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Abstract. This paper studies algorithms for decomposing a real image into the
sum of cartoon and texture based on total variation minimization and second-
order cone programming (SOCP). The cartoon is represented as a function of
bounded variation while texture (and noise) is represented by elements in the space
of oscillating functions, as proposed by Yves Meyer. Our approach gives more
accurate results than those obtained previously by Vese-Osher’s approximation
to Meyer’s model, which we also formulate and solve as an SOCP. The model of
minimizing total variation with an L1-norm fidelity term is also considered and
empirically shown to achieve even better results when there is no noise. This
model is analyzed and shown to be able to select features of an image according
to their scales.

1. Introduction

Let f be an observed image, which, in real applications, contains texture and/or noise.
Texture is characterized as repeated and meaningful structure of small patterns. Noise
is characterized as uncorrelated random patterns. The rest of an image, which is called
cartoon, contains object hues and sharp edges (boundaries). Thus an image f can be
decomposed as f = u + v, where u represents image cartoon and v is texture and/or
noise. A general way to obtain this decomposition is to solve the problem

min {‖s(u)‖A | ‖t(u, f)‖B ≤ σ}, (1)

where s(·) and t(·, ·) are two functionals on appropriate spaces and ‖ · ‖A and ‖ · ‖B

are norms (or semi-norms). ‖ · ‖A and s(·) should be chosen so that ‖s(u)‖A is small
for regular signals u but much bigger for irregular noise v. Then, minimizing ‖s(u)‖A

is equivalent to regularizing u according to the measure ‖s(u)‖A. A typical choice
for ‖s(u)‖A is

∫ |Du|p, where u ∈ BV (see Def. 2.1) and Du denotes the generalized
derivative of u. For p > 1, smooth functions are more regular. Therefore, to keep
edges like object boundaries of f in u (i.e. allow discontinuities in u), one should
use p = 1. An adaptive combination of these semi-norms is used to keep sharp edges

‡ Research supported by NSF Grants DMS-01-04282, DNS-03-12222 and ACI-03-21917, ONR Grants
N00014-03-1-0514 and N00014-03-0071, and DOE Grant GE-FG01-92ER-25126.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2005 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2005 to 00-00-2005  

4. TITLE AND SUBTITLE 
Total Variation Based Image Cartoon-Texture Decomposition 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Columbia University ,Department of Computer Science,New 
York,NY,10027 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
This paper studies algorithms for decomposing a real image into the sum of cartoon and texture based on
total variation minimization and second-order cone programming (SOCP). The cartoon is represented as a
function of bounded variation while texture (and noise) is represented by elements in the space of
oscillating functions, as proposed by Yves Meyer. Our approach gives more accurate results than those
obtained previously by Vese-Osher’s approximation to Meyer’s model, which we also formulate and solve
as an SOCP. The model of minimizing total variation with an L1-norm fidelity term is also considered and
empirically shown to achieve even better results when there is no noise. This model is analyzed and shown
to be able to select features of an image according to their scales. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

25 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Total Variation Image Cartoon-Texture Decomposition 2

while avoiding staircase effects in regions where the image varies smoothly. The fidelity
term ‖t(u, f)‖B ≤ σ for some σ forces u to be close to f . t(u, f) is often chosen to
be f − u which is ideally the noise component v. The choice of a particular norm
depends on the application. In image denoising, a common choice (known as the ROF
model) is ‖t(u, f)‖B = ‖f − u‖L2 , which is small if f − u is noise or texture. In
deblurring with denoising, for example, ‖t(u, f)‖B = ‖f − Au‖L2 is commonly used,
where A is a blurring operator. In our application of cartoon-texture decomposition,
it is important to choose a norm which favors texture exclusively; in other words, ‖v‖B

is small only if v is image texture. In both practice and theory, cartoon and texture
are not completely distinguishable. It is unlikely that there exists ‖t(·, f)‖B so that
‖t(u, f)‖B < ∞ for pure cartoon u but ‖t(u + εv, f)‖B = ∞ for texture v and any
ε > 0. Consequently, it is necessary to minimize a regularization term ‖s(u)‖A while
imposing a constraint on the fidelity term ‖t(u, f)‖B ≤ σ. In this paper, we show how
to formulate and solve Meyer’s model min{∫ |∇u| s.t.‖f − u‖G ≤ σ} (the norm ‖ · ‖G

will be defined in Section 2 below), its approximation, the Vese-Osher (VO) model,
and the TV+L1 model min{∫ |∇u| s.t.‖f − u‖L1 ≤ σ} as second-order cone programs
(SOCPs), and compare these models with one another.

Readers should keep in mind that if ‖s(u)‖A and ‖t(u, f)‖B are convex in u, the
constrained minimization problem min{‖s(u)‖A s.t. ‖t(u)‖B ≤ σ} is equivalent to its
Lagrangian form min{‖s(u)‖A + λ‖t(u, f)‖B}, where λ is the Lagrange multiplier of
the constraint ‖t(u)‖B ≤ σ. The two problems have the same solution if λ is chosen
equal to the optimal value of the dual variable corresponding to the constraint of the
constrained problem. Given σ or λ, we can calculate the other value by solving the
corresponding problem.

The rest of the paper is organized as follows. In Section 2 we define certain
function spaces and norms on them that are fundamental to the representation and
analysis of images. We also present two theorems about compactness that are useful in
our analysis. In Section 3 we present the three models for image-cartoon decomposition
mentioned above. We analyze one of them - the TV+L1 model - in Section 4.
In particular, we relate the level sets of the input to the solution of the TV+L1

model using a geometric argument and discuss the scale-selection properties of this
model. In Section 5 we give the SOCP formulations of the three models presented
in Section 3, after introducing some notation and background for SOCP. Numerical
results illustrating properties of the models are given in Section 6.

2. The BV and G spaces and norms

In this section, we formally define the Banach space BV of functions with bounded
variation and the Banach space G, which is dual to a subspace of BV , and norms
defined in these spaces.
Definition 2.1 [28] Let u ∈ L1, and define

‖Du‖ := sup
{∫

udiv(~g) dx : ~g ∈ C1
0 (Rn;Rn), |~g(x)|l2 ≤ 1 for all x ∈ Rn

}
,

and ‖u‖BV := ‖u‖L1 + ‖Du‖, where C1
0 (Rn;Rn) denotes the set of continuously

differentiable vector-valued functions that vanish at infinity. The Banach space of
functions with bounded variation is defined as

BV =
{
u ∈ L1 : ‖u‖BV < ∞}

,

and is equipped with the ‖ · ‖BV -norm.
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BV (Ω) with Ω being a bounded open domain is defined analogously to BV with L1

and C1
0 (Rn;Rn) replaced by L1(Ω) and C1

0 (Ω;Rn), respectively.
To help understand this definition, let us consider the case that u ∈ C1; then Du

is the usual derivative vector ∇u, i.e.,

‖Du‖ =
∫

Ω

|∇u|l2 =
∫

Ω

∣∣∣∣(
∂u

∂x1
, . . . ,

∂u

∂xn
)
∣∣∣∣
l2

dx

since ∫
u div(~g) dx = −

∫
~g · ∇u dx. (2)

Also noting that C1
0 (Rn;Rn) is dense in C0(Rn;Rn), we can define the following

functional on C0(Rn;Rn): [14]

Lu(g) ≡
∫

u div(~g) dx := lim
i→∞

∫
udiv(~gi) dx (3)

for g ∈ C0(Rn;Rn) where gi ∈ C1
0 (Rn;Rn) uniformly converges to g (thanks to

‖u‖BV < ∞, the limit does not depend on the choice of sequence).
More generally, if u is in the Sobolev space W 1,1(Rn), then Du is the generalized

derivative of u. Therefore, from the definition (3) and using integration by parts, we
have

u ∈ BV ∩W 1,1(Rn) ⇔ sup
~g∈C0(Rn;Rn) |~g(x)|l2≤1

∫
Du · ~g ≤ ∞. (4)

We can also see from (4) that each u defines a bounded linear functional Lu(g)
on C0(Rn;Rn) [14]. Using the Riesz representation theorem (also referred to as the
Riesz-Markov theorem) on the isomorphism between the dual of C0(Rn;Rn) and the
set of bounded vector Radon measures, we immediately have the following equivalent
and often used definition:

BV = {u : Du is a bounded Radon vector measure on Rn} .

