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Abstract

In this paper we construct robust models for active portfolio management in a market with

transaction costs. The goal of these robust models is to control the impact of estimation errors

in the values of the market parameters on the performance of the portfolio strategy. Our models

can handle a large class of piecewise convex transaction cost functions and allow one to impose

additional side constraints such as bounds on the portfolio holdings, constraints on the portfolio

beta, and limits on cash and industry exposure. We show that the optimal portfolios can be

computed by solving second-order cone programs – a class of optimization problems with a worst

case complexity (i.e., cost) that is comparable to that for solving convex quadratic programs

(e.g. the Markowitz portfolio selection problem). We tested our robust strategies on simulated

data and on real market data from 2000-2003 imposing realistic transaction costs. In these tests,

the proposed robust active portfolio management strategies significantly outperformed the S&P

500 index without a significant increase in volatility.

1 Introduction

Portfolio management is concerned with allocating capital over a number assets to maximize a

suitably defined measure of “return” and minimize “risk”. Although the role of diversification in

reducing risk has long been a part of financial folklore, Markowitz [26, 27] formulated the first

mathematical model that explicitly modeled the risk-return trade-off. In the Markowitz model the

“return” of a portfolio is defined to be the expected value of the random portfolio return and the

‘risk” is quantified by the variance of the random portfolio return. Markowitz showed that, for a

specified lower bound on the return , the optimal portfolio can be computed by solving a convex

quadratic program.
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The analytical tractability of the Markowitz mean-variance model led to development of the

Capital Asset Pricing Model (CAPM) for asset pricing [35, 29, 23] which remains one of the most

widely used models for equilibrium asset prices. In spite of its theoretical success, the practical

impact of the Markowitz model has been quite limited because the model often produces “error-

maximized and investment irrelevant portfolios” [28]. This behavior is a manifestation of the fact

that the Markowitz-optimal portfolio is extremely sensitive to estimation errors in the parameters,

i.e. the mean and variance of asset returns, and often amplifies the errors several-fold. A num-

ber of methods have been proposed for mitigating the effects of parameter uncertainty, such as

constraining the portfolio weights [8, 14] and using scenario or re-sampling based stochastic pro-

gramming methods [28, 40], James-Stein “shrinkage” estimates [9] and other Bayesian estimation

techniques [21, 13, 7, 39, 13, 32, 33, 22]. However, these approaches do not explicitly account for

parameter uncertainty in the portfolio construction step.

To model the effect of data uncertainty in optimization problems, Ben-Tal and Nemirovski [4, 3,

5] introduced a deterministic framework called robust optimization. Using this approach, Goldfarb

and Iyengar [15] proposed a robust portfolio selection model that assumes that the market param-

eters lie in known and bounded uncertainty sets, and computes a portfolio by solving a max-min

mean-variance problem that assumes the worst case behavior of the parameters. The uncertainty

sets in [15] correspond to confidence regions around point estimates of the parameters; consequently,

there is a probabilistic guarantee on the robust portfolio’s performance. Moreover, in [15] it was

shown that for these uncertainty sets, the max-min problems can be reformulated as second-order

cone programs (SOCPs). Since the computational complexity of an SOCP is comparable to that of

a convex quadratic program of similar size and structure [31, 24], the computational effort required

to compute a robust portfolio is comparable to that required to compute the Markowitz-optimal

portfolio. (See [1, 24] for an introduction to SOCP. A MATLAB toolbox to solve SOCPs can be

downloaded from [36].) In the computational experiments reported in [15], the performance of the

robust portfolio was generally superior to that of the non-robust Markowitz portfolio. A robust

asset allocation model with different uncertainty sets for the parameters has been proposed by

Tütüncü and Koenig [38]

Unlike Bayesian approaches that obtain improved estimates of the mean and variance of asset

returns by incorporating uncertainty into the underlying asset return models, robust optimization

based approaches model the mean and variance to be uncertain within specified uncertainty sets.

It is unclear whether either of these approaches is unequivocally superior in modeling parameter

uncertainty. However, the robust optimization based approaches have significant computational

advantage since the associated optimization problem scales very gracefully with the problem size

and one can add many convex constraints such as bounds on the portfolio holdings, constraints on

the portfolio beta, constraints on the transaction costs, limits on the “distance” of rebalanced port-

folios, without affecting the complexity of solving the portfolio allocation problem. Furthermore,

when the uncertainty sets are confidence regions around the maximum-likelihood estimates for the
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problem parameters, the robust approach provides probabilistic guarantees on the performance of

the computed portfolios.

The goal in active portfolio management is to beat a given benchmark by using information that

is not broadly available in the market. In this paper we show how to employ robust optimization

techniques to significantly improve the performance of active portfolio management. The main

contributions of this paper are as follows.

(a) We show how to incorporate robustness with respect to parameter perturbations into mean-

variance models for active portfolio management. Active portfolio management attempts to

outperform a given market index by carefully trading in assets that are priced incorrectly, i.e.

purchasing undervalued assets and short-selling those that are over-valued (see [17] and §2 for

details). Since errors in estimating the returns of assets are expected to have serious conse-

quences for an active strategy, robust models are likely to result in portfolios with significantly

superior performance. The results of our numerical experiments with both simulated and real

market data clearly illustrate the benefits of using a robust model. The models proposed in [15]

cannot be directly applied to active portfolio management because the performance measures

relevant for active investing are always relative to the given index.

(b) We show how a very large class of piecewise convex trading cost functions can be incorporated

into an active portfolio selection problem in a tractable manner. Since active portfolio strategies

tend to execute many trades, properly modeling and managing trading costs are essential for

the success of any practical active portfolio management model [25]. Our transaction cost

models are motivated by a study by Loeb [25] where it is shown that transaction costs are a

function of the amount traded and the market capitalization of the traded assets.

(c) We show that side-constraints such as net-zero alpha (see §3.1) and investor views can be easily

incorporated into the robust mean-variance active portfolio selection problem.

(d) We propose alternative data-driven models for active portfolio management that minimize

Value-at-Risk and Conditional-Value-at-Risk with respect to a given benchmark. We also

show how to incorporate robustness with respect to both parametric and non-parametric per-

turbations into these data-driven models.

The organization of this paper is as follows. In §2 we introduce a robust mean-variance model

for active portfolio management. In this section we discuss a robust factor model for the asset

returns (see §2.1), a piece-wise convex trading cost function that can be calibrated from data (see

§2.3) and show that the associated robust portfolio selection problem can be reformulated as an

SOCP (see §2.4). In §3 we discuss how to incorporate side constraints such as net-zero alpha and

investor views into a robust mean-variance active portfolio selection. In this section, we also discuss

data-driven non-parametric models for active portfolio management. In § 4 we report the results of
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our computational experiments with simulated and real market data and in § 5 we conclude with

a brief discussion of avenues for future research.

2 Robust Mean-Variance Active Portfolio Management

In this section we propose a robust mean-variance model for active portfolio management. Our

model uses historical returns and equilibrium expected returns predicted by the CAPM to identify

assets that are incorrectly priced in the market.

There is a fundamental inconsistency between the CAPM and active portfolio management.

The CAPM assumes that markets are efficient, i.e. if one were to project the random return ra of

any asset on the random return rb of the benchmark to obtain linear relation

E[ra] = αa + βaE[rb],

the expected exceptional return αa is identically equal to zero. In contrast, active management is

predicated on the assumption that there exist assets for which αa 6= 0 and that these exceptional

returns can be predicted. There is an ongoing debate on the validity of the efficient market hypoth-

esis and the CAPM (see [12] and the references therein) that is beyond the scope of this paper. In

this paper we take a data driven approach and investigate whether historical returns can be used

to outperform a given index.

Active portfolio management consists of two steps. The first step is to forecast the vector of

exceptional returns α. We are not aware of any statistically justifiable model for estimating α.

Practitioners appear to employ an ad-hoc combination of techniques, such as asset pricing models,

security and/or sector analysis and analyst views, to arrive at an estimate of α [17]. We propose

combining historical returns with the CAPM to estimate α. The second step is to use the estimates

of α to compute a portfolio φ that outperforms the market. Treynor and Black [37] introduced a

mean-variance model for computing such a portfolio. This model shifts the market portfolio toward

(away from) the stocks that have positive (negative) “alpha”. Black and Litterman [7, 19] refined

this model by introducing uncertainty in the market parameters. Cvitanic et. al. [10] introduced

a dynamic model that also considers hedging demands. In this paper, we propose using a robust

maximum information ratio to manage an active portfolio.

2.1 A robust factor model for residual returns

We use the robust factor model proposed by Goldfarb and Iyengar [15] for modeling the residual

returns. We begin by projecting the random return vector r ∈ R
n
+ of the n assets in the market on

the benchmark return rb to obtain the linear relation

r = βrb + ∆r, (1)
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where β = (β1, . . . , βn)T ,

βb
i =

cov(ri, rb)

var(rb)
, (2)

denotes the “beta” of asset i, and ∆r denotes the vector of residual or exceptional returns. In

practice β is determined by applying a linear regression to daily asset and benchmark returns r(t)

and r
(t)
b over a specified historical period (i.e., sequence of trading days, t = 1, . . . , T ).

