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1. Introduction 

Helicopters, when landing in dry, desert-type environments, create significant dust clouds that 
can obscure the pilot’s vision.  This situation, often referred to as brownout, is considered an 
emergency to the pilots involved and can result in a deadly accident.  It is possible under 
brownout conditions that the pilot will become disoriented and lose control of the aircraft, collide 
with unseen obstacles, or land with lateral velocity, which can damage or roll the aircraft.  A 
variety of technologies are being pursued to make brownout landings safer.  These include 
LADAR, millimeter-wave (MMW) radar, and low-frequency RF bumpers.  It is widely known 
that MMW signals have very low loss through fog, clouds, and most types of dust.  What is not 
as well understood is how well MMW systems function through the very dense dust clouds 
generated by helicopters.  The work described in this report helps answer that question. 

We conducted an experiment to quantify the MMW signal propagation loss created by airborne, 
soil particulates.  To conduct this experiment, a controlled dust storm with known density and 
particle size distribution was created in a recirculating dust tunnel.  The MMW transmission loss 
across the width of the dust tunnel was measured at 35, 94, and 217 GHz using equipment 
designed and developed at the U.S. Army Research Laboratory.  The densities and particle size 
distributions of the dust clouds created in the tunnel came close to duplicating actual dust cloud 
data collected at Yuma Proving Grounds on a variety of hovering, military helicopters.  The 
results presented below help characterize these dust cloud losses, as is needed to predict MMW 
system performance in low visibility dust conditions.  In the next section, previous 
measurements and modeling are discussed.  This is followed by a description of the experiment, 
the results, and conclusions. 

1.1 Previous Measurements and Modeling 

Several studies have been conducted to measure and model the effects of dust storms at MMW 
frequencies (1 through 4).  These efforts have often focused on frequencies around 40 GHz or 
lower for RF communications over long path lengths.  Very limited data exist at higher 
frequencies.   Due to the significant differences between dust clouds that interfere with RF 
communication and dust clouds generated by helicopters, data collected for RF communications 
at 40 GHz cannot be applied to the helicopter brownout situation.  A communication link at 40 
GHz has a wavelength that is significantly larger than the average dust particle size.  This is 
because particles found in dust storms 20 to 100 meters above the ground, where communication 
antennas operate, are smaller than those picked up by helicopter rotors near the ground.  
Modeling the transmission loss of these dust clouds can be tricky.  Published modeling results 
state that Rayleigh scattering approaches can be used with minimal error up to 300 GHz (12).  
However, the unusually large particle sizes found in helicopter-generated dust clouds, which 
were not considered in the model, would suggest that a full Mie scattering approach would be 
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more accurate.  Although it is beyond the scope here, it will be the topic of a future paper.  For 
the purposes of bounding the problem, presented below is a relatively simple method of 
predicting a minimum MMW transmission loss for a dust cloud based on the Rayleigh 
approximation. 

MMW signal energy is lost in dust clouds through scattering, polarization loss, and absorption, 
all, of which are created when dust particles in a volume of air change the electromagnetic 
properties of that volume.  The net effect of mixing air and dust particles can be described by a 
dielectric mixing model.  Several mixing models have been applied to the dust problem 
including the Bruggeman formula (5) and the work by Looyenga (6).  More recently, Karkkainen 
applied Finite Difference Time Domain methods to the problem and found a dependence on 
particle clustering in the effective permittivity of the mixture (7).  It becomes apparent, after 
reviewing the models, that significant variation in the dust cloud permittivity results from the 
spatially-variant, physical properties of the dust cloud.  These properties are difficult to measure 
experimentally.  Alternatively, one can account for these unknowns by bounding the permittivity 
of the dust/air mixture as accurately as possible.  The Hashin and Shtrikman bounds can be used 
for this purpose (8) and the validity of the method has been demonstrated by others (5).  
Bounding the problem in this way allows one to more easily make conservative system 
performance predictions without getting bogged down in the detailed spatial variability of the 
dust cloud.  These bounds are described by 
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where εi is the bulk permittivity of the dust, εe is the permittivity of the air, and f is the volume 
fraction of dust to air.  It is assumed that εe < εi.   

