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1 Introduction 

Simulations are often used to analyze the performance of battle plans for complex scenarios. Such analytic 
simulations are often independently executed many times with different parameter settings to determine the optimal 
configuration of a complex system. Monte Carlo simulations that model critical decisions using probabilistic 
distributions and random number generation often require large numbers of end-to-end simulation replications to 
determine the statistical measures of effectiveness and/or performance of complex systems. Real-time estimation 
and prediction decision aid tools project the future through simulation using real-time data to calibrate the current 
state and require multiple-hypothesis what-if branching capabilities to simultaneously explore the effectiveness of 
various decision options and battle plans [1, 2, 13]. 

These different kinds of simulation applications are traditionally supported by running multiple executions of 
the same simulation using (1) different parameter settings, (2) different starting random number seeds, or (3) 
different critical decision options and/or battle plans. Simplistic parallel processing techniques can be used to help 
speed up these execution times by farming the replications to multiple resources across a computer network. 
However, this simple approach ignores the fact that each of the replicated simulation executions may redundantly 
repeat many of the same time-consuming calculations. Furthermore, final outcomes are generally provided only at 
the completion of the simulation runs. It is extremely challenging to consider, across all runs, the common threads of 
execution and relative frequencies of certain decision points and branches across all replications. 

Some improvements over the brute force multiple-replication Monte Carlo approach have been explored. One 
example is to replicate the simulation only at branch points [3]. This has the appeal of sharing computations up to 
the branch point, but it does not take full advantage of computation sharing afterwards. Furthermore, simulation 
cloning can be cumbersome to operate and manage. Another approach clones objects at critical branch points [8]. 
While this offers a higher degree of computation sharing, it still does not take full advantage of the potential 
computation sharing for complex objects with multiple concurrent event patterns. Furthermore, neither approach 
merges branches to eliminate redundant event computations. 

A computationally more efficient approach to support these types of simulations is to automatically detect and 
reuse redundant event calculations that are shared between the multiple branches at the state attribute level. Unique 
calculations for a particular hypothesis branch would only be performed when required. As a further optimization, 
this more efficient computational approach should also take advantage of parallel processing when multiple 
processors are available through the use of advanced optimistic event processing algorithms. Large scenarios that 
require considerable amounts of memory can be supported through scalable parallel and distributed algorithms that 
distribute simulated entities across computing resources. Multiple hypotheses branching simulation applications can 
be supported with minimal computational overhead on single-processor machines, multi-processor machines, and/or 
networks of such machines. 

This report describes techniques that address all of these stated issues. First, the branching techniques for 
supporting parallel overlapping universes in the fifth dimension are described. Then, background on parallel 
processing and discrete event simulation is presented, along with an emphasis on new standards that are being 
promoted within the Simulation Interoperability Standards Organization (SISO). These standards are important to 
bring this technology to mainstream programs. A brief background is then given on real-time estimation and 
prediction, indicating how the combined concepts of control theory and optimistic simulation can be applied to 
support dynamic situation assessment and prediction. Then a discussion is provided on how to statistically analyze 
results generated by multiple branches using the Statistical Algebra Package that is provided within the WarpIV 
Kernel. Then, a framework for automatically computing measures of effectiveness and performance of a simulation 
is discussed. Next, a comparison is made between the approach recommended in this report and other approaches 
that have been used in the past. Finally, several test and performance results are provided for various hardware 
architectures to verify correctness of the approach and to indicate the expected processing performance of several 
representative real-world problems. 
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2 Multi-Hypothesis Branching 

From a scientific context, the concept of multi-hypothesis branching has been referred to more abstractly as 
simulating parallel overlapping universes in the fifth dimension. The following simple illustration introduces the 
concepts of parallel overlapping universes in the fifth dimension. 

Imagine within a simulated world that two friends, Jim and Nancy, agree to meet for lunch. Jim arrives at the 
restaurant first and decides to order his meal. Nancy is running late, so Jim finishes his lunch and then orders 
dessert. Jim now has to decide on whether to order a pricy ice cream sundae or an inexpensive chocolate chip 
cookie. At this point, Jim flips a coin to decide what to order. In the HyperWarpSpeed time management algorithm, 
Jim branches into two overlapping parallel universes. In one universe, Jim enjoys his ice cream sundae, while in the 
other universe Jim eats his cookie. Meanwhile, cars driving by the restaurant are unaffected by what dessert Jim has 
ordered. Both branches (universes) of Jim share (overlap) the modeling of the automobile traffic occurring outside 
the restaurant. 

Nancy finally arrives as Jim is eating his dessert. Nancy asks Jim if he wouldn’t mind sharing some of his 
dessert. At this point, Nancy automatically splits into two. In one universe, Nancy enjoys the ice cream sundae with 
Jim. In the other universe, Nancy shares Jim’s cookie. After they finish dessert, Jim and Nancy leave the restaurant 
and continue on with the rest of their day. Their universes merge because the rest of their activities do not depend on 
what they had for dessert. 

That night, Jim decides to go to a fancy restaurant for dinner. Jim really wants to order a steak but it is 
expensive. The Jim that had the cookie has enough money in his wallet to order the steak dinner, but the Jim in the 
alternate universe who ordered the ice cream sundae only has enough money for the chicken dinner. Jim 
automatically splits again as he orders his meal. What caused the split is the fact that the money in Jim’s wallet was 
different depending on the path he had taken earlier in the day. 

While this example assumes the rest of the world is unaffected by the couples behavior, it is entirely possible to 
construct a simulation in which branch points are completely independent from one another. For example, branching 
on whether or not a region was attacked by a nuclear weapon could affect the entire simulation in that there would 
be nothing in common and no possibility of overlap between the branches from that point forward. 

2.1 HyperWarpSpeed 
The HyperWarpSpeed branching technology was developed to (1) transparently manage large numbers of 

Monte Carlo replications within a single simulation execution while sharing all common computations between 
replications, (2) provide scalable performance on a wide variety of sequential, parallel, and distributed computing 
architectures, and (3) support real-time estimation and prediction [6] using live data and control theory [10] to 
continuously calibrate the simulation while aggressively predicting future outcomes [20]. 

The HyperWarpSpeed algorithm provides three significant performance benefits. First, redundant computations 
that would be performed by running independent Monte Carlo simulation replications are eliminated. If each 
simulation replication performed 90% of the same computations as the others, then combining the replications into a 
single execution would improve performance by an order of magnitude. Second, optimistic time management 
algorithms provide parallel processing capabilities on next-generation multicore computer architectures. This can 
provide additional orders of magnitude in speedup. Third, large computational savings can be achieved by 
continuously integrating live data into the simulation through rollback-based optimistic event processing and 
mathematical control theory techniques. Instead of restarting simulations as new data arrives, only the portions of 
the simulation that are affected by the newly received data are rolled back and recomputed (or rolled forward if 
possible). If restarting new simulations recalculated 90% of the same computations from previous runs, another 
order of magnitude performance gain would be achieved. 

One can think of this approach as continually updating the three-dimensional Common Operational Picture 
(COP) that is embedded within the simulation using real-time estimation techniques. Predictions are continually 
refined because they are based on the embedded COP as it evolves over time. By providing rollback and rollforward 
event processing capabilities, control over the fourth dimension (i.e., time) is achieved for the embedded COP. 
Integrating the four-dimensional COP with branching technology provides a five-dimensional COP capability that is 
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able to manage and explore multiple futures. This new approach can be thought of as simulating parallel overlapping 
universes in the fifth dimension. 

All of the capabilities described in this report are provided to the model developer and simulation operator in a 
manner that is robust and easy to use. The underlying complexities are completely hidden from the model developer. 
Providing this extremely complex capability in a simple and transparent manner to the model developer is critical 
for promoting its widespread use for command and control dynamic situation assessment and prediction 
applications. 

2.1.1 The HyperWarpSpeed Time Management Algorithm 
Replication numbers are used in Monte Carlo simulation to identify individual runs of the simulation with 

different input parameters, random number seeds, and/or planned strategies. So, 128 replications would be 
understood to contain the set of runs identified as replications {0, 1, … 127}. 

Fundamental to understanding the HyperWarpSpeed algorithm is the notion of replication sets. Replication sets 
are managed as bit fields in an integer array where each bit in the array represents a particular replication. So, a 
replication set for 128 potential replications is stored in an array of four 32-bit integers. The array size specifies the 
total number of replications managed within the single execution of the HyperWarpSpeed simulation. Analysts are 
able to specify the size of the replication set to meet the analysis needs of the simulation run. At the start of the 
simulation execution, all (1) state variables and (2) initially scheduled events are identified with the full replication 
set. 

A simple example of a replication set with 32 potential replications containing replications {0, 1, 4, 9, 15, 21, 
29} would be stored as binary [0010 0000 0010 0000 1000 0010 0001 0011], where the rightmost bit represents 
replication 0, the next bit to the left represents replication 1, etc. High-speed bit masking operations automate critical 
bookkeeping for replication sets. It is critical to minimize all computational overheads when manipulating bit fields 
for replication sets. 

Each event in the HyperWarpSpeed algorithm is associated with a replication set. At the start of the simulation, 
all events start out representing the full set of replications. Bayesian branching splits the replication set of the current 
event based on a specified or computed probability for each branch taken. The branching construct is extremely 
simple to use and looks like the familiar switch/case statement. The first two arguments identify labels for the two 
branch points. The third argument is the probability of taking the first branch. An example of this is shown in Code 
Segment 1. 
BRANCH(1, 2, 0.7) 
  LABEL(1) 
    // Code that handles first branch 
    break; 
 
  LABEL(2) 
    // Code that handles second branch 
    break; 

END_BRANCH 

Code Segment 1: Code example of the branch construct 
placed within a user-defined event method. The probability of 
branching down label 1 is 0.7 and the probability of branching 
down label 2 is 0.3. 

New multireplication primitive data types for integers, doubles, and Booleans, have been developed that 
internally store different values depending on how they are modified by events with different replication sets. 
Through operator overloading, accessing and assigning values to multireplication data types is completely 
transparent to the modeler. These new data types simply behave as normal integer, double, and Boolean variables. 
The structure for the primitive multi-replication data types is shown in Figure 1. 
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Figure 1: Multi-replication data types are 
represented as an array of values with a 
replication mask for each value. Bits set in 
the mask identify which other array 
elements have the same value. Current 
data types supported are integer, double, 
and Boolean. 

Each multi-replication data type stores an array of values along with a bitfield for each value. The index of the 
array indicates the replication number. Each bit in the bitfield represents the set of replications that have the same 
value as the array element value (see Table 1). 

Table 1: An example of a replicated integer with 32 replications. The value for each replication and the replication bit-mask are 
stored in the array. The bit-mask identifies which replications have the same value. Since the value 0 is stored in replications {0, 
9, 31}, the bit mask has three 1’s in the corresponding bits. The rest of the bits are set to 0. 