When Du is considered a measure, ‖Du‖ over a set Ω ⊆ Rn equals the total variation
of Du as the Borel positive measure over Ω. This is given by

‖Du‖(Ω) = sup

{
n∑

i=1

‖Du(Ei)‖ :
n⋃

i=1

Ei ⊆ Ω, Ei’s are disjoint Borel sets

}
,

where the Borel sets are the σ-algebra generated by the open sets in Rn. This is
true because each ~g ∈ C0(Rn;Rn) such that ‖~g‖l2 ≤ 1 is the limit of a series of
[−1, 1]-valued vector functions that are piecewise constant on Borel sets.

In the dual space of C0(Rn;Rn) we define weak-* convergence of Dun to Dn as

lim
n→∞

∫

Ω

Dun · ~g =
∫

Ω

Du · ~g,

for all ~g ∈ C0(Rn;Rn).
Sets in Rn with finite perimeter are often referred to as BV sets. The perimeter

of a set S is defined as follows:

Per(S) := ‖D1S‖ = sup
{∫

S

div(~g)dx : ~g ∈ C1
0 (Rn;Rn), |~g(x)|l2 ≤ 1, ∀ x ∈ Rn

}
, (5)

where 1S is the indicator function of S.
Next, we define the space G [18].
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Definition 2.2 Let G denote the Banach space consisting of all generalized functions
v(x) defined on Rn that can be written as

v = div(~g), ~g = [gi]i=1,...,n ∈ L∞(Rn;Rn), (6)

and equipped with the norm ‖v‖G defined as the infimum of all L∞ norms
of the functions |~g(x)|l2 over all decompositions (6) of v. In short, ‖v‖G =
inf{‖ |~g(x)|l2 ‖L∞ : v = div(~g)}.
G is the dual of the closed subspace BV of BV , where BV := {u ∈ BV : |Du| ∈ L1}
[18]. We note that finite difference approximations to functions in BV and in BV are
the same. For the definition and properties of G(Ω), see [6].

An immediate result of Definition 2.2 is∫
u v =

∫
u∇ · ~g = −

∫
Du · ~g ≤ ‖Du‖‖v‖G, (7)

holding for any u ∈ BV with a compact support and v ∈ G. We say (u, v) is an
extremal pair if (7) holds with equality.

The following lemma [5, 15, 21] is very useful in many proofs:

Lemma 2.3 Let q ∈ [1,∞) and u ∈ BV ∩ Lq. Then there exists a sequence {ul}l∈N
in C∞0 satisfying

ul → u in Lq and ‖Dul‖ → ‖Du‖.
The same also holds for u ∈ BV (Ω).

For a proof of this lemma, see [21]. We note that if Ω := spt(u), the support of u,
is bounded, then Lq(Ω) ⊆ L1(Ω) holds for any q ≥ 1; hence, one only requires u ∈ BV
(by definition BV (Ω) ⊂ L1(Ω)) for the result in Lemma 2.3 to hold.

Theorem 2.4 (See [21, 28] for related results) If a sequence {ui}i∈N defined in BV
satisfies supi ‖Dui‖ < +∞, then it has a subsequence that weakly converges in both
Ln/(n−1) and BV to u ∈ BV . Moreover, weak lower semi-continuity holds for this
sequence:

‖Du‖ ≤ lim infi‖Dui‖.
Proof Let us apply the previous lemma with q = n/(n− 1) for each ui: there exist a
sequence {ui,l} in C∞0 such that ui,l → ui strongly in Ln/(n−1) and ‖Dui,l‖ → ‖Dui‖
as l →∞. First we prove ‖ui‖Ln/(n−1) is bounded:

‖ui‖Ln/(n−1) = sup
w∈C∞0 ,‖w‖Ln≤1

∫
wui

= sup
w∈C∞0 ,‖w‖Ln≤1

lim
l→∞

∫
wui,l

≤ lim inf l→∞‖ui,l‖Ln/(n−1)

≤ lim
l→∞

‖Dui,l‖
= ‖Dui‖,

where the first equality follows from the fact that C∞0 (Ω) is dense in Ln = (Ln/(n−1))∗,
the second equality holds because strong convergence implies weak convergence (using
Hölder’s inequality), and the second inequality follows the Gagliardo-Nirenberg-
Sobolev inequality applied to ui,l ∈ C∞0 :

‖f‖Ln/(n−1) ≤
∫
|∇f |lr for any r ≥ 1.
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From supi ‖Dui‖s∗ < +∞, the ui’s are uniformly bounded in Ln/(n−1) and, hence,
there exists a u ∈ Ln/(n−1) that is the weak limit of some subsequence of {ui}i∈N. Let
us continue to write the subsequence as {ui}i∈N. Then from

‖Du‖ = sup
~g∈C1

0 , |~g|ls≤1

∫
udiv(~g)

= sup
~g∈C1

0 , |~g|ls≤1

lim
i→+∞

∫
uidiv(~g)

≤ lim infi‖Dui‖,
we have u ∈ BV . Moreover, noting that the second equality still holds for any ~g ∈ C1

0

without taking the supreme over ~g, we have {ui} also weakly converges to u in BV .
In other words, {Dui} converges to Du as measures. ¥

This theorem proves the so-called relatively weakly compact property. For Lp (1 ≤
p < n/(n− 1), the next theorem gives a stronger result:

Theorem 2.5 (See [1, 15]) Let S be a BV -bounded set of functions defined on Ω
bounded. Then S is relatively compact in Lp for 1 ≤ p < n/(n− 1).

Theorems 2.4 and 2.5 are used in Section 3.3 to prove that the solutions of the
perturbed TV+L1 model converge to the solution of the TV+L1 model.

3. Three cartoon-texture decomposition models

In the rest of the paper, we assume the input image f has a compact support contained
in a bounded convex open set Ω with a C1 boundary.

3.1. Meyer’s model

To extract cartoon u in the BV space and texture and/or noise v as an oscillating
function, Meyer [18] proposed the following model:

inf
u∈BV

{
∫
|∇u| : ‖v‖G ≤ σ, f = u + v}. (8)

As we have pointed out in Section 2, G is the dual space of BV, a subspace of BV .
So G is closely connected to BV . Meyer gave a few examples in [18] illustrating the
appropriateness of modeling oscillating patterns by functions in G.

Unfortunately, it is not possible to write down Euler-Lagrange equations for
the Lagrangian form of Meyer’s model, and hence, use partial differential equation
methods to solve it. Alternatively, several models [6, 7, 22, 26] have been proposed to
solve (8) approximately. The Vese-Osher (VO) model [26] approximates || |~g(x)|l2 ‖L∞

by || |~g(x)|l2 ‖Lp , with 1 ≤ p < ∞. It is described in Section 3.2. The Osher-Sole-
Vese model [22] replaces ‖v‖G by the Hilbert functional ‖v‖2H−1 . The more recent
A2BC model [6, 8, 7], inspired by Chambolle’s projection algorithm [11], minimizes
TV (u) + λ‖f − u − v‖2 for (u, v) ∈ BV × {v ∈ G : ‖v‖G ≤ µ}. A similar projection
algorithm [9] is also used to approximately solve the TV+L1 model described in
Subsection 3.3 below. In Section 5 we present an SOCP-based optimization model
to solve (8) exactly (i.e., without any approximation and regularization applied to∫ |∇u| and ‖v‖G except for the use of finite differences).