This Hashin/Shtrikman model requires knowledge of the bulk permittivity of the dust particles, 
which can be readily measured.  Ansari and Evans (9), in surveying permittivity data from 10 to 
37 GHz, found that both the real and imaginary parts of the bulk permittivity of dry soils are 
nearly frequency independent and that moisture content will increase these values dramatically, 
especially the imaginary part.  A typical permittivity value of 2.515 + j0.074 for dry sandy clay 
at 37 GHz is given in their article.  It is also reported in (9) that the bulk permittivity of soil is 
almost unaffected by its chemical and mineral composition except where significant amounts of 
metallic or magnetic minerals are present. 

Once the bounds of effective permittivity are determined for the dust cloud mixture, the 
attenuation can be calculated using the expression (10) 
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where λ is the wavelength, ε′ is the real part of the relative permittivity, ε″ is the complex part of 
the permittivity, Ni is the number of particles with radii between ri and ri +Δri per m3.  This 
equation is based on the Rayleigh approximation that relies on the wavelength being much larger 
than the dust particle sizes.  As stated earlier, this provides a reasonable estimate for attenuation 
up to 300 GHz, albeit erring towards low attenuation.  Determining a more precise value requires 
one to perform the Mie scattering calculations, but for many baseline MMW system design 
calculations the Rayleigh approach is sufficient and much simpler to implement. 

Experimental measurements of dust clouds often use visibility as a measure of ground truth.  
Therefore, for the purposes of modeling, it is useful to have an expression that relates visibility to 
particle density and size.  A precise relationship cannot be established for every case because one 
must assume an acceptable level of contrast between the object being viewed and the 
background.  As reported in (10), experiments have been conducted to establish good 
approximations and the resulting expression relates dust particle density and particle radius to 
visibility as 
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where Nt is the total number of particles per cubic meter and r is the average radius of the 
particles. 

Equations 1 through 3 present a method of modeling the expected MMW attenuation from a dust 
cloud.  The intent is to enable the reader to make baseline estimates of loss and to check the 
results of his/her own dust propagation experiments.  In a later article the author intends to apply 
these equations and the MIE calculations to the data that follows.  In the next sections the 
experiment and data are described in detail. 

2. Experimental Procedure 

The MMW dust propagation studies were carried out at a facility operated by Midwest Research 
Institute (MRI), Kansas City, MO.  Prior to the dust tunnel testing, MRI quantified the dust 
density and particle size distribution of dust clouds created by a variety of hovering military 
helicopters.  This carefully instrumented test, conducted at Yuma Proving Grounds, resulted in 
range and height profiles of the dust clouds as well as dust densities and particle sizes (11).  The 
dust sampling equipment used in Yuma was placed near a variety of hovering helicopters.  The 
distance of the dust samplers from the helicopters ranged from under the aircraft to about 50 
meters away and their heights ranged from 0.5 to 7 m.  The measured dust densities ranged from 
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150 to 3470 mg/m3 depending on aircraft type and sampler position.  These results formed the 
basis for the dust tunnel experiments we conducted by defining the dust characteristics created in 
the tunnel.  After several weeks of experimentation by MRI, using assorted dirt injection systems 
and recirculation methods, they were able to reliably create in the tunnel the conditions they had 
measured in the field.   

The expectation going into the tunnel experiments was that the MMW propagation loss through 
the wind tunnel dust cloud would be on the order of 0.01 dB.  This estimate was based on the  
1-m width of the dust tunnel, the maximum expected dust density of about 3000 mg/m3, and 
modeled predictions (12).  This meant that high sensitivity was required in the instrumentation to 
characterize the propagation loss.  We determined that we could achieve this level of sensitivity 
using a simple transmitter/receiver setup, if the issues of transmitter and receiver drift were 
considered in the design.  This was done for 35, 94, and 217 GHz.  The transmitter and receiver 
layouts are shown in figure 1.   

 

Figure 1.  Diagram of the MMW propagation experiment.  Not drawn to scale.  Shown are schematics of the  
35, 94, and 217 GHz hardware.  The transmitters were located on one side of the dust tunnel and  
the receivers on the other.  The signal from the detectors was sent to video amplifiers and the data 
acquisition system (not shown). 