We assume that the benchmark return rb ∼ N (µb, σ
2
b ) and the random residual return ∆r is

given by the factor model

∆r = α+ V′f + ε, (3)

where α = E[∆r] denotes the vector of expected residual returns, f ∼ N (0,F) ∈ R
m (m << n)

denotes the returns on the m factors driving the market, V ∈ R
m×n denotes the factor loading

matrix of the n assets, and ε ∼ N (0,D) ∈ R
n is independent of f . The notation x ∼ N (µ, Σ)

denotes that x is a multivariate Normal random variable with mean vector µ and covariance matrix

Σ. The covariance matrices F � 0 and D = diag(d) � 0. (The notation A � 0 denotes that A is

positive definite.) Thus, ∆r ∼ N (α,V′FV + D).

In practice the parameters α, F, V, and D in the factor model (3) are estimated from limited

historical data and are, therefore, subject to estimation noise. To deal with these estimation errors,

we assume that the expected residual return α, the factor loading matrix V and the covariance

matrix D of the residual returns are uncertain, with uncertainty sets given by the confidence regions

around the maximum-likelihood estimates of α, V and D, respectively. Thus, the individual

diagonal elements di of D lie in an interval [di − δi, di + δi], i.e. D belongs to the uncertainty set

Sd given by

Sd =
{
D : D = diag(d), di = di + ∆di, |∆di| ≤ δi, i = 1, ..., n

}
, (4)

and the uncertainty set Sv for the factor loading matrix V is of the form

Sv =
{
V : V = V0 + W, ‖Wi‖g ≤ ρi, i = 1, ..., n

}
, (5)

where Wi denotes the i−th column of W and ‖w‖g =
√

w′Gw denotes the elliptic norm of w

with respect to a symmetric positive definite matrix G, and the uncertainty set for the expected

residual return vector α is of the form

α ∈ Sα = {α : α = α0 + ξ, |ξi| ≤ ηi, i = 1, ..., n} . (6)

Methods for computing α0, η, V0, G, ρ, d and δ from historical data are discussed in Appendix A.

For a detailed justification for using confidence regions as uncertainty sets, see [15]. For simplicity,

we assume that the factor covariance matrix F is certain but this assumption can also be relaxed

and all of the methods proposed in this paper can be extended to this case; see [15] for details.
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2.2 A robust portfolio selection model with transaction costs

Suppose φ̄ ∈ R
n denotes the current portfolio, i.e. φ̄i is the amount in dollars invested in asset i.

In this section we propose an optimization model that computes a new re-balanced portfolio φ.

Let z,y ≥ 0 denote, respectively, the dollar amounts of assets bought or sold. Then the resulting

rebalanced portfolio φ ∈ R
n is given by

φ = φ̄+ z − y. (7)

Let T (z,y) denote the cost incurred by the trade (z,y). Then we must have

1Tφ+ T (z,y) = 1T φ̄, (8)

where 1 ∈ R
n denotes a vector with every component equal to 1. From (7) and (8) it follows that

T (z,y) = 1′(y − z). Note that we have ignored consumption and fresh inflow of capital. This can

be easily modeled by defining a suitable consumption function.

We assume that the transaction cost function T (z,y) is continuous, increasing, and convex in

(z,y). ( In § 2.3 we discuss a particular specification of the transaction cost function.) In order to

control the amount of the transaction costs incurred we impose the constraint,

T (z,y) = 1′(y − z) ≤ θw, (9)

where θ ∈ [0, 1] is a parameter, and w is the amount of the total wealth invested in the rebalanced

portfolio φ, i.e. the wealth after the trade has been executed and the transaction costs are paid.

In addition, we impose upper and lower bounds on the portfolio holdings as a percentage of the

total wealth, i.e.

−wv ≤ φ ≤ wu (10)

A positive lower bound v > 0 implies that short sales are allowed.

Next, we select a suitable objective for the portfolio re-balancing step. The goal of active

portfolio management is to outperform an index by investing in assets are mispriced with respect

to the benchmark φb, i.e. assets for which the expected excess return αi 6= 0. When the excess

return ∆r ≡ 0 the active manager would hold φ = wφb, where φb is the normalized (1′φb = 1)

index portfolio. On the other hand, when ∆r 6= 0 we expect an active portfolio manage to hold a

portfolio φ 6= wφb. Let

ψ = φ− wφb, (11)

denote the active component ψ of the portfolio φ, i.e. ψ is the difference between the portfolio

φ and the passive portfolio wφb which invests the entire net wealth w in the market portfolio φb.

The random return r′φ of the portfolio φ can be decomposed as follows

r′φ = (∆r+rbβ)′φ = ∆r′φ+(β′φ)rb = ∆r′φ+(β′ψ)rb+wrb(β
′φb) = ∆r′φ+(β′ψ)rb+wrb, (12)
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where we have used (1) and (11) and the fact that ∆r′φb = (r − rbβ)′φb = rb − rbβ
′φb ≡ 0. In

the active portfolio selection literature, the component (β′ψ)rb that is perfectly correlated with

the random benchmark return rb is called the return from benchmark timing [17], i.e. the return

derived by carefully timing the purchase/sale of the benchmark. Since such timing is likely to be

very sensitive to market data, the term β′ψ is very often negative. To protect against this, most

active portfolio selection strategies choose ψ to be uncorrelated with the benchmark return rb, i.e.

β′ψ = 0 or equivalently

β′φ = w. (13)

Since ∆r is assumed to be a multivariate Normal vector, (12) and (13) imply that the probability

that the active return falls short of the benchmark return rb is given by

P
(
r′φ ≤ wrb

)
= P(∆r′φ ≤ 0) = 1 − Φ

(
IR(φ)

)
, (14)

where Φ(·) denotes the cumulative density function (CDF) of a univariate standard Normal random

variable and

IR(φ) =
E[∆r′φ]√
var[∆r′φ]

=
α′φ√

φ′(V′FV + D)φ
. (15)

denotes the information ratio of the portfolio φ [17]. The information IR(φ) is the Sharpe Ratio

of the exceptional returns of the portfolio φ.

If the parameters α, V, F and D are known perfectly, then a natural objective for an active

portfolio manager is to maximize

vo(φ) = IR(φ), (16)

as first suggested by Treynor and Black [37] since this would minimize the probability of shortfall.

When the parameters are uncertain, a natural objective vr(φ) is to maximize the worst case

IR(φ), i.e.

vr(φ) = min{α∈Sα,Vα∈Sv ,Dα∈Sd}

{
α′φ√

φ′(V′FV + D)φ

}
(17)

Combining (7), (9), and (10), with a relaxed version of (8), we have that the set of feasible φ ∈ R
n

is given by

Φ =




φ :

w − 1′φ = 0, w − β′φ = 0 φ+ y − z = φ̄, 1′(y − z) ≤ θw,

1′φ+ T (z,y) ≤ 1′φ̄,

−wv ≤ φ ≤ wu, z, y, w ≥ 0.





(18)

That is, there exist z,y ∈ R
n
+ and w ∈ R+ in addition to φ ∈ R

n that satisfy the constraints in

(18). Note that by relaxing the constraint 1′φ + T (z,y) = 1′φ̄, we ensure that Φ is convex. In

Appendix B we show that this relaxation does not result in any loss of generality.

Thus, a non-robust optimal active portfolio is any optimal solution of the optimization problem

max{vo(φ) : φ ∈ Φ}. Since the objective vo(φ) of this problem has the form of a Sharpe ratio,

the problem is often referred to as the mean-variance active portfolio selection problem. A robust

optimal active portfolio is any optimal solution of the optimization problem max{vr(φ) : φ ∈ Φ}.
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2.3 Transaction cost model

In this section, we discuss a specific form for T (z.y) that is quite general and yet allows one to

solve the active portfolio selection problem very efficiently. Following Loeb [25] we assume that the

transaction cost for each asset is primarily due to the effect that trade have on the price of the

asset and hence, depends on the market capitalization of the asset and the size of the trade. We

are implicitly assuming that many of the trades of the active portfolio are fairly large.

We begin with a relatively simple transaction cost function. We assume that T (z,y) is separable

along assets, i.e.

T (z,y) =
n∑

i=1

Ti(zi, yi) (19)

where Ti(zi, yi), i = 1, . . . , n is the transaction cost function for each asset i, and that the cost of

buying and selling an asset i, i = 1, . . . , n is the same. Hence, Ti(zi, yi) = Ti(zi + yi), i.e. Ti(zi, yi)

is a function of zi + yi. Furthermore, we assume that the function

Ti(x) = max{ϑi1x, ϑi2x
3
2 }, (20)

where θi1, θi2 > 0. Thus, Ti(x) is a continuous, increasing, and piecewise convex function with two

pieces:

Ti(zi, yi) =

{
ϑi1(zi + yi), if zi + yi ≤ πi

ϑi2(zi + yi)
3
2 , if zi + yi > πi

(21)

where the breakpoint πi satisfies ϑi2 = ϑi1π
− 1

2
i .

