

5’ 3’

5’3’
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(00, 01, 11, 10).   Each DNA strand of length 16 can be 
represented as a 32 bit integer. 

Given a codeword library S, the fitness of each individual d 
reflects how well the corresponding codeword fits into the 
current codeword library. Two values define fitness, 
reject_num and max_match. The reject_num is the number of 
codewords in the library which satisfies the condition that 

σ>),( dsLCS  or σ>),( dsLCS . The max_match can be 
calculated as  

SsdsLCSdsLCSddLCS ∈∀−−− ),),(,),(,),(max( σσσ . 
The codeword with lower fitness fits better in the library. 

From equations (2)-(4) we know that a valid library word 
must have reject_num equal to 0. It is observed that adding a 
codeword with reject_num = 0 and max_match > 0 into the 
library will restrict the future growth of the library. Such 
codewords bind very weakly with other library words, but they 
are too far apart in the search space and interfere with closest 
packing. To maximize the library size, we want to select only 
those codewords that are “just good enough”.   To ensure this, 
we add another constraint to the optimization problem: 

      SssssLCSssLCS ∈∀= 212121 , ,)),(),,(max( σ      (5) 

Therefore, only codewords with reject_num = 0 (which also 
implies max_match = 0) will be added into the library.   

A traditional GA mutation function might randomly pick an 
individual in the population, randomly pick a pair of bits in the 
individual representing one of its 16 bases, and randomly 
change the base to one of the 3 other bases in the set of 4 
possible bases. In the proposed algorithm, however, we 
randomly select an individual, but then to exhaustively check 
all of the 48 possible base changes.  This is an attempt to speed 
beneficial evolution of the population by minimizing the 
overhead that would be associated with randomly picking this 
individual again and again in order to test those mutations.  We 
also specify that if none of the 48 mutations were beneficial, 
one of them is selected at random.  This enables the individual 
to remain in the population and possibly experience subsequent 
(multiple) mutations.  Figure 2 gives the pseudo code for the 
modified mutation function. 

When an individual in the population achieves a fitness of 
0, it is added to the set of good codewords, and the selected 
individual in the population is replaced by a new random 
individual.  The GA is allowed to run until one of three 
termination criteria is satisfied: the number of codewords in the 
set is as large as desired; the algorithm has run for a specified 
maximum number of generations; or the algorithm has run for 
a specified maximum amount of time.  We store the codeword 
values and the elapsed time at which they are each found, in 
memory during a run, and we store that data to a disk file at the 
end of a run.  We also calculate and store the average time at 
which the ith words are found across multiple runs to assess 
average performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Modified mutation algorithm. 

IV. HARDWARE ACCELERATION OF LCS 
CALCULATION 

The most time consuming part of the proposed GA 
algorithm is to calculate the fitness value for each individual. 
Performance profiling of our software GA version showed that 
>98% of the computing time was spent calculating the LCS 
distance between DNA strands. The LCS distance is calculated 
using dynamic programming. Figure 3 gives the pseudo code 
of the algorithm. The intermediate results are stored in an n×n 
matrix, where n is the length of the DNA codeword in bases. 
The calculation starts at the top left corner of the matrix and the 
final result is the value calculated in the cell located at the 
bottom right corner. For DNA codewords with length 16, at 
least 256 operations are needed before we can obtain the final 
result. Therefore, the throughput of the software based LCS 
calculation is less than 1/n2.  

 

 

 

 

 

 

 

 

Figure 3 LCS distance calculation. 

The algorithm can be implemented using a 2D systolic 
array. The systolic array is an n×n matrix. Figure 4 (a) gives 

Mutation( ) 
//M is the set of mutated individuals;  
//L is the set of library codewords; 
Randomly select an individual s from initial population; 
M = Φ; 
FOR i = 1 TO n 
    B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that 

is different from the ith nucleotide of s 
    Generate three mutated individuals {s1, s2, s3} by replacing the 

ith nucleotide with one of the elements of B; 
    M = M ∪ {s1, s2, s3}; 
END 
Evaluate the fitness for each m ∈ M; 
IF   (∃m, fitness(m) = 0)   THEN L = L ∪ {m}; 
ELSE     //evolve the population by replacing the original 

individual with a new individual with better fitness 
    Select the individual x which has the lowest (best) fitness and 

x∈M; 
    IF  fitness(x) < fitness(s)  THEN  replace s with x; 
    ELSE replace s with a random individual from M; 
END 

RETURN     

LCS(a, b)  
    Initialize lcs[0][i] and lcs[i][0], 0≤i≤n-1 

FOR i = 0 TO n-1 BEGIN 
    FOR j = 0 TO n-1 BEGIN 
        IF (a[i] = b[j]) THEN k = 1; 
        ELSE k = 0; 

            lcs[j][i] = max(lcs[j-1][i], lcs[j][i-1], lcs[j-1][i-
1]+k);  
        END 
    END 
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the structure of each cell in the matrix.  Each cell consists of 
three registers: A, B and ans. For the cell at location (i, j), the 
registers A and B are used to store the ith nucleotide of one 
DNA codeword (north word) and the jth nucleotide of the other 
DNA codeword (west word) respectively.  The register ans is 
used to store the intermediate result of the dynamic 
programming calculation. Each cell has five inputs. Two of the 
inputs connect to the register A and register B of the upper and 
left neighbor cells. The other three inputs connect to the ans 
registers of the upper, left and diagonal neighbor cells. In the 
present hardware version it takes two clock cycles for a cell to 
update its answer. In the first clock period, input registers A 
and B are updated, and in the second clock period, the cell 
output answer is calculated and the register ans is updated. In 
order to prevent ripple through operation, the cells in the even 
columns and even rows or odd columns and odd rows are 
synchronous to each other and operate as described above, but 
in the rest of the cells (which are also synchronous) the two 
operations are reversed, i.e. the ans output is calculated in the 
first clock period and the A and B inputs are updated in the 
second clock period.  

The overall architecture of the 2D systolic array is shown in 
Figure 4 (b). The marked cells calculate their answers in the 
same clock cycle while the unmarked cells calculate their 
answers in the next clock cycle. In this way, the results 
propagate through the array diagonally. The final result is 
given by the ans register of the cell at the right bottom corner 
of the 2D array. It is easy to see that after a latency period that 
is required to fill the pipeline, the throughput of the systolic 
array is ½, i.e. 1 output result per 2 clock periods. When n 
increases, the throughput remains the same while the hardware 
cost increases, as long as the reconfigurable hardware chip has 
sufficient resources to implement a full n×n array of cells.  
Another detail is that the systolic array must be fed by an array 
of registers that delay the entry of the bases on the right of the 
North word and at the bottom of the West word.  In effect, this 
synchronizes the presentation of those parts of the operand 
words with the diagonal waves of intermediate calculations in 
the cells that proceed from the upper left corner down and to 
the right through the array.  

 

 

 

 

 

 

 

 
Figure 4 2D systolic array for LCS calculation. 

 
We note that version of this array for words of length 32 vs. 
16 would use 4X the resources, but clock at the same rate.  

V. HYBRID ARECHITECTURE 
 

 

 

 

 

 

 

Figure 5 System architecture. 

The proposed hybrid architecture consists of a host CPU, a 
hardware accelerator and a software program running on the 
host CPU. The host CPU and the hardware accelerator are 
connected via the system bus. Figure 5 shows the architecture 
of the system. In order to increase the portability of the design, 
we divide it into two modules: the bus interface and the 
hardware accelerator core. The bus interface module connects 
to the bus as a slave. It has a set of command registers and an 
information exchange memory, which can be accessed by both 
CPU and the hardware accelerator. For different bus 
architecture, a new bus interface must be developed.  

A. Hardware acceleration for GA based codeword search 

A two-level method is adopted to control the hardware 
accelerator. At the top level, the operations of the hardware 
accelerator are categorized into 7 states: {idle, init, check_pop, 
mutation, check_mutate, update_pop, update_lib}. In the init 
state, the hardware accelerator generates a random initial 
population, and sets up either an empty initial library, or reads 
an initial partial library from a disk file.  In the mutate state, the 
hardware accelerator produces a population of 47 mutated 
individuals based on a chosen individual. The hardware 
accelerator calculates the fitness for all the individuals in the 
initial population, and in the mutated population, in the 
“check_pop” and “check_mutate” states, respectively. In the 
“update_lib” state, the hardware accelerator writes the newly 
discovered acceptable codewords into the library. In the 
“update_pop” state, the hardware accelerator writes the best (or 
a randomly chosen) mutated individual back to the working 
population.  

Each state corresponds to an operation in the GA algorithm. 
Figure 6 (a) shows the control and data flow graph (CDFG) of 
the algorithm based on this state division. The “update_lib” 
and “update_pop” operations are one cycle operations because 
they only perform a memory write. All the other operations are 
multi-cycle operations, which again can be divided into several 
sub-states. When the top level state machine enters the 
corresponding state of a multi-cycle operation, the second level 
state machine is triggered.  

We call an operation a blocking operation if its successors 
in the CDFG cannot start until this operation is done. Similarly, 
an operation is called non-blocking operation if its successors 
can start right after this operation started. The “init” and 
“mutation” operations are both non-blocking operations. While 
the hardware accelerator is generating the initial population and 

(a) Cell architecture 

A

B ans

North 
word

west 
word

Upper 
ans

Left 
ans

Lower 
cell

Right 
cell

corner 
cell

corner 
ans

A

B ans

North 
word

west 
word

Upper 
ans

Left 
ans

Lower 
cell

Right 
cell

corner 
cell

corner 
ans

(b) Checker board 
architecture of 2D systolic 

North word

W
es

t w
or

d

North word

W
es

t w
or

d

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

326

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



the mutated population, it is at the same time checking the 
fitness of the generated individual. The “check_pop” and 
“check_mutate” operations are blocking operations. Their 
successors, i.e. “mutate” and “update_pop”, cannot start until 
they have been finished. Figure 6 (b) shows the scheduling of 
the operations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Top level state machine controller. 

A buffer is needed to pass the results of one operation to its 
successor. In particular, a first-in-first-out (FIFO) storage 
should be used as the output buffer of a non-blocking 
operation. However, the implementation of the FIFO is 
relatively easy in this design because the non-blocking 
operations are always faster than their successors. Therefore, it 
is not necessary to check the FIFO underflow condition. We 
use dual port memory as the output buffer for the design. Three 
memory blocks are used: Initial Population Memory (Mpop), 
Mutated Population Memory (Mmutate) and CodeWord Library 
Memory (Mlib). The input and output buffer of different 
operations are given in Table 1. 