The 94 and 35 GHz circuits have essentially the same design.  Each is driven by a GUNN source 
followed by a variable attenuator, PIN switch, coupler, and antenna.  The 94 and 35 GHz sources 
have powers at the transmit antennas of 6 mW and 43 mW, respectively.  The variable 
attenuators are precise to 0.01 dB and are used to check the linearity of the detector circuit and 
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calibrate the system.  The PIN switch is used to turn the transmitter on and off at about 1 kHz.  
This square-wave modulates the transmitted signal and synchronous detection is used to remove 
fluctuations in the video amplifier circuit that follows the detector.  A portion of the transmitter 
signal is coupled off to a power detector to track changes in signal amplitude.  This information 
can be used to correct the receiver data for large changes during a measurement.  We 
demonstrated in the lab that the combination of the synchronous detection and the transmitter 
monitor provided the 0.01 dB of accuracy required to measure propagation loss in the dust 
tunnel.  The 217 GHz system is similar in design with a couple of exceptions.  A 217 GHz PIN 
switch was not available so a mechanical chopper is used instead.  The chopping rate was 100 Hz 
at 217 GHz.  Also, the 217 GHz source is not a GUNN.  It is an assembly built by Virginia 
Diodes that uses a Dielectric Resonator Oscillator (DRO) and 4 doublers to generate 5 mW at 
217 GHz.  The receiver antennas were selected to produce a signal level in the square-law region 
of the detectors (around -20 dBm).  This yields an output voltage that is linearly proportional to 
input RF power and maximizes sensitivity (dV/dP). 

The MRI dust tunnel has windows located on its sides so that instruments can be set up to 
measure propagation through the dust.  These windows are made of reinforced glass and we 
found that the loss through each pane of glass was 5 dB at 94 GHz.  This was deemed too large 
so we made polystyrene windows to replace the glass.  The ½-in. thick polystyrene windows 
each have a measured loss of about 0.01 dB and did not accumulate a significant amount of dust 
during the experiment.  The transmitters and receivers are shown in figure 2 during data 
collection at the MRI wind tunnel. 

   

Figure 2.  Transmitters are in the picture on the left and receivers are on the right.  They are shown next  
to the MRI wind tunnel during the dust experiments.  The glass windows have been replaced  
with low-loss polystyrene. 

The MMW dust propagation experiments were conducted over a period of one week.  During 
that week, propagation loss was measured at a variety of dust densities using the equipment 
described above.  For each data run there was a target dust density.  After the tunnel was turned 
on and the dirt injected, a few minutes were required to reach a somewhat uniform distribution of 
dust in the tunnel.  After this was accomplished, an MMW propagation measurement was made 
and the dust was sampled by MRI personnel using equipment that collects a known volume of air 
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from the tunnel.  Soon after, the run ended and the tunnel was turned off.  MRI then took the 
sampled dust to a nearby laboratory to determine the density and particle size distribution that 
was actually achieved.  Table 1 shows a portion of the data collected by MRI for each of the dust 
runs on which we collected data.  Of the 23 data runs, most had a target of 3000 mg/m3.  This 
target was based upon an earlier field test conducted by MRI in the desert with actual hovering 
helicopters.  It represents a typical maximum density measured during the testing.  In many cases 
the dust density achieved in the tunnel was within ±10% of the target.  The particle size 
distribution goal for the runs was 23% for particles < 75 μm, 25% for particles 75 to 150 μm, 
22% for particles 150 to 420 μm, and 30% for particles >420 μm.  The actual dust clouds at this 
density often had 10 to 20% too much of the small particles and 10 to 20% too little of the large 
particles.  The medium sized particles were often within a few percent.  Figure 3 shows a 
photograph of the inside of the dust tunnel at a density of 3218 mg/m3.  The photo was taken 
looking down the length of the tunnel and shows a visibility on the order of 3 meters. 

The stability of the MMW equipment was important for a good measurement.  As mentioned 
previously, synchronous detection and transmitter power monitoring were used to reduce system 
noise as much as possible.  Additional accuracy was achieved by making a comparative 
measurement between clear air and dusty air.  We collected clear air propagation data just a few 
minutes before dust data.  Comparing these two values gives a measure of propagation loss while 
minimizing the drift of the system, which becomes larger over time.   

Data was also averaged to reduce the measured noise.  During a typical dust run 5 – 6 data points 
were collected, each separated in time by 15 seconds, with each data point representing 10,000 
A-to-D samples for a total of 0.15 seconds of integration time per data point.  The data points 
were averaged for a total integration time of 0.75 seconds.  This process of integration reduces 
the measured noise by 23 dB.  Erroneous changes in the detector signal can still be seen after this 
integration and are primarily due to system drift and must be removed after data collection. 