Rep Value Mask (binary)
0 0 1000 0000 0000 0000 0000 0010 0000 0001
1 5 0000 0000 1000 0000 0100 0001 1000 0010
2 1 0100 0000 0100 1100 0011 0000 0111 0100
3 2 0011 0001 0011 0001 1000 0000 0000 1000
4 1 0100 0000 0100 1100 0011 0000 0111 0100
5 1 0100 0000 0100 1100 0011 0000 0111 0100
6 1 0100 0000 0100 1100 0011 0000 0111 0100
7 5 0000 0000 1000 0000 0100 0001 1000 0010
8 5 0000 0000 1000 0000 0100 0001 1000 0010
9 0 1000 0000 0000 0000 0000 0010 0000 0001
10 3 0000 1100 0000 0000 0000 0100 0000 0000
11 4 0000 0010 0000 0000 0000 1000 0000 0000
12 1 0100 0000 0100 1100 0011 0000 0111 0100
13 1 0100 0000 0100 1100 0011 0000 0111 0100
14 5 0000 0000 1000 0000 0100 0001 1000 0010
15 2 0011 0001 0011 0001 1000 0000 0000 1000

Rep Value Mask (binary)
16 2 0011 0001 0011 0001 1000 0000 0000 1000
17 7 0000 0000 0000 0010 0000 0000 0000 0000
18 1 0100 0000 0100 1100 0011 0000 0111 0100
19 1 0100 0000 0100 1100 0011 0000 0111 0100
20 2 0011 0001 0011 0001 1000 0000 0000 1000
21 2 0011 0001 0011 0001 1000 0000 0000 1000
22 1 0100 0000 0100 1100 0011 0000 0111 0100
23 5 0000 0000 1000 0000 0100 0001 1000 0010
24 2 0011 0001 0011 0001 1000 0000 0000 1000
25 4 0000 0010 0000 0000 0000 1000 0000 0000
26 3 0000 1100 0000 0000 0000 0100 0000 0000
27 3 0000 1100 0000 0000 0000 0100 0000 0000
28 2 0011 0001 0011 0001 1000 0000 0000 1000
29 2 0011 0001 0011 0001 1000 0000 0000 1000
30 1 0100 0000 0100 1100 0011 0000 0111 0100
31 0 1000 0000 0000 0000 0000 0010 0000 0001

Before an event is processed, its replication-set bitfield is copied into a global variable known as the 
CurrentReplicationSet. This variable represents the current set of replications to be processed by the event. The first 
replication, called the FirstReplication, in the CurrentReplicationSet is also stored in another global variable. It 
corresponds to the right-most bit that is set to one in the CurrentReplicationSet. 

When a replicated state variable is accessed within an event, the bit-field mask stored in the FirstReplication 
array element is ANDed with the CurrentReplicationSet. This may reduce the collection of replications in the 
CurrentReplicationSet if the associated replicated values in the model’s state have different replication values. When 
the event processing completes, the CurrentReplicationSet is XORed with the remaining replication set. The result is 
stored back in the CurrentReplicationSet. If the resulting value is non-zero, then the event is processed again with a 
new reduced CurrentReplicationSet and FirstReplication. This process continues until all of the bits stored in the 
CurrentReplicationSet are zero. In this manner, event splitting based on accessing state variables that have different 
values for different replication sets is automated. 

Note that this approach does not require individually examining each replicated state variable as it is accessed to 
determine which ones have the same value. The bit-field mask automates this very efficiently. However, when an 
event modifies a replicated value, a check is required to determine if the new value is shared by other replication 
sets, or if it constitutes a new set. For large numbers of replications, this can be computationally intensive. 
Performance bottlenecks can occur if the assignment operation is not fully optimized or when multi-replication 
variable assignments occur frequently. An additional complexity arises when an event modifies state variables and 
then later accesses other variables causing a reduction in the size of the replication set. Values that were modified 
but then later eliminated in the event processing cycle must be restored to their original values before reprocessing 
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the event again with the reduced replication set. This is accomplished in a straightforward manner using the WarpIV 
Kernel rollback framework to undo those modifications. 

Event splitting occurs as an event is processed whenever it accesses state variables that take on different values 
for the event’s replication set. Event splitting causes the event to be processed multiple times for subsets of its 
original replication set. In the previous illustration, the event used to model Jim ordering his dinner automatically 
split when he accessed the state variable representing the amount of money he had in his wallet. The 
HyperWarpSpeed algorithm automatically processed the event twice (once to order chicken, and again to order 
steak). 

Events can potentially be merged to minimize excessive branching and splitting. Merging may occur first before 
processing events, and then again afterwards for new events that are scheduled. Event merging is an optimization 
that combines the processing of identical events generated by different branches. A flow chart is provided in Figure 
2 showing the HyperWarpSpeed event processing logic. 

 

Figure 2: Flow chart showing the event processing 
sequence in HyperWarpSpeed. An attempt is made to 
merge events first before processing the current event. The 
global replication mask is then determined using the 
collective replication sets of all merged events. The event 
is then potentially processed multiple times as event 
splitting occurs. Finally, all generated event messages 
scheduled by event splitting are potentially merged 
whenever possible. 

 

HyperWarpSpeed simulations can be configured to receive live inputs that roll back and calibrate the state in 
real time. If received data does not affect event processing, those events that were rolled back can be rolled forward 
instead of being reprocessed. Integration of real-time sensor data into Kalman Filters for estimating and predicting 
enemy behaviors was recently demonstrated to the Air Force. The WarpIV Kernel provides an advanced 
rollback/rollforward framework that allows events to undo and potentially redo their operations. 
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3 Parallel Processing 

With the multicore revolution underway, tomorrow’s software must be written to take advantage of parallel 
processing resources. Next generation computers may actually run at reduced clock speeds to accommodate large 
numbers of processors within a single chip. This means that unless software applications are developed to make use 
of multiple processors, future modeling and simulation programs may actually run slower than they do today. It is 
therefore critical for next-generation modeling and simulation technologies such as HyperWarpSpeed to fully 
embrace parallel computing methodologies. The following subsections motivate the need for parallel processing, 
describe how parallel processing is achieved in the WarpIV Kernel, and discuss open source standards underway for 
modeling and simulation. 

3.1 Next Generation Multicore Computing 
Single-processor computing technology has hit the performance wall.1 Computer experts universally agree that 

the only way forward in improving run-time performance is through multicore chip designs along with the 
development of new software applications that are able to take advantage of parallel processing. While Graphics 
Processing Units (GPUs) have exploited multicore technologies for many years, they are very specialized in their 
processing capabilities and have limited output bandwidth for gathering the final results. 

General-purpose multicore computing capabilities are quickly becoming mainstream. Affordable dual quad-
core computers operating at 3 GHz are now available in today’s marketplace. More-exotic tiled-core architectures 
are available.2 Based on Moore’s law, experts predict that processing cores per chip will double every 18 to 24 
months. Within a few years, affordable desktop computers will be configured with 16 to 32 processors (or more). By 
2021, desktop computers with more than 1,000 cores may be commonplace. 

The following excerpt, taken from a recent news article, signifies the importance of developing new scalable 
software solutions to address the emerging hardware revolution. 

… Experts predict dire consequences if the software for more complicated applications isn't brought up to speed soon. 
They warn that programs could suddenly stop getting faster as chips with eight or more cores make their way into PCs. 
The software as it's currently designed can't take advantage of that level of complexity. 

“We'd be in uncharted territory,” Patterson said. “We need to get some Manhattan Projects going here – somebody 
could solve this problem, and whoever solves this problem could have this gigantic advantage on everybody else.” 

 “New Generation of Processors Presents Big Problems, Potential Payoffs for Software Industry.” 
Jordan Robertson, Associated Press, July 22, 2007. 

Hardware and software experts in the field of parallel computing recognize the significance of the multicore 
revolution. Yet, there is still much uncertainty concerning the direction that it will actually take. Hardware vendors 
are actively canvassing the HPC user community for guidance on how applications might best take advantage of 
next generation chip designs. Balancing processor speeds with shared memory cache architectures presents the 
greatest challenge. Distributed shared memory with cache coherency is necessary for offering scalability on large 
multicore systems. To further optimize performance, some hardware vendors have questioned the need for providing 
cache coherency altogether and would prefer to leave the details of synchronizing shared memory to software 
developers.3 However, most software developers are in agreement that simpler parallel programming paradigms are 
necessary to develop, debug, and maintain multicore programs. 

                                                 
1 Three serious performance walls have limited the advancement of single CPU performance. First, the power 

consumed (and heat generated) by increasing the clock speed changes as the square of the clock speed. Current 
clock speeds are currently at the limit of being practical. Second, instruction Level Parallelism (ILP) that exploits 
vector processing, instruction pipelining, branch prediction, etc. has reached its limit. Third, the gap between 
processing speed and memory access has widened. Because memory access is a serious bottleneck, faster 
processors will not necessarily produce faster results. Optimal computing performance requires a balanced chip 
design architecture. 

2 “Tilera Corp. (Santa Clara, Calif.) has said it has started shipping its Tile64 processor, a 64-processor chip based 
on an architecture that could scale to hundreds and even thousands of cores, according to the company… 
Production pricing for the Tile64 family starts at $435 in 10,000 unit quantities” EE Times Online. 

3 The IBM Power4 Architecture does not provide cache coherency between processors interacting through 
distributed shared memory. Furthermore, to improve processing efficiency, instructions might not be processed in 
the expected order. These issues can lead to situations where one node writes multiple variables in shared memory 
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The general consensus is that low-level parallel programming is far too challenging for the mainstream software 
developer. A robust abstract parallel programming framework is necessary to reduce the cost of multicore software 
development.4 The WarpIV Kernel provides a parallel and distributed object-oriented computing framework that 
automates parallel processing on wide variety of hardware and network architectures [19]. 

 

 
Figure 3: Various types of parallel and distributed computing paradigms. 

The supercomputing community has explored various programming approaches over the last twenty years (see 
Figure 3). These include: (1) vector processing, (2) message-passing, (3) shared memory, (4) threads, (5) grid 
computing, (6) transactional memory, (7) distributed shared memory and cache coherency, (8) parallelizing 
compilers, (9) parallel math libraries, (10) distributed object technologies, and (11) parallel discrete-event 
simulation. Experts uniformly agree that a high-level programming framework is needed to streamline software 
development. Debugging parallelized software using low-level concurrency primitives such as thread or shared 
memory locking mechanisms is simply too difficult and expensive for mainstream programs. The WarpIV Kernel 
provides a high-level programming framework for parallel simulation. 

3.2 Optimistic Parallel Discrete Event Simulation 
The fundamental challenge of executing a simulation in parallel on multiple processors is to ensure that each 

object modeled in the simulation processes its events in causally correct ascending time order, while also achieving 
maximal processing efficiency and concurrency [5]. Optimistic processing techniques such as the Time Warp 
algorithm [9] are primarily used to support complex parallel simulations that place no constraints on how distributed 
objects interact. Optimistic simulations allow any object to interact with any other object on any other processing 
node at any time. This is in contrast to conservative techniques that either (1) limit which objects can interact with 
which other objects, (2) place constraints on how tightly in time objects on remote nodes can interact with one 
another, and/or (3) place event ordering rules on inter-object interactions. 

Rollback techniques allow objects on any compute node to process their events optimistically assuming that the 
processing of the next current event will not become invalid due to the arrival of an earlier event scheduled by a 
simulated object residing on another node. When such straggler messages are received, all optimistically processed 
events for the receiving object that were processed with time tags greater than the time tag of the straggler event, are 
rolled back. When using incremental state saving techniques, the events are rolled back in reverse order much like 
the familiar undo mechanisms that are provided by many commercial software applications. 

Events perform two basic operations. They arbitrarily (1) modify state variables and (2) generate new events. 
Rollbacks must therefore undo those two operations. This means that the rollback infrastructure of the optimistic 

                                                                                                                                                             
that are transmitted and then read by other nodes in a different order. So for example, a flag indicating that a 
variable is safe to read could be handled incorrectly unless the program invokes special memory and/or instruction 
synchronization services. 

4 Microsoft Corp. sponsored a special by-invitation-only workshop on manycore computing on June 20-21, 2007. 
Participants were the “Who’s Who” in the worldwide parallel computing industry. During the workshop, experts 
uniformly agreed that parallel programming frameworks were needed to simplify the development of parallel 
applications. Dr. Steinman gave a presentation on the open source standardization efforts that are underway with 
the WarpIV Kernel. 
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simulation engine must be capable of (1) undoing the state changes made by each event and (2) retract any new 
events that were scheduled. 