The specific form in (21) is motivated by the data reported in [25]. Figure 1 displays the per

unit transaction cost, i.e. t(x) = T (x)
x as a function of the trading block size x for the three different

market capitalizations classes: $0.5–$1bn, $1–$1.5bn, and > $1.5bn. In order to better understand

the structure of the function t(x), in Figure 2 we plot ln(t(x)) as a function ln(x). It is clear from

this plot that for each of the capitalization classes, a piecewise linear function of ln(x) of the form

ln(t(x)) =

{
a1 if 0 ≤ x ≤ π

a2 + a3 ln(x), if π ≤ x
(22)

where a1, a2, a3 and π are parameters, provides a very good fit for ln(t(x)). The least squares

estimates of the parameters (a1, a2, a3, π) for the three asset classes are given in Table 1. (The

best-fit curves are also plotted in Figure 1 and Figure 2.) The parameters in Table 1 imply that

for assets with a market capitalization greater than $1.5bn, the transaction cost function

T (x) = t(x)x =

{
0.0115x, x ≤ e5.3647 = 213.7271,

0.0012x1.4140, x ≥ 213.7271.

Therefore, the function in (21) is a good approximation for transaction cost function implied by

the best-fit curve. While the data in [25] is from 1982, it is reasonable to assume that the struc-

ture of transaction cost (i.e., continuous, piecewise, and convex) illustrated by the data would be
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Figure 1: Per-unit transaction cost t(x) as a function of market capitalization and the amount

traded.
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size x.
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$0.5–$1bn $1–$1.5bn ≥ $1.5bn

ln(π) 4.474 4.9087 5.3647

a1 -3.9374 -3.9634 -4.4654

a2 -5.8241 -6.1360 -6.6864

a3 0.4217 0.4426 0.4140

Table 1: Coefficients of the least squares fits in Figure 2

appropriate to other time periods, although scales and numerical values might change. We discuss

more general transaction cost functions later in this section.

Next we show that for transaction cost functions of the form (21), the set {z ∈ Rn
+,y ∈ Rn

+, τ ∈
R+|T(z,y) ≤ τ} can be represented as a collection of second-order cone (SOC) constraints of the

form

‖Ax + b‖ ≤ cTx + d,

where x ∈ R
p is the decision variable, the norm ‖·‖ is the Euclidean norm, and all other quantities

are constants.

From (19) and (20), it follows that

T (z,y) ≤ τ ⇔
n∑

i=1

τi ≤ τ, Ti(zi, yi) = max{ϑi1(zi + yi), ϑi2(zi + yi)
3
2 } ≤ τi, i = 1, . . . , n

⇔
n∑

i=1

τi ≤ τ ϑi1(zi + yi) ≤ τi, ϑi2(zi + yi)
3
2 ≤ τi, i = 1, . . . , n. (23)

The following two results (e.g., see ([5]) or ([1]) show that a constraint of the form ϑi2(zi +yi)
3
2 ≤ τi

is equivalent to a collection of the SOC constraints.

Lemma 1 The constraint
√

x1x2 ≥ x3 where x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 is equivalent to the SOC

constraint
∥∥∥∥∥

2x3

x1 − x2

∥∥∥∥∥ ≤ x1 + x2, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Proof: Squaring both sides of the norm inequality and simplifying yields the equivalence.

Lemma 2 The set of constraints ϑx
3
2 ≤ t, x ≥ 0, t ≥ 0, where ϑ ≥ 0 is a constant, hold if and only

if there exists t1 ≥ 0 satisfying √
ϑx ≤

√
t1t, t1 ≤ √

x. (24)

Proof: Suppose that ϑx
3
2 ≤ t. Then t1 =

√
x satisfies (24). On the other hand, suppose x, t, and

t1 satisfy (24). Then we have

ϑx2 ≤ t1t ≤ x
1
2 t ⇒ ϑx

3
2 ≤ t.

10



Lemmas 2 and 1 together with (23) imply that

Φ =





φ :

w − 1′φ = 0, w − β′φ = 0 φ+ y − z = φ̄, 1′(y − z) ≤ θw,

1′φ+
∑n

i=1 τi ≤ 1′φ̄,

ϑi1(zi + yi) ≤ τi, i = 1, . . . , n∥∥∥∥∥
2
√

ϑi(zi + yi)

τi − κi

∥∥∥∥∥ ≤ τi + κi, i = 1, . . . , n,

∥∥∥∥∥
2κi

zi + yi − 1

∥∥∥∥∥ ≤ zi + yi + 1, i = 1, . . . , n,

−wv ≤ φ ≤ wu, z, y, κ, τ , w ≥ 0.





This reformulation has important practical implications since large-scale SOCPs can be solved very

efficiently.

We now present a more general class of transaction cost functions that still allow the portfolio

selection problem to be reformulated as an SOCP. We still assume that the transaction costs are

separable by assets; however, we now allow for the transaction costs of buying and selling an asset

i to be different; i.e.

T (z,y) =
n∑

i=1

T+
i (zi) + T−

i (yi).

All the transaction costs are assumed to have the following general form:

T (x) = max
1≤j≤J

{ Kj∑

k=1

ajkx
ρjk

}
. (25)

where for all j, k, ajk ≥ 0, and ρjk ≥ 1 and rational. The transaction cost function in (25) is fairly

general, e.g. functions of the form

T (x) =





a11x, x ≤ b1,

a21x + a22x
4
3 , b1 ≤ x ≤ b2,

a31x
2, x ≥ b2,

belong to the allowed class of transaction cost functions. However, it does not cover the class of all

piecewise polynomial convex functions.

The constraint T (x) ≤ τ if, and only if, there exist variables τjk, k = 1, . . . , Kj , j = 1, . . . J ,

such that

ajkx
ρjk ≤ τjk,

Kj∑

k=1

τjk ≤ τ j = 1, . . . , J.

The following result shows that constraints of the form θx
a
b ≤ t for a ≥ b ≥ 1 and integer can be

reformulated as a collection of second-order cone constraints.
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Lemma 3 ([5]) Let a and b be positive integers with a > b. The set of constraints ϑx
a
b ≤ t, x ≥

0, t ≥ 0, where ϑ ≥ 0 is a constant, hold if and only if there exists nonnegative variables tkl,

k = 1, . . . , q, l = 1, . . . , 2q+1−k where q is the smallest positive integer such that a ≤ 2q, satisfying

ϑb/2q

x ≤
√

tq1tq2,

tkl ≤
√

tk−1,2l−1tk−1,2l, k = 2, . . . , q, l = 1, . . . , 2q+1−k,

t1l = t, l = 1, . . . , b,

t1l = x, l = b + 1, . . . , 2q − a + b,

t1l = 1, l = 2q − a + b + 1, . . . , 2q.

Proof: The proof is similar to that of Lemma 2 but more tedious. See [5] page 105-107 for

details of the construction. Note that we defined q sets of new (dummy) variables and assigned

specific values to the level 1 variables, t1l, l = 1, . . . , 2q. Note also that the above construction is

not unique; there are many ways to combine variables at each level. When a = b, the constraint

ϑx
a
b = ϑx ≤ t is linear.

2.4 SOCP reformulation of the active portfolio selection problem

The robust active portfolio selection problem is given by

v∗r ≡ maximize vr(φ) = min{α∈Sα,Vα∈Sv ,Dα∈Sd}

{
α′φ√

φ′(V′FV+D)φ

}
,

subject to φ ∈ Φ,

(26)

The results in the previous section imply that for transaction cost functions of the form (25) the

constraint set Φ can be expressed as a collection of SOC constraints. In this section, we use results

in [15] to show that when v∗r > 0 the optimization problem (26) can be reformulated as an SOCP.

Define homogeneous extension Φ̃ of Φ as follows:

Φ̃ ≡ cl
(
{(φ, ζ) : ζ > 0,

1

ζ
φ ∈ Φ}

)
,

= cl








(φ, γ) :

w − 1′φ = 0, w − β′φ = 0 φ+ y − z = ζφ̄,

1′φ+ ζT (ζ−1z, ζ−1y) ≤ ζ1′φ̄,

−wv ≤ φ− wu, 1′(y − z) ≤ θw,

z, y, w, ζ > 0.








. (27)

Note that ζT (ζ−1z, ζ−1y) is a convex function of (z,y, ζ) for ζ > 0 whenever T is a convex function.

Moreover, for transaction cost functions of the form discussed in the previous section the constraint

ζT (ζ−1z, ζ−1y) ≤ τ reduces to a collection of SOC constraints. For example, when T is given by
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the simple two-term cost function (21),

Φ̃ =





(φ, ζ) :

w − 1′φ = 0, w − β′φ = 0 φ+ y − z = ζφ̄, 1′(y − z) ≤ θw,

1′φ+
∑n

i=1 τi ≤ ζ1′φ̄,

θi1(zi + yi) ≤ τi, i = 1, . . . , n∥∥∥∥∥
2
√

ϑi(zi + yi)

τi − κi

∥∥∥∥∥ ≤ τi + κi, i = 1, . . . , n,

∥∥∥∥∥
2κi

zi + yi − ζ

∥∥∥∥∥ ≤ zi + yi + ζ, i = 1, . . . , n,

−wv ≤ φ ≤ wu, z, y, κ, τ , w, ζ ≥ 0.