Table 1. The input/output buffer of operations. 

operations Input Output 

init - Mpop 

check_pop Mpop Mlib 

mutate Mpop Mmute 

check_mutate Mmute Mlib 

update_lib Mpop Mlib 

update_pop Mmute Mpop 

 

B. Hardware software interface  

The hardware accelerator and the host CPU program run 
asynchronously. Four-way handshaking protocol is used to 
synchronize the communication between hardware and 
software, as shown in Figure 7. For example, when the 
hardware accelerator finds a new codeword, it raises the 
“PE_got_new_word” flag to the host program. After detecting 
this flag, the host program reads the new codeword then raises 

the “host_got_new_word” flag. After detecting this flag, the 
hardware accelerator then clears the “PE_got_new_word” flag 
and acknowledges the host program by raising the 
“PE_got_message” flag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 Hand-shaking between host and PE. 

After detecting this flag, the host program then clears the 
“host_got_new_word” flag and acknowledges the hardware 
accelerator by raising the “host_got_message” flag, and 
continues. After detecting this flag, the hardware accelerator 
then clears the “PE_got_message” flag and continues.  After 
the handshaking, the host program and the hardware 
accelerator work asynchronously until the host or hardware 
accelerator raises another message flag.  

C. Parallel GA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Hardware architecture for parallel GA. 

The hardware accelerator discussed above uses about 
12,263 LUTs (look-up-tables), which is only about 42% of the 
programmable resources in a Xilinx Virtex II 3000 FPGA and 
about 16% of the programmable resources in a Xilinx 
XC2VP70 FPGA. Therefore, we evaluated a further speed-up 
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enhancement that involved implementing multiple parallel 
hardware accelerators on a single FPGA, as shown in Figure 8. 

The system consists of n hardware accelerator modules, 
which are denoted as GA1~GAn, an arbitrator and a bus 
interface. The value of n is determined by the size of the 
FPGA. For example, n is 2 for the Virtex II 3000 FPGA and 5 
for the XC2VP70. Each module implements the above 
mentioned genetic algorithm to search for the DNA codeword. 
They are independent to each other. The populations in 
different GA modules are initialized using different random 
seeds.   

 All the GA modules are connected to the bus interface 
through an arbiter. When a GA module finds a new codeword, 
it raises the “PE_got_new_word” flag and requests to be 
connected to the bus interface to communicate with the host. 
The arbiter broadcasts the new codeword to all other GA 
modules and raises the “update_library” flag. The GA module 
that receives the “update_library” request must terminate its 
current operation and go to “update_lib” state. If multiple GA 
modules raise the “PE_got_new_word” flag simultaneously, 
the arbiter must select one of them and invalidate the others. 
The decision is based on a fixed priority. The arbiter also 
connects the selected GA module that has found a new 
codeword with the bus interface to communicate with the host. 
If another GA module finds a new word, it must wait till the 
end of the current host-PE communication procedure to be 
connected to the bus interface. Figure 9 shows the state 
machine controller of the arbiter. The arbiter will be in the idle 
state after reset. When one of the GA modules raises the 
“PE_got_new_word” flag, the arbiter will go to the 
“update_all_libraries” state during which the arbiter raises the 
“update_library” flag. In the next clock period, it goes into the 
“PE_communicating” state during which the arbiter connects 
the GA module to the bus interface.  

 If the communication finishes before another GA module 
finds a new word, then the arbitrator goes back to the idle state. 
Otherwise, it first goes to the waiting state. After the 
communication is done, it goes to the “update_all_libraries” 
state and repeats the previous steps. 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 9 State machine controller of the arbitrator. 

D. Hardware acceleration for exhaustive search 

The effectiveness of the stochastic search starts decreasing 
when the search space increases and the solution space 
decreases. Therefore, as codewords are added to the library, the 
time required for the GA to find a new codeword increases 
exponentially. Furthermore, using stochastic search, we will 
never know whether still another new codeword can be added 
to the library. The only way to answer this question is by using 
exhaustive search, i.e. checking every possible codeword in the 
universe of all possible codewords. The complexity of 
exhaustive search increases linearly with the number of 
codewords already in the library.  However, the complexity of 
exhaustive search also increases exponentially with the length 
of the codewords. As the name suggests, for a given initial 
library, the exhaustive search portion of the hybrid algorithm 
must scan the entire codeword space and find all remaining 
additional valid codewords that satisfy constraint equations (2)-
(5). For DNA codewords of length 16, and for an initial library 
with 100 codewords, exhaustive search would take 52 days on 
a 2.0GHz Intel Xeon processor running a software fitness 
checker at 10 microseconds per check. 

With small modification, we can implement the exhaustive 
DNA codeword search using hardware. The hardware 
accelerator for exhaustive codeword search consists of only 
one memory, which is used to store the codeword library, a 32 
bit counter cycled from 0 to its maximum value to represent the 
potential new word, and two systolic array fitness checkers. 
For each codeword x, the calculation of ),( sxLCS and 

),( sxLCS , where Ss∈ , are performed simultaneously by the 
two fitness checkers. At 100Mhz clock frequency, the 
hardware accelerator takes about 1.5 hours to scan the entire 
~4.3 billion codeword space for codewords of length 16, which 
is over 800 times faster than the workstation PC software only 
case. At the completion of exhaustive search we can say that a 
codeword set is locally optimum, in the sense that given the 
series of random numbers used to drive the stochastic GA in 
the early phase of building, no additional codewords can be 
added to increase the size of the library.  To date, little data has 
been published in the literature on locally optimum edit 
distance codes of lengths greater than about 12 bases, and this 
hardware accelerator enables us to efficiently explore this 
aspect of the problem domain for the first time. 

VI. EXPERIMENTAL RESULTS 

A hardware accelerator that uses a stochastic GA to build 
DNA codeword libraries of codeword length 16 has been 
designed, implemented, and tested. The first version uses one 
fitness evaluator and is implemented on a single FPGA chip. 

 The design has actually been ported onto three different 
reconfigurable computing platforms, including a Xilinx XUP 
Virtex-II Pro evaluation board [13], a laptop computer with the 
Annapolis Wildcard FPGA board [14], and a desktop computer 
with the Annapolis Wildstar–II FPGA board.  Different bus 
architectures are used to connect the hardware accelerator to 
the host CPU in each of the different platforms. The PLB bus is 
used in the Xilinx Virtex-II Pro evaluation board, while the 
PCMCIA card bus and PCI-X bus are used in the system with 
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WildStar and WildCard, respectively. The other difference 
among these platforms is the amount of resources available on 
the FPGA chips resident on the boards. 

 Table 2 shows the size of the reconfigurable logic and the 
on-chip memory for the three different computing platforms. 
The design is synthesized using Synplify from Synplicity. It 
uses 12,263 LUTs (look-up-tables), which is about 42% of the 
programmable resources in a Xilinx Virtex II 3000 FPGA. The 
hardware accelerator for exhaustive search of DNA codeword 
length 16 uses 21,733 LUTs, which is about 75% of Virtex II 
3000 FPGA. 

Table 2 Available reconfigurable logic and on-chip memory 
resources of different platforms. 

 

Figure 10 shows a comparison of the average performance 
of the GA based codeword search algorithm running in 
software on a single workstation processor (upper curve) and 
the hardware accelerated hybrid  architecture (lower line).  The 
performance is measured in terms of the time it takes to build a 
large library.  Less time is better, so the lower curve is better 
than the upper curve. In this plot the x axis is codewords found, 
where each codeword consists of a strand and its reverse 
complement. The GA is a stochastic algorithm, so each point in 
the curves is the average over multiple runs of the times taken 
to find the # of codewords on the x axis. For these experiments 
we set n and σ to be 16 and 10 respectively.  The upper curve 
for the software version was run on one workstation with 1 P4 
processor. The lower curve for the hardware GA was run with 
a 100MHz FPGA clock frequency.  
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Figure 10 Comparison of average performance. 

Compared to the software only implementation, the 
hardware accelerator running at 100MHz provides 

approximately a 1000X speed-up. The speed-up of the 
hardware versions is due to the parallel and pipelined 
architecture of the hardware. If we were able to increase either 
the number of fitness calculating arrays a we would expect 
almost linear speed-up (a/0.98).   Also, based on previous work 
[15] that used a distributed Island Model GA run on a cluster of 
workstations, we would expect linear speed-up as the number 
of distributed GA populations p is increased. 

Figure 11 shows a comparison of the best performance 
among software GA, and two versions of the hardware GA.  
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Figure 11 Comparison of best performance. 

The top red curve for the distributed software multi-deme 
GA was run on a cluster using 10 P4 processors. The inter-
processor communication is implemented using MPI (message 
passing interface). The middle blue curve for the hardware GA 
was run on the Annapolis Wildcard-II in a P3 notebook PC 
with a 30MHz FPGA clock frequency. The lower magenta 
curve for the hardware GA with exhaustive search was run on a 
Wildcard board in a P4 workstation with a 100MHz FPGA 
clock frequency.  The later run was set up to run the GA until 
240 words were found, and then switch to exhaustive search, 
after which 8 more words were found.   

We also used the exhaustive search version of the hardware 
accelerator to investigate the average size of locally optimum 
codeword libraries that can be built, and the efficacy of the GA 
for building them.  Figure 12 shows the distribution of the size 
of local optimal DNA codeword libraries that were generated 
by running hardware GA for 300 seconds followed by 
hardware exhaustive search. The results show that the size of 
the local optimal DNA codeword library follows a normal 
distribution with mean of about 122 codewords (word/word’ 
pairs). The experiment consists of 60 tests, which took about 
90 hours.  The equivalent test on a 30 workstation cluster 
would have taken about 3000 hours (4 months). 

Computing 
platform 

FPGA Logic 
Cells 

BRAMs 
(kb) 

PPCs 

XUP eval. 
board 

XC2VP30 30,816 2,448 2 

WildCard-II Xilinx Virtex II 
3000 

28,672 1,728 0 

WildStar Pro XC2VP70 74,448 5,904 2 
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Figure 12 Size of local optimal DNA codeword libraries built with 
300sec. GA plus exhaustive search. 

 Figure 13 shows data from a second experiment involving 
32 runs of GA for 600 sec. followed by exhaustive search, in 
terms of the size of the library built during the GA phase (red) 
and the number of words added by exhaustive search (green).  
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  Figure 13  Sizes of Libraries built with 600 sec. GA followed by 

exhaustive search. 
 

Figure 14 shows a histogram of the # of words added by 
exhaustive search for these runs.  On average, the GA alone 
finds 120.4 words vs. 121.7 with GA + exhaustive search, or 
about 98.9% of the words that can be found.  
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Figure 14  Histogram of # words added by Exhaustive Search for 

the runs of Figure 13. 