Both incremental and full state saving techniques have been used in the WarpIV Kernel [17] to restore state as 
rollbacks occur. Full state-saving techniques that are often supported in other systems save the entire state of a 
modeled object before each event is processed. This can be efficient for objects having small states. However, this 
approach can become inefficient both in terms of memory consumption and processing overheads for complex 
objects having large states fragmented over multiple memory segments. The WarpIV Kernel primarily uses 
automatic incremental state saving techniques that capture each change made to the state as they occur. The rollback 
infrastructure simply undoes those changes in reverse order. For more complex operations, the rollback 
infrastructure must not only support the restoration of primitive state variables, but it also must support external I/O, 
generic dynamic memory allocation/deallocation, and container classes such as trees or lists that store the 
dynamically allocated memory. 

When events are scheduled for objects residing on other nodes, antimessages are sent to retract event-
scheduling messages if the event is subsequently rolled back. This can cause cascading rollbacks and further 
antimessages if those retracted events were processed before they were retracted. Various optimistic flow control 
techniques have been developed in WarpIV to keep the number of rollbacks and antimessages stable. These 
techniques include (1) holding back high-risk messages until it is safe (or safer) to release them and (2) limiting 
event-processing optimism on runaway nodes. A good rollback infrastructure only rolls back those events that are 
associated with each individual object, and not the entire state of the simulation on a node. Object-based (as opposed 
to node-based) rollback techniques significantly reduce the number of rollbacks experienced by an application as it 
executes in parallel. 

3.3 Composability Standards for Modeling and Simulation 
The WarpIV Kernel provides a sophisticated framework for developing complex parallel and distributed 

simulations. All of the low-level communications and concurrency mechanisms necessary to achieve scalable 
performance are built into the high-level event scheduling and processing abstractions. The WarpIV Kernel is a 
composable top-to-bottom layered architecture that conforms to the Open Modeling and Simulation Architecture 
(OpenMSA) [18] and Open System Architecture for Modeling and Simulation (OSAMS) [21]. 

Model composability, in contrast to technology composability, is challenging due to many factors such as 
conceptual model representations, integrating models with mixed resolutions, and basic integration challenges [4]. 
The OpenMSA defines a layered architecture of the technologies for parallel and distributed simulation. OSAMS 
focuses on mixed-resolution model interoperability standards that promote the development of plug and play 
software model components. Flexible hierarchical composition techniques and abstract interfaces decouple mixed-
resolution model components while promoting their full interoperability in a parallel and distributed environment. 

A new SISO [15] study group, known as The Open Source Initiative for Parallel and Distributed Modeling and 
Simulation (OSI-PDMS) [16], was formed September 18, 2007 to study such composability architectures with the 
potential goal of forming new standards. The WarpIV Kernel provides a reference implementation of both the 
OpenMSA and OSAMS. The HyperWarpSpeed technology and modeling methodology will almost certainly be 
included in the emerging OpenMSA and OSAMS standards. 
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4 Real-Time Estimation and Prediction 

The conceptual operation of using optimistic simulation to support real-time estimation and prediction is 
straightforward (see Figure 4). The simulation must always be running and predicting the future up to a specified 
time or time window, while rolling back affected models occasionally to process real-time inputs. In the WarpIV 
Kernel, real-time inputs are handled as externally generated events. Inputs can be in the form of aiding terms that are 
used to describe accurately known changes to the system, or in the form of noisy measurements that require 
balancing the believability of the measurements with the system uncertainty specified within the model. In any case, 
the objects affected by the inputs are rolled back to the current real-world time. Processing these real-time inputs can 
be thought of as calibrating, or estimating the real-time state of the simulation. After the inputs have been received 
and processed, the system must quickly rollforward and/or reprocesses all events that were rolled back to continue 
predicting the future. 

Estimate Prediction
Xm(ti)

Xp(ti)
Xp(ti+1)

Xe(ti)

 
Figure 4: Estimation and Prediction. Noisy measurements are repeatedly combined with previous predictions over time to 
continually form the best state estimate of the system. 

4.1 Kalman Filters 

Kalman Filters [23] provide an excellent mechanism to form state estimates and predictions of linear control 
systems with noisy measurements, accurate inputs, and well understood dynamics. It is assumed that the true 
dynamical system can be represented as a linear matrix equation of the following form. 

X (t i+1) = φ (ti+1, ti )X (ti ) + L(ti ) +U (ti ) 

Where, 

• X (ti )  is the true state of the system at time ti. 

• φ (ti+1,ti )  is the transition matrix that extrapolates the state of the system from time ti to ti + 1. 

• L(ti ) is the “aiding” term that describes known inputs to the system between time ti and ti + 1. 

• U (ti ) is the unknown inputs to the system between time ti and ti + 1. 

The true state of the system is never actually known, which is why it is important to perform estimations and 
predictions based on noisy input measurements and accurately known inputs that are collected regularly over time. 
Kalman Filters can have different representations depending on whether the estimation and prediction steps are 
performed separately or collectively in a single step. This section uses the representation of the Kalman Filter that 
performs the estimation and prediction in a single step. The estimator/predictor form of the Kalman Filter is written 
as follows: 

ˆ X (ti+1) = φ (ti+1, ti ) ˆ X (t i ) + L(ti ) + K (t i ) Z (ti )− H (ti ) ˆ X (ti )[ ] 

Where, 

• ˆ X (ti )  is the estimated/predicted state of the system at time ti. 

• Z (ti )  is a vector of measurements of the system taken at time ti. 

• H (ti ) is the measurement matrix that translates the system state to the set of measurements. 

• K (ti )  is the Kalman Gain that weighs the correction to the state obtained from each measurement. 
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The Kalman Gains are computed from the covariance matrix that represents the expectation value of the 
correlated state errors. The covariance matrix takes into account estimates of the measurement noise and the system-
uncertainty noise during each update in time. These equations are shown below. 

K (ti ) = φ (ti+1,ti )P(ti )H (ti ) R(ti ) + H (ti )P(ti )H (ti )
T[ ]−1

 

P(ti+1) = φ (ti+1,ti )− K (ti )H (ti )[ ]P(ti )φ (ti+1,ti )
T +Q(ti ) 

Where, R(ti) is the measurement noise vector and Q(ti) is the system noise vector at time ti. Notice that the gains 
are small (i.e., approach 0 for simple systems) when R(ti) gets large compared to Q(ti). Similarly, the gains become 
large (i.e., approach 1 for simple systems) when Q(ti) is much smaller than R(ti). 

Three types of Kalman Filters were developed for this effort: Range, Range-RangeRate, and PositionXYZ. The 
Range filter is useful for predicting the distance between a ground and air target. The Range-RangeRate filter 
extends the Range filter by taking into account the derivative of the range, or change in speed, to help the filter 
converge faster. As opposed to utilizing angle information, the PositionXYZ filter efficiently determines the position 
of a target in space by converting detections to X, Y, Z coordinates. 

The Kalman Filters are standalone utilities that provide both rollbackable and non-rollbackable versions, and 
are defined in the WpRangeKF.H, WpRangeRangeRateKF.H, and WpPositionKF.H header files. The Range and 
Range-RangeRate filters inherit from a Kalman Filter base class, defined in the WpKalmanFilter.H header file. 
Useful methods in the Kalman Filter base class provide the ability to (1) update the state of the filter with a 
measurement and error-sigma at a point in time, (2) extrapolate the filter into the future, (3) print the filter state, and 
(4) retrieve the time, predicted state, convariance matrix, and Kalman gain. The PositionXYZ filter contains three 
Range filters and receives detection updates in the form of a detection class, defined in WpDetection.H. The 
detection class contains truth and perception data, such as the time of detection, sensor position, range, range-rate, 
direction unit vector, range sigma, range-rate sigma, and direction sigma. Usage of the Range Kalman Filter is 
shown in Code Segment 2, and the corresponding output is shown in Code Segment 3. Additional tests are 
demonstrated in the TestKalmanFilter DeveloperTest. 

#include “WpRangeKF.H” 
#include “WpRandom.H” 
 
int main() { 
  WpRangeKF kf(0.1, 0.0); // RangeKF with targetAccelModel = 0.1, alpha = 0.0 
  WpMatrix z(1,1);        // Measurement 
  WpMatrix zSigma(1,1);   // Error term 
  WpRandom random; 
 
  double noise = 0.05; 
  double dt = 0.01; 
  for (double t=0.0; t<1.0; t+=dt) { 
    z(0,0) = sin(t) + random.GenerateGaussian(0, noise); 
    zSigma(0,0) = noise; 
 
    kf.UpdateState(dt, z, zSigma); 
    cout << "Measurement = " << z(0,0) << endl; 
    kf.Print(); 
  } 
} 

Code Segment 2: Usage of the Kalman Filter. A Range Kalman Filter is utilized to track a noisy data source for one second of 
time. In this example, the data source is a sine wave containing random Gaussian noise, and is measured every one-hundredth of 
a second. The error term of the filter is assumed to be constant. Every time step, a measurement is taken and passed to the 
Kalman Filter. The state of the Kalman Filter is updated and the measurement and predicted state is displayed to standard output. 
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Measurement = 0.434462 
 
X 3 by 1 
[0][0] = 0.326902 
[1][0] = 2.27894 
[2][0] = 6.95614 
 
Measurement = 0.479935 
 
X 3 by 1 
[0][0] = 0.36407 
[1][0] = 2.43563 
[2][0] = 7.24872 
 
Measurement = 0.405163 
 
X 3 by 1 
[0][0] = 0.39268 
[1][0] = 2.53183 
[2][0] = 7.32708 
 
Measurement = 0.444934 
 
X 3 by 1 
[0][0] = 0.423448 
[1][0] = 2.63555 
[2][0] = 7.42621 

Code Segment 3: Select output of Code Segment 2. Notice how the predicted state, given in X[0][0], lags slightly behind the 
measured value but improves its accuracy over time. A drastic change in the measured value, caused by a sharp change in the 
direction of the aircraft, will briefly cause the predicted value to lag behind the measured value. 

4.1.1 Matrix Algebra Utility 

In order to simplify the mathematics of the Kalman Filter, a utility was developed to perform matrix algebra 
operations. The WpMatrix class provides matrix addition, subtraction, multiplication, division (i.e. inversion), 
transposition, and supports operator overloading with both matrices and standard data types. Nested and complex 
equations, which previously required error-prone loops and temporary variables to solve, are now cleanly 
represented in a single easy-to-read line of code. To support usage within an optimistic simulation environment, the 
standalone utility provides both rollbackable and non-rollbackable versions. The rollbackable and nonrollbackable 
versions are defined in the RB_WpMatrix.H and WpMatrix.H header files, respectively. The matrix algebra class 
makes use of the WarpIV ObjectFactory memory management utility, which reuses and recycles memory to avoid 
unnecessary calls to new and delete. Basic usage of the matrix algebra class is shown in Code Segment 4. 
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#include “WpMatrix.H” 
 
int main() { 
  WpMatrix A(2, 3, "MatrixA");      // Create ‘MatrixA’ [2][3] 
  WpMatrix B(3, 2, "MatrixB");      // Create ‘MatrixB’ [3][2] 
 
  A = 0.0;                          // Initialize matrix elements to zero 
  A(1,2) = -2.0;                    // Assign a value to element[1][2] 
 
  B = 1.0; 
  B(1,1) = -3.5; 
  B(2,1) = 1.5; 
 
  WpMatrix C = 1.0 / (A * B + 2.0); // C is the inverse of (A * B + 2.0) 
  C.SetName("MatrixC");             // Optionally set the name 
 
  A.Print();                        // Print matrices to standard output 
  B.Print(); 
  C.Print(); 
} 

Code Segment 4: Usage of the WpMatrix utility. This example first creates two matrices of different dimensions. The arguments 
to the matrix constructor are the number of rows, number of columns, and optional matrix name. Operator overloading is used to 
zero out the matrix in one step, as opposed to iterating through each element. Individual matrix elements are then assigned 
specific values. Finally, the inverse of the sum of two matrices is stored in a new matrix and the matrices are printed to standard 
output. 