It was determined midway through the data collection that the loss due to dust at 35 GHz was 
extremely low.  So low, in fact, that we were spending an inordinate amount of time trying to 
pull a signal out of the noise.  For this reason we made the decision to abandon the 35 GHz 
measurements and focus on getting good results at 94 and 217 GHz. 
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Table 1.  A list of the data runs for the MMW propagation experiments.  Dust density goals and measured 
values are shown in the last two columns. 

 Date 
Temperature 

°F 
% Relative 
Humidity 

Target 
Concentration 

mg/m3 

Average 
Concentration 

mg/m3 
Test DA-315 6/5/2006 72.4 58.4 3,000 3,379 
Test DA-316 6/5/2006 73.4 54.3 3,000 3,218 
Test DA-317 6/6/2006 71.8 65.3 250 170 
Test DA-318 6/6/2006 71.8 61.7 500 284 
Test DA-319 6/6/2006 73 60.2 1,000 1,180 
Test DA-320 6/6/2006 77 56.1 2,000 2,024 
Test DA-321 6/6/2006 76 55.6 3,000 2,673 
Test DA-322 6/6/2006 76.2 61.2 3,000 3,002 
Test DA-323 6/7/2006 68.4 67.1 3,000 3,127 
Test DA-324 6/7/2006 71 51.6 3,000 2,935 
Test DA- 325 6/7/2006 73.6 45.7 3,000 3,207 
Test DA-326 6/7/2006 75.2 46.1 3,000 2,329 
Test DA-327 6/7/2006 76.6 43.1 3,000 2,802 
Test DA-328 6/7/2006 76.2 44.5 n/a 1,066 
Test DA-329 6/8/2006 70.2 56.9 n/a 488 
Test DA-330 6/8/2006 71.6 53.2 n/a 561 
Test DA-331 6/8/2006 76.2 49.8 3,000 2,889 
Test DA-332 6/8/2006 78.3 47.8 1,500 1,288 
Test DA- 333 6/8/2006 79.1 47.2 1,200 1,226 
Test DA-334 6/8/2006 79.2 47.3 1,200 1,237 
Test DA-335 6/9/2006 68.7 61.8 2,000 2,254 
Test DA-336 6/9/2006 71.8 55.6 1,000 1,008 
Test DA-337 6/9/2006 75.6 53.4 2,000 2,616 

 

 

Figure 3.  Photograph looking down the length of the tunnel at 3218 mg/m3.   
The visibility is on the order of 3 meters.  The polystyrene windows  
are seen on the right side of the image. 
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3. Data Results and Analysis 

As stated in the previous section, propagation measurements were made through a clear air 
condition in the wind tunnel and then shortly after in a dust condition.  The two values were 
compared to determine the change in detected signal due to dust.  The results for 94 and  
217 GHz are shown in tables 2 and 3, respectively.  For each data run, the dust density and 
detected change in RF power are given.  Negative values of change indicate a decrease in RF 
signal in the presence of dust.  It can be seen that in some cases the change is positive, which 
indicates an increase in signal in the presence of dust.  This is an indication of system noise or 
drift.  During the week of measurements, various sources of noise were discovered and methods 
were developed to remove them.  Two simple changes made during the experiment involved 
correcting a bad ground and adjusting the frequency of the RF signal modulation.  The RF 
modulation frequency of the 94 GHz channel was increased from 100 Hz to 1000 Hz to reduce 
1/f noise.  The 217 GHz channel was limited to 100 Hz by the mechanical chopper.  The primary 
source of measurement noise that remained was caused by drift in the video amplifier gain after 
the RF detectors.  There were about 3 to 5 minutes between a clear air measurement and a dust 
measurement.  It was discovered late in the week that the MRI dust sampling equipment may 
have caused the video amplifier drift.  The fans used to draw dust into the cyclone dust samplers 
blew a significant amount of air across the video amplifier circuits during a dust run.  They were 
located about 8 feet from the amplifiers, but there was enough air movement to affect the 
temperature of the amplifiers.  We found a way to deflect this air and improved the amplifier 
stability. 