VII. CONCLUSIONS AND FUTURE WORK 

In this work, we propose a novel architecture for 
accelerating a GA based DNA codeword searching algorithm. 
Our preliminary results show that, using a new hybrid 
hardware/software implementation, we can speedup the DNA 
codeword search procedure by more than 1000X.  We have 
also described a hardware exhaustive search extension that can 
produce known locally optimum codes. In the future, we plan 
to extend the current architecture to implement a multi-deme 
GA on a single FPGA, a more general GA, more accurate 
techniques to measure the binding strength of DNA pairs, and a 
checker for codes word of at least length 32. 
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ABSTRACT 
A large and reliable DNA codeword library is key to the success 
of DNA based computing. Searching for sets of reliable DNA 
codewords is an NP-hard problem, which can take days on state-
of-art high performance cluster computers. This work presents a 
hybrid architecture that consists of a general purpose 
microprocessor and a hardware accelerator for accelerating the 
multi-deme genetic algorithm (GA) for the application of DNA 
codeword searching. The presented architecture provides more 
than 1000X speed-up compared to a software only 
implementation. A code extender that uses exhaustive search to 
produce locally optimum codes in about 1.5 hours for the case of 
length 16 codes is also described. The experimental results 
demonstrate that the GA can find ~99% of the words in locally 
optimum libraries. Finally, we investigate the performance impact 
of migration, mating and mutation functions in the hardware 
accelerator. The analysis shows that a modified GA without 
mating is the most effective for DNA codeword searching.  

Categories and Subject Descriptors 
C.4 [PERFORMANCE OF SYSTEMS]: Performance attributes   

General Terms 
Performance, Design 

Keywords 
DNA, Genetic Algorithm, Hardware Acceleration 

1. INTRODUCTION 
The DNA molecule is now used in many areas far beyond its 
traditional function. The first DNA-based computation was 
proposed and implemented by Adleman [1]. It demonstrates the 
effectiveness of using DNA to solve hard combinatorial problems. 
DNA molecules have also been used as information storage media 
and three dimensional structural materials for nanotechnology.  

One of the major concerns of DNA computing is reliability. In 
DNA computing, the information is encoded as DNA strands. 
Each DNA strand is composed of short codewords.  DNA 
computing is based on the hybridization process, which allows 
short single-stranded DNA sequences (i.e. oligonucleotides) to 

self-assemble to form stable double-stranded duplexes. The 
reliability of the computing is determined by whether the 
oligonuleotides can hybridize in a predetermined way. The key to 
success in DNA computing is the availability of a large collection 
of DNA codeword pairs that do not crosshybridize.   

Various quality metrics have been proposed to guide the 
construction process [1]-[5]. The computation of these metrics 
dominates the run time of the code building process.  While 
metrics based on the Gibbs energy and nearest neighbor 
thermodynamics and consideration of secondary structure 
formation give accurate measurement of hybridization, they are 
computationally costly, as a first step in this work we chose a 
simpler metric, the Levenshtein distance, or the so-called 
deletion-correcting or edit distance, which has also been used to 
construct DNA codes [6]. 

Regardless of the quality metric used, composing DNA codes is 
NP-hard because the number of potential codewords that must be 
searched increases exponentially with the length of the DNA 
codewords.  Exhaustive checking is generally impractical for 
words of length greater than about 12 base pairs.  Various 
algorithms have been proposed for building DNA codes, 
including the GA [7], Markov processes [8], and Stochastic 
methods [9]. Recent work [10] has shown that a hybrid GA 
blended with Conway’s lexicode algorithm [11][12] achieves 
better performance than either alone in terms of generating useful 
codes quickly.   

Search methods for DNA codes are extremely time-consuming, 
and this has limited research on DNA codeword design, 
especially for codes of length greater than about 12-14 bases.  
Theory is lacking to provide tight upper bounds on the size of 
codeword sets, and the best known bounds are based on 
experiments. For example, the largest known reverse complement 
edit distance DNA codeword library (length 16, edit distance 10) 
consist of 132 pairs, composing   such codes can take several days 
on a cluster of 10 G5 processors.  

This paper focuses generally on speed-up techniques for the 
composition of reverse complement, edit distance, DNA codes of 
length 16, using a multi-deme genetic algorithm. We propose a 
FPGA (Field Programmable Gate Array) based hardware 
accelerator design which performs multi-deme parallel GA on a 
single chip. The hardware accelerator and the host PC 
communicate via the system bus, and an appropriate software 
interface controls communication between them. The proposed 
architecture provides more than 1000X speed-up compared to a 
software only implementation. A hardware based code extender 
that uses exhaustive search to produce locally optimum codes is 
also described. The code extender does a final scan across the 
entire universe of possible codewords and completes the 
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codeword library generated from GA by adding any additional 
words that satisfy the specified constraints.   

The remainder of this paper is organized as follows: Section 2 
provides the necessary biological background and terminology.  
Section 3 introduces the problem definition and the genetic 
algorithm for DNA codeword search. Section 4 gives the detailed 
information about how to accelerate the GA fitness calculation. 
Sections 5 and 6 provide details about the hybrid architecture and 
some performance analysis of the design. Performance 
comparison between the hardware and the software version of the 
GA, and early results on locally optimum codes are also presented 
in Section 6.  Final conclusions are given in Section 7. 

2. BACKGROUND 
The DNA molecule is a nucleic acid. It consists of two 
oligonucleotide sequences. Each sequence consists of a sugar-
phosphate backbone and a set of nucleotides (also called bases) 
connecting with the backbone. The oligonucleotide sequence is 
oriented. One end of it is denoted as 3’ and the other as 5’.  

There are four types of bases: Adenine, Thymine, Cytosine, 
and Guanine. They are denoted briefly as A, T, C, and G 
respectively. Each base can pair up with only one particular base 
through hydrogen bonds: A+T, T+A, C+G and G+C. Sometimes 
we say that A and T (C and G) are complementary to each other. 
A Watson-Crick complement of a DNA sequence is another DNA 
sequence which replaces all the A with T or vise versa and 
replaces all the G with C or vise versa, and also switches the 5’ 
and 3’ ends. A DNA sequence binds most stably with its Watson-
Crick complement and the structure they form is called Watson-
Crick (WC) duplex. Figure 1 (a) shows an example of a WC 
duplex. We refer to the non-WC duplex as crosshybridized (CH) 
duplex. Figure 1 (b) shows an example of a CH duplex. Only WC 
duplexes are needed during DNA computing. Therefore, it is 
important to design the DNA codes such that a fixed temperature 
can be found that is well above the melting point of all CH 
duplexes and well below the melting point of all WC duplexes 
that can form from strands in the code.  

Predicting crosshybridization involves many considerations. In 
this paper, we only consider the first order effect, and use the 
maximum number of possible Watson-Crick pairs between two 
sequences to represent their bonding strength. Such 
approximation is widely adopted by the research works in DNA 
codeword design [6][12]. The binding strength of two DNA 
strands is measured by the length of the longest complementary 
subsequence (not necessarily contiguous) of one strand and the 
reverse of the other. For example, Figure 1 (b) shows two DNA 
strands that bind with 5 Watson-Crick pairs. The length of the 
longest complementary sequence between two flexible DNA 
strands, A and B, is the same as the length of the longest common 
sequence (LLCS) between A and B  [6], where  B  is the Watson-
Crick complement of B. 

.  

 

 

Figure 1 Binding between DNA strands. 

3. PROBLEM FORMULATION AND 
OPTIMIZATION ALGORITHM 
We consider each DNA codeword as a sequence of length n in 
which each symbol is an element of an alphabet of 4 elements. 
The length of the longest common sequence between DNA 
strands A and B is denoted as LLCS(A, B).  In this work, we focus 
on searching for a set of DNA codeword pairs S, where S consists 
of a set of DNA strands of length n and their reverse complement 
strands e.g. {(s1, 1s ), (s2, 2s ), …}, where (s1, 1s ) denotes a 
strand and its Watson-Crick complement.  The problem can be 
formulated as the following constrained optimization problem: 

               ||max S     such that                                              (1) 

        SsssLLCS ∈∀≤ 111     ,),( σ ,                                        (2) 

       SssssLLCS ∈∀≤ 2121 , ,),( σ                                        (3) 

       SssssLLCS ∈∀≤ 2121 , ,),( σ ,                                      (4) 

where σ is a predefined threshold. Equation (1) indicates that our 
objective is to maximize the size of the DNA codeword library. 
The first constraint specifies that a DNA codeword in the library 
cannot bind with itself. The second and the third constraints 
specify that a DNA codeword in the library cannot bind with 
another library word or its Watson-Crick complement. Both of 
these two constraints must be satisfied because a DNA strand 
always occurs with its Watson-Crick complement. 

A genetic algorithm (GA) is a stochastic search technique based 
on the mechanism of natural selection and recombination. 
Solutions, which are also called individuals, are evolved from 
generation to generation, with selection, mating, and mutation 
operators that provide an effective combination of exploration of 
the global search space. The Island multi-deme GA is a widely 
used parallel GA model in which the population is divided into 
several sub-populations and distributed on different processors. 
Each sub-population evolves independently for a few generations, 
before one or more of the best individuals of the sub-populations 
migrate across processors. In this work, the single point cross-
over mating operator is used.  

Each individual in the population is a DNA codeword encoded as 
a binary string with length 2n, where n is the length of the 
codeword in bases. The four bases (A, C, G, T) are encoded as 
(00, 01, 10, 11).   Each DNA strand of length 16 can be 
represented as a 32 bit integer. Given a codeword library S, the 
fitness of each individual d reflects how well the corresponding 
codeword fits into the current codeword library. Two values 
define the fitness, reject_num and max_match. The reject_num is 
the number of codewords in the library which satisfy the 
condition that σ>),( dsLLCS  or σ>),( dsLLCS . The 
max_match can be calculated as  

SsdsLLCSdsLLCSddLLCS ∈∀−−− ),),(,),(,),(max( σσσ . 

The codeword with lower fitness fits better in the library. 

From equations (2)-(4) we know that a valid library word must 
have reject_num equal to 0. It is observed that adding a codeword 
with reject_num = 0 and max_match > 0 into the library will 
restrict the future growth of the library. Such codewords bind very 
weakly with other library words, but they are too far apart in the 
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search space and interfere with closest packing. To maximize the 
library size, we want to select only those codewords that are “just 
good enough”.   To ensure this, we add another constraint to the 
optimization problem: 

      SssssLLCSssLLCS ∈∀= 212121 , ,)),(),,(max( σ      (5) 

Therefore, only codewords with reject_num = 0 (which implies 
max_match = 0) will be added into the library.   