The corresponding output from Code Segment 4 is given in Code Segment 5. Additional capabilities are 
demonstrated in the TestMatrix DeveloperTest, which also verifies correctness of the utility during rollback and 
rollforward operations. 

MatrixA 2 by 3 
[0][0] = 0 
[0][1] = 0 
[0][2] = 0 
[1][0] = 0 
[1][1] = 0 
[1][2] = -2 
 
MatrixB 3 by 2 
[0][0] = 1 
[0][1] = 1 
[1][0] = 1 
[1][1] = -3.5 
[2][0] = 1 
[2][1] = 1.5 
 
MatrixC 2 by 2 
[0][0] = 0.5 
[0][1] = 1 
[1][0] = 0 
[1][1] = -1 

Code Segment 5: Output of Code Segment 4. The Print() method displays the matrix name, dimensionality, and element values 
to standard output. 

4.2 Estimation & Prediction Demonstration 

Kalman Filters can be used to fuse noisy data from multiple sources. A good example is a tracking system that 
fuses detections from multiple Radars and IR sensors. This capability has been demonstrated by using real-time 
detections generated by multiple sensors to estimate aircraft motion within an optimistic simulation environment. 
This particular demonstration predicted future outcomes based on extrapolating real-time estimates of aircraft states. 

The components developed to support this demonstration included (1) a real-world simulation generated a file 
of detections, and (2) a real-time network-based detection playback system that feeds into (3) an estimation and 
prediction rollback-based parallel simulation of enemy aircraft in a target-rich theater. Initially, a simulation 
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consisting of three aircraft, several ground radar, systems and a command center was executed to generate and log 
potentially noisy aircraft detections to a file. 

The real-world simulation animated event diagram is shown in Figure 5. Each aircraft SimObj contains a 
Component that guides the motion of the aircraft. The aircraft navigate the MCAS Miramar area in San Diego using 
Great Circle motion, periodically making random changes in their motion and direction in a process loop. The 
ground radar SimObjs contain a radar Component that periodically scans the area for enemy aircraft in a process 
loop. A command center SimObj contains a Kalman track fusion Component that processes detections received by 
the ground radar to form estimates of the position of the aircraft. The command center logs detections to a data file 
for later playback. 

S_AircraftS_Aircraft S_S_GroundRadarGroundRadar S_S_CommandCenterCommandCenter

C_RadarC_Radar C_C_KalmanTrackFusionKalmanTrackFusionC_C_RandomMotionRandomMotion

UpdateUpdate ScanScan

DetectionsDetections
toto

CommandCommand
CenterCenter

DetectionsToCommandCenter :
DetectionsToCommandCenter

S_AircraftS_Aircraft S_S_GroundRadarGroundRadar S_S_CommandCenterCommandCenter

C_RadarC_Radar C_C_KalmanTrackFusionKalmanTrackFusionC_C_RandomMotionRandomMotion

UpdateUpdate ScanScan

DetectionsDetections
toto

CommandCommand
CenterCenter

DetectionsToCommandCenter :
DetectionsToCommandCenter

 
Figure 5: Real-world Simulation Animated Event Diagram. 

The estimation and prediction simulation, as shown in animated event diagram in Figure 6, consisted of a 
detection server and simulation client. The detection server played back and sent the logged detections in real-time 
to the simulation client. The simulation continually processed the detections with a Kalman filter component to form 
estimates of the position of the aircraft in real time. In order to generate rollbacks, additional events were scheduled 
by the aircraft to bomb static targets. 

S_AircraftS_Aircraft S_TargetS_Target

C_C_StaticPositionStaticPosition

Scan TargetsScan Targets BombTarget :
BombTarget

BombBomb
TargetTarget

UpdateUpdate
TrackTrack

DetectionClientDetectionClient

UpdateTrack :
UpdateTrack

C_C_KalmanFilterMotionKalmanFilterMotion

S_AircraftS_Aircraft S_TargetS_Target

C_C_StaticPositionStaticPosition

Scan TargetsScan Targets BombTarget :
BombTarget

BombBomb
TargetTarget

UpdateUpdate
TrackTrack

DetectionClientDetectionClient

UpdateTrack :
UpdateTrack

C_C_KalmanFilterMotionKalmanFilterMotion

 
Figure 6: Estimation/Prediction Simulation Animated Event Diagram. 

As an alternate view, the sequence diagram for the estimation and prediction simulation is shown in Figure 7. 
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Figure 7: Estimation/Prediction Simulation Sequence Diagram. 

The Kalman filter error was saved to disk for later analysis. Figure 8 plots the measurement error (blue) and 
estimate error (green) as a function of time for an enemy aircraft as captured during the real-world simulation. 
Spikes in the estimate error denote when the aircraft made random changes to its motion. 

 
Figure 8: Real-world Simulation Kalman Filter error plot for an enemy aircraft. Measurement error is shown in blue, and 
estimate error is shown in green for the duration of the simulation. Spikes in the estimate error denote points in time in which the 
aircraft abruptly changed its motion. 

Calibrating the simulation with live data ensures that reasonable predictions are generated and eliminates the 
need to void a potentially invalid execution. Predicting enemy intents and behaviors based on past and current data 
[14] is a much more challenging topic that is well beyond the scope of this report [1]. 
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5 Statistical Algebra 

A critical component of the real-time estimation and prediction strategy described in this report is to use 
multiple hypotheses branching to split the event processing into a series of replications that are internally managed 
within the parallel simulation execution. If random numbers are directly used in the models, then the execution will 
quickly splinter into large numbers of replications because the state variables rapidly diverge. Therefore, it is 
important to only branch when critical decisions that have very different state representations are required. To 
handle statistical models, the statistical algebra capabilities described here can be used to represent statistical state 
variables as distributions, not just random values. 

Convolution operations are required to obtain new distributions from algebraic expressions involving two 
independent distributions. If A(x) and B(y) each represent distributions over independent variables x and y, then P(z) 
for a function F(A,B) can be represented as follows: 

P(z) = A(x)dx B(y)δ (z − F(x,y))dy
y=−∞

y= +∞
∫

x=−∞

x= +∞
∫

= A(x)B(F−1(x,z))dx
x=−∞

x= +∞
∫

 

Where F-1(x,z) is the inverse of F(x,y) that is determined by solving z=F(x,y) for y. Note that δ(z-F(x,y)) 
represents the Dirac Delta Function whose value is zero when its argument is non-zero, is infinite when its 
argument is zero, and is normalize to have the area under its curve equal to one. 

For the simple case where F(A,B) = A + B, the inverse is found by solving z = x + F-1(x,z). The inverse is 
simply z - x, which is the familiar convolution shown in the equation below. 

P(z) = A(x)B(
−∞

+∞
∫ z − x)dx  

The current WarpIV Statistical Algebra implementation represents distributions through the use of discrete bins 
ranging over their independent variable. Applications may define the number of bins and the domain of the 
independent variable. The sum of the binned values is normalized to one. Numerically computing algebraic 
expressions involving distributions is accomplished by summing the weighted contribution to the appropriate new 
bin. Special care over binning and sub-binning must be taken into account to ensure that the resulting distributions 
obtained from algebraic operations are smooth. Otherwise, potential spikes and gaps can arise in the resulting 
distributions. 

Using operator overloading in C++, the WarpIV Statistical Algebra capability automatically supports basic 
algebraic operations such as +, -, *, and /. However, for further generality, it also supports transcendental functions 
such as sqrt(), sin(), cos(), tan(), arcsin(), arcos(), arctan(), exp(), log(), pow(), etc. Special care 
has been taken to ensure that the range of independent variables does not contain any singularities or undefined 
values. For example, if the independent variable x for distribution A ranges from -1.0 to +1.0, then singularities 
would arise in the expression B=1/A. In a similar manner, square roots of negative numbers are currently not 
allowed. Support for complex variables may be provided in the future. 

Handling correlations in more complex equations is also important. For example, there is a difference between 
the expressions Y = pow(X, 2) verses Y = X*X. In the first expression involving the power transcendental function, 
the argument X is correlated. However, the second algebraic expression multiplies X by itself in a manner that 
ignores correlations. Thus, these two algebraic expressions yield very different resulting distributions. Further 
automating correct handling of correlations were explored in this effort. 

Additional capabilities are provided by the WarpIV Statistical Algebra package to allow applications to smooth 
and/or re-bin distributions, fit standard statistical functions to numerical distributions, obtain statistical metrics such 
as the mean and standard deviation from distributions, built-in support for a wide variety of common statistical 
functions, and perform correlated operations on user-defined functions involving multiple distributions. 

While the Statistical Algebra package in WarpIV was originally developed to support the ideas in this report, it 
is important to point out that this capability can be used in a wide variety of other applications. The Statistical 
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Algebra package can be used to explore the statistical properties of basic models such as standalone Kalman Filters 
used on airborne radar tracking systems. 

An example showing the use of the WarpIV Statistical Algebra package is shown in the figures below. In this 
example, it is assumed that X is a Gaussian distribution, Y is an exponential distribution, and Z is computed using the 
following equation. 

Z =
1
π

log X + 2cos(Y ) + 5( ) 
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Figure 9: Gaussian distribution for 
variable X. 

Figure 10: Exponential distribution for 
the variable Y. 

Figure 11: Computed distribution for 
the variable Z. 

The Statistical Algebra library was extended in this effort to support mathematical functions and operations on 
up to five correlated distributions. The CorrelatedFunction() is defined in the WpStatDouble.H header file. 
The function accepts up to five WpStatDouble distributions, and a pointer to the function performing the 
mathematical operation on the distributions. A new WpStatDouble distribution is returned as a result. Operations on 
non-correlated distribution perform a convolution, whereas operations on correlated distributions do not. For 
example, consider squaring a distribution. The non-correlated approach would multiply bini of the distribution by 
itself and all other bin indices to determine the probability for the bin, requiring n2 computations. The correlated 
approach only multiplies bini by itself to determine the probability, requiring n computations. 

The following example demonstrates both approaches in Code Segment 6. This example creates a Gaussian 
distribution with a mean of 0.5, standard deviation of 0.1, and 50 bins. A square of the distribution is created using 
both non-correlation and correlation methods. The first result squares the distribution via operator overloading, 
which internally assumes the distributions are independent and thus not correlated. The second result squares the 
distribution using the correlation function. The output from Code Segment 6 is shown in Code Segment 7. 