Total Variation Image Cartoon-Texture Decomposition 6

3.2. The Vese-Osher model

Motivated by the definition of the L∞ norm of |~g(x)|l2 as the limit

‖ |~g|l2 ‖L∞ = lim
p→∞

‖ |~g|l2 ‖Lp , (9)

Vese and Osher [26] proposed the following approximation to Meyer’s model (8):

inf
u∈BV,~g∈C1

0 (Rn;Rn)
{V Op(u,~g) :=

∫
|∇u|+ λ

∫
|f − u− div(~g)|2 + µ

[∫
|~g|pl2

]1/p

}. (10)

In R2, minimizing V Op with respect to u,~g = (g1, g2) yields the associated Euler-
Lagrange equations:

u = f − ∂1g1 − ∂2g2 +
1
2λ

div
( ∇u

|∇u|
)

, (11)

µ

(
‖
√

g2
1 + g2

2‖p

)1−p (√
g2
1 + g2

2

)p−2

g1 = 2λ
[
∂1(u− f) + ∂2

11g1 + ∂2
12g2

]
, (12)

µ

(
‖
√

g2
1 + g2

2‖p

)1−p (√
g2
1 + g2

2

)p−2

g2 = 2λ
[
∂2(u− f) + ∂2

12g1 + ∂2
22g2

]
. (13)

In [26], the authors solve the above system of partial differential equations for different
values of p, with 1 ≤ p ≤ 10, via a sequential descent approach and report that they
give very similar numerical results.

3.3. The TV+L1 model

In [3, 10, 20] the square of the L2 norm of f − u in the fidelity term in the original
ROF model (min{TV (u) + λ‖f − u‖2L2}) is replaced by the L1 norm of f − u, which
yields the following model:

min
u∈BV

TV L1λ(u) = min
u∈BV

∫

Ω

|∇u|+ λ

∫
|f − u|. (14)

Although this model appears to be simpler than the Meyer and VO models, it has
recently been shown to be extremely powerful in background correction applications
[12, 27]. It also has the important property of being able to separate out features of
a certain scale in an image as we shall show in the next section.

4. Analysis of the TV+L1 model

We now analyze the TV+L1 model assuming that the input image f is defined in L1

and has a compact support spt(f) contained in a bounded convex open set Ω with a
C1 boundary. Recall that BV (Ω) and ‖Du‖ limited to Ω are defined in analogy with
BV and ‖Du‖ where

‖Du‖Ω := sup
{∫

Ω

udiv(~g) < ∞, ~g ∈ C1
0 (Ω;Rn), |~g(x)|l2 ≤ 1

}
,

and

BV (Ω) = {u ∈ L1(Ω) : ‖u‖BV (Ω) < ∞}.
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Consider the approximate TV+L1 model in which a perturbation ε has been added
to the fidelity term ‖f − u‖L1 to make it differentiable:

min
u∈BV (Ω)

TV L1λ,ε(u) := min
u∈BV (Ω)

∫

Ω

|∇u|+ λ

∫

Ω

√
(f − u)2 + ε. (15)

Since TV L1λ,ε(u) is strictly convex, problem (15) has a unique solution uλ,ε(f) (or,
uλ,ε).

Lemma 4.1 Sets G0 := {v : v = div(~g), ~g ∈ C1
0 (Ω;Rn), ‖ |~g(x)|l2 ‖L∞ ≤ 1 } and

BV0 := {u ∈ L1(Ω) : ‖Du‖ ≤ R, ‖u‖L1 ≤ ‖f‖L1} ⊂ BV (Ω), where R is given, are
convex. Moreover, BV0 is compact in L1.

Proof Suppose vg and vh are in G0. There exist ~g,~h ∈ C1
0 (Ω;Rn) satisfying

vg = div(~g), vh = div(~h), ‖ |~g|l2 ‖L∞ ≤ 1, ‖ |~h|l2 ‖L∞ ≤ 1.

For any λ ∈ [0, 1], we have (Minkowski inequality)

‖ |λ~g + (1− λ)~h|l2 ‖L∞ ≤ ‖λ|~g|l2 + (1− λ)|~h|l2 ‖L∞

≤ λ‖ |~g|l2 ‖L∞ + (1− λ)‖ |~h|l2 ‖L∞

≤ λ + (1− λ) = 1.

This means ‖λvg +(1−λ)vh‖G ≤ 1; consequently, λvg +(1−λ)vh ∈ G0. The convexity
of BV0 can be proved analogously from its definition. The compactness of BV0 in L1

is a direct result of Theorem 2.5. ¥

Using this lemma, we shall analyze an important property of the texture output
vλ,ε of the approximate TV+L1 model (15) using the G-norm in Theorem 4.3 below.
At the end of this subsection, we shall show that vλ,ε converges to vλ as ε goes to 0.
We first state the generalized minimax theorem, which is used in the proof of Theorem
4.3.

Theorem 4.2 (Generalized Minimax Theorem [13, 25]) Let K be a compact
convex subset of a Hausdorff topological vector space X, C be a convex subset of a
vector space Y , and f be a real-valued functional defined on K × C which is (1)
convex and lower-semicontinuous in x for each y, and (2) concave in y for each x.
Then

inf
x∈K

sup
y∈C

f(x, y) = sup
y∈C

inf
x∈K

f(x, y).

Theorem 4.3 The solution uλ,ε(= f − vλ,ε) ∈ BV (Ω) of the approximate TV+L1

model satisfies

‖signε(vλ,ε)‖G ≤ 1/λ,

where signε(·) is defined point-wise by signε(g)(x) := g(x)/
√
|g(x)|2 + ε for any

function g.

A proof for more general cases can be found in [21]. We give a short proof below
based on Theorem 4.2. A similar approach is also used in [17] to derive the G-norm
related properties for the ROF model [24].
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Proof Let R (in the definition of BV0 in Lemma 4.1) be large enough, and consider
the functional L : BV0 ×G0 → R:

Lε(u, w) =
∫

Ω

uw + λ
√

(f − u)2 + ε.

Define Pε(u) = supw∈G0
Lε(u, w) and Dε(w) = infu∈BV0 Lε(u,w). L(u,w) is convex

and lower semi-continuous in u, and is linear (hence concave) in w.
Since G0 is complete w.r.t. ‖ · ‖G, there exists an optimal wλ,ε(u) satisfying

Pε(u) = Lε(u,wλ,ε(u)) for each u ∈ BV0. On the other hand, by applying Theorems
2.4 and 2.5, we have an optimal uλ,ε ∈ BV0 that minimizes Pε(u).

The obtainability of optimizers and Lemma 4.1 allow us to apply Theorem 4.2 to
Lε(u,w): there exists an optimal solution pair (uλ,ε, wλ,ε) ∈ BV0 ×G0 such that

Dε(wλ,ε) = Lε(uλ,ε, wλ,ε) = Pε(uλ,ε). (16)

The first equation indicates ∂Lε(u,wλ,ε)/∂u|u=uλ,ε
= 0, and this gives

wλ,ε = λ
vλ,ε√
v2

λ,ε + ε
, (17)

where vλ,ε = f − uλ,ε. Therefore, ‖signε(vλ,ε)‖G ≤ 1/λ. ¥

Corollary 4.4 If ‖signε(f)‖G ≤ 1/λ, uλ,ε ≡ 0 is the solution of the approximate
TV+L1 model.

Proof Let wλ,ε ≡ λ signε(f) and vλ,ε ≡ f . Noting that uλ,ε = f − vλ,ε ≡ 0, we have

D0(wλ,ε) = L0(uλ,ε, wλ,ε) = P0(uλ,ε).

The result then follows from the optimality of the saddle point (uλ,ε, wλ,ε). ¥

Corollary 4.5 If ‖signε(f)‖G > 1/λ, then there exists an optimal solution uλ,ε

satisfying

• ‖signε(vλ,ε)‖G = 1/λ;
• ∫

uλ,ε signε(vλ,ε) = ‖Duλ,ε‖/λ, i.e., uλ,ε and signε(vλ,ε) form an extremal pair.