(28)

Lemma 4 Let

ṽ∗r ≡ minimize maxVα∈Sv ,Dα∈Sd}{φ′(V′FV + D)φ},
subject to minα∈Sα

{α′φ} ≥ 1,

(φ, ζ) ∈ Φ̃.

(29)

Then we have following possibilities.

(a) (29) is infeasible: v∗r ≤ 0.

(b) (29) is feasible: Let (φ̃, ζ̃) denote any optimal solution of (29). Then ζ̃ > 0, v∗r > 0 and ζ̃−1φ̃

is optimal for (26).

Proof: Suppose v∗r > 0. Then there exists φ̂ such that minα∈Sα
α′φ̂ = ζ̂ > 0 and (ζ̂−1φ̂, ζ̂) is

feasible for (29). This establishes (a).

Suppose (φ, ζ) is feasible for (29) and ζ = 0. Then minα∈Sα
α′φ ≥ 1 implies that φ 6= 0.

Assume, for concreteness, that Φ̃ is given by (28). The proof will proceed in an similar manner for

general Φ̃. From the constraints, it follows that

0 ≤ w = 1′φ = −
n∑

i=1

τi ≤ 0.

Thus, w = 0 and τi = 0, for all i = 1, . . . , n. Therefore, z = y = 0; hence, φ = y − z = 0. A

contradition. Thus, we must have ζ > 0 for all (φ, ζ) feasible for (29).

Suppose (φ̃, z̃) is optimal for (29). Then (ζ̃)−1φ̃ ∈ Φ. Therefore,

v∗r ≥ min
{α∈Sα,Vα∈Sv ,Dα∈Sd}





α′(ζ̃−1φ̃)√
(ζ̃−1φ̃)′(V′FV + D)(ζ̃−1φ̃)





= min
{α∈Sα,Vα∈Sv ,Dα∈Sd}





α′φ̃√
φ̃
′
(V′FV + D)φ̃



 =

1√
ṽ∗r

> 0,
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where the first equality follows from the fact that the objective vr(φ) is homogeneous with degree-0.

Suppose v∗r > 1/
√

ṽ∗r . Let φ̂ ∈ Φ denote any optimal solution of (26). Since v∗r > 0, it follows

that ζ̂ = minα∈Sα
α′φ̂ > 0. It is easy to check that (ζ̂−1φ̂, ζ̂) is feasible for (29) and

max
Vα∈Sv ,Dα∈Sd}

{(ζ̂−1φ̂)′(V′FV + D)(ζ̂−1φ̂} =
1

(v∗r )
2

< ṽ∗r .

A contradiction. Therefore, it follows that v∗
r = 1√

ṽ∗
r

and ζ̃−1φ̃ is optimal for (26). This estab-

lishes (b).

In practice, we rebalance only if there exists a new portfolio φ ∈ Φ with vr(φ) > 0. Therefore,

for all practical purposes, the two optimization problems are equivalent. It is clear that (29) is

equivalent to

minimize ν + γ

subject to φV′FVφ ≤ ν, for all V ∈ Sv,

φ′Dφ ≤ γ, for all D ∈ Sd,

α′φ ≥ 1, for all α ∈ Sα,

(φ, ζ) ∈ Φ̃.

(30)

From the definition of Sα and Sd it follows that

α′φ ≥ 1, ∀ α ∈ Sα ⇔ α′
0φ− η′ |φ| ≥ 1, ⇔ α′

0φ− η′ψ,ψ ≥ φ,ψ ≥ −φ, (31)

where η = (η1, . . . , ηn)′, and

φ′Dφ ≤ γ, ∀ D ∈ Sd ⇔ φ′ diag(d̄+δ)φ ≤ γ ⇔
∥∥∥∥∥

[
2diag(d̄ + δ)1/2φ

1 − γ

]∥∥∥∥∥ ≤ 1+γ, (32)

where δ = (δ1, . . . , δn)′. In [15], it was shown that for fixed portfolio φ̂ and a number ν, φ̂
′
V′FVφ̂ ≤

ν, for all V ∈ Sv if, and only if, there exist σ, ς ≥ 0 and h ∈ Rm
+ satisfying

ς + 1′h ≤ ν,

σ ≤ 1
λmax(H) ,∥∥∥∥∥

[
2r

σ − ς

]∥∥∥∥∥ ≤ σ + ς,
∥∥∥∥∥

[
2gi

1 − σλi − hi

]∥∥∥∥∥ ≤ 1 − σλi + hi, i = 1, . . . , m,

(33)

where r = ρ′|φ|, QΛQ′ is the spectral decomposition of H = G− 1
2 FG− 1

2 , Λ = diag(λ), and

g = Q′H
1
2 G

1
2 V0φ. From (31), (32) and (33), it follows that the robust maximum information

ratio problem (26) is equivalent to an SOCP. Since the non-robust active portfolio selection problem

is a special case of the robust problem where the uncertainty sets are all singletons, it follows the

non-robust problem is also equivalent to an SOCP.
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The fact that the active portfolio selection problems are SOCPs has important theoretical and

practical implications. Since the computational complexity of an SOCP is comparable to that

of a convex quadratic program, it follows that robust active portfolio selection is able to provide

protection against parameter fluctuations at very moderate computational cost. Morever, a number

commercial solvers such as MOSEK, CPLEX and Frontline System (supplier of EXCEL SOLVER)

provide the capability for solving SOCPs in a numerically robust manner.

3 Alternative models for robust active portfolio management

3.1 Side constraints on alpha

In §2.1, we assumed that the random exceptional return ∆r is given by the robust factor model

∆r = α+ V′f + ε

where α ∈ Sα, V ∈ Sv, f ∼ N (0,F) and ε ∼ N (0,D), and the sets Sα, Sv and Sd are defined in (6),

(5) and (4), respectively. In §2.4 we further assumed that the uncertain parameters (α,V,D) could

be independently chosen to minimize the value of the information ratio IR(φ). This assumption leads

to very pessimistic estimate of the performance of the portfolio φ, and as a consequence (29) can

become infeasible even when there exist portfolios with reasonable active returns. This pessimistic

behavior can be controlled by suitably constraining the set of feasible market parameters. In this

section, we survey some of the constraints that still allow the portfolio selection problem to be

recast as an SOCP.

3.1.1 Net zero alpha

A net zero alpha constraint requires that the return vector α satisfy
∑

i∈I αi =
∑

i∈I α0i for some

set of indices I ⊆ {1, . . . , n} (e.g. stocks in a particular industry). Such a constraint ensures that,

although an individual αi, i ∈ I, may differ from its nominal value α0i, the average deviation is

equal to zero. Moreover, the robust constraint minα∈Sα
α′φ ≥ 1 now becomes

α′
0φ+ min

{
ξ′φ :

∑

i∈I

ξi = 0, |ξ| ≤ η
}

= α′
0φ−

∑

i6∈I

ηi |φi| −
∑

i∈I

ηi |φi − λ| ≥ 1.

where λ is a new decision variable. Thus, net zero alpha constraints are modeled by linear con-

straints.

3.1.2 Incorporating analyst views

We propose two methods for incorporating analyst views into robust active portfolio selection. The

first relies on Bayesian analysis. The bounds η defining the uncertainty set Sα were set using the
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confidence level ω and the posterior density

α = N (α0,Σ), (34)

implied by historical data. Suppose, in addition, analysts provide the portfolio manager with

private views about the future α. For example, the analysts may believe that P(αi − αj ≥ π) = η.

This view can be expressed by setting

αi − αj = κ + σζ,

where ζ ∼ N (0, 1), the parameters (κ, σ) are chosen to satisfy FN (κ−π
σ ) = η and FN denotes the

CDF of a standard Normal random variable. (Note that there is some flexibility in the choice of

(κ, σ).) Thus, if the portfolio manager receives m different analyst views of the form P(p′α ≥ π) = η,

they can collectively be represented as

Pα = N (κ,Λ). (35)

for suitably chosen P ∈ R
m×n, κ ∈ R

m and Λ ∈ R
m×m. From (34) and (35) it follows that the

posterior density of α given both historical data and analysts’ views is given by

α = N (ᾱ, Σ̄), (36)

where Σ̄ = (Σ−1 + Λ−1)−1 and ᾱ = Σ̄(Σ−1α0 + P′Λ−1κ). From (36), it follows that the ω-

confidence region for α is given by s’

Sα = {α : (α− ᾱ)′Σ̄
−1

(α− ᾱ) ≤ χ−1
n (ω)},

where χn denotes the CDF of a χ2 random variable with n degrees of freedom. Thus, the robust

constraint minα∈Sα
{α′φ} ≥ 1 is equivalent to the SOC-constraint

ᾱ′φ− χ−1
n (ω)‖Σ̄

1
2φ‖ ≥ 1.

This method of incorporating views is identical to that used in the Black-Litterman model [7] –

with the added feature of using second-order information to set confidence levels.