#include "WpStatDouble.H" 
#include "WpStatGaussian.H" 
 
double Square(double x) { return x * x; } 
 
int main() { 
  WpStatGaussian g(0.0, 1.0, 50, 0.5, 0.1, "Gaussian"); 
  g.GraphDistribution(); 
 
  WpStatDouble gg = g * g; // Operator overloading assumes non-correlation 
  gg.SetName("x * x"); 
  gg.GraphDistribution(); 
 
  WpStatDouble gSquared = CorrelatedFunction(Square, g); // Correlated approach 
  gSquared.SetName("Square"); 
  gSquared.GraphDistribution(); 
 
  return 0; 
} 

Code Segment 6: Statistical Algebra correlations. A Gaussian distribution is squared to demonstrate usage of both non-
correlated and correlated approaches. Operator overloading assumes non-correlation. Squaring the Gaussian distribution via 
correlation requires a call to the CorrelatedFunction(). The CorrelatedFunction() requires a pointer to the function performing the 
mathematical operation on the Statistical Algebra distribution, and the Statistical Algebra distribution itself. A new 
WpStatDouble distribution is returned as a result. 
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Distribution of Gaussian (InstanceId = 1) 
Mean = 0.5, Standard deviation = 0.0995859 
 
         0.16 | (0.000344741) 
         0.18 |- (0.000653795) 
          0.2 |- (0.00119129) 
         0.22 |-- (0.00208556) 
         0.24 |---- (0.00350798) 
         0.26 |------ (0.00566915) 
         0.28 |--------- (0.00880253) 
          0.3 |------------- (0.0131318) 
         0.32 |------------------- (0.0188222) 
         0.34 |-------------------------- (0.0259206) 
         0.36 |----------------------------------- (0.0342964) 
         0.38 |-------------------------------------------- (0.0435992) 
          0.4 |------------------------------------------------------ (0.0532522) 
         0.42 |--------------------------------------------------------------- (0.062492) 
         0.44 |----------------------------------------------------------------------- (0.0704596) 
         0.46 |----------------------------------------------------------------------------- (0.0763279) 
         0.48 |-------------------------------------------------------------------------------- (0.0794429) 
          0.5 |-------------------------------------------------------------------------------- (0.0794429) 
         0.52 |----------------------------------------------------------------------------- (0.0763279) 
         0.54 |----------------------------------------------------------------------- (0.0704596) 
         0.56 |--------------------------------------------------------------- (0.062492) 
         0.58 |------------------------------------------------------ (0.0532522) 
          0.6 |-------------------------------------------- (0.0435992) 
         0.62 |----------------------------------- (0.0342964) 
         0.64 |-------------------------- (0.0259206) 
         0.66 |------------------- (0.0188222) 
         0.68 |------------- (0.0131318) 
          0.7 |--------- (0.00880253) 
         0.72 |------ (0.00566915) 
         0.74 |---- (0.00350798) 
         0.76 |-- (0.00208556) 
         0.78 |- (0.00119129) 
          0.8 |- (0.000653795) 
         0.82 | (0.000344741) 
 

Distribution of x * x (InstanceId = 2) 
Mean = 0.250079, Standard deviation = 0.0713325 
 
       0.0656 |- (0.00201012) 
       0.0856 |----- (0.00686199) 
       0.1056 |------------ (0.016604) 
       0.1256 |----------------------- (0.0322163) 
       0.1456 |------------------------------------- (0.0528355) 
       0.1656 |----------------------------------------------------- (0.0753512) 
       0.1856 |-------------------------------------------------------------------- (0.0952851) 
       0.2056 |----------------------------------------------------------------------------- (0.108462) 
       0.2256 |-------------------------------------------------------------------------------- (0.112892) 
       0.2456 |----------------------------------------------------------------------------- (0.108474) 
       0.2656 |--------------------------------------------------------------------- (0.0970541) 
       0.2856 |---------------------------------------------------------- (0.081443) 
       0.3056 |---------------------------------------------- (0.0646931) 
       0.3256 |---------------------------------- (0.0485236) 
       0.3456 |------------------------ (0.0345337) 
       0.3656 |----------------- (0.0238466) 
       0.3856 |----------- (0.0155879) 
       0.4056 |------- (0.00981892) 
       0.4256 |---- (0.00602318) 
       0.4456 |-- (0.00350051) 
       0.4656 |- (0.00200923) 
       0.4856 |- (0.00109737) 
       0.5056 | (0.000575157) 
       0.5256 | (0.000301411) 
 

Distribution of Square (InstanceId = 3) 
Mean = 0.259822, Standard deviation = 0.100462 
 
       0.0256 |-- (0.00171248) 
    0.0450286 |----- (0.00497145) 
    0.0644571 |----------- (0.0109394) 
    0.0838857 |------------------- (0.019084) 
     0.103314 |------------------------------- (0.0307575) 
     0.122743 |------------------------------------------ (0.0418471) 
     0.142171 |------------------------------------------------------- (0.0539836) 
       0.1616 |------------------------------------------------------------------ (0.0649034) 
     0.181029 |-------------------------------------------------------------------------- (0.0725503) 
     0.200457 |------------------------------------------------------------------------------ (0.0772933) 
     0.219886 |-------------------------------------------------------------------------------- (0.0788556) 
     0.239314 |------------------------------------------------------------------------------- (0.077394) 
     0.258743 |-------------------------------------------------------------------------- (0.0734097) 
     0.278171 |--------------------------------------------------------------------- (0.0675952) 
       0.2976 |-------------------------------------------------------------- (0.0606685) 
     0.317029 |------------------------------------------------------ (0.0532481) 
     0.336457 |-------------------------------------------- (0.0438597) 
     0.355886 |------------------------------------- (0.0366649) 
     0.375314 |------------------------------- (0.030325) 
     0.394743 |------------------------- (0.0247889) 
     0.414171 |-------------------- (0.0193782) 
       0.4336 |-------------- (0.0142409) 
     0.453029 |------------ (0.0113721) 
     0.472457 |--------- (0.00893531) 
     0.491886 |------ (0.00602462) 
     0.511314 |----- (0.00459467) 
     0.530743 |---- (0.00357512) 
     0.550171 |-- (0.00227287) 
       0.5696 |-- (0.00171011) 
     0.589029 |- (0.00131446) 
     0.608457 |- (0.000732777) 
     0.627886 |- (0.00060457) 
     0.647314 | (0.000392227) 

Code Segment 7: Output of Code Segment 6. The first distribution represents the original distribution, which was automatically 
re-binned to provide a better representation. Notice the slight difference in the shape, mean, and standard deviation between the 
non-correlated (second) and correlated (third) distributions. While similar, the distributions are not identical. 
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5.1 Statistical Analysis of Simulation Results 

An important component of the HyperWarpSpeed approach is to perform statistical analysis of intermediate or 
final results. This is accomplished by examining the distribution of various measures of effectiveness for the set of 
replications of interest (i.e., the ones that resulted from going down specific branches). The WarpIV Kernel 
Statistical Algebra package [22] supports algebraic operations (e.g., convolutions, etc.) using operator-overloading 
techniques and transcendental functions on variables representing statistical distributions. An interface has been 
developed to convert multi-replication variables into statistical algebra variables. The interface allows statistical 
algebra distributions to be formed using the multi-replication variable and a replication mask that only includes 
values specified by the mask. Then, statistical analysis to determine the effectiveness of various plans can be 
performed. The results may then feed back into plan optimization, where plans that are not effective can be pruned. 
This can provide a learning environment where better decisions are made over time as various branches are explored 
and outcomes are determined. 

Basic usage of this capability is demonstrated in Code Segment 8 and the TestMultiVarHist DeveloperTest. 
Usage requires initializing a WpStatDouble object with the multi-replication variable, number of histogram bins, 
and optional replication mask. 

#include "WpStatDouble.H" 
#include "RB_WpMultiVar.H" 
 
int main() { 
  int multiIntValues[WP_MULTI_VAR_MAX_REPLICATIONS]; 
  for (unsigned i=0; i<WP_MULTI_VAR_MAX_REPLICATIONS; i++) { 
    multiIntValues[i] = i / 4; 
  } 
 
  int mask[WP_MULTI_VAR_MASK_ARRAY_SIZE]; 
  for (unsigned i=0; i<WP_MULTI_VAR_MASK_ARRAY_SIZE; i++) { 
    mask[i] = 0; 
  } 
 
  WpSetMultiMaskRep(18, mask);         // Set specific replications in the mask 
  WpSetMultiMaskRep(49, mask); 
  WpSetMultiMaskRep(59, mask); 
 
  RB_WpMultiInt multiInt; 
  multiInt.Init(multiIntValues);       // Initialize the multi-int w/ an array of values 
 
  WpStatDouble statDouble; 
  statDouble.Init(multiInt, 10);       // Pass in the multi-int variable and # of bins 
  statDouble.Print(); 
  statDouble.Init(multiInt, 10, mask); // Pass in the multi-int, # of bins, and mask 
  statDouble.Print(); 
} 

Code Segment 8: Forming Distributions of Multi-Replication Variables. First, a multi-replication integer is initialized with an 
array of values, and specific replications of interest are set in a multi-replication mask. Then, a WpStatDouble instance is created, 
and initialized with the multi-replication integer, number of bins, and optional mask. Finally, a print method displays the results 
to standard output. 

Output from Code Segment 8 is shown in Code Segment 9. The first half of the output is a histogram 
representing the distribution of values for each replication in the multi-integer data type. The output specifies the 
midpoint, probability density, and cumulative density for each histogram bin. This example specified 10 bins. The 
second half of the output yields a histogram representing the distribution of values for the replications specified in 
the mask. 
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WpStatDouble (0, 0.125), F = 0.125 
WpStatDouble (3.2, 0.09375), F = 0.21875 
WpStatDouble (6.4, 0.09375), F = 0.3125 
WpStatDouble (9.6, 0.09375), F = 0.40625 
WpStatDouble (12.8, 0.09375), F = 0.5 
WpStatDouble (16, 0.125), F = 0.625 
WpStatDouble (19.2, 0.09375), F = 0.71875 
WpStatDouble (22.4, 0.09375), F = 0.8125 
WpStatDouble (25.6, 0.09375), F = 0.90625 
WpStatDouble (28.8, 0.09375), F = 1 
 
WpStatDouble (4, 0.333333), F = 0.333333 
WpStatDouble (5.1, 0), F = 0.333333 
WpStatDouble (6.2, 0), F = 0.333333 
WpStatDouble (7.3, 0), F = 0.333333 
WpStatDouble (8.4, 0), F = 0.333333 
WpStatDouble (9.5, 0), F = 0.333333 
WpStatDouble (10.6, 0), F = 0.333333 
WpStatDouble (11.7, 0.333333), F = 0.666667 
WpStatDouble (12.8, 0), F = 0.666667 
WpStatDouble (13.9, 0.333333), F = 1 

Code Segment 9: Output from Code Segment 8. 
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6 Measures of Effectiveness and Performance 

The primary purpose of the estimation and prediction techniques discussed in this report is to accurately predict 
the future based on simulation models that are calibrated using real-time inputs to estimate the current state of the 
system. It is also important to define metrics that characterize the performance and effectiveness of the overall 
system and to provide warnings when unacceptable circumstances arise. These metrics provide the feedback to the 
user indicating the quality of the outcome based on real-time estimation and prediction. They are critical in 
supporting system optimization techniques. In this section, all metrics are normalized between zero and one. A score 
of one would indicate perfect operation, while a score of zero would indicate complete failure of the system or 
planned outcome.  

It is important to distinguish the difference between the terms effectiveness and performance. Usually the term 
effectiveness relates to the overall results of the simulation and is used to indicate how well the objectives were met. 
The term performance usually relates to how well systems or subsystems performed their function. For example, an 
aircraft might perform poorly while still effectively meeting its mission objectives. It is possible for the simulated 
system to not perform according to plan, while still producing an effective result. A good example of this in sports is 
a broken play in football that still results in scoring a touchdown. In this case, the play was poorly executed (low 
score for the performance) while the end result still produced a touchdown (high score for the effectiveness). 

Battle plans in a complex military operation evolve over time. Anticipated gains and losses therefore evolve. It 
is important to not just look at the raw effectiveness metric at any point in time to characterize the operation of the 
plan. For example, the invasion at Normandy on D-Day started out very poor in terms of losses to the allied forces, 
yet those losses were anticipated. Of course the plan in the long run was very effective and concluded with a 
complete victory and the liberation of Europe. Like a chess game, it is sometimes advantageous to sacrificing a 
pawn early on to obtain a better position that later wins the battle. This leads to defining two terms: (1) raw 
effectiveness and (2) relative effectiveness. These terms will be described in the context of a battlefield simulation 
involving red and blue opposing forces. 