A traditional GA mutation function might randomly pick an 
individual in the population, randomly pick a pair of bits in the 
individual representing one of its 16 bases, and randomly change 
the base to one of the 3 other bases in the set of 4 possible bases. 
In the proposed algorithm, however, we randomly select an 
individual, but then to exhaustively check all of the 48 possible 
base changes.  This is an attempt to speed beneficial evolution of 
the population by minimizing the overhead that would be 
associated with randomly picking this individual again and again 
in order to test those mutations.  We also specify that if none of 
the 48 mutations were beneficial, one of them is selected at 
random.  This enables the individual to remain in the population 
and possibly experience subsequent (multiple) mutations.  Figure 
2 gives the pseudo code for the modified mutation function. 

When an individual in the population achieves a fitness of 0, it is 
added to the set of good codewords, and the selected individual in 
the population is replaced by a new random individual.  The GA 
is allowed to run until one of three termination criteria is satisfied: 
the number of codewords in the set is as large as desired; the 
algorithm has run for a specified maximum number of 
generations; or the algorithm has run for a specified maximum 
amount of time.  We store the codeword values, the elapsed time 
at which they are each found in memory during a run, and store 
that data to a disk file at the end of a run.  We also calculate and 
store the average time at which the ith words are found across 
multiple runs to assess average performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Modified mutation algorithm. 

4. HARDWARE ACCELERATION OF LLCS 
CALCULATION 
The most time consuming part of the proposed GA algorithm is to 
calculate the fitness value for each individual. Performance 
profiling of our software GA version showed that >98% of the 
computing time was spent calculating the LLCS between strands.  

The LLCS is calculated using dynamic programming. Figure 3 
gives the pseudo code of the algorithm. The intermediate results 
are stored in an n×n matrix, where n is the length of the DNA 
codeword in bases. The calculation starts at the top left corner of 
the matrix and the final result is the value calculated in the cell 
located at the bottom right corner. For DNA codewords with 
length 16, at least 256 operations are needed before we can obtain 
the final result. Therefore, the throughput of the software based 
LLCS calculation is less than 1/n2. 

 

 

 

 

 

 

Figure 3 LLCS distance calculation. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4 2D systolic array for LLCS calculation. 
Many systolic algorithms has bee proposed to search for the 
longest common sequence (LCS) [16][17]. However, here we are 
only interested in finding out the length of the LCS, which is a 
much simpler problem. In this work, we implemented a 2D 
systolic array for the acceleration of LLCS calculation. The 
systolic array is an n×n array of identical cells. Figure 4 (a) gives 
the structure of each cell, including its input/output and the 
computation implemented.  The computation is performed every 
other clock period. The overall architecture of the 2D systolic 
array as well as the data dependency and timing information are 
shown in Figure 4 (b). In order to prevent ripple through 
operation, the cells in the even columns and even rows or odd 
columns and odd rows are synchronous to each other and perform 
the computation in the same clock period. The rest of the cells are 
also synchronous to each other but perform the computation in the 

Mutation( ) 
//M is the set of mutated individuals;  
//L is the set of library codewords; 
Randomly select an individual s from initial population; 
M = Φ; 
FOR i = 1 TO n 
    B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that 

is different from the ith nucleotide of s 
    Generate three mutated individuals {s1, s2, s3} by replacing the 

ith nucleotide with one of the elements of B; 
    M = M ∪ {s1, s2, s3}; 
END 
Evaluate the fitness for each m ∈ M; 
IF   (∃m, fitness(m) = 0)   THEN L = L ∪ {m}; 
ELSE     //evolve the population by replacing the original 

individual with a new individual with better fitness 
    Select the individual x which has the lowest (best) fitness and 

x∈M; 
    IF  fitness(x) < fitness(s)  THEN  replace s with x; 
    ELSE replace s with a random individual from M; 
END 

RETURN     

LLCS(a, b)  
    Initialize llcs[0][i] and llcs[i][0], 0≤i≤n-1 

FOR i = 0 TO n-1 BEGIN 
    FOR j = 0 TO n-1 BEGIN 
        IF (a[i] = b[j]) THEN k = 1  ELSE k = 0; 

             llcs[j][i] = max(llcs[j-1][i], llcs[j][i-1], llcs[j-1][i-1]+k);  
        END 
    END 
END

xi-1,j llcsi-1, j

yi,,j-1
llcsi, j-1

llcsi-1, j-1

yi, j llcsi, j

yi, j
llcsi, j

llcsi, j

IF (yi, j-1 = xi-1, j) 
THEN k = 1; 
ELSE k = 0;

llcsi,j = max(llcsi-1, j, 
llcsi,j-1, 
llcsi-1, j-1+k);

xi-1,j llcsi-1, j

yi,,j-1
llcsi, j-1

llcsi-1, j-1

yi, j llcsi, j

yi, j
llcsi, j

llcsi, j

IF (yi, j-1 = xi-1, j) 
THEN k = 1; 
ELSE k = 0;

llcsi,j = max(llcsi-1, j, 
llcsi,j-1, 
llcsi-1, j-1+k);
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next clock period. In this way, the results propagate through the 
array diagonally. It is easy to see that after a latency period that is 
required to fill the pipeline, the throughput of the systolic array is 
½, i.e. 1 output result per 2 clock periods. 

It is interesting to note that as n increases, the hardware resource 
cost increases, but the throughput remains the same, as long as the 
reconfigurable hardware chip has sufficient resources to 
implement a full n×n array of cells. A version of this chip for 
words of length 32 is feasible. Another detail is that the systolic 
array must be fed by an array of registers that delay the entry of 
the bases on the right of word a and at the bottom of the word b.  
In effect, this synchronizes the presentation of those parts of the 
operand words with the diagonal waves of intermediate 
calculations in the cells that proceed from the upper left corner 
down and to the right through the array. 

5. HYBRID ARECHITECTURE 
The proposed hybrid architecture consists of a host CPU, a 
hardware accelerator and a software program running on the host 
CPU. The host CPU and the hardware accelerator are connected 
via the system bus. In order to increase the portability of the 
design, we divide it into two modules: the bus interface and the 
hardware accelerator core. The hardware accelerator will also be 
called a processing element (PE) in the rest of the paper. The bus 
interface module connects to the bus as a slave. It has a set of 
command registers and an information exchange memory, which 
can be accessed by both CPU and the PE. For different bus 
architecture, a new bus interface must be developed.  

5.1 Hardware acceleration for multi-deme 
parallel GA based codeword search 
A two-level method is adopted to control the PE. At the top level, 
the operations of the PE are categorized into 9 states: {idle, init, 
check_pop, mutation, check_mutate, update_pop, update_lib, 
sorting, mating}. In the init state, the PE generates a random 
initial population, and sets up either an empty initial library, or 
reads an initial partial library from a disk file.  In the mutate state, 
the PE produces a population of 47 mutated individuals based on 
a chosen individual. The PE calculates the fitness for all the 
individuals in the initial population, and in the mutated 
population, in the “check_pop” and “check_mutate” states, 
respectively. In the “update_lib” state, the PE writes the newly 
discovered acceptable codewords into the library. In the 
“update_pop” state, the PE writes the best (or a randomly chosen) 
mutated individual back to the working population. In the 
“sorting” state, the PE scans the entire population to pick the best 
k individuals. Two parents are randomly picked from these 
individuals when the PE is in the “mating” state and single-point 
cross-over is performed. A control flag is introduced which can be 
used to disable the sorting and mating functions in the PE.  

Each state corresponds to an operation in the GA algorithm. 
Figure 5 (a) shows the control and data flow graph (CDFG) of the 
algorithm based on this state division. The “update_lib” and 
“update_pop” operations are one cycle operations because they 
only perform a memory write. All the other operations are multi-
cycle operations, which again can be divided into sub-states. 
When the top level state machine enters the state of a multi-cycle 
operation, the second level state machine is triggered.  

We call an operation a blocking operation if its successors in the 
CDFG cannot start until this operation is done. Similarly, an 
operation is called non-blocking operation if its successors can 
start right after this operation started. The “init” and “mutation” 
operations are both non-blocking operations. While the PE is 
generating the initial population and the mutated population, it is 
at the same time checking the fitness of the generated individual. 
The “check_pop” and “check_mutate”, “sorting”, and “mating” 
operations are blocking operations. Their following operations 
cannot start until they have been finished. Figure 5 (b) shows the 
scheduling of the operations. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  Top level state machine controller. 
A buffer is needed to pass the results of one operation to its 
successor. In particular, a first-in-first-out (FIFO) storage should 
be used as the output buffer of a non-blocking operation. 
However, the implementation of the FIFO is relatively easy in this 
design because the non-blocking operations are always faster than 
their successors. Therefore, it is not necessary to check the FIFO 
underflow condition. The output buffers are implemented using 
the FPGA built-in block memories. The block memories are dual 
port memories which can be read and written simultaneously. 
Three memory blocks are used: Initial Population Memory (Mpop), 
Mutated Population Memory (Mmutate) and CodeWord Library 
Memory (Mlib). The input and output buffers of different 
operations are given in Table 1. 

Table 1. The input/output buffer of operations. 
operations Input Output 

init - Mpop 
check_pop Mpop Mlib 

mutate Mpop Mmute 
check_mutate Mmute Mlib 

update_lib Mpop Mlib 
update_pop Mmute Mpop 

sorting Mpop Mpop 
mating Mpop Mpop 

(b) Scheduling of operations   

(a) Control and data flow graph  
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The PE and the host CPU program run asynchronously. Four-way 
handshaking protocol is used to synchronize the communication 
between hardware and software.  

5.2 Parallel multi-deme GA 
The PE discussed above uses about 12,263 LUTs (look-up-
tables), which is only about 42% of the programmable resources 
in a Xilinx Virtex II 3000 FPGA and about 16% of the 
programmable resources in a Xilinx XC2VP70 FPGA. Therefore, 
we evaluated a further speed-up enhancement that involved 
implementing multiple parallel PEs on a single FPGA. The 
architecture supports the exchange of best individuals among PEs. 
Therefore, the overall system performs parallel multi-deme GA.  

The system consists of n PE modules, which are denoted as 
GA1~GAn, an arbiter and a bus interface. The value of n is 
determined by the size of the FPGA. For example, n is 2 for the 
Virtex II 3000 FPGA and 5 for the XC2VP70. Each module 
implements the above mentioned genetic algorithm to search for 
the DNA codeword. They are independent of each other. The 
populations in different GA modules are initialized using different 
random seeds.   