In practice, however, it may be difficult to elicit the vector κ and the covariance Λ. Our second

method assumes that analysts’ views are of the form

l ≤ p′α ≤ u

or equivalently

p′α =
u + l

2
+ v, |v| ≤ u − l

2
.
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Suppose the manager receives m analysts’ views. These can be expressed as |Pα− κ| ≤ λ, where

P ∈ R
m×n and κ,λ ∈ R

m. Coupling this constraint with the bounds |α−α0| ≤ η implied by

historical data results in the uncertainty set

Sα = {α : |α−α0| ≤ η, |Pα− κ| ≤ λ},
= {α : α = α0 + u,Pu − v = κ− Pα0, |u| ≤ η, |v| ≤ λ}. (37)

This uncertainty set is completely defined by setting the center κ and the bounds λ. We believe that

eliciting these two parameters would be significantly easier than eliciting the covariance matrix Λ.

From (37), it follows that the robust constraint minα∈Sα
{α′φ} ≥ 1 is equivalent to

α′
0φ+ (Pα0 − κ)′γ − η′

∣∣φ− P′γ
∣∣− λ′ |γ| ≥ 1,

where γ is a new decision variable. It is easy to see that the above constraint can be linearized

and, therefore, can be incorporated into an SOCP.

3.2 Data driven methods

All the methods discussed in §2.2 and §3.1 are parametric methods in the sense that return data

is assumed to be distributed according a known distribution but with uncertain parameters. In

this section, we describe data-driven robust methods where we do not make any parametric as-

sumptions about the return distribution. In the first subsection below, we consider non-parametric

shortfall minimization. In the subsequent subsections, we introduce robustness into the shortfall

minimization problem and discuss tractability issues.

3.2.1 Non-parametric shortfall minimization

Let {D(k) : k = 1, . . . , N} and {B(k) : k = 1, . . . , N} denote, respectively, the historical data

on the return r ∈ R
n of the n assets in the market and the return of the benchmark. Recall

that in §2.2 we argued that a natural objective for an active portfolio manager is to minimize the

shortfall probability P(r′φ ≤ wrb) (see, e.g. (14)). Since we only have the raw historical data, we

approximate the true distribution P by the empirical measure P̂. We have N samples

γk(φ) = wB(k) − (D(k))′φ, k = 1, . . . , N, (38)

for the random shortfall of the portfolio φ. Therefore, the active manager’s optimization problem

reduces to
minimize 1

N

∑N
k=1χ

(
γk(φ)

)
,

subject to φ ∈ Φ,
(39)

where χ(·) denotes the indicator function of the positive axis, i.e. χ(x) = 1 for x ≥ 0 and zero,

otherwise. The optimization problem (39) is equivalent to a mixed 0-1 SOCP with one knapsack

constraint, and hence, is not a convex problem.
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The value-at-risk (VaRε(φ)) of a portfolio φ at probability ε is defined as

VaRε(φ) = inf
x

{
P((rb1 − r)′φ ≥ x) ≤ ε

}
.

It follows that P((rb1 − r)′φ ≤ 0) ≤ ε if, and only if, VaRε(φ) ≤ 0. Thus, (39) can be interpreted

as maximizing the probability ε for which VaRε(φ) ≤ 0.

We next show how to construct a tractable convex approximation for (39). Since χ(x) ≤
(vx + 1)+ for all v > 0, it follows that

1

N

N∑

k=1

χ
(
γk(φ)

)
≤ 1

N

N∑

k=1

(
γk(vφ) + 1

)+
(40)

Let ψ = vφ. Then (ψ, v) ∈ Φ̃ (see (27)). From (40) it follows that

minimize 1
N

∑N
i=1

(
γk(ψ) + 1

)+
,

subject to (ψ, v) ∈ Φ̃,
(41)

is a convex approximation of the active manager’s problem. Since P((rb1− r)′φ ≥ 0) ≤ E(v(rb1−
r)′φ+ 1)+, it follows that

E((rb1 − r)′φ+ v−1)+ − v−1ε ≤ 0 (42)

implies that P((rb1 − r)′φ ≥ 0) ≤ ε, or equivalently, VaRε(φ) ≤ 0. Since the left hand side of the

expression in (42) is positive for t < 0, it follows that

inf
t

{
t +

1

ε
E((rb1 − r)′φ− t)+

}
≤ 0,

implies that VaRε(φ) ≤ 0. Rockafellar and Uryasev [34] have shown that

CVaRε(φ) = E[(rb1 − r)′φ | (rb1 − r)′φ ≥ VaRε(φ)] = inf
t

{
t +

1

ε
E((rb1 − r)′φ− t)+

}
. (43)

From (43) and (42) it follows that CVaRε(φ) is a conservative convex approximation for VaRε(φ)

and that (40) can be interpreted as maximizing the probability ε for which CVaRε(φ) ≤ 0. Ne-

mirovski and Shapiro [30] show that the CVaR is, in fact, the tightest convex approximation of the

VaR. Unlike VaR, CVaR is a coherent risk measure, and is becoming popular in risk management

applications. Thus, the sample approximation (40) is an important approximation problem in its

own right.

Let φ∗ denote the portfolio that minimizes the true CVaR (note that φ∗ is not computable in

any practical sense). Let φ̂ denote the optimal solution of the sample-based CVaR optimization

problem (40). Then two important question emerge:

(i) How close is the sample approximation of the CVaR to the true CVaR of the portfolio φ̂?

(ii) How close is the CVaR of φ̂ to the CVaR of the true optimal φ∗?
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Both of these questions can be answered using results from statistical learning theory and the

Vapnik-Chervonenkis dimension. See [20] for details.

A loss function ρ that maps real valued random variables X to real numbers is called a Chocquet

loss function if there exists a non-decreasing convex function v : [0, 1] 7→ [0, 1] such that

1. v(0) = 0 and v(1) = 1

2. ρ(X) =
∫ 1
0 F−1

X (t)dv(t), where FX denotes the CDF of the random variable X.

Since the

CVaRε(X) = E
[
X : X ≥ VaRε(X)

]
=

∫ 1

1−ε
F−1

X (t)
dt

ε
=

∫ 1

0
F−1

X (t)dv̂(t)

for v̂(t) = 1
ε (t − 1 + ε)+, it follows that CVaRε is a Choquet loss function.

Let Γφ = (rb1 − r)′φ denote the random return of the portfolio φ below the benchmark rb

and let ρ be any Choquet loss function. Then another natural optimization problem for the active

portfolio manager is given by

minimize ρ(γφ),

subject to φ ∈ Φ.
(44)

The sample approximation (40) for the CVar optimization problem can be extended to all Choquet

loss functions as follows.

ρ(Γφ) =

∫ 1

0
F−1

Γφ
(t)dv(t),

≈
∫ 1

0
F̂−1

Γφ
(t)dv(t),

=
N∑

k=1

qkf[k](φ)

where F̂Γφ
denotes the empirical CDF of Γφ constructed from the N samples γ(φ) = (γ1(φ), . . . , γN (φ))′

of the shortfall (see (38)),

qk =

{
v
(
(N − k + 1)/N

)
− v
(
(N − k − 1)/N

)
, k = 1, 2, . . . , N − 1,

v
(
1/N

)
, otherwise,

and f[k](φ) denotes the sum of the k largest terms in γ(φ). Thus, (44) can be approximated by

the following sample-based optimization

minimize
∑N

k=1 qkf[k](φ),

subject to φ ∈ Φ.
(45)

Berstimas and Brown [6] use linear programming duality to show that

f[k](φ) = maximize a′γ(φ),

subject to 1′a = k,

0 ≤ a ≤ 1,

= minimize kτ (k) + 1′u(k),

subject to τ (k)1 + u(k) ≥ γ(φ),

u(k) ≥ 0,

(46)
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Since q ≥ 0, the dual formulation in (46) implies that (45) is equivalent to the SOCP

minimize
∑N

k=1 qk(kτ (k) − 1′u(k)),

subject to τ (k)1 − u(k) − γ(φ) ≥ 0,

u(k) ≥ 0, k = 1, . . . , N,

φ ∈ Φ.

(47)

3.2.2 Choquet loss functions with parameter uncertainty

In this section, we use results in §2.1 to extend the above data-driven model (47) to include

parameter uncertainty.

From (12), it follows that

(rb1 − r)′φ = ∆r′φ = (α+ V′f)′φ

where f denotes the random return on the factors driving the market. Suppose α and V are

uncertain with uncertainty sets Sα and Sv respectively, then the k-th sample γk(φ) = (B(k)1 −
D(k))′φ of the shortfall of the portfolio φ is uncertain with the uncertainty

∆γk = −∆α′φ+ (f (k))′∆Vφ,

where f (k) denotes the k-th sample of the factor returns. We interpret the uncertainty ∆γk as

follows: γk(φ) is a sample of the shortfall in the past; in the future, however, the value of the

parameters α and V may shift to some other value in their associated uncertainty sets and the

“correct” sample of the new shortfall distribution is given by γk(φ) + ∆γk. Therefore, in order to

protect against all possible parameter shifts one should solve the following robust version of (47)

minimize
∑N

k=1 qk(kτ (k) − 1′u(k)),

subject to τ (k) − u
(k)
j − γj(φ) − β − νj ≥ 0, j, k = 1, . . . , N,

maxα0+∆α∈Sα
{−∆α′φ} ≤ β,

maxV0+∆V∈Sv
{(f (j))′∆Vφ} ≤ νj , j = 1, . . . , N,

u(k) ≥ 0, k = 1, . . . , N,

φ ∈ Φ.