Table 2.  Results from the 94 GHz transmission loss experiment. 

Run # Density (mg/m3) Detected Change in 94 
GHz Power (dB) 

DA-315 3379 -0.11 +/- 0.1 
DA-316 3218 -0.02 +/- 0.02 
DA-317 170  -0.14 +/- 0.08 
DA-318 284 -0.3 +/- 0.1 
DA-319 1180 0.03 +/- 0.12 
DA-320 2024 -0.06 +/- 0.14 
DA-321 2673 -0.01 +/- 0.11 
DA-322 3002 -0.1 +/- 0.08 
DA-324 3127 -0.2+/- 0.02 
DA-331 2889  0.002 +/- 0.11 
DA-332 1288 -0.13 +/- 0.02 
DA-334 1237 -0.31 +/- 0.06 
DA-335 2254 -0.02 +/- 0.03 
DA-336 1008 -0.01 +/- 0.02 
DA-337 2616 0.01 +/- 0.02 
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Table 3.  Results from the 217 GHz transmission loss experiment. 

Run # Density (mg/m3) Detected Change in 217 
GHz Power(dB) 

DA-315 3379 -0.35 +/- 0.2 
DA-316 3218 0.16 +/- 0.1 
DA-317 170 -0.4 +/- 0.14 
DA-318 284 0.46 +/- 0.17 
DA-319 1180 -0.08 +/- 0.18 
DA-320 2024 0.1 +/- 0.27 
DA-321 2673 -0.13 +/- 0.22 
DA-322 3002 0.004 +/- 0.08 
DA-324 3127 0.01 +/- 0.17 
DA-331 2889 -0.11 +/- 0.08 
DA-332 1288 -0.26 +/- 0.05 
DA-335 2254 0.22 +/- 0.16 
DA-336 1008 -0.12 +/- 0.03 
DA-337 2616 -0.09 +/- 0.09 

 
It was important to establish a good calibration of the 35, 94, and 217 GHz instrumentation to 
properly interpret the data.  This was accomplished by collecting calibration data regularly under 
clear air wind tunnel conditions using the precision attenuator in each transmitter circuit.  Data 
was taken as the attenuator was changed over a fixed attenuation range.  Figure 4 shows the 
results of the calibration for the 94 GHz system.  Note the reasonably good linearity of the results 
which indicates that we were in the “square law” region of the detectors, where RF power is 
linearly proportional to output voltage.  This is also the region in which voltage sensitivity, or 
dV/dP, is maximized.  An inspection of the plot indicates that we have a slope of –0.17896 
V/dB, or about 2 mV/0.01 dB.  This is well above the 50 micro-volt quantization limit of the A-
to-D. 
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Figure 4.  Calibration plot for the 94 GHz propagation measurement system.   
The slope and y-intercept of the fit are shown on the plot. 
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Interpreting the wind tunnel results is an exercise in error analysis.  We want both low standard 
deviation in a given measurement and low system drift between the clear air and dust 
measurements.  It is clear from table 3, for example, that there is no measureable change in 
power with dust density.  For example, run 317 had the lowest dust density but showed one of 
the highest power changes for both 94 and 217 GHz.  These results can be considered erroneous 
due to excessive system drift.  It is safe to say that the measurement equipment did not have the 
precision to distinguish variations in dust density.  Further, the variability in the performance of 
the equipment makes many of the data points questionable.  So, we must filter the results to draw 
any conclusion at all.  We eliminate from consideration any data run with a dust density less than 
2000 mg/m3 and power difference standard deviation greater than 0.03 dB for 94GHz and 0.1 dB 
for 217 GHz.  What are left are the values shown in figure 5.  Although the number of data 
points is limited, we can see trends in the data.  At 94 GHz the average change in power is about 
0.025 dB over 1 meter of dust.  This ignores the 0.2 dB data point that appears to be an outlier 
and due to a receiver drift between the clear air and dust measurements.  At 217 GHz, the 
average attenuation per meter is about 0.1 dB.  This is consistent with our expectation that the 
217 GHz attenuation would be a bit higher than 94 GHz.  The larger error bars at 217 GHz show, 
however, that this receiver was noisy and we can’t really state with confidence a value to better 
than ±0.1 dB. 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

2000 2200 2400 2600 2800 3000 3200 3400

Dust Density (mg/m3)