Proof Since ‖signε(f)‖G > 1/λ but ‖signε(vλ,ε)‖G ≤ 1/λ by Theorem 4.3, we must
have uλ,ε 6≡ 0. Then, we have ‖wλ,ε‖G = 1 from the second equation in (16).
If follows from (17) that ‖signε(vλ,ε)‖G = 1/λ. The other property follows from∫
Ω

uλ,εwλ,ε = supw∈G0

∫
Ω

uλ,εw = ‖Duλ,ε‖ and the equation wλ,ε = λ signε(vλ,ε). ¥

Theorem 4.6 Assuming the TV+L1 model (14) using parameter λ has a unique
solution uλ, then the solution of approximate TV+L1 model (15) using the same
parameter λ satisfies

lim
ε↓0+

‖uλ,ε − uλ‖L1 = 0, lim
ε↓0+

‖vλ,ε − vλ‖L1 = 0.

Before proving the theorem we note that the optimal solution of the TV+L1 model (14)
is not unique for a certain set of λ’s as the objective function TV L1λ(u) is not strictly
convex. Examples of nonunique solutions can be found in [10, 27]. However, Chan
and Esedoglu [10] proved that the set of such λ’s is at most countable. Consequently,
the TV+L1 model (14) has a unique solution for almost all λ’s w.r.t. the Lebesgue
measure.

Proof of Theorem 4.6.
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Proof of Theorem 4.6 Noticing that
√

t + ε ≤ √
t +

√
ε, for t, ε ≥ 0, we have, for

all positive ε less than a given ε0,

TV L1λ,ε(uλ,ε) ≤ TV L1λ,ε(uλ) ≤ TV L1λ(uλ) +
√

ε. (18)

From this we conclude that TV L1λ,ε(uλ,ε), and thus ‖Duλ,ε‖, are bounded. Using
the fact that Ω is bounded (f has compact support) and applying Theorem 2.5
with p = 1 and n = 2, we conclude that there exists ū ∈ BV (Ω) such that
limi→∞ ‖uλ,εi

− ū‖L1 = 0 with limi→∞ εi = 0. The optimality of ū follows from

TV L1λ(ū) = ‖Dū‖+ λ

∫
|ū− f |

= ‖Dū‖+ λ lim
i→∞

∫ √
(uλ,εi

− f)2 + εi (dominant convergence)

≤ lim inf
i→∞

‖Duλ,εi
‖+ λ

∫ √
(uλ,εi

− f)2 + εi (lower semi-continuity)

= lim inf
i→∞

TV L1λ,εi(uλ,εi)

≤ TV L1λ(uλ) (by (18)).

By the uniqueness of uλ, limε→0+ ‖uλ,ε − uλ‖L1 = 0. Since f ∈ L1 and hence
vλ = f − uλ ∈ L1, we also have limε→0+ ‖vλ,ε − vλ‖L1 = 0. ¥

4.1. TV+L1 Geometry

It is well know that the G-norm (Def. 2.2) is a good measure of the oscillation of
functions. Using G-value [23], which is an extension of Meyer’s G-norm, we are able to
fully characterize the texture output of the TV+L1 model for a given parameter λ. In
addition to cartoon-texture decomposition, the TV+L1 model can be used to separate
large-scale and small-scale features. In these applications, we are often interested in an
appropriate λ that will allow us to extract geometric features of a given scale measured
by the G-value of the feature set. For general input, the TV+L1 model, which has
only one scalar parameter λ, returns images combining many features. Therefore, we
are interested in determining a λ that gives the whole targeted features with the least
unwanted features in the output.

For simplicity, we assume Ω = R2 in this section. Our analysis starts with the
decomposition of f using level sets and relies on the co-area formula (19) [15] and
“layer cake” formula (20) [10], below. We first need the following:

Definition 4.7 The (upper) level set of a function g at level µ is defined by

U(g, µ) := {x ∈ Dom(g) : g(x) > µ}.
The co-area formula for functions of bounded variation is∫

|Du| =
∫ ∞

−∞
Per(U(u, µ)) dµ, (19)

where Per(·) is the perimeter function defined in (5). Using (19), Chan and Esedoglu
[10] showed that the TV L1λ functional can represented as an integral over the
perimeter and weighted areas of certain level sets by the following “layer cake” formula:

TV L1λ(u) =
∫ ∞

−∞
(Per(U(u, µ)) + λ |U(u, µ)\U(f, µ)|+ λ |U(f, µ)\U(u, µ)|) dµ, (20)

where |S| for a set S returns the area of S. Therefore, an optimal solution uλ to the
TV+L1 model can be obtained by minimizing the right-hand side of (20).
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Let us fix λ and focus on the integrand of the above functional and introduce the
following notation:

C(Γ, Σ) := Per(Σ) + λ|Σ\Γ|+ λ|Γ\Σ|, (21)

where Γ and Σ are sets with bounded perimeters in R2.
We are interested in determining whether we can obtain uλ and its geometric

properties by exchanging the minimum and the integral operators and solving

min
Σ

C(Γ, Σ) (22)

for every Γ = U(f, µ) where µ ∈ [−∞,∞). Let Σf,µ denote a solution of (22) for
Γ = U(f, µ). For the existence of a u satisfying U(u, µ) = Σf,µ for all µ, we need
Σf,µ1 ⊇ Σf,µ2 for any µ1 < µ2, since it is clear from Definition 4.7 that for a given
g, U(g, µ) is monotonically decreasing with respect to µ. This result is proved in
Theorem 4.12.

Lemma 4.8 ([4], Prop. 3.38) If two arbitrary sets S1 and S2 have finite perimeter,
then S1 ∩ S2 and S1 ∪ S2 have finite perimeter and

Per(S1 ∩ S2) + Per(S1 ∪ S2) ≤ Per(S1) + Per(S2). (23)

The above lemma is used in the proof of Lemma 4.9 below.

Notation: in the rest of this section, we assume that Γ1 and Γ2 are two sets with
Γ1 ⊃ Γ2 and the sets Σ1 and Σ2 are solutions of (22) for Γ = Γ1 and Γ = Γ2,
respectively. For arbitrary sets Γ and Σ, we write Γ + Σ instead of Γ∪Σ if Γ∩Σ = ∅
holds, and write Γ− Σ instead of Γ\Σ if Σ ⊆ Γ holds.

Lemma 4.9 Defining Γ1, Γ2, Σ1, and Σ2 as in the above notation, we have

C(Γ1, Σ2)− C(Γ1, Σ2 ∩ Σ1) ≥ C(Γ1, Σ1 + (Σ2\Σ1))− C(Γ1, Σ1). (24)

Lemma 4.10 Defining Γ1, Γ2, Σ1, and Σ2 as in the above notation, we have

C(Γ2, Σ2)− C(Γ2, Σ2 ∩ Σ1) ≥ C(Γ1, Σ2)− C(Γ1, Σ2 ∩ Σ1). (25)

To demonstrate the use of Lemmas 4.9 and 4.10, we first present and prove the
following theorem:

Theorem 4.11 Let Γ1, Γ2, Σ1, and Σ2 be defined as in the above notation. If either
one or both of Σ1 and Σ2 are unique minimizers, then Σ1 ⊇ Σ2; otherwise, i.e., both
are not unique minimizers, Σ1 ⊇ Σ2 may not hold, but in this case, Σ1 ∪ Σ2 is a
minimizer of (22) for Γ = Γ1. Therefore, there always exists a solution of (22) for
Γ = Γ1 that is a superset of any minimizer of (22) for Γ = Γ2.

Proof Combining Lemmas 4.9 and 4.10, we have

0 ≥ C(Γ2, Σ2)− C(Γ2, Σ2 ∩ Σ1) ≥ C(Γ1, Σ2)− C(Γ1, Σ2 ∩ Σ1)
≥ C(Γ1, Σ1 + (Σ2\Σ1))− C(Γ1, Σ1)
≥ 0.

Clearly, all the inequalities hold as the equalities. Consequently, Σ1 + (Σ2\Σ1) =
Σ1 ∪ Σ2 minimizes C(Γ1, ·). If Σ1 is the unique minimizer of C(Γ1, ·), then
Σ1 + (Σ2\Σ1) = Σ1 which gives Σ1 ⊇ Σ2. If Σ2 is the unique minimizer of C(Γ2, ·),
then Σ2 = Σ2 ∩ Σ1 which also gives Σ1 ⊇ Σ2. ¥
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This theorem serves as a foundation for Theorem 4.12. Next, we give the proofs
of Lemmas 4.9 and 4.10.