Communication and synchronization are two challenges that need 
to be addressed when designing a system that performs parallel 
GA. All the GA modules share the same bus interface. Codewords 
found by any one GA module must be harvested and passed to the 
other GA modules. In this design, all the GA modules are 
connected to an arbiter. When a GA module finds a new 
codeword, it raises the “PE_got_new_word” flag and requests to 
be connected to the bus interface to communicate with the host. 
The arbiter broadcasts the new codeword to all other GA modules 
and raises the “update_library” flag. The GA module that 
receives the “update_library” request must terminate its current 
operation and go to “update_lib” state. If multiple GA modules 
raise the “PE_got_new_word” flag simultaneously, the arbiter 
must select one of them and invalidate the others. The decision is 
based on a fixed priority. The arbiter also connects the selected 
GA module that has found a new codeword with the bus interface 
to communicate with the host. If another GA module finds a new 
word, it must wait till the end of the current host-PE 
communication procedure to be connected to the bus interface. 
Figure 6 (a) shows the state machine controller of the arbiter for 
library update. 

 

 

 

 

 

 

 

 

 

Figure 6 State machine controller of the arbitrator. 
In the multi-deme island GA, the best few individuals of each 
sub-population migrate periodically according to an interconnect 

configuration, e.g. around a ring in one direction. This procedure 
is also controlled by the arbiter. A separate state machine 
controller in the arbiter is developed for the migration procedure. 
Figure 6 (b) shows the state diagram of the migration controller. 
Periodically, the PE sends a migration request to the arbiter. The 
arbiter will acknowledge this request if its migration controller is 
in the idle state. After receiving the acknowledgement from the 
arbiter, the PE sends its best few individuals and their fitness 
values to the arbiter.  These data are placed in a memory together 
with similar data received from other PEs. The arbiter sorts and 
picks the best m individuals, where m is the number of individuals 
to be migrated, and sends them back to the PE which started the 
request for migration.  For the case of 2 PEs on a chip served by 
one arbiter, this is equivalent to a directed ring configuration.  
However, for the case of more than 2 PEs on a chip, this approach 
implements a local pooling, or all-to-all configuration.  Above the 
chip level, the host is still free to implement any communication 
configuration among host nodes in a cluster with standard MPI. 

5.3 Hardware acceleration for exhaustive 
search 
The effectiveness of the stochastic search decreases when the size 
of the search space increases, or when the solution space 
decreases due to additional constraints. As codewords are added 
to the library, more library words must be checked against 
candidates, and the new words act as new constraints. As a result, 
the time required for the GA to find a new codeword increases 
exponentially. Furthermore, using stochastic search, we will never 
know whether still another new codeword can be added to the 
library. The only way to answer this question is by using 
exhaustive search, i.e. checking every possible codeword in the 
universe of all possible codewords. The complexity of exhaustive 
search increases linearly with the number of codewords already in 
the library.  However, the complexity of exhaustive search also 
increases exponentially with the length of the codewords. As the 
name suggests, for a given initial library, the exhaustive search 
portion of the hybrid algorithm must scan the entire codeword 
space and find all remaining additional valid codewords that 
satisfy constraint equations (2)-(4). For DNA codewords of length 
16, and for an initial library with 100 codewords, exhaustive 
search in software would take 52 days on a 2.0GHz Intel Xeon 
processor if checking a pair takes 10 microseconds. 

With small modification, we can implement the exhaustive DNA 
codeword search using hardware. The hardware accelerator for 
exhaustive codeword search consists of only one memory, which 
is used to store the codeword library, a 32 bit counter cycled from 
0 to its maximum value to represent the potential new word, and 
two systolic array fitness checkers. For each codeword x, the 
calculation of ),( sxLLCS and ),( sxLLCS , where Ss∈ , are 
performed simultaneously by the two fitness checkers.  

The hardware accelerator for exhaustive search of DNA 
codewords of length 16 uses 21,733 LUTs, which is about 75% of 
Virtex II 3000 FPGA. At 100Mhz clock frequency, the hardware 
accelerator takes about 1.5 hours to scan the entire ~4.3 billion 
codeword space for codewords of length 16, which is over 800 
times faster than the workstation PC software only case. At the 
completion of exhaustive search we can say that a codeword set is 
locally optimum, in the sense that given the series of random 
numbers used to drive the stochastic GA in the early phase of 
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building, no additional codewords can be added to increase the 
size of the library.  To date, little data has been published in the 
literature on locally optimum edit distance codes of lengths 
greater than about 12 bases, and this hardware accelerator enables 
us to efficiently explore this aspect of the problem domain for the 
first time. 

6. EXPERIMENTAL RESULTS 
A hardware accelerator that uses a stochastic GA to build DNA 
codeword libraries of codeword length 16 has been designed, 
implemented, and tested. The first version uses one fitness 
evaluator and is implemented on a single FPGA chip.  

The design has actually been ported onto three different 
reconfigurable computing platforms, including a Xilinx XUP 
Virtex-II Pro evaluation board [13], a laptop computer with the 
Annapolis Wildcard FPGA board [14], and a desktop computer 
with the Annapolis Wildstar–II FPGA board.  Different bus 
architectures are used to connect the hardware accelerator to the 
host CPU in each of the different platformsThe other difference 
among these platforms is the amount of resources available on the 
FPGA chips resident on the boards.  

The first set of experiments evaluates the performance impact of 
various parameters of the hardware multi-deme GA, including the 
size of the sub-population (pop), the percentage of mutation 
during each generation (m%), the length of epoch (E) between 
migrations and the number of best individuals that migrate (n). 
The total number of mutations that are performed in each 
generation is calculated as )%( Lpopm ×× , where L is the length 
of the codeword. For each mutation, the routine that is given in 
Figure 2 is executed. For this first set of experiments, the 
hardware implementations consisted of 2 parallel PEs that 
perform GA based codeword searching, each with one LLCS 
checker, and without exhaustive search.  

 

 

 

 

 

Figure 7 Effect of size of sub-population 
We first ran the DNA codeword searching varying sub-population 
from 16 to 256. The number of keepers, the length of the epoch, 
number of migrated individuals, and the percentage mutation 
were fixed to be 8, 5, 7 and 10.  Figure 7 shows a comparison of 
the average performance of those runs, in terms of the time it 
takes to build a large library.  Less time is better, so the lower 
curve is better than the upper curve. In all the plots given by 
Figure 7-13,  the x axis is the number of codewords found, where 
each codeword is either a strand or its reverse complement (a pair 
counts for 2). The GA is a stochastic algorithm, so each point in 
the curves is the average over 10 runs of the times taken to find 
the # of codewords on the x axis. For these experiments we set the 
length of the codewords n to be 16, and the permissible match (n- 
edit distance) σ to be 10.  The experimental results show that with 
mating and migration enabled, a small population is superior to a 

large population in terms of search speed. This is because the 
most time consuming operation in mating and migration is pick 
up the best k individuals, which we call the number keepers. This 
does not require a full sort of the population, but even so, it is a 
sequential procedure that cannot be accelerated by a parallel 
architecture for typical population sizes.  It takes more time to 
index through a larger population multiple times to find its best k 
individuals.  
In the second experiment, we vary the percentage mutation from 1 
to 25 to evaluate its impact on performance. The size of sub-
population, the number of migrated individuals, the length of 
epoch and the number of keepers were fixed to be 64, 7, 5 and 8. 
Figure 8 shows a comparison of the average performance of 
different configurations. As we can see, the percentage mutation 
has a significant impact on the system performance.  
 
 
 
 
 
 

Figure 8 Effect of mutation 
Higher percentage mutation leads to better performance. For 
example, to find 206 codewords, the hardware GA configured 
with 25% mutation is about 400X faster than the hardware GA 
configured with 1% mutation. This can partly be explained by the 
overhead of mating. When the size of population is fixed, the 
value of percentage mutation determines how many mutation 
operations will be performed between two mating operations. 
Because each mutation operation takes fixed amount of time, it 
also determines the frequency of mating operations. A higher 
percentage mutation implies less frequent mating, and thus, lower 
overhead from the sorting operation.  

In the third and the fourth experiments, we vary the number of 
migrated individuals and the number of generations in the epoch 
between migrations, respectively, to evaluate the performance 
impact of these two parameters. However, the results show that 
there is little performance impact from the number of migrated 
individuals and the epoch length. Due to the space limit, we do 
not report this data in the paper.  

The second set of experiments compares the performance of 
multi-deme hardware GA with and without mating and migration. 
Figure 9 shows a comparison of the average performance of GA 
with mating and migration versus GA without mating and 
migration when the size of sub-population varies from 16 to 256. 
The number of keepers, the length of the epoch, the size of 
migrated individuals and the percentage mutation are fixed to be 
8, 5, 7 and 10.  As we can see, overall, the parallel GA without 
mating and migration is more efficient than the parallel GA with 
mating and migration. The difference becomes more significant as 
the size of population increases. Again, this shows that the 
overhead of mating increases as the population size increases. 
Figure 10 analyzes the data from this experiment in terms of the 
speed improvement of parallel GA without mating and migration, 
for different population sizes, normalized to the performance with 
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population size 16. As we can see, at the beginning of the search, 
smaller populations find words faster, but as the number of 
codewords increases, the larger populations find word slightly 
faster.  This effect may be due to the  beneficial effect of 
processing more mutations in between pick-up operations at the 
end of generations (doing wider search) outweighs the negative 
effect of the overhead of the pickup operation that also increases 
with population size. 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Effect of mating and migration. 
 
 
 
 
 
 
 

Figure 10 Effect of size of population in GA w.o. mating and 
migration. 

Figure 11 shows the performance comparison between a single 
PE system and a 2 PE system. Both systems are configured with 

population size equal to 16 and both are running without mating 
and migration. As expected, the 2-PE system is about twice as fast 
as the one PE system  

The next set of experiments compares the hardware GA with a 
software version of the GA, again without mating and migration, 
and with one PE is instantiated in the hardware. 

 

 

 

 

 

 
Figure 11 Performance comparison of single PE vs. 2-PE 

Figure 12 shows a comparison of the average performance of the 
GA based codeword search algorithm running in software on a 
single workstation processor (upper curve) and the hardware 
accelerated hybrid  architecture (lower line).  The upper curve for 
the software version was run on one workstation with 1 P4 
processor. The lower curve for the hardware GA was run with a 
100MHz FPGA clock frequency.  

 

 

 

 

 

 

Figure 12 Comparison of average performance. 
Compared to the software only implementation, the hardware 
accelerator running at 100MHz provides approximately a 1000X 
speed-up. The speed-up of the hardware versions is due to the 
parallel and pipelined architecture of the hardware. Based on 
previous work [15] we would expect almost linear speed-up 
(a/0.98) vs. the number of fitness calculators, and linear speed-up 
as the number of distributed GA populations p is increased. 

 

 

 

 

 

 

Figure 13 Comparison of best performance. 
Figure 13 shows a comparison of the best performance to date of 
the software GA and the hardware GA.   In this case, the top red 
curve for the distributed software multi-deme GA was run on a 
cluster using 10 P4 processors without mating, but with 
migration. The inter-processor communication is implemented 
using MPI (message passing interface). The middle blue curve for 
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the hardware GA was run on the Annapolis Wildcard-II in a 
notebook PC with a 30MHz FPGA clock frequency, without 
mating and migration. The lower magenta curve for the hardware 
GA with exhaustive search was run on a Wildcard board in a P4 
workstation with a 100MHz FPGA clock frequency, also without 
mating and migration (exhaustive search found 8 more words). 