6.1 Raw Effectiveness 

Raw effectiveness is determined by assigning an intrinsic value to each blue or red asset in the battle. The 
normalized raw effectiveness score is determined by summing these values in a meaningful way. A score of one 
would indicate that all red assets have been destroyed without any blue losses. Similarly, a score of zero would 
indicate that all blue assets have been destroyed without any red losses. 

The intrinsic value for each entity (or asset) in the battle can be defined at a given point in time. Normally, the 
intrinsic value does not change for each entity. However, it is possible for new entities to enter the battle, for 
damaged entities to be repaired, and/or for new information to be provided indicating changes to the intrinsic value 
of an entity. Intrinsic values can be defined as follows: 

I i
[B,R ] (t) = Intrinsic value for [blue,red] entityi at time t  

The actual value for each entity (or asset) in the battle can be defined at a given point in time. The actual value 
ranges from zero (meaning that the entity/asset has been destroyed) to the full intrinsic value (meaning that the 
entity/asset has perfect health, has not diminished its capacity to engage in battle, has all of its weapon systems in 
tact, and has a full fuel supply). 

Ai
[B,R ] (t) = Actual value for [blue,red] entityi at time t  

The total intrinsic and actual values for blue and red entities/assets in the battle can be specified at a given point 
in time: 

 I [B,R ] (t) = I i
[B,R ]

i

N[B, R]

∑ (t)  

 A[B,R ] (t) = Ai
[B,R ]

i

N[B, R]

∑ (t)  
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As previously mentioned, raw effectiveness is a value between zero and one indicating the raw effectiveness of 
the plan outcome. A value of one indicates complete success (i.e., all red entities/assets destroyed and no blue 
entities/assets destroyed). A value of zero indicates complete failure (i.e., all blue entities/assets destroyed and no 
red entities/assets destroyed). The raw effectiveness is not an indication of how accurately the plan has been 
followed. It is simply a measure of the overall outcome. 

 
RawEffectiveness(t) =

AB (t) + I R (t)− AR (t)[ ]
I B (t) + I R (t)  

A successful plan normally results in the raw effectiveness value generally increasing over time. However, it is 
possible for a plan to accomplish its mission, even though the final raw effectiveness decreases. This would happen 
if the cost of completing a mission turns out to be higher than the overall gain. 

Because of the uncertain nature of predicting the outcome of plans, it is important to execute multiple 
replications or support multiple-hypothesis branch points and statistically analyze the results of the different 
replications. The mean and standard deviation of these replications may be provided at regular time increments 
during the simulation. These mean values and their standard deviations can be fitted using χ2 analyses to obtain 
time-based visual plots that provide trend analysis visualization to users. 

The raw effectiveness can be thought of as the overall measure of effectiveness of the plan. This is different 
from the relative effectiveness, which is a measure of the plan performance (i.e., how accurately the plan was 
followed). 

6.2 Relative Effectiveness 

The state of each entity/asset in the plan at any point in time can be defined as an abstract vector of values. 
These state values can be projected forward in time either from simulation or from the actual planned expectations. 
In air combat operations, this can come directly from the Air Tasking Order (ATO). As discussed earlier in this 
technical section, estimated state values are provided through the processing of live data feeds that are provided as 
inputs into the system. These three kinds of state vectors are defined below. 

  
� 
X i

[B,R ] (t) = Predicted state vector of [blue,red] entityi at time t  

  
� 
Y i

[B,R ] (t) = Projected state vector of [blue,red] entityi at time t  

  
� 
Z i

[B,R ] (t) = Estimated state vector of [blue,red] entityi at current time t  

The relative effectiveness is a measure of how accurately the plan is being performed with respect to the 
expectations or of the plan. In other words, the relative effectiveness compares X with Y. Two types of relative 
effectiveness are computed: (1) simulated predictions in time vs. planed expectations from the plan, and (2) 
estimation of the system state at the current time with respect to the real-time picture. 

In the first case, the relative effectiveness provides a prediction of the uncertainty of the plan performance over 
time. It predicts when the plan might fall apart, and when new planning may be required. It provides insight on the 
chaos that may ensue during the fog of war. Some replications may deviate from the plan due to statistical and/or 
uncertainties in the scenario, while other replications produce the anticipated outcome. A statistical analysis of the 
relative effectiveness is used to help characterize the plan dispersion. A mean and sigma for the relative 
effectiveness are computed for each regular time increment in the simulation. Like the raw effectiveness, the mean 
and standard deviations for the relative effectiveness can also support χ2 curve fits and trend analysis plots. 

In the second case, the relative effectiveness allows simulation replications that began their execution in the past 
to verify that they match the current real-time picture. The relative effectiveness for this second case is used to prune 
those replications or branches that do not match the real world picture. These two cases are shown below: 

Case 1 – Simulated predictions: 

 
  
RelEffectiveness(t) = 1−

1
I B + I R

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
� 
X i (t)−

� 
Y i (t)

i

N
∑  
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Case 2 – Simulated estimates: 

 
  
RelEffectiveness(t) = 1−

1
I B + I R

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
� 
X i (t)−

� 
Z i (t)

i

N
∑  

Note that for each of these cases, the magnitude of the vector difference is weighted for each vector value. The 
overall magnitude for each term in the sum is normalized and lies between zero and its intrinsic value. Computing 
the normalized state vector difference between the expected state and the predicted or estimated state is beyond the 
scope of this discussion. However, characterizing how much a plan has deviated will likely involve issues such as: 
(1) location of the entity with respect to where it is supposed to be, (2) deviation of the plan and allowing for time 
considerations such as being behind or ahead of schedule, and (3) health of the entity with respect to the planned 
health. Characterizing the state differences is an active topic of research and development. 

However, a score of one would indicate that the plan is being executed perfectly. It is important to remember 
that losses to assets may be expected, so a score of one does not imply the best possible outcome. A score of zero 
would indicate complete chaos, meaning that the plan has fallen apart and is no longer valid. Like a broken football 
play, it is still possible to achieve the objectives even for a low relative effectiveness score. For Case 2, a low score 
would indicate that the replication or branch does not agree with reality and should therefore be pruned. 

6.3 Supporting Software Framework 

SimObj and Component classes within the WarpIV Kernel were modified to include rollbackable state variables 
identifying their force type, health value, and intrinsic value. Possible force types currently include blue, red, white, 
and unknown, and are enumerated as WP_FORCE_TYPE_<BLUE, RED, WHITE, UNKNOWN>. Entities representing 
white and unknown force types are excluded from MOE/MOP computations. If a SimObj contains one or more 
Components, the Components are assumed to be the same force type as the SimObj. The health value is a double 
ranging from 0.0 to 1.0, and the intrinsic value is a double ranging from 0.0 to MAX_DOUBLE. The intrinsic value 
determines how much weight the health of a SimObj carries on the raw effectiveness calculation. 

The force type, intrinsic value, and health can be set during initialization and modified during run-time. 
GetHealth() and GetIntrinsicValue() methods are provided to query the current health and intrinsic value of 
SimObjs and Components, respectively. A GetForceType() method is provided to query the force type of a 
SimObj. Likewise, SetHealth(), SetIntrinsicValue(), and SetForceType() methods are provided to 
assign or modify the value of these attributes. Code Segment 10 demonstrates initializing these attributes for an 
Aircraft SimObj in a run time class input configuration file. Note that for simplicity, the run time class permits force 
types to be defined as Blue, Red, White, and Unknown. 

class SimObjs { 
  reference AIRCRAFT Aircraft1 
} 
 
class Aircraft1 { 
  string ForceType Red 
  double IntrinsicValue 5.0 
  double Health 1.0 
} 

Code Segment 10: Initializing the Force Type, Intrinsic Value, and Health of a SimObj in a RTC input file. 

The raw effectiveness equation requires the actual intrinsic value for each SimObj. A SimObj’s actual intrinsic 
value is simply the product of its intrinsic value and health. If the SimObj contains one or more Components, the 
actual intrinsic value of the SimObj is the sum of the actual value of its Components. Actual intrinsic values are 
automatically computed as the health of the SimObj or one of its Components is modified. Computing the actual 
intrinsic value for each SimObj is trivial; however, computing the raw effectiveness in real-time for a distributed 
rollbackable simulation is not so easy. 

A framework was implemented to automatically compute measures of effectiveness and measures of 
performance within a WarpIV simulation during execution. To do so required synchronizing all nodes to ensure the 
calculation takes place from the same point in time. A Global MOE utility, defined in the WpGlobalMoe.H header 
file, provides a simple interface for computing the global raw effectiveness. Implementing this feature in a WarpIV 
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simulation requires registering a user function in the main processing loop to carry out the computation. The user 
function is internally called after every event is processed (a future optimization could limit how frequently the user 
function is called). The TestTracking DeveloperTest demonstrates how to compute the global raw effectiveness. 

Analyzing the raw effectiveness of a plan after simulation completion required a different approach. This 
approach is detailed in Section 6.4. 

6.4 Data Logging Utility 

Supporting after action analysis of a plan requires saving the state of simulation variables to disk. One may 
think the simplest approach to recording the raw effectiveness would be logging the value in a time-step manner. 
However, recall that computing the global raw effectiveness requires costly and inefficient synchronization with all 
processing nodes used in the simulation. A more efficient approach would avoid synchronization altogether and 
simply record the actual intrinsic values for each SimObj and Component to the trace file whenever they change. 
Then, these values could be parsed from the trace file to compute the global raw effectiveness. This event-driven 
approach reduces the amount of data saved to disk and allows the simulation to execute as-fast-as-possible without 
interruption. 

Data logging capabilities were developed in the WarpIV Kernel to enable users to log specific data to a trace 
file during simulation execution. Support is provided for single values and arrays of Boolean, byte, double, integer, 
and string data types. Logging data to a trace file from an event requires a single call to a macro. Macros for 
defining data types and arrays are of the form LOG_<DATA_TYPE> and LOG_<DATA_TYPE>_ARRAY, respectively. 
Data logging capabilities are defined in the WpLogData.H header file. After the macro is called, each value or array 
is internally captured as a rollbackable data type. The data is written to disk after the GVT of the simulation exceeds 
the time of the event, thus eliminating the possibility of a rollback that would save duplicate or redundant data to the 
file. Code Segment 11 demonstrates modifying the health of a SimObj and logging an integer array to disk. 

#include “C_Pilot.H” // A user-defined Component 
#include “WpLogData.H” 
 
void C_Pilot::AircraftBombed() { 
  double health = GetHealth(); 
  SetHealth(health - RANDOM.GenerateDouble(0.0, health)); 
 
  int x[4] = {0, 1, 2, 3}; 
  LOG_INT_ARRAY("MyIntArray", x, 4) // Log the integer array 
 
  SCHEDULE_ThresholdScan(SIM_TIME + 10.0, this); 
} 

Code Segment 11: Data Logging Usage. An array of integers is created and initialized inside of an event method. The data is 
easily logged to the trace file by a single call to a macro. Logging an integer array requires passing a (1) character string 
description of the data, (2) pointer to the array, and (3) array size. The description is used for identifying and retrieving the array 
from the trace file. 

Trace files record data from events in accordance with the WarpIV Run Time Class (RTC) format. The RTC 
format is easy to read, interpret, and parse with the WarpIV Class Reader utility. Trace data from each event is 
logged in its own class. Nested classes can exist inside of the main class to help organize different types of data. The 
specific RTC record of the event generated from Code Segment 11 is given in Code Segment 12. 
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class <50:0:0:24:0>AIRCRAFT[0:0:1]::AircraftBombed { 
  double CPU 4.41084e-05 
 
  reference LOCAL_EVENT <60:0:0:24:0>AIRCRAFT[0:0:1]::ThresholdScan 
 
  class LoggedData { 
    double IntrinsicValue 5 
    double ActualIntrinsicValue 0.0172804 
    int MyIntArray { 
      0 
      1 
      2 
      3 
    } 
  } 
} 

Code Segment 12: Sample RTC Record in a Trace File. The “MyIntArray” integer array is recorded as a member of the 
LoggedData class in the trace file. 