Proof (Lemma 4.9) By Definition 4.7,

C(Γ1, Σ2)− C(Γ1, Σ2 ∩ Σ1) = (Per(Σ2)− Per(Σ2 ∩ Σ1)) (26)
+ λ(|Σ2\Γ1| − |(Σ2 ∩ Σ1)\Γ1|) (27)
+ λ(|Γ1\Σ2| − |Γ1\(Σ2 ∩ Σ1)|), (28)

C(Γ1, Σ1 + (Σ2\Σ1))− C(Γ1,Σ1) = (Per(Σ1 + (Σ2\Σ1))− Per(Σ1)) (29)
+ λ(|(Σ1 + (Σ2\Σ1))\Γ1| − |Σ1\Γ1|) (30)
+ λ(|Γ1\(Σ1 + (Σ2\Σ1))| − |Γ1\Σ1|). (31)

To compare (26) with (29), we let S1 := Σ1 and S2 := Σ2 in (23); hence,
S1 ∩ S2 = Σ2 ∩ Σ1 and S1 ∪ S2 = Σ1 ∪ Σ2 = Σ1 + (Σ2\Σ1). From Lemma 4.8,
we have

Per(Σ2 ∩ Σ1) + Per(Σ1 + (Σ2\Σ1)) ≤ Per(Σ1) + Per(Σ2),

which is equivalent to

Per(Σ2)− Per(Σ2 ∩ Σ1) ≥ Per(Σ1 + (Σ2\Σ1))− Per(Σ1).

Next, we show that (27) equals (30).

|Σ2\Γ1| − |(Σ2 ∩ Σ1)\Γ1| = |((Σ2 ∩ Σ1) + (Σ2\Σ1))\Γ1| − |(Σ2 ∩ Σ1)\Γ1|
= |(Σ2\Σ1)\Γ1|+ |(Σ2 ∩ Σ1)\Γ1| − |(Σ2 ∩ Σ1)\Γ1| (∵ (Σ2 ∩ Σ1) ∩ (Σ2\Σ1) = ∅)
= |(Σ2\Σ1)\Γ1|+ |Σ1\Γ1| − |Σ1\Γ1|
= |(Σ1 + (Σ2\Σ1))\Γ1| − |Σ1\Γ1| (∵ (Σ2\Σ1) ∩ Σ1 = ∅).
The last step is to show that the remaining terms (28) and (31) are equal.

|Γ1\Σ2| − |Γ1\(Σ2 ∩ Σ1)| = |Γ1 ∩ Σ2| − |Γ1 ∩ (Σ2 ∩ Σ1)|
= −|Γ1 ∩ ((Σ2 ∩ Σ1)− Σ2)|; (∵ Σ2 ⊆ (Σ2 ∩ Σ1) )
= −|Γ1 ∩ (Σ2\Σ1)|; (∵ Σ2\Σ1 = Σ2 − Σ2 ∩ Σ1 = (Σ2 ∩ Σ1)− Σ2 )
= −|Γ1 ∩ (Σ1\Σ2)|
= −|Γ1 ∩ (Σ1 − (Σ1 ∩ Σ2)|
= |Γ1 ∩ (Σ1 ∪ Σ2)| − |Γ1 ∩ Σ1|; (∵ Σ1 ⊇ Σ1 ∩ Σ2 = (Σ1 ∪ Σ2) )
= |Γ1 ∩ (Σ1 + Σ2\Σ1)| − |Γ1 ∩ Σ1|
= |Γ1\(Σ1 + Σ2\Σ1)| − |Γ1\Σ1|.

¥

Proof (Lemma 4.10) First, we expand the left-hand side of (25) as follows:

C(Γ2, Σ2)− C(Γ2, Σ2 ∩ Σ1) = Per(Σ2)− Per(Σ2 ∩ Σ1) (32)
+ λ(|Σ2\Γ2| − |(Σ2 ∩ Σ1)\Γ2|) (33)
+ λ(|Γ2\Σ2| − |Γ2\(Σ2 ∩ Σ1)|). (34)
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The right-hand side of (25) is expanded in (26)-(28). As (32) is identical to (26), we
only need to compare (33) and (34) to (27) and (28), respectively. In fact,

|Σ2\Γ2| − |(Σ2 ∩ Σ1)\Γ2| = |(Σ2\(Σ2 ∩ Σ1))\Γ2|
= |(Σ2\Σ1)\Γ2|
≥ |(Σ2\Σ1)\Γ1| (∵ Γ1 ⊃ Γ2)
= |(Σ2\(Σ2 ∩ Σ1))\Γ1|
= |Σ2\Γ1| − |(Σ2 ∩ Σ1)\Γ1|,

|Γ2\Σ2| − |Γ2\(Σ2 ∩ Σ1)| = |Γ2 ∩ Σ2| − |Γ2 ∩ (Σ2 ∩ Σ1)|
= −|Γ2 ∩ ((Σ2 ∩ Σ1)− Σ2)| (∵ Σ2 ⊆ (Σ2 ∩ Σ1))
≥ −|Γ1 ∩ ((Σ2 ∩ Σ1)− Σ2)| (∵ Γ1 ⊃ Γ2)
= |Γ1 ∩ Σ2| − |Γ1 ∩ (Σ2 ∩ Σ1)|
= |Γ1\Σ2| − |Γ1\(Σ2 ∩ Σ1)|.

¥

We are now ready to give the main result of this section:

Theorem 4.12 Suppose that f ∈ BV has essential infimum µ0. Let function u∗ be
defined point-wise by

u∗(x) := µ0 +
∫ ∞

µ0

1Σf,µ
(x)dµ, (35)

where Σf,µ is the solution of (22) for Γ = U(f, µ) that satisfies Σf,µ1 ⊇ Σf,µ2 for
any µ1 < µ2, i.e., Σf,µ is monotonically decreasing with respect to µ. Then u∗ is an
optimal solution of the TV+L1 model (14).

Proof First, Theorem 4.11 guarantees that there exists Σf,µ as the solution of (22)
for Γ = U(f, µ) that is monotonically decreasing with respect to µ. Second, from (35)
and the monotonicity of Σf,µ and 1Σf,µ

with respect to µ, we have

U(u∗, µ) = {x :
∫ ∞

µ0

1Σf,µ
(x)dµ > µ− µ0} = {x : 1Σf,µ

(x) = 1} = Σf,µ,

for µ ∈ [µ0,∞). In addition, for µ ∈ (−∞, µ0), U(u∗, µ) = U(f, µ) = R2.
C(R2,R2) = 0. Therefore, for each µ ∈ (−∞,∞), U(u∗, µ) minimizes the integrand
in (20). Finally, we have

TV L1λ(u∗) =
∫ ∞

−∞
(Per(U(u∗, µ)) + λ |U(u∗, µ)\U(f, µ)|+ λ |U(f, µ)\U(u∗, µ)|) dµ

≤
∫ ∞

−∞
(Per(U(u, µ)) + λ |U(u, µ)\U(f, µ)|+ λ |U(f, µ)\U(u, µ)|) dµ

= TV L1λ(u),

for any u ∈ BV . Consequently, u∗ is an optimal solution of the TV+L1 model (14).
¥

Next, we use results from [23] given below to illustrate the implications of
Theorem 4.12.
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Definition 4.13 (G-value)[23] Let Ψ : R2 → 2R be a set-valued function (also called
as a multifunction and a set-valued map) that is measurable in the sense that Ψ−1(S)
is Lebesgue measurable for every open set S ⊂ R. We do not distinguish Ψ between a
set-valued function and a set of measurable (single-valued) functions, and let

Ψ := {ψ : ψ : R2 → R is measurable and ψ(x) ∈ Ψ(x), ∀ x}.
The G-value of Ψ is defined as follows:

G(Ψ) := sup
h∈C∞0 :

R |∇h|=1

inf
ψ∈Ψ

∫
ψ(x)h(x)dx. (36)

Theorem 4.14 [23] Let ∂|f | denote the set-valued sub-derivative of |f |, i.e.,

∂|f |(x) =

{
sign(f(x)) f(x) 6= 0
[−1, 1] f(x) = 0.