 

 

 

 

 
 

Figure 14 Size of local optimal DNA codeword libraries built 
with 300sec. GA plus exhaustive search. 

In a final set of experiments, we used the exhaustive search 
version of the hardware accelerator to determine the average size 
of locally optimum codeword libraries that can be built, and the 
efficacy of the GA for building them.  Figure 14 shows a 
histogram of the sizes of libraries generated by running hardware 
GA (without mating and migration) for 300 seconds followed by 
hardware exhaustive search. The results show that the size of the 
local optimal DNA codeword library follows approximately a 
normal distribution with mean of about 122 codewords 
(word/word’ pairs). The experiment consists of 60 tests, which 
took about 90 hours.  The equivalent test on a 30 workstation 
cluster would have taken about 3000 hours (4 months). 

Figure 15 shows data from a second experiment involving 32 runs 
of the same hardware GA for 600 sec. followed by exhaustive 
search. The number of words found during the GA phase (red) 
and the exhaustive search phase (green) is highlighted.  

Locally optimum library lengths for 32 runs of 
GA for 600 sec. followed by  Exhaustive Search (ES)
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Figure 15 Sizes of Libraries built with 600 sec. GA followed 

by exhaustive search. 
The GA phase alone finds an average of 120.4 words, and 
exhaustive search raises the number found to 121.7.  So, GA 
alone found about 98.9% of the words that can be found. 

7. CONCLUSIONS AND FUTURE WORK 
In this work, we propose a novel architecture for accelerating a 
multi-deme parallel GA based DNA codeword searching 

algorithm. Our preliminary research results show that, using a 
new hardware and software hybrid implementation, we can 
speedup the DNA codeword search procedure by more than 
1000X.  We have also described a hardware exhaustive search 
extension that can produce known locally optimum codes. In the 
future, we plan to extend the current architecture to incorporate 
thermodynamics based metrics for estimating the binding strength 
of DNA pairs, and a checker for codes word of at least length 32. 
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ABSTRACT. Reliable DNA computing requires a large pool of oligonucleotides that do 
not produce cross-hybridize. In this paper, we present a transformed algorithm to calculate 
the maximum weight of the 2-stem common subsequence of two DNA oligonucleotides. 
The result is the key part of the Gibbs free energy of the DNA crosshybridized duplexes 
based on the nearest-neighbor model. The transformed algorithm preserves the physical 
data locality and hence is suitable to be implemented using a systolic array. A novel hybrid 
architecture that consists of a general purpose microprocessor and a hardware accelerator 
for accelerating the discovery of DNA under thermodynamic constraints is designed, 
implemented and tested. Experimental results show that the hardware system provides more 
than 250X speed-up compared to a software only implementation.  
1. INTRODUCTION 

A single DNA strand (i.e. oligonucleotides) is a sequence of four possible nucleotides denoted 
as A, C, G and T. Short DNA sequences can be synthesized easily and be used for different 
applications, including high density information storage [2], molecular computation of hard 
combinatorial problems [1], and molecular barcode to identify individual modules in complex 
chemical libraries [3]. These applications rely on the specific hybridization between DNA code 
word and its Watson-Crick complement.  The key to success in DNA computing is the availability 
of a large collection of DNA code word pairs that do not crosshybridize.   

The capability of hybridization between two oligonucleotides is determined by the base 
sequences of the hybridizing oligonucleotides, the location of potential mismatches, the 
concentrations of the molar strand, the temperature of the reaction and the length of the sequences 
[4]. The melting temperature (Tm) is a parameter that characterizes these factors [4]. It is defined as 
the temperature at which 50% of the DNA molecules have been separated to single strand. Another 
closely related measure of the relative stability of a DNA duplex is its Gibbs free energy denoted as 
ΔGO. The nearest-neighbor (NN) model [8][12] was proven to be effective and accurate estimation 
for the free energy. In [14], the concept of t-stem block insertion-deletion codes was introduced that 
captures the key aspects of the nearest neighbor model. In the same reference, a dynamic 
programming algorithm is presented to calculate the maximum weight of the t-stem common 
subsequence. 

Search methods for DNA codes are extremely time-consuming [5], and this has limited research 
on DNA codeword design, especially for codes of length greater than about 12-14 bases.  For 
example, the largest known DNA codeword library generated based on the edit distance constraint 
with length 16 and edit distance 10 consists of 132 pairs.   Composing such codes can take several 
days on a cluster of 10 G5 processors.  

In [9], we presented a novel accelerator for the composition of reverse complement, edit distance 
DNA codes of length 16. It incorporates a hardware GA, hardware edit distance calculation, and 
hardware exhaustive search which extends an initial codeword library by doing a final scan across the 



entire universe of possible code words. The proposed architecture consists of a host PC, a hardware 
accelerator implemented in reconfigurable logic on a field programmable gate array (FPGA) and a 
software program running in a host PC that controls and communicates with the hardware accelerator. 
The proposed architecture using a modified genetic algorithm that uses a locally exhaustive, mutation-
only heuristic tuned for speed. The proposed architecture successfully reduced the DNA codeword 
search time from 6 days (on 10 Pentium processors) to 1.5 hours and achieved an effective 1000X speed-
up. 

The edit distance metric only provides the first order approximation of the free energy of the 
DNA duplexes. To improve the quality of the code words, more accurate metric based on the 
thermodynamics of DNA duplexes must be considered. This paper focuses on implementing the 
nearest-neighbor based free energy calculation on the reconfigurable hardware accelerator. We 
present a transformed algorithm to calculate the maximum weight of the 2-stem common 
subsequence of two DNA oligonucleotides. The result is the key part of the Gibbs free energy of the 
DNA crosshybridized (CH) duplexes based on the nearest-neighbor model. The transformed 
algorithm preserves the physical data locality and hence is suitable to be implemented using systolic 
array. A new hardware accelerator for accelerating the discovery of DNA under thermodynamic 
constraints is further presented. The proposed architecture provides more than 250X speed-up 
compared to a software only implementation.  

The remainder of this paper is organized as follows: Section 2 provides the necessary biological 
background and the nearest-neighbor model for free energy calculation. Section 3 introduces the 
weighted t-stem block insertion-deletion codes. Section 4 gives the transformed algorithm and its 
hardware implementation using 2D systolic array. Section 5 presents our problem formulation and 
the solution technique in hardware GA. Section 6 provides a performance comparison between the 
software version and the hardware version of the codeword search. Section 7 presents final 
conclusions. 

2. BACKGROUND 

The DNA molecule is a nucleic acid. It consists of two oriented oligonucleotide sequences. One 
end of it is denoted as 3’ and the other as 5’. There are four types of bases, denoted briefly as A, T, 
C, and G. Each base can pair up with only one particular base through hydrogen bonds: A+T, T+A, 
C+G and G+C. Sometimes we say that A and T are complementary to each other while C and G are 
complementary to each other. A Watson-Crick complement of a DNA sequence is another DNA 
sequence which replaces all the A with T or vise versa and replaces all the T with A or vise versa, 
and also switches the 5’ and 3’ ends. A DNA sequence binds most stably with its Watson-Crick 
complement and the structure they form is called Watson-Crick (WC) duplex. Figure 1 (a) shows an 
example of a WC duplex. We refer to the non-WC duplex as crosshybridized (CH) duplex. Figure 1 
(b) shows an example of a CH duplex. Only WC duplexes are needed during DNA computing. 
Therefore, it is important to design the DNA codes such that a fixed temperature can be found that 
is well above the melting point of all CH duplexes and well below the melting point of all WC 

duplexes that can form from strands in the code.  
The thermodynamics of binding of nucleic acids has 

been widely studied and reported in the literature. The 
nearest-neighbor (NN) model [12] was proven to be 
effective and accurate for the thermodynamic energy 
estimation. The NN model assumes that stability of a 
DNA duplex depends on the identity and orientation of 

neighboring base pairs. There are 10 possible NN pairs: AA/TT, AT/TA, TA/AT, CA/GT, GT/CA, 
CT/GA, GA/CT, CG/GC, GC/CG, and GG/CC. Based on the NN model, the total free energy 
change of a DNA duplex at temperature T can be calculated by the following equation: 

Terminal ,
NNs 
,,, )()( ATT

CrickWatsoni
stackTsymmetryTinitiationTT GiGGGtotalG οοοοο Δ+∑+Δ+Δ=Δ

−∈
,         

A A C G −T G

T T  −C G A C

5’ 3’

5’3’

A A C G −T G

T T  −C G A C

5’ 3’

5’3’

A  A C G T G

T  T G C A C

5’ 3’

5’3’

A  A C G T G

T  T G C A C

5’ 3’

5’3’

(a) WC duplex (b) CH duplex 

Figure 1 WC duplex and CH duplex



where initiationTG ,
οΔ  is the initiation energy,  symmetryTG ,

οΔ  is a parameter that reflects whether the 
duplex is self-complementary, Terminal , ATTGοΔ is a parameter that accounts for the differences 
between duplexes with terminal AT versus terminal GC, )(, iG stackT

οΔ  gives the thermodynamic 
energy of Watson-Crick NN duplex i. Their values at 37oC are given in Table 1.  

Example: Using Table 1, the NN free energy of DNA duplex 
'5'3
'3'5

−−
−−

GCAACT
CGTTGA

 can be calculated 

as: 
)()()()()()( ,37,37,37,37,37NNs WC , GAGTGGTTGGTGCGGiG stackstackstackstackstacki stackT Δ+Δ+Δ+Δ+Δ=Δ∑∈

ο

-1mol kcal 35.53.145.100.144.117.2 −=−−−−−= . 
Table 1 Nearest-neighbor thermodynamic parameters for DNA Watson-Crick pairs at 37OC 

[12] 
•  • A • C • G • T
• A • -

1 
• -

1.44 
• -

1.28 
• -

0.88 
• C • -

1.45 
• -

1.84 
• -

2.17 
• -

1.28 
• G • -

1.3 
• -

2.24 
• -

1.84 
• -

1.44 
• T • -

0.58 
• -

1.3 
• -

1.45 
• -

1.00 

While the parameters initiationTG ,
οΔ , symmetryTG ,

οΔ , and Terminal , ATTGοΔ  can be obtained in a 
straightforward manner, the NN free energy (i.e.  )(NN ,∑∈ ΔWCi stackT iGο ) is determined by the 
structure of the primary sequence of the DNA duplex. This work focuses on accelerating the 
calculation of NN free energy using reconfigurable hardware and applies it to hardware based DNA 
code word search. 