This particular record logged data during an AircraftBombed event. The class name of the record indicates 
the (1) time of the event, (2) type and object handle of the simulation object executing the event, and (3) name of the 
method implementing the event. Records inside the class automatically include timing information, a re-entry label 
if the event contains a process, and references to any subsequent events scheduled by the event. The logged data 
section recorded the integer array and automatically captured the intrinsic and actual intrinsic health values since the 
health was modified in the event. To provide a visual representation of the raw effectiveness and logged data, a trace 
file analyzer was developed. The trace file analyzer is discussed in Section 6.5. 

6.5 Trace File Analysis 

A Java-based plotting utility, shown in Figure 12, was previously developed for the WarpIV Kernel to support 
after action review and real-time plotting capabilities. The platform-independent utility permits the generation of any 
combination of 2D scatter plots, lines, area plots, and histograms. The interactive plot enables users to hover over 
data points to display data values, zoom in and out, optionally set the data capacity for real-time plots, adjust data 
transparency settings, and move a data series to the front or back of the canvas to better visualize overlapping 
histogram and area plots. The plotting canvas was developed as a standalone Java Component (JComponent) that 
can easily be imbedded in any Java-based application. Several APIs are provided to control the appearance and 
behavior of the plotter. 

 
Figure 12: Java-based 2D Plotter Component. This example graphs an area plot, in real-time, of two independent streams of 
data. Transparency settings were modified to better visualize the data series in the background. Adjusting transparency is 
important for viewing stacked histograms or distributions of data. As an alternative, the ordering of the data series could be 
adjusted to bring data of interest from the background to the foreground. 

The plotting utility was leveraged to develop a trace file analysis tool, shown in Figure 13. Given a trace file 
name, the tool automatically parses the file to compute the raw effectiveness each time the actual intrinsic value for 
a simulation object changes. The actual intrinsic values of each simulation object are automatically plotted as a 
function of time, along with the raw effectiveness. The user has the ability to select which simulation objects to 
display in the plot. Note that another WarpIV Technologies effort has further extended this capability to plot 
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anything logged during a simulation. Logged data is organized in a selectable hierarchical tree structure by 
simulation object type, enumeration Id, and attribute type. 

 
Figure 13: Trace File Analyzer. User-logged data can be automatically be extracted from WarpIV Kernel trace files and plotted 
over time. Logged data is organized by simulation object type and displayed in a selectable tree-like structure. 

To aid in visualizing StatAlgebra distributions, a prototype Blackboard client/server utility was developed to 
allow any C++ program to pass the distributions to the Java plotter. This requires the WpServer to be running before 
the C++ program is executed. The Java plotter contains a client that connects to the WpServer and checks for 
updates sent to the server. The Java plotter can be initiated at any time. Code Segment 13 demonstrates usage of the 
Blackboard prototype. To add or remove a StatAlgebra distribution from the blackboard, the methods 
AddToBlackboard() and RemoveFromBlackboard() simply requires the hostname and port number of the 
server, and a workspace Id. 

#include "WpStatDouble.H" 
#include "WpStatGaussian.H" 
#include “WpSleep.H” 
 
int main() { 
  WpStatGaussian gaussian(0.0, 10.0, 10, 5.0, 1.0, "Gaussian"); // Create a Gaussian distribution 
  gaussian.AddToBlackboard("localhost", 8001, 1);               // Add it to the blackboard 
 
  WpSleep(10.0);                                                // Sleep 10 seconds 
 
  gaussian.RemoveFromBlackboard("localhost", 8001, 1);          // Remove the distribution 
  return 0; 
} 

Code Segment 13: Blackboard Usage. A Gaussian distribution is created with a min of 0.0, max of 10.0, 10 bins, mean of 5.0, 
sigma of 1.0, and name “Gaussian”. The distribution is added to the WpBlackboard residing on the localhost, port 8001, and 
workspace Id 1. After sleeping 10.0 seconds, the distribution is removed from the blackboard. 

Figure 14 illustrates the blackboard prototype in action. The terminal windows on the right represent the 
WpServer, Java plotter, and C++ test program. The Java GUI enables the user to select which active distributions to 
plot. The plotter checks for updates as the user clicks on the distribution menu. 
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Figure 14: Prototype Distributed Blackboard Utility. This example plots two StatAlgebra histograms. Usage requires executing 
the following programs: (1) a C++ test application, some of which is shown in Code Segment 13, (2) the Java-based 
WpBlackboard GUI permitting the user to select the active distributions to display, and (3) the WpServer enabling 
communication between the WpBlackboard and test application. 
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7 Comparison with Other Technologies 

This section briefly describes existing Course of Action (COA) and M&S technologies along with how they are 
limited in capability when compared to the approach described in this report. 

7.1 Brute Force Monte Carlo Approach 
The most common simulation strategy is to run large numbers of Monte Carlo replications to explore different 

courses of action. The problem with brute force Monte Carlo simulation execution is that many redundant 
computations are unnecessarily performed. Multi-branching and branch-merging techniques described in this report 
significantly outperform the brute force Monte Carlo approach. In addition, managing the statistical outputs and 
accumulating data about branch points and resultant execution paths are simplified because all of the results are now 
provided by a single execution. 

7.2 Simulation Cloning/Forking at Branch Points 
The Monte Carlo approach can be extremely wasteful and cumbersome because each replication redundantly 

computes many of the same calculations as the other replications. One approach to help mitigate this problem is to 
run a simulation up to the point in time where it makes a branch decision. At that point, the simulation clones or 
forks itself. If this happens early and often, large numbers of clones will be generated. Cloned simulations do not 
merge results. In addition, each cloned simulation could still redundantly recompute many of the same events. The 
branching and branch merging techniques described in this report offer a much more computationally efficient 
approach by automatically sharing redundant calculations. 

7.3 Object Cloning at Branch Points 
Another approach has been to clone individual objects within the simulation as branches occur. While this 

approach is more aggressive than cloning entire simulations, it still suffers from not reusing event computations 
from redundant branches. The attribute-level branching and merging approaches described in this report provide a 
much more aggressive and optimal strategy for minimizing redundant computations. 

7.4 Grid Computing 
Grid computing farms Monte Carlo replications to available compute resources. A more effective use of 

computing resources would be to efficiently run a multi-branching simulation execution in parallel that does not 
redundantly compute branches that could be shared between replications. A single laptop with dual-core processors 
programmed correctly with branching and merging capabilities could potentially outperform a large farm of 
computing resources managing the execution of brute force Monte Carlo runs. 

7.5 Dynamic Assessment and Prediction (DSAP) Tool 
DSAP manages large numbers of Monte Carlo replications, and then potentially prunes and restarts them if new 

data arrives that is not consistent with their simulated state [11]. This approach has some utility in supporting legacy 
simulations. However it is far from optimal because simulation replications almost always diverge from the real 
world rapidly. In addition, there is no potential for sharing computations between replications. 

7.6 Recursive Simulation 
One approach used to project multiple potential outcomes is the notion of recursive simulation (i.e., simulations 

that use embedded simulation in their event processing) [7]. Recursive simulations do not share computations during 
branching and they do not merge branches. Therefore, recursive simulation is not as efficient as the 
HyperWarpSpeed time management algorithm described in this report. 

7.7 Integrating Live Data into the Simulation 
Traditional approaches collect live data and periodically run simulation executions to predict the future. Each 

new simulation execution may reproduce a significant amount of redundant computations from previous runs. The 
strategy described in this report continually feeds live and potentially noisy data into the simulation using control 
theory such as Kalman Filters to continually calibrate the state. This technique then continually maintains 
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predictions with multiple branches using the best state estimate of the real world. One additional benefit is that 
uncertainties from covariance matrices can potentially be extrapolated to characterize the believability of future 
states. Such error propagation techniques can provide significant value to Verification, Validation, and Accreditation 
(VV&A) efforts [12]. Again, traditional approaches do not provide this capability. 
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8 Computational Performance Results 

Several initial test applications have been developed for the HyperWarpSpeed algorithm operating within the 
WarpIV Kernel. Three preliminary test programs are described in the following subsections. These tests collectively 
(1) verify the correct operation of multi-replication integer, double, and Boolean data types, (2) exercise branching, 
event splitting, and event merging operations, (3) measure performance in comparison to the equivalent number of 
Monte Carlo replications, and (4) determine speedup when running on parallel processing architectures. Each test 
successfully verified the correctness of the multireplication state variable data types, demonstrated repeatable event 
processing on one or more processors, and highly stressed the branch/splitting/merging algorithms. All of the tests 
demonstrated significant performance gains over the brute force Monte Carlo approach and obtained substantial 
parallel speedup when executing on parallel computing systems. Three unique system configurations, defined in 
Table 2, were used for the following tests. 

Table 2: Test System Configurations. 

Machine Processors Specifications Operating System 
Mac Pro Two Dual-Core Xeon at 3 GHz (total of 4 processors) Mac OS X 10.4.10 
HP Superdome 550 MHz PA8600 (total of 48 processors) HP-UX 11i 
IBM p690 Power4 at 1.3 GHz (total of 32 processors) Suse Linux Enterprise Server (SLES-10) 

 

8.1 Random Walk 
The Random Walk test modeled 10,000 entities taking random steps in three dimensions (see Figure 15) using a 

128-replication set. To keep the dispersion from spreading too large, the random walk test code was modified to 
increase the probability of stepping back towards the center. 

Figure 15: Results from the Random Walk test. All 128 replications start at zero. Each time step performs a branch that takes a 
step to the left or to the right with an equal probability. The left figure shows how the branching should occur. The right figure 
plots data taken from an actual run with ten steps. 

Random Walk Performance: Mac Pro 
The simulation was first executed on the Mac Pro using the brute force Monte Carlo approach. Each replication 

took 6.02 seconds to complete. The simulation then ran using the HyperWarpSpeed algorithm configured to support 
the equivalent of 128 replications. HyperWarpSpeed took 85.15 seconds to complete on a single processor and 26.85 
seconds to complete when running in parallel on four processors. The sequential performance gain of 
HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 9.05. An additional 
speedup factor of 3.17 was achieved by executing in parallel on four processors. 
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Random Walk Performance: HP Superdome 
The simulation was then executed on the HP Superdome using the brute force Monte Carlo approach. Each 

replication took 37.63 seconds to complete. The simulation then ran using the HyperWarpSpeed algorithm 
configured to support the equivalent of 128 replications. HyperWarpSpeed took 560.52 seconds to complete on a 
single processor and 13.98 seconds to complete when running in parallel on forty processors. The sequential 
performance gain of HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 
8.59. An additional speedup factor of 40.01 was achieved by executing in parallel on forty processors. 

Random Walk Performance: IBM p690 
The simulation was finally executed on the IBM p690 using the brute force Monte Carlo approach. Each 

replication took 8.81 seconds to complete. The simulation then ran using the HyperWarpSpeed algorithm configured 
to support the equivalent of 128 replications. HyperWarpSpeed took 121.13 seconds to complete on a single 
processor and 4.75 seconds to complete when running in parallel on thirty processors. The sequential performance 
gain of HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 9.31. An 
additional speedup factor of 25.50 was achieved by executing in parallel on thirty processors. 

The random walk test highly stressed the algorithms because every event branched, merged, and changed local 
variables, while performing almost no computations. The fact that HyperWarpSpeed provided performance 
improvement over the brute force Monte Carlo approach is notable. 