(37)

Then, for the TV+L1 model (14),

(i) uλ = 0 is an optimal solution if and only if

λ ≤ 1
G(∂|f |) ;

(ii) uλ = f is an optimal solution if and only if

λ ≥ sup
h∈BV

‖Df‖ − ‖Dh‖∫ |f − h| .

Instead of directly applying Theorem 4.14 to the input f , we apply it to the
indicator functions of the level sets of f . From the “layer cake” formula (20), it is easy
to see that solving the geometric problem (22) is equivalent to solving the TV+L1

model (14) with input f = 1Γ. Therefore, we have the following results as a corollary
of Theorem 4.14:

Corollary 4.15 For the geometric problem (22) with a given λ,

(i) Σλ = ∅ is an optimal solution if and only if

λ ≤ 1
G(∂|1Γ|) ;

(ii) Σλ = Γ is an optimal solution if and only if

λ ≥ sup
h∈BV

‖D1Γ‖ − ‖Dh‖∫ |1Γ − h| .

The above corollary characterizes 1Σf,µ
in (35) for given µ and λ. Suppose that

the set S of a geometric feature coincides with U(f, µ) for µ ∈ [µ0, µ1). Then, for
any λ < 1/G(∂|1S |), S is not observable in uλ. This is because 1/G(∂|1U(f,µ)|)
is increasing in µ and therefore, for µ ≥ µ0, Σf,µ (and hence 1Σf,µ

in (35))
vanishes. Once λ ≥ 1/G(∂|1S |), according the above corollary, 1Σf,µ

6≡ 0 for
µ ∈ [µ0, µ1), which implies that at least some part of S can be observed in uλ. For
λ ≥ suph∈BV (‖D1Γ‖−‖Dh‖)/ ∫ |1Γ−h|, we get Σf,µ = U(f, µ) = S for all µ ∈ [µ0, µ1)
and therefore, the feature is fully contained in uλ, which is given by (35). In general,
although a feature is often different from its vicinity in intensity, it cannot monopolize
a level set of the input f , i.e., it is represented by an isolated set in U(f, µ), for some µ,
which also contains sets representing other features. Consequently, uλ that contains a
targeted feature may also contain many other features. However, from Theorem 4.12
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and Corollary 4.15, we can easily see that the arguments for the case S = U(f, µ) still
hold for the case S ⊂ U(f, µ).

Suppose there are a sequences of features in f that are represented by sets
S1, S2, . . . , Sl and have distinct intensity values. Let

λmin
i :=

1
G(∂|1Si

|) , λmax
i := sup

h∈BV

‖D1Si‖ − ‖Dh‖∫ |1Si − h| , (38)

for i = 1, . . . , l. If the features have decreasing scales and, in addition, the following
holds

λmin
1 ≤ λmax

1 < λmin
2 ≤ λmax

2 < . . . < λmin
l ≤ λmax

l , (39)

then feature i, for i = 1, . . . , l, can be precisely retrieved as uλmax
i +ε − uλmin

i −ε (here ε

is a small scalar that forces unique solutions because λmin
i = λmax

i is allowed). This is
true since for λ = λmin

i − ε, feature i completely vanishes in uλ, but for λ = λmax
i − ε,

feature i is fully contained in uλ while there is no change to any other features.

5. Second-order cone programming formulations

In this section we show how to formulate as SOCPs the discrete versions of the
three TV-based models introduced in Section 3. In an SOCP the vector of variables
x ∈ Rn is composed of subvectors xi ∈ Rni – i.e., x ≡ (x1;x2; . . . ;xr) – where
n = n1 + n2 + . . . + nr and each subvector xi must lie either in an elementary second-
order cone of dimension ni

Kni ≡ {xi = (x0
i ; x̄i) ∈ R× Rni−1 | ‖x̄i‖ ≤ x0

i },
or an ni-dimensional rotated second-order cone

Qni ≡ {xi ∈ Rni | xi = x̄, 2x̄1x̄2 ≥
ni∑

i=3

x̄2
i , x̄1, x̄2 ≥ 0}. (40)

Note Qni is an elementary second-order cone under a linear transformation; i.e.,

(
1√
2
(x1 + x2);

1√
2
(x1 − x2); x3; . . . ; xni) ∈ Kni ⇐⇒ (x1;x2; x3; . . . ;xt) ∈ Qni .

With these definitions an SOCP can be written in the following form [2]:

min c>1 x1 + · · ·+ c>r xr

s.t. A1x1 + · · ·+ Arxr = b
xi ∈ Kni or Qni , for i = 1, . . . , r,

(41)

where ci ∈ Rni and Ai ∈ Rm×ni , for i = 1, . . . , r and b ∈ Rm.
Since a one-dimensional second-order cone corresponds to a semi-infinite ray,

SOCPs can accommodate nonnegative variables. In fact if all cones Ki are one-
dimensional, then the above SOCP is just a standard form linear program. As is
the case for linear programs, SOCPs can be solved in polynomial time by interior
point methods. This is the approach that we take to solve TV-based cartoon-texture
decomposition models in this paper.
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5.1. SOCP formulation preliminaries

In practice images are represented as 2-dimensional matrices, whose elements give the
“grey” values of corresponding pixels. In this paper we shall restrict our discussion
to square domains and hence n× n matrices in R2 for the sake of simplicity. Letting
fi,j , ui,j , and vi,j be, respectively, the values of the observed image, the cartoon, and
the texture/noise at pixel (i, j), we have the following relations:

fi,j = ui,j + vi,j , for i, j = 1, . . . , n. (42)

In all three models considered in this paper, u and v are determined by minimizing
the total variation, TV (u), to regularize u subject to a fidelity constraint, which is
different in each model. In the discrete case TV (u) is defined by:

TV (u)def=
∑

1≤i,j≤n

‖∂+ui,j‖, (43)

where ‖·‖ denotes the Euclidean norm, i.e., ‖∂+ui,j‖ = ( ((∂+
x u)i,j)2+((∂+

y u)i,j)2 )1/2,
and ∂+ denotes the discrete differential operator defined by

∂+ui,j
def=

(
(∂+

x u)i,j , (∂+
y u)i,j

)
(44)

where

(∂+
x u)i,j

def=ui+1,j − ui,j , for i = 1, . . . , n− 1, j = 1, . . . , n,

(∂+
y u)i,j

def=ui,j+1 − ui,j , for i = 1, . . . , n, j = 1, . . . , n− 1.
(45)

In addition, the differentials on the image edges, (∂+
x u)n,j , for j = 1, . . . , n, and

(∂+
y u)i,n, for i = 1, . . . , n, are defined to be zero.

By introducing the new variables ti,j and the 3-dimensional second-order cones

(ti,j ; (∂+
x u)i,j , (∂+

y u)i,j) ∈ K3, (46)

for each pixel (i, j), i, j = 1, . . . , n, we can express min{TV (u)} as min{∑i,j ti,j}
subject to (46). We now consider ways to handle the non-TV terms in models (8),
(10), and (14).