3. T-STEM BLOCK INSERTION-DELETION CODES 

In the rest of the paper, we adopt some notations that are used in reference [14]. We use [n] to 
denote the set {0, …, n-1} and (n) to denote the sequence 1, 2, …, n. We call )(npα a string if and 
only if it is a subsequence of consecutive integers, e.g., α = i, i+1,…,i+k. Let [q]n denote the set of 
sequences of length n with entries in [q]. For x = x1, …, xn with nqx ][∈  and kiii ,...,, 21=σ  where 

)(npσ , we use xx pσ  to denote the subsequence kiii xxx ,...,, 21  and x[i] to denote the ith entry in 

sequence x. Given a non-negative real-valued function, Ω, on [q], we define the weight of 
subsequence xσ as ∑Ω=

∈
Ω σ

σ
i

ixx )( . 

For )(npσ , a substring σβ p  is called a block of σ if β is not a subsequence of any substring 
α of σ with αβ ≠ . Denote σ as a sequence of blocks li ββββ ,...,,...,, 21 , if the difference between 
the endpoint of βi and the starting point of βi+1 is greater than or equal to t, then σ is a t-gap 
sequence of (n). It is denoted as )(nGt∈σ . Given )(npσ , )(mpτ  with |||| τσ =  and 

)(nGt∈σ , )(mGt∈τ , let τσ →:f be a unique mapping, σ and τ are said to be t-gap block 

isomorphic (denoted as τσ
t
≅ ) if σα p is a string ⇔ τα p)(f  is a string. For nqx ][∈  and 



mqy ][∈ , if τσ yx =  and τσ
t
≅ , then we say σx  and τy  are t-gap block isomorphic and denote it 

as τσ yx
t
≅ .  

Definition 1 For 12 −≤≤ nt  and nqyx ][, ∈ , we define the weight of the longest common t-gap 

block subsequence of x and y as }:max{),(, τσσφ yxxyx
t

t
q ≅≡ ΩΩ . The weighted distance of two 

t-gap block insertion-deletion codes is defined as  ),(),min(),( ,, yxyxyx t
q

t
q ΩΩΩΩ −≡Φ φ . 

When t = 1 and σσ xx =Ω , ),(1
, yxqΩΦ  is the Levenshtein insertion-deletion distance. 

The weight of the longest common t-gap block subsequence of x and y (i.e. ),(, yxt
qΩφ ) can be 

calculated using dynamic programming. For nqyx ][, ∈  and njit ≤≤ , , let t
jiM ,,Ω  denote 

),( ],1[],1[ ji
t yxΩφ  and ),( yxsuf  denote the length of the longest common suffix between x and y. It 

is proved ([14]) that:  
    },,max( ,,1,,,1,,,

t
ji

t
ji

t
ji

t
ji DMMM Ω−Ω−ΩΩ = ,                                                   

(1) 
where t

jiD ,,Ω  is defined as 

{ }
⎪⎩

⎪
⎨
⎧ ≥≤≤+= +−−+−−ΩΩ+−

Ω
otherwise                                                                                                                     0

1),(      ),(1:max ],1[],1[],1[],1[1,1,],1[
,,

jiji
t

trjtriirit
ji

yxsufifyxsufrMxD

.   (2) 
Given two sequences nqyx ][, ∈ , τσ yx =  with a unique mapping τσ →:f , a t-stem exists if 

and only if subsequences ]1)(),([]1,[ −+−+ = tififtii yx . Let t
τσ  be the sequence of the first index of all 

the t-stems. For nqx ][∈ , let )( ]1,[ −+taaq xd  be a unique number in ][ tq  to represent 

11... −++ taaa xxx , we define tntt qx −∈ ][)(  as a sequence whose ith element is equal to 

)(( ]1, −+tiiq xd . For 12 −≤≤ nt , it can be proved that if 0≠t
τσ , then )(

)(
)( t

ft
t

tt yx
ττ σσ

≅ .  

Definition 2 Let Ω be a weight function on ][ tq , the maximum weighted t-stem common 

subsequence is defined as 
⎭
⎬
⎫

⎩
⎨
⎧

=Ω
)(max),( tt
txyx
τσ

ψ . The t-stem code distance is defined as 

),(,min),( )()( yxyxyx tttt
Ω

ΩΩ
−⎟

⎠
⎞⎜

⎝
⎛=Ψ ψ .  

It is proved ([14]) that the maximum weighted t-stem common subsequence of x and y is equal 
to the weight of the longest common t-gap block subsequence of x(t) and y(t), i.e. 

( ))()(
,

,),( ttt
q

t yxyx tΩΩ =φψ . 

Let the CH duplex between x and y  be denoted as 
←
yx : , where y  is the WC complement of y 

and 
←
y is a representation of y  in reversed order. If the duplex 

←
yx :  have a secondary structure, 



then its free energy of nearest neighbor stacked pairs can be calculated as ),(2 yxΩψ , where the 

weight function Ω is equal to o
stackTG ,Δ− .  

Example: Consider the CH duplex 
'5'3
'3'5

−−
−−

GCTGCTACT
AACGTAGAT

. It corresponds to strings x = 

AACGTAGAT and y = CGACGATGA. Because ]7,6][5,3[]9,8][4,2[ yx = , we have ]9,8][4,2[=σ , 

]7,6][5,3[=τ , 8,3,22 =τσ , and 

molkcalATGCGGACGxx stackstackstack / 49.4)()()( ,37,37,37
)2(

8,3,2
)2( =Δ−Δ−Δ−==σ . 

Let A, C, G, T be encoded as 0, 1, 2, and 3, then x = 0, 0, 1, 2, 3, 0, 2, 0, 3 and y = 1, 2, 0, 1, 2, 
0, 3, 2, 0. x(2) = 0, 1, 6, 11, 12, 2, 8, 3 and y(2) = 6, 8, 1, 6, 8, 3, 14, 8. It is easy to see that 

)2(
6,4,3

)2(
8,3,2 yx = . Let  8,3,2=σ  and  

6,4,3=τ , because any string in σ 
corresponds to a string in τ, and the 
gaps between blocks in σ and τ are 
equal to 2, we say τσ

2
≅  and 

)2(
2

)2(
τσ yx ≅ . Note that although 

)2(
6,5,4,3

)2(
8,7,3,2 yx = , because a string in 

6,5,4,3=τ  does not necessarily correspond to a string in 8,7,3,2=σ , therefore, )2(
8,7,3,2x  and 

)2(
6,5,4,3y  are not t-gap block isomorphic. Using equation (1) and (2) we can find that 

=Ω ),(2 yxψ ==Ω
)2(

7,3,2
)2()2( ),( xyxtφ )()()( ,37,37,37 GAGCGGACG stackstackstack Δ−Δ−Δ−  molkcal / 91.4= . Figure 

2 shows the secondary structures in the CH duplex that for 8,3,22 =τσ  and 7,3,22 =τσ . 
In this work, we estimate the NN free energy of a CH duplex by calculating their maximum 

weighted 2-stem common subsequence. In the next section, we will present a dynamic 
programming algorithm that is suitable for a 2D systolic array implementation.  

4. CALCULATION OF NN FREE ENERGY USING 2D SYSTOLIC ARRAY 
Based on the equations (1) and (2), a dynamic programming algorithm was developed. 

Given a CH duplex 
←
yx : , we define 3 matrices. They include a suffix matrix (S) which 

stores the length of the longest common suffix between x and y, a weighted suffix matrix 
(WS) which stores the accumulated weight of each common stem-2 and an energy matrix 
(E) which stores the accumulated free energy of the possible NNs. The value of the ijth 
entry of these matrices can be calculated using the following equations. 

⎩
⎨
⎧ =+

= −−
otherwise                               0

][][ if              11,1 jyixs
s ji
ij ,                                                                                          

(3) 

⎩
⎨
⎧ −=−=−+

= −−
otherwise                                                                               0

]1[]1[&][][ if            ])[],1[(1,1
,

iyixjyixixixwws
ws ji

ji ,                                 

(4) 

Figure 2 Represent DNA secondary structure using 
2-stem insertion-deletion codes  
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The parameter w(a[i-1],a[i]) is the stack-pair free energy specified in Table 1. The bottom right 

entry of the E matrix gives the NN free energy of 
←
yx : .  

Example: Consider x = 5’AATGA3’ and '5'3 CATGGy =
←

 (i.e. '3'5 GTACCy = ,) the matrix S, WS, 
and E can be calculated as the following and the NN free energy of the CH duplex is 2.33. 
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Systolic array processing has been widely used in parallel computing to enhance performance. 
Its general architecture is given in Figure 3 (b). It has N×N connected processors. Each processor 
performs an elementary calculation. The processor P(i,j) reads data from its up stream neighbors 
P(i-1,j), P(i,j-1) and P(i-1, j-1), and propagates the results to its down stream neighbors P(i+1,j), 
P(i,j+1) and P(i+1, j+1). After an initialization period that is needed to fill the pipeline, a systolic 
array generates one result per 2 clock periods. 

Equation (3)~(5) cannot be directly mapped to a 2D systolic array architecture because to 
calculate ije  we need the value of djdiws −− , ( djdie −− , ), ijsd ≤≤1 . The variable ije  is calculated 
by processor P(i,j). The variables djdiws −− , and djdie −− ,  are calculated by processor P(i-d, j-d). If 
the calculation of ije  is performed at clock period t, then the calculations of djdiws −− , and 

djdie −− ,  of the same DNA duplex are performed at clock period dt 2− . Because cells in the 
systolic array will register the new input and update their results every 2 clock periods, it is not 
possible for us to access the data of djdiws −− , and djdie −− , at clock period t if d is greater than 1. 
One way to handle this problem is to memorize the values of djdiws −− , and djdie −− , by adding 
extra storage elements. Because the maximum value of sij can be as high as the length of the DNA 
strand, which in our case is 16, this solution requires us to duplicate each cell in the systolic array 
16 times. This is not practical as it significantly increases the hardware cost. 

In this work, we use function transformation to simplify the hardware design. We define a 
minimum weighted suffix matrix (MIN_WS) which stores the minimum value of the difference 
between djdiws −− , and 1,1 −−−− djdie , where ijsd ≤≤1 . The ijth entry of MIN_WS can be 
calculated as 

⎩
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⎧ =−

= −−
otherwise                                         1,000,000

][][ if   ),min( 1,1 jyixewsmin_ws
min_ws jiij1-j1,-i

ij ,                                      (6) 

when ][][ jyix ≠ , min_wsij will be set to an extremely large number, otherwise, it is the minimum 
between min_wsi-1,j-1 and wsij-ei-1,j-1. The calculation of eij and wsij is transformed into the following 
equations. 
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Equations (6)~(8) are equivalent to equations (3)~(5), however, only information from adjacent 
cells is needed in the calculation, hence, they can be implemented using the systolic array 
architecture.  