(48)

Both (47) and (48) suffer from the drawback that the number of variables in the problem increasse

as O(N2), where N is the number of samples. Next, we describe a more tractable formulation for

a restricted class of Choquet loss functions.

Let vp(t) = 1
p(t − 1 + p)+. Then it is easy to check that any non-decreasing convex function

with v(0) = 1 − v(1) = 0 can be represented as

v(t) =

∫ 1

0
vp(t)m(dp)
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where m denotes a probability measure on [0, 1]. Consider the restricted class of Choquet loss

ρ functions such that the corresponding measure mρ is discrete, i.e. the corresponding convex

function vρ is of the form

vρ(t) =
S∑

s=1

msvps(t)

Since the loss function ρs corresponding to vps(t) is CVaRps , it follows that ρs(φ) = inft{t +
1
ps

E((rb1 − r)′φ− t)+, and the loss function ρ corresponding to vρ is ρ =
∑S

s=1 msCVaRps . Thus,

we have that for this restricted class of loss functions the robust problem (48) can be reformulated

as follows
minimize

∑S
s=1 msβs,

subject to ts − 1
psN

∑N
j=1(β + ηj − ts)

+ ≤ βs,

max∆α∈Sα
{−∆α′φ} ≤ β,

γj(φ) + max∆V∈Sv
{(f (j))′∆Vφ} ≤ νj , j = 1, . . . , N,

φ ∈ Φ.

(49)

This program has only O(NS) variables. Thus, this formulation become much more attractive

when S = o(N).

3.2.3 Choquet loss function with non-parametric uncertainty

In this section, we describe robustness with respect to a non-parametric set of measures. This

measure of robustness is formulated in terms of the following Stackleberg game between the investor

and nature:

1. Investor choose a portfolio φ ∈ Φ.

2. Nature chooses a shortfall distribution such that the corresponding CDF F satisfies:

(a) supx∈R |F (x) − F̂ (x)| ≤ ε, where F̂ denotes the empirical distribution implied by the

vector γ(φ).

(b) F
(
κ maxk{γk(φ)}

)
= 1.

The constraint (b) on the power of Nature is required to ensure that the set of admissible measures

is tight. It can be replaced by any other constraint that ensures tightness. The Robust CVaR

optimization problem is given by

maximize maxF∈F(ψ) E(Z + 1)+,

subject to ψ ∈ Φ̃.
(50)

where Z ∼ F .
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Fix φ and γ = γ(φ). Let γ(k) denote the k-th order statistic of the vector γ. Then for

x ∈ [γ(k), γ(k+1)),

| F (x) − F̂ (x) |=| F (x) − k/N |≤ max
{
| F (γ−

(k+1)) − k/N |, | F (γ(k)) − k/N |
}

,

where F (x−) denotes the limit from the left. Thus, it follows that

sup
x

|F (x) − F̂ (x)| = max
1≤k≤n

{
| F (γ−

(k+1)) − k/N |, | F (γ(k)) − k/N |
}

. (51)

For any fixed F ∈ F(ψ), we have that

E(Z + 1)+ ≤
N∑

k=1

γ(k)

(
F (γ(k)) − F (γ(k−1))

)
+ (1 + ε)γ(N)

(
F (γ(N+1)) − F (γ(N))

)
, (52)

where γ(0) = −∞ and γ(N+1) = κγ(N), and the equality holds only if F puts all the probability

mass on the set {γ(k) : k = 1, . . . , N} ∪ {κγ(N)}. From (51) and (52), it follows that

max
F∈F(ψ)

E(Z + 1)+ = maximize
∑N

k=1(γ(k) + 1)+pk + (κγ(N) + 1)+pN+1,

subject to
∣∣∣
∑k

j=1 pj − k/N
∣∣∣ ≤ ε, k = 1, . . . , N,

∑N+1
k=1 pk = 1,

p ≥ 0.

For ε < 1, it is easy to check that the optimal solution of this LP is given by

max
F∈F(ψ)

E(Z + 1)+ =
(m

N
− ε
)

(γ(m) + 1)+ +
1

N

N∑

k=m+1

(γ(k) + 1)+ + ε(κγ(N) + 1)+,

where m = dNεe. Thus, the robust active portfolio selection problem (50) is equivalent to

maximize
(

m
N − ε

) (∑N
k=m(γ(k)(ψ) + 1)+

)
+(

ε − (m−1)
N

)(∑N
k=m+1(γ(k) + 1)+

)
+ ε(κγ(N)(ψ) + 1)+,

subject to ψ ∈ Φ̃.

(53)

Let γ̃k(ψ) = (γk(ψ) + 1)+. Then
∑N

k=m γ(k)(ψ) + 1)+ =
∑N

k=m γ̃(k) is the sum of the N − m + 1

largest terms in the vector γ̃(ψ). Thus, the dual formulation for the sum of k largest terms (see (46))

it follows that (53) is equivalent to

maximize
(

m
N − ε

) (
(N − m + 1)τ (1) + 1′u(1)

)
+(

ε − (m−1)
N

)(
(N − m)τ (1) + 1′u(1)

)
+ επ,

subject to τ (k) + u
(k)
j ≥ γj(φ) + 1, k = 1, 2, j = 1, . . . , N,

τ (k) + u
(k)
j ≥ 0, k = 1, 2, j = 1, . . . , N,

π ≥ κγj(φ) + 1, j = 1, . . . , N,

π ≥ 0,u ≥ 0,ψ ∈ Φ̃.

(54)
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DJIA Dow Jones Composite Average

NDX Nasdaq 100

RUT Russell 2000

Table 2: Base set of factors

4 Computational Experiments

In this section we report the results of our numerical experiments with the portfolio selection model

proposed in § 2. We conducted two sets of experiments. The first set of experiments compared the

performance of a robust active portfolio management strategy with that of a non-robust version

of that strategy on simulated market data. The results of this experiment are presented in § 4.1.

The second set of experiments, described in § 4.2, compare the performance of the robust and non-

robust strategies on real market data. In these experiments we do not use the alternative models

described in §3.
In both sets of experiments we assumed that the transaction costs were given by (19) and (21),

and that the parameters of the transaction cost functions Ti(zi, yi) for all assets i were the same,

i.e., ϑi1 = ϑ and πi = π for i = 1, . . . , n. To set θ and π we relied on the data in [25], which was

from 1982. That data suggests that ϑ = 0.01 and the break point π corresponds to $0.25mn for the

large-cap stocks. We assumed that the parameter ϑ is the same today. However, since the price

of the S&P 500 has increased approximately 10 times from 119.15 on August 3rd, 1982 to 1059.02

on November 3rd, 2003, we assumed that the break point π also increased 10 times. Hence, we

set π = $2.5mn. We assumed our current wealth to be w = $100mn. We do not argue that these

values model reality exactly – estimating the exact transaction cost function is beyond the scope

of this paper. However, these transaction costs are reasonable in the light of the data in [25].

4.1 Experiments on simulated data

For this set of experiments the number of assets n was set to n = 200 and the number of factors m

was set to m = 38. The linear model given by (1) and (3) implies that the market is defined by the

factor covariance matrix Fs, the factor loading matrix Vs, the covariance of the residual returns

Ds, the “betas” of the assets βs, the mean return µs
b of the benchmark, the volatility σs of the

benchmark and the mean exceptional return vector αs. The superscript “s” indicates that these

parameters were set at the beginning of the simulation and not randomly generated. To ensure that

the simulated assets returns were realistic we used the following strategy to select these parameters.

We randomly selected 35 stocks from the constituents of the S&P 500 on January 2, 2004 and the

3 major market indices in Table 2 and deemed them to be the factors driving the market. We

set the factor covariance matrix Fs equal to the (38 × 38)-covariance matrix estimated using the

past 300 days. Each element of the matrix Vs and the βs was independently sampled from a
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N (0, 0.5) distribution. We set the simulated benchmark’s mean daily return µs
b = 6.5 × 10−4 and

the daily volatility σs = 0.01. Each diagonal element of Ds was sampled from a uniform distribution

over the interval [10−6, 10−4]. The components of the vector αs were sampled from a N (0, 0.002)

distribution. As noted above, the samples for the market parameters were generated once at the

beginning of the simulation and were held fixed through the entire simulation run. Given the

market parameters, the daily return r(t) ∈ R
n of the n = 200 assets is given by

r(t) = N (µs,Σs), (55)

where

µs = µbβ
s +αs, Σs = σ2

bβ
s(βs)′ + (Vs)′(Fs)Vs + Ds

The details of the simulation experiment is described below.

(a) We re-balanced the portfolio every T = 60 trading dates. Thus, we bought and held portfolios

for approximately a quarter. Our investment horizon was 9 periods.

(b) The investor only observes the market return data, i.e. in particular, the investor does not know

the market parameters and in particular the factors driving the market. At the beginning of

each investment period:

• We computed an estimate Σ of the covariance matrix of asset returns using the market

data from the previous H = 5 periods, i.e. H × T = 300 days.