C
ha

ng
e 

in
 p

ow
er

 (d
B

)

94 GHz
217 GHz

 

Figure 5.  Attenuation due to dust across a 1-m dust tunnel at 94 and 217 GHz after down-selecting data points 
with dust concentrations higher than 2000 mg/m3 and noise lower than an acceptable threshold.   
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The data show that system noise was the limiting factor during the test.  Even so, the data allow 
us to put an upper bound on transmission loss due to dust at these frequencies.  We can calculate 
a worst case value for propagation through a simulated dust cloud.  Referring to the drawing in 
figure 6, imagine a hemispherical dust cloud with a radius of 30 m.  We can assume as a worst 
case that the entire dust cloud has a density of 3218 g/m3 (from run 316).  If a sensor is located 
just outside the dust cloud and is pointed at its center, we can calculate the maximum reduction 
in scene contrast due to dust.  For a radar, the maximum 2-way loss due to the dust is just the 
attenuation per meter times the number of meters in the 2-way path.  For 94 GHz, using the data 
from figure 5, this is 0.02 dB times 60 meters or 1.2 dB.  On the other hand, for an imaging 
radiometer the reduction in contrast created by the dust cloud is due to two things.  The dust 
cloud increases the brightness temperature of the sky illuminating the scene and attenuates the 
resulting reflected and emitted signal on the path to the sensor.  Take, for example, a metal plate 
that reflects 100 K zenith sky radiation towards the radiometer.  Assume that the ground and 
ambient temperature are 300 K.  Assume the contrast between the plate and the ground in the 
absence of dust is 200 K.   The emitted sky energy has a transmission of 0.76 (1.2 dB of loss).  
Further, the sand cloud emits a brightness temperature equal to 300 K* (1 - 0.76) = 72 K.  
Therefore, the plate brightness temperature scene at the radiometer is (100 K * 0.76) + 72 K = 
148 K.  The scene contrast is now 300 K – 148K = 152 K, a reduction of 24% or about 1 dB.  
This is a measurable reduction in contrast, but not one that will significantly degrade image 
quality. 

 

Figure 6.  Worst case calculation of 94 GHz imager degradation due to a uniform high density dust cloud.   
Both the radar and radiometer are considered.   

3218 g/m3 
dust cloud 

Radar 
1.2 dB maximum 
attenuation 

Radiometer 
24 % maximum 
contrast 
reduction 

Sky illumination 
100 K 

Corner reflector 
Metal plate 

30 meters 



 

12 

4. Conclusion 

It is clear from this experiment that the transmission loss at 94 and 217 GHz is very low over a  
1-m path.  So low, in fact, that measuring the exact loss using a simple propagation technique is 
very challenging.  Using results that had acceptable noise levels and dust concentrations between 
2000 and 3200 mg/m3, the experiment gives us an upper bound on the transmission loss of a of 
0.02 dB/m for 94 GHz and 0.1 dB/m at 217 GHz.  The 35-GHz loss was too small to measure, 
but from modeled results, we can assume that it is lower than the loss at 94 GHz.   

Some theoretical models suggest that the exact losses and extinction coefficients at these 
frequencies may be considerably lower than the maximums given here.  A model presented in 
Brussaard (13) indicates that attenuation may be as low as 0.001 dB/m at 94 GHz for 10-m 
visibility dust.  To make an accurate determination of this value experimentally requires more 
precise hardware; an interferometer might provide the sensitivity required to measure the exact 
loss over 1 m.  This experiment is not without issues though.  Building an interferometer with a 
1-m baseline and 0.1 mm precision will be an engineering challenge.  One must also consider the 
effect of the vibrating wind tunnel in the midst of the interferometer and what effect it might 
have on the measurement accuracy. 

Even without determining the exact loss, this experiment has provided upper bounds that enable 
us to determine a conservative estimate of the performance of a MMW sensor in an actual dust 
cloud.  The calculations show that the loss through a high density (3-m visibility or 3000 mg/m3 
density) 30-m dust cloud would reduce the 94 GHz signal level by at most 1.2 dB in a two-way 
radar signal path and about 24% for MMW radiometer.  These losses would likely have small 
effects on imager performance during a helicopter landing.  The actual losses are most likely 
lower than measured here, which implies that even smaller effects on imaging will actually be 
seen. 
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