8.2 Aircraft Bombing Target 
The Aircraft Bombing Target test was developed that flew 1,000 aircraft bombing 1,000 ground targets in 

sequence. Each aircraft flew in a single-file formation over the same sequence of targets and dropped a bomb on the 
target if it had not already been destroyed. If the dropped bomb did not destroy the target, a surface to air missile 
was fired back at the aircraft. Again, a 128-replication set was used in the HyperWarpSpeed algorithm to support 
this test. 

In this scenario, branching occurred at two places (see Figure 16): (1) to determine if the bomb destroyed the 
target, and (2) to determine if the surface-to-air missile destroyed the aircraft. In both branching cases, a probability 
of 0.5 was used to determine the effect of (1) the bomb on the target, and (2) the missile on the aircraft. 

 

Figure 16: Aircraft bombing target scenario. 1,000 
Aircraft bomb 1,000 targets in sequence. If the 
bomb did not destroy the target, the target fires a 
surface to air missile back at the aircraft. If the 
aircraft is not destroyed, then the aircraft moves on 
to the next target where the sequence of events 
repeats. 

Aircraft Bombing Target Performance: Mac Pro 
The simulation was first executed on the Mac Pro using the brute force Monte Carlo approach. Each replication 

took 10.97 seconds to complete. The simulation then ran using the HyperWarpSpeed algorithm configured to 
support the equivalent of 128 replications. HyperWarpSpeed took 33.92 seconds to complete on a single processor 
and 10.45 seconds to complete when running in parallel on four processors. The performance gain of 
HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 41.4. An additional 
speedup factor of 3.25 was achieved by executing in parallel on four processors. 
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Aircraft Bombing Target Performance: HP Superdome 
The simulation was then executed on the HP Superdome using the brute force Monte Carlo approach. Each 

replication took 76.27 seconds to complete. The simulation then ran using the HyperWarpSpeed algorithm 
configured to support the equivalent of 128 replications. HyperWarpSpeed took 239.24 seconds to complete on a 
single processor and 6.18 seconds to complete when running in parallel on forty processors. The sequential 
performance gain of HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 
40.81. An additional speedup factor of 38.71 was achieved by executing in parallel on forty processors. 

Aircraft Bombing Target Performance: IBM p690 
The simulation was finally executed on the IBM p690 using the brute force Monte Carlo approach. Each 

replication took 19.66 seconds to complete. The simulation then ran using the HyperWarpSpeed algorithm 
configured to support the equivalent of 128 replications. HyperWarpSpeed took 49.39 seconds to complete on a 
single processor and 2.04 seconds to complete when running in parallel on thirty processors. The sequential 
performance gain of HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 
50.95. An additional speedup factor of 24.21 was achieved by executing in parallel on thirty processors. 

8.3 Miscellaneous Branching Stress Test 
The Miscellaneous Branching Stress Test was developed that exercised the branching, event-splitting, and 

event-merging features of the HyperWarpSpeed time management algorithm. Events branched and later merged 
within objects of type A while other objects of type B queried multi-replication state variables for type A objects. 
Spin loops burning CPU cycles were added to the models in order to mimic computational workloads representing 
the actual event processing that might be performed by more realistic applications. 

 

Figure 17: Performance test of the miscellaneous 
branching stress test executing on the four-
processor Mac Pro. For these measurements, the 
spin loop was increased by a factor of 100. The 
simulation ran for 100 simulated seconds. This test 
highly stressed branching, event splitting, and event 
merging between different types of objects 
distributed across four processors. 

Significant performance improvements for the HyperWarpSpeed algorithm over brute force Monte Carlo 
replications were observed (see Figure 17). 128 individual Monte Carlo replications would have required the 
processing of 68,096,000 events. Executing the simulation using HyperWarpSpeed without the branch merging 
optimization enabled only required 2,253,000 events to be processed. With branch merging enabled, only 642,000 
events were actually required to be processed. The results of a single HyperWarpSpeed execution versus 128 
independent Monte Carlo replications are statistically equivalent. On four nodes, the HyperWarpSpeed approach ran 
236 times faster than 128 serial replications. 

Miscellaneous Branching Stress Test Performance: Mac Pro 
The simulation was first executed on the Mac Pro for 1000 simulated seconds using the brute force Monte Carlo 

approach. Each replication took 29.41 seconds to complete. The simulation then ran using the HyperWarpSpeed 
algorithm configured to support the equivalent of 128 replications. HyperWarpSpeed took 88.47 seconds to 
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complete on a single processor and 24.89 seconds to complete when running in parallel on four processors. The 
performance gain of HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 
42.55. An additional speedup factor of 3.55 was achieved by executing in parallel on four processors. 

Miscellaneous Branching Stress Test Performance: HP Superdome 
The simulation was then executed for 100 simulated seconds on the HP Superdome using the brute force Monte 

Carlo approach. Each replication took 257.40 seconds to complete. The simulation then ran using the 
HyperWarpSpeed algorithm configured to support the equivalent of 128 replications. HyperWarpSpeed took 493.77 
seconds to complete on a single processor and 14.65 seconds to complete when running in parallel on forty 
processors. The sequential performance gain of HyperWarpSpeed over 128 independent Monte Carlo runs on a 
single processor was a factor of 66.73. An additional speedup factor of 33.70 was achieved by executing in parallel 
on forty processors. 

Miscellaneous Branching Stress Test Performance: IBM p690 
The simulation was finally executed on the IBM p690 using the brute force Monte Carlo approach. Each 

replication took 114.40 seconds to complete. The simulation then ran using the HyperWarpSpeed algorithm 
configured to support the equivalent of 128 replications. HyperWarpSpeed took 222.25 seconds to complete on a 
single processor and 8.64 seconds to complete when running in parallel on thirty processors. The sequential 
performance gain of HyperWarpSpeed over 128 independent Monte Carlo runs on a single processor was a factor of 
65.89. An additional speedup factor of 25.73 was achieved by executing in parallel on thirty processors. 

8.4 Summary of Performance Results 
Performance for each of the three tests executing on the three parallel processing hardware systems described 

above are summarized in Table 3. In all cases, the parallel performance of HyperWarpSpeed offers orders of 
magnitude speedup gains over the more traditional brute force Monte Carlo approach executed in a serial manner. 
While these results are preliminary, and do not necessarily indicate high performance for all possible military 
scenarios, the results are extremely positive and warrant further serious investigation. Obtaining similar performance 
on realistic military scenarios may require non-traditional conceptual design approaches for constructing models that 
best take advantage of: branching, merging, support for real-time estimation and prediction, and emerging scalable 
multicore computing architectures. 
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Table 3: Summary of HyperWarpSpeed performance for each of the three tests (Random Walk, Aircraft Bombing Mission, and 
Miscellaneous Branching Test) on three hardware systems (Mac Pro, HP Superdome, and IBM p690). 
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9 Areas of Future Research 

To further simplify the use of this technology and to optimize run-time performance, future research and 
development goals for the HyperWarpSpeed time management algorithm have been identified in the following five 
general areas. 

Goal #1:  Extend programming constructs and data types currently supported by other algorithms within the 
WarpIV Kernel to provide transparent model development. 

 
Goal #2:  Extend existing publish/subscribe data distribution mechanisms within the WarpIV Kernel to 

transparently support branching capabilities. 
 
Goal #3: Research and develop efficient techniques for representing models that branch within the 

HyperWarpSpeed algorithm. 
 
Goal #4:  Develop semi-realistic models of DoD battlefield entities that will verify and validate the correct 

operation of the HyperWarpSpeed algorithm. These models should be extensible to eventually support 
more realistic behaviors and scenarios. 

 
Goal #5:  Identify potential bottlenecks, optimize algorithms, measure computational improvements over brute 

force Monte Carlo approaches, and demonstrate scalable performance on a wide range of parallel and 
distributed computing architectures. 
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10 Summary and Conclusions 

This effort resulted in the development of an efficient and scalable breakthrough M&S technology enabling 
multi-hypothesis branching, the ability to simulate in the fifth dimension, within a single execution. The aggressive 
and original approach outlined in this report provides superior improvement over past approaches by managing 
branches at the state-attribute level, as opposed to cloning objects or simulations at branch points (or worse, 
executing and managing multiple independent Monte Carlo runs). Memory could easily be exhausted with 
traditional approaches as branching spirals out of control. In addition to running on parallel and distributed 
computing architectures, our approach to the problem maximizes computation sharing between branches by 
enabling the merging of events for branches that are identical at points in time. Further, new estimation and 
prediction techniques were developed on this effort for calibrating a faster-than-real-time simulation with noisy real-
time data using Kalman Filters. 

Even though the initial results of the work on this effort were extremely promising, it should be recognized that 
the technology is still very new. It will take some further experimentation to determine optimal strategies for 
developing models. The primary concerns are: (1) branching must be done cautiously to minimize unnecessary 
computations, (2) minimizing the bookkeeping overheads that are required to keep replication sets consistent when 
modifying multi-replication state variables, and (3) supporting additional modeling constructs such as distributed 
objects that are published and subscribed in a parallel and distributed processing environment. 

All of the aforementioned technology is included in the open source WarpIV Kernel software library. The 
WarpIV Kernel provides scalable support for parallel and distributed computing and will readily take advantage of 
next-generation multi-core processors. The WarpIV Kernel is currently the reference implementation for a new 
Simulation Interoperability Standards Organization (SISO) study group known as the Open Source Initiative for 
Parallel and Distributed Modeling and Simulation (OSI-PDMS), focusing on simulation architecture and plug-and-
play model composability standards. 
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12 Software Metrics 

As a result of the effort, approximately 15,369 lines of C++ and Java code were developed. A breakdown by 
task is given in Table 4 below. These metrics are conservative in that they do not include modifications/bug fixes to 
dependent WarpIV utilities uncovered during testing. Development time for most tasks was minimized since the 
effort built upon and leveraged useful WarpIV Kernel utilities and functionality. In addition to software 
development, approximately 450 Power Point slides were developed for the WarpIV Kernel training session 
conducted for AFRL June 4–8, 2007. This training material, along with the software developed during the effort, is 
included in the WarpIV Kernel distribution for all users of the technology. 

Table 4: Software development metrics. 

Software Development (# lines)
Task Source Code Test Code Total

Multi-Hypothesis Branching
  Multi-Variable Data Type 1368 978 2346
  HyperWarpSpeed 782 1371 2153
Real-Time Estimation and Prediction
  Kalman Filters 1380 115 1495
  Detection Class 184 184
  Matrix Algebra Utility 1664 150 1814
  Aircraft Demonstration 2731 2731
  Visualization Demonstration 242 242
Statistical Algebra
  Correlations 415 57 472
  Multi-Variable Distribution Plotting 219 61 280
  Visualization Demonstration 358 358
Measures of Effectiveness and Performance
  Supporting Framework 205 205
  Data Logging Utility 386 386
  Trace File Analysis 857 801 1658
  Visualization Demonstration 384
  Blackboard Prototype 669 57 726
Miscellaneous
  WarpIV Kernel Automatic Testing Framework 319 319

TOTAL 15369  
Table 5 lists the developer tests written to (1) verify and validate the correctness of the technology, and (2) 

conduct benchmarks and performance tests. The developer tests are organized in the table according to the task in 
which they apply. These tests are located in the DeveloperTest directory of the WarpIV Kernel. 

Table 5: Developer tests. 

Task Developer Test
Multi-Hypothesis Branching TestMultiVar

TestBranchAirMission
TestBranching
TestBranching2
TestRandomWalk
TestRandomWalker

Real-Time Estimation and Prediction TestKalmanFilter
TestMatrix
TestTracking

Statistical Algebra TestStatAlgebra
TestStatAlgBlackboard
TestMultiVarHist

Measures of Effectiveness and Performance TestTracking
TestTrace  
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