• We assumed that the factors for the particular period were the three standard indices in

Table 2, the benchmark and the eigenvectors corresponding to the largest eigenvalues of

Σ accounting 95% of Tr(Σ). Note that this set of factors is different from the true set of

factors driving the market.

• We estimated the vector β from the history of H × T days.

• We computed the estimate F of the factor covariance matrix using the simulated factor

returns from the history of H × T days.

• We set the confidence level ω = 99% and computed the parameters α0, η, V0, G, ρ, d̄,

and δ using the procedure described in Appendix A.

(c) We set the parameters θ = 0.2, the upper bound u = 0.11 and the lower bound v = 0.011.

See (18) for the definition of θ, u and v.

(d) The non-robust portfolio φ
(p)
o for period p was set equal to an optimal solution of

maximize v0(φ)

subject to φ ∈ Φ(φ̂
(p)

o ),
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where φ̂
(p)
o (i) = (1+ r

(p−1)
i )φ

(p−1)
o (i), i = 1, . . . , n, r

(p−1)
i is the return on asset i over the period

p, Φ(φ̂
(p)

o ) denotes that the portfolio φ̄ defining Φ (see 18) was set equal to φ̂
(p)

o .

Similarly, the robust active portfolio was set equal to an optimal solution of the robust problem

maximize vr(φ)

subject to φ ∈ Φ(φ̂
(p)

r ),

where φ̂
(p)
r (i) = (1 + r

(p−1)
i )φ

(p−1)
r (i), i = 1, . . . , n.

Both the non-robust active strategy and the robust active strategy started with an initial wealth

w(0) = $100mn. In the first period we assumed that transaction costs were zero – this ensured

that we did not have to specify an initial portfolio φ̄ to compute φ(1).

(e) The results reported are the averages over 50 independent runs.

We summarize our numerical results in a series of plots highlighting different performance

measures. Let w(t) denote the wealth of a portfolio strategy at the end of day t. Then

w(t) =
n∑

i=1

( t∏

k=(p−1)T+1

(1 + rf + r
(k)
i )
)
φ

(p)
i , (p − 1)T < t ≤ pT, (56)

where the risk-free rate of return rf = 3% per year, r
(k)
i denote the return in excess of the risk-free

rate rf on asset i on day k, and φ(p) is the portfolio held by the portfolio strategy in period p. The

relative daily wealth rw(t) of a strategy with respect to the index B at the end of day t is

rw(t) =
w(t)

w
(t)
B

,

where w
(t)
B denotes the cumulative wealth generated by investing the initial wealth w(0) = $100mn

in the benchmark.

Figure 3 displays the relative wealth generated by the robust active strategy. In this plot the

solid line is the relative wealth averaged over 50 simulation runs, the box at each period is the

one standard deviation interval, and the vertical lines show the max and min values of the relative

cumulative wealths in that period. For comparison, the average relative wealth generated by the

non-robust strategy is depicted by a dotted line. Figure 4 displays the results for the non-robust

strategy.

Figures 5 and 6 plot the per-period excess return Rp of the robust active strategy and the

non-robust strategy respectively, where

R(p) =
w(Tp)

w(T (p−1))
− w

(Tp)
B

w
(T (p−1))
B

,

i.e. R(p) is the return of the portfolio strategy in excess of the benchmark return.
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Figure 3: Relative wealth of the robust strategy
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Figure 4: Relative wealth of the non-robust mean-variance strategy
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Figure 5: Per period excess return of the robust strategy
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Figure 6: Per period excess return of the non-robust mean-variance strategy
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Figure 7: Turnover of the robust portfolios
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Figure 8: Turnover of the non-robust mean-variance portfolios
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Figures 7 and 8 plot the portfolio turnover κ of, respectively, the robust and the non-robust

strategies, where

κ =

∑ |φ(p)
i − φ(p−1)

i |
∑ |φ(p−1)

i |
Note that the percentage turnover can be greater than 1 because of short sales. The following

observations are supported by the results displayed in Figures 3–8.

(i) The robust active portfolio strategy is always above the benchmark, i.e. it consistently pro-

vides exceptional returns. This is not true for the non-robust mean-variance active portfolio

strategy – the minimum wealth of this strategy is often much below that of the benchmark

in every period!

(ii) The minimum wealth of the robust portfolio strategy in any period is higher than that average

wealth of the non-robust portfolio strategy.

(iii) The return of the robust portfolio strategy is more stable in the sense that ratio of the

minimum to the maximum wealth in any period is larger than the same ratio for the non-

robust strategy.

(iv) The turnover of the robust strategy and the non-robust strategy are roughly comparable on

average, but the turnover of the non-robust strategy is more variable and can be quite large.

(v) The average number of assets in the robust portfolio was 109.4 and the number of assets in the

classical mean-variance portfolio was 177.6. Therefore, on average, the total cost of managing

the robust strategy ought to be lower.

Since the robust strategy is protecting against all parameters in the uncertainty set, one would

expect that the robust strategy is likely to perform better in markets where the parameters fluctuate.

The next set of experiments test this hypothesis by modifying the daily asset returns as follows:

r̃ =

{
r = N (µs,Σs), with probability 1 − ς,

r̄ = N (µ̄, Σ̄), with probability ς,

where µs = βs
iµbs +αs

i and Σs = σ2
bβ

s(βs)T + (Vs)′(Fs)(Vs) + Ds denote the mean and variance

of the usual simulated returns, the shifted mean return

µ̄i =
(
1 − 0.1sign(µs

i )
)
µs

i , i = 1, . . . , n,

and the shifted covariance matrix Σ̄ = σ2
bβ

s(βs)T + (V̄)′(Fs)(V̄) + D, with V̄ij = vij(1 + z) and

and z ∼ N (0, 0.01). Note that in this new market model, with probability ς, the expected return

µ̄i shifts in a direction opposite to that of the nominal return µs
i .

Figures 9 and 10 plot, respectively, the relative wealth of the robust and non-robust strategy

for ς = 0.2, i.e. when the returns deviate from the regular return model with 20% probability.

29



1 3 5 7 9

1

2

3

4

5

6

7

8

9

Robust−Relative Wealth

PERIOD

R
el

at
iv

e 
W

ea
lth

 
RS
MVS
B

Figure 9: Relative wealth of the robust strategy when ς = 0.2

Again, the results are averaged over 50 independent simulation runs. Figures 11 and 12 plot the

excess return of the two portfolio strategies for ς = 0.2 and Figures 13, and 14 display the turnover

of the two portfolio strategies. When ς = 0.2 the average number of assets held by the robust

strategy and the non-robust strategies were 86.06 and 181.50, respectively. These plots support the

following observations.

(i) The robust strategy outperforms the non-robust strategy; however, the excess returns of both

strategies are lower than their respective returns in a stationary market.

(ii) The turnover of the robust strategy is significantly higher than the non-robust strategy. This

fact, together with the observations that the robust strategy holds fewer assets and has a

higher excess return, lends to the hypothesis that the robust strategy is better able to react

to market shifts.

4.2 Real Market Data

In this section we report the results of computational experiments with real market data. The

universe of assets in these set of experiments was the stocks that were part of the S&P 500 index

and the benchmark was the S&P 500 index. Thus, the goal of the active strategies was to provide

returns in excess of the S&P 500 index. The strategies invested over the period April 1, 2001 to

November 10, 2003 using data starting from January 5, 2000.

The experimental procedure was very similar to the one described in the previous section.

However, in contrast to the simulation runs, here we have a single sample path.
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Figure 10: Relative wealth of the non-robust strategy when ς = 0.2

1 3 5 7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Robust−Per Period Excess Return

PERIOD

E
xc

es
s 

R
et

ur
n

 
RS
MVS
B

Figure 11: Per period excess return of the robust strategy when ς = 0.2
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Figure 12: Per period excess return of the non-robust strategy when ς = 0.2
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Figure 13: Turnover of the robust portfolios when ς = 0.2
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Figure 14: Turnover of the non-robust portfolios when ς = 0.2
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Figure 15: Relative wealth of the strategies

33



1 3 5 7 9
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Realized Sharpe Ratios

RS
MVS
SP500

PSfrag replacements

Period

S
h
a
rp

e
R

a
ti

o

Figure 16: Realized sharpe ratios of the strategies
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Figure 17: Percentage turnover of the portfolios
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Figure 15 plots the relative wealth of the strategies with respect to that of S&P 500 and

Figure 17 shows the percentage turnover of the portfolios. Figure 16 displays the realized Sharpe

ratio of the two portfolio strategies and the S&P 500 index. The average number of assets held in

the portfolios were 72.2 for the robust strategy and 413.4 for the non-robust strategy. Thus, the

non-robust strategy hold pretty much all the stocks in the index.