The linear constraint
∫ |f − u| ≤ σ in (14) can be expressed discretely by two

linear constraints:∑

i,j

(fi,j − ui,j) ≤ σ (47)

∑

i,j

(ui,j − fi,j) ≤ σ. (48)

If
∫ |f − u| or more generally say min |x| appears in the objective of a minimization

problem, one can introduce an extra variable and transform min |x| into equivalent
problems:

min |x| (49)
⇐⇒ min t s.t. x ≤ t, −x ≤ t (50)

(sdef= t + x) ⇐⇒ min(s− x) s.t. 2x ≤ s, s ≥ 0. (51)

Both (50) and (51) have a linear objective subject to linear constraints. In some cases,
(51) is preferred since s ≥ 0 is easier to handle [19].
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In Meyer’s model (8), we define the discretized version of ‖v‖G ≤ σ as the infimum
of

‖
√

g2
1(i, j) + g2

2(i, j)‖L∞

over all g1, g2 ∈ R(n+1)2 satisfying v = ∂+
x g1 + ∂+

y g2 using forward finite differences.
To express ‖v‖G ≤ σ (or, equivalently, ‖

√
g2
1(i, j) + g2

2(i, j)‖L∞ ≤ σ) in an SOCP, we
introduce a 3-dimensional second-order cone

(g0(i, j) ; g1(i, j), g2(i, j)) ∈ K3 (52)

for each i, j; hence, ‖v‖G ≤ σ if and only if

g0(i, j) ≤ σ (or equivalently g0(i, j) = σ), for all i, j, (53)

Next, we present ways to express the two penalty terms in (10) in SOCPs.
Using forward finite difference, the residual penalty term

∫ |f − u − ∂1g1 − ∂2g2|2
is implemented discretely as:

∑

i,j

|f − u− ∂+
x g1 − ∂+

y g2|2. (54)

Clearly, minimizing (54) is equivalent to minimizing s1 subject to the following
constraints:

2s1s2 ≥ s2
3, (55)

s2 = 1/2, (56)
s3 = s4, (57)

s2
4 ≥

∑

1≤i,j≤n

r2
i,j . (58)

(56) and (57) are linear constraints. (55) can be formulated as (s1; s2; s3) ∈ Q3 and
(58) can be formulated as (s4; [ri,j ]1≤i,j≤n) ∈ Kn2+1.

For the penalty term

µ

[∫ (√
g2
1 + g2

2

)p]1/p

(59)

in (10) there are three cases to consider. When p = 1, (59) can be formulated as
the sum of µg0(i, j) over all i, j = 1, . . . , n, where g0(i, j) is subject to (52). When
p = ∞, the case is equivalent to Meyer’s model and hence (59) can be formulated as
µσ subject (52) and (53). When 1 < p < ∞, we use second-order cone formulations
presented in [2]. Let us consider the general case, the p-norm inequality

(
n∑

i=1

|xi|l/m

)m/l

≤ t, (60)

where p = l/m ≥ 1 and t ≥ 0. If we introduce si ≥ 0, for i = 1, . . . , n, we can express
(60) as the following set of inequalities:

|xi| ≤ s
m/l
i t(l−m)/l, si ≥ 0, for i = 1, . . . , n (61)

n∑

i=1

si ≤ t, (62)
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which is equivalent to

xi ≤ s
m/l
i t(l−m)/l, −xi ≤ s

m/l
i t(l−m)/l, si ≥ 0, for i = 1, . . . , n (63)

n∑

i=1

si ≤ t, (64)

Let us now illustrate how to express the nontrivial inequality constraints in (63) as a
set of 3-dimensional rotated second-order cones and linear inequalities by a concrete
example. Suppose p = 5/3, i.e., m = 3, l = 5. Dropping the subscript i and
introducing a scalar z ≥ 0 such that z + x ≥ 0, it is easy to verify that the first
inequality in (63) is equivalent to z + x ≤ s3/5t2/5, z ≥ 0 and z + x ≥ 0, which in
turn is equivalent to (z + x)8 ≤ s3t2(z + x)3, z ≥ 0 and z + x ≥ 0. The latter can be
further expressed as the following system of inequalities:

w2
1 ≤ s(z + x), w2

2 ≤ w1s, w2
3 ≤ t(z + x), (65)

(z + x)2 ≤ w2w3, z ≥ 0, z + x ≥ 0, (66)

where the first four inequalities form four rotated second-order cones. The same
argument applies to −x ≤ s3/5t2/5 if we replace x wherever it appears in the argument
by −x.

5.2. SOCP model formulations

We now combine the SOCP expressions derived in the last section to give SOCP
formulations for (8), (10), and (14).

5.2.1. Meyer’s model

min
∑

1≤i,j≤n ti,j

s.t. ui,j + vi,j = fi,j , for i, j = 1, . . . , n
−(∂+

x u)i,j + (ui+1,j − ui,j) = 0, for i, j = 1, . . . , n
−(∂+

y u)i,j + (ui,j+1 − ui,j) = 0, for i, j = 1, . . . , n
vi,j − (g1,i+1,j − g1,i,j + g2,i,j+1 − g2,i,j) = 0, for i, j = 1, . . . , n
g0,i,j = σ, for i, j = 1, . . . , n + 1
(ti,j ; (∂+

x u)i,j ; (∂+
y u)i,j) ∈ K3, for i, j = 1, . . . , n

(g0,i,j ; g1,i,j , g2,i,j) ∈ K3, for i, j = 1, . . . , n + 1,

(67)

where u, v, ∂+
x u, ∂+

y u, g0, g1, g2, and t are variables and f and σ are constants. In
addition, we define

(∂+
x u)n,j = 0, for j = 1, . . . , n

(∂+
y u)i,n = 0, for i = 1, . . . , n,

since the boundary constraints containing them also contain un+1,j ’s and ui,n+1’s,
which are not defined. This convention also applies to the SOCP formulations of the
other TV-based models in this paper. Although solving for u and v is our ultimate
goal, they can be canceled in the above formulation. After solving the problem, v can
be recovered by (g1,i+1,j − g1,i,j + g2,i,j+1 − g2,i,j) and u by f − v.
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5.2.2. The Vese-Osher model Conforming to [26], we only give the SOCP for (10)
with p = 1:

inf
u,g1,g2

{
∫
|∇u| dx + λ

∫
|f − u− ∂1g1 − ∂2g2|2 dx + µ

∫ ∣∣∣∣
√

g2
1 + g2

2

∣∣∣∣ dx} (68)

whose SOCP formulation is
min

∑
1≤i,j≤n ti,j + λs1 + µ

∑
1≤i,j≤n+1(wi,j − g0,i,j)

s.t. ui,j + vi,j + ri,j = fi,j , for i, j = 1, . . . , n
−(∂+

x u)i,j + (ui+1,j − ui,j) = 0, for i, j = 1, . . . , n
−(∂+

y u)i,j + (ui,j+1 − ui,j) = 0, for i, j = 1, . . . , n
vi,j − (g1,i+1,j − g1,i,j + g2,i,j+1 − g2,i,j) = 0, for i, j = 1, . . . , n
s2 = 1/2, s3 = s4,
2g0,i,j ≤ wi,j , wi,j ≥ 0, for i, j = 1, . . . , n + 1
(ti,j ; (∂+

x u)i,j ; (∂+
y u)i,j) ∈ K3, for i, j = 1, . . . , n

(s1; s2; s3) ∈ Q3, (s4; r1,1, r1,2, . . . , rn,n) ∈ Kn2+1,
(g0,i,j ; g1,i,j , g2,i,j) ∈ K3, for i, j = 1, . . . , n + 1,

(69)

where u, v, r, ∂+
x u, ∂+

y u, g0, g1, g2, t, w, s1, s2, s3 and s4 are variables and f is
constant. Similar to the SOCP for Meyer’s model, u and v can be canceled in the
above formulation and recovered after solving the problem. Note that a simpler SOCP
without terms that contain the residual (error) r can be derived and solved for more
accurate u and v. The original VO model, however, was introduced to be numerically
solved by PDEs and, therefore, must have the residual penalty term to avoid the
equality constraint u + v = f .

The SOCPs for p = l/m ≥ 1 and p = ∞ can be derived using the techniques
discussed in the last section.

5.2.3. The TV+L1 model
min

∑
1≤i,j≤n ti,j

s.t. −(∂+
x u)i,j + (ui+1,j − ui,j) = 0, for i, j = 1, . . . , n

−(∂+
y u)i,j + (ui,j+1 − ui,j) = 0, for i, j = 1, . . . , n∑

i,j ui,j ≥
∑

i,j fi,j − σ, for i, j = 1, . . . , n∑
i,j ui,j ≤

∑
i,j fi,j + σ, for i, j = 1, . . . , n

(ti,j ; (∂+
x u)i,j ; (∂+

y u)i,j) ∈ K3, for i, j = 1, . . . , n,

(70)

where u, v, ∂+
x u, ∂+

y u, and t are variables and f and σ are constants.