The hardware design of the 2D systolic array can be derived directly from equations (6)~(8). 
The systolic array is 
an n×n array of 
identical cells. Each 
cell in the array has 7 
inputs, among which 
the inputs ei-1,j and 
x[i-1, j] are coming 
from the cell that is 
located above, the 
inputs ei,j-1 and y[i, j-
1] are coming from 
the cell that is located 
to the left, and the 
inputs ei-1,j-1, wsi-1,j-1 
and min_wsi-1,j-1 are 
coming from the cell 
that is located to the 
upper left. Each cell 

performs the computations that are described in equations (6)~(8). For cell (i,j), the outputs xi,j and 
yi,j are equal to the inputs xi-1,j and yi,j-1. Figure 3 (a) gives the structure of each cell, including its 
input/output and the computation implemented. The variable xi,j and yi,j are represented as 2 bit 
binary numbers with A=00, C=01, G=10, and T=11. The variable ei,j, wsi,j and min_wsi,j are 
represented as 14 bit signed integer numbers. 

The overall architecture of the 2D systolic array as well as the data dependency and timing 
information are shown in Figure 3 (b). In order to prevent ripple through operation, the cells in the 
even columns and even rows or odd columns and odd rows are synchronous to each other and 
perform the computation in the same clock period. The rest of the cells are also synchronous to each 
other but perform the computation in the next clock period. In this way, the results propagate 
through the array diagonally.  

5. PROBLEM FORMULATION AND SOLUTION TECHNIQUE 
We consider each DNA codeword as a sequence of length n in which each symbol is an element 

of an alphabet of 4 elements. Let ):(
←
yxG  denote the nearest neighbor free energy of duplex 

←
yx : .  

In this work, we focus on searching for a set of DNA codeword pairs S, where S consists of a set of 
DNA strands of length n and their reverse complement strands e.g. {(s1, 1s ), (s2, 2s ), …}, where 
(s1, 1s ) denotes a strand and its Watson-Crick complement.  The problem can be formulated as the 
following constrained optimization problem: 
        ||max S     such that                                                                                    (8) 

         ,):(),:(max 1111 gssGssGrangeg ≤
⎟
⎟

⎠

⎞

⎜
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←←
                                                       (9)          

Figure 3 Calculating maximum weighted 2-stem common subsequence 
using 2D systolic array 
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where g and range are user defined threshold called CH upper bound and CH range. Equation (8) 
indicates that our objective is to maximize the size of the DNA codeword library. Constraints 
(9)~(10) specify that the NN free energy of any CH duplexes must be lower than or equal to g but 
greater than or equal to g-range. For any DNA duplex, the weakest stacked pair is the AT pair with 

88.0)(,37 =Δ ATGo
stack  and 58.0)(,37 =Δ TAGo

stack . Therefore, for 16],,,[, TGCAxy p , 

min( 8.1058.0)88.058.0(*7), )2()2( =++=
ΩΩ

yx . Based on definition 2, the weighted t-stem 

distance between x and y is greater than g−8.10  and less than rangeg +−8.10  if 

gyxGyxrangeg ≤=≤−
←

Ω ):(),(2ψ . Therefore, constraints (9)~(10) ensure that the t-stem distance 
between any non-WC pairs in the library is within the range [10.8-g+range, 10.8-g]. The range was 
initially introduced because we thought that adding code words that are too far away from the rest 
of the library will restrict the future growth of the library. Therefore, we only add code words that 
are “just good enough”. Later in the experiments we found that the range has little impact on the 
size of the library, however, it has a significant impact on the convergence speed of the GA. 

The optimization problem is solved using a genetic algorithm. A genetic algorithm (GA) is a 
stochastic search technique based on the mechanism of natural selection and recombination. 
Solutions, which are also called individuals, are evolved from generation to generation, with 
selection, mating, and mutation operators that provide an effective combination of exploration of 
the global search space.  

Given a codeword library S, the fitness of each individual d reflects how well the corresponding 
codeword fits into the current codeword library. Two values define the fitness, reject_num and 
max_match. The reject_num is the number of codewords in the library which does not satisfy the 

condition (9)~(10) and 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

←←←←

≠∈
):(),:(),:(),:(maxmax_ 21212121

, 122
ssGssGssGssGmatch

ssSs
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A traditional GA mutation function might randomly pick an individual in the population, 
randomly pick a pair of bits in the individual representing one of its 16 bases, and randomly change 
the base to one of the 3 other bases in the set of 4 possible bases. In the proposed algorithm, 
however, we randomly select an individual, but then to exhaustively check all of the 48 possible 
base changes.  This is an attempt to speed beneficial evolution of the population by minimizing the 
overhead that would be associated with randomly picking this individual again and again in order to 
test those mutations.  We also specify that if none of the 48 mutations were beneficial, a random 
individual will be generated to replace the original one. For more details about the genetic algorithm 
and its hardware implementation, please refer to [9][11]. In this work, we extend the architecture of 
the hardware GA presented in [9] to incorporate the consideration of nearest-neighbor free energy. 
The 2D systolic array that is presented in section 4 is used as fitness evaluation module and the 
main state machine controller of the GA is modified so that it checks all the constraints (9)~(10). 

6. EXPERIMENTAL RESULTS 
A hardware accelerator that uses a stochastic GA to build DNA codeword libraries of codeword 

length 16 has been designed, implemented, and tested. The design was implemented on the 
reconfigurable computing platform that is composed of a desktop computer and an Annapolis 
WildStar–Pro FPGA board [10].  The FPGA board is plugged into the PCI-X slot of the host 
system. The WildStar-Pro uses XC2VP70 FPGA that has 74,448 programmable logic cells. The 
hardware accelerator uses about 80% of the logic resource, and it runs at 45 MHz clock frequency. 
A hardware based code extender that uses exhaustive search to complete the codeword library 



generated from GA has also been designed and implemented. All the code word libraries that have 
been found were verified using the online tool SynDCode[13].  Since GA is a stochastic algorithm, 
all results reported are the average of 5 runs. 

The first set of experiments compares the performance of the hardware-based and the software-
only DNA codeword search. Two search algorithms are implemented. They are denoted as 
“deterministic search” (DS) and “randomized search” (RS).  The population size is 16. The 
population of the DS was initialized using 16 sequential data from 0x000003F0 to 0x000003FF, 
which corresponds to DNA codeword 3’AATTTAAAAAAAAAAA’5 and 
3’TTTTTAAAAAAAAAAA’5, while the population of the RS was initialized randomly. When a 
new codeword is found, or when none of the mutated codewords has lower fitness than the original 

individual, a new individual will be 
generated to replace the original 
one. In the DS, a counter is used to 
generate the new individual. The 
counter is initialized to 
0x000006D6. In the RS, the new 
individual is generated randomly. 
The random search is more effective 
than the deterministic search. 
However, in order to compare the 
speed of hardware-based 
implementation and software-based 
implementation, we must ensure 

that the two systems perform exactly the same computation tasks.  This is achievable only with a 
deterministic algorithm. All experiments were run with g = 8.5 and range = 1.0. They are 
terminated after 300 code word pairs have been found.  

Figure 4 shows the average time it takes to build large thermodynamic constrained DNA code 
word libraries using software on a single processor workstation, and using the hardware accelerator. 
The lower curve indicates faster speed. As we can see, the software-based deterministic search has 
the lowest performance, while the hardware-based random search has the highest performance. The 
hardware-based deterministic search provides approximately 240X speed-up compared to the 
software-only version while the hardware-based random search provides approximately 260X 
speed-up compared to the software-only version. Compared to the deterministic search, random 
search provides approximately 3.7X and 4X speed-ups using software-only and hardware-based 
implementations, respectively. The plot also shows that the curves for software-only 
implementation and hardware-based implementation are almost parallel to each other, which 
indicates that they both have the same complexity. Therefore, the performance gain that has been 
achieved by using hardware acceleration is a constant ratio.  
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Comparison between hardware-based and 
software-based implementation 
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(a) Impact of range on the speed of the code word search 
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Figure 5 Impact of different ranges on the search speed  



 
 
 
 
 
 
 
 

The second set of 
experiments 
evaluated the 
impact of CH 
range on the speed 
and quality (library 
size vs time) of the 
search. We varied 
the CH range from 
0.05 to 3 and ran 

the GA based code 
word search with 
g=8.5. Figure 5 (a) 
shows library size 
vs time for different 
CH ranges. Figure 5 
(b) and (c) give the 
number of code 
word pairs found in 
200 seconds, and 

the time to find 400 code word pairs, for different CH ranges. The results show that the 
library growth is slower when the CH range is either too large or too small. In the next 
experiment, we ran the GA until it  could not find any new code word for 10 minutes,) then 
we use exhaustive search to complete the codeword library. Figure 6 (a) shows the runtime 
of GA under different ranges and Figure 6 (b) shows the size of the library found by GA 
and the size of the final library. As we can see, the GA converges faster when setting the 
range to appropriate value. Compared to range = 0.5, the runtime of GA is 26% and 24% 
longer at range= 0.05 and 3.0 respectively. Opposite to our original believe, the distance 
range does not have significant impact on the library size. The sizes of libraries found by 
GA at different ranges only have 4% difference and the sizes of final libraries only have 3% 
difference. The exhaustive search usually finishes within 2 hours.  

 The third set of experiments compares the search speed for different CH upper bounds (g). We 
varied the CH upper bound from 6.5 to 10.0 and run the GA-based code word search. We stop the 
search when it found 300 code word pairs or the run time exceeds 15 minutes. Figure 7 (a) shows 
the number of code word pairs found in 5 minutes for CH upper bounds from 5 to 8.0 while Figure 
7 (b) shows the runtime to find 300 code word pairs for CH upper bound from 8.5 to 10. The results 
indicate that as the CH upper bound increases, the chances to find a code word increases 
exponentially. 
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Figure 7 Code word search under different CH upper bound 
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Figure 6 Impact of different ranges on the library size 
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The significance of the hardware accelerator is that it enables us to evaluate different code word 
search algorithms and explore the lower bound of optimal code word libraries in a reasonable 
amount of time. For example, without the hardware accelerator, each experiment in the second set 
would take more than 20 days. 

7. CONCLUSIONS AND FUTURE WORK 
In this work, we propose a systolic array architecture to calculate the nearest-neighbor free 

energy of DNA duplexes. A hardware accelerator has been developed that searches for DNA 
codewords based on thermodynamic energy constraints. In the future, we plan to extend the current 
architecture to search and extend DNA code libraries with word lengths up to 32 bases. 
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