Since the results above refer to a single sample path, there is a chance that they suffer from a

starting-point bias. The next set of results attempt to correct this bias. We considered N = 60

different strategies that each re-balance every T = 60 trading days but each have different start

date. Thus, a strategy that starts investing on day d, d = 0, . . . , N − 1, re-balances the portfolio

on day 60k + d, k ≥ 0. Let w(t)(d) denote the wealth on day t, t ≥ 1, of the portfolio strategy

that starts investing on day d and let wt
B(d) denote the cumulative total wealth on day t when the

initial investment of $100mn is invested in the S&P 500 index on day d. If the S&P 500 index has

a stationary distribution. Then the sequences of relative wealth

rw(t)(d) =
w(t+d)(d)

w
(t+d)
B (d)

, t ≥ 0,

corresponding to each starting date d are independent and identically distributed. Therefore, one

can treat these different sequences as independent investment runs. In Figure 18 the solid lines

correspond to the average

1

N

N−1∑

d=0

rw(t)(d)

for each of the two strategies, and the box at each period is the one standard deviation interval for

the relative wealth of the robust strategy, and the vertical lines show the max and min values of the

relative wealths in that period for the robust strategy. Figure 19 displays the analogous quantities

for the non-robust strategy. From these plots it is clear that the robust strategy is superior to

the non-robust strategy and the insights from the simulation model continue to hold for the real

market data.

5 Conclusion

In this paper we show how to use robust optimization based techniques to immunize the active

portfolio selection problems to perturbations in parameter values. In §2 and §3 we discuss a

number of different models for active portfolio management and show to make them robust to

data perturbations. We show that the portfolio selection problem in all of these models can be

reformulated as an SOCP. We also develop a piece-wise convex model for trading costs which

allows a great deal of modeling flexibility without increasing the computational cost of solving the

portfolio selection problem – they still remain SOCPs. This fact has important theoretical and

practical implications. Since the computational complexity of an SOCP is comparable to that
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Figure 18: Relative cumulative wealth of the robust strategy with respect to the S&P 500
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Figure 19: Relative cumulative wealth of the non-robust strategy with respect to the S&P 500
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of a convex quadratic program, it follows that robust active portfolio selection is able to provide

protection against parameter fluctuations at very moderate computational cost. Morever, a number

commercial solvers such as MOSEK, CPLEX and Frontline System (supplier of EXCEL SOLVER)

provide the capability for solving SOCPs in a numerically robust manner.

There are several interesting extensions that are worth exploring. The models in this paper are

all single-period myopic models. Extending the portfolio selection model to a multi-period setting

appears to be non-trivial.
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A Defining the uncertainty sets

Suppose the market data consists of asset excess returns {r(t) : t = 1, ..., T}, benchmark returns

{r(t)
b : t = 1, ..., T}, and corresponding factor returns {f (t) : t = 1, ..., T} for T trading days. After

39



computing β by linear regression and forming ∆r
(t)
i = r

(t)
i −βir

(t)
b for i = 1, . . . , n and t = 1, . . . , T ,

the linear model (3) implies that

∆r
(t)
i = αi +

n∑

j=1

Vjif
(t)
j + ε

(t)
i , i = 1, . . . , n, t = 1, . . . , T. (57)

In linear regression analysis, typically it is assumed that {ε(t)
i : i = 1, . . . , n, t = 1, . . . , T} are

all independent normal variables and ε
(t)
i ∼ N (0, σ2

i }, for all t = 1, . . . , T . The independence

assumption is relaxed in ARMA models at the cost of replacing the least-squares estimation by

Kalman filters (see [18]).

Let B = [f1, f2, . . . , fT ] ∈ Rm×(T ) be the matrix of factor returns. Collecting together terms

corresponding to a particular asset i over all periods t = 1, . . . , T , we get the following linear model

for the returns {r(t)
i : t = 1, . . . , T},

yi = Axi + εi,

where

yi = [ ∆r1
i ∆r2

i · · · ∆rT
i ]′, A = [ 1 B′ ], xi = [ αi V1i · · · Vmi ]′

and εi = [ε
(1)
i , . . . , ε

(TH)
i ]′ is the vector of residual returns corresponding to asset i. The least-squares

estimate x̄i of the true parameter xi is given by

x̄i = (A′A)−1A′yi,

if rank(A) = m + 1. Substituting yi = Axi + εi, we get

x̄i − xi = (A′A)−1A′εi ∼ N (0,Σ),

where Σ = σ2
i (A

′A)−1. Let Q ∈ RJ×(m+1). A standard result in regression theory states that if

σ2
i in the definition of Σ is replaced by s2

i , where s2
i is the unbiased estimate of σ2

i and given by

s2
i =

‖yi − Ax̄i‖2

T − m − 1
,

then

ν =
1

Js2
i

(Qx̄i − Qxi)
′(Q(A′A)−1Q′)−1(Qx̄i − Qxi)

is distributed according to the F-distribution with J degrees of freedom in the numerator and

T − m − 1 degrees of freedom in the denominator [2, 16]; i.e., the probability ν ≤ cJ(ω) is ω, or

equivalently,

P
(
(Qx̄i − Qxi)

′(Q(A′A)−1Q′)−1(Qx̄i − Qxi) ≤ JcJ(ω)s2
i

)
= ω (58)
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If we define Q = [e2, e3, . . . , em+1] ∈ Rm×(m+1), then Qx̄i = V̄i is the least squares estimate to

the true factor loading Qxi = Vi and using (58) we get

P
(
(V̄i − Vi)

′(Q(A′A)−1Q′)−1(V̄i − Vi) ≤ mcm(ω)s2
i

)
= ω (59)

Therefore, the set Sv(ω)

Sv(ω) =
{
V : V = V0 + W, ‖Wi‖g ≤ ρi, i = 1, ..., n

}
,

where

V0 = V̄, G = (Q(A′A)−1Q′)−1 = BB′ − 1

TH
(B1)(B1)′, ρi =

√
mcm(ω)s2

i , i = 1, . . . , n,

is an ωn-confidence set for the factor loading matrix V.

To construct the uncertainty set for expected residual return, define Q = e′
1. Then, Qxi = αi

and Qx̄i = ᾱi are the true expected residual return of asset i and the least squares estimate of the

expected residual return, respectively. Therefore, (58) implies

P
(
|ᾱi − αi| ≤

√
(A′A)−1

11 c1(ω)s2
i

)
= ω (60)

Since the residual returns εi are assumed to be independent, it follows that

Sα(ω) = {α : α = α0 + ξ, |ξi| ≤ ηi, i = 1, ..., n} , (61)

where

α0,i = ᾱi, ηi =
√

(A′A)−1
11 c1(ω)s2

i , i = 1, ...n,

is an ωn confidence region for the mean return µ. Observing

P((µ,V) ∈ Sα(ω) × Sv(ω)) = 1 − P((µ,V) 6∈ Sα(ω) × Sv(ω)),

≥ 1 − P((µ) 6∈ Sα(ω) − P(V 6∈ Sv(ω)),

= 2ωn − 1,

we conclude that the Cartesian product S(ω) = Sα(ω)×Sv(ω) is a joint confidence region of (α,V)

with (2ωn − 1) confidence.

One way of constructing the set Sd, is to use a bootstrap ω-confidence interval [11] around each

σ2
i . In our formulation we used the mean residual variance di, for each i, for simplicity.

B Convex relaxation

Suppose φ ∈ Φ, where Φ is defined in (18) and 1′φ + T (z,y) < 1′φ̄. We show below that there

exists a portfolio φ̂ ∈ Φ that satisfies

1′φ̂+ T (ẑ, ŷ) = 1′φ̄. (62)
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with vo(φ) = vo(φ̂) and vr(φ) = vr(φ̂). Hence, relaxing the constraint (62) does not result in

any reduction in the optimal objective values of either the robust or non-robust active portfolio

selection problems.

Define a new solution (φ̂, ẑ, ŷ, ŵ) as follows.

φ̂ = sφ,

ẑ = z + (s − 1) max{φ,0},
ŷ = y + (s − 1) max{−φ,0},
ŵ = sw,

(63)

where the max operator is taken component wise. Then

1′φ̂+ T (ẑ, ŷ) − (1′φ+ T (z,y)) ≥ (s − 1)1′φ+ [ρ′z ρ
′
y]

(
ẑ − z

ŷ − y

)

= (s − 1)[w + (ρz + ρy)
′|φ|]

(64)

where ρ = (ρz,ρy) is a subgradient of T (·, ·) at (z,y). Since T (z,y) is an increasing function,

ρ > 0 and w + (ρz + ρy)
′|φ| > 0. Thus, we can choose an s > 1 such that (φ̂, ẑ, ŷ) satisfies (62).

We will now show that (φ̂, ẑ, ŷ, ŵ) satisfies the remaining constraints defining S. First note

that

φ̂− ẑ + ŷ = sφ− z − (s − 1) max{φ,0} + y + (s − 1) max{−φ,0}
= sφ− (s − 1)φ− z + y

= φ− z + y = φ̄.

Also,

1′(ŷ − ẑ) = 1′(y − z) − (s − 1)1′φ ≤ θw − (s − 1)w < θw < θŵ.

Clearly ẑ ≥ 0, ŷ ≥ 0, and ŵ ≥ 0, and all the remaining constraints defining Φ are satisfied because

they are all homogeneous of degree 1 in φ and w.

Finally, since v0 and vr are scale-invariant, it follows that vo(φ) = vo(φ̂) and vr(φ) = vr(φ̂).
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