5.3. The G-value

We note that the SOCP formulation of G(∂|f |), the G-value of the set-valued function
∂|f | discussed in Subsection 4.1, can be obtained by solving an SOCP that is a simple
extension to the SOCP formulation of Meyer’s model. For suph∈BV

‖Df‖−‖Dh‖R |f−h| , after
homogenizing the objective function, its SOCP formulation can be easily developed
based on the SOCP formulation of the total variation term

∫ |Dh|.
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(a) (b) (c)

(d) (e)

Figure 1. Inputs: (a) original 117 × 117 fingerprint, (b) original 512 × 512
Barbara, (c) a 256 × 256 part of original Barbara, (d) a 256 × 256 part of noisy
Barbara (std.=20), (e) original 256× 256 4texture.

6. Numerical results

In this section, we present numerical results for the three cartoon-texture
decomposition models and compare them.

We used the commercial optimization package Mosek as our SOCP solver. Mosek
is designed to solve a variety of large-scale optimization problems, including SOCPs.
Before solving a large-scale problem, Mosek uses a presolver to remove redundant
constraints and variables and to reorder constraints, to speed up the numerical linear
algebra required by the interior-point SOCP algorithm that it uses. We could also
design dedicated reordering algorithms for each of the three models following an
approach similar to the one described in [16] to lower solution times. However, this
is not pursued here as our focus is on decomposition quality comparisons. In the first
set of results, we applied the models to relatively noise-free images.

Example 1: In our first test we applied the three models to a 117×117 fingerprint
as depicted in Figure 1 (a). Figures 2 (a), (b), and (c) depict the decomposition results
given by applying Meyer’s, the VO, and the TV + L1 models, respectively. The left
half of each figure gives the cartoon part u, and the right half gives the texture part
v, which is more important in fingerprint extraction. Since VO is an approximation
to Meyer, they produce very similar results. We can observe in Figures 2 (a) and (b)
that their cartoon parts are close to each other, but slightly different from the cartoon
in Figure 2 (c). The texture parts of (a) and (b) appear to be more homogenous than
that of (c), which shows a whiter background near the center of the finger. However,
in (c) edges are sharper than they are in the other two figures.

Example 2: We next tested textile texture decomposition by applying the three
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models to a part of the image “Barbara” as depicted in Figure 1 (c). The full Barbara
image is depicted in Figure 1 (b). Ideally, only the table texture and the strips on
Barbara’s clothes should be extracted. Surprisingly, Meyer’s method did not give good
results in this test as the texture v output clearly contains inhomogeneous background,
depicting Barbara’s right arm and the table leg. To illustrate this effect, we used a
very conservative parameter - namely, a small σ - in Meyer’s model. The outputs are
depicted in Figure 2 (d). As σ is small, some table cloth and clothes textures remain
in the cartoon u part. One can imagine that by increasing σ we can get a result
with less texture left in the u part, but with more inhomogeneous background left in
the v part. While Meyer’s method gave unsatisfactory results, the other two models
gave very good results in this test as little background is shown in Figure 2 (e) and
(f). TV+L1 still generated a little sharper cartoon than VO in this test. The biggest
difference, however, is that TV+L1 kept most brightness changes in the texture part
while VO keeps them in the cartoon part. In the top right regions of the output
images, the wrinkles of Barbara’s clothes are shown in the u part of Figure 2 (e) but
in the v part of (f). This shows that the texture extracted by TV+L1 has a wider
dynamic range.

Example 3: Finally, we applied the three decompositions models to 4-textures
depicted in Figure 1 (e). Figures 2 (g)-(i) demonstrate the differences described in
last paragraph more clearly. The texture image in (g), generated by Meyer’s method,
contains more large-scale textures (e.g., the rope nots in the upper left part) than the
texture images in (h) and (i). TV + L1 method gave the texture part with bigger
contrast as depicted in (i), in which we can clearly see the rope and line patterns in
addition to just positions.

In the second set of results, we applied the three models to the image “Barbara”
after adding a substantial amount of Gaussian noise (standard deviation equal to 20).
The resulting noisy image is depicted in Figure 1 (d). All the three models removed
the noise together with the texture from f , but noticeably, the cartoon parts u in these
results (Figure 3 (a)-(c)) exhibit a staircase effect to different extents. Compared to
the parameters used in the three models for decomposing noiseless images in the last
set of tests, the parameters used in the Meyer and VO models in this set of tests
were changed due to the increase in the G-norm of the texture/noise part v that
resulted from adding the noise. However, we did not change λ when applying the
TV+L1 model since the G-norm of signv does not change significantly. In subsequent
tests, we used an increased Lagrange multiplier µ and λ when applying TV+L1 and
VO and a decreased constraint bound σ when applying Meyer in order to keep the
cartoon output u closer to f . Nevertheless, while the staircase effect remains in the
cartoon outputs in the results, noise is not fully removed. To summarize, none of the
three decomposition models is able to separate image texture and noise, and in fact
all of them exhibit staircase effects in the presence of noise due to the minimization
of TV (u).

The third set of results depicted in Figure 5 were obtained by applying the TV+L1

model with different λ’s to the composite input image depicted in Figure 4 (f). Each
of the five components in this composite image is depicted in Figure 4 (S1)-(S5).
They are the image features that we are interested in extracting from f . We name
the components by S1, . . . , S5 in the order they are depicted in Figure 4. Clearly,
they are decreasing in scale. This is further shown by their decreasing G-values, and
hence, their increasing λmin values (see (38)), which are given in Table 1. We note
that λmax

i , for i = 1, . . . , 6, are large since the components do not possess smooth
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(a) Meyer (σ = 35) (b) VO (λ = 0.1 and µ = 0.1) (c) TV+L1 (λ = 0.4)

(d) Meyer (σ = 15) (e) VO (λ = 0.1 and µ = 0.5)

(f) TV+L1 (λ = 0.8) (g) Meyer (σ = 50)

(h) VO (λ = 0.1 and µ = 1.0) (i) TV+L1 (λ = 0.8)

Figure 2. Cartoon-texture decomposition results: left halves - cartoon, right
halves - texture.

edges in the pixelized images. This means that the property (39) does not hold for
these components, so using the lambda values λ1, . . . , λ6 given in Table 1 does not
necessarily give entire feature signal in the output u. We can see from the numerical
results depicted in Figure 5 that we are able to produce output u that contains only
those features with scales larger that 1/λi and that leaves, in v, only a small amount
of the signal of these features near non-smooth edges. For example, we can see the
white boundary of S2 in v3 and four white pixels corresponding to the four corners
of S3 in v4 and v5. This is due to the nonsmoothness of the boundary and the use
of finite difference. However, we can see that the numerical results closely match the
analytic results given in Subsection 4.1. By forming differences between the outputs
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(a) Meyer (σ = 20) (b) VO (λ = 0.1 and µ = 0.5)

(c) TV+L1 (λ = 0.8)

Figure 3. Cartoon-texture decomposition on noisy images: left halves - cartoon,
right halves - texture/noise.

(S1) (S2) (S3)

(S4) (S5) (f)

Figure 4. (S1)-(S5): individual feature components of composite image (f).

u1, . . . , u6, we were able to extract individual features S1, . . . , S5 from input f . These
results are depicted in the last two row of images in Figure 5.
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(u1) (u2) (u3)

(v1) (v2) (v3)

(u4) (u5) (u6)

(v4) (v5) (v6)

(u2 − u1) (u3 − u2) (u4 − u3)

(u5 − u4) (u6 − u5)

Figure 5. TV+L1 decomposition outputs (ui and vi were obtained using λi).
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Table 1. G-values and λmin of feature components S1, . . . , S5; λ1, . . . , λ6 used
to get u1, . . . , u6.

S1 S2 S3 S4 S5

G-value 19.39390 13.39629 7.958856 4.570322 2.345214
λmin 0.0515626 0.0746475 0.125646 0.218803 0.426400

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 =
0.0515 0.0746 0.1256 0.2188 0.4263 0.6000
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